Powered by Deep Web Technologies
Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Oil Bypass Filter Technology Evaluation - Fourth Quarterly Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

ABSTRACT This fourth Oil Bypass Filter Technology Evaluation report details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and...

2

Oil Bypass filter technology evaluation final report  

NLE Websites -- All DOE Office Websites (Extended Search)

6-01355 6-01355 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Final Report TECHNICAL REPORT Larry Zirker James Francfort Jordan Fielding March 2006 Idaho National Laboratory Operated by Battelle Energy Alliance INL/EXT-06-01355 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Final Report Larry Zirker James Francfort Jordan Fielding March 2006 Idaho National Laboratory Transportation Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

3

Oil Bypass Filter Technology Evaluation - Second Quarterly Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

INEELEXT-03-00620 U.S. Department of Energy FreedomCAR & Vehicle Technologies Oil Bypass Filter Technology Evaluation Second Quarterly Report January - March 2003 Larry Zirker...

4

Oil Bypass Filter Technology Evaluation - Fifth Quarterly Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

INEELEXT-04-01618 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Fifth Quarterly Report October - December 2003...

5

Oil Bypass Filter Technology Evaluation - Eighth Quarterly Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

INEELEXT-04-02486 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Eighth Quarterly Report July-September 2004...

6

Oil Bypass Filter Technology Performance Evaluation - First Quarterly...  

NLE Websites -- All DOE Office Websites (Extended Search)

INEELEXT-03-00129 U.S. Department of Energy FreedomCAR & Vehicle Technologies Oil Bypass Filter Technology Performance Evaluation First Quarterly Report Larry Zirker James...

7

Oil Bypass Filter Technology Evaluation - Sixth Quarterly Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

INEELEXT-04-02004 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Sixth Quarterly Report January - March 2004...

8

Oil Bypass Filter Technology Evaluation - Tenth Quarterly Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

INLEXT-05-00381 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Tenth Quarterly Report January-March 2005 TECHNICAL...

9

Oil Bypass Filter Technology Evaluation - Third Quarterly Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

INEELEXT-03-00974 U.S. Department of Energy FreedomCAR & Vehicle Technologies Oil Bypass Filter Technology Evaluation Third Quarterly Report April-June 2003 Larry Zirker James...

10

Oil Bypass Filter Technology Evaluation - Ninth Quarterly Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

INLEXT-05-00040 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Ninth Quarterly Report October-December 2004 TECHNICAL...

11

Oil Bypass Filter Technology Performance Evaluation - First Quarterly Report  

DOE Green Energy (OSTI)

This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

Zirker, L.R.; Francfort, J.E.

2003-01-31T23:59:59.000Z

12

Evaluation of Oil Bypass Filter Technology on Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

(Advanced Vehicle Testing Activity) (Advanced Vehicle Testing Activity) Evaluation of Oil Bypass Filter Technology on Heavy-Duty Vehicles James Francfort American Filtration and Separations Society April 2005 Presentation Outline * Background & Objectives * Oil bypass filters - features & reported benefits * INL testing method * puraDYN oil bypass filters * Refined Global Solutions (RGS) oil bypass filters * Testing results & trends * Particulate and ferrography testing * Initial INL Oil Bypass Filter Economics * Potential fleet oil savings * Testing Status Bypass Filter Evaluation - Background * Funded by the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program (Advanced Vehicle Testing Activity) * Vehicles operated by Idaho National Laboratory's Fleet Operations group * Idaho National Laboratory

13

Oil Bypass Filter Technology Evaluation - Seventh Quarterly Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Laboratory-WV National Renewable Energy Laboratory Naval Petroleum and Oil Shale Reserves CO, UT, WY Nevada Site Office Nevada Test Site Oak Ridge Institute for...

14

Oil Bypass Filter Technology Evaluation Seventh Quarterly Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Laboratory-WV National Renewable Energy Laboratory Naval Petroleum and Oil Shale Reserves CO, UT, WY Nevada Site Office Nevada Test Site Oak Ridge Institute for...

15

Oil Bypass Filter Technology Evaluation Eleventh Quarterly Report April- June 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

651 651 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Eleventh Quarterly Report April-June 2005 TECHNICAL REPORT Larry Zirker James Francfort Jordan Fielding September 2005 Idaho National Laboratory Operated by Battelle Energy Alliance INL/EXT-05-00651 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Eleventh Quarterly Report April-June 2005 Larry Zirker James Francfort Jordan Fielding September 2005 Idaho National Laboratory Transportation Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Under DOE Idaho Operations Office

16

Oil Bypass Filter Technology Evaluation, Fourth Quarterly Report, July--September 2003  

Science Conference Proceedings (OSTI)

This fourth Oil Bypass Filter Technology Evaluation report details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of miles. This represents an avoidance of 21 oil changes, which equates to 740 quarts (185 gallons) of oil not used or disposed of. To validate the extended oil-drain intervals, an oil-analysis regime evaluates the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. For bus 73450, higher values of iron have been reported, but the wear rate ratio (parts per million of iron per thousand miles driven) has remained consistent. In anticipation of also evaluating oil bypass systems on six Chevrolet Tahoe sport utility vehicles, the oil is being sampled on each of the Tahoes to develop a characterization history or baseline for each engine.

James E. Francfort; Larry Zirker

2003-11-01T23:59:59.000Z

17

Oil Bypass Filter Technology Evaluation Ninth Quarterly Report October–December 2004  

SciTech Connect

This Oil Bypass Filter Technology Evaluation quarterly report (October–December 2004) details the ongoing fleet evaluation of oil bypass filter technologies being conducted by the Idaho National Laboratory (INL; formerly Idaho National Engineering and Environmental Laboratory) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight INL four-cycle diesel-engine buses used to transport INL employees on various routes and six INL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. This quarter, three additional buses were equipped with bypass filters from Refined Global Solutions. Oil bypass filters are reported to have an engine oil filtering capability of less than 1 micron. Both the puraDYN and Refined Global Solutions bypass filters have a heating chamber to remove liquid contaminate from the oil. During the quarter, the eleven diesel engine buses traveled 62,188 miles, and as of January 3, 2005 the buses had accumulated 643,036 total test miles. Two buses had their engine oil changed this quarter. In one bus, the oil was changed due to its degraded quality as determined by a low total base number (<3.0 mg KOH/g). The other bus had high oxidation and nitration numbers (>30.0 Abs/cm). Although a total of six buses have had their oil changed during the last 26 months, by using the oil bypass filters the buses in the evaluation avoided 48 oil changes, which equates to 1,680 quarts (420 gallons) of new oil not consumed and 1,680 quarts of waste oil not generated. Therefore, over 80% of the oil normally required for oil-changes was not used, and, consequently, the evaluation achieved over 80% reduction in the amount of waste oil normally generated. The six Tahoe test vehicles traveled 39,514 miles, and as of January 3, 2005 the Tahoes had accumulated 189,970 total test miles. The Tahoe filter test is in transition. To increase the rate of bypass filter oil flow on the Tahoes, puraDYN provided a larger orifice assembly, and these are being changed out as the Tahoes come in for regular service.

Larry Zirker; James Francfort; Jordan Fielding

2005-02-01T23:59:59.000Z

18

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Final Report  

SciTech Connect

This Oil Bypass Filter Technology Evaluation final report documents the feasibility of using oil bypass filters on 17 vehicles in the Idaho National Laboratory (INL) fleet during a 3-year test period. Almost 1.3 million test miles were accumulated, with eleven 4-cycle diesel engine buses accumulating 982,548 test miles and six gasoline-engine Chevrolet Tahoes accumulating 303,172 test miles. Two hundred and forty oil samples, taken at each 12,000-mile bus servicing event and at 3,000 miles for the Tahoes, documented the condition of the engine oils for continued service. Twenty-eight variables were normally tested, including the presence of desired additives and undesired wear metals such as iron and chrome, as well as soot, water, glycol, and fuel. Depending on the assumptions employed, the INL found that oil bypass filter systems for diesel engine buses have a positive payback between 72,000 and 144,000 miles. For the Tahoes, the positive payback was between 66,000 and 69,000 miles.

L. R. Zirker; J. E. Francfort; J. J. Fielding

2006-03-01T23:59:59.000Z

19

Program on Technology Innovation: Evaluation of a Commercially Available Harmonic Filter  

Science Conference Proceedings (OSTI)

Emissions tests were conducted to analyze common and differential noise, harmonics, and current draw characteristics in the electrical systems of a typical household. A test setup was constructed to simulate the circuits of this typical household in order to determine how the STETZERiZER® Filters might affect the electric currents and voltages these circuits. Testing was performed in a frequency range of 3 kHz - 150 kHz to measure the effect of these filters on power draw and power quality, as ...

2013-10-04T23:59:59.000Z

20

Nuclear Filter Technology | Open Energy Information  

Open Energy Info (EERE)

located in Golden, CO. References Retrieved from "http:en.openei.orgwindex.php?titleNuclearFilterTechnology&oldid379255" Categories: Clean Energy Organizations Companies...

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy FreedomCAR & Vehicle Technologies Program Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles James Francfort (PI) Timothy...

22

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstrated Petroleum Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles James Francfort (PI) Timothy Murphy Larry Zirker Oil Bypass Filter Technology Evaluation * Funded by the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program * Performed by Idaho National Engineering and Environmental Laboratory (INEEL) Fleet Operations * Goal - Support DOE's efforts to reduce petroleum consumption & ensure the energy security of the United States Oil Bypass Filter Technology Evaluation * Objectives - Test the concept of using oil bypass filters to minimize engine oil changes & the generation of waste oils - Demonstration the economics of oil bypass filter systems - Estimate potential engine oil saving from bypass filter technologies that can be achieved by INEEL,

23

EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER  

SciTech Connect

SRS is currently developing and testing several processes to treat high level radioactive liquid waste. These processes include the Integrated Salt Disposition Process (ISDP), the Salt Waste Processing Facility (SWPF), and the Small Column Ion Exchange Process (SCIX). Each of these processes has a solid-liquid separation process that limits its throughput. SRNL researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The testing showed significant improvement in filter flux with the rotary microfilter over the baseline crossflow filter (i.e., 2.5-6.5X during scoping tests, as much as 10X in actual waste tests, and approximately 3X in pilot-scale tests). SRNL received funding from DOE EM-21, and subsequently DOE EM-31 to develop the rotary microfilter for high level radioactive service. The work has included upgrading the rotary microfilter for radioactive service, testing with simulated SRS waste streams, and testing it with simulated Hanford waste streams. While the filtration rate is better than that obtained during testing of crossflow filters, the authors believe the rotary microfilter throughput can be improved by using a better filter membrane. The rotary microfilter membrane is made of stainless steel (Pall PMM050). Previous testing, funded by DOE EM-21, showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. In that testing, the Pall Accusep and Graver filters produced 13-21% larger filter flux than the baseline 0.1 {micro}m Mott filter. While the improvement in flux is not as dramatic as the improvement of the rotary filter over a crossflow filter, a 13-21% increase could reduce the lifetime of a 30 year process by 4-6 years, with significant cost savings. Subsequent rotary filter testing showed the Pall PMM050 stainless steel filter membrane produced higher flux than the Mott filter media in bench-scale and pilot-scale testing. The Accusep and Graver filter media were not evaluated in that testing, because they are not available as flat sheets. The Accusep filter was developed at ORNL and licensed to Pall Corporation. This filter has a stainless steel support structure with a zirconium oxide ceramic membrane. The pore size is 0.1 {micro}m absolute. The Graver filter has a stainless steel support structure with a titanium dioxide ceramic membrane. The pore size is 0.07 {micro}m absolute. SRNL and ORNL are working together to develop filter media similar to the Accusep and Graver media, and to test them in a bench-scale filtration apparatus to attempt to improve the throughput of the rotary microfilter. This report describes the effort.

Poirier, M.; Herman, D.; Bhave, R.

2011-09-13T23:59:59.000Z

24

Available Technologies: Island Vane Macroparticle Filter for ...  

Energy Efficiency; Energy Storage and Recovery; Renewable Energy; Environmental Technologies. Monitoring and Imaging; Remediation; Modeling; Imaging ...

25

Evaluation of Emerging Technologies  

Science Conference Proceedings (OSTI)

The ability to inspect and assess the condition of transmission assets has become vital as components age beyond their design margin. New and emerging inspection and sensing technologies may help meet this need.To provide members with objective information about emerging inspection technologies, EPRI’s Overhead Transmission program conducts an ongoing series of evaluations of promising inspection systems. The evaluations include laboratory and field testing and documentation of ...

2012-12-20T23:59:59.000Z

26

Performance-Based Technology Selection Filter description report  

SciTech Connect

A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

O' Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

1992-05-01T23:59:59.000Z

27

Advanced Vehicle Testing Activity: Oil Bypass Filter  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Bypass Filter The Idaho National Laboratory (INL) is evaluating oil bypass filter technology for the U.S. Department of Energy's (DOE's) Vehicle Technologies Office. Eight...

28

Evaluation of a Cyclone and Hot Gas Filter System  

NLE Websites -- All DOE Office Websites (Extended Search)

a Cyclone and a Cyclone and Hot Gas Filter System Description The Wabash River Coal Gasification Plant uses an oxygen-blown E-Gas gasifier technology, owned by ConocoPhillips, which produces fuel gas containing significant amounts of fine particulates. Currently, particulates are cleaned from the fuel gas with metal candle filters. These filters require two costly plant shut-downs per year for cleaning or replacement. During the U.S Department of Energy-supported project

29

Improved HEPA Filter Technology for Flexible and Rigid Containment Barriers  

SciTech Connect

Safety and reliability in glovebox operations can be significantly improved and waste packaging efficiencies can be increased by inserting flexible, lightweight, high capacity HEPA filters into the walls of plastic sheet barriers. This HEPA filter/barrier technology can be adapted to a wide variety of applications: disposable waste bags, protective environmental barriers for electronic equipment, single or multiple use glovebag assemblies, flexible glovebox wall elements, and room partitions. These reliable and inexpensive filtered barriers have many uses in fields such as radioactive waste processing, HVAC filter changeout, vapor or grit blasting, asbestos cleanup, pharmaceutical, medical, biological, and electronic equipment containment. The applications can result in significant cost savings, improved operational reliability and safety, and total waste volume reduction. This technology was developed at the Argonne National Laboratory-West (ANL-W) in 1993 and has been used at ANL-W since then at the TRU Waste Characterization Chamber Gloveboxes. Another 1998 AGS Conference paper titled "TRU Waste Characterization Gloveboxes", presented by Mr. David Duncan of ANL-W, describes these boxes.

P. A. Pinson

1998-07-01T23:59:59.000Z

30

Program on Technology Innovation: Advanced Filter Concepts: PMScreen  

Science Conference Proceedings (OSTI)

EPRI has been developing technologies to enable power generators to meet more stringent particulate matter (PM) emission requirements for units equipped with underperforming electrostatic precipitators (ESPs). PMScreen makes use of novel filter materials and the electrical charging supplied by the ESP to achieve supplemental PM capture at the ESP outlet at minimal pressure drop. This report summarizes results of slipstream proof-of-concept testing at a power plant site.

2009-03-16T23:59:59.000Z

31

Rugate Technology For Thermophotovoltaic (TPV) Applications: A New Approach To Near Perfect Filter Performance  

Science Conference Proceedings (OSTI)

Rugate filter technology is relatively unknown to the Solar PV? and the TPV community. The objective of this paper is to draw attention to Rugate filters as an enabling technology that may help to realize unprecedented conversion efficiencies in each respective field. Rugate filters are advanced optical interference filters with a continuously varied refractive index that changes periodically in the direction perpendicular to the film plane. The near noise free transmission and reflection quality of these filters

Ugur Ortabasi; Bertrand Bovard

2003-01-01T23:59:59.000Z

32

Evaluation of Alternative Filter Media for the Rotary Microfilter  

SciTech Connect

The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic ? stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge.

Poirier, M. R.; Herman, D. T.; Bhave, R.

2011-11-09T23:59:59.000Z

33

Deep Frying: Chemistry, Nutrition and Practical ApplicationsChapter 19 Evaluation of Passive and Active Filter Media  

Science Conference Proceedings (OSTI)

Deep Frying: Chemistry, Nutrition and Practical Applications Chapter 19 Evaluation of Passive and Active Filter Media Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Pr

34

Commercial Building Technology Evaluation Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Flow 4 Proposed Program Elements Building Technologies Program 2 2 commercialbuildings.energy.gov ver ew Program Overview * Program Objective: - Evaluate emerging and underutilized...

35

Navy Technology Evaluation Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Techval Program Techval Program y g FUPWG FUPWG November 19, 2009 Ontario, CA Paul Kistler, PE CEM NAVFAC Engineering Service Center Port Hueneme CA Techval Navy Energy Techval Purpose Use the data collected by Techval to transition newer technologies into Navy wide use technologies into Navy wide use Use the data collected by Techval to prevent the Navy from investing in technologies that do not work investing in technologies that do not work Tech Assistance Help the Navy to meet increasingly tougher energy goals 2 * * * Navy Techval Green Light Technologies *Oil Free Magnetic Bearing Chiller Compressor *Spectrally Enhanced Lighting *Heat Pipes *Vending Machine Occupancy Sensor *Thermal Destratifiers Heat Pipes *Duct Sealants *HID Dimming Thermal Destratifiers

36

Embedded Sensor Technology Evaluation  

Science Conference Proceedings (OSTI)

Fiber Sensors are poised to be used in future LEPs. The three primary vehicles for fiber sensors are Department 1, Joint Test Assembly (JTA), and Shelf Life (SL). The National Security Enterprise (NSE) community plans to incorporate optical sensors or systems into these vehicles. Additionally, hermetic sealing of optical systems is required if optical technology is to be integrated into LEP and future weapons applications. Hermetic seals will reduce the long-term risk of contamination which can degrade or incapacitate optical components. This study was funded through the Kansas City Plant's (KCP) ESC work package between 2007 and 2009 to develop optical sensors, identify commercial fiber sensors and hermetic connectors, and qualify these sensors against likely weapon lifetime environments.

Kennedy, Chris

2010-01-12T23:59:59.000Z

37

Evaluation of the complementary use of the ceramic (Kosim) filter and Aquatabs in Northern Region, Ghana  

E-Print Network (OSTI)

The Kosim filter is a ceramic water filter that is currently used in Northern Ghana. Based on prior MIT research in Northern Ghana, this technology is effective at removing 92% of turbidity, 99.4% of total coliforms, and ...

Swanton, Andrew A

2008-01-01T23:59:59.000Z

38

Building Energy-Efficiency Evaluation & Labeling Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Evaluation & Labeling Technologies in China Building Energy-Efficiency Evaluation & Labeling Technologies in China Information on the function, basis, and value of...

39

Performance evaluation of diesel particulate filters on heavy duty vehicles.  

E-Print Network (OSTI)

??Diesel particulate filters, or DPFs, are exhaust aftertreatment devices used to reduce exhaust emissions from diesel powered vehicles. Typical designs have a wall flow filter… (more)

Rosepiler, Stephen G.

2003-01-01T23:59:59.000Z

40

Assessment and evaluation of ceramic filter cleaning techniques: Task Order 19  

Science Conference Proceedings (OSTI)

The objective of this study was to assess and evaluate the effectiveness, appropriateness and economics of ceramic barrier filter cleaning techniques used for high-temperature and high-pressure particulate filtration. Three potential filter cleaning techniques were evaluated. These techniques include, conventional on-line pulse driven reverse gas filter cleaning, off-line reverse gas filter cleaning and a novel rapid pulse driven filter cleaning. These three ceramic filter cleaning techniques are either presently employed, or being considered for use, in the filtration of coal derived gas streams (combustion or gasification) under high-temperature high-pressure conditions. This study was divided into six subtasks: first principle analysis of ceramic barrier filter cleaning mechanisms; operational values for parameters identified with the filter cleaning mechanisms; evaluation and identification of potential ceramic filter cleaning techniques; development of conceptual designs for ceramic barrier filter systems and ceramic barrier filter cleaning systems for two DOE specified power plants; evaluation of ceramic barrier filter system cleaning techniques; and final report and presentation. Within individual sections of this report critical design and operational issues were evaluated and key findings were identified.

Chen, H.; Zaharchuk, R.; Harbaugh, L.B.; Klett, M.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Available Technologies: Channelized Filter Inlets or Strippers for ...  

APPLICATIONS OF TECHNOLOGY: Formaldehyde measurement devices; Air pollution monitoring/industrial hygiene; Medical research, e.g., monitoring breath for biomarkers of ...

42

Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project  

SciTech Connect

A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

1992-05-01T23:59:59.000Z

43

Technology Validation: Fuel Cell Bus Evaluations (Poster)  

DOE Green Energy (OSTI)

Poster discusses hydrogen fuel cell transit bus evaluations conducted for the Hydrogen, Fuel Cells, & Infrastructure Technologies Program (HFCIT). It was presented at the 2006 HFCIT Program Review.

Eudy, L.

2006-05-01T23:59:59.000Z

44

Biogenesis (trade name) soil washing technology: Innovative technology evaluation report  

SciTech Connect

Soil washing technologies are designed to transfer contaminants from soil to a liquid phase. The BioGenesis Soil Washing Technology uses soil washing with a proprietary surfactant solution to transfer organic contaminants from soils to wastewater. The BioGenesis soil washing process was evaluated under the SITE program at a refinery where soils were contaminated with crude oil. Results of chemical analyses show that levels of total recoverable petroleum hydrocarbons (TRPH), an indicator of degraded crude oil, decreased by 65 to 73 percent in washed soils. The TRPH in residual soils were allowed to biodegrade for an additional 120 days. Results indicate that soil washing and biodegradation removed 85 to 88 percent of TRPH in treated soils. The Innovative Technology Evaluation Report provides information on the technology applicability, economic analysis, technology limitations, a technology description, process residuals, site requirements, latest performance data, the technology status, vendors claims, and the source of further information.

Bannerjee, P.

1993-09-02T23:59:59.000Z

45

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

46

Energy Department Launches National Fuel Cell Technology Evaluation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies Energy Department Launches National Fuel Cell Technology Evaluation Center to Advance...

47

Clean Technology Evaluation & Workforce Development Program  

Science Conference Proceedings (OSTI)

The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

Patricia Glaza

2012-12-01T23:59:59.000Z

48

Survey of Emerging Nondestructive Evaluation Technologies  

Science Conference Proceedings (OSTI)

Four emerging nondestructive evaluation (NDE) technologies were surveyed in this report for potential applications in the electric power industry. Some of them are new, and others have experienced renewed interest based on recent technical improvements. These four NDE technologies are phased array curvature correction, guided wave focusing and imaging, laser shearography, and acoustic camera. For each of these technologies, this report provides background information, challenges, technical solutions, pot...

2012-03-30T23:59:59.000Z

49

Technical Evaluation of Emerging Technologies  

Science Conference Proceedings (OSTI)

Techniques for removing sulfur dioxide (SO2) and mercury from the exhaust stream of coal-fired power plants often involve the injection of solid-phase sorbents, either dry or in a liquid suspension. After reacting with their target pollutant, the spent sorbents must then be removed from the gas stream by using particulate capture technologies. This report describes the results of pilot-scale tests to measure the efficiency with which an ElectroCore, installed downstream of a spray dryer, removes hydrated...

2008-01-30T23:59:59.000Z

50

Economic evaluation of smart well technology  

E-Print Network (OSTI)

The demand of oil and gas resources is high and the forecasts show a trend for higher requirements in the future. More unconventional resource exploitation along with an increase in the total recovery in current producing fields is required. At this pivotal time the role of emerging technologies is of at most importance. Smart or intelligent well technology is one of the up and coming technologies that have been developed to assist improvements in field development outcome. In this paper a comprehensive review of this technology has been discussed. The possible reservoir environments in which smart well technology could be used and also, the possible benefits that could be realized by utilizing smart well technology has been discussed. The economic impact of smart well technology has been studied thoroughly. Five field cases were used to evaluate the economics of smart well technology in various production environments. Real field data along with best estimate of smart well technology pricings were used in this research. I have used different comparisons between smart well cases and conventional completion to illustrate the economic differences between the different completion scenarios. Based on the research, I have realized that all the smart well cases showed a better economic return than conventional completions. The offshore cases showed a good economic environment for smart well technology. Large onshore developments with smart well technology can also provide a lucrative economic return. These situations can increase the overall economic return and ultimate recovery which will assist in meeting some of the oil demand around the globe.

Al Omair, Abdullatif A.

2003-05-01T23:59:59.000Z

51

Oil Bypass Filter Technology Evaluation Ninth Quarterly Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Background on prior quarterly reports * Bus mileage and performance status * Used engine-oil disposal costs * Unscheduled oil change * Light-duty vehicle test status Oct 3-Dec 3...

52

Oil Bypass Filter Technology Evaluation Eighth Quarterly Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Background on prior quarterly reports * Bus mileage and performance status * Used engine-oil disposal costs * Unscheduled oil change * Light-duty vehicle test status Oct 3-Dec 3...

53

Advanced Vehicle Technology Analysis & Evaluation Team  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Analysis and Evaluation Team Lee Slezak Manager, AVTAET Office of FreedomCAR and Vehicle Technologies DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 Charter * AVTAET's mission is to develop and apply the tools and skills necessary to: - Identify technology development needs and requirements to support OFCVT goals and - Collect, analyze, and disseminate unbiased information on advanced transportation technology components, systems, and vehicles that potentially support OFCVT goals. * Goal of analytical groups at ANL, NREL and ORNL - Develop and apply modeling and simulation tools to help DOE, manufacturers and suppliers design and develop clean, energy efficient components and systems for

54

Advanced Vehicle Technology Analysis and Evaluation Team  

E-Print Network (OSTI)

Set ­ Models · Conventional, hybrid and electric vehicles · Fuel consumption and performanceAdvanced Vehicle Technology Analysis and Evaluation Team Lee Slezak Manager, AVTAET Office · Supports HIL/RCP · Fuel cell models ­ Net power vs. fuel consumption ­ Engineering · ADvanced Vehicle

55

Moving granular-bed filter development program, Option III: Development of moving granular-bed filter technology for multi-contaminant control. Task 14: Test plan; Topical report  

Science Conference Proceedings (OSTI)

An experimental test plan has been prepared for DOE/METC review and approval to develop a filter media suitable for multi-contaminant control in granular-bed filter (GBF) applications. The plan includes identification, development, and demonstration of methods for enhanced media morphology, chemical reactivity, and mechanical strength. The test plan includes media preparation methods, physical and chemical characterization methods for fresh and reacted media, media evaluation criteria, details of test and analytical equipment, and test matrix of the proposed media testing. A filter media composed of agglomerated limestone and clay was determined to be the best candidate for multi-contaminate control in GBF operation. The combined limestone/clay agglomerate has the potential to remove sulfur and alkali species, in addition to particulate, and possibly halogens and trace heavy metals from coal process streams.

Haas, J.C.; Olivo, C.A.; Wilson, K.B.

1994-04-01T23:59:59.000Z

56

Evaluation of the effectiveness of shielding and filtering of HVDC converter stations  

Science Conference Proceedings (OSTI)

The electromagnetic interference (EMI) generated by the periodic turn-on and turn-off of the valves is an important consideration in the design of HVDC converter stations. Remedial measures such as shielding the valve hall and filtering have been used in order to reduce the interference levels to acceptable values. The application of recently-developed Numerical Electromagnetic Code (NEC) to the problem of EMI from HVDC converter stations is investigated in this paper, with particular emphasis on evaluating the effectiveness of valve hall shielding and filtering.

Dallaire, R.D.; Maruvada, P.S.

1989-04-01T23:59:59.000Z

57

A Performance Evaluation of Text Analysis Technologies  

E-Print Network (OSTI)

This report describes the most recent and most sophisticated of these evaluations, the Third Message Understanding Conference (MUC-3) 1 This evaluation was sponsored by the Defense Research Projects Agency (DARPA), which plays a key role in sponsoring evaluations for other types of language interpretation systems, including performance evaluations for speech recognition carried out by the National Institute of Standards and Technology (Pallett 1990). Background and History In June 1990, a call for participation went out to research laboratories in industry and academia. The intent was to bring together established natural language processing systems for the sake of seeing how they would each handle a uniform text comprehension task. The call emphasized the importance of having a "mature" natural language processing system ready to go. The short time frame associated with MUC-3 was not amenable to extensive system construction or exploratory experimentation on a major scal

By Wendy; Wendy Lehnert; Beth Sundheim

1991-01-01T23:59:59.000Z

58

Performance evaluation soil samples utilizing encapsulation technology  

DOE Patents (OSTI)

Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.

Dahlgran, J.R.

1999-08-17T23:59:59.000Z

59

Performance evaluation soil samples utilizing encapsulation technology  

DOE Patents (OSTI)

Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

Dahlgran, James R. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

60

Performance evaluation soil samples utilizing encapsulation technology  

DOE Patents (OSTI)

Performance evaluation soil samples and method of their preparation are described using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

Dahlgran, James R.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

National Fuel Cell Technology Evaluation Center (NFCTEC) (Revised...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and fuel cell organizations Contact Us If you are interested in working with the National Fuel Cell Technology Evaluation Center, please contact: NREL's Technology...

62

Technology Evaluation and Integration Group: Center for Transportation Technologies and Systems  

DOE Green Energy (OSTI)

Fact sheet describes the specialized work done by NREL's Technology Evaluation and Integration Group in the Center for Transportation Technologies and Systems.

Not Available

2008-08-01T23:59:59.000Z

63

New and Underutilized Technology: Air-side Economizers and Filters for Data Centers  

Energy.gov (U.S. Department of Energy (DOE))

The following information outlines key deployment considerations for air-side economizers and filters for data centers within the Federal sector.

64

Geothermal Electricity Technology Evaluation Model (GETEM) | Open Energy  

Open Energy Info (EERE)

Electricity Technology Evaluation Model (GETEM) Electricity Technology Evaluation Model (GETEM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Electricity Technology Evaluation Model (GETEM) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Climate Focus Area: Geothermal Phase: Evaluate Options Topics: Opportunity Assessment & Screening Resource Type: Software/modeling tools User Interface: Desktop Application Website: www1.eere.energy.gov/geothermal/getem.html OpenEI Keyword(s): EERE tool Equivalent URI: cleanenergysolutions.org/content/geothermal-electricity-technology-eva Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance References: Geothermal Electricity Technology Evaluation Model[1] Model the estimated performance and costs of available U.S. geothermal

65

Evaluation of a Strategy for the Assimilation of Satellite Radiance Observations with the Local Ensemble Transform Kalman Filter  

Science Conference Proceedings (OSTI)

This paper evaluates a strategy for the assimilation of satellite radiance observations with the local ensemble transform Kalman filter (LETKF) data assimilation scheme. The assimilation strategy includes a mechanism to select the radiance ...

José A. Aravéquia; Istvan Szunyogh; Elana J. Fertig; Eugenia Kalnay; David Kuhl; Eric J. Kostelich

2011-06-01T23:59:59.000Z

66

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

In order to plan for potential CO{sub 2} mitigation mandates, utilities need better information on CO{sub 2} mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO{sub 2} sequestration technologies and practices, both geologic storage of captured CO{sub 2} and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO{sub 2} sequestration, including captured CO{sub 2} storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO{sub 2} sequestration options. Designs and data collection are nearly complete for each of the CO{sub 2} sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO{sub 2}. No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO{sub 2} sequestration options that differ in timing and permanence of CO{sub 2} sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget.

Bert R. Bock; Richard G. Rhudy; David E. Nichols

2001-07-01T23:59:59.000Z

67

Climate impact metrics for energy technology evaluation  

E-Print Network (OSTI)

The climate change mitigation potential of energy technologies depends on how their lifecycle greenhouse gas emissions compare to global climate stabilization goals. Current methods for comparing technologies, which assess ...

Edwards, Morgan Rae

2013-01-01T23:59:59.000Z

68

Technology Commercialization and Partnerships | Evaluation Criteria  

General Information. Menu. Scientific Departments. ... market and business risk assessment and potential for technology transfer. ... Commercialization Analysis.

69

Evaluation of Smart Gun Technologies preliminary report  

Science Conference Proceedings (OSTI)

The Smart Gun Technology Project has a goal to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing {open_quote}smart{close_quote} technologies. Smart technologies are those that can in some manner identify an officer. This report will identify, describe, and grade various technologies as compared to the requirements that were obtained from officers. This report does not make a final recommendation for a smart gun technology, nor does it give the complete design of a smart gun system.

Weiss, D.R.

1996-01-01T23:59:59.000Z

70

Energy Department Launches National Fuel Cell Technology Evaluation Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches National Fuel Cell Technology Evaluation Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies Energy Department Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies September 12, 2013 - 12:00pm Addthis Following Energy Secretary Ernest Moniz's visit to the National Renewable Energy Laboratory (NREL), the Energy Department today announced the unveiling of a one-of-its-kind national secure data center dedicated to the independent analysis of advanced hydrogen and fuel cell technologies at the Energy Department's Energy Systems Integration Facility (ESIF) located at NREL in Golden, Colorado. The National Fuel Cell Technology Evaluation Center (NFCTEC) allows industry, academia, and government organizations to submit and review data

71

Laboratory evaluation of fan/filter units' aerodynamic and energy performance  

SciTech Connect

The paper discusses the benefits of having a consistent testing method to characterize aerodynamic and energy performance of FFUs. It presents evaluation methods of laboratory-measured performance of ten relatively new, 1220 mm x 610 mm (or 4 ft x 2 ft) fan-filter units (FFUs), and includes results of a set of relevant metrics such as energy performance indices (EPI) based upon the sample FFUs tested. This paper concludes that there are variations in FFUs' performance, and that using a consistent testing and evaluation method can generate compatible and comparable FFU performance information. The paper also suggests that benefits and opportunities exist for our method of testing FFU energy performance to be integrated in future recommended practices.

Xu, Tengfang; Jeng, Ming-Shan

2004-07-27T23:59:59.000Z

72

Portfolio evaluation of advanced coal technology : research, development, and demonstration  

E-Print Network (OSTI)

This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

Naga-Jones, Ayaka

2005-01-01T23:59:59.000Z

73

Fuel Cell Technologies Office: Annual Merit Review and Peer Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Merit Review and Peer Evaluation Reports to someone by E-mail Share Fuel Cell Technologies Office: Annual Merit Review and Peer Evaluation Reports on Facebook Tweet about...

74

NREL: Technology Transfer - NREL Evaluates Fuel Cell ...  

... (i.e. forklift) applications across the United States. And the technology validation team at the National Renewable Energy Laboratory (NREL) ...

75

Guide for Evaluating and Establishing Performance of Emerging DR Technologies  

Science Conference Proceedings (OSTI)

This engineering guide characterizes heat-rate (efficiency), cogeneration (waste heat), electrical characteristics (for example, voltage and power quality), immunity, and emissions such as noise, disposable/hazardous wastes, and electromagnetic interference (EMI) for distributed resource (DR) technologies. The guide outlines requirements for consistent protocols, methods, and procedures applied to test and evaluate emerging DR technologies. Examples of these technologies are internal combustion engines, ...

2001-12-04T23:59:59.000Z

76

High-Order, High-Pass Implicit Filters for Evaluating Information within Finite Areas  

Science Conference Proceedings (OSTI)

In this study high-order, high-pass implicit filters are introduced. They represent symmetric filters in an implicit formulation. In this investigation their use within a finite region is examined. The effects of the boundary are investigated and ...

William H. Raymond

1989-12-01T23:59:59.000Z

77

Laboratory evaluation of fan/filter units' aerodynamic and energy performance  

E-Print Network (OSTI)

Jeng, M.S. , F. Tsau. 2002. Fan-Filter Unit (FFU) TestLaboratory Methods of Testing Fans for Rating, Air MovementTest Procedure For Fan-Filter Units (not published). Xu,

Xu, Tengfang; Jeng, Ming-Shan

2004-01-01T23:59:59.000Z

78

Weapons of Mass Destruction Technology Evaluation and Training Range  

SciTech Connect

The Idaho National Laboratory (INL) has a long history for providing technology evaluation and training for military and other federal level Weapons of Mass Destruction (WMD) response agencies. Currently there are many federal organizations and commercial companies developing technologies related to detecting, assessing, mitigating and protecting against hazards associated with a WMD event. Unfortunately, very few locations exist within the United States where WMD response technologies are realistically field tested and evaluated using real chemical, biological, radiological, nuclear and explosive materials. This is particularly true with biological and radiological hazards. Related to this lack of adequate WMD, multi-hazard technology testing capability is the shortage of locations where WMD response teams can train using actual chemical, biological, and radiological material or highly realistic simulates. In response to these technology evaluation and training needs, the INL has assembled a consortium of subject matter experts from existing programs and identified dedicated resources for the purpose of establishing an all-hazards, WMD technology evaluation and training range. The author describes the challenges associated with creating the all-hazards WMD technology evaluation and training range and lists the technical, logistical and financial benefits of an all-hazards technology evaluation and training range. Current resources and capabilities for conducting all-hazard technology evaluation and training at the INL are identified. Existing technology evaluation and training programs at the INL related to radiological, biological and chemical hazards are highlighted, including successes and lessons learned. Finally, remaining gaps in WMD technology evaluation and training capabilities are identified along with recommendations for closing those gaps.

Kevin Larry Young

2009-05-01T23:59:59.000Z

79

A Performance Evaluation of Text Analysis Technologies  

E-Print Network (OSTI)

This report describes the most recent and most sophisticated of these evaluations, the Third Message Understanding Conference (MUC-3)

By Wendy Lehnert; Wendy Lehnert; Beth Sundheim

1991-01-01T23:59:59.000Z

80

Technology Validation: Fuel Cell Bus Evaluations (Presentation)  

DOE Green Energy (OSTI)

This presentation by Leslie Eudy at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's fuel cell bus evaluations.

Eudy, L.

2007-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Technology Validation: Fuel Cell Bus Evaluations  

DOE Green Energy (OSTI)

Presentation for the 2005 U.S. Department of Energy Hydrogen Program review showing status of U.S. and international fuel cell transit bus evaluations.

Eudy, L.

2005-05-01T23:59:59.000Z

82

Evaluation of Microwave Steam Bags for the Decontamination of Filtering Facepiece Respirators  

E-Print Network (OSTI)

Reusing filtering facepiece respirators (FFRs) has been suggested as a strategy to conserve available supplies for home and healthcare environments during an influenza pandemic. For reuse to be possible, used FFRs must be decontaminated before redonning to reduce the risk of virus transmission; however, there are no approved methods for FFR decontamination. An effective method must reduce the microbial threat, maintain the function of the FFR, and present no residual chemical hazard. The method should be readily available, inexpensive and easily implemented by healthcare workers and the general public. Many of the general decontamination protocols used in healthcare and home settings are unable to address all of the desired qualities of an efficient FFR decontamination protocol. The goal of this study is to evaluate the use of two commercially available steam bags, marketed to the public for disinfecting infant feeding equipment, for FFR decontamination. The FFRs were decontaminated with microwave generated steam following the manufacturers ’ instructions then evaluated for water absorption and filtration efficiency for up to three steam exposures. Water absorption of the FFR was found to be model specific as FFRs constructed with hydrophilic materials absorbed more water. The steam had little effect on FFR performance as filtration efficiency of the treated FFRs remained above 95%. The decontamination efficacy of the steam bag was assessed using bacteriophage MS2 as a surrogate for a pathogenic virus. The tested steam bags were found to be 99.9 % effective for inactivating MS2 on FFRs; however, more research is required to

Edward M. Fisher; Jessica L. Williams; Ronald E. Shaffer

2011-01-01T23:59:59.000Z

83

Evaluation of Alternative Control for Prevention and or Mitigation of HEPA Filter Failure Accidents at Tank Farm Facilities  

SciTech Connect

This study evaluates the adequacy and benefit of use of HEPA filter differential pressure limiting setpoints to initiate exhauster shut down as an alternative safety control for postulated accidents that might result in filtration failure and subsequent unfiltered release from Tank Farm primary tank ventilators.

GUSTAVSON, R.D.

2000-01-28T23:59:59.000Z

84

Evaluation of Lighting and Lighting Control Technologies  

Science Conference Proceedings (OSTI)

Energy efficient lighting and lighting controls have been a means to significant energy savings for many facilities around the world. Advances in lighting sources often allow for the conservation of quality of light while providing more flexibility in the control of light. Additionally, advances in core technologies within the lighting marketplace regularly lead to the introduction of new lamps, fixtures and controls.  With the rapid introduction of new products and designs, it is important to ...

2013-11-15T23:59:59.000Z

85

Evaluation of Emerging Line Inspection Technologies  

Science Conference Proceedings (OSTI)

This report describes field tests to examine various technologies available to establish conductor temperature during lidar field surveys of existing transmission lines. This is critical to assembling a proper line model to determine accurate sags and clearances. Lidar surveys are intended to demonstrate whether transmission lines have required clearances under full rating and specified environmental conditions. Typically, the technique used to establish conductor temperature at the ...

2012-11-28T23:59:59.000Z

86

Chest radiographs obtained with shaped filters: evaluation by observer performance tests  

SciTech Connect

The effectiveness of a shaped filter in improving nodule and infiltrate detection was measured by observer performance testing. Seven observers read 152 test radiographs of the chest obtained from human volunteers. Half the test radiographs had target image observer performance in detecting nodule or infiltrate images was compared with the shaped-filter system and with a conventional chest imaging system. The results were analyzed using receiver operating characteristic (ROC) techniques and indicate that the filter technique was not significantly different from the conventional technique in infiltrate depiction. Observer performance in detecting nodules was slightly worse on images obtained with the shaped-filter system.

Kelsey, C.A.; Lane, R.G.; Moseley, R.D.; Mettler, F.A.; Rosenberg, R.D.; Williams, A.G.; Garcia, J.F.; Feldman, B.S.; Boardman, R.E.

1986-06-01T23:59:59.000Z

87

Environmental Energy Technologies Division An Evaluation Framework for DER  

E-Print Network (OSTI)

Commare research supported by the Distributed Energy Program of the U.S. Dept of Energy (and the California Energy1 Environmental Energy Technologies Division An Evaluation Framework for DER talk presented Commission) #12;2 Environmental Energy Technologies Division Outline I. Introduction II. Benefits Taxonomy

88

A Review of Nondestructive Evaluation Technologies for Cable System Integrity  

Science Conference Proceedings (OSTI)

This report provides an overview of common electrical cable types and designs, damage mechanisms, and existing test methods. It describes a technology review focused on assessing feasibility, performance, and limitations of nondestructive evaluation (NDE) technologies for cable integrity tests and inspection and summarizes future proposed work.BackgroundKnowing a cable system’s condition is essential to ensure the reliability of the connected ...

2013-11-21T23:59:59.000Z

89

Engineering and Economic Evaluation of Municipal Solid Waste Technologies  

Science Conference Proceedings (OSTI)

In 2006, the Electric Power Research Institute (EPRI) initiated a project to conduct engineering and economic evaluations of renewable energy technologies, including wind, biomass, solar, geothermal, hydro, and ocean tidal and wave (Program 84). The goal of the evaluations is to develop an objective and consistent assessment of the current performance and project the future performance of the technologies with regard to thermal efficiency, capital and operation and maintenance costs, resource requirement...

2011-12-23T23:59:59.000Z

90

Engineering and Economic Evaluation of Offshore Wind Technology  

Science Conference Proceedings (OSTI)

In 2006, the Electric Power Research Institute (EPRI) initiated a new project to conduct engineering and economic evaluations of renewable energy technologies, including wind, biomass, solar, geothermal, hydro, ocean tidal and wave, and others (Program 84). The goal of the evaluations is to develop an objective and consistent assessment of the current and projected future performance of the technologies with regard to thermal efficiency, capital and operations and maintenance costs, resource requirements...

2011-12-23T23:59:59.000Z

91

Advanced Vehicle Testing Activity - Oil Bypass Filtration Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Bypass Filtration Evaluation These reports detail the ongoing fleet evaluation of oil bypass filter technologies by the Idaho National Laboratory (INL) for the U. S. Department...

92

Evaluation of ceramic filters for high-temperature/high-pressure fine particulate control. Final report Dec 75-Jun 76  

SciTech Connect

High temperature gas turbines used to generate electric power require gas streams virtually free of particulate matter. Gas streams from high temperature, high pressure coal processes, such as low Btu gasification and pressurized fluidized bed combustion, require considerable particulate removal. In order to maintain high thermal efficiency the particulate clean-up must be done at the high temperatures of the process. Many new concepts for fine particulate control at elevated temperatures are presently being proposed. One such concept utilizes ceramic membrane filters. The report gives results of a study to analyze and evaluate ceramic membrane filters as a new, fine particulate (<3 um) control concept for high-temperature (approx. 900/sup 0/C), high-pressure processes. Several ceramic filters were identified as potential candidates for fine particulate removal. There does not seem to be any inherent material limitation to high-temperature operation; however, no evidence of high-temperature filter application was found. The filters typically are 2-6 mm thick, cylindrical, and available with various pore sizes, increasing upward from 0.5 um. These elements may be suitable for fine particulate control in hot gas streams. The most promising, although undeveloped, idea for a ceramic filter is to use ceramic honeycomb monoliths similar to those available for catalyst supports and heat exchangers. The walls of the monoliths are about 0.2-0.4 mm thick and of varying pore size and porosity. Geometric configurations are available which would force the gas to flow through the membrane walls. Pressure losses would be very small relative to those of standard ceramic filter elements. The application of ceramic monoliths to high-temperature fine particulate control appears very promising. It is strongly recommended that this concept be investigated further.

Poe, G.G.; Evans, R.M.; Bonnett, W.S.; Waterland, L.R.

1977-02-01T23:59:59.000Z

93

Energy-Efficient Office Technologies Performance Evaluation  

Science Conference Proceedings (OSTI)

In response to the significant electrical end use of commercial office equipment, the U.S. EPA, with help from EPRI and member utilities, began the Energy Star program, which created energy efficiency standards for computers (CPUs), monitors, printers, copiers, fax machines, and controlling devices. This report describes methods for evaluating the performance of office equipment, typical load shapes for a variety of office equipment, and the results of field monitoring. Such information will help utility...

1997-04-28T23:59:59.000Z

94

EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER, PHASE 2  

SciTech Connect

Testing was conducted at the Savannah River National Laboratory (SRNL) to investigate filter membrane performance in an effort to increase rotary microfilter (RMF) throughput. Membranes were tested in the SpinTek Filtration, Inc. Static Test Cell (STC), which permitted quick and easy testing of several different membranes. Testing consisted of 100 hours tests with two different slurry feeds, based on recommendations from the phase 1 testing. One feed contained Monosodium Titanate (MST) solids in a simulated salt solution. The other feed contained simulated sludge batch 6 (SB6) solids in a simulated salt solution. Five membranes were tested, one each from filter manufactures Pall and Porvair and three from the Oak Ridge National Laboratory (ORNL). The membrane from Pall is the current membrane used on the latest generation RMF. The Porvair membrane performed well in previous STC tests as well as one of the ORNL membranes. The other two membranes from ORNL were recently developed and not available for the previous STC test. The results indicate that the Porvair filter performed best with the MST slurry and the ORNL SVB6-1B filter performed best with the SB6 slurry. Difficulty was encountered with the ORNL filters due to their dimensional thickness, which was greater than the recommended filter thickness for the STC. The STC equipment was modified to complete the testing of the ORNL filters.

Fowley, M.

2012-07-31T23:59:59.000Z

95

Hemispheric ceramic pot filter evaluation and quality assurance program in Northern Ghana  

E-Print Network (OSTI)

Pure Home Water (PHW) is a non-profit based in Ghana that seeks to bring safe drinking water to those most in need in Northern Ghana through the production, sale, and distribution of ceramic pot filters (CPF) and other ...

Miller, Matthew Rhodes

2012-01-01T23:59:59.000Z

96

A framework for evaluation of technology transfer programs. Volume 2  

Science Conference Proceedings (OSTI)

The objective of this volume is to describe a framework with which DOE can develop a program specific methodology to evaluate it`s technology transfer efforts. This approach could also be applied to an integrated private sector technology transfer organization. Several benefits will be realized from the application of this work. While the immediate effect will be to assist program managers in evaluating and improving program performance, the ultimate benefits will accrue to the producing industry, the states, and the nation in the form of sustained or increased domestic oil production. This benefit depends also, of course, on the effectiveness of the technology being transferred. The managers of the Technology Transfer program, and the larger federal oil and gas R&D programs, will be provided with a means to design and assess the effectiveness of program efforts as they are developed, tested and performed. The framework allows deficiencies in critical aspects of the program to be quickly identified, allowing for timely corrections and improvements. The actual process of developing the evaluation also gives the staff of the Oil R&D Program or Technology Transfer subprogram the opportunity to become oriented to the overall program goals. The structure and focus imposed by the evaluation paradigm will guide program staff in selecting activities which are consistent with achieving the goals of the overall R&D program.

Not Available

1993-07-01T23:59:59.000Z

97

Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 6. 6. Evaluation of filter material  

SciTech Connect

Four types of standard and developmental filter materials used in individual and collective-protective devices and one type of developmental filter material used for sampling of air for particulate matter were evaluated against the contamination produced by the detonation of an atomic bomb and present in the resulting radioactive cloud. These filter materials were evaluated in multilayer pads at the standard flow-rate conditions used by the Chemical Corps in evaluation studies of filter materials. This permitted correlation of results of laboratory data. Analysis of the materials was made by counting the gross beta activity collected on successive layers of the same filter material and the efficiency of the materials was calculated from the data obtained.

Engquist, E,H.

1985-04-01T23:59:59.000Z

98

Ceramic HEPA Filter Program  

SciTech Connect

Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

2012-04-30T23:59:59.000Z

99

Results of advanced batter technology evaluations for electric vehicle applications  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-01-01T23:59:59.000Z

100

Results of advanced battery technology evaluations for electric vehicle applications  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part B, Remedial Action  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA.

Not Available

1993-09-01T23:59:59.000Z

102

Technology Evaluation Workshop Report for Tank Waste Chemical Characterization  

SciTech Connect

A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9.

Eberlein, S.J.

1994-04-01T23:59:59.000Z

103

Nuclear Science and Technology, November 2000. NEUTRON CROSS SECTION EVALUATIONS  

E-Print Network (OSTI)

Nuclear Science and Technology, November 2000. 1 NEUTRON CROSS SECTION EVALUATIONS FOR 238 U UP and Power Engineering, 249020 Obninsk, Russia A.Ventura ENEA, Nuclear Data Center and INFN, Bologna Section of the statistical description that includes direct, pre-equilibrium and equilibrium mechanisms of nuclear reactions

104

X-231B technology demonstration for in situ treatment of contaminated soil: Technology evaluation and screening  

Science Conference Proceedings (OSTI)

The Portsmouth Gaseous Diffusion Plant (Ports) is located approximately 70 miles south of Columbus in southern Ohio. Among the several waste management units on the facility, the X-231B unit consists of two adjacent oil biodegradation plots. The plots encompass {approximately} 0.8 acres and were reportedly used from 1976 to 1983 for the treatment and disposal of waste oils and degreasing solvents, some containing uranium-235 and technetium-99. The X-231B unit is a regulated solid waste management unit (SWMU) under the Resource Conservation and Recovery Act (RCRA). The X-231B unit is also a designated SWMU located within Quadrant I of the site as defined in an ongoing RCRA Facilities Investigation and Corrective Measures Study (RFI/CMS). Before implementing one or more Technology Demonstration Project must be completed. The principal goal of this project was to elect and successfully demonstrate one ore more technologies for effective treatment of the contaminated soils associated with the X-231B unit at PORTS. The project was divided into two major phases. Phase 1 involved a technology evaluation and screening process. The second phase (i.e., Phase 2) was to involve field demonstration, testing and evaluation of the technology(s) selected during Phase 1. This report presents the methods, results, and conclusions of the technology evaluation and screening portion of the project.

Siegrist, R.L.; Morris, M.I.; Donaldson, T.L.; Palumbo, A.V.; Herbes, S.E.; Jenkins, R.A.; Morrissey, C.M.; Harris, M.T.

1993-08-01T23:59:59.000Z

105

NETL: Mercury Emissions Control Technologies - Evaluation of Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems CONSOL is evaluating the mercury removal co-benefits achieved by SCR-FGD combi nations. Specific issues that will be addressed include the effects of SCR, catalyst degradation, and load changes on mercury oxidation and capture. This objective will be achieved by measuring mercury removal achieved by SCR-FGD combinations at ten plants with such equipment configurations. These plants include five with wet limestone, three wet lime, and two with dry scrubbing. Material balance will be conducted. Related Papers and Publications: Final Report - April 2006 [PDF-377KB] Topical Report # 11 - January 2006 [PDF-19MB] Topical Report # 9 - January 2006 [PDF-6MB]

106

HEPA Filter Vulnerability Assessment  

SciTech Connect

This assessment of High Efficiency Particulate Air (HEPA) filter vulnerability was requested by the USDOE Office of River Protection (ORP) to satisfy a DOE-HQ directive to evaluate the effect of filter degradation on the facility authorization basis assumptions. Within the scope of this assessment are ventilation system HEPA filters that are classified as Safety-Class (SC) or Safety-Significant (SS) components that perform an accident mitigation function. The objective of the assessment is to verify whether HEPA filters that perform a safety function during an accident are likely to perform as intended to limit release of hazardous or radioactive materials, considering factors that could degrade the filters. Filter degradation factors considered include aging, wetting of filters, exposure to high temperature, exposure to corrosive or reactive chemicals, and exposure to radiation. Screening and evaluation criteria were developed by a site-wide group of HVAC engineers and HEPA filter experts from published empirical data. For River Protection Project (RPP) filters, the only degradation factor that exceeded the screening threshold was for filter aging. Subsequent evaluation of the effect of filter aging on the filter strength was conducted, and the results were compared with required performance to meet the conditions assumed in the RPP Authorization Basis (AB). It was found that the reduction in filter strength due to aging does not affect the filter performance requirements as specified in the AB. A portion of the HEPA filter vulnerability assessment is being conducted by the ORP and is not part of the scope of this study. The ORP is conducting an assessment of the existing policies and programs relating to maintenance, testing, and change-out of HEPA filters used for SC/SS service. This document presents the results of a HEPA filter vulnerability assessment conducted for the River protection project as requested by the DOE Office of River Protection.

GUSTAVSON, R.D.

2000-05-11T23:59:59.000Z

107

Building Energy-Efficiency Evaluation & Labeling Technologies in China  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Evaluation& Efficiency Evaluation& Labeling Technologies in China China Academy of Building Research Building Environment and Energy Efficiency May 2011 Main Contents : 1. Background 2. Building Energy-Efficiency Evaluation & Labeling Methods Technical Guideline for Civil Building Energy-efficiency Evaluation & Labeling (Trial) 3. Main Problems in Evaluation 4. Next Step ---- Key Compiling Points of National Industry Standard: " Technical Standard for Building Energy-efficiency Labeling" 1 Background 1.1 Function of Building Energy-efficiency Labeling Show the building energy-consumption and enhance market transparency. Promote building energy-saving, reflect the differences between different buildings , promote the development of high-energy saving buildings.

108

Cordierite silicon nitride filters  

SciTech Connect

The objective of this project was to develop a silicon nitride based crossflow filter. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of filter material development and crossflow filter design. Phase II involved filter manufacturing, filter testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride (CSN) was developed and tested for permeability and strength. Target values for each of these parameters were established early in the program. The values were met by the material development effort in Phase I. The crossflow filter design effort proceeded by developing a macroscopic design based on required surface area and estimated stresses. Then the thermal and pressure stresses were estimated using finite element analysis. In Phase II of this program, the filter manufacturing technique was developed, and the manufactured filters were tested. The technique developed involved press-bonding extruded tiles to form a filter, producing a monolithic filter after sintering. Filters manufactured using this technique were tested at Acurex and at the Westinghouse Science and Technology Center. The filters did not delaminate during testing and operated and high collection efficiency and good cleanability. Further development in areas of sintering and filter design is recommended.

Sawyer, J.; Buchan, B. (Acurex Environmental Corp., Mountain View, CA (United States)); Duiven, R.; Berger, M. (Aerotherm Corp., Mountain View, CA (United States)); Cleveland, J.; Ferri, J. (GTE Products Corp., Towanda, PA (United States))

1992-02-01T23:59:59.000Z

109

Evaluating dosimetric accuracy of flattening filter free compensator-based IMRT: Measurements with diode arrays  

Science Conference Proceedings (OSTI)

Purpose: Compensator-based IMRT coupled with the high dose rate flattening filter free (FFF) beams offers an intriguing possibility of delivering an intensity modulated radiation field in just a few seconds. As a first step, the authors evaluate the dosimetric accuracy of the treatment planning system (TPS) FFF beam model with compensators. Methods: A 6 MV FFF beam from a TrueBeam accelerator (Varian Medical Systems, Palo Alto CA) was modeled in PINNACLE TPS (v. 9.0, Philips Radiation Oncology, Fitchburg WI). Flat brass slabs from 0.3 to 7 cm thick and an 18 deg. brass wedge were used to adjust the beam model. A 2D (MAPCHECK) and 3D (ARCCHECK) diode arrays (Sun Nuclear Corp, Melbourne FL), were investigated for use with the compensator FFF beams. Corrections for diode sensitivity caused by the spectral changes in the beam were introduced. Four compensator plans based on the AAPM TG-119 report were developed. A composite ion chamber measurement, beam by beam MAPCHECK measurements, and a composite ARCCHECK measurement were performed. The array results were analyzed with the same thresholds as in TG-119 report--3%/3 mm with global dose normalization--as well as with the more stringent combinations of the gamma analysis criteria. Results: The FFF beam shows a greater variation of the effective attenuation coefficient with brass thickness due to the prevalence of the low energy photons compared to the conventional 6X beam. As a result, a compromise had to be made while trying to achieve dose agreement for a combination of field sizes, brass thicknesses, and measurement depths ({>=}5 cm in water). An agreement of measured and calculated dose to within 1% was observed for brass thicknesses up to 2 cm. For the 3 cm slab, an error of up to 2.8% was noted for the field sizes above 10 x 10 cm{sup 2}, and up to 3.8% for the 5 x 5 cm{sup 2} field. Both diode arrays exhibit a substantial sensitivity drop as the compensator thickness increases, reaching 10% for a 7 cm brass slab. A simple correction based on the brass thickness along the ray was introduced to counteract this effect. Pooled for five profiles, the average ratio of uncorrected and corrected MAPCHECK to ion chamber readings are 0.966 and 1.008, respectively. With the proper correction, all MAPCHECK measurement to calculation comparisons exhibit 100%{gamma}(3%/3 mm) passing rates with global dose-error normalization. For the TG-119-type plans, the average {gamma}(2%/2 mm) passing rate with local normalization is 94% (range 87.8%-98.3%). The lower ARCCHECK{gamma}-analysis passing rates (corrected for diode sensitivity) are predictable based on the observed PDD discrepancies. However, with the 3%/3 mm thresholds and global normalization, the average {gamma}-analysis passing rate is 96.4% (range 89.9%-100%). Conclusions: MAPCHECK analysis demonstrates high passing rates with the stringent {gamma}(2%/2 mm) and local normalization criteria combination. The geometry of the ARCCHECK array creates a stress test for the FFF TPS model because of the shallow depth of the entrance diodes and large air cavity. Hence, the ARCCHECK{gamma}-analysis passing rates are lower than with the MAPCHECK, while still on par with TG-119.

Robinson, Joshua; Opp, Daniel; Zhang, Geoffrey; Cashon, Ken; Kozelka, Jakub; Hunt, Dylan; Walker, Luke; Hoffe, Sarah; Shridhar, Ravi; Feygelman, Vladimir [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Division of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States); decimal Inc., Sanford, Florida 32771 (United States); Sun Nuclear Corp., Melbourne, Florida 32940 (United States); Division of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

2012-01-15T23:59:59.000Z

110

Evaluation of technological data in the DFI and PIES models  

DOE Green Energy (OSTI)

This report evaluates the data used in two of the models available to the Energy Information Administration (EIA). Specifically, the study involves updating, reviewing, and documenting the technological data on primary energy conversion, transportation, distribution and end-use conversion. The major focus is upon data used in the Decision Focus, Inc. (DFI), LEAP model. This is an abbreviated version of the Gulf-Stanford Research, Inc., energy model developed to assess the potential future impacts of synthetic fuels in the US energy system. A parallel effort assesses the data used in the model commonly known as the Project Independence Evaluation System (PIES).

Bhagat, N.; Beller, M.; Hermelee, A.; Wagner, J.; Lamontagne, J.

1979-04-01T23:59:59.000Z

111

Radiation evaluation study of LSI RAM technologies. Final report  

SciTech Connect

Five commercial LSI static RAM technologies having a 1 kilobit capacity were radiation characterized. Arrays from the TTL, Schottky TTL, NMOS, CMOS, and CMOS/SOS families were evaluated. Radiation failure thresholds for gamma dose-rate logic upset, total gamma dose survivability, and neutron fluence survivability were determined. Included is a brief analysis of the radiation failure mechanism for each of the logic families tested.

Dinger, G.L.; Knoll, M.G.

1980-01-01T23:59:59.000Z

112

EVALUATION OF REMEDIATION TECHNOLOGIES FOR PLUTONIUM CONTAMINATED SOIL  

SciTech Connect

Soils contaminated with radionuclides are an environmental concern at most Department of Energy (DOE) sites. Clean up efforts at many of these sites are ongoing using conventional remediation techniques. These remediation techniques are often expensive and may not achieve desired soil volume reduction. Several studies using alternative remediation techniques have been performed on plutonium-contaminated soils from the Nevada Test Site. Results to date exhibit less than encouraging results, but these processes were often not fully optimized, and other approaches are possible. Clemson University and teaming partner Waste Policy Institute, through a cooperative agreement with the National Environmental Technologies Laboratory, are assisting the Nevada Test Site (NTS) in re-evaluating technologies that have the potential of reducing the volume of plutonium contaminated soil. This efforts includes (1) a through literature review and summary of (a) NTS soil characterization and (b) volume reduction treatment technologies applied to plutonium-contaminated NTS soils, (2) an interactive workshop for vendors, representatives from DOE sites and end-users, and (3) bench scale demonstration of applicable vendor technologies at the Clemson Environmental Technologies Laboratory.

Hoeffner, S. L.; Navratil, J. D.; Torrao, G.; Smalley, R.

2002-02-25T23:59:59.000Z

113

Moving granular-bed filter development program. Topical report  

Science Conference Proceedings (OSTI)

Advanced, coal-based, power plants, such as IGCC and Advanced-PFBC, are currently nearing commercial demonstration. These power plant technologies require hot gas filtration as part of their gas cleaning trains. Ceramic barrier filters are the major filter candidates being developed for these hot gas cleaning applications. While ceramic barrier filters achieve high levels of particle removal, concerns exist for their reliability and operability in these applications. An alternative hot gas filtration technology is the moving granular bed filter. An advanced, moving granular bed filter has been conceived, and early development activities performed by the Westinghouse Electric Corporation, Science and Technology Center. This document reports on the Base Contract tasks performed to resolve the barrier technical issues for this technology. The concept, the Standleg Moving Granular Bed Filter (SMGBF) has a concurrent downward, gas and bed media flow configuration that results in simplified features and improved scaleup feasibility compared to alternative designs. Two modes of bed media operation were assessed in the program: once-through using pelletized power plant waste as bed media, and recycle of bed media via standleg and pneumatic transport techniques. Cold Model testing; high-temperature, high-pressure testing; and pelletization testing using advanced power plant wastes, have been conducted in the program. A commercial, economic assessment of the SMGBF technology was performed for IGCC and Advanced-PFBC applications. The evaluation shows that the barrier technical issues can be resolved, and that the technology is potentially competitive with ceramic barrier filters.

Newby, R.A.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1994-04-01T23:59:59.000Z

114

FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced vehicle Technology AdvAnced vehicle Technology AnAlysis And evAluATion AcTiviTies U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities FY 2006 Annual Report CONTENTS I. INTRODUCTION............................................................................................................................ 1 II. MODELING AND SIMULATION ................................................................................................ 9

115

Evaluation of Trenchless Installation Technology for Radioactive Wastewater Piping Applications  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Environmental Management (EM) cleanup mission at Oak Ridge National Laboratory (ORNL) includes dispositioning facilities, contaminated legacy materials/waste, and contamination sources and remediation of soil under facilities, groundwater, and surface water to support final Records of Decision (RODs). The Integrated Facilities Disposition Project (IFDP) is a roughly $15B project for completion of the EM mission at Oak Ridge, with a project duration of up to 35 years. The IFDP Mission Need Statement - Critical Decision-0 (CD-0) - was approved by DOE in July 2007, and the IFDP Alternative Selection and Cost Range - Critical Decision-1 (CD-1) - was approved in November 2008. The IFDP scope includes reconfiguration of waste collection and treatment systems as needed to complete the IFDP remediation and decontamination and decommissioning (D&D) missions in a safe and cost-effective manner while maintaining compliance with all governing regulations and bodies and preserving the support of continuing operations at ORNL. A step in the CD-1 approval process included an external technical review (ETR) of technical approaches proposed in the CD-1 document related to the facility reconfiguration for the ORNL radioactive waste and liquid low-level waste management systems. The ETR team recommended that the IFDP team consider the use of trenchless technologies for installing pipelines underground in and around contaminated sites as part of the alternatives evaluations required in support of the CD-2 process. The team specifically recommended evaluating trenchless technologies for installing new pipes in existing underground pipelines as an alternative to conventional open trench installation methods. Potential benefits could include reduction in project costs, less costly underground piping, fewer disruptions of ongoing and surface activities, and lower risk for workers. While trenchless technologies have been used extensively in the sanitary sewer and natural gas pipeline industries, they have been used far less in contaminated environments. Although trenchless technologies have been used at ORNL in limited applications to install new potable water and gas lines, the technologies have not been used in radioactive applications. This study evaluates the technical risks, benefits, and economics for installing gravity drained and pressurized piping using trenchless technologies compared to conventional installation methods for radioactive applications under ORNL geological conditions. A range of trenchless installation technologies was reviewed for this report for general applicability for replacing existing contaminated piping and/or installing new pipelines in potentially contaminated areas. Installation methods that were determined to have potential for use in typical ORNL contaminated environments were then evaluated in more detail for three specific ORNL applications. Each feasible alternative was evaluated against the baseline conventional open trench installation method using weighted criteria in the areas of environment, safety, and health (ES&H); project cost and schedule; and technical operability. The formulation of alternatives for evaluation, the development of selection criteria, and the scoring of alternatives were performed by ORNL staff with input from vendors and consultants. A description of the evaluation methodology and the evaluation results are documented in the following sections of this report.

Robinson, Sharon M [ORNL; Jubin, Robert Thomas [ORNL; Patton, Bradley D [ORNL; Sullivan, Nicholas M [ORNL; Bugbee, Kathy P [ORNL

2009-09-01T23:59:59.000Z

116

NETL: Mercury Emissions Control Technologies - Preliminary Field Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary Field Evaluation of Mercury Control Using Combustion Modifications Preliminary Field Evaluation of Mercury Control Using Combustion Modifications General Electric – Energy and Environmental Research Corporation is developing a new technology that reduces the cost of mercury removal from flue gas by combining it with carbon reduction in a burnout system and simultaneously controlling nitrogen oxides emissions. Data on mercury removal at Western Kentucky Electric’s Green Station will be obtained and used to assess options to improve the efficiency of mercury removal. These options will be further investigated in pilot-scale testing on a 300 kW combustor. Related Papers and Publications: Preliminary Field Evaluation of Hg Control Using Combustion Modifications [PDF-732KB] - Presented at the 2004 Electric Utilities Environmental Conference, Tucson, AZ - January 19-22, 2004.

117

Environmental Energy Technologies Division An Evaluation of Solar Valuation  

NLE Websites -- All DOE Office Websites (Extended Search)

An Evaluation of Solar Valuation An Evaluation of Solar Valuation Methods Used in Utility Planning and Procurement Processes Andrew Mills and Ryan Wiser Lawrence Berkeley National Laboratory - Report Summary - December 2012 The work described in this presentation was funded by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy and Office of Electricity Delivery and Energy Reliability 2 Environmental Energy Technologies Division Motivation and scope * Motivations: * As the cost of solar generation falls, solar is being considered as one of many viable options for supplying electricity * Recognizing and evaluating the economic value of solar will become progressively important for justifying its expanded use * Objectives: * Analyze the treatment of solar in current planning studies and

118

Program on Technology Innovation: Advanced Nondestructive Evaluation Technologies for Renewable Energy  

Science Conference Proceedings (OSTI)

This report provides an update of technical information collected and evaluated pertaining to nondestructive examination (NDE) technologies that can be used to assess the structural integrity of renewable energy source components, primarily wind turbine components. The purpose of this project is to investigate and develop NDE techniques to determine the structural integrity of major renewable energy source components, with a focus on the wind industry. The NDE capabilities are needed during the next thre...

2011-01-31T23:59:59.000Z

119

EVALUATION OF VADOSE ZONE TREATMENT TECHNOLOGIES TO IMMOBILIZE TECHNETIUM-99  

Science Conference Proceedings (OSTI)

The Hanford Site End State Vision document (DOE/RL-2003-59) states: ''There should be an aggressive plan to develop technology for remediation of the contamination that could get to the groundwater (particularly the technetium [{sup 99}Tc])''. In addition, there is strong support from the public and regulatory agencies for the above statement, with emphasis on investigation of treatment alternatives. In July 2004, PNNL completed a preliminary evaluation of remediation technologies with respect to their effectiveness and implementability for immobilization of {sup 99}Tc beneath the BC Cribs in the 200 West Area (Truex, 2004). As a result of this evaluation, PNNL recommended treatability testing of in situ soil desiccation, because it has the least uncertainty of those technologies evaluated in July 2004 (Treatability Test Outline, September 30, 2004). In 2005, DOE-RL and Fluor Hanford convened an independent technical panel to review alternative remediation technologies, including desiccation, at a three-day workshop in Richland, Washington. The panel was composed of experts in vadose-zone transport, infiltration control, hydrology, geochemistry, environmental engineering, and geology. Their backgrounds include employment in academia, government laboratories, industry, and consulting. Their review, presented in this document, is based upon written reports from Hanford, oral presentations from Hanford staff, and each panel members' years of experience in their particular field of expertise. The purpose of this report is to document the panel's evaluation of various treatment alternatives with potential for minimizing contaminant migration in the deep vadose zone at the Department of Energy Hanford Site. The panel was tasked with assessing the most viable and practical approach and making recommendations for testing. The evaluation of vadose-zone treatment alternatives was conducted to be broadly applicable at a variety of locations at Hanford. However, because of limitations of time, the panel was asked to focus on one example, {sup 99}Tc contamination below the BC Cribs and Trenches. It is well recognized that conditions at BC Cribs and Trenches are not the same as those at other Hanford locations, but it was selected so that the panel could develop an understanding of site conditions at one location. The recommendations in this report are not intended to address the regulatory decision process for this site.

PETERSEN, S.W.

2006-03-15T23:59:59.000Z

120

ICPP radioactive liquid and calcine waste technologies evaluation. Interim report  

SciTech Connect

The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development of a Filter Using Absorbent Technologies for the Removal of Coking Precursors: Laboratory Evaluation  

Science Conference Proceedings (OSTI)

On-load tap changers (LTC) are the single biggest contributor to transformer problems. Their failure modes may be mechanical, electrical, or related to the quality of the oil and contacts. Utilities are seeking new strategies for LTC maintenance to minimize these problems and, at the same time, reduce maintenance costs. EPRI has initiated several projects with a goal of producing a maintenance-free LTC. One major LTC problem is contact fouling, which can lead to the buildup of coke deposits on contacts a...

2003-11-24T23:59:59.000Z

122

Evaluating the technical performance and social acceptability of keg-shaped ceramic water filters in Northern Ghana  

E-Print Network (OSTI)

The Kosim Water Keg (KWK) is a new ceramic water filter designed have faster filtration rates and integrate better with consumers' water habits. The design seals together two ceramic pot filters (CPFs) to form a keg shape. ...

Cummings, Joanna (Joanna Katherine)

2011-01-01T23:59:59.000Z

123

Development of NDE methods for hot gas filters.  

SciTech Connect

Ceramic hot gas candle filters are currently under development for hot gas particulate cleanup in advanced coal-based power systems. The ceramic materials for these filters include nonoxide monolithic, nonoxide-fiber-reinforced composites, and nonoxide reticulated foam. A concern is the lack of reliable data on which to base decisions for reusing or replacing hot gas filters during plant shutdowns. The work in this project is aimed at developing nondestructive evaluation (FIDE) technology to allow detection, and determination of extent, of life-limiting characteristics such as thermal fatigue, oxidation, damage from ash bridging such as localized cracking, damage from local burning, and elongation at elevated temperature. Although in-situ NDE methods are desirable in order to avoid disassembly of the candle filter vessels, the current vessel designs, the presence of filter cakes and possible ash bridging, and the state of NDE technology prevent this. Candle filter producers use a variety of NDE methods to ensure as-produced quality. While impact acoustic resonance offers initial promise for examining new as-produced filters and for detecting damage in some monolithic filters when removed from service, it presents difficulties in data interpretation, it lacks localization capability, and its applicability to composites has yet to be demonstrated. Additional NDE technologies being developed and evaluated in this program and whose applicability to both monolithics and composites has been demonstrated include (a) full-scale thermal imaging for analyzing thermal property variations; (b) fret, high-spatial-resolution X-ray imaging for detecting density variations and dimensional changes; (c) air-coupled ultrasonic methods for determining through-thickness compositional variations; and (d) acoustic emission technology with mechanical loading for detecting localized bulk damage. New and exposed clay-bonded SiC filters and CVI-SiC composite filters have been tested with these additional NDE methods.

Deemer, C.; Ellingson, W. A.; Koehl, E. R.; Lee, H.; Spohnholtz, T.; Sun, J. G.

1999-07-21T23:59:59.000Z

124

Development and evaluation of sealing technologies for photovoltaic panels  

DOE Green Energy (OSTI)

This report summarizes the results of a study to develop and evaluate low temperature glass sealing technologies for photovoltaic applications. This work was done as part of Cooperative Research and Development Agreement (CRADA) No. SC95/01408. The sealing technologies evaluated included low melting temperature glass frits and solders. Because the glass frit joining required a material with a melting temperature that exceeded the allowable temperature for the active elements on the photovoltaic panels a localized heating scheme was required for sealing the perimeter of the glass panels. Thermal and stress modeling were conducted to identify the feasibility of this approach and to test strategies designed to minimize heating of the glass panel away from its perimeter. Hardware to locally heat the glass panels during glass frit joining was designed, fabricated, and successfully tested. The same hardware could be used to seal the glass panels using the low temperature solders. Solder adhesion to the glass required metal coating of the glass. The adhesion strength of the solder was dependent on the surface finish of the glass. Strategies for improving the polyisobutylene (PIB) adhesive currently being used to seal the panels and the use of Parylene coatings as a protective sealant deposited on the photovoltaic elements were also investigated. Starting points for further work are included.

Glass, S.J.; Hosking, F.M.; Baca, P.M. [and others

1998-07-01T23:59:59.000Z

125

Enhanced Geothermal Systems (EGS) well construction technology evaluation report.  

DOE Green Energy (OSTI)

Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and cost. A task and cost based analysis of the exercise is subsequently conducted to develop a deeper understanding of the key technical and economic drivers of the well construction process. Finally, future research & development recommendations are provided and ranked based on their economic and technical significance.

Capuano, Louis, Jr. (Thermasource Inc.); Huh, Michael; Swanson, Robert (Thermasource Inc.); Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

2008-12-01T23:59:59.000Z

126

New directions in the evaluation of the effectiveness of educational technology  

Science Conference Proceedings (OSTI)

Drawing from work by Shadish, Cook, and Leviton (1991) on social program evaluation, the authors discuss recent changes in evaluation theory and practices, and they connect these changes to technology and student learning. Concluding with a list of recommendations ... Keywords: assessment, diffusion of innovations, evaluation, learning, social program evaluation, state-of-the-art, technology

Walter F. Heinecke; Natalie B. Milman; Lisa A. Washington; Laura Blasi

2001-09-01T23:59:59.000Z

127

Office of Building Technologies evaluation and planning report  

SciTech Connect

The US Department of Energy (DOE) Office of Building Technologies (OBT) encourages increased efficiency of energy use in the buildings sector through the conduct of a comprehensive research program, the transfer of research results to industry, and the implementation of DOE`s statutory responsibilities in the buildings area. The planning and direction of these activities require the development and maintenance of database and modeling capability, as well as the conduct of analyses. This report summarizes the results of evaluation and planning activities undertaken on behalf of OBT during the past several years. It provides historical data on energy consumption patterns, prices, and building characteristics used in OBT`s planning processes, and summaries of selected recent OBT analysis activities.

Pierce, B.

1994-06-01T23:59:59.000Z

128

Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

and Peer Evaluation Report to someone by E-mail and Peer Evaluation Report to someone by E-mail Share Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Facebook Tweet about Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Twitter Bookmark Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Google Bookmark Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Delicious Rank Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Digg Find More places to share Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on AddThis.com... Publications Program Publications Roadmaps Program Plans Reports to Congress Annual Progress Reports

129

Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

Not Available

1993-09-01T23:59:59.000Z

130

Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part C, Robotics/automation, Waste management  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

Not Available

1993-09-01T23:59:59.000Z

131

FY2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Vehicle Technology Analysis and Evaluation Activities Bringing you a prosperous future where energy is clean, abundant, reliable and affordable 2003 Annual Progress Report freedomCAR & vehicle technologies program Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle U.S. Department of Energy FreedomCAR & Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities

132

NETL: Gasification - Long-Term Candle Filter Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Candle Filter Tests Long-Term Candle Filter Tests National Carbon Capture Center at the Power Systems Development Facility Southern Company Services, Inc. Project Number: NT0000749 Project Description The National Carbon Capture Center advancement of hot gas filtration technology provides the design for optimal, long-term evaluation of material performance for particulate control device (PCD) filter elements. Testing is performed using the commercially available Siemens PCD, due to its demonstrated excellent collection efficiency during normal operation. The PCD, located downstream of the primary gas cooler, houses up to 91 candle-type filter elements. They're currently used in the development of candle filters that can efficiently remove particulates at varying temperatures, using low-cost materials and innovative design.

133

Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action  

SciTech Connect

The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

1994-09-01T23:59:59.000Z

134

Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part B, Characterization; robotics/automation  

SciTech Connect

The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate theses problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part B of Volume 3 and contains the Characterization and Robotics/Automation sections.

NONE

1994-09-01T23:59:59.000Z

135

Nondestructive Evaluation: Assessment of NDE Technologies and Practices in Other Industries, Volume 5  

Science Conference Proceedings (OSTI)

This report provides a summary of technical information collected on nondestructive evaluation (NDE) technologies that are used in other industries and research into new NDE technologies. The purpose of this report is to assess these NDE technologies to determine if they could be useful for nuclear inspection applications. In addition, this study also evaluates some NDE technologies that are currently being researched by universities and other research ...

2013-10-14T23:59:59.000Z

136

Practical evaluations of real user company needs for visualization technologies  

Science Conference Proceedings (OSTI)

The use of visualization technologies by the automotive industry is primarily aimed at increasing competitive advantage. Within the VIEW of the Future project (IST-2000-26089), two automotive companies, PSA Peugeot Citroen and Volvo Technology Corporation, ...

Harshada Patel; Sarah Sharples; Séverine Letourneur; Emma Johansson; Hilko Hoffmann; Jean Lorisson; Dennis Saluäär; Oliver Stefani

2006-03-01T23:59:59.000Z

137

Cermet Filters  

INL’s cermet filter is self-cleaning and reduces pollutant emissions, e.g. NOx in vehicles, which can be harmful in heavier duty diesel trucks. This filter lasts far longer compared to other filters because it is self-cleaning, which avoids plugging.

138

Granular filter  

SciTech Connect

The invention described and claimed in this application relates to granular filters and, more particularly, to continuously regenerate granular filters operatable at high temperature and pressure which are particularly suited for cleaning gas used to operate a gas turbine. The filter is of relatively small size and by nature of its operation couples high filtering efficiency with maximum practicable protection to downstream equipment from ash from combustion of the solid fuel and from small particle of the filtering medium entrained in the flowing gas, which would case deposit buildup and erosion to the turbine blades.

Lear, D.E. Jr; Schmid, A.H.; Wigton, H.F.H.

1977-07-12T23:59:59.000Z

139

Soap Manufacturing TechnologyChapter 15 Soap Bar Performance Evaluation Methods  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 15 Soap Bar Performance Evaluation Methods Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 15 Soap Bar Performance Evaluation

140

Assessment and Evaluation of Next Generation HVDC Technologies  

Science Conference Proceedings (OSTI)

As an established technology for bulk power transmission, high-voltage direct current (HVDC) power transmission is being used worldwide, and more than 100 schemes are operating at present. Most existing HVDC systems use conventional self-commutated converter technology using thyristors. However, advances in voltage sourced converter (VSC) technologies and power electronic devices such as gate turn offs (GTOs), insulated gate bipolar transistors (IGBTs), and integrated gate commutated thyristors (IGCTs) w...

2008-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response  

DOE Green Energy (OSTI)

This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

2012-02-14T23:59:59.000Z

142

Technology Validation: Fuel Cell Bus Evaluations - DOE Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

of FCEB design. Using fuel cells in a transit application can help accelerate the learning curve for the technology because of the high mileage accumulated in short periods...

143

Duct injection technology prototype development: Evaluation of engineering data  

SciTech Connect

The objective of the Duct Injection Technology Prototype Development Project is to develop a sound design basis for applying duct injection technology as a post-combustion SO{sub 2}emissions control method to existing coal-fired power plants. The necessary engineering design and scale-up criteria will be developed for the commercialization of duct injection technology for the control of SO{sub 2} emissions from coal-fired boilers in the utility industry. The primary focus of the analyses summarized in this Topical Report is the review of the known technical and economic information associated with duct injection technology. (VC)

Not Available

1990-07-01T23:59:59.000Z

144

A Spatial Filter Approach to Evaluating the Role of Convection on the Evolution of a Mesoscale Vortex  

Science Conference Proceedings (OSTI)

A new spatial filter is proposed that exploits a spectral gap in power between the convective scale and the system (“vortex”) scale during tropical cyclone (TC) genesis simulations. Using this spatial separation, this study analyzes idealized ...

Glenn A. Creighton; Robert E. Hart; Philip Cunningham

2013-07-01T23:59:59.000Z

145

Engineering Economic Evaluation of Clean-Coal Technologies 1999  

Science Conference Proceedings (OSTI)

This report updates previous studies of the capital cost and performance of clean coal power generation technologies and compares them on a consistent basis with regard to location, time, coal, and site conditions. It includes estimates of the cost of electricity for each technology and compares these costs to those of natural gas combined cycles.

1999-12-08T23:59:59.000Z

146

Engineering and Economic Evaluation of Renewable Energy Technology  

Science Conference Proceedings (OSTI)

This report updates the performance and cost tables from the 2006 EPRI Renewable Energy Technical Assessment GuideTAG-RE (EPRI report 1012722) for the seven highest priority renewable energy technologies. The report initiates a new series of reports that will supplement the on-going TAG-RE program by focusing on selected technologies.

2007-06-19T23:59:59.000Z

147

Definition and compositions of standard wastestreams for evaluation of Buried Waste Integrated Demonstration treatment technologies  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) Project was organized at the Idaho National Engineering Laboratory to support research, development, demonstration, testing, and evaluation of emerging technologies that offer promising solutions to remediation of buried waste. BWID will identify emerging technologies, screen them for applicability to the identified needs, select technologies for demonstration, and then evaluate the technologies based on prescribed performance objectives. The technical objective of the project is to establish solutions to Environmental Restoration and Waste Management`s technological deficiencies and improve baseline remediation systems. This report establishes a set of standard wastestream compositions that will be used by BWID to evaluate the emerging technologies. Five wastestreams are proposed that use four types of waste and a nominal case that is a homogenized combination of the four wastes. The five wastestreams will provide data on the compositional extremes and indicate the technologies` effectiveness over the complete range of expected wastestream compositions.

Bates, S.O.

1993-06-01T23:59:59.000Z

148

Evaluation of the near-term commercial potential of technologies being developed by the Office of Building Technologies  

SciTech Connect

This project developed an inventory of the Office of Building Technologies (OBT) from a survey administered in 1988 to program managers and principal investigators from OBT. Information provided on these surveys was evaluated to identify equipment and practices that are near-term opportunities for technology commercialization and to determine whether they needed some form of assistance from OBT to be successful in the marketplace. The near-term commercial potential of OBT technologies was assessed by using a technology selection screening methodology. The screening first identified those technologies that were ready to be commercialized in the next two years. The second screen identified the technologies that had a simple payback period of less than five years, and the third identified those that met a current need in the marketplace. Twenty-six OBT technologies met all the criteria. These commercially promising technologies were further screened to determine which would succeed on their own and which would require further commercialization support. Additional commercialization support was recommended for OBT technologies where serious barriers to adoption existed or where no private sector interest in a technology could be identified. Twenty-three technologies were identified as requiring commercialization support from OBT. These are categorized by each division within OBT and are shown in Table S.1. The methodology used could easily be adapted to screen other DOE-developed technologies to determine commercialization potential and to allocate resources accordingly. It provides a systematic way to analyze numerous technologies and a defensible and documented procedure for comparing them. 4 refs., 7 figs., 10 tabs.

Weijo, R.O. (Portland General Electric Co., OR (USA)); Nicholls, A.K.; Weakley, S.A.; Eckert, R.L.; Shankle, D.L.; Anderson, M.R.; Anderson, A.R. (Pacific Northwest Lab., Richland, WA (USA))

1991-03-01T23:59:59.000Z

149

The value of adding regional to local stakeholder involvement in evaluating the acceptability of innovative technologies  

SciTech Connect

Technology is urgently needed to clean up contamination by volatile organic compounds at United States Department of Energy (DOE) sites. In many cases, however, existing technology is too slow, inefficient, or expensive. The record of technology development is, in some cases, similarly disappointing. Remediation technologies developed at great expense and evaluated piecemeal over long periods have not been deployed because, in the end, the public judged them ineffective or unacceptable. The need for successful methods of remediation is too great and resources too limited to continue with ineffective technology evaluation. In order to make good decisions about which technologies to deploy, remedial project managers need to know stakeholders` requirements for the performance of proposed technologies. Expanding stakeholder involvement regionally identifies the concerns of a broad range of stakeholders at and DOE sites throughout the West -- issues that must be taken into account if technologies are to be accepted for wide deployment.

Peterson, T.S.; McCabe, G. [Pacific Northwest Lab., Richland, WA (United States); Niesen, K.; Serie, P. [Environmental Issues Management, Inc., Seattle, WA (United States)

1995-02-01T23:59:59.000Z

150

Filtering apparatus  

DOE Patents (OSTI)

A vertical vessel having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas.

Haldipur, Gaurang B. (Monroeville, PA); Dilmore, William J. (Murrysville, PA)

1992-01-01T23:59:59.000Z

151

Filtering apparatus  

DOE Patents (OSTI)

A vertical vessel is described having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas. 18 figs.

Haldipur, G.B.; Dilmore, W.J.

1992-09-01T23:59:59.000Z

152

Evaluation of the commercial potential of novel organic photovoltaic technologies  

E-Print Network (OSTI)

Photovoltaic cells based on organic semiconducting materials have the potential to compete with the more mature crystalline and thin film based photovoltaic technologies in the future primarily due to the expectation of ...

Barr, Jonathan (Jonathan Allan)

2005-01-01T23:59:59.000Z

153

High-speed hardware efficient FIR compensation filter for Delta-Sigma modulator analog-to-digital converter in 0.13 µm CMOS technology  

Science Conference Proceedings (OSTI)

A high-speed hardware efficient 41-tap, 15-bit word length Finite Impulse Response (FIR) Compensation Filter has been designed as a component in a Delta-Sigma Modulator (DSM) Analog-to-Digital Converter (ADC). The filter is targeted for high-throughput ... Keywords: ADC, FIR filter, compensation, delta-sigma, high-speed

Boon-Siang Cheah; Ray Siferd

2005-11-01T23:59:59.000Z

154

A methodology for evaluating ``new`` technologies in nuclear power plants  

SciTech Connect

As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

Korsah, K.; Clark, R.L.; Holcomb, D.E.

1994-06-01T23:59:59.000Z

155

Fuel Cell Technologies Office: Annual Merit Review and Peer Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

These reports summarize the comments of expert peer reviewers at the Annual Merit Review and Peer Evaluation, where each year projects funded by DOE's Hydrogen and Fuel Cells...

156

Implementation, Characterization, and Evaluation of an Inexpensive Low-Power Low-Noise Infrasound Sensor Based on a Micromachined Differential Pressure Transducer and a Mechanical Filter  

Science Conference Proceedings (OSTI)

The implementation, characterization, and evaluation of a low-cost infrasound sensor developed at the Infrasound Laboratory at the New Mexico Institute of Mining and Technology (Infra-NMT) are described. This sensor is based on a commercial ...

Omar Marcillo; Jeffrey B. Johnson; Darren Hart

2012-09-01T23:59:59.000Z

157

Nuclear criticality safety evaluation of the passage of decontaminated salt solution from the ITP filters into tank 50H for interim storage  

SciTech Connect

This report assesses the nuclear criticality safety associated with the decontaminated salt solution after passing through the In-Tank Precipitation (ITP) filters, through the stripper columns and into Tank 50H for interim storage until transfer to the Saltstone facility. The criticality safety basis for the ITP process is documented. Criticality safety in the ITP filtrate has been analyzed under normal and process upset conditions. This report evaluates the potential for criticality due to the precipitation or crystallization of fissionable material from solution and an ITP process filter failure in which insoluble material carryover from salt dissolution is present. It is concluded that no single inadvertent error will cause criticality and that the process will remain subcritical under normal and credible abnormal conditions.

Hobbs, D.T.; Davis, J.R.

1994-05-27T23:59:59.000Z

158

Evaluation of Surface Analyses and Forecasts with a Multiscale Ensemble Kalman Filter in Regions of Complex Terrain  

Science Conference Proceedings (OSTI)

Previous research suggests that an ensemble Kalman filter (EnKF) data assimilation and modeling system can produce accurate atmospheric analyses and forecasts at 30–50-km grid spacing. This study examines the ability of a mesoscale EnKF system ...

Brian C. Ancell; Clifford F. Mass; Gregory J. Hakim

2011-06-01T23:59:59.000Z

159

Sodium-bearing Waste Treatment Technology Evaluation Report  

SciTech Connect

Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

2004-05-01T23:59:59.000Z

160

Economic Evaluation of Particulate Control Technologies: Volume 1: New Units  

Science Conference Proceedings (OSTI)

Baghouses (reverse-gas, shake-deflate, and pulse-jet) and electrostatic precipitators are the principal options for controlling particulate emissions at coal-fired power plants. This report provides the latest cost information and cost models for determining the capital and O&M costs of the two technologies for various design conditions in new units.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nondestructive Evaluation: High-Density Polyethylene NDE Technology  

Science Conference Proceedings (OSTI)

BackgroundThis report summarizes the results of a study to evaluate and document the process of creating a manufacturing specification for producing quantifiable cold fusion controlled flaws of varying severity in high-density polyethylene (HDPE) fusion joints. This report is a continuation of previous research where nondestructive evaluation (NDE) techniques and flaws representing inclusions and cold fusion were ...

2013-11-22T23:59:59.000Z

162

Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report  

SciTech Connect

The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

NONE

1995-12-01T23:59:59.000Z

163

Program on Technology Innovation: Security Technology Evaluation for New Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report provides a summary of the state-of-the-art technologies available for perimeter surveillance and intrusion detection systems. These technologies are applicable to the planning and implementation of security measures for the next generation of nuclear power plants. In the absence of intelligence information, the first indication of a potential attack would be from an intrusion into a facility. This intrusion would be detected by a properly designed and deployed perimeter security system. The a...

2007-10-22T23:59:59.000Z

164

DEVELOPMENT OF A CANDLE FILTER FAILURE SAFEGUARD DEVICE  

SciTech Connect

The full-flow mechanical safeguard device (FFMSGD) has been developed under contract to the National Energy Technology Laboratory (NETL) to address problems with the reliability of ceramic candle filter elements installed on high-temperature, high-pressure (HTHP) Hot Gas Cleanup (HGCU) filters. Although systems candle filters are expected to perform satisfactorily when in good operating condition, the failure of even a single filter element can increase the filter system outlet dust loading enough to potentially damage gas turbine blades, contaminate other downstream processes, and limit the availability of the power system. Filter failure safeguard devices that are installed on each individual candle filter element are envisioned as a guarantee of a candle filter system's ability to withstand some number of element failures and continue operation without these negative consequences. The intention of the FFMSGD is to provide this guarantee without incurring any significant pressure drop penalty or constraining the filter system's reverse-pulse cleaning procedures. The FFMSGD provides a clear flow path for filtered and reverse-flow cleaning gases when its filter element is intact, and activates to provide a positive mechanical seal against gas flow in either direction when its filter element breaks or fails. This activation is induced by the increase in the flow rate of gas through the device in event of filter failure. The FFMSGD is designed to be easily removed and reconditioned when the filter system is taken off line for routine maintenance. This report is intended to be issued with a companion appendix. As instructed in Section J.12 of Contract No. DE-AC26-99FT40678, all the restricted, proprietary, and patentable information (not yet disclosed through the patent application process) related to the FFMSGD and its evaluation under this contract has been included only in the appendix. This Final Report, which is available to the public, contains background information and general descriptions of the operating principles of the FFMSGD. This report also describes the results of various evaluations of the device at room temperature and in HTHP environments. This Final Report also includes discussions of commercialization issues. For clarity and completeness, all of the information contained in this Final Report has also been included in the appendix.

Todd R. Snyder

2002-03-29T23:59:59.000Z

165

Engineering/Economic Evaluations of Advanced Coal Technologies  

Science Conference Proceedings (OSTI)

The continued escalation of power plant capital costs, legislative uncertainty with regard to CO2 emissions regulation, and widely fluctuating fuel prices make this an extremely challenging time for the power industry as they seek to make decisions on multi-billion dollar investments in needed new power plants. In this report the capital and operating costs, performance, and Costs of Electricity (COE) are estimated for various coals, locations, and coal technologies (PC, CFB and IGCC with and without CO2...

2008-09-25T23:59:59.000Z

166

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning  

Science Conference Proceedings (OSTI)

The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

Not Available

1993-09-01T23:59:59.000Z

167

Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation  

Science Conference Proceedings (OSTI)

The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs.

NONE

1994-09-01T23:59:59.000Z

168

Feasibility evaluation of downhole oil/water separator (DOWS) technology.  

SciTech Connect

The largest volume waste stream associated with oil and gas production is produced water. A survey conducted by the American Petroleum Institute estimated that 20.9 billion barrels of produced water were disposed of in 1985 (Wakim 1987). Of this total, 91% was disposed of through disposal wells or was injected for enhanced oil recovery projects. Treatment and disposal of produced water represents a significant cost for operators. A relatively new technology, downhole oil/water separators (DOWS), has been developed to reduce the cost of handling produced water. DOWS separate oil and gas from produced water at the bottom of the well and reinject some of the produced water into another formation or another horizon within the same formation, while the oil and gas are pumped to the surface. Since much of the produced water is not pumped to the surface, treated, and pumped from the surface back into a deep formation, the cost of handling produced water is greatly reduced. When DOWS are used, additional oil may be recovered as well. In cases where surface processing or disposal capacity is a limiting factor for further production within a field, the use of DOWS to dispose of some of the produced water can allow additional production within that field. Simultaneous injection using DOWS minimizes the opportunity for contamination of underground sources of drinking water (USDWs) through leaks in tubing and casing during the injection process. This report uses the acronym 'DOWS' although the technology may also be referred to as DHOWS or as dual injection and lifting systems (DIALS). Simultaneous injection using DOWS has the potential to profoundly influence the domestic oil industry. The technology has been shown to work in limited oil field applications in the United States and Canada. Several technical papers describing DOWS have been presented at oil and gas industry conferences, but for the most part, the information on the DOWS technology has not been widely transferred to operators, particularly to small or medium-sized independent U.S. companies. One of the missions of the U.S. Department of Energy's (DOE's) National Petroleum Technology Office (NPTO) is to assess the feasibility of promising oil and gas technologies that offer improved operating performance, reduced operating costs, or greater environmental protection. To further this mission, the NPTO provided funding to a partnership of three organizations a DOE national laboratory (Argonne National Laboratory), a private-sector consulting firm (CH2M-Hill), and a state government agency (Nebraska Oil and Gas Conservation Commission) to assess the feasibility of DOWS. The purpose of this report is to provide general information to the industry on DOWS by describing the existing uses of simultaneous injection, summarizing the regulatory implications of simultaneous injection, and assessing the potential future uses of the technology. Chapter 2 provides a more detailed description of the two major types of DOWS. Chapter 3 summarizes the existing U.S. and Canadian installations of DOWS equipment, to the extent that operators have been willing to share their data. Data are provided on the location and geology of existing installations, production information before and after installation of the DOWS, and costs. Chapter 4 provides an overview of DOWS-specific regulatory requirements imposed by some state agencies and discusses the regulatory implications of handling produced water downhole, rather than pumping it to the surface and reinjecting it. Findings and conclusions are presented in Chapter 5 and a list of the references cited in the report is provided in Chapter 6. Appendix A presents detailed data on DOWS installations. This report presents the findings of Phase 1 of the simultaneous injection project, the feasibility assessment. Another activity of the Phase 1 investigation is to design a study plan for Phase 2 of the project, field pilot studies. The Phase 2 study plan is being developed separately and is not included in this report.

Veil, J. A.; Langhus, B. G.; Belieu, S.; Environmental Assessment; CH2M Hill; Nebraska Oil and Gas Conservation Commission

1999-01-31T23:59:59.000Z

169

www.cepe.ethz.ch A Real Options Evaluation Model for the Diffusion Prospects of New Renewable Power Generation Technologies  

E-Print Network (OSTI)

www.cepe.ethz.ch A real options evaluation model for the diffusion prospects of new renewable power generation technologies

Gürkan Kumbaroglu; Reinhard Madlener; Mustafa Demirel; Gürkan Kumbaroglu; Reinhard Madlener; Mustafa Demirel

2004-01-01T23:59:59.000Z

170

Nondestructive Evaluation: Assessment of NDE Technologies and Practices in Other Industries, Volume 2  

Science Conference Proceedings (OSTI)

This report provides a summary of technical information collected on nondestructive evaluation (NDE) technologies that are used in other industries. The purpose of this report is to assess NDE technologies used in other industries to determine if they could be useful for nuclear inspection applications.

2010-10-21T23:59:59.000Z

171

Evaluation of Power Line Carrier Technologies for Plug-In Electric Vehicle Communications  

Science Conference Proceedings (OSTI)

In support of the Society of Automotive Engineers (SAE) efforts to develop standard means of communication with plug-in electric vehicles (PEVs), EPRI conducted an evaluation of several power line carrier (PLC) technologies. Evaluation of the technologies was based on a test plan developed in the SAE Hybrid Task Force. Direct PEV communication enables signaling of grid conditions to the PEV allowing for remote, intelligent management of vehicle charging. The interface can also support the use of ...

2012-12-12T23:59:59.000Z

172

NETL: Mercury Emissions Control Technologies - Evaluation of Sorbent  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Sorbent Injection for Mercury Control Evaluation of Sorbent Injection for Mercury Control ADA Environmental Solutions will evaluate injection of activated carbon and other sorbents to remove mercury for a variety of coal and air pollution control equipment configurations. The scope of work is for 36 months and intended to gather operating data that will document actual performance levels and accurate cost information to assess the costs of controlling mercury from coal fired utilities. Testing will be conducted at four different host sites that represent a significant percentage of unit configurations. The subsequent cost analyses will include capital costs, by-product utilization issues, sorbent usage, any necessary enhancements, such as SO3 control or flue gas conditioning, balance of plant, manpower requirements and waste issues. The host sites are Sunflower Electric's Holcomb Station, Ontario Power Generation's Nanticoke Station, AmerenUE's Meramec Station and American Electric Power's (AEP) Conesville Station.

173

NETL: Mercury Emissions Control Technologies - Evaluation of Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Control Strategies to Effectively Meet 70 - 90% Evaluation of Control Strategies to Effectively Meet 70 - 90% Mercury Reduction on an Eastern Bituminous Coal Cyclone Boiler with SCR The overall objective of this project is to assess the potential for significant mercury control, between 50 and 90% above baseline, by sorbent injection for the challenging technical process configuration at Public Service of New Hampshire Company Merrimack Station Unit No. 2. The primary emphasis of this project is to evaluate the performance of mercury sorbent injection, but the effect of co-benefits from SO3 mitigation on mercury control will also be explored. Also in this program the performance capabilities of mercury measurement techniques in challenging flue-gas environment will be assessed and the impact of activated carbon injection on fly ash disposal options will be investigated.

174

Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation  

SciTech Connect

Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

1980-11-01T23:59:59.000Z

175

Evaluation of Technology Modifications Required to Apply Clean Coal Technologies in Russian Utilities Dec 1995 (4071k)  

NLE Websites -- All DOE Office Websites (Extended Search)

DOEiMC/3 1392-5600 DOEiMC/3 1392-5600 (DE97002247) Evaluation of Technology Modifications Required to Apply Clean Coal Technologies in Russian Utilities Final Report December 1995 Work Performed Under Contract No.: DE-FG21 -94MC3 1392 For U.S. Department of Energy Office of Fossil Energy Morgantown Energy Technology Center P.0, Box 880 Morgantown, West Virginia 26507-0880 By All-Russian Thermal Engineering Institute 14/23 Avtozavodskaya ST Moscow 109280, Russia Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor arry of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or rrse-

176

New tools for the evaluation of daylighting strategies and technologies  

SciTech Connect

The use of daylight for the illumination of building interiors has the potential to enhance the quality of the environment while providing opportunities to save energy by replacing or supplementing electric lighting. Moreover, it has the potential to reduce heating and cooling loads, which offer additional energy saving opportunities as well as reductions in HVAC equipment sizing and cost. All of these benefits, however, assume proper use of daylighting strategies and technologies, whose performance depends on the context of their application. On the other hand, improper use can have significant negative effects on both comfort and energy requirements, such as increased glare and cooling loads. To ensure proper use, designers need design tools that model the dynamic nature of daylight and accurately predict performance with respect to a multitude of performance criteria, extending beyond comfort and energy to include aesthetics, cost, security, safety, etc.

Papamichael, K.; Hitchcock, R.; Ehrlich, C.; Carroll, B.

1998-03-01T23:59:59.000Z

177

Advanced Energy-Efficient Filtration: Fan Filter Unit  

E-Print Network (OSTI)

Efficient Fan- Filter Units, Proceedings of SEMI TechnicalFor Evaluating Fan-Filter Unit Performance – Applications inPerformance of Fan-Filter Units, Version 1.2 (2004, public

Xu, Tengfang

2005-01-01T23:59:59.000Z

178

Advanced Energy-Efficient Filtration: Fan Filter Unit  

E-Print Network (OSTI)

Cleanrooms: Energy Efficient Fan- Filter Units, ProceedingsStandard Method For Evaluating Fan-Filter Unit Performance –Energy Performance of Fan-Filter Units, Version 1.2 (2004,

Xu, Tengfang

2005-01-01T23:59:59.000Z

179

Evaluating the income and employment impacts of gas cooling technologies  

SciTech Connect

The purpose of this study is to estimate the potential employment and income benefits of the emerging market for gas cooling products. The emphasis here is on exports because that is the major opportunity for the U.S. heating, ventilating, and air-conditioning (HVAC) industry. But domestic markets are also important and considered here because without a significant domestic market, it is unlikely that the plant investments, jobs, and income associated with gas cooling exports would be retained within the United States. The prospects for significant gas cooling exports appear promising for a variety of reasons. There is an expanding need for cooling in the developing world, natural gas is widely available, electric infrastructures are over-stressed in many areas, and the cost of building new gas infrastructure is modest compared to the cost of new electric infrastructure. Global gas cooling competition is currently limited, with Japanese and U.S. companies, and their foreign business partners, the only product sources. U.S. manufacturers of HVAC products are well positioned to compete globally, and are already one of the faster growing goods-exporting sectors of the U.S. economy. Net HVAC exports grew by over 800 percent from 1987 to 1992 and currently exceed $2.6 billion annually (ARI 1994). Net gas cooling job and income creation are estimated using an economic input-output model to compare a reference case to a gas cooling scenario. The reference case reflects current policies, practices, and trends with respect to conventional electric cooling technologies. The gas cooling scenario examines the impact of accelerated use of natural gas cooling technologies here and abroad.

Hughes, P.J. [Oak Ridge National Lab., TN (United States); Laitner, S.

1995-03-01T23:59:59.000Z

180

Program review: resource evaluation, reservoir confirmation, and exploration technology  

DOE Green Energy (OSTI)

The details of the program review are reported. A summary of the recommendations, means for their implementation, and a six year program of expenditures which would accomplish the objectives of the recommendations are presented. Included in appendices are the following: DOE/DGE consortia participants; program managers contacted for opinion; communications received from program managers; participants, program review panel; and program strategy for resource evaluation and reservoir confirmation. (MHR)

Ward, S.H.

1978-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Program on Technology Innovation: An Evaluation of Surface Stress Improvement Technologies for PWSCC Mitigation of Alloy 600 Nuclear Components  

Science Conference Proceedings (OSTI)

This report documents the progress for 2005 on a new project to evaluate surface stress improvement methods to mitigate the initiation of PWSCC in Alloy 600 nuclear plant components. The first potential application for these various surface stress improvement technologies for SCC mitigation in PWR Alloy 600 components was identified as the bottom mounted nozzle (BMN). Mitigation will be demonstrated by creating both sufficient compressive surface stress and depth of the compressive stress on the ID and O...

2006-03-31T23:59:59.000Z

182

Development and application of a probabilistic evaluation method for advanced process technologies  

SciTech Connect

The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

Frey, H.C.; Rubin, E.S.

1991-04-01T23:59:59.000Z

183

Remote Excavation System technology evaluation report: Buried Waste Robotics Program  

SciTech Connect

This document describes the results from the Remote Excavation System demonstration and testing conducted at the Idaho National Engineering Laboratory during June and July 1993. The purpose of the demonstration was to ascertain the feasibility of the system for skimming soil and removing various types of buried waste in a safe manner and within all regulatory requirements, and to compare the performances of manual and remote operation of a backhoe. The procedures and goals of the demonstration were previously defined in The Remote Excavation System Test Plan, which served as a guideline for evaluating the various components of the system and discussed the procedures used to conduct the tests.

Not Available

1993-09-01T23:59:59.000Z

184

In Situ Remediation Integrated Program, Evaluation and assessment of containment technology  

SciTech Connect

The In Situ Remediation Integrated Program (ISRIP) was established by the US Department of Energy (DOE) to advance the state-of-the art of innovative in situ remediation technologies to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. This program complements similar ongoing integrated demonstration programs being conducted at several DOE sites. The ISRIP has been conducting baseline assessments on in situ technologies to support program planning. Pacific Northwest Laboratory conducted an assessment and evaluation of subsurface containment barrier technology in support of ISRIP`s Containment Technology Subprogram. This report summarizes the results of that activity and provides a recommendation for priortizing areas in which additional research and development is needed to advance the technology to the point of demonstration in support of DOE`s site restoration activities.

Gerber, M.A.; Fayer, M.J.

1994-04-01T23:59:59.000Z

185

Specific filter designs for PFBC  

SciTech Connect

Bubbling bed PFBC technology is currently being demonstrated at commercial scale. Economic and performance improvements in these first generation type PFBC plants can be realized with the application of hot gas particulate filters. Both the secondary cyclone(s) and stack gas ESP(s) could be eliminated saving costs and providing lower system pressure losses. The cleaner gas (basically ash free) provided with the hot gas filter, also permits a wider selection of gas turbines with potentially higher performance. For these bubbling bed PFBC applications, the hot gas filter must operate at temperatures of 1580{degree}F and system pressures of 175 psia (conditions typical of the Tidd PFBC plant). Inlet dust loadings to the filter are estimated to be about 500 to 1000 ppm with mass mean particle diameters ranging from 1.5 to 3 {mu}m. For commercial applications typical of the 70 MW{sub e} Tidd PFBC demonstration unit, the filter must treat up to 56,600 acfm of gas flow. Scaleup of this design to about 320 MW{sub e} would require filtering over 160,000 acfm gas flow. For these commercial scale systems, multiple filter vessels are required. Thus, the filter design should be modular for scaling. An alternative to the bubbling bed PFBC is the circulating bed concept. In this process the hot gas filter will in general be exposed to higher operating temperatures (1650{degree}F) and significantly higher (factor of 10 or more) particle loading.

Lippert, T.E.; Bruck, G.J.; Newby, R.A.; Smeltzer, E.E.

1993-09-01T23:59:59.000Z

186

Ethernet filter  

DOE Patents (OSTI)

This invention is comprised of an apparatus and method that prevents access to unauthorized data in a local area network, such as Ethernet, in which information is transmitted from a transceiver to at least one workstation. Encoded data packets transmitted from the transceiver are filtered by splitting the packet into two signals. One signal contains the data that was transmitted, while the other signal contains tainted data. The filter determines whether a workstation is authorized to access the data, and then delivers either the tainted data to unauthorized workstations, or the data that was transmitted to authorized workstations.

Charney, E.J.; Tanzella, A.J.; Wujcik, J.G.

1990-11-09T23:59:59.000Z

187

Evaluation of alternative nonflame technologies for destruction of hazardous organic waste  

SciTech Connect

The US Department of Energy`s Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX{sup SM}, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis.

Schwinkendorf, W.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Musgrave, B.C. [BC Musgrave, Inc. (United States); Drake, R.N. [Drake Engineering, Inc. (United States)

1997-04-01T23:59:59.000Z

188

An evaluation of commercialization mechanisms for the Clean Coal Technology Program  

SciTech Connect

The Clean Coal Technology (CCT) Program is an exemplary model of a successful collaboration between industry and government to develop advanced clean coal technologies that will both sustain and expand coal usage for electrical power production and materials manufacturing. Begun in 1985, the program has included five national competitive solicitations over a period of nine years. These solicitations have resulted in forty-five projects covering twenty-one states with a total capital investment of almost $7 billion. The goal of the program has been to demonstrate the next generation of advanced coal based technologies and to transfer these technologies to individual companies in the domestic and international market place. This study was commissioned by the CCT Program to evaluate technology transfer mechanisms used in other programs that can be used to stimulate the commercialization of the CCT Program`s technologies. Los Alamos National Laboratory (LANL) was selected for this task because of its involvement in the Natural Gas and Oil Technology Partnership, which is sponsored by the DOE Office of Fossil Energy. The mission of the Partnership is to coordinate the development and transfer of technologies developed at DOE national laboratories to the U.S. petroleum industry. The intent of this study is to examine the structure of the Partnership and evaluate the applicability of this structure to the CCT Program.

Joyce, E.L. Jr.; Matysiak, L.M.; Wampler, J.A.

1995-03-01T23:59:59.000Z

189

GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies (Presentation)  

Science Conference Proceedings (OSTI)

GSA's Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies.

Kandt, A.; Lowell, M.

2012-05-01T23:59:59.000Z

190

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

DOE Green Energy (OSTI)

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-06-01T23:59:59.000Z

191

GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies; Preprint  

SciTech Connect

This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. The federal government's General Services Administration's (GSA) Public Buildings Service (PBS) acquires space on behalf of the federal government through new construction and leasing, and acts as a caretaker for federal properties across the country. PBS owns or leases 9,624 assets and maintains an inventory of more than 370.2 million square feet of workspace, and as such has enormous potential for implementing energy efficient and renewable energy technologies to reduce energy and water use and associated emissions. The Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies. In 2011, the GPG program selected 16 technologies or practices for rigorous testing and evaluation. Evaluations are currently being performed in collaboration with the Department of Energy's National Laboratories, and a steady stream of results will be forthcoming throughout 2012. This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. Lastly, it provides a general overview of the 2012 program.

Kandt, A.; Lowell, M.

2012-05-01T23:59:59.000Z

192

GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies; Preprint  

SciTech Connect

This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. The federal government's General Services Administration's (GSA) Public Buildings Service (PBS) acquires space on behalf of the federal government through new construction and leasing, and acts as a caretaker for federal properties across the country. PBS owns or leases 9,624 assets and maintains an inventory of more than 370.2 million square feet of workspace, and as such has enormous potential for implementing energy efficient and renewable energy technologies to reduce energy and water use and associated emissions. The Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies. In 2011, the GPG program selected 16 technologies or practices for rigorous testing and evaluation. Evaluations are currently being performed in collaboration with the Department of Energy's National Laboratories, and a steady stream of results will be forthcoming throughout 2012. This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. Lastly, it provides a general overview of the 2012 program.

Kandt, A.; Lowell, M.

2012-05-01T23:59:59.000Z

193

Cordierite silicon nitride filters. Final report  

SciTech Connect

The objective of this project was to develop a silicon nitride based crossflow filter. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of filter material development and crossflow filter design. Phase II involved filter manufacturing, filter testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride (CSN) was developed and tested for permeability and strength. Target values for each of these parameters were established early in the program. The values were met by the material development effort in Phase I. The crossflow filter design effort proceeded by developing a macroscopic design based on required surface area and estimated stresses. Then the thermal and pressure stresses were estimated using finite element analysis. In Phase II of this program, the filter manufacturing technique was developed, and the manufactured filters were tested. The technique developed involved press-bonding extruded tiles to form a filter, producing a monolithic filter after sintering. Filters manufactured using this technique were tested at Acurex and at the Westinghouse Science and Technology Center. The filters did not delaminate during testing and operated and high collection efficiency and good cleanability. Further development in areas of sintering and filter design is recommended.

Sawyer, J.; Buchan, B. [Acurex Environmental Corp., Mountain View, CA (United States); Duiven, R.; Berger, M. [Aerotherm Corp., Mountain View, CA (United States); Cleveland, J.; Ferri, J. [GTE Products Corp., Towanda, PA (United States)

1992-02-01T23:59:59.000Z

194

Evaluation of the AEA Technology Engineering Services AIS Rotor Bore Ultrasonic Imaging System  

Science Conference Proceedings (OSTI)

Reliable and repeatable boresonic inspections of turbine rotors and generator fields are critical for accurately predicting the remaining life of those components. EPRI's boresonic system evaluation program provides utilities with insight into the capability of commercial boresonic system performance. This report features an evaluation of the Automated Inspection System (AIS) Rotor Bore Ultrasonic Imaging System, a boresonic system owned and operated by AEA Technology Engineering Services.

2006-06-05T23:59:59.000Z

195

Review of Downstream Fish Passage and Protection Technology Evaluations and Effectiveness  

Science Conference Proceedings (OSTI)

The need for effective fish passage and protection at water intakes is an important issue confronting industry and resource agency professionals throughout the world. Project owners often are required to install and evaluate protection devices to meet regulatory requirements that are associated with operating licenses and permits. This report describes recent research that has evaluated existing and emerging technologies since the last EPRI review in 1994.

1998-11-25T23:59:59.000Z

196

A fuel cycle framework for evaluating greenhouse gas emission reduction technology  

SciTech Connect

Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

Ashton, W.B.; Barns, D.W. (Pacific Northwest Lab., Richland, WA (USA)); Bradley, R.A. (USDOE Office of Policy, Planning and Analysis, Washington, DC (USA). Office of Environmental Analysis)

1990-05-01T23:59:59.000Z

197

Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation  

SciTech Connect

This report presents an initial review of the state-of-the-art nuclear and non-nuclear well logging methods and seeks to understand the technical and economic issues if AmBe, and potentially other isotope sources, are reduced or even eliminated in the oil-field services industry. Prior to considering alternative logging technologies, there is a definite need to open up discussions with industry regarding the feasibility and acceptability of source replacement. Industry views appear to range from those who see AmBe as vital and irreplaceable to those who believe that, with research and investment, it may be possible to transition to electronic neutron sources and employ combinations of non-nuclear technologies to acquire the desired petro-physical parameters. In one sense, the simple answer to the question as to whether petro-physical parameters can be sensed with technologies other than AmBe is probably "Yes". The challenges come when attention turns to record interpretation. The many decades of existing records form a very valuable proprietary resource, and the interpretation of subtle features contained in these records are of significant value to the oil-gas exploration community to correctly characterize a well. The demonstration of equivalence and correspondence/correlation between established and any new sensing modality, and correlations with historic records is critical to ensuring accurate data interpretation. Establishing the technical basis for such a demonstration represents a significant effort.

Bond, Leonard J.; Denslow, Kayte M.; Griffin, Jeffrey W.; Dale, Gregory E.; Harris, Robert V.; Moran, Traci L.; Sheen, David M.; Schenkel, Thomas

2010-11-01T23:59:59.000Z

198

Performance Evaluation of Advanced LLW Liquid Processing Technology: Boiling Water Reactor Liquid Processing  

Science Conference Proceedings (OSTI)

This report provides condensed information on boiling water reactor (BWR) membrane based liquid radwaste processing systems. The report presents specific details of the technology, including design, configuration, and performance. This information provides nuclear plant personnel with data useful in evaluating the merits of applying advanced processes at their plant.

2001-11-26T23:59:59.000Z

199

Mixing psychology and HCI in evaluation of augmented reality mental health technology  

Science Conference Proceedings (OSTI)

Recent studies present Augmented Reality Exposure Therapy (ARET) as a potentially effective technology in the Mental Health (MH) field. This study evaluates the ARET system applied to treatment of cockroach phobia in a clinical setting. The results seem ... Keywords: augmented reality, mental health, small animal phobia

Maja Wrzesien; Jean-Marie Burkhardt; Mariano Alcañiz Raya; Cristina Botella

2011-05-01T23:59:59.000Z

200

Evaluation of Power Line Carrier Technologies for Automotive Smart Charging Applications  

Science Conference Proceedings (OSTI)

In support of the Society of Automotive Engineers (SAE) Hybrid J2836J2847J2931 Committee, EPRI has undertaken evaluation of a set of power line carrier (PLC) technologies. This report documents Phase I activity, where vendor hardware evaluation kits were operated and tested in the EPRI lab. This initial activity lays the groundwork for in-depth PLC testing to occur in the near future. The primary focus of this report is to provide an overview of the vendor evaluation hardware and software and to report r...

2010-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

202

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

203

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

204

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

205

Arid sites stakeholder participation in evaluating innovative technologies: VOC-Arid Site Integrated Demonstration  

Science Conference Proceedings (OSTI)

Developing and deploying innovative environmental cleanup technologies is an important goal for the U.S. Department of Energy (DOE), which faces challenging remediation problems at contaminated sites throughout the United States. Achieving meaningful, constructive stakeholder involvement in cleanup programs, with the aim of ultimate acceptance of remediation decisions, is critical to meeting those challenges. DOE`s Office of Technology Development sponsors research and demonstration of new technologies, including, in the past, the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID), hosted at the Hanford Site in Washington State. The purpose of the VOC-Arid ID has been to develop and demonstrate new technologies for remediating carbon tetrachloride and other VOC contamination in soils and ground water. In October 1994 the VOC-Arid ID became a part of the Contaminant Plume Containment and Remediation Focus Area (Plume Focus Area). The VOC Arid ID`s purpose of involving stakeholders in evaluating innovative technologies will now be carried on in the Plume Focus Area in cooperation with Site Technology Coordination Groups and Site Specific Advisory Boards. DOE`s goal is to demonstrate promising technologies once and deploy those that are successful across the DOE complex. Achieving that goal requires that the technologies be acceptable to the groups and individuals with a stake in DOE facility cleanup. Such stakeholders include groups and individuals with an interest in cleanup, including regulatory agencies, Native American tribes, environmental and civic interest groups, public officials, environmental technology users, and private citizens. This report documents the results of the stakeholder involvement program, which is an integral part of the VOC-Arid ID.

Peterson, T.S.; McCabe, G.H.; Brockbank, B.R. [and others

1995-05-01T23:59:59.000Z

206

Koch Filter and DOW Teaming Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

Koch Filter Corporation Dow Chemical Koch Filter Corporation Dow Chemical 4411-A Darien Street 2301 Brazosport Boulevard Houston, TX 77028 Freeport, TX 77541 Business: HVAC Filter Manufacturer Business: Chemical Manufacturer Bob Sheppard John Theile Regional Sales Manager Reliability Engineer Phone: 713-672-6550 Phone: 979-238-1894 Email: bobs@kochfilter.com Email: jptheile@dow.com Koch Filter saves Dow $156,000 by improving air flow to turbines Project Scope Koch Filter Corporation evaluated the turbine operation at a Dow Chemical facility. They determined that the gas turbine's air intake system was undersized and pre-filters had an initial resistance that was too high, causing the turbine to be "starved" for air. Koch replaced these filters with a better filter that

207

Clean coal technologies---An international seminar: Seminar evaluation and identification of potential CCT markets  

Science Conference Proceedings (OSTI)

The need for environmentally responsible electricity generation is a worldwide concern. Because coal is available throughout the world at a reasonable cost, current research is focusing on technologies that use coal with minimal environmental effects. The United States government is supporting research on clean coal technologies (CCTs) to be used for new capacity additions and for retrofits to existing capacity. To promote the worldwide adoption of US CCTs, the US Department of Energy, the US Agency for International Development, and the US Trade and Development Program sponsored a two-week seminar titled Clean Coal Technologies -- An International Seminar. Nineteen participants from seven countries were invited to this seminar, which was held at Argonne National Laboratory in June 1991. During the seminar, 11 US CCT vendors made presentations on their state-of-the-art and commercially available technologies. The presentations included technical, environmental, operational, and economic characteristics of CCTs. Information on financing and evaluating CCTs also was presented, and participants visited two CCT operating sites. The closing evaluation indicated that the seminar was a worthwhile experience for all participants and that it should be repeated. The participants said CCT could play a role in their existing and future electric capacity, but they agreed that more CCT demonstration projects were needed to confirm the reliability and performance of the technologies.

Guziel, K.A.; Poch, L.A.; Gillette, J.L.; Buehring, W.A.

1991-07-01T23:59:59.000Z

208

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

DOE Green Energy (OSTI)

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-04-01T23:59:59.000Z

209

Analysis of Advanced Liquid Waste Minimization Techniques at a PWR: Advanced Media, Pleated Filters, and Ecomomic Evaluation Tools  

Science Conference Proceedings (OSTI)

Utilities may employ a number of options for processing radioactive liquids or improving processing system O&M. This report summarizes low level waste minimization studies for the Diablo Canyon Power Plant. These studies involved the performance of selective ion media, optimization of the chemical volume control system (CVCS) demineralizers, performance assessment of the application of advanced minimum precoat elements for processing condensate demineralizer system rinse water, and evaluation of the econ...

1998-06-30T23:59:59.000Z

210

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report  

DOE Green Energy (OSTI)

SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

Eudy, L.; Chandler, K.

2013-01-01T23:59:59.000Z

211

Evaluation and selection of aqueous-based technology for partitioning radionuclides from ICPP calcine  

Science Conference Proceedings (OSTI)

Early in 1993 Westinghouse Idaho Nuclear Company (WINCO) chartered a Panel of Nuclear Separations Experts. The purpose of this Panel was to assist WINCO scientists and engineers in selecting, evaluating, and ranking candidate aqueous-based processes and technologies for potential use in partitioning selected radionuclides from nitric acid solutions of retrieved Idaho Chemical Processing Plant (ICPP) calcine. Radionuclides of interest are all transuranium elements, {sup 90}Sr, {sup 99}Tc, {sup 129}I, and {sup 137}Cs. The six man Panel met for 4 days (February 16--19, 1993) on the campus of the Idaho State University in Pocatello, Idaho. Principal topics addressed included: Available radionuclide removal technology; applicability of separations technology and processes to ICPP calcine; and potential integrated radionuclide partitioning schemes. This report, prepared from contributions from all Panel members, presents a comprehensive account of the proceedings and significant findings of the February, 1993 meeting in Pocatello.

Olson, A.L.; Schulz, W.W.; Burchfield, L.A.; Carlson, C.D.; Swanson, J.L.; Thompson, M.C.

1993-02-01T23:59:59.000Z

212

Condensate Filter Demineralizer Performance Improvement Program  

Science Conference Proceedings (OSTI)

Upgrading condensate filter demineralizer (CFD) performance poses a complex, challenging utility task. This report summarizes the major factors that impact CFD performance and defines a comprehensive improvement program. In specific, the report discusses hardware, filter media, and operating practices, describing each area in terms of the underlying technology, approach to optimization, and utility experience.

1997-07-21T23:59:59.000Z

213

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

214

NETL: Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture Project No.: DE-FE0000465 Scanning Electron Microsopy (SEM) and Transmission Electron Miscroscopy (TEM) images of a multi-functional sorbent synthesized by a novel method. Scanning Electron Microsopy (SEM) and Transmission Electron Miscroscopy (TEM) images of a multi-functional sorbent synthesized by a novel method. URS and the University of Illinois at Urbana-Champaign are investigating a dry sorbent process configured to combine the water-gas-shift (WGS) reaction with carbon dioxide (CO2) removal for coal gasification systems. A combination of process simulation modeling and sorbent molecular and thermodynamic analyses will be performed to predict optimal sorbent properties and identify optimal operating temperature and pressure ranges

215

Impact Evaluation Framework for Technology Deployment Programs: An Overview and Example  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Overview and Example John H. Reed Innovologie LLC Gretchen Jordan Sandia National Laboratories Edward Vine Lawrence Berkeley National Laboratory July 2007 IMPACT EVALUATION FRAMEWORK FOR TECHNOLOGY DEPLOYMENT PROGRAMS An ap pro ach fo r q u anti fyi ng ret ro sp ect ive en erg y savin gs, cl ean en erg y ad van ces, an d m ark et eff ect s Introduction and Background The document briefly describes a framework for evaluating the "ret- rospective" impact of technology deployment programs and provides an example of its use. The framework was developed for the US Depart- ment of Energy's (US DOE) Office of Energy Efficiency and Renew- able Energy (EERE) but potentially can be applied to most deployment programs. 1 This walk through of the seven-step impact framework proc-

216

Geothermal Electricity Technologies Evaluation Model DOE Tool for Assessing Impact of Research on Cost of Power  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) has developed a spreadsheet model to provide insight as to how its research activities can impact of cost of producing power from geothermal energy. This model is referred to as GETEM, which stands for “Geothermal Electricity Technologies Evaluation Model”. Based on user input, the model develops estimates of costs associated with exploration, well field development, and power plant construction that are used along with estimated operating costs to provide a predicted power generation cost. The model allows the user to evaluate how reductions in cost, or increases in performance or productivity will impact the predicted power generation cost. This feature provides a means of determining how specific technology improvements can impact generation costs, and as such assists DOE in both prioritizing research areas and identifying where research is needed.

Greg Mines

2008-01-01T23:59:59.000Z

217

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report  

NLE Websites -- All DOE Office Websites (Extended Search)

SunLine Transit Agency SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report L. Eudy and K. Chandler Technical Report NREL/TP-5600-57560 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report L. Eudy and K. Chandler Prepared under Task No. HT12.8210 Technical Report NREL/TP-5600-57560 January 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

218

PLUTONIUM-URANIUM EXTRACTION (PUREX) FACILITY ALARACT DEMONSTRATION FOR FILTER HOUSING  

Science Conference Proceedings (OSTI)

This document presents an As Low As Reasonably Achievable Control Technology (ALARACT) demonstration for evaluating corrosion on the I-beam supporting filter housing No.9 for the 291-A-l emission unit of the Plutonium-Uranium Extraction (PUREX) Facility, located in the 200 East Area of the Hanford Site. The PUREX facility is currently in surveillance and maintenance mode. During a State of Washington, Department of Health (WDOH) 291-A-l emission unit inspection, a small amount of corrosion was observed at the base of a high-efficiency particulate air (HEPA) filter housing. A series of internal and external inspections identified the source of the corrosion material as oxidation of a small section of one of the carbon steel I-beams that provides support to the stainless steel filter housing. The inspections confirmed the corrosion is isolated to one I-beam support location and does not represent any compromise of the structural support or filter housing integrity. Further testing and inspections of the support beam corrosion and its cause were conducted but did not determine the cause. No definitive evidence was found to support any degradation of the housing. Although no degradation of the housing was found, a conservative approach will be implemented. The following actions will be taken: (1) The current operating filter housing No.9 will be removed from service. (2) The only remaining available filter housings (No.1, No.2, and No.3) will be placed in service. These filter housings have new HEPA filters fitted with stainless steel frames and faceguards which were installed in the spring of 2007. (3) Filter housings No.5 and No.10 will be put on standby as backups. To document the assessment of the unit, a draft ALARACT filter housing demonstration for the PUREX filter housing was prepared, and informally provided to WDOH on August 7, 2008. A follow up WDOH response to the draft ALARACT filter housing demonstration for the PUREX filter housing questioned whether deteriorated galvanized filter faceguards discovered during an internal filter housing inspection met American Society of Mechanical Engineers (ASME) AG-l or Military Specification (MIL) 51068 standards. The filter system was designed and installed prior to the issuance of AG-l, February 1986; however, MIL 51068 did require galvanized faceguards. The faceguards are not necessary for filtration or structural purposes; it is concluded that the system is in compliance with the intent of the applicable standard. Appendix B provides supporting information to address this issue.

LEBARON GJ

2008-11-25T23:59:59.000Z

219

Nondestructive Evaluation: Buried Pipe NDE Technology Assessment and Development Interim Report  

Science Conference Proceedings (OSTI)

This is an interim progress report for the Electric Power Research Institute (EPRI) project “Assessment and Development of Buried Pipe Nondestructive Evaluation Technology,” which is planned to continue through 2013. The project is a part of EPRI’s overall strategy to close the industry’s underground pipe infrastructure gaps, as described in the nuclear power industry’s “Underground Piping and Tank Integrity Strategic Roadmap.” ...

2012-09-28T23:59:59.000Z

220

Resource-technology combinations for domestic lighting in rural India: A comparative financial evaluation  

Science Conference Proceedings (OSTI)

Financial analysis and evaluation of various resource-technology combinations for rural domestic lighting is undertaken. The options include kerosene lamps, liquefied petroleum gas (LPG) and biogas lamps, solar photovoltaic lighting systems, and electric lamps. The figures of merit considered for financial comparison are the cost per hour of lighting and the cost per unit of useful energy for lighting. Sensitivity of these figures of merit to the uncertainties in the values of some of the input variables has also been studied.

Rubab, S.; Kandpal, T.C. [Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Evaluation of Emerging Battery Technologies for Plug-in Hybrid Vehicles  

Science Conference Proceedings (OSTI)

The performance, cycle life, and cost of available batteries are key issues in determining the marketability of plug-in hybrid-electric vehicles (PHEVs). The California Air Resources Board (CARB) initiated a project to evaluate emerging lithiumion battery technologies for PHEV applications. Work initially focused on the determination of the characteristics of one of the most interesting of the emerging lithium-ion batteries, the lithium titanate battery in commercial development by Altairnano, but other ...

2009-08-24T23:59:59.000Z

222

TECHNICAL EVALUATION OF REMEDIATION TECHNOLOGIES FOR PLUTONIUM-CONTAMINATED SOILS AT THE NEVADA TEST SITE (NTS)  

SciTech Connect

The Clemson Environmental Technologies Laboratory (CETL) was contracted by the National Energy Technology Center to evaluate technologies that might be used to reduce the volume of plutonium-contaminated soil at the Nevada Test Site. The project has been systematically approached. A thorough review and summary was completed for: (1) The NTS soil geological, geochemical and physical characteristics; (2) The characteristics and chemical form of the plutonium that is in these soils; (3) Previous volume reduction technologies that have been attempted on the NTS soils; (4) Vendors with technology that may be applicable; and (5) Related needs at other DOE sites. Soils from the Nevada Test Site were collected and delivered to the CETL. Soils were characterized for Pu-239/240, Am-241 and gross alpha. In addition, wet sieving and the subsequent characterization were performed on soils before and after attrition scrubbing to determine the particle size distribution and the distribution of Pu-239/240 and gross alpha as a function of particle size. Sequential extraction was performed on untreated soil to provide information about how tightly bound the plutonium was to the soil. Magnetic separation was performed to determine if this could be useful as part of a treatment approach. Using the information obtained from these reviews, three vendors were selected to demonstration their volume reduction technologies at the CETL. Two of the three technologies, bioremediation and soil washing, met the performance criteria. Both were able to significantly reduce the concentration plutonium in the soil from around 1100 pCi/g to 200 pCi/g or less with a volume reduction of around 95%, well over the target 70%. These results are especially encouraging because they indicate significant improvement over that obtained in these earlier pilot and field studies. Additional studies are recommended.

Steve Hoeffner

2003-12-31T23:59:59.000Z

223

An improved visualization of diesel particulate filter/  

E-Print Network (OSTI)

The prevalence of diesel particulate filters (DPF) is increasing as emissions standards worldwide evolve to match current technologies. Since the first application of DPFs in the 1980's, PM trapping effectiveness has ...

Boehm, Kevin (Kevin W.)

2011-01-01T23:59:59.000Z

224

Filter systems for IGCC applications  

SciTech Connect

The objectives of this program were to identify metallic filter medium to be utilized in the Integrated Gasification Combined Cycle process (IGCC). In IGCC processes utilizing high efficiency desulfurizing technology, the traditional corrosion attack, sulfidation, is minimized so that metallic filters are viable alternatives over ceramic filters. Tampa Electric Company`s Polk Power Station is being developed to demonstrate Integrated Gasification Combined Cycle technology. The Pall Gas Solid Separation (GSS) System is a self cleaning filtration system designed to remove virtually all particulate matter from gas streams. The heart of the system is the filter medium used to collect the particles on the filter surface. The medium`s filtration efficiency, uniformity, permeability, voids volume, and surface characteristics are all important to establishing a permeable permanent cake. In-house laboratory blowback tests, using representative full scale system particulate, were used to confirm the medium selection for this project. Test elements constructed from six alloys were supplied for exposure tests: PSS 310SC (modified 310S alloy); PSS 310SC heat treated; PSS 310SC-high Cr; PSS 310SC-high Cr heat treated; PSS Hastelloy X; and PSS Hastelloy X heat treated.

Bevan, S.; Gieger, R.; Sobel, N.; Johnson, D.

1995-11-01T23:59:59.000Z

225

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

226

The development of a porous silicon nitride crossflow filter; Final report, September 1988--September 1992  

Science Conference Proceedings (OSTI)

This report summarizes the work performed in developing a permeable form of silicon nitride for application to ceramic crossflow filters for use in advanced coal-fired electric power plants. The program was sponsored by the Department of Energy Morgantown Energy Technology Center and consisted of a design analysis and material development phase and a filter manufacture and demonstration phase. The crossflow filter design and operating requirements were defined. A filter design meeting the requirements was developed and thermal and stress analyses were performed. Material development efforts focused initially on reaction-bonded silicon nitride material. This approach was not successful, and the materials effort was refocused on the development of a permeable form of sintered silicon nitride (SSN). This effort was successful. The SSN material was used for the second phase of the program, filter manufacture and evaluation. Four half-scale SAN filter modules were fabricated. Three of the modules were qualified for filter performance tests. Tests were performed on two of the three qualified modules in the High-Temperature, High-Pressure facility at the Westinghouse Science and Technology Center. The first module failed on test when it expanded into the clamping device, causing dust leakage through the filter. The second module performed well for a cumulative 150-hr test. It displayed excellent filtration capability during the test. The blowback pulse cleaning was highly effective, and the module apparently withstood the stresses induced by the periodic pulse cleaning. Testing of the module resumed, and when the flow of combustion gas through the filter was doubled, cracks developed and the test was concluded.

NONE

1992-09-01T23:59:59.000Z

227

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

228

FILTER COMPONENT ASSESSMENT--CERAMIC CANDLES--  

SciTech Connect

Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on development of hot gas filter systems as an enabling technology for advanced coal and biomass-based gas turbine power generation applications. SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report summarizes the results of SWPC's filter component assessment efforts, identifying the performance and stability of porous monolithic, fiber reinforced, and filament wound ceramic hot gas candle filters, potentially for {ge}3 years of viable pressurized fluidized-bed combustion (PFBC) service operating life.

M.A. Alvin

2004-04-23T23:59:59.000Z

229

Energy Efficiency Evaluation of Refrigeration Technologies in Combined Cooling, Heating and Power Systems  

E-Print Network (OSTI)

With development of absorption refrigeration technology, the cooling requirement can be met using various optional refrigeration technologies in a CCHP system, including compression refrigeration, steam double-effect absorption refrigeration, steam single-effect absorption refrigeration, flue gas absorption refrigeration and hot water absorption refrigeration, etc. As a universal criterion, the COP coefficient cannot reflect the difference in availability of driving energy for different chillers. Exergy efficiency of optional chillers in CCHP system was analyzed and compared, which can be regarded as an important reference criterion in comparison of energy efficiency. Furthermore, a new index, relative electricity saving ratio, was put forward for evaluating end energy efficiency of all kinds of chillers in a CCHP system, which indicates actual energy or electricity saving ratio for different absorption chillers with various parameters in contrast to the reference electricity-driven refrigeration scheme.

Zuo, Z.; Hu, W.

2006-01-01T23:59:59.000Z

230

Evaluation of a Mobile Hot Cell Technology for Processing Idaho National Laboratory Remote-Handled Wastes  

SciTech Connect

The Idaho National Laboratory (INL) currently does not have the necessary capabilities to process all remote-handled wastes resulting from the Laboratory’s nuclear-related missions. Over the years, various U.S. Department of Energy (DOE)-sponsored programs undertaken at the INL have produced radioactive wastes and other materials that are categorized as remote-handled (contact radiological dose rate > 200 mR/hr). These materials include Spent Nuclear Fuel (SNF), transuranic (TRU) waste, waste requiring geological disposal, low-level waste (LLW), mixed waste (both radioactive and hazardous per the Resource Conservation and Recovery Act [RCRA]), and activated and/or radioactively-contaminated reactor components. The waste consists primarily of uranium, plutonium, other TRU isotopes, and shorter-lived isotopes such as cesium and cobalt with radiological dose rates up to 20,000 R/hr. The hazardous constituents in the waste consist primarily of reactive metals (i.e., sodium and sodium-potassium alloy [NaK]), which are reactive and ignitable per RCRA, making the waste difficult to handle and treat. A smaller portion of the waste is contaminated with other hazardous components (i.e., RCRA toxicity characteristic metals). Several analyses of alternatives to provide the required remote-handling and treatment capability to manage INL’s remote-handled waste have been conducted over the years and have included various options ranging from modification of existing hot cells to construction of new hot cells. Previous analyses have identified a mobile processing unit as an alternative for providing the required remote-handled waste processing capability; however, it was summarily dismissed as being a potentially viable alternative based on limitations of a specific design considered. In 2008 INL solicited expressions of interest from Vendors who could provide existing, demonstrated technology that could be applied to the retrieval, sorting, treatment (as required), and repackaging of INL remote-handled wastes. Based on review of the responses and the potential viability of a mobile hot cell technology, INL subsequently conducted a technology evaluation, including proof-of-process validation, to assess the feasibility of utilizing such a technology for processing INL’s remote-handled wastes to meet established regulatory milestones. The technology evaluation focused on specific application of a mobile hot cell technology to the conditions to be encountered at the INL and addressed details of previous technology deployment, required modifications to accommodate INL’s remote-handled waste, ability to meet DOE safety requirements, requirements for fabrication/construction/decontamination and dismantling, and risks and uncertainties associated with application of the technology to INL’s remote-handled waste. The large capital costs associated with establishing a fixed asset to process INL’s remote-handled waste, the relatively small total volume of waste to be processed when compared to other waste streams through the complex, and competing mission-related needs has made it extremely difficult to secure the necessary support to advance the project. Because of this constraint, alternative contract structures were also explored as part of the technology evaluation wherein the impact of a large capital investment could be lessened.

B.J. Orchard; L.A. Harvego; R.P. Miklos; F. Yapuncich; L. Care

2009-03-01T23:59:59.000Z

231

Development and evaluation of coal/water mixture combustion technology. Final report  

Science Conference Proceedings (OSTI)

The objective was to advance the technology for the preparation, storage, handling and combustion of highly-loaded coal/water mixtures. A systematic program to prepare and experimentally evaluate coal/water mixtures was conducted to develop mixtures which (1) burn efficiently using combustion chambers and burners designed for oil, (2) can be provided at a cost less than that of No. 6 oil, and (3) can be easily transported and stored. The program consisted of three principal tasks. The first was a literature survey relevant to coal/water mixture technology. The second involved slurry preparation and evaluation of rheological and stability properties, and processing techniques. The third consisted of combustion tests to characterize equipment and slurry parameters. The first task comprised a complete search of the literature, results of which are tabulated in Appendix A. Task 2 was involved with the evaluation of composition and process variables on slurry rheology and stability. Three bituminous coals, representing a range of values of volatile content, ash content, and hardness were used in the slurries. Task 3 was concerned with the combustion behavior of coal/water slurry. The studies involved first upgrading of an experimental furnace facility, which was used to burn slurry fuels, with emphasis on studying the effect on combustion of slurry properties such as viscosity and particle size, and the effect of equipment parameters such as secondary air preheat and atomization.

Scheffee, R.S.; Rossmeissl, N.P.; Skolnik, E.G.; McHale, E.T.

1981-08-01T23:59:59.000Z

232

Hepa filter dissolution process  

DOE Patents (OSTI)

A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

Brewer, Ken N. (Arco, ID); Murphy, James A. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

233

Recirculating electric air filter  

DOE Patents (OSTI)

An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

Bergman, Werner (Pleasanton, CA)

1986-01-01T23:59:59.000Z

234

HEPA filter dissolution process  

DOE Patents (OSTI)

A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

Brewer, K.N.; Murphy, J.A.

1994-02-22T23:59:59.000Z

235

HEPA filter dissolution process  

DOE Patents (OSTI)

This invention is comprised of a process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

Brewer, K.N.; Murphy, J.A.

1992-12-31T23:59:59.000Z

236

ICPP radioactive liquid and calcine waste technologies evaluation final report and recommendation  

SciTech Connect

Using a formalized Systems Engineering approach, the Latched Idaho Technologies Company developed and evaluated numerous alternatives for treating, immobilizing, and disposing of radioactive liquid and calcine wastes at the Idaho Chemical Processing Plant. Based on technical analysis data as of March, 1995, it is recommended that the Department of Energy consider a phased processing approach -- utilizing Radionuclide Partitioning for radioactive liquid and calcine waste treatment, FUETAP Grout for low-activity waste immobilization, and Glass (Vitrification) for high-activity waste immobilization -- as the preferred treatment and immobilization alternative.

1995-04-01T23:59:59.000Z

237

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: First Results Report  

DOE Green Energy (OSTI)

This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This report provides the early data results and implementation experience of the AT fuel cell bus since it was placed in service.

Eudy, L.; Chandler, K.

2011-03-01T23:59:59.000Z

238

Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division  

SciTech Connect

This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

Larry G. Hoffman

2000-12-01T23:59:59.000Z

239

Development of a Fan-Filter Unit Test Standard, Laboratory Validations, and its Applications across Industries  

E-Print Network (OSTI)

Energy Performance of Fan-Filter Units, Version 1.3 (2005).Energy Performance of Fan-Filter Units, Version 2.0 (2006).Evaluation of Fan-filter Units’ Aerodynamic and Energy

Xu, Tengfang

2008-01-01T23:59:59.000Z

240

Development of a Fan-Filter Unit Test Standard, Laboratory Validations, and its Applications across Industries  

E-Print Network (OSTI)

Energy Performance of Fan-Filter Units, Version 1.3 (2005).Energy Performance of Fan-Filter Units, Version 2.0 (2006).Laboratory Evaluation of Fan-filter Units’ Aerodynamic and

Xu, Tengfang

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices  

Science Conference Proceedings (OSTI)

This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This is the second results report for the AT fuel cell bus since it was placed in service, and it focuses on the newest data analysis and lessons learned since the previous report. The appendices, referenced in the main report, provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report.

Eudy, L.; Chandler, K.

2011-10-01T23:59:59.000Z

242

Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement  

Science Conference Proceedings (OSTI)

The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

NONE

1994-09-01T23:59:59.000Z

243

Oak Ridge K-25 Site Technology Logic Diagram. Volume 3, Technology evaluation data sheets; Part B, Remedial action, robotics/automation, waste management  

SciTech Connect

The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration (ER) and waste management (WN) problems at the Oak Ridge K-25 Site. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remediation, decontamination, and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This volume 3 B provides the Technology Evaluation Data Sheets (TEDS) for ER/WM activities (Remedial Action Robotics and Automation, Waste Management) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than each technology in Vol. 2. The TEDS are arranged alphanumerically by the TEDS code number in the upper right corner of each data sheet. Volume 3 can be used in two ways: (1) technologies that are identified from Vol. 2 can be referenced directly in Vol. 3 by using the TEDS codes, and (2) technologies and general technology areas (alternatives) can be located in the index in the front of this volume.

Fellows, R.L. [ed.

1993-02-26T23:59:59.000Z

244

2009 EVALUATION OF TRITIUM REMOVAL AND MITIGATION TECHNOLOGIES FOR WASTEWATER TREATMENT  

Science Conference Proceedings (OSTI)

Since 1995, a state-approved land disposal site (SALDS) has received tritium contaminated effluents from the Hanford Site Effluent Treatment Facility (ETF). Tritium in this effluent is mitigated by storage in slow moving groundwater to allow extended time for decay before the water reaches the site boundary. By this method, tritium in the SALDS is isolated from the general environment and human contact until it has decayed to acceptable levels. This report contains the 2009 update evaluation of alternative tritium mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed and updated information is provided on state-of-the-art technologies for control of tritium in wastewaters. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-026-07B (Ecology, EPA, and DOE 2007). Tritium separation and isolation technologies are evaluated periodically to determine their feasibility for implementation to control Hanford site liquid effluents and groundwaters to meet the Us. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 20,000 pOll and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy. Since the 2004 evaluation, there have been a number of developments related to tritium separation and control with potential application in mitigating tritium contaminated wastewater. These are primarily focused in the areas of: (1) tritium recycling at a commercial facility in Cardiff, UK using integrated tritium separation technologies (water distillation, palladium membrane reactor, liquid phase catalytic exchange, thermal diffusion), (2) development and demonstration of Combined Electrolysis Catalytic Exchange (CECE) using hydrogen/water exchange to separate tritium from water, (3) evaporation of tritium contaminated water for dispersion in the atmosphere, and (4) use of barriers to minimize the transport of tritium in groundwater. Continuing development efforts for tritium separations processes are primarily to support the International Thermonuclear Experimental Reactor (ITER) program, the nuclear power industry, and the production of radiochemicals. While these applications are significantly different than the Hanford application, the technology could potentially be adapted for Hanford wastewater treatment. Separations based processes to reduce tritium levels below the drinking water MCL have not been demonstrated for the scale and conditions required for treating Hanford wastewater. In addition, available cost information indicates treatment costs for such processes will be substantially higher than for discharge to SALDS or other typical pump and treat projects at Hanford. Actual mitigation projects for groundwater with very low tritium contamination similar to that found at Hanford have focused mainly on controlling migration and on evaporation for dispersion in the atmosphere.

LUECK KJ; GENESSE DJ; STEGEN GE

2009-02-26T23:59:59.000Z

245

ELECTROSTATICALLY ENHANCED BARRIER FILTER COLLECTION  

SciTech Connect

This work was performed through the University of North Dakota (UND) Chemical Engineering Department with assistance from UND's Energy & Environmental Research Center. This research was undertaken in response to the U.S. Department of Energy Federal Technology Center Program Solicitation No. DE-PS26-99FT40479, Support of Advanced Coal Research at U.S. Universities and Colleges. Specifically, this research was in support of the UCR Core Program and addressees Topic 1, Improved Hot-Gas Contaminant and Particulate Removal Techniques, introducing an advanced design for particulate removal. Integrated gasification combined cycle (IGCC) offers the potential for very high efficiency and clean electric generation. In IGCC, the product gas from the gasifier needs to be cleaned of particulate matter to avoid erosion and high-temperature corrosion difficulties arising with the turbine blades. Current methods involve cooling the gases to {approx}100 C to condense alkalis and remove sulfur and particulates using conventional scrubber technology. This ''cool'' gas is then directed to a turbine for electric generation. While IGCC has the potential to reach efficiencies of over 50%, the current need to cool the product gas for cleaning prior to firing it in a turbine is keeping IGCC from reaching its full potential. The objective of the current project was to develop a highly reliable particulate collector system that can meet the most stringent turbine requirements and emission standards, can operate at temperatures above 1500 F, is applicable for use with all U.S. coals, is compatible with various sorbent injection schemes for sulfur and alkali control, can be integrated into a variety of configurations for both pressurized gasification and combustion, increases allowable face velocity to reduce filter system capital cost, and is cost-competitive with existing technologies. The collector being developed is a new concept in particulate control called electrostatically enhanced barrier filter collection (EBFC). This concept combines electrostatic precipitation (ESP) with candle filters in a single unit. Similar technology has been recently proven on a commercial scale for atmospheric applications, but needed to be tested at high temperatures and pressures. The synergy obtained by combining the two control technologies into a single system should actually reduce filter system capital and operating costs and make the system more reliable. More specifically, the ESP is expected to significantly reduce candle filter load and also to limit ash reintrainment, allowing for full recovery of baseline pressure drop during backpulsing of the filters.

John Erjavec; Michael D. Mann; Ryan Z. Knutson; Michael L. Swanson; Michael E. Collings

2003-06-01T23:59:59.000Z

246

An evaluation of market penetration forecasting methodologies for new residential and commercial energy technologies  

SciTech Connect

Forecasting market penetration is an essential step in the development and assessment of new technologies. This report reviews several methodologies that are available for market penetration forecasting. The primary objective of this report is to help entrepreneurs understand these methodologies and aid in the selection of one or more of them for application to a particular new technology. This report also illustrates the application of these methodologies, using examples of new technologies, such as the heat pump, drawn from the residential and commercial sector. The report concludes with a brief discussion of some considerations in selecting a forecasting methodology for a particular situation. It must be emphasized that the objective of this report is not to construct a specific market penetration model for new technologies but only to provide a comparative evaluation of methodologies that would be useful to an entrepreneur who is unfamiliar with the range of techniques available. The specific methodologies considered in this report are as follows: subjective estimation methods, market surveys, historical analogy models, time series models, econometric models, diffusion models, economic cost models, and discrete choice models. In addition to these individual methodologies, which range from the very simple to the very complex, two combination approaches are also briefly discussed: (1) the economic cost model combined with the diffusion model and (2) the discrete choice model combined with the diffusion model. This discussion of combination methodologies is not meant to be exhaustive. Rather, it is intended merely to show that many methodologies often can complement each other. A combination of two or more different approaches may be better than a single methodology alone.

Raju, P.S.; Teotia, A.P.S.

1985-05-01T23:59:59.000Z

247

ARRANGEMENT FOR REPLACING FILTERS  

DOE Patents (OSTI)

An improved filtered air exhaust system which may be continually operated during the replacement of the filters without the escape of unfiltered air is described. This is accomplished by hermetically sealing the box like filter containers in a rectangular tunnel with neoprene covered sponge rubber sealing rings coated with a silicone impregnated pneumatic grease. The tunnel through which the filters are pushed is normal to the exhaust air duct. A number of unused filters are in line behind the filters in use, and are moved by a hydraulic ram so that a fresh filter is positioned in the air duct. The used filter is pushed into a waiting receptacle and is suitably disposed. This device permits a rapid and safe replacement of a radiation contaminated filter without interruption to the normal flow of exhaust air.

Blomgren, R.A.; Bohlin, N.J.C.

1957-08-27T23:59:59.000Z

248

Oak Ridge K-25 Site Technology Logic Diagram. Volume 3, Technology evaluation data sheets; Part A, Characterization, decontamination, dismantlement  

Science Conference Proceedings (OSTI)

The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This report is part A of Volume 3 concerning characterization, decontamination, and dismantlement.

Fellows, R.L. [ed.

1993-02-26T23:59:59.000Z

249

Evaluation of beta partical densitometry for determination of self-absorption factors in gross alpha and gross beta radioactivity measurements on air particulate filter samples  

E-Print Network (OSTI)

Alpha and beta particles emitted from radioactive material collected on an air filter may be significantly attenuated by the mass (thickness) of collected dust. In this study, we determined the mass or thickness of the simulated dust deposit by measurement of the attenuation of beta particles from an external radioactive source as the particles pass through the filter-dust combination. This measured attenuation should be empirically related to demonstrated counting efficiency. A graph of mass density vs. fraction of beta source transmitted was developed. This graph provides factors which will correct for selfabsorption losses in the filter during the counting procedure. This experimental procedure could favorably affect the cost and effort required to accurately monitor airborne radioactivity releases from nuclear facilities.

Breida, Margaret A

1994-01-01T23:59:59.000Z

250

Microwave-Regenerated Diesel Exhaust Particulate Filter  

Science Conference Proceedings (OSTI)

Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

2001-03-05T23:59:59.000Z

251

Rigid porous filter  

DOE Patents (OSTI)

The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

Chiang, Ta-Kuan (Morgantown, WV); Straub, Douglas L. (Morgantown, WV); Dennis, Richard A. (Morgantown, WV)

2000-01-01T23:59:59.000Z

252

Procedural Guideline for Evaluating Alternative Fish Protection Technologies to Meet Section 316(b) Requirements of the Clean Water Act  

Science Conference Proceedings (OSTI)

As part of an effort to develop implementation rules for Section 316(b) of the Clean Water Act (CWA), EPRI commissioned this effort. The goal is to create a technically and biologically defensible screening process for evaluating and identifying alternative fish protection technologies that merit more rigorous evaluation.

2000-12-05T23:59:59.000Z

253

Performance and life evaluation of nickel/iron battery technology for dual shaft electric propulsion vehicle  

SciTech Connect

As part of a cost-shared contract between the US Department of Energy (Office of Transportation Systems) and Eaton Corp. to develop an advanced dual shaft electric propulsion (DSEP) vehicle, several nickel/iron (Ni/Fe) batteries were designed and procured from Eagle-Picher Industries (EPI) for evaluation and vehicle use. In March 1986, two individual 5-cell Ni/Fe modules and a 140-cell (28-module) battery pack were delivered to Argonne for evaluation. Performance characterization tests were conducted on the two modules and life testing performed on the battery pack. Module performance testing was completed in early 1987 after about 215 cycles of operation. Each module still retained {approximately}90% of its initial 180-Ah capacity at the end of testing ({approximately}163 Ah/970 Wh). Life evaluation of the 168-V, 28-kWh battery pack was conducted with driving profile discharges. A 1377-s power profile that represented the battery load in a DSEP vehicle undergoing a Federal Urban Driving Schedule (FUDS) was used. Testing was temporarily suspended in October 1987 after the battery pack had accumulated 502 cycles (209 cycles in 1986). After a three-month trickle charge ({approximately}3 A), testing was resumed (January 1988) with driving profile discharges. In March 1988, battery performance was being limited by three modules. After 545 cycles, the three modules were removed from the pack. Battery performance, however, continued to decline and another four modules were removed in September 1988 (645 cycles). Several remaining modules started to exhibit a high self-discharge loss and a capacity of only 119 Ah (15.1 kWh) could be achieved. The life evaluation was halted in October 1988 after 661 cycles had been accumulated. This report outlines the test activities and presents the performance results of the individual modules and the battery pack involved in this technology evaluation. 18 figs., 4 tabs.

DeLuca, W. (ed.)

1990-05-01T23:59:59.000Z

254

ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology  

SciTech Connect

We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good agreement for simulations of highly enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of {sup 233,235}U and {sup 239}Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL. The complete library, or any part of it, may be retrieved from www.nndc.bnl.gov.

Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

2006-10-02T23:59:59.000Z

255

Filter type gas sampler with filter consolidation  

DOE Patents (OSTI)

Disclosed is an apparatus for automatically consolidating a filter or, more specifically, an apparatus for drawing a volume of gas through a plurality of sections of a filter, whereafter the sections are subsequently combined for the purpose of simultaneously interrogating the sections to detect the presence of a contaminant.

Miley, Harry S. (219 Rockwood Dr., Richland, WA 99352); Thompson, Robert C. (5313 Phoebe La., West Richland, WA 99352); Hubbard, Charles W. (1900 Stevens, Apt. 526, Richland, WA 99352); Perkins, Richard W. (1413 Sunset, Richland, WA 99352)

1997-01-01T23:59:59.000Z

256

Formation-evaluation technology for production enhancement. Annual technical report, October 1990-October 1991  

SciTech Connect

Major advances have been made in the area of formation evaluation in the shales of the Appalachian Basin. This technology can be transferred to the shales of other basins with only minor modifications. A project was initiated to determine reservoir permeability and natural fractures in shale in detail. The plan consists of evaluating three wells in Pike County, Kentucky. The log analysis results and the plan for determining reservoir permeability from core analysis and well tests are presented. The objective is to develop a log based method for determining shale permeability. Electrical properties of the rock are extremely important in formation evaluation. Laboratory techniques and results of determination of these properties from shale core samples in four comprehensive study wells (CSW) are discussed. Geochemical information obtained on shale core samples has been invaluable in development of the shale specific log model. Properties such as total organic carbon (TOC) and pyrolysis S1 are used in the determination of kerogen content. Contour maps of these properties, as well as other geochemical properties, were developed for the Lower Huron and Rhinestreet shale members to permit use in log analysis in the entire Appalachian Basin. Shale permeability can be changed with the addition of a clay-flocculating solute to the aqueous permeant. These properties, as well as specific surface area, adsorption isotherms, water holding capacity, and other fundamental properties are being studied by Purdue Research Foundation.

Luffel, D.L.; Lorenzen, J.; Curtis, J.B.; Low, P.F.

1991-10-01T23:59:59.000Z

257

COMPENDIUM: SURVEYS EVALUATING KNOWLEDGE AND OPINIONS CONCERNING HYDROGEN AND FUEL CELL TECHNOLOGIES  

DOE Green Energy (OSTI)

This compendium updates a 2003 literature review of surveys of knowledge and opinions of hydrogen and fuel cell technologies. Its purpose is to ensure that results of comparable surveys are considered in surveys conducted by the U.S. Department of Energy (DOE). Over twice as many studies related to the DOE survey have been published since 2003 than prior to that date. The fact that there have been significantly more studies implies that there have been further demonstration projects and/or increased interest in hydrogen and fuel cell technologies. The primary findings of these 15 new surveys, all of which were conducted in Europe (E) or North America (NA), to the DOE surveys are as follows: 1.Respondents who are more educated are more accepting of hydrogen technologies (NA). 2.Respondents who are more knowledgeable about hydrogen and/or fuel cells are more accepting of hydrogen technologies (E, NA). 3.When asked about issues of trust, respondents generally expressed distrust of the government or political parties but trusted scientists and environmental protection organizations (E). 4.Technical knowledge about hydrogen and fuel cell technologies is low (E, NA). 5.Respondents may express opinions about a technology even when they are lacking in knowledge of that technology (E). 6.Women and men have different priorities when deciding on an automobile purchase (E). 7.Public acceptance to hydrogen is vulnerable to perceptions of decreased safety (E, NA). 8.Public acceptance to hydrogen is vulnerable to perceptions of increased cost (E, NA). The DOE surveys are similar to surveys that examine technical knowledge of hydrogen and fuel cell technologies, although the technical questions are certainly different. The DOE surveys are also similar to the opinion surveys in that they address many of the same issues, such as safety, sources of energy information, or trust. There are many differences between the surveys reviewed in this compendium and the DOE surveys. The information for many of the surveys is collected face-to-face or electronically; however, all of the DOE surveys are conducted via telephone interviews. Most of the surveys concentrated on a specific population group, while the DOE surveys addressed five different populations (general public, students, government agencies, end users, and safety and codes officials). No survey (except the DOE survey) conducted since 2003 surveyed students knowledge and opinions of hydrogen and fuel cells. Although several surveys have solicited opinions of users (e.g., passengers of fuel-cell vehicles), no surveys were conducted of end users (industrial users needing large power supplies, commercial users needing uninterrupted power, or transportation businesses). While the International Organization for Standardization (ISO) has surveyed its membership concerning standards, the population of safety and codes officials has not been surveyed. The greatest impact and importance of the DOE surveys is that five distinct population groups are surveyed for both knowledge and opinions on hydrogen and fuel cells. Knowledge levels can be computed for each population group and can be compared across the populations and across time. Opinions can be compared with knowledge levels. A baseline of knowledge levels was derived using the results of the 2004 surveys; this baseline will be compared with the results of the knowledge evaluation for the surveys of 2008/2009 and 2011/2012. The DOE knowledge and opinion surveys are unique in coverage and purpose. It must be noted, however, that response rates for telephone surveys have decreased dramatically over time. Developments in survey methodology research will have to be followed over the next few years so that necessary adjustments are made in the 20112012 DOE hydrogen survey design, to account for cell-phone-only individuals as well as other changes in telephone usage demographics.

Truett, Lorena Faith [ORNL; Cooper, Christy [U.S. Department of Energy; Schmoyer, Richard L [ORNL

2008-10-01T23:59:59.000Z

258

A TECHNOLOGY ASSESSMENT AND FEASIBILITY EVALUATION OF NATURAL GAS ENERGY FLOW MEASUREMENT ALTERNATIVES  

Science Conference Proceedings (OSTI)

Deregulation and open access in the natural gas pipeline industry has changed the gas business environment towards greater reliance on local energy flow rate measurement. What was once a large, stable, and well-defined source of natural gas is now a composite from many small suppliers with greatly varying gas compositions. Unfortunately, the traditional approach to energy flow measurement [using a gas chromatograph (GC) for composition assay in conjunction with a flow meter] is only cost effective for large capacity supplies (typically greater than 1 to 30 million scfd). A less costly approach will encourage more widespread use of energy measurement technology. In turn, the US will benefit from tighter gas inventory control, more efficient pipeline and industrial plant operations, and ultimately lower costs to the consumer. An assessment of the state and direction of technology for natural gas energy flow rate measurement is presented. The alternative technologies were ranked according to their potential to dramatically reduce capital and operating and maintenance (O and M) costs, while improving reliability and accuracy. The top-ranked technologies take an unconventional inference approach to the energy measurement problem. Because of that approach, they will not satisfy the fundamental need for composition assay, but have great potential to reduce industry reliance on the GC. Technological feasibility of the inference approach was demonstrated through the successful development of data correlations that relate energy measurement properties (molecular weight, mass-based heating value, standard density, molar ideal gross heating value, standard volumetric heating value, density, and volume-based heating value) to three inferential properties: standard sound speed, carbon dioxide concentration, and nitrogen concentration (temperature and pressure are also required for the last two). The key advantage of this approach is that inexpensive on-line sensors may be used to measure the inferential variables, which can then be applied (through the data correlations) to convert existing flow meters (ultrasonic, orifice, turbine, rotary, Coriolis, diaphragm, etc.) for on-line energy measurement. The practical issues for field development were evaluated using two transducers extracted from a $100 ultrasonic domestic gas meter, and a $400 infrared sensor.

Kendricks A. Behring II; Eric Kelner; Ali Minachi; Cecil R. Sparks; Thomas B. Morrow; Steven J. Svedeman

1999-01-01T23:59:59.000Z

259

Westinghouse advanced particle filter system  

SciTech Connect

Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper updates the assessment of the Westinghouse hot gas filter design based on ongoing testing and analysis. Results are summarized from recent computational fluid dynamics modeling of the plenum flow during back pulse, analysis of candle stressing under cleaning and process transient conditions and testing and analysis to evaluate potential flow induced candle vibration.

Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

1994-10-01T23:59:59.000Z

260

Fail Save Shut Off Valve for Filtering Systems Employing Candle Filters  

NLE Websites -- All DOE Office Websites (Extended Search)

Fail Save Shut Off Fail Save Shut Off Valve for Filtering Systems Employing Candle Filters Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 6,981,516 entitled "Fail save shut off valve for filtering systems employing candle filters." Disclosed in this patent is a novel fail save shut off valve system that allows fluid flow during normal operational conditions, but prevents the flow of fluids in the event of system failure upstream that causes over- pressurization. It is particularly well suited for use in conjunction with hot gas filtering systems, which utilize ceramic candle filters. Used in such a hot gas system, the fail save valve stops the flow

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Evaluation of technologies for volume reduction of plutonium-contaminated soils from the Nevada Test Site  

Science Conference Proceedings (OSTI)

Nuclear testing at and around the Nevada Test Site (NTS) resulted in plutonium (Pu) contamination of the soil over an area of several thousands of acres. The objective of this project was to evaluate the potential of five different processes to reduce the volume of Pu-contaminated soil from three different areas, namely Areas 11, 13, and 52. Volume reduction was to be accomplished by concentrating the Pu into a small but highly contaminated soil fraction, thereby greatly reducing the volume of soil requiring disposal. The processes tested were proposed by Paramag Corp. (PARAMAG), Advanced Processing Technologies Inc. (APT), Lockheed Environmental Systems and Technologies (LESAT), Nuclear Remediation Technologies (NRT), and Scientific Ecology Group (SEG). Because of time and budgetary restraints, the NRT and SEG processes were tested with soil from Area 11 only. These processes typically included a preliminary soil conditioning step (e.g., attrition scrubbing, wet sieving), followed by a more advanced process designed to separate Pu from the soil, based on physiochemical properties of Pu compounds (e.g., magnetic susceptibility, specific gravity). Analysis of the soil indicates that a substantial fraction of the total Pu contamination is typically confined in a relatively narrow and small particle size range. Processes which were able to separate this highly contaminated soil fraction (using physical methods, e.g., attrition scrubbing, wet sieving), from the rest of the soil achieved volume (mass) reductions on the order of 70%. The advanced, more complex processes tested did not enhance volume reduction. The primary reason why processes that rely on the dependence of settling velocity on density differences failed was the very fine grain size of the Pu-rich particles.

Papelis, C.; Jacobson, R.L.; Miller, F.L.; Shaulis, L.K.

1996-06-01T23:59:59.000Z

262

Environmental and Economical Evaluation of Integrating NGL Extraction and LNG Liquefaction Technology in Iran LNG Project  

E-Print Network (OSTI)

The combination of changing global markets for natural gas liquids (NGL) with the simultaneous increase in global demand for liquefied natural gas (LNG) has stimulated an interest in the integration of NGL recovery technology with LNG liquefaction technologies. Historically, the removal of “heavy” or high-freezing-point hydrocarbons from the feed to LNG plants has been characterized as “gas conditioning” and achieved using one or more distillation columns. While some attempts to provide reflux to the distillation columns marginally enhanced NGL recovery, little emphasis was placed on maximizing NGL recovery as a product from the LNG process. As such, the integration of the two processes was not a priority. Integrating state-of-the art NGL recovery technology within the CoP LNGSM Process1, formerly the Phillips Optimized Cascade LNG Process, results in a significant reduction in the specific power required to produce LNG, while maximizing NGL recovery. This corresponds to a production increase in both LNG and NGL for comparable compression schemes as compared to stand-alone LNG liquefaction and NGL extraction facilities. In addition, there are potential enhancements to the overall facility availability and project economics and environmental impacts using the integrated concept. This integrated concept has been applied to three ongoing international NGL/LNG projects using the CoP LNG Process in Iran LNG project. In this respect, simulation has been performed in THERMOFLEX software. Moreover, thermo economic analysis has been applied for economic and thermodynamic analysis of base and integrated cases through computer code has been provided here. Finally, the base and integrated case have been evaluated and comprised in view of thermodynamics, economics and environmental impacts.

Manesh, M. H. K.; Mazhari, V.

2009-05-01T23:59:59.000Z

263

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports  

DOE Green Energy (OSTI)

This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

Eudy, L.; Chandler, K.

2012-05-01T23:59:59.000Z

264

Evaluation of H/sub 2/S control technology for geothermal energy sources  

DOE Green Energy (OSTI)

This study was conducted to identify processes that are most applicable for control of H/sub 2/S from geothermal sources. Both vapor-dominated and liquid-dominated sources were considered within the electric power generation category. The source characteristics, H/sub 2/S control requirements, and applicable technologies are discussed for the two geothermal sources. An evaluation of the applicable control technology indicates that there are three major approaches for H/sub 2/S removal. These are (a) upstream cleaning (ahead of the power plant), (b) removal of H/sub 2/S from condenser vent emissions, and (c) H/sub 2/S removal from cooling water, including condensate. The most promising processes for these emission points, based on current information, are as follows: the EIC process for upstream cleaning of liquid-dominated sources. For condenser vent emissions, the Stretford process appears to be most applicable; for cooling tower emissions, the iron catalyst process, followed by the H/sub 2/O/sub 2/ process, seems most appropriate.

Not Available

1978-11-21T23:59:59.000Z

265

Economic evaluation of solar-only and hybrid power towers using molten salt technology  

DOE Green Energy (OSTI)

Several hybrid and solar-only configurations for molten-salt power towers were evaluated with a simple economic model, appropriate for screening analysis. The solar specific aspects of these plants were highlighted. In general, hybrid power towers were shown to be economically superior to solar-only plants with the same field size. Furthermore, the power-booster hybrid approach was generally preferred over the fuel-saver hybrid approach. Using today`s power tower technology, economic viability for the solar power-boost occurs at fuel costs in the neighborhood of $2.60/MBtu to $4.40/ MBtu (low heating value) depending on whether coal-based or gas-turbine-based technology is being offset. The cost Of CO[sub 2] avoidance was also calculated for solar cases in which the fossil fuel cost was too low for solar to be economically viable. The avoidance costs are competitive with other proposed methods of removing CO[sub 2] from fossil-fired power plants.

Kolb, G.J.

1996-12-01T23:59:59.000Z

266

EVALUATION OF NATURAL AND IN-SITU REMEDIATION TECHNOLOGIES FOR A COAL-RELATED METALS PLUME  

SciTech Connect

Metals contamination exceeding drinking water standards (MCLs) is associated with acidic leachate generated from a coal pile runoff basin at the Savannah River Site (SRS) in Aiken, South Carolina. The metals plume extends over 100 acres with its' distal boundary about onehalf mile from the Savannah River. Based on the large plume extent and high dissolved iron and aluminum concentrations, conventional treatment technologies are likely to be ineffective and cost prohibitive. In-situ bioremediation using existing groundwater microbes is being evaluated as a promising alternative technology for effective treatment, along with consideration of natural attenuation of the lower concentration portions of the plume to meet remedial goals. Treatment of the high concentration portion of the groundwater plume by sulfate-reducing bacteria (SRB) is being evaluated through laboratory microcosm testing and a field-scale demonstration. Organic substrates are added to promote SRB growth. These bacteria use dissolved sulfate as an electron acceptor and ultimately precipitate dissolved metals as metal sulfides. Laboratory microcosm testing indicate SRB are present in groundwater despite low pH conditions, and that their growth can be stimulated by soybean oil and sodium lactate. The field demonstration consists of substrate injection into a 30-foot deep by 240-foot long permeable trench. Microbial activity is demonstrated by an increase in pH from 3 to 6 within the trench. Downgradient monitoring will be used to evaluate the effectiveness of SRB in reducing metal concentrations. Natural attenuation (NA) is being evaluated for the low concentration portion of the plume. A decrease in metal mobility can occur through a variety of abiotically and/or biotically mediated mechanisms. Quantification of these mechanisms is necessary to more accurately predict contaminant attenuation using groundwater transport models that have historically relied on simplified conservative assumptions. Result s from matched soil/porewater samples indicate higher soil/water partition coefficients (Kds) with increasing distance from the source. In addition, site-specific metals availability is being assessed using sequential extraction techniques, which more accurately represent environmental conditions as compared to default EPA extraction methods. Due to elevated sulfate levels in the plume, SRB are most likely to be the dominant biotic contributor to NA processes.

Ross, Jeffrey A.; Bayer, Cassandra L.; Socha, Ronald P.; Sochor,Cynthia S.; Fliermans, Carl B.; McKinsey, Pamela C.; Millings, Margaret R.; Phifer, Mark A.; Powell, Kimberly R.; Serkiz, Steven M.; Sappington, Frank C.; Turick, Charles E.

2003-02-27T23:59:59.000Z

267

Development and Evaluation of Passive Integrated Transponder Tag Technology, 2000-2002.  

DOE Green Energy (OSTI)

Since 1984, the National Marine Fisheries Service (NMFS) in cooperation with the Bonneville Power Administration (BPA) has conducted a research project to develop and evaluate technology for passive-integrated-transponder tags (PIT tags) throughout the Columbia River Basin (CRB). Work conducted as part of this project between October 2000 and September 2002 (FY01 and FY02) was divided into seven individual elements, which are covered separately in this report. The efforts by personnel associated with this project have produced and will continue to produce products that aid resource stakeholders in assessing the effectiveness of actions taken to enhance the survival of juvenile and adult salmonids. These products and their uses include: (1) Survival and migration timing information on stocks to evaluate water management strategies and fish passage/collection facilities; (2) Data needed for the management and restoration of salmonids and other fish stocks listed under the Endangered Species Act (ESA); (3) Information required for the management of multiple species in a variety of habitats; and (4) Tools that enable fisheries researchers and managers to address previously unanswerable questions and critical uncertainties These products are also used in genetic, physiology, behavior, and captive broodstock research on endangered species. The continued development of PIT-tag technology will enable researchers and fisheries managers to address issues expressed in both of NMFS biological opinions for operation of the Federal Columbia River Power System (FCRPS)(NMFS 1995a, 2000) and the proposed Snake River Recovery Plan (NMFS 1995b; tasks 2.1.d, 2.3.b.4, 2.4.a, 2.6.c.2, and 2.9.d).

Downing, Sandra L.; Prentice, Earl F.; Nunnallee, Edmund P. [National Marine Fisheries Service

2009-04-03T23:59:59.000Z

268

Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory  

SciTech Connect

The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

1999-10-01T23:59:59.000Z

269

Evaluation of Membrane Treatment Technology to Optimize and Reduce Hypersalinity Content of Produced Brine for Reuse in Unconventional Gas Wells  

E-Print Network (OSTI)

Over 18 billion barrels of waste fluids are generated annually from oil and gas production in the United States. As a large amount of water is used for oilfield operations, treating and reusing produced water can cut the consumption of fresh water in well sites. This research has helped to develop a membrane process train for a mobile produced water treatment unit for treating oilfield produced brine for reuse. To design the process train, over 30 sets of combination tests at pilot laboratory scale were performed using pretreatment, microfiltration and nanofiltration processes. Membrane performance was selected based on high flux separation efficiency, high tolerance for solids and fluid treatments. Over 95 % solids rejection and greater than 80 % oil removal efficiency were obtained in all these tests. Process train (pre-treatment and membrane) performance was monitored by chemical analysis of permeate and models fitting experimental data for the process. From the results, hydrocarbon rejection was analyzed; total organic carbon rejection was 47.9 %, total carbon content averaged 37.3 % rejection and total inorganic carbon rejection was at 3.66 %. BTEX removal efficiency ranged from 0.98 % to 52.7 % with the progressive pretreatment methods of using cartridge filters. The nanofiltration membrane showed significant reduction in total dissolved solids and in both anionic and cationic species. The process train is seen to follow a sequence of treatment from cartridge and oil removal filter treatment to microfiltration treatment to ultrafiltration, followed by nanofiltration for the purpose of this research. Further research still needs to be done on to determine the kind of analytical test which will give real time feedback on effectiveness of filters. In summary, the process train developed by TAMU-GPRI possesses distinct advantages in treating oilfield produced brine using membrane technology. These advantages include high quality of permeate, reduced sludge and the possibility of total recycle water systems. The small space requirement, moderate capital costs and ease of operation associated with the use of the mobile unit membrane technology also makes it a very competitive alternative to conventional technologies.

Eboagwu, Uche

2011-08-01T23:59:59.000Z

270

Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation  

Science Conference Proceedings (OSTI)

During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

NONE

1994-09-01T23:59:59.000Z

271

An evaluation of subsea pump technologies that can be used to achieve dual gradient drilling  

E-Print Network (OSTI)

Dual Gradient Drilling is an exciting technology which promises to solve the current technical hurdles and economic risks of Deepwater Drilling. Several techniques for Dual Gradient Drilling have been proposed to the industry. One such method involves installing a subsea booster pump at the seafloor with the aim of returning the drilling fluid back to the rig. The pump will manage annular pressures in the wellbore as circulation rates and mud weights vary and will permit early detection of wellbore influxes. Any such pump chosen to achieve this objective will be subjected to very high differential pressures and will be faced with the onerous task of lifting very abrasive and viscous mud slurries from the sea floor back to the drilling rig. This distance in deep water may be well within the range of about 4, 000 – 12,000 feet depending on the operating water depth of the rig. Several pump technologies available to the industry were examined. Piston pumps are very efficient and can withstand the high differential pressures encountered in the Mudlift Drilling System. However, their drawbacks are their large size and weight and high initial capital cost and maintenance costs. Centrifugal pumps on the other hand are relatively smaller than piston and diaphragm pumps and are generally less expensive. Disc pumps, with their non-impingement design are able to handle solids and fluids with a high gas volume fraction but, like centrifugal pumps, are generally less efficient than reciprocating pumps. Diaphragm pumps are capable of maintaining a constant rate regardless of pressure fluctuations. They can handle very abrasive solids with limited wear on the pump. They also excel at handling very viscous fluids and they can be modified to handle up to 95% gas volume fraction. Like piston pumps, they have very high efficiencies. The potential of each of these pump technologies to meet the requirements for the Mudlift Drilling System was examined in this thesis. The benefits and drawbacks of each of these pump technologies were highlighted and modifications to meet the demands of the mudlift system evaluated.

Oluwadairo, Tolulope

2007-12-01T23:59:59.000Z

272

Evaluating trade-offs between sustainability, performance, and cost of green machining technologies  

E-Print Network (OSTI)

USA Institute for Production Science, Karlsruhe Institute of Technology, Karlsruhe, Germany Abstract The growing demand

Helu, Moneer

2012-01-01T23:59:59.000Z

273

Non-Intrusive Load Monitoring (NILM)Technologies for End-Use Load Disaggregation: Laboratory Evaluation I  

Science Conference Proceedings (OSTI)

This report presents the results of a laboratory evaluation to assess the cost versus accuracy performance of residential non-intrusive load monitoring (NILM) technology. NILM is an evolving technology that can be deployed for utility and customer applications, such as end-use load disaggregation, energy audits, real-time customer information and appliance or load diagnostics. Commercial NILM products for utility and customer applications continue to emerge, although most products available today ...

2013-05-22T23:59:59.000Z

274

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

275

NATO/CCMS Pilot Study Evaluation of Demonstrated and Emerging Technologies for the Treatment and Clean Up  

E-Print Network (OSTI)

This document reports on the second meeting of the Phase III Pilot Study on the Evaluation of Demonstrated and Emerging Technologies for the Treatment and Clean Up of Contaminated Land and Groundwater. The United States is the lead country for the Pilot Study, and Germany and The Netherlands are the Co-Pilot countries. The first phase was successfully concluded in 1991, and the results were published in three volumes. The second phase, which expanded to include newly emerging technologies, was concluded in 1997; final reports documenting 52 completed projects and the participation of 14 countries were published in June 1998. Through these pilot studies, critical technical information was made available to participating countries and the world community. The Phase III study focuses on the technologies for treating contaminated land and groundwater. This Phase is addressing issues of sustainability, environmental merit, and cost-effectiveness, in addition to continued emphasis on emerging remediation technologies. The objectives of the study are to critically evaluate technologies, promote the appropriate use of technologies, use information technology systems to disseminate the products, and to foster innovative thinking in the area of contaminated land. The Phase III Mission Statement is provided at the end of this report

Annual Report Number; Groundwater (phase Iii; Of Contaminated L

2000-01-01T23:59:59.000Z

276

An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory  

SciTech Connect

Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

1989-12-01T23:59:59.000Z

277

TECHNOLOGY EVALUATION FOR WATERBORNE MERCURY REMOVAL AT THE Y12 NATIONAL SECURITY COMPLEX  

SciTech Connect

The Hg-contaminated processing water produced at Y-12 facility is discharged through the storm drain system, merged at Outfall 200, and then discharged to EFPC. Most of the baseflow mercury at Outfall 200 arises from a small number of short sections of storm drain. This report discusses the waterborne mercury treatment technologies to decrease mercury loading to the surface water of EFPC at Y-12 NSC. We reviewed current available waterborne Hg treatment technologies based on the specific conditions of Y-12 and identified two possible options: SnCl2 reduction coupled with air stripping (SnCl2/air stripping) and sorption. The ORNL 2008 and 2009 field studies suggested that SnCl2/air stripping has the capability to remove waterborne mercury with efficiency higher than 90% at Outfall 200. To achieve this goal, dechlorination (i.e., removing residual chlorine from water) using dechlorinating agents such as thiosulfate has to be performed before the reduction. It is unclear whether or not SnCl2/air stripping can reduce the mercury concentration from ~1000 ng/L to 51 ng/L at a full-scale operation. Therefore, a pilot test is a logical step before a full-scale design to answer questions such as Hg removal efficiency, selection of dechlorinating agents, and so on. The major advantages of the SnCl2/air stripping system are: (1) expected low cost at high flow (e.g., the flow at Outfall 200); and (2) production of minimum secondary waste. However, there are many environmental uncertainties associated with this technology by introducing tin to EFPC ecosystem, for example tin methylation causing abiotic Hg methylation, which should be addressed before a full-scale implementation. Mercury adsorption by granular activated carbon (GAC) is a proven technology for treating Hg at Y-12. The ONRL 2010 lab sorption studies suggest that thiol-based resins hold the promise to combine with GAC to form a more cost-effective treatment system. To achieve a treatment goal of 51 ng/L at Outfall 200 (flow rate: 1300 gpm), using a single GAC system will request very large reaction vessels and cost much more than a SnCl2/air stripping system (assuming it can achieve the 51 ng/L goal). However, the treatment cost depends on the treatment goal. If the treatment goal is 200 ng/L, the cost of GAC system will be significantly reduced while the cost of SnCl2/air stripping will remain the same. In addition, a GAC coupled with thiol-based resin system may further reduce the cost. Treating the Hg-contaminated water at source area with low flow rate (e.g., 40 gpm) may be another option to reduce the treatment cost. The advantages of the sorption technology are that it has proven treatment efficiency, reliability, and no environmental uncertainties. The disadvantages include that it produces large amount of secondary wastes. Based on the information evaluated in this report, we recommend that a pilot-scale test for SnCl2/air stripping process at Outfall 200 should be carried out before a full-scale implementation to address all the engineering and environmental risk questions. We also recommend continuing the sorbent lab studies at ORNL to optimize a sorption system that may be efficient and cost-effective enough for a full-scale implementation.

He, Feng [ORNL; Liang, Liyuan [ORNL; Miller, Carrie L [ORNL

2011-01-01T23:59:59.000Z

278

Cermet Filters To Reduce Diesel Engine Emissions  

DOE Green Energy (OSTI)

Pollution from diesel engines is a significant part of our nation's air-quality problem. Even under the more stringent standards for heavy-duty engines set to take effect in 2004, these engines will continue to emit large amounts of nitrogen oxides and particulate matter, both of which affect public health. To address this problem, the Idaho National Engineering and Environmental Laboratory (INEEL) invented a self-cleaning, high temperature, cermet filter that reduces heavy-duty diesel engine emissions. The main advantage of the INEEL cermet filter, compared to current technology, is its ability to destroy carbon particles and NOx in diesel engine exhaust. As a result, this technology is expected to improve our nation's environmental quality by meeting the need for heavy-duty diesel engine emissions control. This paper describes the cermet filter technology and the initial research and development effort.Diesel engines currently emit soot and NOx that pollute our air. It is expected that the U.S. Environmental Protection Agency (EPA) will begin tightening the regulatory requirements to control these emissions. The INEEL's self-cleaning, high temperature cermet filter provides a technology to clean heavy-duty diesel engine emissions. Under high engine exhaust temperatures, the cermet filter simultaneously removes carbon particles and NOx from the exhaust gas. The cermet filter is made from inexpensive starting materials, via net shape bulk forming and a single-step combustion synthesis process, and can be brazed to existing structures. It is self-cleaning, lightweight, mechanically strong, thermal shock resistant, and has a high melting temperature, high heat capacity, and controllable thermal expansion coefficient. The filter's porosity is controlled to provide high removal efficiency for carbon particulate. It can be made catalytic to oxidize CO, H2, and hydrocarbons, and reduce NOx. When activated by engine exhaust, the filter produces NH3 and light hydrocarbon gases that can effectively destroy the NOx in the exhaust. The following sections describe cermet filter technology and properties of the INEEL filter.

Kong, Peter

2001-08-05T23:59:59.000Z

279

Nonlinear image filtering within IDP++  

Science Conference Proceedings (OSTI)

IDP++, image and data processing in C++, is a set of a signal processing libraries written in C++. It is a multi-dimension (up to four dimensions), multi-data type (implemented through templates) signal processing extension to C++. IDP++ takes advantage of the object-oriented compiler technology to provide ``information hiding.`` Users need only know C, not C++. Signals or data sets are treated like any other variable with a defined set of operators and functions. We here some examples of the nonlinear filter library within IDP++. Specifically, the results of MIN, MAX median, {alpha}-trimmed mean, and edge-trimmed mean filters as applied to a real aperture radar (RR) and synthetic aperture radar (SAR) data set.

Lehman, S.K.; Wieting, M.G.; Brase, J.M.

1995-02-09T23:59:59.000Z

280

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network (OSTI)

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Evaluation of flow battery technology : an assessment of technical and economic feasibility  

E-Print Network (OSTI)

Energy storage has been a topic of recent political discussions. There is interest in utilizing energy storage technologies to improve the emissions and "green" the environment. Many of the energy storage technologies have ...

Larsson, Annika (Annika S.)

2009-01-01T23:59:59.000Z

282

An Evaluation of Fusion Energy R&D Gaps Using Technology Readiness Levels  

Science Conference Proceedings (OSTI)

Power Plants, Demo, and Next Steps / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

M. S. Tillack et al.

283

Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage  

Science Conference Proceedings (OSTI)

This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

Tuffner, Francis K.; Bonebrake, Christopher A.

2012-02-14T23:59:59.000Z

284

Pilot-Scale and Full-Scale Evaluation of Treatment Technologies for the Removal of Mercury and Selenium in Flue Gas Desulphurization Water  

Science Conference Proceedings (OSTI)

This report presents an overall evaluation of the various advanced treatment technologies that the Electric Power Research Institute (EPRI) has tested for removal of mercury and selenium from flue gas desulfurization (FGD) water. EPRI conducted a literature survey followed by a preliminary laboratory-scale evaluation to screen promising technologies. For the technologies that were selected based on the success of laboratory-scale testing, EPRI worked with treatment vendors to further evaluate these techn...

2010-05-11T23:59:59.000Z

285

Physical gas stream cleanup: Technology status report  

SciTech Connect

This report is a summary of the status of particulate control technologies for use at high temperatures and high pressures. The technologies are being developed under the Physical Gas Stream Cleanup Program that is administered by the US Department of Energy, Morgantown Energy Technology Center. The intended uses of the particulate control technologies are to protect components in advanced coal systems, such as integrated gasification combined cycles, pressurized fluidized-bed combustion combined cycles, gasification molten carbonate fuel cells, and direct coal-fueled turbines. The use of particulate control technologies for these advanced energy conversion systems requires separation and collection of particles at temperatures in excess of 1000/sup 0/F and at pressures in excess of 7 atmospheres. These temperature and pressure regimes represent a drastic departure from those of conventional technologies. The Physical Gas Stream Cleanup Program seeks to establish a technical and economic data base that will demonstrate the feasibility of high-temperature, high-pressure particulate control. Particulate control concepts and their corresponding research and development projects are described in this report. These projects include subpilot-scale tests of an electrostatic precipitator, a ceramic cross-flow filter, and a screenless granular-bed filter on a 30-inch diameter pressurized fluidized-bed combustor. Bench-scale tests will also be conducted using a ceramic cross-flow filter, a ceramic bag filter, and an electrostatic precipitator on a 6-inch diameter fluidized-bed gasifier. Additional research involves laboratory evaluation of acoustic agglomeration, turbulence characterization and suppression in cyclones and characterization of ceramic fabrics for bag filters. Each project and significant accomplishments in FY 85 are described. 14 refs., 25 figs., 5 tabs.

1986-04-01T23:59:59.000Z

286

FY2005 - Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced vehicle AdvAnced vehicle Technology AnAlysis And evAluATion AcTiviTies Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m Acknowledgement We would like to express our sincere appreciation to QSS Group, Inc., Oak Ridge National Laboratory, and Argonne National Laboratory for their technical and artistic contributions in preparing and publishing this report. In addition, we would like to thank all the participants for their contributions to the pro- grams and all the authors who prepared the project abstracts that comprise this report. This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any

287

The evaluation of waterfrac technology in low-permeability gas sands in the East Texas basin  

E-Print Network (OSTI)

The petroleum engineering literature clearly shows that large proppant volumes and concentrations are required to effectively stimulate low-permeability gas sands. To pump large proppant concentrations, one must use a viscous fluid. However, many operators believe that low-viscosity, low-proppant concentration fracture stimulation treatments known as ??waterfracs?? produce comparable stimulation results in low-permeability gas sands and are preferred because they are less expensive than gelled fracture treatments. This study evaluates fracture stimulation technology in tight gas sands by using case histories found in the petroleum engineering literature and by using a comparison of the performance of wells stimulated with different treatment sizes in the Cotton Valley sands of the East Texas basin. This study shows that large proppant volumes and viscous fluids are necessary to optimally stimulate tight gas sand reservoirs. When large proppant volumes and viscous fluids are not successful in stimulating tight sands, it is typically because the fracture fluids have not been optimal for the reservoir conditions. This study shows that waterfracs do produce comparable results to conventional large treatments in the Cotton Valley sands of the East Texas basin, but we believe it is because the conventional treatments have not been optimized. This is most likely because the fluids used in conventional treatments are not appropriate or have not been used appropriately for Cotton Valley conditions.

Tschirhart, Nicholas Ray

2005-08-01T23:59:59.000Z

288

Contactor/filter improvements  

DOE Patents (OSTI)

A contactor/filter arrangement for removing particulate contaminants from a gaseous stream is described. The filter includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. A cover screen isolates the filter element from contact with the moving granular bed. In one embodiment, the granular material is comprised of porous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses. 6 figs.

Stelman, D.

1988-06-30T23:59:59.000Z

289

INEEL HEPA Filter Leach System: A Mixed Waste Solution  

SciTech Connect

Calciner operations and the fuel dissolution process at the Idaho National Engineering and Environmental Laboratory have generated many mixed waste high-efficiency particulate air (HEPA) filters. The HEPA Filter Leach System located at the Idaho Nuclear Technology and Engineering Center lowers radiation contamination levels and reduces cadmium, chromium, and mercury concentrations on spent HEPA filter media to below disposal limits set by the Resource Conservation and Recovery Act (RCRA). The treated HEPA filters are disposed as low-level radioactive waste. The technical basis for the existing system was established and optimized in initial studies using simulants in 1992. The treatment concept was validated for EPA approval in 1994 by leaching six New Waste Calcining Facility spent HEPA filters. Post-leach filter media sampling results for all six filters showed that both hazardous and radiological constituent levels were reduced so the filters could be disposed of as low-level radioactive waste. Since the validation tests the HEPA Filter Leach System has processed 78 filters in 1997 and 1998. The Idaho National Engineering and Environmental Laboratory HEPA Filter Leach System is the only mixed waste HEPA treatment system in the DOE complex. This process is of interest to many of the other DOE facilities and commercial companies that have generated mixed waste HEPA filters but currently do not have a treatment option available.

Argyle, Mark Don; Demmer, Ricky Lynn; Archibald, Kip Ernest; Brewer, Ken Neal; Pierson, Kenneth Alan; Shackelford, Kimberlee Rene; Kline, Kelli Suzanne

1999-03-01T23:59:59.000Z

290

INEEL HEPA Filter Leach System: A Mixed Waste Solution  

SciTech Connect

Calciner operations and the fuel dissolution process at the Idaho National Engineering and Environmental Laboratory have generated many mixed waste high-efficiency particulate air (HEPA)filters. The HEPA Filter Leach System located at the Idaho Nuclear Technology and Engineering Center lowers radiation contamination levels and reduces cadmium, chromium, and mercury concentrations on spent HEPA filter media to below disposal limits set by the Resource Conservation and Recovery Act (RCRA). The treated HEPA filters are disposed as low-level radioactive waste. The technical basis for the existing system was established and optimized in initial studies using simulants in 1992. The treatment concept was validated for EPA approval in 1994 by leaching six New Waste Calcining Facility spent HEPA filters. Post-leach filter media sampling results for all six filters showed that both hazardous and radiological constituent levels were reduced so the filters could be disposed of as low-level radioactive waste. Since the validation tests the HEPA Filter Leach System has processed 78 filters in 1997 and 1998. The Idaho National Engineering and Environmental Laboratory HEPA Filter Leach System is the only mixed waste HEPA treatment system in the DOE complex. This process is of interest to many of the other DOE facilities and commercial companies that have generated mixed waste HEPA filters but currently do not have a treatment option available.

K. Archibald; K. Brewer; K. Kline; K. Pierson; K. Shackelford; M. Argyle; R. Demmer

1999-02-01T23:59:59.000Z

291

Fracture behavior of advanced ceramic hot gas filters: Final report  

SciTech Connect

This report presents the results of mechanical/microstructural evaluation, thermal shock/fatigue testing, and stress analyses of advanced hot-gas filters obtained from different manufacturers. These filters were fabricated from both monolithic ceramics and composites. The composite filters, made of both oxide and nonoxide materials, were in both as-fabricated and exposed conditions, whereas the monolithic filters were made only of nonoxide materials. Mechanical property measurement of composite filters included diametral compression testing with O-ring specimens and burst-testing of short filter segments with rubber plugs. In-situ strength of fibers in the composite filters was evaluated by microscopic technique. Thermal shock/fatigue resistance was estimated by measuring the strengths of filter specimens before and after thermal cycling from an air environment at elevated temperatures to a room temperature oil bath. Filter performance during mechanical and thermal shock/fatigue loadings was correlated with microstructural observations. Micromechanical models were developed to derive properties of composite filter constituents on the basis of measured mechanical properties of the filters. Subsequently, these properties were used to analytically predict the performance of composite filters during thermal shock loading.

Singh, J.P.; Majumdar, S.; Sutaria, M.; Bielke, W. [Argonne National Lab., IL (United States). Energy Technology Div.

1997-03-01T23:59:59.000Z

292

Advances in Filter Miniaturization and Design/Analysis of RF MEMS Tunable Filters  

E-Print Network (OSTI)

The main purpose of this dissertation was to address key issues in the design and analysis of RF/microwave filters for wireless applications. Since RF/microwave filters are one of the bulkiest parts of communication systems, their miniaturization is one of the most important technological challenges for the development of compact transceivers. In this work, novel miniaturization techniques were investigated for single-band, dual-band, ultra-wideband and tunable bandpass filters. In single-band filters, the use of cross-shaped fractals in half-mode substrate-integrated-waveguide bandpass filters resulted in a 37 percent size reduction. A compact bandpass filter that occupies an area of 0.315 mm2 is implemented in 90-nm CMOS technology for 20 GHz applications. For dual-band filters, using half-mode substrate-integrated-waveguides resulted in a filter that is six times smaller than its full-mode counterpart. For ultra-wideband filters, using slow-wave capacitively-loaded coplanar-waveguides resulted in a filter with improved stopband performance and frequency notch, while being 25 percent smaller in size. A major part of this work also dealt with the concept of 'hybrid' RF MEMS tunable filters where packaged, off-the-shelf RF MEMS switches were used to implement high-performance tunable filters using substrate-integrated-waveguide technology. These 'hybrid' filters are very easily fabricated compared to current state-of-the-art RF MEMS tunable filters because they do not require a clean-room facility. Both the full-mode and half-mode substrate-integrated waveguide tunable filters reported in this work have the best Q-factors (93 - 132 and 75 - 140, respectively) compared to any 'hybrid' RF MEMS tunable filter reported in current literature. Also, the half-mode substrate-integrated waveguide tunable filter is 2.5 times smaller than its full-mode counterpart while having similar performance. This dissertation also presented detailed analytical and simulation-based studies of nonlinear noise phenomena induced by Brownian motion in all-pole RF MEMS tunable filters. Two independent mathematical methods are proposed to calculate phase noise in RF MEMS tunable filters: (1) pole-perturbation approach, and (2) admittance-approach. These methods are compared to each other and to harmonic balance noise simulations using the CAD-model of the RF MEMS switch. To account for the switch nonlinearity in the mathematical methods, a nonlinear nodal analysis technique for tunable filters is also presented. In summary, it is shown that output signal-to-noise ratio degradation due to Brownian motion is maximum for low fractional bandwidth, high order and high quality factor RF MEMS tunable filters. Finally, a self-sustained microwave platform to detect the dielectric constant of organic liquids is presented in this dissertation. The main idea is to use a voltage- controlled negative-resistance oscillator whose frequency of oscillation varies according to the organic liquid under test. To make the system self-sustained, the oscillator is embedded in a frequency synthesizer system, which is then digitally interfaced to a computer for calculation of dielectric constant. Such a system has potential uses in a variety of applications in medicine, agriculture and pharmaceuticals.

Sekar, Vikram

2011-08-01T23:59:59.000Z

293

Linear phase compressive filter  

DOE Patents (OSTI)

A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

McEwan, Thomas E. (Livermore, CA)

1995-01-01T23:59:59.000Z

294

Filter holder and gasket assembly for candle or tube filters  

DOE Patents (OSTI)

A filter holder and gasket assembly for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut.

Lippert, Thomas Edwin (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Bruck, Gerald Joseph (Murrysville, PA); Smeltzer, Eugene E. (Export, PA)

1999-03-02T23:59:59.000Z

295

Evaluation of Solid Sorbents as a Retrofit Technology for CO2...  

NLE Websites -- All DOE Office Websites (Extended Search)

for CO 2 Capture Background The mission of the U.S. Department of EnergyNational Energy Technology Laboratory (DOENETL) Existing Plants, Emissions & Capture (EPEC)...

296

DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation (Presentation)  

DOE Green Energy (OSTI)

Presentation prepared for the May 12, 2008 Alternative Fuels and Vehicles Conference that describes DOE's current hydrogen fuel cell technology validation projects.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-05-12T23:59:59.000Z

297

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect

This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of coal firing at temperatures of 760 °C including a severe thermal upset that resulted in the failure of several monolithic oxide elements. No failures of any kind have been reported for the MTI CFCC elements in either of these test campaigns. Additional testing is planned at the M. W. Kellogg unit and Foster Wheeler unit at the PSDF over the next year in order to qualify for consideration for the Lakeland PCFB. Process scale-up issues have been identified and manufacturing plans are being evaluated to meet the needs of future demand.

RICHARD A. WAGNER

1998-09-04T23:59:59.000Z

298

Electrostatic precipitators vs. fabric filters: A symposium and debate  

SciTech Connect

Nine papers were presented at the Electrostatic Precipitators vs. Fabric Filters: A Symposium and Debate held March 22, 1994 at the Sheraton Crystal City Hotel in Arlington, Virginia. The Symposium was intended to take a frank look at the comparative advantages of electrostatic precipitators and fabric filters. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

1994-12-31T23:59:59.000Z

299

APFBC Repowering Evaluations at the Sheldon and Greenidge Steam Stations Show the Flexibility of APFBC Technology in Different Applications  

E-Print Network (OSTI)

Advanced circulating pressurized fluidized-bed combustion combined cycle (APFBC) technology is a coal-fired technology now under test in large-scale demonstrations. As these tests progress, coalfired APFBC should become ready for commercial repowering installations around year 2005, making this an appropriate time to begin investigating commercial feasibility. This paper describes a conceptual design evaluation effort that assessed the merits of APFBC repowering at two different coal-fired steam generating stations. The paper shows that APFBC combined cycles have a number of features that make it a more flexible plant repowering option, since unlike natural gas repowering, APFBC combined cycles easily match existing superheat and reheat steam conditions.

Kevin A. Largis; Richard E. Weinstein; Douglas J. Roll; Power Gen International; Robert W. Travers

1999-01-01T23:59:59.000Z

300

Architectural implications of spatial thermal filtering  

Science Conference Proceedings (OSTI)

Process technology scaling, lagging supply voltage scaling, and the resulting exponential increase in power density, have made temperature a first-class design constraint in today's microprocessors. Prior work has shown that the silicon substrate acts ... Keywords: Aspect ratio, Granularity, Many-core, Spatial filtering, Temperature, Thermal management

Karthik Sankaranarayanan; Brett H. Meyer; Wei Huang; Robert Ribando; Hossein Haj-Hariri; Mircea R. Stan; Kevin Skadron

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sub-micron filter  

DOE Patents (OSTI)

Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

Tepper, Frederick (Sanford, FL); Kaledin, Leonid (Port Orange, FL)

2009-10-13T23:59:59.000Z

302

Sintered composite filter  

DOE Patents (OSTI)

A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

Bergman, W.

1986-05-02T23:59:59.000Z

303

Performance Evaluation of Energy-Efficient Lighting and Office Technologies in New York City  

Science Conference Proceedings (OSTI)

Lighting and office equipment are significant electricity end uses in commercial office buildings. Recent technology developments offer significant improvements in lighting quality along with potentially substantial reductions in lighting and office equipment electricity use. This project demonstrated successful application of energy-efficient lighting and office technologies in an office building in New York City.

1997-09-15T23:59:59.000Z

304

THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same technology have proven to be difficult. Through the RKC, DOE-EM funded an evaluation of adaptable commercial technologies that could assist with the removal of the tank heels. This paper will discuss the efforts and results of developing the RKC to improve communications and discussion of tank waste retrieval through a series of meetings designed to identify technical gaps in retrieval technologies at the DOE Hanford and Savannah River Sites. This paper will also describe the results of an evaluation of commercially available technologies for low level mixing as they might apply to HLW tank heel retrievals.

Fellinger, A.

2009-12-08T23:59:59.000Z

305

In Situ Remediation Integrated Program: Evaluation and assessment of containment technology  

SciTech Connect

Containment technology refers to a broad range of methods that are used to contain waste or contaminated groundwater and to keep uncontaminated water from entering a waste site. The U.S. Department of Energy`s (DOE) Office of Technology Development has instituted the In Situ Remediation Integrated Program (ISRIP) to advance the state-of-the-art of innovative technologies that contain or treat, in situ, contaminated media such as soil and groundwater, to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. The information provided here is an overview of the state-of-the-art of containment technology and includes a discussion of ongoing development projects; identifies the technical gaps; discusses the priorities for resolution of the technical gaps; and identifies the site parameters affecting the application of a specific containment method. The containment technology described in this document cover surface caps; vertical barriers such as slurry walls, grout curtains, sheet pilings, frozen soil barriers, and vitrified barriers; horizontal barriers; sorbent barriers; and gravel layers/curtains. Within DOE, containment technology could be used to prevent water infiltration into buried waste; to provide for long-term containment of pits, trenches, and buried waste sites; for the interim containment of leaking underground storage tanks and piping; for the removal of contaminants from groundwater to prevent contamination from migrating off-site; and as an interim measure to prevent the further migration of contamination during the application of an in situ treatment technology such as soil flushing. The ultimate goal is the implementation of containment technology at DOE sites as a cost-effective, efficient, and safe choice for environmental remediation and restoration activities.

Gerber, M.A.; Fayer, M.J.

1994-06-01T23:59:59.000Z

306

Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation  

Science Conference Proceedings (OSTI)

This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

Singh, Ruchi; Vyakaranam, Bharat GNVSR

2012-02-14T23:59:59.000Z

307

Effects of diesel particle filter retrofits and accelerated fleet turnover  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of diesel particle filter retrofits and accelerated fleet turnover Effects of diesel particle filter retrofits and accelerated fleet turnover on drayage truck emissions at the port of Oakland Title Effects of diesel particle filter retrofits and accelerated fleet turnover on drayage truck emissions at the port of Oakland Publication Type Journal Article Year of Publication 2011 Authors Dallmann, Timothy R., Robert A. Harley, and Thomas W. Kirchstetter Journal Environmental Science & Technology Volume 45 Issue 24 Pagination 10773-10779 Abstract Heavy-duty diesel drayage trucks have a disproportionate impact on the air quality of communities surrounding major freight-handling facilities. In an attempt to mitigate this impact, the state of California has mandated new emission control requirements for drayage trucks accessing ports and rail yards in the state beginning in 2010. This control rule prompted an accelerated diesel particle filter (DPF) retrofit and truck replacement program at the Port of Oakland. The impact of this program was evaluated by measuring emission factor distributions for diesel trucks operating at the Port of Oakland prior to and following the implementation of the emission control rule. Emission factors for black carbon (BC) and oxides of nitrogen (NOx) were quantified in terms of grams of pollutant emitted per kilogram of fuel burned using a carbon balance method. Concentrations of these species along with carbon dioxide were measured in the exhaust plumes of individual diesel trucks as they drove by en route to the Port. A comparison of emissions measured before and after the implementation of the truck retrofit/replacement rule shows a 54 ± 11% reduction in the fleet-average BC emission factor, accompanied by a shift to a more highly skewed emission factor distribution. Although only particulate matter mass reductions were required in the first year of the program, a significant reduction in the fleet-average NOx emission factor (41 ± 5%) was observed, most likely due to the replacement of older trucks with new ones.

308

Evaluation and Screening of Remedial Technologies for Uranium at the 300-FF-5 Operable Unit, Hanford Site, Washington  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) is presently conducting a re-evaluation of remedies addressing persistent dissolved uranium concentrations in the upper aquifer under the 300 Area of the Hanford Site in southeastern Washington State. This work is being conducted as a Phase III feasibility study for the 300-FF-5 Operable Unit on behalf of the U.S. Department of Energy. As part of the feasibility study process, a comprehensive inventory of candidate remedial technologies was conducted by PNNL. This report documents the identification and screening of candidate technologies. The screening evaluation was conducted in accordance with guidance and processes specified by U.S. Environmental Protection Agency regulations associated with implementation of the Comprehensive Environmental Response, Compensation, and Liability Act process.

Nimmons, Michael J.

2007-08-01T23:59:59.000Z

309

Ceramic fiber reinforced filter  

DOE Patents (OSTI)

A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

Stinton, David P. (Knoxville, TN); McLaughlin, Jerry C. (Oak Ridge, TN); Lowden, Richard A. (Powell, TN)

1991-01-01T23:59:59.000Z

310

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

HAAS CC; KOVACH JL; KELLY SE; TURNER DA

2010-06-24T23:59:59.000Z

311

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

KELLY SE; HAASS CC; KOVACH JL; TURNER DA

2010-06-03T23:59:59.000Z

312

Methodology for technology evaluation under uncertainty and its application in advanced coal gasification processes  

E-Print Network (OSTI)

Integrated gasification combined cycle (IGCC) technology has attracted interest as a cleaner alternative to conventional coal-fired power generation processes. While a number of pilot projects have been launched to ...

Gong, Bo, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

313

Assessment and Evaluation of Next Generation High-Voltage DC Technologies—Phase 2  

Science Conference Proceedings (OSTI)

As an established technology for bulk power transmission, high-voltage direct current (HVDC) power transmission is being used worldwide, and more than 100 schemes are operating at present. Advances in voltage sourced converter (VSC) technologies and power electronic devices with use of insulated-gate bipolar transistors (IGBTs) will provide improved system performance and reliability. Also, the present highest operating voltage is +/- 800 kV as China and India are building +/- 800-kV lines. Anticipating ...

2009-12-17T23:59:59.000Z

314

Nondestructive Evaluation: Remote Field Technology Assessment for Piping Inspection Including Buried and Limited Access Components  

Science Conference Proceedings (OSTI)

This document provides results for the following projects: 1. Remote Field Technology Assessment for Piping Inspection 2. Inspection Techniques and NDE for Buried and Limited-Access Components 3. Guideline Development for Above-Ground, Below-Ground, and Limited-Access Storage Vessel Inspection These projects provided the Electric Power Research Institute (EPRI) the opportunity to engage its membership and several vendors in identifying remote field technology for piping inspection and advanced NDE inspec...

2010-11-19T23:59:59.000Z

315

EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT  

SciTech Connect

The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product, which is one of the objectives of this current study, is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. FBSR testing of a Hanford LAW simulant and a WTP-SW simulant at the pilot scale was performed by THOR Treatment Technologies, LLC at Hazen Research Inc. in April/May 2008. The Hanford LAW simulant was the Rassat 68 tank blend and the target concentrations for the LAW was increased by a factor of 10 for Sb, As, Ag, Cd, and Tl; 100 for Ba and Re (Tc surrogate); 1,000 for I; and 254,902 for Cs based on discussions with the DOE field office and the environmental regulators and an evaluation of the Hanford Tank Waste Envelopes A, B, and C. It was determined through the evaluation of the actual tank waste metals concentrations that some metal levels were not sufficient to achieve reliable detection in the off-gas sampling. Therefore, the identified metals concentrations were increased in the Rassat simulant processed by TTT at HRI to ensure detection and enable calculation of system removal efficiencies, product retention efficiencies, and mass balance closure without regard to potential results of those determinations or impacts on product durability response such as Toxicity Characteristic Leach Procedure (TCLP). A WTP-SW simulant based on melter off-gas analyses from Vitreous State Laboratory (VSL) was also tested at HRI in the 15-inch diameter Engineering Scale Test Demonstration (ESTD) dual reformer at HRI in 2008. The target concentrations for the Resource Conservation and Recovery Act (RCRA) metals were increased by 16X for Se, 29X for Tl, 42X for Ba, 48X for Sb, by 100X for Pb and Ni, 1000X for Ag, and 1297X for Cd to ensure detection by the an

Crawford, C.; Jantzen, C.

2012-02-02T23:59:59.000Z

316

Applications of moving granular-bed filters to advanced systems  

SciTech Connect

The contract is arranged as a base contract with three options. The objective of the base contract is to develop conceptual design(s) of moving granular bed filter and ceramic candle filter technology for control of particles from integrated gasification combined cycle (IGCC) systems, pressurized fluidized-bed combustors (PFBC), and direct coal fueled turbine (DCFT) environments. The conceptual design(s) of these filter technologies are compared, primarily from an economic perspective. The granular bed filter was developed through low pressure, high temperature (1600{degree}F) testing in the late 1970`s and early 1980`s. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a two advanced power generating plants were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the 450 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, KRW air blown gasifier. A cross-flow filter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting costs were compared.

Wilson, K.W.; Haas, J.C.; Eshelman, M.B.

1993-09-01T23:59:59.000Z

317

METAL FILTERS FOR PRESSURIZED FLUID BED COMBUSTION (PFBC) APPLICATIONS  

SciTech Connect

Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at the Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. As part of the demonstration effort, SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field-tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous commercial metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion (PFBC) conditions.

M.A. Alvin

2004-01-02T23:59:59.000Z

318

Microhydropower Conveyance and Filters  

Energy.gov (U.S. Department of Energy (DOE))

Before water enters the turbine or waterwheel of a microhydropower system, it is funneled through a series of components that control its flow and filter out debris. These components include the...

319

Framework for Evaluating the Total Value Proposition of Clean Energy Technologies  

SciTech Connect

Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

Pater, J. E.

2006-02-01T23:59:59.000Z

320

N Reactor filter system fission-product retention assessment  

Science Conference Proceedings (OSTI)

Data for the N Reactor High-Efficiency Particulate Air (HEPA) filter and charcoal filter systems have been evaluated to determine appropriate filter efficiencies for elemental iodine, methyl iodide, hydrogen iodide, and particulates. The data supports the following filter efficiencies: particulates - 99.95%, elemental iodine - 99%, methyl iodide - 70%, and hydrogen iodide - 99%. The HEPA filter and charcoal filter system, loading capacities have been determined for both radionuclide and non-radioactive aerosols. The results demonstrated that the capacity of the N Reactor confinement filtration system is more than adequate to retain both radionuclide and non-radioactive aerosols postulated to be released during accident situations without overloading. In addition, potential filter failure due to unacceptable heat loads from collected radionuclides was evaluated. The results show that with an acceptable air flow through the filter system (greater than 850 ft/sup 3//min), the heat load on the filters from deposited radionuclides will not lead to filter failure. 30 refs., 8 figs., 13 tabs.

Muhlstein, L.D.; Jeppson, D.W.; McCormack, J.D.

1988-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Process engineering and economic evaluations of diaphragm and membrane chlorine cell technologies. Final report  

DOE Green Energy (OSTI)

The chlor-alkali manufacturing technologies of (1), diaphragm cells (2), current technology membrane cells (3), catalytic cathode membrane cells (4), oxygen-cathode membrane cells and to a lesser extent several other related emerging processes are studied. Comparisons have been made on the two bases of (1) conventional industrial economics, and (2) energy consumption. The current diaphragm cell may have a small economic advantage over the other technologies at the plant size of 544 metric T/D (600 T/D). The three membrane cells all consume less energy, with the oxygen-cathode cell being the lowest. The oxygen-cathode cell appears promising as a low energy chlor-alkali cell where there is no chemical market for hydrogen. Federal funding of the oxygen-cathode cell has been beneficial to the development of the technology, to electrochemical cell research, and may help maintain the US's position in the international chlor-alkali technology marketplace. Tax law changes inducing the installation of additional cells in existing plants would produce the quickest reduction in power consumption by the chlor-alkali industry. Alternative technologies such as the solid polymer electrolyte cell, the coupling of diaphragm cells with fuel cells and the dynamic gel diaphragm have a strong potential for reducing chloralkali industry power consumption. Adding up all the recent and expected improvements that have become cost-effective, the electrical energy required to produce a unit of chlorine by 1990 should be only 50% to 60% of that used in 1970. In the United States the majority of the market does not demand salt-free caustic. About 75% of the electrolytic caustic is produced in diaphragm cells and only a small part of that is purified. This study indicates that unless membrane cell costs are greatly reduced or a stronger demand develops for salt-free caustic, the diaphragm cells will remain competitive. (WHK)

Not Available

1980-12-01T23:59:59.000Z

322

Evaluation of UHT milk processed by direct steam injection and steam infusion technology.  

E-Print Network (OSTI)

??UHT direct steam injection and steam infusion are widely used; however there is no comparison of their impact on milk components. This study evaluates the… (more)

Malmgren, Bozena

2007-01-01T23:59:59.000Z

323

Evaluating Sustainability and Greening Methods: A Conceptual Model for Information Technology Management  

Science Conference Proceedings (OSTI)

Recently much has been written about sustainability and greening and the issue is likely to continue to resurface on the agendas of decision makers. This paper addresses one aspect of the topic: that of sustainability and greening through information ... Keywords: Capability Maturity Model, Green Maturity Assessment GMA, Greening, Information Technology, Sustainability

Olga Petkova, A.T. Jarmoszko, Marianne D'Onofrio, Joo Eng Lee-Partridge

2013-07-01T23:59:59.000Z

324

Using semantic technologies in digital libraries: a roadmap to quality evaluation  

Science Conference Proceedings (OSTI)

In digital libraries semantic techniques are often deployed to reduce the expensive manual overhead for indexing documents, maintaining metadata, or caching for future search. However, using such techniques may cause a decrease in a collection's quality ... Keywords: digital libraries, information quality, semantic technologies

Sascha Tönnies; Wolf-Tilo Balke

2009-09-01T23:59:59.000Z

325

Evaluation of In Situ Remedial Technologies for Sites Contaminated With Hydrocarbons  

Science Conference Proceedings (OSTI)

Utility managers are faced at times with decision making regarding remediation of sites contaminated with petroleum hydrocarbons. This report, which presents the results of a survey of the literature on established and emerging technologies for in situ remediation of petroleum hydrocarbons, is intended to support such decision making.

1998-04-20T23:59:59.000Z

326

1997 evaluation of tritium removal and mitigation technologies for Hanford Site wastewaters  

Science Conference Proceedings (OSTI)

This report contains results of a biennial assessment of tritium separation technology and tritium nitration techniques for control of tritium bearing wastewaters at the Hanford Site. Tritium in wastewaters at Hanford have resulted from plutonium production, fuel reprocessing, and waste handling operations since 1944. this assessment was conducted in response to the Hanford Federal Facility Agreement and Consent Order.

Jeppson, D.W.; Biyani, R.K.; Duncan, J.B.; Flyckt, D.L.; Mohondro, P.C.; Sinton, G.L.

1997-07-24T23:59:59.000Z

327

FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation  

SciTech Connect

The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.

1994-10-01T23:59:59.000Z

328

Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil  

Science Conference Proceedings (OSTI)

The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

1991-11-01T23:59:59.000Z

329

Filters for cathodic arc plasmas  

DOE Patents (OSTI)

Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA); Bilek, Marcela M. M. (Engadine, AU); Brown, Ian G. (Berkeley, CA)

2002-01-01T23:59:59.000Z

330

Remotely serviced filter and housing  

DOE Patents (OSTI)

A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station. 6 figs.

Ross, M.J.; Zaladonis, L.A.

1987-07-22T23:59:59.000Z

331

DEVELOPMENT OF METALLIC HOT GAS FILTERS  

SciTech Connect

Successful development of metallic filters with high temperature oxidation/corrosion resistance for fly ash capture is a key to enabling advanced coal combustion and power generation technologies. Compared to ceramic filters, metallic filters can offer increased resistance to impact and thermal fatigue, greatly improving filter reliability. A beneficial metallic filter structure, composed of a thin-wall (0.5mm) tube with uniform porosity (about 30%), is being developed using a unique spherical powder processing and partial sintering approach, combined with porous sheet rolling and resistance welding. Alloy choices based on modified superalloys, e.g., Ni-16Cr-4.5Al-3Fe (wt.%), are being tested in porous and bulk samples for oxide (typically alumina) scale stability in simulated oxidizing/sulfidizing atmospheres found in PFBC and IGCC systems at temperatures up to 850 C. Recent ''hanging o-ring'' exposure tests in actual combustion systems at a collaborating DOE site (EERC) have been initiated to study the combined corrosive effects from particulate deposits and hot exhaust gases. New studies are exploring the correlation between sintered microstructure, tensile strength, and permeability of porous sheet samples.

Anderson, I.E.; Gleeson, B.; Terpstra, R.L.

2003-04-23T23:59:59.000Z

332

Evaluation of Thermal Zero Liquid Discharge Treatment Technologies for Combined Cycle Gas Turbine Power Plants  

Science Conference Proceedings (OSTI)

A study was conducted to identify and update key details of zero liquid discharge (ZLD) water management systems currently operating at U.S. gas-fired combined cycle generating stations (CC). The study focused on not only the technologies applied, but also on the advantages and shortcomings of the various processes and summarized the lessons learned from the operating systems. Most ZLD's were found to employ one of four different types of water pretreatment process assemblies consisting of the following:...

2011-12-19T23:59:59.000Z

333

Welding and Repair Technology Center: Evaluation of Lokring Small Bore Fitting  

Science Conference Proceedings (OSTI)

A line of fittings for connecting small-diameter piping and tubing is manufactured by Lokring Technology, LLC. The fitting has a proprietary design known as elastic strain preload, which is an alternative to a welded joint. The primary markets for these fittings have been for marine, power, and process piping systems. Lokring products have also been installed in several non-safety-related applications at nuclear power plants. Because these fittings do not require welding, the reduction in ...

2013-10-29T23:59:59.000Z

334

To Evaluate Zero Emission Propulsion and Support Technology for Transit Buses  

DOE Green Energy (OSTI)

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California, in partnership with the San Mateo County Transit District in San Carlos, California. VTA has been operating three fuel cell transit buses in extra revenue service since February 28, 2005. This report provides descriptions of the equipment used, early experiences, and evaluation results from the operation of the buses and the supporting hydrogen infrastructure from March 2005 through July 2006.

Kevin Chandler; Leslie Eudy

2006-11-01T23:59:59.000Z

335

Program on Technology Innovation: Evaluation of Hydrophobic Nano Coating on Solar Photovoltaic Panels, Polaris Initiative Report  

Science Conference Proceedings (OSTI)

This project evaluated the effects of a hydrophobic nano coating on photovoltaic panels. Variables studied were hydrophobicity, changes in cleanliness of the surfaces, and changes in ice and snow accumulation.BackgroundThe nano coating evaluated was being marketed commercially as a vehicle windshield treatment that was meant to keep the windshield glass clean and repel water from the windshield. The treatment claimed to last for up to 1 year in automotive ...

2013-11-27T23:59:59.000Z

336

Moving granular-bed filter development program topical report  

SciTech Connect

The Westinghouse Science Technology Center has proposed a novel moving granular-bed filter concept, the Standleg Moving Granular-Bed Filter (S-MGBF) system, that overcomes the inherent deficiencies of the current state-of-the-art moving granular-bed filter technology. The S-MGBF system combines two unique features that make it highly effective for use in advanced coal-fueled power plants. First, the S-MGBF system applies pelletization technology to generate filter pellets from the power plant solid waste materials, and uses these pellets as a once-through'' filtering media to eliminate the need for costly, complex, and large filter media recycling equipment. This pelletizing step also generates a more environmentally acceptable solid waste product and provides the potential to incorporate gas-phase contaminant sorbents into the filtering media. Secondly, the S-MGBF system passes these pellets and the flyash laden power plant gas through a highly compact S-MGBF that uses cocurrent gas-pellet contacting in an arrangement that greatly simplifies and enhances the distribution of dirty gas to the moving bed and the disengagement of clean gas from the moving bed.

Newby, R.A.; Dilmore, W.J.; Fellers, A.W.; Gasparovic, A.C.; Kittle, W.F.; Lippert, T.E.; Smeltzer, E.E.; Yang, W.C.

1991-10-17T23:59:59.000Z

337

X-231B technology demonstration for in situ treatment of contaminated soil: Laboratory evaluation of chemical oxidation using hydrogen peroxide  

Science Conference Proceedings (OSTI)

Treatability studies were conducted as part of a comprehensive research project initiated to demonstrate as well as evaluate in situ treatment technologies for volatile organic compounds (VOCs) and radioactive substances in wet, slowly permeable soils. The site of interest for this project was the X-231B Oil Biodegradation unit at the Portsmouth Gaseous Diffusion Plant, a US Department of Energy (DOE) facility in southern Ohio. This report describes the treatability studies that investigated the feasibility of the application of low-strength hydrogen peroxide (H{sub 2}O{sub 2}) solutions to treat trichloroethylene (TCE)-contaminated soil.

Gates, D.D.; Siegrist, R.L.

1993-09-01T23:59:59.000Z

338

Automated Collaborative Filtering Applications for Online Recruitment Services  

E-Print Network (OSTI)

. Online recruitment services suffer from shortcomings due to traditional search techniques. Most users fail to construct queries that provide an adequate and accurate description of their (job) requirements, leading to imprecise search results. We investigate one potential solution that combines implicit profiling methods and automated collaborative filtering (ACF) techniques to build personalised query-less job recommendations. Two ACF strategies are implemented and evaluated in the JobFinder domain. 1 Introduction Online recruitment services have emerged as one of the most successful and popular information services on the Internet, providing job seekers with a comprehensive database of jobs and a dedicated search engine. For example, the award-winning Irish site, JobFinder (www.jobfinder.ie). However, like many similar Internet applications JobFinder suffers from shortcomings, due to its reliance on traditional database technology and the client-pull information access mode...

Rachael Rafter; Keith Bradley; Barry Smyth

2000-01-01T23:59:59.000Z

339

The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical technical barriers to  

E-Print Network (OSTI)

for use in hybrid vehicles as well as electric-only vehicles · Hardware-in-the-loop evaluation of advanced is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical and capacitor scaling, thermal management, capacity, and power fade · Using hybrid electric vehicles in fleets

Kemner, Ken

340

High Efficiency Particulate Air Filters  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency Particulate Air (HEPA) Filters High Efficiency Particulate Air (HEPA) Filters Home Standards DOE Workshops Nuclear Air Cleaning Conference Proceedings Qualified Filter List News Items Related Sites HEPA Related Lessons Learned Contact Us HSS Logo High Efficiency Particulate Air Filters The HEPA Filter web site provides a forum for informing and reporting department-wide activities related to filtration and ventilation issues with special reference to the High Efficiency Particulate Air (HEPA) Filters' use, inspection, and testing. This site contains essentials of DOE HEPA filter test program, procedures, requirements and quality assurance aspects applicable to HEPA filters used in DOE facilities. This site contains information about the DOE-accepted Filter Test Facility and its management, operation and quality assuranceprogram.

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Evaluation of the pollution abatement technologies available for treatment of wastewater from oil shale processing  

SciTech Connect

A review covers the conventional and in-situ oil shale processing technologies and their status of development; the sources and characteristics of the wastewaters from oil shale retorting operation, from leaching of spent shale, from cooling tower and boiler blowdowns, from oil refining operations, from saline aquifer, and from minor sources, such as from air pollution control equipment, runoff from dust control, and sanitary wastewaters; and wastewater treatment methods applicable for treating wastewater from oil shale processes including physical, chemical, biological, and tertiary treatment methods and specific processes for removing specific pollutants (e.g., phenols, cyanides, heavy metals) from wastewaters. 31 references.

Sung, R.D.; Prien, C.H.

1977-01-01T23:59:59.000Z

342

Program on Technology Innovation: Evaluation of Amine-Based, Post-Combustion CO2 Capture Plants  

Science Conference Proceedings (OSTI)

In response to concerns over global warming, technologies need to be developed that capture and store the CO2 released by fossil- fueled power plants. A study carried out in 2000 by Parsons and co-funded by the US-DOE and EPRI investigated the thermal and economic performance of supercritical pulverized coal (PC) combustion, E-Gas integrated gasification combined cycle (IGCC), and natural gas combined cycle power plants with and without CO2 removal. The general conclusion was that for power plants with C...

2005-11-21T23:59:59.000Z

343

Evaluation of emerging parallel optical link technology for high energy physics  

Science Conference Proceedings (OSTI)

Modern particle detectors utilize optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from industry advancements in transceiver technology. Supporting data transfers of up to 120 Gbps in each direction, optical engines permit assembly of the optical transceivers in close proximity to ASICs and FPGAs. Test results of some of these parallel components will be presented including the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.

Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.; /Fermilab

2012-01-01T23:59:59.000Z

344

Marine and Hydrokinetic Technology Database  

DOE Data Explorer (OSTI)

Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database is currently (2009) being updated to include ocean thermal energy technologies, companies, and projects.[Taken from http://www2.eere.energy.gov/windandhydro/hydrokinetic/

345

2011 NNSS Review of DAF-JCO Inoperable HEPA Filtered Vent. System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NNSS-2011-07-08 NNSS-2011-07-08 Site: Nevada National Security Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Review of DAF-JCO-11-01 for Inoperable HEPA-Filtered Ventilation System Dates of Activity : 06/06/2011 - 07/08/2011 Report Preparer: William Macon Activity Description/Purpose: As an operational awareness activity, the Office of Health, Safety and Security (HSS) site lead reviewed a recent Justification for Continued Operations (JCO) for the Inoperable High Efficiency Particulate Air (HEPA)-Filtered Ventilation System at the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS). DAF- JCO-11-01, Revision 2, was prepared by the contractor, National Security Technologies, LLC (NSTec), on May

346

Energy technologies evaluation for the EDD Los Angeles Building. Summary report  

SciTech Connect

This study evaluated the feasibility of potential energy efficiency measures (EEM`s) for the proposed EDD office building located at 5401 Crenshaw in Los Angeles, CA. The 26,748 ft{sup 2} single-story building is currently in the final design phase. Key building energy features include uninsulated exterior concrete block walls, R19 insulated roof, glazing on north and east orientations only, multiple air source rooftop packaged heat pumps, and electric resistance water heaters. For this project, DEG evaluated seven potential EEM`s from both performance and 30 year life cycle cost (LCC) perspectives.

NONE

1995-09-01T23:59:59.000Z

347

Spam filtering using Kolmogorov complexity analysis  

Science Conference Proceedings (OSTI)

One of the most irrelevant side effects of e-commerce technology is the development of spamming as an e-marketing technique. Spam e-mails (or unsolicited commercial e-mails) induce a burden for everybody having an electronic mailbox: detecting and ... Keywords: Kolmogorov complexity, anti-spam techniques, clustering, compression, e-marketing, information content, k-nearest neighbours, spam filtering, spamming, unsolicited e-mails

G. Richard; A. Doncescu

2008-05-01T23:59:59.000Z

348

Evaluation of the efficacy of polyphosphate remediation technology: Direct and indirect remediation of uranium under alkaline conditions  

Science Conference Proceedings (OSTI)

A field-scale technology demonstration has been conducted to optimize polyphosphate remediation technology for enhanced monitored natural attenuation of the uranium plume within the 300 Area aquifer at the Hanford Site, southeastern Washington State. The objective was to evaluate the efficacy of polyphosphate to treat uranium-contaminated groundwater in situ. Focused application of polyphosphate was conducted in a source or 'hot spot' area to reduce the inventory of available uranium contributing to the groundwater plume through direct precipitation of uranyl-phosphate solids and secondary containment via precipitation of apatite which can serve as a long-term sorbent for uranium. The test site consisted of an injection well and 15 monitoring wells installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. The results indicated sequestration of uranium as insoluble phosphate phases appears to be a promising alternative for treating the uranium- contaminated groundwater at the Hanford Site 300 Area. However, the formation of the apatite during the test was limited due to two separate overarching issues: (1) formation and emplacement of apatite via polyphosphate technology, and (2) efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions.

Wellman, Dawn M.; Fruchter, Jonathan S.; Vermeul, Vincent R.; Richards, Emily L.; Jansik, Danielle P.; Edge, Ellen

2011-08-31T23:59:59.000Z

349

Evaluation of Technologies to Complement/Replace Mass Spectrometers in the Tritium Facilities  

DOE Green Energy (OSTI)

The primary goal of this work is to determine the suitability of the Infraran sensor for use in the Palladium Membrane Reactor. This application presents a challenge for the sensor, since the process temperature exceeds its designed operating range. We have demonstrated that large baseline offsets, comparable to the sensor response to the analyte, are obtained if cool air is blown across the sensor. We have also shown that there is a strong environmental component to the noise. However, the current arrangement does not utilize a reference detector. The strong correlation between the CO and H{sub 2}O sensor responses to environmental changes indicate that a reference detector can greatly reduce the environmental sensitivity. In fact, incorporation of a reference detector is essential for the sensor to work in this application. We have also shown that the two sensor responses are adequately independent. Still, there are several small corrections which must to be made to the sensor response to accommodate chemical and physical effects. Interactions between the two analytes will alter the relationship between number density and pressure. Temperature and pressure broadening will alter the relationship between absorbance and number density. The individual effects are small--on the order of a few percent or less--but cumulatively significant. Still, corrections may be made if temperature and total pressure are independently measured and incorporated into a post-analysis routine. Such corrections are easily programmed and automated and do not represent a significant burden for installation. The measurements and simulations described above indicate that with appropriate corrections, the Infraran sensor can approach the 1-1.5% measurement accuracy required for effective PMR process control. It is also worth noting that the Infraran may be suitable for other gas sensing applications, especially those that do not need to be made in a high-temperature environment. Any gas with an infrared absorption (methane, ammonia, etc.) may be detected so long as an appropriate bandpass filter can be manufactured. Note that homonuclear diatomic molecules (hydrogen and its isotopes, nitrogen, oxygen) do not have infrared absorptions. We have shown that the sensor response may be adequately predicted using commercially available software. Measurement of trace concentrations is limited by the broad spectral bandpass, since the total signal includes non-absorbed frequencies. However, cells with longer pathlengths can be designed to address this problem.

Tovo, L. L.; Lascola, R. J.; Spencer, W. A.; McWhorter, C. S.; Zeigler, K. E.

2005-08-30T23:59:59.000Z

350

Evaluation of Emerging Line Inspection Technologies: Results of 2012 Outdoor Laboratory Tests  

Science Conference Proceedings (OSTI)

This report describes outdoor laboratory testing performed in 2012 to evaluate different approaches to establish conductor temperature during a helicopter-based Lidar field survey of an existing overhead transmission line. Establishing conductor temperature during Lidar surveys is necessary to assemble a line model to determine line sags, and thus clearances, under full rating and specified environmental conditions. ...

2013-09-26T23:59:59.000Z

351

NREL: Technology Transfer - NREL Collaborates to Commercialize ...  

Natural gas. Nuclear waste. Nuclear Filter Technology is also licensing several NREL inventions related to the fiber optic and thin film materials that sense the ...

352

Qualifications of Candle Filters for Combined Cycle Combustion Applications  

Science Conference Proceedings (OSTI)

The direct firing of coal produces particulate matter that has to be removed for environmental and process reasons. In order to increase the current advanced coal combustion processes, under the U.S. Department of Energy's auspices, Siemens Westinghouse Power Corporation (SWPC) has developed ceramic candle filters that can operate at high temperatures. The Coal Research Center of Southern Illinois University (SIUC), in collaboration with SWPC, developed a program for long-term filter testing at the SIUC Steam Plant followed by experiments using a single-filter reactor unit. The objectives of this program funded by the U.S. Department of Energy were to identify and demonstrate the stability of porous candle filter elements for use in high temperature atmospheric fluidized-bed combustion (AFBC) process applications. These verifications were accomplished through extended time slipstream testing of a candle filter array under AFBC conditions using SIUC's existing AFBC boiler. Temperature, mass flow rate, and differential pressure across the filter array were monitored for a duration of 45 days. After test exposure at SIUC, the filter elements were characterized using Scanning Electron Microscopy and BET surface area analyses. In addition, a single-filter reactor was built and utilized to study long term filter operation, the permeability exhibited by a filter element before and after the slipstream test, and the thermal shock resilience of a used filter by observing differential pressure changes upon rapid heating and cooling of the filter. The data acquired during the slipstream test and the post-test evaluations demonstrated the suitability of filter elements in advanced power generation applications.

Tomasz Wiltowski

2008-08-31T23:59:59.000Z

353

Y-12 Plant decontamination and decommissioning Technology Logic Diagram for Building 9201-4: Volume 3, Technology evaluation data sheets: Part B, Decontamination; robotics/automation; waste management  

SciTech Connect

This volume consists of the Technology Logic Diagrams (TLDs) for the decontamination, robotics/automation, and waste management areas.

1994-09-01T23:59:59.000Z

354

Filter assembly for metallic and intermetallic tube filters  

Science Conference Proceedings (OSTI)

A filter assembly (60) for holding a filter element (28) within a hot gas cleanup system pressure vessel is provided, containing: a filter housing (62), said filter housing having a certain axial length and having a peripheral sidewall, said sidewall defining an interior chamber (66); a one piece, all metal, fail-safe/regenerator device (68) within the interior chamber (66) of the filter housing (62) and/or extending beyond the axial length of the filter housing, said device containing an outward extending radial flange (71) within the filter housing for seating an essential seal (70), the device also having heat transfer media (72) disposed inside and screens (80) for particulate removal; one compliant gasket (70) positioned next to and above the outward extending radial flange of the fail-safe/regenerator device; and a porous metallic corrosion resistant superalloy type filter element body welded at the bottom of the metal fail-safe/regenerator device.

Alvin, Mary Anne (113 Lehr Ave., Pittsburgh, PA 15223); Lippert, Thomas E. (3205 Cambridge Rd., Murrysville, PA 15668); Bruck, Gerald J. (4469 Sardis Rd., Murrysville, PA 15668); Smeltzer, Eugene E. (R.D. 7, Box 267-I, Italy Rd., Export, PA 15632-9621)

2001-01-01T23:59:59.000Z

355

Ozone decomposing filter  

DOE Patents (OSTI)

In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.

Simandl, Ronald F. (Farragut, TN); Brown, John D. (Harriman, TN); Whinnery, Jr., LeRoy L. (Dublin, CA)

1999-01-01T23:59:59.000Z

356

Diffusion and Numerical Filters  

Science Conference Proceedings (OSTI)

Applications of low-pass filters or implicit diffusion are found to be extremely beneficial in a simple model problem that contains an oven-ordered advection scheme based on a symmetric stencil. In contrast, the effects are negative when either ...

William H. Raymond

1994-04-01T23:59:59.000Z

357

Development of ceramic composite hot-gas filters  

SciTech Connect

A novel type of hot-gas filter based on a ceramic fiber-reinforced ceramic matrix was developed and extended to fullsize, 60-mm OD by 1.5-meter-long, candle filters. A commercially viable process for producing the filters was developed, and the filters are undergoing testing and demonstration throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Development activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company, and testing at the Westinghouse Science and Technology Center (STC) are presented. Demonstration tests at the Tidd PFBC are underway. Issues identified during the testing and demonstration phases of the development are discussed. Resolution of the issues and the status of commercialization of the filters are described.

Judkins, R.R.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Smith, R.G.; Fischer, E.M.; Eaton, J.H.; Weaver, B.L.; Kahnke, J.L.; Pysher, D.J. [3M Co., St. Paul, MN (United States)

1995-04-01T23:59:59.000Z

358

Development of ceramic composite hot-gas filters  

SciTech Connect

A novel type of hot-gas filter based on a ceramic fiber-reinforced ceramic matrix was developed and extended to full-size, 60-mm OD by 1.5-m-long, candle filters. A commercially viable process for producing the filters was developed, and the filters are undergoing testing and demonstration throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Development activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company, and testing at the Westinghouse Science and Technology Center (STC) are presented. Demonstration tests at the Tidd PFBC are in progress. Issues identified during the testing and demonstration phases of the development are discussed. Resolution of the issues identified during testing and the status of commercialization of the filters are described.

Judkins, R.R.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Smith, R.G.; Fischer, E.M.; Eaton, J.H.; Weaver, B.L.; Kahnke, J.L.; Pysher, D.J. [3M Co., St. Paul, MN (United States)

1996-07-01T23:59:59.000Z

359

Evaluation of advanced technologies for residential appliances and residential and commercial lighting  

SciTech Connect

Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

1995-01-01T23:59:59.000Z

360

Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Report Data Report Norcal Prototype LNG Truck Fleet: Final Data Report By Kevin Chandler, Battelle Ken Proc, National Renewable Energy Laboratory February 2005 This report provides detailed data and analyses from the U.S. Department of Energy's evaluation of prototype liquefied natural gas (LNG) waste transfer trucks operated by Norcal Waste Systems, Inc. The final report for this evaluation, published in July 2004, is available from the Alternative Fuels Data Center at www.eere.energy.gov/afdc or by calling the National Alternative Fuels Hotline at 1-800-423-1363. Request Norcal Prototype LNG Truck Fleet: Final Results, document number DOE/GO-102004-1920. i NOTICE This report was prepared as an account of work sponsored by an agency of the United States

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Program on Technology Innovation: Field Evaluations of Entrained Flow NOx Catalyst Concept  

Science Conference Proceedings (OSTI)

EPRI has been actively evaluating and developing advanced catalyst concepts for NOx reduction that are more effective and have potential in achieving near zero emissions. The concept called NOMERCTM involves the entrained flow of pulverized SCR catalyst for NOx reduction combined with activated carbon injection for removing mercury from the flue gas stream at coal-fired utilities. The entrained flow removal process is a novel concept and has been proven to work in a previous proof of concept test. This r...

2006-03-27T23:59:59.000Z

362

Program on Technology Innovation: Evaluation of Mid-Infrared Lasers for Combustion Gas Sensing Applications  

Science Conference Proceedings (OSTI)

Carbon monoxide (CO) and nitric oxide (NO) are important trace species in combustion exhaust, with absorption spectrum features that overlap with the absorption by water vaporan interference that increases with gas temperature. This situation is exacerbated by the need to monitor ppm levels of CO and NO in combustion product gases, which typically have in excess of 10% water. Therefore, the development of sensitive sensors for absorption detection of CO and NO in combustion gases requires evaluation of t...

2009-12-14T23:59:59.000Z

363

Program on Technology Innovation: Evaluation of a Commercial Device for Measurement of Residential Transients and Harmonics  

Science Conference Proceedings (OSTI)

This report describes laboratory testing to evaluate the technical performance of the Microsurge Stetzer meter, a commercially available device for measuring electrical transients and harmonics on residential circuits. This device has been developed to measure low-level unwanted signals (higher-frequency harmonics and transients) introduced onto 50/60 Hz household mains through normal operation of appliances within the home and through other environmental signals and transients usually present on ...

2013-11-13T23:59:59.000Z

364

NETL: Mercury Emissions Control Technologies - Evaluation of MerCAP for  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of MerCAP(tm) for Power Plant Mercury Control Evaluation of MerCAP(tm) for Power Plant Mercury Control URS Group and its test team will perform research to further develop the novel Mercury Control via Adsorption Process (MerCAP™). The general MerCAP™ concept is to place fixed structures into a flue gas stream to adsorb mercury and then periodically regenerate them and recover the captured mercury. EPRI has shown that gold-based sorbents can achieve high levels of mercury removal in scrubbed flue gases. URS is proposing tests at two power plants using gold MerCAP™, installed downstream of either a baghouse or wet scrubber, to evaluate mercury removal from flue gas over a period of 6 months. At Great River Energy’s Stanton Station, which burns North Dakota lignite, sorbent structures will be retrofitted into a single compartment in the Unit 10 baghouse enabling reaction with a 6 MWe equivalence of flue gas. At Southern Company Services’ Plant Yates, which burns Eastern bituminous coal, gold-coated plates will be configured as a mist eliminator (ME) located downstream of a 1 MWe pilot wet absorber , which receives flue gas from Unit 1.

365

METAL MEDIA FILTERS, AG-1 SECTION FI  

Science Conference Proceedings (OSTI)

One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures, media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.

Adamson, D.

2012-05-23T23:59:59.000Z

366

Particle Filtering in Geophysical Systems  

Science Conference Proceedings (OSTI)

The application of particle filters in geophysical systems is reviewed. Some background on Bayesian filtering is provided, and the existing methods are discussed. The emphasis is on the methodology, and not so much on the applications themselves. ...

Peter Jan van Leeuwen

2009-12-01T23:59:59.000Z

367

Renewable energy and its potential for carbon emissions reductions in developing countries: Methodology for technology evaluation. Case study application to Mexico  

Science Conference Proceedings (OSTI)

Many projects have been proposed to promote and demonstrate renewable energy technologies (RETs) in developing countries on the basis of their potential to reduce carbon emissions. However, no uniform methodology has been developed for evaluating RETs in terms of their future carbon emissions reduction potential. This study outlines a methodology for identifying RETs that have the potential for achieving large carbon emissions reductions in the future, while also meeting key criteria for commercialization and acceptability in developing countries. In addition, this study evaluates the connection between technology identification and the selection of projects that are designed to demonstrate technologies with a propensity for carbon emission reductions (e.g., Global Environmental Facility projects). Although this report applies the methodology to Mexico in a case study format, the methodology is broad based and could be applied to any developing country, as well as to other technologies. The methodology used in this report is composed of four steps: technology screening, technology identification, technology deployment scenarios, and estimates of carbon emissions reductions. The four technologies with the highest ranking in the technology identification process for the on-grid category were geothermal, biomass cogeneration, wind, and micro-/mini-hydro. Compressed natural gas (CNG) was the alternative that received the highest ranking for the transportation category.

Corbus, D.; Martinez, M.; Rodriguez, L.; Mark, J.

1994-08-01T23:59:59.000Z

368

2010 EPRI-Southern Company Services Fabric Filter Workshop Proceedings  

Science Conference Proceedings (OSTI)

The use of fabric filters (also called baghouses) on coal-fired boilers in power plants has increased significantly in the past several years due to increasingly stringent particulate matter emissions limits. These limits have become even more challenging in light of the proposed maximum achievable control technology (MACT) ruling for air toxics by the U.S. Environmental Protection Agency on March 16, 2011. The proposed MACT ruling will require control of both filterable and condensable particulate matte...

2011-04-28T23:59:59.000Z

369

DEVELOPMENT OF AN ADHESIVE CANDLE FILTER SAFEGUARD DEVICE  

SciTech Connect

In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal conversion. Two main types of systems employ these turbines: those based on pressurized fluidized-bed combustors and those based on integrated gasification combined cycles. In both systems, suspended particulates must be cleaned from the gas stream before it enters the turbine so as to prevent fouling and erosion of the turbine blades. To produce the cleanest gas, barrier filters are being developed and are in use in several facilities. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the particulates on the surface. The three main configurations of the barrier filters are candle, cross-flow, and tube filters. Both candle and tube filters have been tested extensively. They are composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer on the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle and individual elements can fail, allowing particulates to pass through the hole left by the filter element and erode the turbine. Preventing all failure of individual ceramic filter elements is not possible at the present state of development of the technology. Therefore, safeguard devices (SGDs) must be employed to prevent the particulates streaming through occasional broken filters from reaching the turbine. However, the SGD must allow for the free passage of gas when it is not activated. Upon breaking of a filter, the SGD must either mechanically close or quickly plug with filter dust to prevent additional dust from reaching the turbine. Production of a dependable rapidly closing autonomous mechanical device at high temperatures in a dusty gas stream is difficult because of problems with materials corrosion, dust leakage, and detection of filter failure. Therefore, the Energy & Environmental Research Center is using its knowledge of the factors that make filter dust sticky at gas filtration temperatures to make a simple and inexpensive SGD that employs an adhesive yet thermodynamically stable coating on a highly porous ceramic substrate. The SGDs are placed on top of individual candle filters at the filtered gas exit. Upon failure of the filter, the dirty gas flows through the SGD where the adhesive surface rapidly and permanently traps dust particles, causing the device to plug and prevent the dust from reaching the turbine.

John P. Hurley; Ann K. Henderson; Jan W. Nowok; Michael L. Swanson

2002-01-01T23:59:59.000Z

370

Westinghouse standleg moving granular bed filter development program  

SciTech Connect

Advanced, coal-based, power plants, such as IGCC and Advanced-PFBC, are currently nearing commercial demonstration. These power plant technologies require hot gas filtration as part of their gas cleaning trains. Ceramic barrier filters are the major filter candidates being developed for these hot gas cleaning applications. While ceramic barrier filters achieve high levels of particle removal, there are concerns for their reliability and operability. An alternative hot gas filtration technology is the moving granular bed filter. These systems are at a lower state of development than ceramic barrier filters, and their effectiveness as filters is still in question. Their apparent attributes, result from their much less severe mechanical design and materials constraints, and the potential for more reliable, failure-free particle removal operation. The standleg moving granular-bed filter (SMGBF) system, is a compact unit that uses cocurrent gas-pellet contacting in an arrangement that greatly simplifies and enhances the distribution of dirty, process gas to the moving bed and allows effective disengagement of clean gas from the moving bed. This paper describes the equipment and process test results.

Newby, R.A.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1994-10-01T23:59:59.000Z

371

Field analytical techniques for mercury in soils technology evaluation. Topical report, November 1994--March 1997  

SciTech Connect

This report presents the evaluation of the four field analytical techniques for mercury detection in soils, namely (1) an anodic stripping voltametry technique (ASV) developed and tested by General Electric Corporation; (2) a static headspace analysis (SHSA) technique developed and tested by Dr. Ralph Turner of Oak Ridge National Laboratory; (3) the BiMelyze{reg_sign} Mercury Immunoassay (Bio) developed and tested by BioNebraska, Inc.; and (4) a transportable x-ray fluorescence (XRF) instrument/technique developed and tested by Spectrace, Inc.

Solc, J.; Harju, J.A.; Grisanti, A.A.

1998-02-01T23:59:59.000Z

372

Renewable Energy Technology Engineering and Economic Evaluation: Biomass Power Plants 2007  

Science Conference Proceedings (OSTI)

This study prepared an engineering and economic evaluation of 25-, 50-, and 100-MW biomass combustion power plants fired by 100% biomass fuel. The study estimated boiler efficiency, steam cycle heat rate, auxiliary power consumption, net plant heat rate, operation and maintenance (O&M) labor costs, maintenance materials, fuel needs, and raw material requirements. For both capital and annual O&M costs, the costs per kW or MWh are the lowest for 100-MW plants and the highest for 25-MW plants. Due to their ...

2008-03-31T23:59:59.000Z

373

Active filters for high-voltage direct-current (HVDC) converter terminals: Final report  

SciTech Connect

This report evaluates the technical and economic feasibility for active filtering of dc-side voltage harmonics and the ac-side current harmonics produced by a HVDC converter. The following designs for the active filter concepts are compared with the existing ac-side and dc-side passive filters used at the Dickinson terminal of the CU HVDC transmission line project: the dc-side active filter consisting of a capacitor coupled current injection source to actively ''neutralize'' the 12th, 24th and the 36th harmonics and, the ac-side active filter designed to provide the same fundamental frequency reactive VARs as the existing passive filters. Controlled currents are injected to actively filter the 11th and the 13th harmonic currents. A cost comparison is made between these active filter designs and existing passive filters supplied by the United Power Association (UPA). 22 figs., 11 tabs.

Mohan, N.; Wong, C.

1988-08-01T23:59:59.000Z

374

Feasibility study of AC- and DC-side active filters for HVDC converter terminals  

SciTech Connect

This paper evaluates the technical and economic feasibility for active filtering of dc-side voltage harmonics and the ac-side current harmonics produced by a HVDC converter. The following designs for the active filter concepts are compared with the existing ac-side and dc-side passive filters used at the Dickinson terminal of the CU HVDC transmission line project: the dc-side active filter consisting of a capacitor coupled current injection source to actively neutralize the 12th, 24th and the 36th harmonics, and the ac-side active filter designed to provide the same fundamental frequency reactive VARs as the existing passive filters. Controlled currents are injected to actively filter the 11th and 13th harmonic currents. A cost comparison is made between these active filter designs and the cost of the existing passive filters supplied by the United Power Association (UPA).

Wong, C.; Mohan, N. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Electrical Engineering); Wright, S.E. (Electric Power Research Inst., Palo Alto, CA (USA)); Mortenson, K.N. (United Power Association, Elk River, MN (USA))

1989-10-01T23:59:59.000Z

375

Uncertainty in in-place filter test results  

SciTech Connect

Some benefits of accounting for uncertainty in in-place filter test results are explored. Information the test results provide relative to system performance acceptance limits is evaluated in terms of test result uncertainty. An expression for test result uncertainty is used to estimate uncertainty in in-place filter tests on an example air cleaning system. Modifications to the system test geometry are evaluated in terms of effects on test result uncertainty.

Scripsick, R.C.; Beckman, R.J.; Mokler, B.V.

1996-12-31T23:59:59.000Z

376

Evaluation of remedial alternatives for the Solar Ponds Plume, Rocky Flats Environmental Technology Site  

SciTech Connect

This paper describes the process used to select a remedial alternative for handling contaminated groundwater emanating from the Solar Evaporation Ponds (Solar Ponds) at the Rocky Flats Environmental Technology Site (RFETS) and prevent it from reaching the nearest surface water body, North Walnut Creek. Preliminary results of field investigations conducted to provide additional information for the alternatives analysis are also presented. The contaminated groundwater is referred to as the Solar Ponds Plume (SPP). The primary contaminants in the SPP are nitrate and uranium; however, some metals exceed the site action levels at several locations and volatile organic compounds, originating from other sources, also have been detected. Currently the SPP, local surface water runoff, and infiltrated precipitation are collected by a trench system located downgradient of the Solar Ponds and pumped to three storage tanks. The water (two to three million gallons annually) is then pumped to an on-site treatment plant for evaporation at an approximate cost of $7.57 per liter.

Hranac, K.C. [Morrison Knudsen Corp., Golden, CO (United States). Rocky Flats Environmental Technology Site; Chromec, F.W.; Fiehweg, R. [Rocky Mountain Remediation Services, Golden, CO (United States). Rocky Flats Environmental Technology Site; Hopkins, J. [Rocky Mountain Remediation Services, Los Alamos, NM (United States)

1998-07-01T23:59:59.000Z

377

Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report  

Science Conference Proceedings (OSTI)

The Advanced Technology Development Program has completed performance testing of the second generation of lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells, with a baseline and variant chemistry, were distributed over a matrix consisting of three states-of-charge (SOCs) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar- and accelerated-life cells were clamped at an open-circuit voltage corresponding to the designated SOC and were subjected to a once-per-day pulse profile. The cycle-life cells were continuously pulsed using a profile that was centered around 60% SOC. Life testing was interrupted every four weeks for reference performance tests (RPTs), which were used to quantify changes in cell degradation as a function of aging. The RPTs generally consisted of C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy. The rate of cell degradation generally increased with increasing test temperature, and SOC. It was also usually slowest for the calendar-life cells and fastest for the accelerated-life cells. Detailed capacity-, power-, and impedance-based performance results are reported.

Jon P. Christophersen; Ira Bloom; Edward V. Thomas; Kevin L. Gering; Gary L. Henriksen; Vincent S. Battaglia; David Howell

2006-07-01T23:59:59.000Z

378

Evaluation of Solar Grade Silicon Produced by the Institute of Physics and Technology: Cooperative Research and Development Final Report, CRADA Number CRD-07-211  

DOE Green Energy (OSTI)

NREL and Solar Power Industries will cooperate to evaluate technology for producing solar grade silicon from industrial waste of the phosphorus industry, as developed by the Institute of Physics and Technology (IPT), Kazakhstan. Evaluation will have a technical component to assess the material quality and a business component to assess the economics of the IPT process. The total amount of silicon produced by IPT is expected to be quite limited (50 kg), so evaluations will need to be done on relatively small quantities (? 5 kg/sample).

Page, M.

2013-02-01T23:59:59.000Z

379

Quick-change filter cartridge  

DOE Patents (OSTI)

A quick-change filter cartridge. In sampling systems for measurement of airborne materials, a filter element is introduced into the sampled airstream such that the aerosol constituents are removed and deposited on the filter. Fragile sampling media often require support in order to prevent rupture during sampling, and careful mounting and sealing to prevent misalignment, tearing, or creasing which would allow the sampled air to bypass the filter. Additionally, handling of filter elements may introduce cross-contamination or exposure of operators to toxic materials. Moreover, it is desirable to enable the preloading of filter media into quick-change cartridges in clean laboratory environments, thereby simplifying and expediting the filter-changing process in the field. The quick-change filter cartridge of the present invention permits the application of a variety of filter media in many types of instruments and may also be used in automated systems. The cartridge includes a base through which a vacuum can be applied to draw air through the filter medium which is located on a porous filter support and held there by means of a cap which forms an airtight seal with the base. The base is also adapted for receiving absorbing media so that both particulates and gas-phase samples may be trapped for investigation, the latter downstream of the aerosol filter.

Rodgers, John C. (Santa Fe, NM); McFarland, Andrew R. (College Station, TX); Ortiz, Carlos A. (Bryan, TX)

1995-01-01T23:59:59.000Z

380

Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant’s Martin Lake Steam Electric Station and Xcel Energy’s Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the co-current adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials,

Krutka, Holly; Sjostrom, Sharon

2011-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS  

Science Conference Proceedings (OSTI)

Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the cocurrent adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials, so

Holly Krutka; Sharon Sjostrom

2011-07-31T23:59:59.000Z

382

Filtered cathodic arc source  

DOE Patents (OSTI)

Disclosed is a continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45{degrees} to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

Falabella, S.; Sanders, D.M.

1992-12-31T23:59:59.000Z

383

Filtered cathodic arc source  

DOE Patents (OSTI)

A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

Falabella, S.; Sanders, D.M.

1994-01-18T23:59:59.000Z

384

Difficult OptEase Filter Retrievals After Prolonged Indwelling Times  

SciTech Connect

PurposeThe OptEase vena cave filter (Cordis, Piscataway, NJ) is commercially available as a retrievable or permanent filter with short recommended indwelling time, presumably due to extensive contact of the filter side struts with the inferior vena cava wall and subsequent neointimal hyperplasia leading to incorporation. Our purpose was to evaluate OptEase filter retrievals with a long indwelling time period that required unconventional retrieval techniques.Materials and MethodsWe retrospectively reviewed patients who underwent OptEase filter retrieval with long undwelling times requiring additional maneuvers for retrieval. Techniques used included rigid endobronchial forceps dissection and wire-through-loop snare. Each patient underwent postretrieval venogram to evaluate for possible complications. In addition, patients had clinical follow-up 2 weeks after the retrieval procedure.ResultsThere were three patients (2 women, 1 man; average age 64 years) who underwent OptEase filter retrieval. The mean indwelling time was 6.4 months. The indwelling filters were successfully retrieved. There were no complications. Postprocedural follow-up showed no clinical pathology.ConclusionUnconventional techniques aided in the retrieval of OptEase filters with long indwelling times.

Van Ha, Thuong G., E-mail: tgvanha@radiology.bsd.uchicago.edu; Kang, Lisa; Lorenz, Jonathan; Zangan, Steven; Navuluri, Rakesh; Straus, Christopher; Funaki, Brian [University of Chicago, Section of Interventional Radiology, Department of Radiology (United States)

2013-08-01T23:59:59.000Z

385

Regenerable particulate filter  

DOE Patents (OSTI)

A method of making a three-dimensional lattice structure, such as a filter used to remove particulates from a gas stream, where the physical lattice structure is designed utilizing software simulation from pre-defined mass transfer and flow characteristics and the designed lattice structure is fabricated using a free-form fabrication manufacturing technique, where the periodic lattice structure is comprised of individual geometric elements.

Stuecker, John N. (Albuquerque, NM); Cesarano, III, Joseph (Albuquerque, NM); Miller, James E. (Albuquerque, NM)

2009-05-05T23:59:59.000Z

386

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

www.netl.doe.gov/technologies/oil-gas/publications/Hydrates/Exploration priorities for marine gas hydrates, Fire In Thewww.netl.doe.gov/technologies/oil-gas/publications/Hydrates/

Moridis, George J.

2008-01-01T23:59:59.000Z

387

Siphon filter assessment for Northern Ghana  

E-Print Network (OSTI)

The siphon filter is a household water filter developed by the Basic Water Needs Foundation based on the design of ceramic candle filters. The siphon filter is marketed under brand names CrystalPur and Tulip and is sold ...

Ziff, Sara Elizabeth

2009-01-01T23:59:59.000Z

388

Development of a Pulp Process Treating Contaminated HEPA Filters (III)  

SciTech Connect

The Pulp Process (PP) Treatment option was conceived as a replacement for the current Filter Leaching System (FLS). The FLS has operated at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory since 1995 to treat radioactive, mixed waste HEPA filters. In recent years, the FLS has exhibited difficulty in removing mercury from the HEPA filters as the concentration of mercury in the spent HEPA filters has increased. The FLS leaches and washes the whole filter without any preparation or modification. The filter media and the trapped calcine particles are confined in a heavy filter housing that contributes to poor mixing zones around the edges of the filter, low media permeability, channeling of the liquid through cracks and tears in the filter media, and liquid retention between leach and rinse cycles. In the PP, the filter media and the trapped calcine particles are separated from the filter housing and treated as a pulp, taking advantage of improved contact with the leach solution that cannot be achieved when the media is still in the HEPA filter housing. In addition to removing the mercury more effectively, the PP generates less volume of liquid waste, requires a shorter leach cycle time, and possesses the versatility for treating filters of different sizes. A series of tests have been performed in the laboratory to demonstrate the advantages of the PP concept. These tests compare the PP with the FLS under controlled conditions that simulate the current operating parameters. A prior study using blended feed, a mixture of shredded clean HEPA filter media and non-radioactive calcine particles, indicated that the PP would significantly increases the calcine dissolution percentages. In this study, hazardous-metal contaminated HEPA filter media was studied. The results of side-by-side tests indicated that the PP increased the mercury removal percentage by 80% and might be a solution to the mercury removal problem encountered by the current FLS. A patent application has been filed for the PP and the patent is pending. In order to validate the PP and collect information for engineering design and economical feasibility studies, pilot plant scale tests are planned.

Hu, J. S.; Ramer, J.; Argyle, M. D.; Demmer, R. L.

2002-02-28T23:59:59.000Z

389

Georgia Institute of Technology chilled water system evaluation and master plan  

SciTech Connect

As the host of the Olympic Village for the 1996 Atlanta Olympics, Georgia Tech has experienced a surge in construction activities over the last three years. Over 1.3 million square feet of new buildings have been constructed on the Georgia Tech campus. This growth has placed a strain on the Georgia Tech community and challenged the facilities support staff charged with planning and organizing utility services. In concert with Olympic construction, utility planners have worked to ensure long term benefits for Georgia Tech facilities while meeting the short term requirements of the Olympic Games. The concentration of building construction in the northwest quadrant of the campus allowed planners to construct a satellite chilled water plant to serve the needs of this area and provide the opportunity to integrate this section of the campus with the main campus chilled water system. This assessment and master plan, funded in part by the US Department of Energy, has evaluated the chilled water infrastructure at Georgia Tech, identified ongoing problems and made recommendations for long term chilled water infrastructure development and efficiency improvements. The Georgia Tech office of Facilities and RDA Engineering, Inc. have worked together to assemble relevant information and prepare the recommendations contained in this document.

NONE

1996-05-15T23:59:59.000Z

390

Preliminary Economic and Engineering Evaluation of the Foster Wheeler Advanced Pressurized Fluidized-Bed Combustor (PFBC) Technology with Advanced Turbine System (ATS) Gas Turbines  

Science Conference Proceedings (OSTI)

For new coal-based power plants to be competitive, it is essential that their capital cost be reduced. Additionally, they must utilize coal in a highly efficient, cost-effective, environmentally superior manner. One of the most cost-competitive coal-based power plant technologies is believed to be an air-blown combined cycle that incorporates a partial gasifier and a pressurized char combustor. This report presents preliminary results from the evaluation of one such technology, the Advanced Pressurized F...

1998-12-30T23:59:59.000Z

391

Preliminary systems design study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and surrounding contaminated soil  

SciTech Connect

The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each. This volume contains the descriptions and other relevant information of the four subsystems required for most of the ex situ processing systems. This volume covers the metal decontamination and sizing subsystem, soils processing subsystem, low-level waste subsystem, and retrieval subsystem.

Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

1992-01-01T23:59:59.000Z

392

Evaluation of the near-term commercial potential of technologies being developed by the Office of Building Technologies Volune II - Survey Results  

SciTech Connect

This report consists of the results from each Equipment and Practice Form completed by the program managers and principal investigators. Information collected from the Equipment and Practice Form include the following: name and description of the technology; energy characteristics; when the technology will be ready for commercialization; estimated payback period; market sectors that would benefit; important commercialization barriers to overcome; energy-related benefits; and non-energy benefits of the technology to customers. Some of these technologies include: heat pumps, heat exchangers, insulation lighting systems; cooling systems, ventilation systems, burners, leak detection systems, retrofit procedure, operating and maintenance procedures, wall systems, windows, sampling equipment, measuring methods and instruments, thermal analysis methods, and computer codes.

Weijo, R.O. (Portland General Electric Co., OR (USA)); Nicholls, A.K.; Weakley, S.A.; Eckert, R.L.; Shankle, D.L.; Anderson, M.R.; Anderson, A.R. (Pacific Northwest Lab., Richland, WA (USA))

1991-03-01T23:59:59.000Z

393

TESTING OF THE SECOND GENERATION SPINTEK ROTARY FILTER -11357  

SciTech Connect

The SpinTek rotary microfilter has been developed under the Department of Energy (DOE) Office of Environmental Management (EM) for the purpose of deployment in radioactive service in the DOE complex. The unit that was fabricated and tested is the second generation of the filter that incorporates recommended improvements from previous testing. The completion of this test satisfied a key milestone for the EM technology development program and technology readiness for deployment by Savannah River Remediation in the Small Column Ion Exchange and Sludge Washing processes at the Savannah River Site (SRS). The Savannah River National Laboratory (SRNL) contracted SpinTek Filtration to fabricate a full scale 25 disk rotary filter and perform a 1000 hour endurance test with a simulated SRS sludge. Over 1500 hours of operation have been completed with the filter. SpinTek Filtration fabricated a prototypic 25 disk rotary filter including updates to manufacturing tolerances, an updated design to the rotary joint, improved cooling to the bottom journal, decreases in disk and filter shaft hydraulic resistances. The filter disks were fabricated with 0.5 {micro} pore size, sintered-metal filter media manufactured by Pall Corporation (M050). After fabrication was complete, the filter passed acceptance tests demonstrating rejection of solids and clean water flux with a 50% improvement over the previous filters. Once the acceptance test was complete, a 1000 hour endurance test was initiated simulating a sludge washing process. The test used a simulated SRS Sludge Batch 6 recipe. The insoluble solids started at 5 wt% and were raised to 10 and 15 wt% insoluble solids to simulate the concentration of a large volume tank. The filter system was automated and set up for 24 hour unattended operation. To facilitate this, process control logic was written to operate the filter. During the development it was demonstrated that the method of starting and stopping the filter can affect the build up of filter cake on the disks and therefore the performance of the filter. The filter performed well with the simulant. Very little drop in production was noticed between the 5 and 10 wt% insoluble solids feed. Increasing to 15 wt% had a more pronounced impact due to the rheology of the feed. Acid cleaning was used to clean the filter disks in-situ and restore filtration rate to almost 90% of the initial clean disk rate. Eighty liters of 0.2 M nitric acid in conjunction with water rinses were used to clean the filter in less than 2 hours. Filter testing was completed after 1000 hours of operation were performed on the final filter assembly configuration. The total run time for the testing was over 1500 hours. At the end of the test, the sludge washing was performed successfully from approximately 5.6 M to less than 1 M sodium.

Herman, D.; Poirier, M.; Fowley, M.; Keefer, M.; Huff, T.

2011-02-02T23:59:59.000Z

394

Coated x-ray filters  

DOE Patents (OSTI)

A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers. 4 figs.

Steinmeyer, P.A.

1991-02-07T23:59:59.000Z

395

Coated x-ray filters  

DOE Patents (OSTI)

A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers.

Steinmeyer, Peter A. (Farmington, NM)

1992-11-24T23:59:59.000Z

396

Study of Compact Tunable Filters Using Negative Refractive Index Transmission Lines  

E-Print Network (OSTI)

Today's microwave circuits, whether for communication, radar, or testing systems, need compact tunable microwave filters. Since different microwave circuit applications have radically different size, power, insertion loss, rejection, vibration, and thermal requirements, new filter technologies with different balances between these requirements are always desirable. Negative Refractive Index (NRI) transmission media was discovered 10 years ago with the unique property of negative phase propagation. A literature review was conducted to identify potential NRI methods for filters and other devices, but no NRI tunable filters were found. To address this gap, a family of tunable NRI bandpass filters was simulated and constructed successfully using end-coupled zeroth order resonators. Tuning was accomplished by controlling the negative phase length of the NRI sections with varactors. The resulting L-band filters exhibited a 25-40 percent tunable range, no higher order resonances, and required only one fourth the length of a coupled-line filter constructed from traditional 180 degree microstrip resonators.

Lewis, Brian Patrick

2011-05-01T23:59:59.000Z

397

Decontamination technologies evaluations  

SciTech Connect

Testing has been completed at the Idaho Chemical Processing Plant (ICPP) on in situ recyclable abrasives grit blasting, concrete cleaning (using scabbling, chemicals and electro-kinetics) and laser light ablation of metals. Several small scale tests have also been conducted with strippable coatings, CO{sub 2} pellet blasting and various other techniques. The results of this testing is summarized in this paper.

Tripp, J.

1996-05-01T23:59:59.000Z

398

Nondestructive Evaluation Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

electromagnetic and acoustic methods, is used for in-service inspection of nuclear power plant components, such as tubing, piping and pressure vessels. Argonne's expertise...

399

How technology influences the therapeutic process: a comparative field evaluation of augmented reality and in vivo exposure therapy for phobia of small animals  

Science Conference Proceedings (OSTI)

In Vivo Exposure Therapy (IVET) has been a recommended protocol for the treatment of specific phobias. More recently, several studies have suggested that Augmented Reality Exposure Therapy (ARET) is a potentially effective technology in this field. The ... Keywords: augmented reality, field evaluation, mental health

Maja Wrzesien; Jean-Marie Burkhardt; Mariano Alcañiz; Cristina Botella

2011-09-01T23:59:59.000Z

400

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 4: Diesel Particulate Filters -- Final Report  

DOE Green Energy (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This is the fourth and final report for the DPF test program and covers the effect of diesel sulfur level on: a catalyzed diesel particulate filter (CDPF), and a continuously regenerating diesel particulate filter (CR-DPF).

DOE; ORNL; NREL; EMA; MECA

2000-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Explaining Collaborative Filtering Recommendations  

E-Print Network (OSTI)

Automated collaborative filtering (ACF) systems predict a person's affinity for items or information by connecting that person's recorded interests with the recorded interests of a community of people and sharing ratings between likeminded persons. However, current recommender systems are black boxes, providing no transparency into the working of the recommendation. Explanations provide that transparency, exposing the reasoning and data behind a recommendation. In this paper, we address explanation interfaces for ACF systems -- how they should be implemented and why they should be implemented. To explore how, we present a model for explanations based on the user's conceptual model of the recommendation process. We then present experimental results demonstrating what components of an explanation are the most compelling. To address why, we present experimental evidence that shows that providing explanations can improve the acceptance of ACF systems. We also describe some initial explor...

Jonathan Herlocker Joseph; Joseph A. Konstan; John Riedl

2000-01-01T23:59:59.000Z

402

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network (OSTI)

.eere.energy.gov/informationcenter hydrogen and electricity for fuel cell and plug-in hybrid electric vehicles while using proven stationary vehicles with its own fuel cell technology. Currently, advanced vehicle technologies are being evalu- ated and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially

403

Update on Novel Filter Development  

Science Conference Proceedings (OSTI)

Fabric filters (FFs) are highly effective particulate control devices installed at U.S. power plants to meet federal and state particulate emission requirements. This report describes FF operation at two coal-fired power plants, emphasizing tests of novel filter bag materials that may improve FF performance.

2009-02-26T23:59:59.000Z

404

Metallic Mesh Filter Used for Electromagnetic Shielding of Infrared Window  

Science Conference Proceedings (OSTI)

In order to meet anti-electromagnetism interference performance requirements of infrared window, a metallic mesh coating must be used on the infrared window. From the diffraction theory of grating and the equivalent circuit method, simplified expressions ... Keywords: stealth technology, electro-optical countermeasure, transparent conductive coating, metallic mesh filter, infrared window

Jia-Li Song, Xiao-Guo Feng

2012-07-01T23:59:59.000Z

405

Task 3.13 - Hot-Gas Filter Testing  

Science Conference Proceedings (OSTI)

The objectives of the hot-gas cleanup (HGC) work on the transport reactor demonstration unit (TRDU) located at the Energy and Environmental Research Center (EERC) is to demonstrate acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term demonstration tests. The primary focus of the experimental effort in the 3-year project is the testing of hot-gas filter element performance (particulate collection efficiency, filter pressure differential, filter cleanability, and durability) as a fiction of temperature and filter face velocity during short-term operation (100-200 hours). The filter vessel is used in combination with the TRDU to evaluate the performance of selected hot-gas filter elements under gasification operating conditions. This work directly supports the power systems development facility (PSDF) utilizing the M.W. Kellogg transport reactor located at Wilsonville, Alabama (1) and, indirectly, the Foster Wheeler advanced pressurized fluid-bed combustor, also located at Wilsonville (2).

Michael L. Swanson

1998-01-01T23:59:59.000Z

406

Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development  

DOE Green Energy (OSTI)

The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

2010-08-01T23:59:59.000Z

407

Full-scale Up-Flo^® stormwater filter field performance verification tests.  

E-Print Network (OSTI)

??The Up-Flo® Filter is an innovative high-rate, small footprint, stormwater treatment device based on upward filtration technology. It was originally developed by environmental engineers at… (more)

Cai, Yezhao

2013-01-01T23:59:59.000Z

408

Macromodeling and demonstration of the LT6600 amplifier and lowpass filter  

E-Print Network (OSTI)

The goal of this thesis is to demonstrate the abilities of the Sevastopoulos-LaPorte active low-pass filter topology in Linear Technology Corporation's LT6600 integrated circuit (IC). The thesis is split into two parts, ...

Pei, Cheng-Wei, 1981-

2004-01-01T23:59:59.000Z

409

Advanced Vehicle Testing Activity: Oil Bypass Filter  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Bypass Filter to someone by E-mail Share Advanced Vehicle Testing Activity: Oil Bypass Filter on Facebook Tweet about Advanced Vehicle Testing Activity: Oil Bypass Filter on...

410

Flexible packet filtering: providing a rich toolbox  

Science Conference Proceedings (OSTI)

The BSD/OS IPFW packet filtering system is a well engineered, flexible kernel framework for filtering (accepting, rejecting, logging, or modifying) IP packets. IPFW uses the well understood, widely available Berkeley Packet Filter (BPF) system as the ...

Kurt J. Lidl; Deborah G. Lidl; Paul R. Borman

2002-02-01T23:59:59.000Z

411

Ground Clutter Canceling with a Regression Filter  

Science Conference Proceedings (OSTI)

This paper explores ground clutter filtering with a class of cancelers that use regression. Regression filters perform this task in a simple manner, resulting in similar or better performance than the fifth-order elliptic filter implemented in ...

Sebastián M. Torres; Dusan S. Zrnic

1999-10-01T23:59:59.000Z

412

Performance of ceramic membrane filters  

SciTech Connect

CeraMem Corp.`s ceramic-membrane coated, dead-end ceramic filters offer a promising alternative to ceramic candle filters providing long-term operational and reliability issues are resolved: regenerability of filter passages by back pulse cleaning, tolerance to alkali-containing combustion gas and thermal/chemical aging. ANL is responsible for analytical modeling of filtration and pulse cleaning operations, flow-through testing, and prediction of filter response to thermal cycling under realistic service conditions. A test apparatus was built to expose ceramic filter specimens to chemical environments simulating operation of pressurized fluidized bed and integrated gasification combined cycle plants. Four long-duration tests have been conducted in which 100-cpsi channel filters were exposed to ash collected downstream of the cyclone separator at the PFBC plant at Tidd. Results are discussed. Focus has now shifted to exposing the advanced candle filter specimens to reducing gas environments containing NaCl, H{sub 2}S, H{sub 2}O, and gasification ash.

Ahluwalia, R.K.; Im, K.H.; Geyer, H.K. [Argonne National Lab., IL (United States); Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States)

1996-08-01T23:59:59.000Z

413

Fluid mechanics of membrane-coated ceramic filters  

SciTech Connect

Analytical models are formulated for evaluating the fluid mechanics of membrane-coated, dead-end ceramic filters. The models are applicable to forward flow as in the filtration mode and reverse flow as in the back-pulse cleaning mode. General criteria are derived to size the filter passages from considerations of Darcy pressure drop, friction pressure drop, and the dynamic head. These criteria together with Reynolds numbers are shown to provide measures of nonuniformities in face velocity and pressure that develop in the filter passages for atmospheric and high-pressure applications. A methodology is presented for optimizing the venturi geometry from the standpoint of minimizing pulse gas usage and controlling the thermal load imposed on the filter assembly.

Ahluwalia, R.K.; Geyer, H.K. [Argonne National Lab., IL (United States). Technology Development Div.

1996-07-01T23:59:59.000Z

414

Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of a Multifamily Evaluation of a Multifamily Retrofit in Climate Zone 5 Boulder, Colorado PROJECT INFORMATION Project Name: Evaluation of a Low-Rise Multifamily Retrofit in Boulder, CO Location: Boulder, CO Consortium of Advanced Residential Buildings www.carb-swa.com Building Component: Building envelope, lighting, appliances, water conservation Application: Retrofit Years Tested: 2012 Applicable Climate Zone(s): Cold, very cold PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $3,300-$6,100 per unit with total complex cost estimate of ~$150,000 Projected Energy Savings: 27%-41% depending on unit location/orientation Projected Energy Cost Savings: $154-$304 utility savings per year In 2009, a 37-unit apartment complex located in Boulder, Colorado, underwent

415

Hanford stakeholder participation in evaluating innovative technologies: VOC product line, Passive soil vapor extraction using borehole flux tunable hybrid plasma  

Science Conference Proceedings (OSTI)

A three-phased stakeholder participation program was conducted to support the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID). The US DOE`s Office of Technology Development (OTD) sponsored and directed the VOC-Arid ID. Its purpose was to develop and demonstrate new technologies for remediating VOC contamination in soil and ground water. The integrated demonstration, hosted by the Hanford site in Washington State, is being transitioned into the Department of Energy`s (DOE) Plume Focus Area. The Plume Focus Area has the same basic objectives as the ID, but is broader in scope and is a team effort with technology developers and technology users. The objective is to demonstrate a promising technology once, and if results warrant deploy it broadly across the DOE complex and in private sector applications.

Peterson, T.; McCabe, G.; Niesen, K.; Serie, P.

1995-05-01T23:59:59.000Z

416

Status of granular bed filter development program  

SciTech Connect

The objective of this project was to design and develop moving bed granular filters and ceramic candle filters for particulate control from combined cycle systems. Results are described.

Wilson, K.B.; Haas, J.C.; Prudhomme, J.

1995-11-01T23:59:59.000Z

417

Determination of filter-cake thicknesses from on-line flow measurements and gas/particle transport modeling  

SciTech Connect

The use of cylindrical candle filters to remove fine ({approx}0.005 mm) particles from hot ({approx}500- 900{degrees}C) gas streams currently is being developed for applications in advanced pressurized fluidized bed combustion (PFBC) and integrated gasification combined cycle (IGCC) technologies. Successfully deployed with hot-gas filtration, PFBC and IGCC technologies will allow the conversion of coal to electrical energy by direct passage of the filtered gases into non-ruggedized turbines and thus provide substantially greater conversion efficiencies with reduced environmental impacts. In the usual approach, one or more clusters of candle filters are suspended from a tubesheet in a pressurized (P {approx_lt}1 MPa) vessel into which hot gases and suspended particles enter, the gases pass through the walls of the cylindrical filters, and the filtered particles form a cake on the outside of each filter. The cake is then removed periodically by a backpulse of compressed air from inside the filter, which passes through the filter wall and filter cake. In various development or demonstration systems the thickness of the filter cake has proved to be an important, but unknown, process parameter. This paper describes a physical model for cake and pressure buildups between cleaning backpulses, and for longer term buildups of the ``baseline`` pressure drop, as caused by incomplete filter cleaning and/or re-entrainment. When combined with operating data and laboratory measurements of the cake porosity, the model may be used to calculate the (average) filter permeability, the filter-cake thickness and permeability, and the fraction of filter-cake left on the filter by the cleaning backpulse or re-entrained after the backpulse. When used for a variety of operating conditions (e.g., different coals, sorbents, temperatures, etc.), the model eventually may provide useful information on how the filter-cake properties depend on the various operating parameters.

Smith, D.H.; Powell, V. [USDOE Morgantown Energy Technology Center, WV (United States); Ibrahim, E. [Oak Ridge Inst. for Science and Education, TN (United States); Ferer, M. [West Virginia Univ., Morgantown, WV (United States). Dept. of Physics; Ahmadi, G. [National Research Council, Washington, DC (United States)

1996-12-31T23:59:59.000Z

418

Efficient filtering of composite events  

Science Conference Proceedings (OSTI)

Event Notification Services (ENS) are used in various applications such as remote monitoring and control, stock tickers, traffic control, or facility management. The performance issues of the filtering of primitive events has been widely studied. However, ...

Annika Hinze

2003-07-01T23:59:59.000Z

419

Kalman Filter–Based CMORPH  

Science Conference Proceedings (OSTI)

A Kalman filter (KF)-based Climate Prediction Center (CPC) morphing technique (CMORPH) algorithm is developed to integrate the passive microwave (PMW) precipitation estimates from low-Earth-orbit (LEO) satellites and infrared (IR) observations ...

Robert J. Joyce; Pingping Xie

2011-12-01T23:59:59.000Z

420

The Filtering of Meteorological Fields  

Science Conference Proceedings (OSTI)

A generalization of the popular Shapiro filters is described which allows the suppression of a broader band of frequencies near the sampling limit corresponding to two-grid-length waves. Applications to high-order finite difference models are ...

R. James Purser

1987-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "filter technology evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ensemble Filtering for Nonlinear Dynamics  

Science Conference Proceedings (OSTI)

A method for data assimilation currently being developed is the ensemble Kalman filter. This method evolves the statistics of the system by computing an empirical ensemble of sample realizations and incorporates measurements by a linear ...

Sangil Kim; Gregory L. Eyink; Juan M. Restrepo; Francis J. Alexander; Gregory Johnson

2003-11-01T23:59:59.000Z

422

Electric and Magnetic Fields (EMF) RAPID Program Engineering Project 8: FINAL REPORT, Evaluation of Field Reduction Technologies, Volume 1 (Report) and Volume 2 (Appendices)  

SciTech Connect

This draft report consists of two volumes. Volume 1, the main body, contains an introducto~ sectionj an overview of magnetic fields sectio~ and field reduction technology evaluation section. Magnetic field reduction methods are evalpated for transmission lines, distribution Iines,sulxtations, building wiring applkmd machinery, and transportation systems. The evaluation considers effectiveness, co% and other ftiors. Volume 2 contains five appendices, Append~ A presents magnetic field shielding information. Appendices B and C present design assumptions and magnetic field plots for transmission and distribution lines, respectively. Appendices D and E present cost estimate details for transmission and distribution limes, respectively.

Commonwealth Associates, Inc.; IIT Research Institute

1997-08-01T23:59:59.000Z

423

Program mid-year summaries research, development, demonstration, testing and evaluation: Office of Technology Development, FY 1993  

SciTech Connect

This mid-year review provides a summary of activities within the Office of Technology Development with individual presentations being made to DOE HQ and field management staff. The presentations are by EM-541, 542, 551, and 552 organizations.

Not Available

1993-10-01T23:59:59.000Z

<