Powered by Deep Web Technologies
Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology April 22, 2011 - 10:17am Addthis Photo courtesy of General Electric Photo courtesy of General Electric Minh Le Minh Le Program Manager, Solar Program Earlier this month, General Electric announced plans to enter the global marketplace for solar photovoltaic (PV) panels in a big way - and to do it, they will be using technology pioneered at the Department of Energy's National Renewable Energy Lab (NREL). The record-breaking Cadmium-Telluride (CdTe) thin film photovoltaic technology GE has chosen for its solar panels was originally developed more than a decade ago by a team of scientists led by NREL's Xuanzhi Wu, and

2

Solar panel  

SciTech Connect

A solar panel is shown for use as a double panel window structure. It has an outer frame formed by an H-shaped extrusion that has one of its outermost legs shortened, and a pair of generally parallel legs or flanges that are inwardly directed of the frame. The outer surface of these flanges are furnished with a dual pressure-sensitive adhesive tape having a width between 1/4 inch and 1 inch. A pane of transparent material is sealed around its periphery into engagement with the adhesive tape for forming a double pane solar panel. Several modifications are also shown for exerting a mechanical locking force on at least one of the panes.

Sitzler, E.R.; Moore, F.W.

1984-06-19T23:59:59.000Z

3

Functional requirements for component films in a solar thin-film photovoltaic/thermal panel  

SciTech Connect

The functional requirements of the component films of a solar thin-film photovoltaic/thermal panel were considered. Particular emphasis was placed on the new functions, that each layer is required to perform, in addition to their pre-existing functions. The cut-off wavelength of the window layer, required for solar selectivity, can be achieved with charge carrier concentrations typical of photovoltaic devices, and thus does not compromise electrical efficiency. The upper (semiconductor) absorber layer has a sufficiently high thermal conductivity that there is negligible temperature difference across the film, and thus negligible loss in thermal performance. The lower (cermet) absorber layer can be fabricated with a high ceramic content, to maintain high solar selectivity, without significant increase in electrical resistance. A thin layer of molybdenum-based cermet at the top of this layer can provide an Ohmic contact to the upper absorber layer. A layer of aluminium nitride between the metal substrate and the back metal contact can provide electrical isolation to avoid short-circuiting of series-connected cells, while maintaining a thermal path to the metal substrate and heat extraction systems. Potential problems of differential contraction of heated films and substrates were identified, with a recommendation that fabrication processes, which avoid heating, are preferable. (author)

Johnston, David [Power and Energy Research Group, School of Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST (United Kingdom)

2010-03-15T23:59:59.000Z

4

Reinventing the solar panel  

SciTech Connect

This article discusses new technology in solar panels. PowerSource is a solar collector which not only is less expensive than conventional panels to purchase and install, but also increases the electrical output by almost 20%. This article describes the results of testing this system.

Scanlon, M.

1995-08-01T23:59:59.000Z

5

Universal solar concentrator panel  

SciTech Connect

This patent describes a solar concentrator device. It comprises: a solar energy receiver; and a flat solar energy reflector arranged to reflect solar energy to the receiver, the reflector including a substantially square-shaped frame limiting an inner space, individual flat reflective panels arranged in the space in a first group or rows extending in a first direction and a second group of rows extending in a second direction substantially transverse to the first direction and so that each of the panels is turnable about three mutually perpendicular axes, and means for mounting the panels so that they are turnable about the axes. The mounting means including first means which connect the panels in the rows extending in one of the directions so that the panels in each of the rows extending in the one direction are jointly turnable about a first one of the axes, second means for mounting each of the panels so that in each of the rows extending in the one direction each of the panels is turnable about a second one of the axes, and third means for mounting each panel in each of the rows extending in the one direction so that each of the panels is turnable about a third one of the axes. This patent also describes a solar concentrator device, wherein the receiver includes a box forming an inner chamber, a plurality of photovoltaic cells sealed with a clear plastic and accommodated in the chamber, and water filling the chamber and surrounding the photovoltaic cells.

Bagno, R.G.

1991-03-12T23:59:59.000Z

6

Solar reflection panels  

DOE Patents (OSTI)

A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite panel comprises a front sheet affixed to a surface of a core material, preferably a core material comprising a honeycomb structure, and a back sheet affixed to an opposite surface of the core material. The invention may further comprise a sealing strip, preferably comprising EPDM, positioned between the glass mirror and the front surface of the composite panel. The invention also is of methods of making such solar collectors.

Diver, Jr., Richard B. (Albuquerque, NM); Grossman, James W. (Albuquerque, NM); Reshetnik, Michael (Boulder, CO)

2006-07-18T23:59:59.000Z

7

Copper and Transparent-Conductor Reflectarray Elements on Thin-Film Solar Cell Panels  

E-Print Network (OSTI)

This work addresses the integration of reflectarray antennas (RA) on thin film Solar Cell (SC) panels, as a mean to save real estate, weight, or cost in platforms such as satellites or transportable autonomous antenna systems. Our goal is to design a good RA unit cell in terms of phase response and bandwidth, while simultaneously achieving high optical transparency and low microwave loss, to preserve good SC and RA energy efficiencies, respectively. Since there is a trade-off between the optical transparency and microwave surface conductivity of a conductor, here both standard copper and transparent conductors are considered. The results obtained at the unit cell level demonstrates the feasibility of integrating RA on a thin-film SC, preserving for the first time good performance in terms of both SC and RA efficiency. For instance, measurement at X-band demonstrate families of cells providing a phase range larger than 270{\\deg} with average microwave loss of -2.45dB (resp. -0.25dB) and average optical transpa...

Dreyer, Philippe; Nicolay, Sylvain; Ballif, Christophe; Perruisseau-Carrier, Julien

2013-01-01T23:59:59.000Z

8

Solar Panels Plus LLC | Open Energy Information  

Open Energy Info (EERE)

Panels Plus LLC Jump to: navigation, search Name Solar Panels Plus LLC Place Chesapeake, Virginia Zip 23320 Sector Solar Product Solar Panels Plus LLC distributes solar energy...

9

Hexagon solar power panel  

SciTech Connect

A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

Rubin, Irwin (Oxnard, CA)

1978-01-01T23:59:59.000Z

10

Large-area silicon-film{sup {trademark}} panels and solar cells. Phase I annual technical report, July 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

AstroPower is establishing a low cost manufacturing process for Silicon-Film{trademark} solar cells and panels by taking advantage of the continuous nature of the Silicon-Film{trademark} technology. Under this effort, each step used in Silicon-Film{trademark} panel fabrication is being developed into a continuous/in-line manufacturing process. The following benefits are expected: an accelerated reduction of PV manufacturing cost for installed systems; a foundation for significantly increased production capacity; and a reduction in handling and waste streams. The process development will be based on a new 31-cm wide continuous Silicon-Film{trademark} sheet. Long-term goals include the development of a 24W, 30 cm x 60 cm Silicon-Film{trademark} solar cell and a manufacturing capability for a 384W, 4 inches x 8 inches Silicon-Film{trademark} panel for deployment in utility-scale applications.

Rand, J.A.; Barnett, A.M.; Checchi, J.C.; Culik, J.S. [AstroPower, Inc., Solar Park, Newark, DE (United States)] [and others

1996-06-01T23:59:59.000Z

11

Solar photovoltaic panels tracking system  

Science Conference Proceedings (OSTI)

This research project concentrates on the design and control of a two-degrees-of-freedom orientation system for the photovoltaic solar panels in sunny regions which are considered very rich in solar energy. A brief background on the sun path and behavior ... Keywords: altitude, azimuth, closed-loop control, open-loop control, orientation, sensor, solar photovoltaic panels, solar tracking

Ahmed Abu Hanieh

2010-05-01T23:59:59.000Z

12

Solar panel with storage  

SciTech Connect

A self contained, fully automatic, vertical wall panel, solar energy system characterized by having no moving parts in the panel. The panel is substantially a shallow rectangular box having a closed perimeter, an outer insulating chamber which is substantially a double glazed window, and an inner energy storage chamber which is provided with containers of phase change materials. The energy storage chamber is provided with air entrance and exit passages which communicate with the space to be heated. Thermostatically controlled blowers serve to move air from the space to be heated across the containers of phase change material and back to the space to be heated. Thermostatically controlled blowers also serve to move insulating material into and out of the insulating chamber at appropriate times.

Zilisch, K.P.

1984-05-08T23:59:59.000Z

13

Large-area Silicon-Film{trademark} panels and solar cells  

DOE Green Energy (OSTI)

This report describes AstroPower`s success in improving its material and processing capabilities during the first phase of this 3-year contract through the Photovoltaic Manufacturing Technology (PVMaT) program. Key results include the demonstration of a 14.6%-efficient Silicon-Film{trademark} solar cell. This laboratory result (1.0 cm{sup 2}) provides the direction needed to develop and optimize continuous, in-line production processes. The continuous nature of the Silicon-Film{trademark} sheet fabrication process is being extended into the solar-cell processing sequence. Plans are in place to make the wafer cleaning, gettering, and diffusion steps all continuous during the scope of this program.

Rand, J.A.; Barnett, A.M.; Checchi, J.C. [AstroPower, Inc., Newark, DE (United States)] [and others

1997-01-01T23:59:59.000Z

14

SOLAR REFLE TION PANELS  

Unlike other solar collectors that are known to lose solar reflectivity due to issues with their design, the solar collector

15

Plane and parabolic solar panels  

E-Print Network (OSTI)

We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.

Sales, J H O

2009-01-01T23:59:59.000Z

16

Plane and parabolic solar panels  

E-Print Network (OSTI)

We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.

J. H. O. Sales; A. T. Suzuki

2009-05-14T23:59:59.000Z

17

How Solar Panels Work  

NLE Websites -- All DOE Office Websites (Extended Search)

their understanding of this concept. Finally, students will investigate careers in solar energy and report on the growing solar industry. LESSON OVERVIEW Grade Level &...

18

IMAGES REVEAL TINY FLAWS IN FILMS FOR SOLAR ...  

Science Conference Proceedings (OSTI)

... over large surfaces. Such films are used in making solar energy panels and large flat-panel displays. The efficiency of the ...

19

for doubling solar panel  

E-Print Network (OSTI)

less than 1 day, and generally greater than 0.8 at solar and ocean tidal periods. Spectral peaks at 16 field recordsdisplayvery similartidal signatureswith typical amplitudes of about ±3 pV m-1, whichcan significantat the 95% level,and are greater than 0.8 at the ocean tidal and solar daily variation periodsof 1, 2

20

Solar Reflection Panels - Energy Innovation Portal  

Patent 7,077,532: Solar reflection panels A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front ...

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solar absorption surface panel  

DOE Patents (OSTI)

A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

Santala, Teuvo J. (Attleboro, MA)

1978-01-01T23:59:59.000Z

22

Panels for collecting solar energy  

Science Conference Proceedings (OSTI)

A solar energy collecting panel is described for heating by solar radiation a liquid circulating in a section of piping and constituted by a flat rectangular box thermally closed by a cover transparent to solar radiation and containing the said section of piping. The said box is constituted by a stamped metal sheet whose surface is less than 1 M squared and also contains a stamped copper tray in intimate contact with the piping section, the said tray supporting by itself the transparent cover and being thermally spaced from the box, the insulating pad being constituted by a in situ moulded block of rigid foam. Such a panel is intended to be used for feeding a central heating system and/or a hot water distribution system, especially for household purposes or swimming pools.

Neny, M.

1980-11-18T23:59:59.000Z

23

Isothermal process solar collector panel  

SciTech Connect

An isothermal process solar collector panel is disclosed. The panel includes a collector plate for absorbing radiant heat; and a plurality of isothermal process heat pipes in an array over a surface of the collector plate. Each heat pipe is closed at both ends and contains thermodynamic working fluid for transferring heat energy from the collector plate to a second fluid fowing through a manifold pipe for conducting the heat energy from the collector panel. The manifold pipe is coupled to the collector plate and has an evaporator section wherein heat energy is transferred from the collector plate to the thermodynamic working fluid; and the other end of each heat pipe is positioned within the manifold pipe ad has a condenser section wherein heat energy is transferred from the thermodynamic working fluid to the second fluid flowing through the manifold pipe.

Watt, R.E.

1978-11-28T23:59:59.000Z

24

Large-area Silicon-Film{trademark} panels and solar cells. Phase 2 technical report, January 1996--December 1996  

DOE Green Energy (OSTI)

The Silicon-Film{trademark} process is on an accelerated path to large-scale manufacturing. A key element in that development is optimizing the specific geometry of both the Silicon-Film{trademark} sheet and the resulting solar cell. That decision has been influenced by cost factors, engineering concerns, and marketing issues. The geometry investigation has focused first on sheet nominally 15 cm wide. This sheet generated solar cells with areas of 240 cm{sup 2} and 675 cm{sup 2}. Most recently, a new sheet fabrication machine was constructed that produces Silicon-Film{trademark} with a width in excess of 30 cm. Test results have indicated that there is no limit to the width of sheet generated by this process. The new wide material has led to prototype solar cells with areas of 300, 400, and 1,800 cm{sup 2}. Significant advances in solar-cell processing have been developed in support of fabricating large-area devices, including uniform emitter diffusion and anti-reflection coatings.

Rand, J.A.; Barnett, A.M.; Checchi, J.C.; Culik, J.S.; Collins, S.R.; Ford, D.H.; Hall, R.B.; Jackson, E.L.; Kendall, C.L. [AstroPower Inc., Newark, DE (United States)

1997-03-01T23:59:59.000Z

25

Another SunShot Success: GE to Make PrimeStar Solar Panels at New Colorado  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Another SunShot Success: GE to Make PrimeStar Solar Panels at New Another SunShot Success: GE to Make PrimeStar Solar Panels at New Colorado Plant Another SunShot Success: GE to Make PrimeStar Solar Panels at New Colorado Plant October 14, 2011 - 4:03pm Addthis Thin film solar panels produced by General Electric’s PrimeStar in Arvada, Colorado | Image courtesy of Edelman. Thin film solar panels produced by General Electric's PrimeStar in Arvada, Colorado | Image courtesy of Edelman. Minh Le Minh Le Program Manager, Solar Program Yesterday, General Electric (GE) announced that it will build a new thin-film photovoltaic (PV) solar panel manufacturing facility in Aurora, Colorado, to produce highly-efficient, low-cost panels that are based on innovative technology originally developed at the Energy Department's

26

Solar Decathlon Technology Spotlight: Structural Insulated Panels |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decathlon Technology Spotlight: Structural Insulated Panels Decathlon Technology Spotlight: Structural Insulated Panels Solar Decathlon Technology Spotlight: Structural Insulated Panels September 20, 2011 - 7:13am Addthis These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) Alexis Powers EDITOR'S NOTE: Originally posted on the Solar Decathlon News Blog on September 19, 2011. Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Structural insulated panels (SIPs) are prefabricated structural elements

27

Solar Panels … A Life Story  

NLE Websites -- All DOE Office Websites (Extended Search)

PLAN PLAN Solar Panels: A Life Story Grade Level: 7-9 Subjects: Science & Economics Length: 3-4 Class Periods Solar Panels - A Life Story INTRODUCTION As solar power gains popularity, solar panels are quickly becoming a part of everyday life. However, the public knows surprisingly little about these energy sources. Where do solar panels come from? How do they work? How much do they really cost? This lesson plan will guide students toward answers by exploring the many factors that influence how solar panels are manufactured. LESSON OVERVIEW Grade Level & Subject: 7 - 9, Science and Economics Length: 3 - 4 class periods Objectives: After completing this lesson, students will be able to:  Identify the raw materials that comprise a solar (photovoltaic, or PV) panel, where

28

Solar reflection panels - Energy Innovation Portal  

A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite ...

29

Sandia National Laboratories Solar Reflection Panels  

Sandia National Laboratories Solar Reflection Panels HTTPS://IP.SANDIA.GOV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia ...

30

Terrestrial applications of bifacial photovoltaic solar panels  

Science Conference Proceedings (OSTI)

Bifacial Photovoltaic solar cells (so-called transparent bifacial photovoltaic solar cells) offer additional absorption by rear side, which is a significant advantage over ordinary Photovoltaic solar cells. A range of experiments have been done on bifacial ... Keywords: absorption, panels, photovoltaic, solar cells, terrestrial

P. Ooshaksaraei; R. Zulkifli; S. H. Zaidi; M. Alghoul; A. Zaharim; K. Sopian

2011-10-01T23:59:59.000Z

31

Ultrafast thermal cycling of solar panels  

SciTech Connect

Two new cyclers that utilize a novel hybrid approach to perform fast thermal cycling of solar panels have been built and are now operational in the Mechanics and Materials Technology Center at The Aerospace Corporation. These cyclers are part of a continuing effort to minimize solar cell life test durations by accelerating the cycling rates. These fully automated cyclers, which provide continuous unmanned cycling in a gaseous nitrogen atmosphere, can execute 5 min cycles, thus yielding in excess of 100,000 cycles per year. They also have a unique capability of verifying solar panel functionality without interruption of cycling, so that cycling doesn`t continue on nonfunctioning panels.

Wall, T.S.; Valenzuela, P.R.; Sue, C.

1998-08-15T23:59:59.000Z

32

Solar Control Thin Films Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sputtering equipment Solar Control Thin Films Laboratory The Solar Control Thin Films lab develops novel thin film coatings, deposition technologies, and device systems for...

33

Thin film photovoltaic panel and method  

DOE Patents (OSTI)

A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

1991-06-11T23:59:59.000Z

34

EERE Roofus' Solar and Efficient Home: Solar Panels  

NLE Websites -- All DOE Office Websites (Extended Search)

of Roofus, a golden retriever, sitting in front of three black, rectangular solar panels. When you turn on a light in your home, electricity flows through wires up to...

35

Installation package for concentrating solar collector panels  

DOE Green Energy (OSTI)

Northrup, Inc., has developed and delivered 300 square feet of Concentrating Solar Collector (ML Series) and Attitude Control System, under the direction of the National Aeronautics and Space Administration. The ''ML Series'' Solar Collector Panels comprise a complete package array consisting of collector panels using modified Fresnel Prismatic Lenses for a 10 to 1 concentrating ration, supporting framework, fluid manifolding and tracking drive system, in unassembled components for field erection. The Installation, Operation and Maintenance Manual, Warranty, List of Materials, Sub-Assembly drawings and Final Field Assembly Drawings are included in the package.

Not Available

1978-08-01T23:59:59.000Z

36

Solar Panels to Help Iowa Students Learn About Renewable Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Panels to Help Iowa Students Learn About Renewable Energy Solar Panels to Help Iowa Students Learn About Renewable Energy May 10, 2010 - 10:53am Addthis Five Iowa schools...

37

Carports with Solar Panels do Double Duty for Navy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carports with Solar Panels do Double Duty for Navy Carports with Solar Panels do Double Duty for Navy May 14, 2010 - 12:22pm Addthis Joshua DeLung What does this project do? In...

38

San Diego Solar Panels Generate Clean Electricity Along with...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Diego Solar Panels Generate Clean Electricity Along with Clean Water San Diego Solar Panels Generate Clean Electricity Along with Clean Water May 26, 2010 - 12:11pm Addthis San...

39

Efficient light trapping structure in thin film silicon solar cells  

E-Print Network (OSTI)

Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

Sheng, Xing

40

Solar collector panels (process-method). Rainwater collection and storage  

DOE Green Energy (OSTI)

A process for producing panels for solar heating of potable water is described. The panels have PVC tubing flat-coiled into square or rectangular shapes. Also described is a cistern for collecting and storing rainwater. (LEW)

Mowery, J.W.

1981-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

City and County of Denver - Solar Panel Permitting (Colorado) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Panel Permitting (Colorado) Solar Panel Permitting (Colorado) City and County of Denver - Solar Panel Permitting (Colorado) < Back Eligibility Commercial Construction General Public/Consumer Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Colorado Program Type Solar/Wind Permitting Standards Provider Department of Development Services Construction, Electrical, Plumbing and Zoning Permits* are required for Photovoltaic (PV) systems installed in the city of Denver. Denver provides same day permit review for most solar panel projects. More complex engineering projects may still be required to go through the Plan Review process. To obtain Zoning Permits for flush mounted solar panels, applicants must

42

"Increasing Solar Panel Efficiency And Reliability By Evaporative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing Solar Panel Efficiency And Reliability By Evaporative Cooling" Inventors..--.. Lewis Meixler, Charles Gentile, Patricia Hillyer, Dylan Carpe, Jason Wang, Caroline Brooks...

43

Solar Panels to Help Iowa Students Learn About Renewable Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Panels to Help Iowa Students Learn About Renewable Energy Panels to Help Iowa Students Learn About Renewable Energy Solar Panels to Help Iowa Students Learn About Renewable Energy May 10, 2010 - 10:53am Addthis Five Iowa schools will receive rooftop solar panels this summer to help teach students about the technology | File Photo Five Iowa schools will receive rooftop solar panels this summer to help teach students about the technology | File Photo Stephen Graff Former Writer & editor for Energy Empowers, EERE Learning about the sun's power is just as important as harnessing it. New solar panels to be installed on the rooftops of five Iowa middle schools will give students hands-on experience with the technology and help offset some energy costs. "We really want this be an educational component to the schools'

44

Tax Credits Give Thin-Film Solar a Big Boost | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar a Big Boost October 18, 2010 - 2:00pm Addthis MiaSol will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act...

45

Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels  

E-Print Network (OSTI)

1 Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels Solar Thermal R-35 Rim Joist Area 5" open cell spray foam 2" mineral wool insulation blanket R-10 Basement Slab electric WH #12;NZERTF Gaithersburg, MD Solar Photovoltaic Array Roof Mounted South half of main roof

Oak Ridge National Laboratory

46

Solar Panels Hit Energy Milestone For Potawatomi and Milwaukee | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Panels Hit Energy Milestone For Potawatomi and Milwaukee Panels Hit Energy Milestone For Potawatomi and Milwaukee Solar Panels Hit Energy Milestone For Potawatomi and Milwaukee October 26, 2011 - 10:44am Addthis The Forest County Potawatomi Tribe finishes installing solar panels on a Milwaukee, Wisconsin, administration building. | Photo courtesy of the Forest County Potawatomi Tribe The Forest County Potawatomi Tribe finishes installing solar panels on a Milwaukee, Wisconsin, administration building. | Photo courtesy of the Forest County Potawatomi Tribe Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office "With the help of Recovery Act funding, clean energy projects across the county are creating skilled jobs, reducing our reliance on fossil fuels and saving consumers money on their energy bills."

47

Obama Administration Announces Plans to Install New Solar Panels...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

By installing solar panels on their homes, consumers are able to effectively lock in the price of electricity they will pay in the years ahead, acting as an insulator against...

48

Discrete, recursive supply chain model for solar panel manufacturing  

E-Print Network (OSTI)

A computer model to optimize global expansion of the production of solar panels is presented. The model is modular, extensible, and fast compared to existing specialized optimization software which use integer linear ...

Pez, Daan

2010-01-01T23:59:59.000Z

49

Infrared NDT methods applied to solar cell and panel characterization  

DOE Green Energy (OSTI)

Infrared nondestructive testing (NDT) methods are described that have a good potential for providing valuable data concerning solar cell or panel characteristics without requiring contact with the photovoltaic device. Preliminary tests with cells and panels were conducted and the infrared NDT results are presented and discussed. (MHR)

Green, D. R.; Olsen, L. C.

1978-10-20T23:59:59.000Z

50

Thin Film Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Thin Film Solar Technologies Jump to: navigation, search Name Thin Film Solar Technologies...

51

An Update on White House Solar Panels and Our Solar Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Update on White House Solar Panels and Our Solar Program An Update on White House Solar Panels and Our Solar Program An Update on White House Solar Panels and Our Solar Program June 20, 2011 - 6:11pm Addthis Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies Program We cannot win the future without winning the clean energy race, which is why President Obama laid out a clear goal to increase our nation's clean energy share and continue to build a 21st century clean energy economy. Last fall, to underscore the Obama Administration's commitment to clean and renewable energy, Energy Secretary Steven Chu and CEQ Chair Nancy Sutley announced that the Energy Department would lead a project to install American solar photovoltaic panels and a solar hot water heater on the roof of the White House.

52

An Update on White House Solar Panels and Our Solar Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White House Solar Panels and Our Solar Program White House Solar Panels and Our Solar Program An Update on White House Solar Panels and Our Solar Program June 20, 2011 - 6:11pm Addthis Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies Program We cannot win the future without winning the clean energy race, which is why President Obama laid out a clear goal to increase our nation's clean energy share and continue to build a 21st century clean energy economy. Last fall, to underscore the Obama Administration's commitment to clean and renewable energy, Energy Secretary Steven Chu and CEQ Chair Nancy Sutley announced that the Energy Department would lead a project to install American solar photovoltaic panels and a solar hot water heater on the roof of the White House.

53

Solar Decathlon Technology Spotlight: Structural Insulated Panels...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2011 - 7:13am Addthis These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) These...

54

Bonded Bracket Assmebly for Frameless Solar Panels  

SciTech Connect

In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $1 per watt for photovoltaic systems would be equivalent to 6???¢/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $.50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics: Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules Topic 2: Roof and Ground Mount Innovations Topic 3: Transformational Photovoltaic System Designs Topic 4: Development of New Wind Load Codes for PV Systems The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included: 1) The development of an innovative quick snap bracket assembly that would be bonded to frameless PV modules for commercial rooftop installations. 2) The development of a composite pultruded rail to replace traditional racking materials. 3) In partnership with a roofing company, pilot the certification of a commercial roof to be solar panel compliant, eliminating the need for structural analysis and government oversight resulting in significantly decreased permitting costs. 4) Reduce the sum of all cost impacts in topic #2 from a baseline total of $2.05/watt to $.34/watt.

Murray, Todd

2013-01-30T23:59:59.000Z

55

Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels  

SciTech Connect

The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

Klobukowski, Erik R [ORNL; Tenhaeff, Wyatt E [ORNL; McCamy, James [PPG; Harris, Caroline [PPG; Narula, Chaitanya Kumar [ORNL

2013-01-01T23:59:59.000Z

56

Mir Environmental Effects Payload and Returned Mir Solar Panel Cleanliness  

Science Conference Proceedings (OSTI)

The MIR Environmental Effects Payload (MEEP) was attached to the Docking Module of the MIR space station for 18 months during calendar years 1996 and 1997 (March 1996, STS 76 to October 1997, STS 86). A solar panel array with more than 10 years space ...

Harvey Gale A.; Humes Donald H.; Kinard William H.

1999-05-01T23:59:59.000Z

57

EXPERIMENTAL TESTING OF TWO SOLAR PANEL SIMULATIONS Krisztina Leban  

E-Print Network (OSTI)

from both models with experimental results, we can conclude that model 2 is the most reliable one. Key standard test condition values for temperature and irradiance. 2. Photovoltaic panel models 2.1. First PV was neglected in order to simplify the model [2], [3]. The diode, D represents the PN junction of the PV solar

Ritchie, Ewen

58

Available Technologies: Thinner Film Silicon Solar Cells  

Berkeley Lab scientists have designed a new approach to create highly efficient thin film silicon solar cells. This technology promises to lower solar cell material ...

59

Design package for concentrating solar collector panels  

DOE Green Energy (OSTI)

Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The Northrup concentrating solar collector is a water/glycol/working fluid type, dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, fiber glass insulation and weighs 98 pounds. The gross collector area is about 29.4/sup 2/ per collector. A collector assembly includes four collector units within a tracking mount array.

Not Available

1978-08-01T23:59:59.000Z

60

Thin film solar energy collector  

DOE Patents (OSTI)

A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

1983-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

OpenEI/PageKeyword home solar panels | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search A list of all pages that have property "OpenEIPageKeyword" with value "home solar panels" Gateway:Solar + Property: OpenEIPageKeyword Value: home solar...

62

Divya Energy Solar Panel Savings Calculator | Open Energy Information  

Open Energy Info (EERE)

Divya Energy Solar Panel Savings Calculator Divya Energy Solar Panel Savings Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Divya Energy Solar Panel Savings Calculator Agency/Company /Organization: Boston Cleanweb Hackathon Resource Type: Application prototype User Interface: Website Website: hackerleague.org/hackathons/boston-cleanweb-hackathon/hacks/divya-ener Web Application Link: www.divyaenergy.com/cleanweb/ OpenEI Keyword(s): Cleanweb Hackathon, Boston, Community Generated Coordinates: 42.3490737°, -71.0481764° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3490737,"lon":-71.0481764,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

63

Arkansas Students Get Their Hands Dirty in Solar Panel Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Students Get Their Hands Dirty in Solar Panel Project Arkansas Students Get Their Hands Dirty in Solar Panel Project Arkansas Students Get Their Hands Dirty in Solar Panel Project September 9, 2010 - 5:47pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this mean for me? Lamar School District installed four solar panels with Recovery Act funds,10 more on the way Students helped install solar panels as part of school-to-work transition program 45 panels at City Hall to be installed by students Wallie Shaw remembers where he got the idea to do a hands-on solar panel project for his Jobs for America's Graduates (JAG) students, a school-to-work transition program focused on helping at-risk youth graduate from high school. "Having been in the military and stationed in Germany, I saw a magazine

64

Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators  

DOE Green Energy (OSTI)

The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

Martin, P.M.; Affinito, J.D.; Gross, M.E.; Bennett, W.D.

1995-03-01T23:59:59.000Z

65

The Reality of Solar Panels at 50% Cost | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Reality of Solar Panels at 50% Cost The Reality of Solar Panels at 50% Cost The Reality of Solar Panels at 50% Cost August 3, 2010 - 12:01pm Addthis Dr. Arun Majumdar Dr. Arun Majumdar Former Director, Advanced Research Projects Agency - Energy Last week, residents in the Baltimore-Washington area experienced their 42nd day of 90+ degree temperatures this year. Wouldn't it be nice to capture more of that intense sunlight and convert it into electricity? Modern photovoltaic cells (more commonly known as solar panels) were invented in the 1950s at Bell Laboratories. But despite the passage of over fifty years, solar energy's full potential has yet to be tapped due in part to the cost of actually putting the pieces of a solar panel together -- installing solar panels still far exceeds the cost of using traditional

66

Studying the effect of shading on Solar Panel using MATLAB  

E-Print Network (OSTI)

Renewable energy sources plays an important role in electricity generation. Various renewable energy sources like wind, solar, geothermal, ocean thermal, and biomass can be used for generation of electricity and for meeting our daily energy needs. Energy from the sun is the best option for electricity generation as it is available everywhere and is free to harness. Solar Photovoltaic (PV) array converts the solar energy into electrical energy. The performance of Photovoltaic array is affected by solar isolation, shading, temperature and this will result in displacement of the Maximum Power Point(MPP). The output characteristics show the multiple maxima point. To get the maximum efficiency from Shaded Photovoltaic (PV) array, it is import to track the GPP from the various local maxima. This paper makes a study on the various Maximum Power Point Tracker (MPPT) for Photovoltaic (PV) array. Also this paper explains the effect of change in solar isolation and temperature and shading effect on solar panel and give the steps to track GPP.

Smita Ganesh Pachp; M. E. Second; Year Elec; Ssbts C O E Jalgaon

2012-01-01T23:59:59.000Z

67

Developement of a digitally controlled low power single phase inverter for grid connected solar panel.  

E-Print Network (OSTI)

?? The work consists in developing a power conversion unit for solar panel connected to the grid. This unit will be a single phase inverter (more)

Marguet, Raphael

2010-01-01T23:59:59.000Z

68

SSC HHV Solar Technologies JV | Open Energy Information  

Open Energy Info (EERE)

JV Jump to: navigation, search Name SSC & HHV Solar Technologies JV Place Ontario, Canada Sector Solar Product Canada-based thin film solar panel manufacturing facility....

69

Innovative Solar Panel Maker Scales Up, Lowering Costs while Creating Jobs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Solar Panel Maker Scales Up, Lowering Costs while Innovative Solar Panel Maker Scales Up, Lowering Costs while Creating Jobs Innovative Solar Panel Maker Scales Up, Lowering Costs while Creating Jobs May 16, 2011 - 12:41pm Addthis The end of Abound Solar’s PV manufacturing line | Photo Courtesy of Abound Solar The end of Abound Solar's PV manufacturing line | Photo Courtesy of Abound Solar Minh Le Minh Le Program Manager, Solar Program It's one thing to call solar energy a "growth industry," it's quite another to witness firsthand how quickly a company on the cutting edge of that industry can grow -- all the while growing jobs right here in America. The Department's Photovoltaic (PV) Technology Incubator program has brought me in contact with a number of dynamic solar startups that fit that mold. I

70

Obama Administration Announces Plans to Install New Solar Panels on the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces Plans to Install New Solar Panels on Announces Plans to Install New Solar Panels on the White House Residence Obama Administration Announces Plans to Install New Solar Panels on the White House Residence October 5, 2010 - 12:00am Addthis WASHINGTON - U.S. Energy Secretary Steven Chu and Council of Environmental Quality (CEQ) Chair Nancy Sutley today announced plans to install solar panels and a solar hot water heater on the roof of the White House Residence. These two solar installations will be part of a Department of Energy demonstration project showing that American solar technologies are available, reliable, and ready for installation in homes throughout the country. Secretary Chu and Chair Sutley made the announcement during CEQ's 2010 GreenGov Symposium, which is bringing together leaders from Federal,

71

Selecting the Accurate Solar Panel Simulation Model Ritchie, Andrew Ewen; Leban, Krisztina Monika  

E-Print Network (OSTI)

that model 2 is the most reliable one. I. INTRODUCTION Solar cells are a renewable, non-polluting source condition values for temperature and irradiance. II. PHOTOVOLTAIC PANEL MODELS A. First PV ModelSelecting the Accurate Solar Panel Simulation Model Ritchie, Andrew Ewen; Leban, Krisztina Monika

Ritchie, Ewen

72

Real time intelligent process control system for thin film solar cell manufacturing  

SciTech Connect

This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStratas fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process on-the-fly in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

George Atanasoff

2010-10-29T23:59:59.000Z

73

Largest Solar Panel Installation at a U.S. University Goes Live |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest Solar Panel Installation at a U.S. University Goes Live Largest Solar Panel Installation at a U.S. University Goes Live Largest Solar Panel Installation at a U.S. University Goes Live November 4, 2010 - 6:10pm Addthis Sen. Menendez, Rep. Pascrell, John Lushetsky and other officials at the ribbon cutting. Sen. Menendez, Rep. Pascrell, John Lushetsky and other officials at the ribbon cutting. John Lushetsky A couple of weeks ago, I had the opportunity to participate in a ribbon cutting event for the largest solar installation on a United States university campus. It was an honor to stand with Senator Robert Menendez, Representative Bill Pascrell, university administrators, faculty and students to celebrate William Paterson University's new solar panels. This project will have the capacity to produce 3.5 megawatts of clean

74

Carports with Solar Panels do Double Duty for Navy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carports with Solar Panels do Double Duty for Navy Carports with Solar Panels do Double Duty for Navy Carports with Solar Panels do Double Duty for Navy May 14, 2010 - 12:22pm Addthis Joshua DeLung What does this project do? In total, all of China Lake's solar PV projects generate enough electricity a year to power up to 1,200 houses on the grid provided by Southern California Edison, the local utility. The base estimates that it saves about $557,000 a year from the solar panels. At Naval Air Weapons Station China Lake, heat is a fact of life. The base is located on the edge of the Mojave Desert near Ridgecrest, Calif., where the blistering summer heat can actually peel the paint off cars. Longtime desert residents know how to deal with it, but thanks to an ongoing environmental program, many base employees no longer have to do so. Since

75

Automated solar panel assembly line. LSA task: production processes and equipment. Quarterly report No. 1  

DOE Green Energy (OSTI)

The objective of this program is to design, fabricate and demonstrate an automated solar cell module production line with the ultimate goal of reducing module assembly costs. During this reporting period the automated module design was completed. The design of the solar cell assembly prototype (SCAP) was about 75% completed and the solar panel lamination prototype (SPLP) was built and tested.

Somberg, H.

1979-04-08T23:59:59.000Z

76

Project Number: MQP-SJB-1A03 Solar Panel Peak Power Tracking System  

E-Print Network (OSTI)

Project Number: MQP-SJB-1A03 Solar Panel Peak Power Tracking System A Major Qualifying Project of a Maximum Peak Power Tracking (MPPT) controller for a solar photovoltaic battery charging system is proposed ................................................................................................. 8 2.1.1 Solar Power Fundamentals

Brown III, Donald R.

77

Method of and apparatus for enabling output power of solar panel to be maximized  

SciTech Connect

The D.C. Power supplied by a photovoltaic solar panel to a load is controlled by monitoring the slope of the panel voltage vs. Current characteristic and adjusting the current supplied by the panel to the load so that the slope is approximately unity. The slope is monitored by incrementally changing the panel load and indicating whether the resulting change in current derived from the panel is above or below a reference value, indicative of the panel voltage. In response to the change in the monitored current being above the reference value, the slope of a voltage vs. Current curve is greater than unity and the load is adjusted to decrease the current supplied by the panel to the load. Conversely, in response to the current being less than the reference value, the slope of the voltage vs. Current curve is less than unity and the load is adjusted to increase the current supplied by the panel to the load.

Baker, R.H.

1983-03-01T23:59:59.000Z

78

Radical Thinkers Needed to Help Get a Solar Panel on Every Roof |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radical Thinkers Needed to Help Get a Solar Panel on Every Roof Radical Thinkers Needed to Help Get a Solar Panel on Every Roof Radical Thinkers Needed to Help Get a Solar Panel on Every Roof January 9, 2012 - 5:00pm Addthis This solar powered residence was commissioned by Boston Edison as a demonstration of future trends in design and technology that would become commonplace in the early decades of the next millennium. Today, the Energy Department's SunShot Initiative is seeking to accelerate innovation and aggressively drive down cost through various funding opportunities. | Photo courtesy of Solar Design Associates. This solar powered residence was commissioned by Boston Edison as a demonstration of future trends in design and technology that would become commonplace in the early decades of the next millennium. Today, the Energy

79

Solar photovoltaic technology: The thin film option  

DOE Green Energy (OSTI)

Photovoltaics (PV) the direct conversion of sunlight to electricity was first discovered by scientists at the Bell Labs in 1954. In the late 1960's and 1970's most of the solar cell technology has been used for space applications to power satellites. The main work horse for the PV technology has been crystalline silicon (Si) solar cells. Over the past 15 years this has led to cost reduction from $35/kWh to about $0.30/kWh at the present time. Demonstrated reliability of 20 years or more has resulted in acceptance by several utilities. However, cost reductions in crystalline Si solar cells have been limited by the cost of wafering of ingots and the attendant loss of material. A number of Si sheet solar cells are also being investigated. In the past decade the emphasis of the research and development effort has been focused on thin film solar cells, which have the potential for generating power at much lower cost of $1-2/Wp. Thin film solar cells that are presently being investigated and are generating global attention are: amorphous silicon (a-Si:H), cadmium telluride (CdTe), and copper indium diselenide (CuInSe/sub 2,/ or CIS). In the past few years, considerable progress has been; made by all three of these thin film solar cells. This paper reviews the current status and future potential of these exiting thin film solar cell technologies.

Ullal, H.S.; Zweibel, K.; Sabisky, E.S.; Surek, T.

1988-01-01T23:59:59.000Z

80

Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209  

DOE Green Energy (OSTI)

NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

Sopori, B.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Interagency Advanced Power Group Solar Photovoltaic Panel Fall meeting minutes, October 22, 1992  

DOE Green Energy (OSTI)

This report contains discussions on the following topics: Leaf, TPL, and {sup 60}Co Gamma source testing facilities; in-house photovolatic research effort; US Army`s interest developing small thermophotovoatic power source for a variety of missions; charging lead acid batteries with unregulated photovolatic panels; testing of solar array panels for space applications; polycrystalline CuInSe{sub 2} & CdTe PV solar cells and, current activities in the US photovolatic program.

Not Available

1992-12-31T23:59:59.000Z

82

Tax Credits Give Thin-Film Solar a Big Boost | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credits Give Thin-Film Solar a Big Boost Tax Credits Give Thin-Film Solar a Big Boost Tax Credits Give Thin-Film Solar a Big Boost October 18, 2010 - 2:00pm Addthis MiaSolé will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act tax credits.| Photo courtesy of MiaSolé MiaSolé will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act tax credits.| Photo courtesy of MiaSolé Lorelei Laird Writer, Energy Empowers What are the key facts? MiaSolé adding more than ten times its current manufacturing capacity Company expects to double or triple its workforce with expansion Expansion is funded by $101 million in Recovery Act tax credit For MiaSolé, a relative newcomer to the solar energy market, 2010 has been

83

San Diego Solar Panels Generate Clean Electricity Along with Clean Water |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diego Solar Panels Generate Clean Electricity Along with Clean Diego Solar Panels Generate Clean Electricity Along with Clean Water San Diego Solar Panels Generate Clean Electricity Along with Clean Water May 26, 2010 - 12:11pm Addthis San Diego’s Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison San Diego's Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison Just north of the U.S.-Mexican border, San Diego's Otay Water Treatment Plant processes up to 34 million gallons of water a day. Thanks to the city's ambitious solar energy program, the facility may soon be able to do that with net zero electricity consumption. In early April, workers activated a 945-kW solar photovoltaic (PV) energy

84

Concrete concentrator panel development program for SolarOil project, Phase I  

DOE Green Energy (OSTI)

The results of the General Atomic (GA) fixed-mirror solar concentrator (FMSC) concrete panel development program are presented. The FMSC is part of the solar steam supply system proposed by GA for the SolarOil project. The program was conducted to determine the achievable accuracy of precast concrete concentrator panels and to investigate expedient and economical mass production of the panels. One steel form, two concrete forms, and three concrete panels were fabricated and about 1500 slat angle measurements made using a laser inspection fixture developed expressly for this purpose. All panels were 1.83 m (6 ft) long and had a 3.6 m (11 ft 10 in.) aperture and 71 slats. Proper concrete mixes, parting compounds, placement methods, vibrating techniques, and curing procedures were identified, and the hardware and techniques for stripping and turning the panels were tested. Based upon test results and structural calculations it was concluded that reasonably priced 5.5-m (18 ft) long panels can be produced with either steel or fiberglass-coated concrete forms with 95% to 99% of the slat area within +-0.25/sup 0/ of the desired angles. With steam curing, the production rate is one panel every other working day per 5.5 m (18 ft) of form length.

Nicolayeff, V.; Chow, G.S.; Koploy, M.

1980-05-01T23:59:59.000Z

85

Real time intelligent process control system for thin film solar cell manufacturing  

DOE Green Energy (OSTI)

All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStratas fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process on-the-fly in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

George Atanasoff

2010-10-29T23:59:59.000Z

86

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

solar-electric system (typical for thin-film panels currently) plus a 58% efficient solar-thermal system (flat-plate efficiency

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

87

Thin film absorber for a solar collector  

SciTech Connect

This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1985-01-01T23:59:59.000Z

88

Solar heating panel: Parks and Recreation Building, Saugatuck Township Park and Recreation Commission. Final report  

DOE Green Energy (OSTI)

This report is an account of the design and installation of a solar heating system on an existing building in Saugatuck, MI, using existing technology. The purpose of this program is to demonstrate the possibilities of alternative energy, educate local craftsmen, and make the building more useful to the community. The structure of the building is described. The process of insulating the structure is described. The design of the solar panel, headers, and strong box full of rocks for heat storage is given complete with blueprints. The installation of the system is also described, including photographs of the solar panel being installed. Included is a performance report on this system by Purbolt's Inc., which describes measurements taken on the system and outlines the system's design and operation. Included also are 12 slides of the structure and the solar heating system. (LEW)

Not Available

1980-12-04T23:59:59.000Z

89

Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop  

DOE Green Energy (OSTI)

Soliant Energy is a venture-capital-backed startup focused on bringing advanced concentrating solar panels to market. Our fundamental innovation is that we are the first company to develop a racking solar concentrator specifically for commercial rooftop applications, resulting in the lowest LCOE for rooftop electricity generation. Today, the commercial rooftop segment is the largest and fastest-growing market in the solar industry. Our concentrating panels can make a major contribution to the SAI's objectives: reducing the cost of solar electricity and rapidly deploying capacity. Our commercialization focus was re-shaped in 2009, shifting from an emphasis solely on panel efficiency to LCOE. Since the inception of the SAI program, LCOE has become the de facto standard for comparing commercial photovoltaic systems. While estimation and prediction models still differ, the emergence of performance-based incentive (PBI) and feed-in tariff (FIT) systems, as well as power purchase agreement (PPA) financing structures make LCOE the natural metric for photovoltaic systems. Soliant Energy has designed and demonstrated lower-cost, higher-power solar panels that consists of 6 (500X) PV module assemblies utilizing multi-junction cells and an integrated two-axis tracker. In addition, we have designed and demonstrated a prototype 1000X panel assembly with 8. Cost reductions relative to conventional flat panel PV systems were realized by (1) reducing the amount of costly semiconductor material and (2) developing strategies and processes to reduce the manufacturing costs of the entire system. Performance gains against conventional benchmarks were realized with (1) two-axis tracking and (2) higher-efficiency multi-junction PV cells capable of operating at a solar concentration ratio of 1000X (1000 kW/m2). The program objectives are: (1) Develop a tracking/concentrating solar module that has the same geometric form factor as a conventional flat, roof mounted photovoltaic (PV) panel - the Soliant module will produce more power and cost less than conventional panels of the same size; (2) Target LCOE: $0.079/kWh in 2010; (3) Target efficiency - 26% in 2010 (22% for 2008 prototype, 24% for 2009 pilot); and (4) Target performance - equivalent to 650Wp in 2010 (490W for 2008 prototype, 540W for 2009 pilot).

Michael Deck; Rick Russell

2010-01-05T23:59:59.000Z

90

10-MWe pilot-plant-receiver panel test requirements document solar thermal test facility  

DOE Green Energy (OSTI)

Testing plans for a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally, the design planned for the Barstow Solar Pilot Plant are presented. Testing is to include operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the panel's transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. Test hardware are described, including the pilot plant receiver, the test receiver assembly, receiver panel, flow control, electrical control and instrumentation, and structural assembly. Requirements for the Solar Thermal Test Facility for the tests are given. The safety of the system is briefly discussed, and procedures are described for assembly, installation, checkout, normal and abnormal operations, maintenance, removal and disposition. Also briefly discussed are quality assurance, contract responsibilities, and test documentation. (LEW)

Not Available

1978-08-25T23:59:59.000Z

91

A survey of thin-film solar photovoltaic industry & technologies  

E-Print Network (OSTI)

A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

Grama, Sorin

2007-01-01T23:59:59.000Z

92

Thinner Film Silicon Solar Cells - Energy Innovation Portal  

Technology Marketing Summary Berkeley Lab scientists have designed a new approach to create thin film silicon solar cells with a potential increase in ...

93

1Electricity from Sunlight: The RBSP Spacecraft Solar Panels NASA's twin Radiation Belts Storm Probe (RBSP) spacecraft will be  

E-Print Network (OSTI)

satellite to the nearest hundred watts? Space Math http://spacemath.gsfc.nasa.gov #12;Answer Key 1 Problem 11Electricity from Sunlight: The RBSP Spacecraft Solar Panels NASA's twin Radiation Belts Storm of the 10 solar cells in square-meters? Problem 3 ­ The amount of electrical power generated by a solar

94

Solar panels as air Cherenkov detectors for extremely high energy cosmic rays  

E-Print Network (OSTI)

Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-cost semiconductor detectors as good candidates for their optical read-out. The aim of this paper is to evaluate the viability of solar panels for this purpose. The experimental framework resulting from measurements performed with suitably-designed solar cells and large conventional photovoltaic areas is presented. A discussion on the obtained and achievable sensitivities follows.

S. Cecchini; I. D'Antone; L. Degli Esposti; G. Giacomelli; M. Guerra; I. Lax; G. Mandrioli; A. Parretta; A. Sarno; R. Schioppo; M. Sorel; M. Spurio

2000-02-07T23:59:59.000Z

95

Approaches for identifying consumer preferences for the design of technology products : a case study of residential solar panels  

E-Print Network (OSTI)

This thesis investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential solar PV panels ...

Chen, Heidi Qianyi

2012-01-01T23:59:59.000Z

96

Evaluation of cellular glasses for solar mirror panel applications  

DOE Green Energy (OSTI)

An analytic technique is developed to compare the structural and environmental performance of various materials considered for backing of second surface glass solar mirrors. Metals, ceramics, dense molded plastics, foamed plastics, forest products and plastic laminates are surveyed. Cellular glass is determined to be a prime candidate due to its low cost, high stiffness-to-weight ratio, thermal expansion match to mirror glass, evident minimal environmental impact and chemical and dimensional stability under conditions of use. While applications could employ this material as a foam core or compressive member of a composite material system, the present analysis addresses the bulk material only, allowing a basis for simple extrapolations. The current state of the art and anticipated developments in cellular glass technology are discussed. Material properties are correlated to design requirements using a Weibull weakest link statistical method appropriate for describing the behavior of such brittle materials. A mathematical model is presented which suggests a design approach which allows minimization of life cycle cost; given adequate information for a specific aplication, this would permit high confidence estimates of the cost/performance factor. A mechanical and environmental testing program is outlined, designed to providea material property basis for development of cellular glass hardware, together with methodology for collecting lifetime predictive data required by the mathematical treatment provided herein. Preliminary material property data from measurements is given.

Giovan, M.; Adams, M.

1979-06-15T23:59:59.000Z

97

Stabilization of solar films against hi temperature deactivation  

DOE Patents (OSTI)

A multi-layer solar energy collector of improved stability comprising: (1) a solar absorptive film consisting essentially of copper oxide, cobalt oxide and manganese oxide; (2) a substrate of quartz, silicate glass or a stainless steel; and (3) an interlayer of platinum, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of platinum to obtain a stable conductor-dielectric tandem.

Jefferson, Clinton F. (Millburn, NJ)

1984-03-20T23:59:59.000Z

98

Cost Effectiveness for Solar Control Film for Residential Applications  

E-Print Network (OSTI)

For the existing housing, retrofitting single or double glazed clear glass window with solar films can be an effective measure to reduce their peak power demand, and large scale application of the same on national level can be an effective tool for demand side management. This paper analyses the field performance data of a solar control film, retrofitted in a Kuwait villa, for establishing its technical viability and cost effectiveness. The paper concludes that the solar film, besides enhancing the thermal comfort, reduced the peak cooling demand and the peak power demand by 6.7% and 4.7%, respectively, during the peak summer period.

Al-Taqi, H. H.; Maheshwari, G. P.; Alasseri, R.

2010-01-01T23:59:59.000Z

99

Technical evaluation of a solar heating system having conventional hydronic solar collectors and a radiant panel slab. Final report  

DOE Green Energy (OSTI)

A simple innovative solar heating design (Solar Option One) using conventional hydronic solar collectors and a radiant panel slab was constructed. An objective of hybrid solar design is to combine the relative advantages of active and passive design approaches while minimizing their respective disadvantages. A test house using the Solar Option One heating system was experimentally monitored to determine its energy based performance during the 1982-83 heating season. The test residence is located in Lyndonville, Vermont, an area which has a characteristically cold and cloudy climate. The two story residence has a floor area of about 1400 square feet and is constructed on a 720 square foot 5.5 inch thick floor slab. A 24 inch packed gravel bed is located beneath the slab and the slab-gravel bed is insulated by two inches of polystyrene insulation. The test building is of frame construction and uses insulation levels which have become commonplace throughout the country. The structure would not fall into the superinsulated category but was tightly constructed so as to have a low infiltration level. The building is sun-tempered in that windows were concentrated somewhat on the South side and all but avoided on the North. A solar greenhouse on the South side of the building was closed off from the structure permanently throughout the testing so as to better observe the solar heating invention without confounding variables. The monitoring equipment generated an internal gain of about 17,000 BTUs per day, roughly the equivalent of occupancy by two persons. A full description of the experimental testing program is given. System efficiency and performance are reported.

Starr, R.J.

1984-04-01T23:59:59.000Z

100

Recent technological advances in thin film solar cells  

DOE Green Energy (OSTI)

High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

Ullal, H.S.; Zwelbel, K.; Surek, T.

1990-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

10-MWe pilot-plant-receiver-panel test-requirements document: Solar Thermal Test Facility  

DOE Green Energy (OSTI)

Plans are presented for insolation testing of a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally the design planned for the 10 MWe pilot plant. Testing includes operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. A brief description of the pilot plant receiver subsystem is presented, followed by a detailed description of the receiver assembly to be tested at the Solar Thermal Test Facility. Major subassemblies are described, including the receiver panel, flow control, electrical control and instrumentation, and the structural assembly. Requirements of the Solar Thermal Test Facility for the tests are given. System safety measures are described. The tests, operating conditions, and expected results are presented. Quality assurance, task responsibilities, and test documentation are also discussed. (LEW)

Not Available

1978-06-10T23:59:59.000Z

102

Overview and Challenges of Thin Film Solar Electric Technologies  

DOE Green Energy (OSTI)

In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

Ullal, H. S.

2008-12-01T23:59:59.000Z

103

Photovoltaic solar panel resistance to simulated hail. Low-Cost Solar Array Project  

SciTech Connect

As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, test methods have been evaluated and procedures developed for testing photovoltaic flat-plate solar cell modules for resistance to impact by hailstones. Testing has included the use of simulated hailstones (frozen ice spheres projected at terminal velocity), steel balls, and other projectile types applied with three loading methods: pneumatic gun, gravity drop, and static loading. Results are presented that compare the advantages and disadvantages of the three test methods. Dropped-steel-ball tests are shown to exhibit little correlation with high-velocity ice-ball tests, whereas statically-loaded steel balls show a somewhat better correlation with ice-ball tests. Results are also presented on the hail impact strength of 16 flat-plate photovoltaic modules. The module designs tested have been shown to be capable of withstanding as large as 1-1/2-inch diameter and not capable of withstanding as small as 1/2-inch diameter simulated hail. The top surface material of the modules has a dominant influence on the hail impact resistance of the modules. In order of increasing impact strength for a given thickness, the top surface materials encountered in the modules tester were: clear silicone rubber, annealed glass, tempered glass, and acrylic sheet. The critical failure mechanism of each module type is explored and means for improving the hail resistance of future modules are described.

Moore, D.; Wilson, A.

1978-10-15T23:59:59.000Z

104

Photovoltaic solar panel resistance to simulated hail. Low-Cost Solar Array Project  

DOE Green Energy (OSTI)

As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, test methods have been evaluated and procedures developed for testing photovoltaic flat-plate solar cell modules for resistance to impact by hailstones. Testing has included the use of simulated hailstones (frozen ice spheres projected at terminal velocity), steel balls, and other projectile types applied with three loading methods: pneumatic gun, gravity drop, and static loading. Results are presented that compare the advantages and disadvantages of the three test methods. Dropped-steel-ball tests are shown to exhibit little correlation with high-velocity ice-ball tests, whereas statically-loaded steel balls show a somewhat better correlation with ice-ball tests. Results are also presented on the hail impact strength of 16 flat-plate photovoltaic modules. The module designs tested have been shown to be capable of withstanding as large as 1-1/2-inch diameter and not capable of withstanding as small as 1/2-inch diameter simulated hail. The top surface material of the modules has a dominant influence on the hail impact resistance of the modules. In order of increasing impact strength for a given thickness, the top surface materials encountered in the modules tester were: clear silicone rubber, annealed glass, tempered glass, and acrylic sheet. The critical failure mechanism of each module type is explored and means for improving the hail resistance of future modules are described.

Moore, D.; Wilson, A.

1978-10-15T23:59:59.000Z

105

Polycrystalline Thin Film Solar Cell Technologies: Preprint  

DOE Green Energy (OSTI)

Rapid progress is being made by CdTe and CIGS-based thin-film PV technologies in entering commercial markets.

Ullal, H. S.

2008-12-01T23:59:59.000Z

106

A replaceable reflective film for solar concentrators  

DOE Green Energy (OSTI)

The 3M Company manufactures a silvered acrylic film called ECP-305 that is regarded as the preferred reflective film for use on stretched-membrane heliostats. However, ECP-305 will degrade in time, due to both corrosion of the silver layer and delamination at the film's silver-to-acrylic interface, and will eventually need to be replaced. 3M uses a very aggressive adhesive on this film, and once it is laminated, replacement is very difficult. The purpose of this investigation was the development of a replaceable reflector, a reflective film that can be easily removed and replaced. A replaceable reflector was successfully configured by laminating ECP-305 to the top surface of a smooth, dimensionally stable polymer film, with a removable adhesive applied to the underside of the polymer film. Several stages of screening and testing led to the selection of a 0.010-inch thick polycarbonate (GE 8030) as the best polymer film and a medium tack tape (3M Y-9425) was selected as the best removable adhesive. To demonstrate the feasibility of the replaceable reflector concept and to provide a real-time field test, the chosen construction was successfully applied to the 50-m{sup 2} SKI heliostat at the Central Receiver Test Facility at Sandia National Laboratories in Albuquerque. 4 refs., 13 figs., 7 tabs.

Not Available

1991-09-01T23:59:59.000Z

107

Available Technologies:Improved Amorphous Silicon Solar Cells  

Solar cells; Large solar panels; ADVANTAGES. Increased performance ; Less expensive than crystalline silicon solar cells; Enables thinner, lighter solar panels;

108

Polycrystalline thin-film solar cells and modules  

DOE Green Energy (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

109

Polycrystalline thin-film solar cells and modules  

DOE Green Energy (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

110

Parabolic-Dish Solar Concentrators of Film on Foam  

E-Print Network (OSTI)

Parabolic and spherical mirrors are constructed of aluminized PET polyester film on urethane foam. During construction, the chosen shape of the mirror is created by manipulating the elastic/plastic behavior of the film with air pressure. Foam is then applied to the film and, once hardened, air pressure is removed. At an f-number of 0.68, preliminary models have an optical angular spread of less than 0.25 degrees, a factor of 3.3 smaller than that for a perfectly spherical mirror. The possibility exists for creating large-lightweight mirrors with excellent shape and stiffness. These "film-on-foam" construction techniques may also be applicable to parabolic-trough solar concentrators but do not appear to be suitable for optical imaging applications because of irregularities in the film.

Barton, Sean A

2009-01-01T23:59:59.000Z

111

Polycrystalline Thin-Film Multijunction Solar Cells  

DOE Green Energy (OSTI)

We present a digest of our research on the thin-film material components that comprise the top and bottom cells of three different material systems and the tandem devices constructed from them.

Noufi, R.; Wu, X.; Abu-Shama, J.; Ramanathan, K; Dhere, R.; Zhou, J.; Coutts, T.; Contreras, M.; Gessert, T.; Ward, J. S.

2005-11-01T23:59:59.000Z

112

Concentrating Solar Power ?¢???? Central Receiver Panel Component Fabrication and Testing FINAL REPORT  

SciTech Connect

The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.

McDowell, Michael W [Pratt & Whitney Rocketdyne; Miner, Kris [Pratt & Whitney Rocketdyne

2013-03-30T23:59:59.000Z

113

Solar Thin Films Inc formerly American United Global Inc | Open Energy  

Open Energy Info (EERE)

Films Inc formerly American United Global Inc Films Inc formerly American United Global Inc Jump to: navigation, search Name Solar Thin Films Inc (formerly American United Global Inc) Place New York, New York Zip 10038 Sector Solar Product A US-based solar manufacturing equipment supplier. References Solar Thin Films Inc (formerly American United Global Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Thin Films Inc (formerly American United Global Inc) is a company located in New York, New York . References ↑ "Solar Thin Films Inc (formerly American United Global Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Thin_Films_Inc_formerly_American_United_Global_Inc&oldid=351338

114

Thin-film absorber for a solar collector  

DOE Green Energy (OSTI)

This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, W.G.

1982-02-09T23:59:59.000Z

115

Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells  

DOE Patents (OSTI)

High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

Bhattacharya, Raghu N. (Littleton, CO); Contreras, Miguel A. (Golden, CO); Keane, James (Lakewood, CO); Tennant, Andrew L. (Denver, CO), Tuttle, John R. (Denver, CO); Ramanathan, Kannan (Lakewood, CO); Noufi, Rommel (Golden, CO)

1998-08-08T23:59:59.000Z

116

Former Chrysler Plant Changes Gears to Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Chrysler Plant Changes Gears to Solar Former Chrysler Plant Changes Gears to Solar Former Chrysler Plant Changes Gears to Solar October 4, 2010 - 10:00am Addthis Workers at Abound Solar -- who are about to get more than 1,000 new colleagues -- make a thin-film solar panel. | Photo courtesy of Abound Solar Workers at Abound Solar -- who are about to get more than 1,000 new colleagues -- make a thin-film solar panel. | Photo courtesy of Abound Solar Lorelei Laird Writer, Energy Empowers What are the key facts? Abound's factories is projected to employ 1,050 to 1,400 people. The project uses a $12.6 million tax credit and a $400 million loan guarantee. A shuttered Chrysler transmission factory in Tipton, Indiana, could set a new record once Abound Solar is finished with it. Thin film in Indiana Based in Loveland, Colo., Abound makes thin-film cadmium telluride solar

117

Thin film solar cell including a spatially modulated intrinsic layer  

SciTech Connect

One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

1989-03-28T23:59:59.000Z

118

Silicon-film{trademark} on ceramic solar cells. Final report  

DOE Green Energy (OSTI)

The Silicon-Film{trademark} design achieves high performance through the use of a thin silicon layer. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The enhancement in performance requires the incorporation of back-surface passivation and light trapping. The high-performance Silicon-Film{trademark} design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. The properties of the metallurgical barrier must be engineered to implement specific device requirements, such as high back-surface reflectivity. Recent advances in process development are described here.

Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Lampo, S.M.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M. [AstroPower, Inc., Newark, DE (United States)

1993-02-01T23:59:59.000Z

119

Amorphous Silicon(a-Si: H) Thin Film Based Omnidirectional Control Solar Powered Vehicle  

Science Conference Proceedings (OSTI)

Through the paper, our goal is to drive a car with the help of thin film based solar cell. Mechanical and Electrical parts are assembled thereby. The main objective of this project is to collect maximum solar energy from the solar spectrum and use that ... Keywords: Thin film Photovoltaic, Single p-i-n Junction, Steering Mechanism, H-Bridge, Gear motor

Abdullah Moinuddin; Md. Jahidul Hoque; Jony C. Sarker; Akhter Zia

2012-03-01T23:59:59.000Z

120

Identification, Characterization, and Implications of Shadow Degradation in Thin Film Solar Cells  

E-Print Network (OSTI)

that the SD is a generic reliability concern for all thin film PV technologies, however, in this paper we, USA Abstract-- We describe a comprehensive study of intrinsic reliability issue arising from partial reliability concern for thin film solar cell. Keywords ­ Thin film solar cells, voltage stress, performance

Alam, Muhammad A.

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint  

Science Conference Proceedings (OSTI)

We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

2011-07-01T23:59:59.000Z

122

Thin film polycrystalline silicon solar cells  

DOE Green Energy (OSTI)

During the present quarter efficiency of heterostructure solar cells has been increased from 13 to 13.7% for single crystal and from 10.3 to 11.2% for polysilicon. For polysilicon the improvements can be attributed to reductions in grid-area coverage and in reflection losses and for single crystal to a combination of reduction in grid-area coverage and increase in fill factor. The heterostructure cells in both cases were IT0/n-Si solar cells. Degradation in Sn0/sub 2//n-Si solar cells can be greatly reduced to negligible proportions by proper encapsulation. The cells used in stability tests have an average initial efficiency of 11% which reduces to a value of about 10.5% after 6 months of exposure to sunlight and ambient conditions. This small degradation occurs within the first month, and the efficiency remains constant subsequently. The reduction in efficiency is due to a decrease in the open-circuit voltage only, while the short-circuit current and fill factor remain constant. The effects of grain-size on the Hall measurements in polysilicon have been analyzed and interpreted, with some modifications, using a model proposed by Bube. This modified model predicts that the measured effective Hall voltage is composed of components originating from the bulk and space-charge region. For materials with large grains, the carrier concentration is independent of the inter-grain boundary barrier, whereas the mobility is dependent on it. However, for small rains, both the carrier density and mobility depend on the barrier. These predictions are consistant with experimental results of mm-size Wacker polysilicon and ..mu..m-size NTD polysilicon.

Ghosh, A. K.; Feng, T.; Eustace, D. J.; Maruska, H. P.

1980-01-01T23:59:59.000Z

123

Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells  

E-Print Network (OSTI)

Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc- Si) triple-junction solar cell due to its higher optical investigations of nc-SiGe:H thin films made by hot-wire chemical vapor deposition (HWCVD) with a coil

Deng, Xunming

124

High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing  

E-Print Network (OSTI)

One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

125

Polycrystalline Thin Film Photovoltaics: From the Laboratory to Solar Fields; Preprint  

DOE Green Energy (OSTI)

We review the status of commercial polycrystalline thin-film solar cells and photovoltaic (PV) modules, including current and projected commercialization activities.

von Roedern, B.; Ullal, H. S.; Zweibel, K.

2006-05-01T23:59:59.000Z

126

Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)  

DOE Green Energy (OSTI)

Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

Gessert, T. A.

2010-09-01T23:59:59.000Z

127

The Study of Solar Desalination System with Falling Film Evaporation and Its Operation  

Science Conference Proceedings (OSTI)

The seawater desalination system with falling film evaporation was set up, which was driven by solar-wind energy. In addition, the basic principles of system operation were expounded?and the main factors affecting the system performance were discussed. ... Keywords: Seawater desalination, Solar energy, Falling film evaporation

Chen Zhi-li; He Qiang; Zheng Hong-fei; Long Xiang-yu; Wang Wen-biao; Zhuang Chun-long; Yi Qi-zhen

2009-10-01T23:59:59.000Z

128

Commercializatzon of thick film solar cells. Quarterly progress report, September 21, 1979-December 31, 1979  

DOE Green Energy (OSTI)

Starting materials for the preparation of thick film cadmium sulfide and cadmium telluride solar cells have been comminuted. Initial trial films of cadmium sulfide showed that during the next phase of this work, the printing of films, one of the major problem areas will be to obtain sufficient reflow in the printed films to remove the screen-caused variation in film thickness. The thin areas corresponding to the screen pattern caused pinholes to form in the fired parts.

McDonald, G.D.; Goodman, G.

1979-01-01T23:59:59.000Z

129

Numerical Analysis and Wind Tunnel Validation of Wind Deflectors for Rooftop Solar Panel Racks.  

E-Print Network (OSTI)

??Solar power since the past decade has become one of the very promising energy alternatives to the non-renewable forms of energy such as coal and (more)

Yatsco, Michael P.

2011-01-01T23:59:59.000Z

130

Using GIS and Remote Sensing Techniques for Solar Panel Installation Site Selection.  

E-Print Network (OSTI)

??Solar energy replacing conventional non-renewable energy has been widely implemented around the world. Currently, one of the most challenging problems is how to improve the (more)

Li, Dongrong

2013-01-01T23:59:59.000Z

131

Simulation Studies on a Multi-stage Distillation with Slope-Plate Falling Film Evaporation Desalination System Using Solar Energy  

Science Conference Proceedings (OSTI)

An innovative, multi-stage solar distillation with slope-plate falling film system for seawater desalination is investigated. The system consists of a solar heater (flat plate solar collector) and one evaporation-condensation set that is composed of ... Keywords: solar energy, falling film, desalination

Penghui Gao; Guoqing Zhou; Henglin Lv

2009-10-01T23:59:59.000Z

132

Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)  

Science Conference Proceedings (OSTI)

First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

Not Available

2013-08-01T23:59:59.000Z

133

Thin film transistors and solar cells. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations of selected patents concerning the fabrication and application methods of thin film transistors and thin film solar cells. Methods of manufacturing thin film transistors for use in electronic display devices are presented. Techniques for continuously producing durable and reliable thin film solar cells are discussed. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

134

Thin film transistors and solar cells. (Latest citations from the US Patent Bibliographic File with Exemplary Claims). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning the fabrication and application methods of thin film transistors and thin film solar cells. Methods of manufacturing thin film transistors for use in electronic display devices are presented. Techniques for continuously producing durable and reliable thin film solar cells are discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-11-01T23:59:59.000Z

135

Transparent Conductors and Barrier Layers for Thin Film Solar Cells:  

DOE Green Energy (OSTI)

This report describes the research undertaken to increase the efficiency of thin-film solar cells based on amorphous silicon in the so-called''superstrate structure'' (glass front surface/transparent electrically conductive oxide (TCO)/pin amorphous silicon/metal back electrode). The TCO layer must meet many requirements: high optical transparency in the wavelength region from about 350 to 900 nm, low electrical sheet resistance, stability during handling and deposition of the subsequent layers and during use, a textured (rough) surface to enhance optical absorption of red and near-infrared light, and low-resistance electrical contact to the amorphous silicon p-layer. Fluorine-doped tin oxide has been the TCO used in most commercial superstrate amorphous silicon cells. Fluorine-doped zinc oxide (ZnO:F) was later shown to be even more transparent than fluorine-doped tin oxide, as well as being more resistant to the strongly reducing conditions encountered during the deposition of amorphous silicon. Solar cells based on ZnO:F showed the expected higher currents, but the fill factors were lower than standard cells grown on tin oxide, resulting in no consistent improvement in efficiency. This problem was recently mitigated by using a new proprietary p/buffer layer combination developed at BP Solar.

Gordon, R. G.; Broomhall-Dillard, R.; Liu, X.; Pang, D.; Barton, J.

2001-12-01T23:59:59.000Z

136

ICFA Panels  

NLE Websites -- All DOE Office Websites (Extended Search)

Panels ICFA Instrumentation Innovation and Development Panel ICFA Beam Dynamics Panel ICFA Panel on Advanced and Novel Accelerators ICFA Standing Committee on Interregional...

137

Program on Technology Innovation: Evaluation of Hydrophobic Nano Coating on Solar Photovoltaic Panels, Polaris Initiative Report  

Science Conference Proceedings (OSTI)

This project evaluated the effects of a hydrophobic nano coating on photovoltaic panels. Variables studied were hydrophobicity, changes in cleanliness of the surfaces, and changes in ice and snow accumulation.BackgroundThe nano coating evaluated was being marketed commercially as a vehicle windshield treatment that was meant to keep the windshield glass clean and repel water from the windshield. The treatment claimed to last for up to 1 year in automotive ...

2013-11-27T23:59:59.000Z

138

Real Time Selective Harmonic Minimization for Multilevel Inverters Connected to Solar Panels Using Artificial Neural Network Angle Generation  

SciTech Connect

This work approximates the selective harmonic elimination problem using artificial neural networks (ANNs) to generate the switching angles in an 11-level full-bridge cascade inverter powered by five varying dc input sources. Each of the five full bridges of the cascade inverter was connected to a separate 195-W solar panel. The angles were chosen such that the fundamental was kept constant and the low-order harmonics were minimized or eliminated. A nondeterministic method is used to solve the system for the angles and to obtain the data set for the ANN training. The method also provides a set of acceptable solutions in the space where solutions do not exist by analytical methods. The trained ANN is a suitable tool that brings a small generalization effect on the angles' precision and is able to perform in real time (50-/60-Hz time window).

Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL; Filho, Faete [ORNL; Cao, Yue [ORNL

2011-01-01T23:59:59.000Z

139

Investigation of cold filling receiver panels and piping in molten-nitrate-salt central-receiver solar power plants  

DOE Green Energy (OSTI)

Cold filling refers to flowing a fluid through piping or tubes that are at temperatures below the fluid`s freezing point. Since the piping and areas of the receiver in a molten-nitrate salt central-receiver solar power plant must be electrically heated to maintain their temperatures above the nitrate salt freezing point (430{degrees}F, 221{degrees}C), considerable energy could be used to maintain such temperatures during nightly shut down and bad weather. Experiments and analyses have been conducted to investigate cold filling receiver panels and piping as a way of reducing parasitic electrical power consumption and increasing the availability of the plant. The two major concerns with cold filling are: (1) how far can the molten salt penetrate cold piping before freezing closed and (2) what thermal stresses develop during the associated thermal shock. Cold fill experiments were conducted by flowing molten salt at 550{degrees}F (288{degrees}C) through cold panels, manifolds, and piping to determine the feasibility of cold filling the receiver and piping. The transient thermal responses were measured and heat transfer coefficients were calculated from the data. Nondimensional analysis is presented which quantifies the thermal stresses in a pipe or tube undergoing thermal shock. In addition, penetration distances were calculated to determine the distance salt could flow in cold pipes prior to freezing closed.

Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.

1994-12-31T23:59:59.000Z

140

Overview and Challenges of Thin Film Solar Electric Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

and Challenges of Thin and Challenges of Thin Film Solar Electric Technologies H.S. Ullal Presented at the World Renewable Energy Congress X and Exhibition 2008 Glasgow, Scotland, United Kingdom July 19-25, 2008 Conference Paper NREL/CP-520-43355 December 2008 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Automated solar panel assembly line. LSA task: production processes and equipment. Quarterly report No. 2  

SciTech Connect

The objective of this program is to design, fabricate and demonstrate an automated solar cell module production line with the ultimate goal of reducing module assembly costs. During this reporting period a redesign of the SCAP soldering mechanism was effected due to temperature/friction problems encountered. The in-line cleaning system was designed and ordered and the Mular backbone attachment mechanism was assembled. The SPLP production prototype was fabricated and operated. Two hand-assembled versions of the automated module design completed 750 thermal cycles. Albuquerque Laboratory, Ardev Inc., is under subcontract to develop the soldering equipment on this program. The lamination development is being done by ARCO Solar, Inc.

Somberg, H.

1979-07-08T23:59:59.000Z

142

Solar PST | Open Energy Information  

Open Energy Info (EERE)

Solar PST Jump to: navigation, search Name Solar PST Place Bergondo, Spain Zip 15 165 Sector Solar Product Spanish company producing thermodynamic solar panels. References Solar...

143

Solar Energy Materials & Solar Cells 92 (2008) 821829 Modeling the optical properties of WO3 and WO3SiO2 thin films  

E-Print Network (OSTI)

Solar Energy Materials & Solar Cells 92 (2008) 821­829 Modeling the optical properties of WO3 the optical response of the films in the near-UV and visible region: two interband transitions for energies E

Thirumalai, Devarajan

144

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

panels and monthly "Solar Made Simple" seminars. August 26, 2010 Butte College's solar panels are helping it make more energy than it uses, providing it financial as well...

145

Development of surfaces optically suitable for flat solar panels. Final report  

DOE Green Energy (OSTI)

This final report contains three principal items. The first describes a simple and novel reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces. A phase locked detection system for the reflectometer is also described. The second item is a selective coating on aluminium potentially useful for flat-plate solar collector applications. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminium alloy with high copper content. Because of this one step fabrication process, fabrication costs are expected to be small. Process parameters, however, need further definition. The third item contains conclusions gleaned from the literature as to the required optical properties of flat plate solar collectors.

Not Available

1979-08-01T23:59:59.000Z

146

Integrated photonic structures for light trapping in thin-film Si solar cells  

E-Print Network (OSTI)

We explore the mechanisms for an efficient light trapping structure for thin-film silicon solar cells. The design combines a distributed Bragg reflector (DBR) and periodic gratings. Using photonic band theories and numerical ...

Sheng, Xing

147

Technological assessment of light-trapping technology for thin-film Si solar cell  

E-Print Network (OSTI)

The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was analyzed from the technology, market, and ...

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

148

Earth abundant materials for high efficiency heterojunction thin film solar cells  

E-Print Network (OSTI)

We investigate earth abundant materials for thin-film solar cells that can meet tens of terawatts level deployment potential. Candidate materials are identified by combinatorial search, large-scale electronic structure ...

Buonassisi, Tonio

149

Panel results of the solar thermal program research requirement assessment review. Final report  

DOE Green Energy (OSTI)

The objectives of the assessment were to identify: research needs by topic and activity, relative priority of research needs, options for performing needed research, potential performers, costs and duration of R and D activities, gaps and duplications within the R and D program, and activities underway that appear to be of low priority. To achieve these objectives, research programs of the Division of Solar Thermal Technologies within the Office of Renewable Energy and Conservation and the Materials and Advanced Energy Programs of the Office of Basic Energy Sciences were reviewed. Several recent assessments of solar thermal research needs made within the past two years by various groups were also reviewed, and the key research issues and needs were extracted. The primary results from the assessment are a set of prioritized activities to meet the most important research needs for solar thermal technologies. These activities belong to four disciplines: materials science, thermal science, thermochemistry, and engineering. Further, priorities associated with the needs for research result from the various activities allow the recommended activities to be grouped into two categories; a core group which should be at the heart of any future program developed by the department, and a set of important needs that should, at least, find their way into a program at some time during its existence. The recommended research program is outlined, and the complete set of ranked research needs is listed.

None

1983-11-01T23:59:59.000Z

150

Absorptivity of semiconductors used in the production of solar cell panels  

SciTech Connect

The dependence of the absorptivity of semiconductors on the thickness of the absorbing layer is studied for crystalline silicon (c-Si), amorphous silicon (a-Si), cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS), and copper gallium diselenide (CuGaSe{sub 2}, CGS). The calculations are performed with consideration for the spectral distribution of AM1.5 standard solar radiation and the absorption coefficients of the materials. It is shown that, in the region of wavelengths {lambda} = {lambda}{sub g} = hc/E{sub g}, almost total absorption of the photons in AM1.5 solar radiation is attained in c-Si at the thickness d = 7-8 mm, in a-Si at d = 30-60 {mu}m, in CdTe at d = 20-30 {mu}m, and in CIS and CGS at d = 3-4 {mu}m. The results differ from previously reported data for these materials (especially for c-Si). In previous publications, the thickness needed for the semiconductor to absorb solar radiation completely was identified with the effective light penetration depth at a certain wavelength in the region of fundamental absorption for the semiconductor.

Kosyachenko, L. A., E-mail: lakos@chv.ukrpack.net; Grushko, E. V.; Mikityuk, T. I. [Chernivtsy National University (Ukraine)

2012-04-15T23:59:59.000Z

151

Building Energy Software Tools Directory: Panel Shading  

NLE Websites -- All DOE Office Websites (Extended Search)

Panel Shading Panel Shading lets you optimize the geometry of rows of flat-plate solar collectors (PV or solar thermal) by visualizing on an annual basis how much the rows shade...

152

Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells  

E-Print Network (OSTI)

Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells. de Bariloche, Argentina 3 ECN Solar Energy, High Tech Campus, Building 5, 5656 AE Eindhoven energy-loss spectroscopy (EELS) is used to study p-doped layers in n-i-p amorphous thin film Si solar

Dunin-Borkowski, Rafal E.

153

THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te-CdTe HETEROJUNCTIONS (1)  

E-Print Network (OSTI)

195 THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te This paper is a short status report on the continuing development of Cu22014xTe-CdTe thin film solar cells thin film work. The most pressing current need is to determine how to extend cell life, particularly

Paris-Sud XI, Université de

154

Building Energy Software Tools Directory: Panel Shading  

NLE Websites -- All DOE Office Websites (Extended Search)

Audience Architects, builders, homeowners, passive solar designers, energy analysts, solar energy system installers. Input Location, surface tilt, panel spacing, tilt, and...

155

p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells  

E-Print Network (OSTI)

everything accelerates. ARCO solar produces more than 1 MW PV cells in `80, being the first in the world, the Million Solar Roofs in the US, and many more. Besides these programs, the efficiency of CdTe thin film PV energy source is the photovoltaic (PV) cell, which converts sunlight to electrical current, without any

Bieber, Michael

156

Proposed method for determining the thickness of glass in solar collector panels  

DOE Green Energy (OSTI)

An analytical method has been developed for determining the minimum thickness for simply supported, rectangular glass plates subjected to uniform normal pressure environmental loads such as wind, earthquake, snow, and deadweight. The method consists of comparing an analytical prediction of the stress in the glass panel to a glass breakage stress determined from fracture mechanics considerations. Based on extensive analysis using the nonlinear finite element structural analysis program ARGUS, design curves for the structural analysis of simply supported rectangular plates have been developed. These curves yield the center deflection, center stress and corner stress as a function of a dimensionless parameter describing the load intensity. Results are included for plates having length-to-width ratios of 1, 1.5, 2, 3, and 4. The load range considered extends to 1000 times the load at which the behavior of the plate becomes significantly nonlinear. Over the load range analyzed, the analysis shows that the ratio of center deflection to plate thickness for a plate of length-to-width ratio of 4 is less than 70 to 1, whereas linear theory would predict a center deflection about 1200 times the plate thickness. The stress is also markedly lower than would be predicted by linear theory. These analytical results show good agreement with the analytical and experimental work of others.

Moore, D.M.

1980-03-01T23:59:59.000Z

157

Amorphous-silicon thin-film heterojunction solar cells  

DOE Green Energy (OSTI)

The investigation of amorphous silicon materials at MTSEC has had two major thrusts: (1) to improve the amorphous material, i.e., obtain a low state density in the gap, improve the carrier collection depth and diminish non-radiative recombinations; and (2) to attempt to understand and improve on the limitations of the junction devices while evaluating the amorphous silicon materials. In the first of these efforts, the investigation has continued to examine the modifications to the a-Si(H) network by alloying silicon with other group IVA elements, either in binary or ternary compositions, and/or by replacing the hydrogenation for defect compensation with a combination of hydrogenation and alkylation or hydrogenation and halogenation. The doped junction layers are being examined in an attempt to determine the limiting characteristics of the junctions in solar cell devices of these amorphous materials. Amorphous alloys of Si-Ge, Si-C, Si-Sn were prepared as well as ternary compositions of Si-Ge-C and Si-Sn-C. In addition, Na vapor was added to the gas feed to deposit a-Si(Na, H) films, and to prepare Si-Sn, fluoride was added along with the tin by vapor additions of SnF/sub 4/ to the gas feed. The optical properties of these materials were measured, and structural and compositional information was obtained from the IR vibrational spectra using the scanning electron microscope and from analyses using scanning Auger microscopy. Electrical measurements have included the dark conductivity and the photo conductivity under room fluorescent light and at AM1 conditions. With alloys that displayed promising photoconductive properties n-i-p devices were prepared to assess the solar cell properties. Details are presented. (WHK)

Cretella, M. C.; Gregory, J. A.; Sandstrom, D. B.; Paul, W.

1981-01-01T23:59:59.000Z

158

NREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells (Fact Sheet)  

Science Conference Proceedings (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) are finding new ways to manufacture thin-film solar cells made from copper, indium, gallium, and selenium - called CIGS cells - that are different than conventional CIGS solar cells. Their use of high-temperature glass, designed by SCHOTT AG, allows higher fabrication temperatures, opening the door to new CIGS solar cells employing light-absorbing materials with wide 'bandgaps.'

Not Available

2012-09-01T23:59:59.000Z

159

Advances in thin-film solar cells for lightweight space photovoltaic power  

SciTech Connect

The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuInSe2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuInSe2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

Landis, G.A.; Bailey, S.G.; Flood, D.J.

1989-01-01T23:59:59.000Z

160

Initial Study of Solar Control Film in a Hotel Guest Room in Winter  

E-Print Network (OSTI)

In recent years, energy-efficient facilities have prevailed in the Hong Kong and China markets. Many of these facilities claim to generate considerable energy and money savings. Hoteliers, however, find that there is a lack of independent and local studies about energy performance and its related financial savings and environmental improvement brought by those facilities, such as heat pumps, solar-control film on the window, sensor and dimmer for lighting control, etc. Nevertheless, there is a lack of reliable and independent data about the energy performance and economic viability of the solar-control film applied in a real environment. In many situations, consumers are only given the laboratory's result of this energy saving facility. Research was carried out in summer to estimate its positive effect on energy saving. There is also a paucity of experiments conducted in winter to show its negative effect in cold weather. This study carries out an experiment in hotel guest rooms in winter in order to estimate the energy and lighting performance of solar-control film in winter. This experiment was conducted when the illuminance under 1000lux, the average visible light transmittance for the film was 49.8%, and with very low solar radiation being transmitted into indoor environment. Under these situations, the study found that the effect of solar energy passing through the film coating in the guest room can be neglected. Instead, the film can act as a layer to prevent heat to transmit to the outdoors, just like the greenhouse effect.

Chan, W. C.; Chen, Y.; Mak, B.; Li, D.; Huang, Y.; Xie, H.; Hou, G.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin Film Solar Cells  

E-Print Network (OSTI)

We suggest a novel concept of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from plasmonic resonances. The operation principle of our structures relies on the excitation of chessboard-like collective modes of the nanoantenna arrays with the field localized between the neighboring metal elements. We demonstrated theoretically substantial enhancement of solar-cell short-circuit current by the designed light-trapping structure in the whole spectrum range of the solar-cell operation compared to conventional structures employing anti-reflecting coating. Our approach provides a general background for a design of different types of efficient broadband light-trapping structures for thin-film solar-cell technologically compatible with large-area thin-film fabrication techniques.

Simovski, Constantin R; Voroshilov, Pavel M; Guzhva, Michael E; Belov, Pavel A; Kivshar, Yuri S

2013-01-01T23:59:59.000Z

162

Mobile Solar Tracker Facility  

Science Conference Proceedings (OSTI)

Mobile Solar Tracker Facility. ... NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. ...

2011-11-15T23:59:59.000Z

163

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

F. Uno, "High Efficiency Solar Panel (HESP)! ', N78 10572,High Efficiency, Long Life Terrestrial Solar Panel", 7 8Ncapabilities, the efficiency of the solar panels, co-

Viswanathan, R.

2011-01-01T23:59:59.000Z

164

Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells  

DOE Green Energy (OSTI)

This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

Chu, T.L. (University of South Florida, Tampa, FL (United States))

1992-04-01T23:59:59.000Z

165

Thin film transistors and solar cells. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning the fabrication and application methods of thin film transistors and thin film solar cells. Methods of manufacturing thin film transistors for use in electronic display devices are presented. Techniques for continuously producing durable and reliable thin film solar cells are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-04-01T23:59:59.000Z

166

Doped, porous iron oxide films and their optical functions and anodic photocurrents for solar water splitting  

SciTech Connect

The fabrication and morphological, optical, and photoelectrochemical characterization of doped iron oxide films is presented. The complex index of refraction and absorption coefficient of polycrystalline films are determined through measurement and modeling of spectral transmission and reflection data using appropriate dispersion relations. Photoelectrochemical characterization for water photo-oxidation reveals that the conversion efficiencies of electrodes are strongly influenced by substrate temperature during their oblique-angle physical vapor deposition. These results are discussed in terms of the films' morphological features and the known optoelectronic limitations of iron oxide films for application in solar water splitting devices.

Kronawitter, Coleman X.; Mao, Samuel S. [Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, USA and Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Antoun, Bonnie R. [Sandia National Laboratories, Livermore, California 94551 (United States)

2011-02-28T23:59:59.000Z

167

Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer  

E-Print Network (OSTI)

Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric current gain obtained from higher built-in electric field. Light trapping schemes can increase the effective optical absorption length and thus enhance the electric current for thinner solar cells. Here a new light trapping scheme based on light trapping transparent conducting oxide layer (LT-TCO) is proposed to enhance the performance of thin film solar cells. Three different configurations of integrating the LT-TCO layer in solar cells are proposed and evaluated. This research aims to develop the LT-TCO layer with surface texture and good conductivity by pulsed laser deposition (PLD) technique at low temperature. The LT-TCO layer is fabricated by PLD deposition of Al-doped ZnO to achieve multilayer films by tuning of oxygen pressure. The light trapping effect is examined by optical transmittance measurement and the surface texture is characterized by transmission electron microscopy (TEM) technique. The conductivity of LT-TCO layer is measured by resistivity measurement. Thin film CdTe/CdS solar cells are fabricated by PLD technique to develop baseline solar cells for integration of LT-TCO layer. The as-deposited thin film solar cells show relatively low performance and are further processed with various post-deposition treatments to seek efficiency enhancement. The effects of different processes on cell performance are examined by electrical, optical, and microstructure studies. Air annealing of CdS layer and CdCl2 treatment of CdTe layer combined are found to yield the best cell performance. The fabrication issues that limit the cell performance are discussed and future optimizations in fabrication processes are suggested.

Lu, Tianlin

2011-05-01T23:59:59.000Z

168

Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate  

SciTech Connect

A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

2006-05-30T23:59:59.000Z

169

Sereno Solar | Open Energy Information  

Open Energy Info (EERE)

Sereno Solar Jump to: navigation, search Name Sereno Solar Place Monte Sereno, California Sector Solar Product Has developed a solar passive water heating panel to be installed...

170

Evolution Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Place Road Town Tortola, United Kingdom Sector Solar Product British Virgin Islands-based solar energy company dedicated to establishing solar panel factories in the...

171

Novel wide band gap materials for highly efficient thin film tandem solar cells  

SciTech Connect

Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PVâ??s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

Brian E. Hardin, Stephen T. Connor, Craig H. Peters

2012-06-11T23:59:59.000Z

172

Overview of thick-film technology as applied to solar cells  

DOE Green Energy (OSTI)

Thick-film technology was developed by the electronics industry as a means of fabricating components and miniature circuitry. Today, the solar cell industry is looking at screen printing as an alternate to more expensive, high-vacuum techniques in several of the production steps during the manufacture of silicon solar cells. Screen printing is already fairly well established as a means of providing electrical contact to a cell and for the formation of a back surface field. Now under investigation are the possibilities of non-noble metal contacts and protective and antireflective coatings applied to solar cells by the use of screen printing. Most exciting is the work being done in the non-silicon area on the fabrication of the active layers of a solar cell, using thick-film inks made up of II-VI semiconductors.

Firor, K.; Hogan, S.

1980-01-01T23:59:59.000Z

173

PowerFilm Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Place Boone, Iowa Zip 50036 7538 Product Developer of a method for manufacturing thin-film amorphous silicon modules, from silane gas and plastic substrate, using a...

174

Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests  

DOE Green Energy (OSTI)

Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

1995-01-01T23:59:59.000Z

175

Polycrystalline Thin Film Photovoltaics: From the Laboratory to Solar Fields (Presentation)  

SciTech Connect

The conclusions of this report are that: (1) many issues how thin-film solar cells work remain unresolved, requiring further fundamental R and D effort; (2) commercial thin-film PV module production reached 29% in 2005 in the US, indicating much more rapid growth than crystalline Si PV; (3) commercial module performance is increasing based on current knowledge, more R and D will lead to further improvement; and (4) stability of thin-film modules is acceptable ({le} 1% per year power loss) if the right manufacturing processes are used for manufacturing.

von Roedern, B.; Ullal, H.; Zweibel, K.

2006-05-01T23:59:59.000Z

176

Solar-induced chemical vapor deposition of diamond-type carbon films  

DOE Patents (OSTI)

An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

1994-09-13T23:59:59.000Z

177

Solar-induced chemical vapor deposition of diamond-type carbon films  

DOE Patents (OSTI)

An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.

Pitts, J. Roland (Lakewood, CO); Tracy, C. Edwin (Golden, CO); King, David E. (Lakewood, CO); Stanley, James T. (Beaverton, OR)

1994-01-01T23:59:59.000Z

178

Improved Transparent Conducting Oxides Boost Performance of Thin-Film Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Today?s thin-film solar cells could not function without transparent conducting oxides (TCOs). TCOs act as a window, both protecting the cell and allowing light to pass through to the cell?s active layers. Until recently, TCOs were seen as a necessary, but static, layer of a thin-film photovoltaic (PV) cell. But a group of researchers at the National Renewable Energy Laboratory (NREL) has identified a pathway to producing improved TCO films that demonstrate higher infrared transparency. To do so, they have modified the TCOs in ways that did not seem possible a few years ago.

Not Available

2011-02-01T23:59:59.000Z

179

Design, construction, and testing of the direct absorption receiver panel research experiment  

DOE Green Energy (OSTI)

A panel research experiment (PRE) was designed, built, and tested as a scaled-down model of a direct absorption receiver (DAR). The PRE is a 3-MW{sub t}DAR experiment that will allow flow testing with molten nitrate salt and provide a test bed for DAR testing with actual solar heating. In a solar central receiver system DAR, the heat absorbing fluid (a blackened molten nitrate salt) flows in a thin film down a vertical panel (rather than through tubes as in conventional receiver designs) and absorbs the concentrated solar flux directly. The ability of the flowing salt film to absorb flux directly. The ability of the flowing salt film to absorb the incident solar flux depends on the panel design, hydraulic and thermal fluid flow characteristics, and fluid blackener properties. Testing of the PRE is being conducted to demonstrate the engineering feasibility of the DAR concept. The DAR concept is being investigated because it offers numerous potential performance and economic advantages for production of electricity when compared to other solar receiver designs. The PRE utilized a 1-m wide by 6-m long absorber panel. The salt flow tests are being used to investigate component performance, panel deformations, and fluid stability. Salt flow testing has demonstrated that all the DAR components work as designed and that there are fluid stability issues that need to be addressed. Future solar testing will include steady-state and transient experiments, thermal loss measurements, responses to severe flux and temperature gradients and determination of peak flux capability, and optimized operation. In this paper, we describe the design, construction, and some preliminary flow test results of the Panel Research Experiment. 11 refs., 8 figs., 2 tabs.

Chavez, J.M.; Rush, E.E.; Matthews, C.W.; Stomp, J.M.; Imboden, J.; Dunkin, S.

1990-01-01T23:59:59.000Z

180

Processing and modeling issues for thin-film solar cell devices. Final report  

DOE Green Energy (OSTI)

During the third phase of the subcontract, IEC researchers have continued to provide the thin film PV community with greater depth of understanding and insight into a wide variety of issues including: the deposition and characterization of CuIn{sub 1-x}Ga{sub x}Se{sub 2}, a-Si, CdTe, CdS, and TCO thin films; the relationships between film and device properties; and the processing and analysis of thin film PV devices. This has been achieved through the systematic investigation of all aspects of film and device production and through the analysis and quantification of the reaction chemistries involved in thin film deposition. This methodology has led to controlled fabrications of 15% efficient CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cells over a wide range of Ga compositions, improved process control of the fabrication of 10% efficient a-Si solar cells, and reliable and generally applicable procedures for both contacting and doping films. Additional accomplishments are listed below.

Birkmire, R.W.; Phillips, J.E. [Univ. of Delaware, Newark, DE (United States). Institute of Energy Conversion

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Status of Amorphous and Crystalline Thin Film Silicon Solar Cell Activities  

DOE Green Energy (OSTI)

This paper reviews the recent activities and accomplishments of the national Amorphous Silicon Team and a (crystalline) thin-film-Si subteam that was implemented in 2002 to research solar cell devices based on thin crystalline Si based layers. This paper reports the evolution of team organization, the technical highlights from the recent team meetings, and an outlook on commercialization potential.

von Roedern, B.

2003-05-01T23:59:59.000Z

182

Midtemperature solar systems test facility predictions for thermal performance based on test data. Toltec two-axis tracking solar collector with 3M acrylic polyester film reflector surface  

DOE Green Energy (OSTI)

Thermal performance predictions based on test data are presented for the Toltec solar collector, with acrylic film reflector surface, for three output temperatures at five cities in the United States.

Harrison, T.D.

1981-06-01T23:59:59.000Z

183

Properties of High Efficiency CIGS Thin Film Solar Cells  

DOE Green Energy (OSTI)

We present experimental results in three areas. Solar cells with an efficiency of 19% have been fabricated with an absorber bandgap in the range of 1.1-1.2 eV. Properties of solar cells fabricated with and without an undoped ZnO layer were compared. The data show that high efficiency cells can be fabricated without using the high-resistivity or undoped ZnO layer. Properties of CIGS solar cells were fabricated from thin absorbers (1 {micro}m) deposited by the three-stage process and simultaneous co-deposition of all the elements. In both cases, solar cells with efficiencies of 16%-17% are obtained.

Ramanathan, K.; Keane, J.; Noufi, R.

2005-02-01T23:59:59.000Z

184

Amorphous silicon/polycrystalline thin film solar cells  

DOE Patents (OSTI)

An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

Ullal, H.S.

1991-03-13T23:59:59.000Z

185

Boron arsenide thin film solar cell development. Final report  

DOE Green Energy (OSTI)

Pyrolytic decomposition of diborane and arsine has been used in attempts to grow polycrystalline BAs films. This method, however, produced only amorphous films for deposition temperatures below 920/sup 0/C and polycrystalline boron subarsenide (B/sub 12/As/sub 2/) flms for deposition temperatures above this value. The amorphous films have been determined to have a significant arsenic content but the actual stoichiometry was not obtained. The films were adherent on single crystal sapphire (0001), (111) silicon, (0001) SiC, and polycrystalline SiC but were found not to be adherent to substrates of fused quartz, tungsten, and molybdenum. It was also found that all films deposited above 650/sup 0/C were p-type while those deposited below 600/sup 0/C were usually n-type. Polycrystalline BAs and B/sub 12/As/sub 2/ was produced by reaction of the elements in a closed tube. The amorphous films showed an indirect or non-direct optical bandgap from 1.0 to 1.7 eV with the most probable values between 1.2 to 1.4 eV. The crystalline BAs powder shows a bandgap near 1.0 eV. Photoconductance time constants have been measured for films deposited on (0001) sapphire and (0001) SiC. Attempts at doping the amorphous films were generally unsuccessful. A polycrystalline powder sample was successfully doped with sulfur. Attempts were made to produce a Schottky barrier diode by evaporating Al dots onto an amorphous film on graphite without a post-evaporation anneal. An MIS structure was also attempted by baking an amorphous film in air at 280/sup 0/C before evaporation of aluminum. Although nonlinear characteristics were obtained, none of the devices showed any photovoltaic response. A p-type amorphous film was deposited on an n-type silicon substrate to form a p-n heterojunction. This device did exhibit a photovoltaic response but it is believed that the photogeneration was occurring primarily in the silicon substrate.

Boone, J.L.; Van Doren, T.P.

1980-09-01T23:59:59.000Z

186

Flat-plate solar collectors utilizing polymeric film for high performance and very low cost  

SciTech Connect

Polymeric films are used in the construction of the absorber and window portions of a flat plate solar collector. The absorber heat exchanger consists of a channeled liquid envelope constructed using a polymeric film and metal foil laminate. In addition, the composite films and light frame monocoque construction contribute to very light weight and low cost. The use of high-performance polymers permits low-loss designs with high thermal performance. The construction concepts are consistent with high speed mass production and installation with manufacturing cost projections of $15/m/sup 2/. Tests performed at Brookhaven National Laboratory (BNL) and elsewhere indicate performance potential consistent with applications incorporating solar absorption air conditioning.

Wilhelm, W.G.

1981-01-01T23:59:59.000Z

187

Study of Lead Free Ferroelectric Films for New Solar Cells  

SciTech Connect

We report on the deposition by a sol-gel process of Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} and Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} films on platinum coated silicon substrates. X-Ray diffraction patterns show that the films are (111) preferentially oriented. The surface morphology is smooth, without cracks and the grain size is about 50 nm as determined by AFM and SEM. The dielectric constant measured from 10{sup 2} to 10{sup 6} Hz decreases slightly and is around 400 at 10{sup 4} Hz. The losses are constant in a first approximation for a 1.5 {mu}m thick BST(80/20) film with a value of 0.03 at 10 kHz. The existence of an hysteresis cycle attests that the films, whatever their thickness, are in a ferroelectric state. Pyroelectric coefficients have been determined and the best figure of merit obtained on BST(90/10) at 293 K and 10 kHz is of 149 {mu}C/m{sup 3}/K. The best dielectric and pyroelectric properties (tg{delta} = 0.006 at 1 MHz, tunability = 30%, {gamma} = 340 {mu}C/m{sup 2}/K) were obtained on the 400 nm BST(90/10) film. Work is in progress to characterize the piezoelectric and photovoltaic properties of our BST films.

Fasquelle, D.; Mascot, M.; Carru, J. C. [LEMCEL, Universite du Littoral Cote d'Opale, 50 rue F. Buisson, BP717-62228-Calais-France (France); Hikam, M.; Iriani, Y.; Soegijono, B. [Department of Physics, Faculty of Mathematics and Sciences, University of Indonesia, Depok 16424 Indonesia (Indonesia)

2009-09-14T23:59:59.000Z

188

Disilane versus monosilane: a comparison of the properties of glow-discharge a-Si:H films and solar cells  

SciTech Connect

The consequences of using disilane instead of silane for the glow-discharge deposition of a-Si:H solar cells have been studied. Deposition rates were increased fivefold by the use of disilane. The a-Si:H films have a higher hydrogen content, but otherwise are quite similar to silane produced films and possess the same type of gap states. Chlorosilanes, HCl, and oxysilanes were detected in the disilane by mass spectrometry and their influence on film and solar cell properties assessed. The problem of inadvertent dopant tails resulting from the higher deposition rate of the solar cells is identified.

Delahoy, A.E.; Kampas, F.J.; Corderman, R.R.; Vanier, P.E.; Griffith, R.W.

1982-01-01T23:59:59.000Z

189

Disilane versus monosilane: a comparison of the properties of glow-discharge a-Si:H Films and solar cells  

DOE Green Energy (OSTI)

The consequences of using disilane instead of silane for the glow-discharge deposition of a-Si:H solar cells have been studied. Deposition rates were increased fivefold by the use of disilane. The a-Si:H films have a higher hydrogen content, but otherwise are quite similar to silane produced films and possess the same type of gap states. Chlorosilanes, HCl, and oxysilanes were detected in the disilane by mass spectrometry and their influence on film and solar cell properties assessed. The problem of inadvertent dopant tails resulting from the higher deposition rate of the solar cells is identified.

Delahoy, A.E.; Corderman, R.R.; Griffith, R.W.; Kampas, F.J.; Vanier, P.E.

1982-09-01T23:59:59.000Z

190

22nd European Photovoltaic Solar Energy Conference, Milan, 3-7 September 2007 Cu(InGa)Se2 THIN-FILM SOLAR CELLS  

E-Print Network (OSTI)

22nd European Photovoltaic Solar Energy Conference, Milan, 3-7 September 2007 Cu(InGa)Se2 THIN-FILM SOLAR CELLS: COMPARATIVE LIFE-CYCLE ANALYSIS OF BUFFER LAYERS Vasilis M. Fthenakis and Hyung Chul Kim National Photovoltaic EH&S Research Center Brookhaven National Laboratory Upton, NY 11973, USA ABSTRACT

191

VP 100: Growth in solar means growth in Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Growth in solar means growth in Ohio Growth in solar means growth in Ohio VP 100: Growth in solar means growth in Ohio October 6, 2010 - 10:57am Addthis DuPont is betting on major growth in the market for solar energy -- and therefore for its Tedlar film, a durable backing for silicon solar panels. | Photo Courtesy of DuPont DuPont is betting on major growth in the market for solar energy -- and therefore for its Tedlar film, a durable backing for silicon solar panels. | Photo Courtesy of DuPont Lorelei Laird Writer, Energy Empowers Market research company Solarbuzz reports that global demand for solar power soared by 54 percent in the second quarter of 2010. The research firm reports that in the United States, the annual number of total watts installed moved from 485 MW in all of 2009 to 2.3 GW as of June -- and

192

Radio Frequency Lamination for Photovoltaic Panels  

Science Conference Proceedings (OSTI)

Strategies for overcoming residual stress in interlayers surrounding embedded PV cells will be discussed. Working prototypes of RF laminated solar panels will...

193

Characterization of the Electronic and Chemical Structure at the Thin Film Solar Cell Interfaces: June 2005 -- June 2009  

DOE Green Energy (OSTI)

Study using photoelectron spectroscopy, inverse photoemission, and X-ray absorption and emission to derive the electronic structure of interfaces in CIGSS and CdTe thin-film solar cells.

Heske, C.

2009-09-01T23:59:59.000Z

194

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells  

E-Print Network (OSTI)

Light trapping has been an important issue for thin film silicon solar cells because of the low absorption coefficient in the near infrared range. In this paper, we present a photonic structure which combines anodic aluminum ...

Sheng, Xing

195

Epitaxial Thin Film Silicon Solar Cells Fabricated by Hot Wire Chemical Vapor Deposition Below 750 ..deg..C: Preprint  

Science Conference Proceedings (OSTI)

We report on fabricating film c-Si solar cells on Si wafer templates by hot-wire chemical vapor deposition. These devices, grown at glass-compatible temperatures 500 mV and efficiencies > 5%.

Alberi, K.; Martin, I. T.; Shub, M.; Teplin, C. W.; Iwaniczko, E.; Xu, Y.; duda, A.; Stradin, P.; Johnston, S. W.; Romero, M. J.; Branz, H. M.; Young, D. L.

2009-06-01T23:59:59.000Z

196

Indium phosphide/cadmium sulfide thin-film solar cells. Semiannual report, July 1980-December 1980  

DOE Green Energy (OSTI)

InP thin films were deposited by planar reactive deposition on recyrstallized CdS (RXCdS) and semi-insulating (100) InP substrates and evaluated as potential layers for an all-thin-film solar cell. Films prepared on RXCdS at approximately 330/sup 0/C contained a mixture of grains having both large and submicron lateral dimensions. SIMS analysis showed the interdiffusion profiles to be well behaved and, within the resolution of the analysis, no significant difference in the profiles between structures prepared at 330/sup 0/C and 380/sup 0/C. Be-doped epitaxial films, deposited on semi-insulating InP at 330/sup 0/C, showed both n- and p-type behavior. Films prepared at higher and lower temperatures with a freshly Be-charged In source were p-type and n-type, respectively; the n-type behavior is associated with an excess of n-type native defects. SIMS analyses confirmed the presence of Be in all Be-doped films. Growth with deviation from stoichiometry was initiated at 330/sup 0/C to reduce the concentration of native defects. Growth of Be-doped films at higher substrate temperature with the same Be-doped source after several runs eventually resulted in n-type films. Analyses of the In source and films were initiated to determine the cause of the transient doping. As an alternative to Be doping, p-type Zn-doped InP films were prepared on InP semi-insulating substrates with room-temperature carrier concentration and mobilities of 6 x 10/sup 16/ cm/sup -3/, and 80 cm/sup 2//Vsec, respectively.

Zanio, K.

1981-03-01T23:59:59.000Z

197

Group I-III-VI.sub.2 semiconductor films for solar cell application  

SciTech Connect

This invention relates to an improved thin film solar cell with excellent electrical and mechanical integrity. The device comprises a substrate, a Group I-III-VI.sub.2 semiconductor absorber layer and a transparent window layer. The mechanical bond between the substrate and the Group I-III-VI.sub.2 semiconductor layer is enhanced by an intermediate layer between the substrate and the Group I-III-VI.sub.2 semiconductor film being grown. The intermediate layer contains tellurium or substitutes therefor, such as Se, Sn, or Pb. The intermediate layer improves the morphology and electrical characteristics of the Group I-III-VI.sub.2 semiconductor layer.

Basol, Bulent M. (Redondo Beach, CA); Kapur, Vijay K. (Northridge, CA)

1991-01-01T23:59:59.000Z

198

14.1.1Graphing Sine, Cosine and Tangent Functions To work properly, a solar panel must  

E-Print Network (OSTI)

panel greater than 1,000 watts? Space Math http://spacemath.gsfc.nasa.gov #12;Answer Key 14.1.1 Problem, after exactly one month (30 days) has elapsed? Space Math http://spacemath.gsfc.nasa.gov #12;Answer Key://spacemath.gsfc.nasa.gov #12;Answer Key 14.4.1 Problem 1 ­ Graph the function for a 48-hour time interval. -120 -100 -80 -60

199

Commercialization of a thick film solar cell. Quarterly technical progress report, January 1, 1980-March 31, 1980  

DOE Green Energy (OSTI)

Initial problems encountered in the screen printing of CdS films related to an undesirable surface texture on the film surface have been resolved by modification of ink rheology. Improvements have been made in CdS films through modification in firing conditions, ink composition, and fluxing. The CdS 13 micron thick films are devoid of through pores and have a resistivity of 1.65 ohm cm. A laser probe technique was developed to determine macro variations in solar cell films.

McDonald, G.D.

1980-01-01T23:59:59.000Z

200

Fabrication of self-supporting antireflection-structured film by UV-NIL  

Science Conference Proceedings (OSTI)

Ultraviolet nanoimprint lithography (UV-NIL) is a powerful tool for the fabrication of films with antireflection (AR) structures (AR films), which are widely used in flat panel displays, mobile phone displays, solar cell surfaces, optical lenses, and ... Keywords: Glassy carbon, Ion beam irradiation, UV photocurable polymer (resin), Ultraviolet nanoimprint lithography (UV-NIL)

Nurhafizah Binti Abu Talip[A]Yusof, Jun Taniguchi

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition.  

Science Conference Proceedings (OSTI)

Atomic layer deposition was used to grow conformal thin films of hematite with controlled thickness on transparent conductive oxide substrates. The hematite films were incorporated as photoelectrodes in regenerative photoelectrochemical cells employing an aqueous [Fe(CN){sub 6}]{sup 3-/4-} electrolyte. Steady state current density versus applied potential measurements under monochromatic and simulated solar illumination were used to probe the photoelectrochemical properties of the hematite electrodes as a function of film thickness. Combining the photoelectrochemical results with careful optical measurements allowed us to determine an optimal thickness for a hematite electrode of {approx}20 nm. Mott-Schottky analysis of differential capacitance measurements indicated a depletion region of {approx}17 nm. Thus, only charge carriers generated in the depletion region were found to contribute to the photocurrent.

Klahr, B. M.; Martinson, A. B. F.; Hamann, T. W. (Materials Science Division); (Michigan State Univ.)

2011-01-01T23:59:59.000Z

202

CdS/CdTe Thin-Film Solar Cell with a Zinc Stannate Buffer Layer  

DOE Green Energy (OSTI)

This paper describes an improved CdS/CdTe polycrystalline thin-film solar-cell device structure that integrates a zinc stannate (Zn2SnO4 or ZTO) buffer layer between the transparent conductive oxide (TCO) layer and the CdS window layer. Zinc stannate films have a high bandgap, high transmittance, low absorptance, and low surface roughness. In addition, these films are chemically stable and exhibit higher resistivities that are roughly matched to that of the CdS window layer in the device structure. Preliminary device results have demonstrated that by integrating a ZTO buffer layer in both SnO2-based and Cd2SnO4 (CTO)-based CdS/CdTe devices, performance and reproducibility can be significantly enhanced

Wu, X.; Sheldon, P.; Mahathongdy, Y.; Ribelin, R.; Mason, A.; Moutinho, H. R.; Coutts, T. J.

1998-10-28T23:59:59.000Z

203

Thin Film Solar Cells Derived from Sintered Semiconductor Quantum Dots: Cooperative Research and Development Final Report, CRADA number CRD-07-00226  

Science Conference Proceedings (OSTI)

The NREL/Evident team will develop techniques to fabricate thin film solar cells where the absorption layers comprising the solar cells are derived from sintered semiconductor quantum dots.

Ginley, D. S.

2010-07-01T23:59:59.000Z

204

Design, construction and testing of a high-vacuum anneal chamber for in-situ crystallisation of silicon thin-film solar cells.  

E-Print Network (OSTI)

??Thin-film solar cells on glass substrates are likely to have a bright future due to the potentially low costs and the short energy payback times. (more)

Weber, Jrgen Wolfgang

2006-01-01T23:59:59.000Z

205

Method and making group IIB metal - telluride films and solar cells  

DOE Patents (OSTI)

A technique is disclosed forming thin films (13) of group IIB metal-telluride, such as Cd.sub.x Zn.sub.1-x Te (0.ltoreq.x.ltoreq.1), on a substrate (10) which comprises depositing Te (18) and at least one of the elements (19) of Cd, Zn, and Hg onto a substrate and then heating the elements to form the telluride. A technique is also provided for doping this material by chemically forming a thin layer of a dopant on the surface of the unreacted elements and then heating the elements along with the layer of dopant. A method is disclosed of fabricating a thin film photovoltaic cell which comprises depositing Te and at least one of the elements of Cd, Zn, and Hg onto a substrate which contains on its surface a semiconductor film (12) and then heating the elements in the presence of a halide of the Group IIB metals, causing the formation of solar cell grade Group IIB metal-telluride film and also causing the formation of a rectifying junction, in situ, between the semiconductor film on the substrate and the Group IIB metal-telluride layer which has been formed.

Basol, Bulent M. (Redondo Beach, CA); Kapur, Vijay K. (Northridge, CA)

1990-08-21T23:59:59.000Z

206

Thin film polycrystalline silicon solar cells. Second technical progress report, July 16, 1980-October 15, 1980  

DOE Green Energy (OSTI)

The objectives of this contract are to fabricate large area thin film silicon solar cells with AM1 efficiency of 10% or greater with good reproducibility and good yield and to assess the feasibility of implementing this process for manufacturing solar cells at a cost of $300/kWe. Efforts have been directed to the purification of metallurgical silicon, the preparation and characterization of substrates and epitaxial silicon layers, and the fabrication and characterization of solar cells. The partial purification of metallurgical silicon by extraction with aqua regia has been further investigated in detail, and the resulting silicon was analyzed by the atomic absorption technique. The unidirectional solidification of aqua regia-extracted metallurgical silicon on graphite was used for the preparation of substrates, and the impurity distribution in the substrate was determined and compared with the impurity content in metallurgical silicon. The effects of heat treatment on the impurity distribution in the substrate and in the epitaxial layer have also been investigated. Large area (30 to 60 cm/sup 2/) solar cells have been prepared from aqua regia-extracted metallurgical silicon substrates by depositing a p-n junction structure using the thermal reduction of trichlorosilane containing appropriate dopants. The AM1 efficiencies are about 9% for cells of 30 to 35 cm/sup 2/ area. Larger area, 60 cm/sup 2/, thin film solar cells have been fabricated for the first time, and their AM1 efficiencies are slightly higher than 8%. The spectral response, minority carrier diffusion length, and I/sub sc/-V/sub oc/ relation in a number of solr cells have been measured.

None

1980-10-01T23:59:59.000Z

207

Pulsed-magnetron-sputtered low-temperature indium tin oxide films for flat-panel display applications  

Science Conference Proceedings (OSTI)

In this paper, indium tin oxide (ITO) thin films were prepared by unipolar and bipolar direct current (DC)-pulsed magnetron sputtering in a mixture of argon and oxygen onto unheated glass substrates. The target of ITO with 10 wt.% tin is used. The influences ... Keywords: DC-pulsed magnetron sputtering, Indium tin oxide, electrical and optical properties

William J. Lee; Yean-Kuen Fang; Jyh-Jier Ho; Chin-Ying Chen; Rung-Ywan Tsai; Daoyang Huang; Fang C. Ho; H. W. Chou; C. C. Chen

2002-02-01T23:59:59.000Z

208

Low resistance thin film organic solar cell electrodes  

SciTech Connect

A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the reentrant structures aligning deposition so that the third electrically conductive material does not directly contact the first electrically conductive material, and does not directly contact the second electrically conductive material.

Forrest, Stephen (Princeton, NJ); Xue, Jiangeng (Piscataway, NJ)

2008-01-01T23:59:59.000Z

209

High efficiency thin film CdTe and a-Si based solar cells  

DOE Green Energy (OSTI)

This report describes work done by the University of Toledo during the first year of this subcontract. During this time, the CdTe group constructed a second dual magnetron sputter deposition facility; optimized reactive sputtering for ZnTe:N films to achieve 10 ohm-cm resistivity and {approximately}9% efficiency cells with a copper-free ZnTe:N/Ni contact; identified Cu-related photoluminescence features and studied their correlation with cell performance including their dependence on temperature and E-fields; studied band-tail absorption in CdS{sub x}Te{sub 1{minus}x} films at 10 K and 300 K; collaborated with the National CdTe PV Team on (1) studies of high-resistivity tin oxide (HRT) layers from ITN Energy Systems, (2) fabrication of cells on the HRT layers with 0, 300, and 800-nm CdS, and (3) preparation of ZnTe:N-based contacts on First Solar materials for stress testing; and collaborated with Brooklyn College for ellipsometry studies of CdS{sub x}Te{sub 1{minus}x} alloy films, and with the University of Buffalo/Brookhaven NSLS for synchrotron X-ray fluorescence studies of interdiffusion in CdS/CdTe bilayers. The a-Si group established a baseline for fabricating a-Si-based solar cells with single, tandem, and triple-junction structures; fabricated a-Si/a-SiGe/a-SiGe triple-junction solar cells with an initial efficiency of 9.7% during the second quarter, and 10.6% during the fourth quarter (after 1166 hours of light-soaking under 1-sun light intensity at 50 C, the 10.6% solar cells stabilized at about 9%); fabricated wide-bandgap a-Si top cells, the highest Voc achieved for the single-junction top cell was 1.02 V, and top cells with high FF (up to 74%) were fabricated routinely; fabricated high-quality narrow-bandgap a-SiGe solar cells with 8.3% efficiency; found that bandgap-graded buffer layers improve the performance (Voc and FF) of the narrow-bandgap a-SiGe bottom cells; and found that a small amount of oxygen partial pressure ({approximately}2 {times} 10{sup {minus}5} torr) was beneficial for growing high-quality films from ITO targets.

Compaan, A. D.; Deng, X.; Bohn, R. G.

2000-01-04T23:59:59.000Z

210

Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology  

DOE Green Energy (OSTI)

During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

Kosny, Jan [ORNL; Miller, William A [ORNL; Childs, Phillip W [ORNL; Biswas, Kaushik [ORNL

2011-01-01T23:59:59.000Z

211

Venice Sustainability Advisory Panel  

E-Print Network (OSTI)

Venice Sustainability Advisory PanelFINAL REPORT Venice Sustainability Advisory Panel FinalInvestigator The Venice Sustainability Advisory Panel (

2009-01-01T23:59:59.000Z

212

CIGS Thin-Film Solar Cell Research at NREL: FY04 Results and Accomplishments  

Office of Scientific and Technical Information (OSTI)

National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Conference Paper NREL/CP-520-37020 January 2005 CIGS Thin-Film Solar Cell Research at NREL: FY04 Results and Accomplishments K. Ramanathan, R.N. Bhattacharya, M.A. Contreras, F.S. Hasoon, J. Abushama, and R. Noufi Presented at the 2004 DOE Solar Energy Technologies Program Review Meeting October 25-28, 2004 Denver, Colorado NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US

213

Development of economical improved thick film solar cell contact. Final report, September 1978-April 1979  

DOE Green Energy (OSTI)

The potential for economy and efficiency has been demonstrated for the thick film metallization process using screen printing for solar cell electrodes. However, process reliability and materials economy remain deficient. It is believed that these deficiencies can be removed by the use of ink formulations designed specifically for silicon solar cells, departing from ceramic technology tradition and utilizing all metal systems. The objectives of this investigation are as follows: 1) eliminate the glass frit which has been the conventional liquid phase sintering medium and adhesive for metallization inks; 2) provide an appropriate metal which can serve as the liquid phase sintering medium; 3) find a chemical constituent which effectively removes the native oxide from the silicon during the firing step, which can be made part of the ink, and which either becomes fugitive or remains an inert part of the matured metallization; and 4) maintain cognizance of the cost objectives of the LSA Project in selecting materials and processes. Progress is reported. (WHK)

Ross, B.

1979-04-01T23:59:59.000Z

214

CIGSS Thin Film Solar Cells: Final Subcontract Report, 10 October 2001-30 June 2005  

DOE Green Energy (OSTI)

This report describes the I-III-VI2 compounds that are developing into a promising material to meet the energy requirement of the world. CuInSe2 (CIS) and its alloy with Ga and S have shown long-term stability and highest conversion efficiency of 19.5%. Among the various ways of preparing CuIn1-xGaxSe2-ySy (CIGSS)/CdS thin-film solar cells, co-evaporation and sputtering techniques are the most promising. Sputtering is an established process for very high-throughput manufacturing. ARCO Solar, now Shell Solar, pioneered the work in CIS using the sputtering technique. The two-stage process developed by ARCO Solar involved sputtering of a copper and indium layer on molybdenum-coated glass as the first step. In the second step, the copper-indium layers were exposed to a selenium-bearing gas such as hydrogen selenide (H2Se) mixed with argon. The hydrogen selenide breaks down and leaves selenium, which reacts and mixes with the copper and indium in such a way to produce very high-quality CIS absorber layer. Sputtering technology has the added advantage of being easily scaled up and promotes roll-to-roll production on flexible substrates. Preliminary experiments were carried out. ZnO/ZnO:Al deposition by RF magnetron sputtering and CdS deposition by chemical-bath deposition are being carried out on a routine basis.

Dhere, N. G.

2006-02-01T23:59:59.000Z

215

Non-Uniformities in Thin-Film Cadmium Telluride Solar Cells Using Electroluminescence and Photoluminescence: Preprint  

DOE Green Energy (OSTI)

It is the purpose of this research to develop specific imaging techniques that have the potential to be fast, in-line tools for quality control in thin-film CdTe solar cells. Electroluminescence (EL) and photoluminescence (PL) are two techniques that are currently under investigation on CdTe small area devices made at Colorado State University. It is our hope to significantly advance the understanding of EL and PL measurements as applied to CdTe. Qualitative analysis of defects and non-uniformities is underway on CdTe using EL, PL, and other imaging techniques.

Zaunbrecher, K.; Johnston, S.; Yan, F.; Sites, J.

2011-07-01T23:59:59.000Z

216

Portable solar cooking apparatus  

Science Conference Proceedings (OSTI)

A portable solar cooking apparatus is described which consists of: at least first and second reflector panels, the first reflector panel having a shaped surface configuration for reflecting solar radiation generally toward a focal point, the second reflector panel also having a shaped surface configuration for reflecting solar radiation toward the focal point, the surface configuration of the first panel interfitting with the surface configuration of the second panel when the panels are placed face-to-face so that the first and second panels mutually support each other and occupy less thickness than without interfitting; and means for supporting material to be heated adjacent the focal point.

Ciambella, B.C.; Ciambella, D.P.; Ciambella, P.A.

1986-04-22T23:59:59.000Z

217

Advanced processing technology for high-efficiency, thin-film CuInSe{sub 2} and CdTe solar cells. Annual subcontract report, 1 March 1993--28 February 1994  

Science Conference Proceedings (OSTI)

This annual report details activities in research on advanced processing technology for high-effiency, thin-film solar cells.

Morel, D.L.; Ferekides, C.S. [University of South Florida, Tampa, FL (United States)

1994-07-01T23:59:59.000Z

218

Solar Kit Lessons  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Kit Lessons Middle School Curriculum Created by Northeast Sustainable Energy Association (NESEA) Click on the links below to take you to the Chapter heading: Solar Cell Inquiry Sunshine Timer Parts of a Solar Panel Part 1 Parts of a Solar Panel Part 2 Build a Simple Ammeter Solar-Powered Battery Charger Positioning Solar Panels 1 Positioning Solar Panels 2 Properties of Solar Radiation: Reflection, Transmission, and Absorption Properties of Solar Radiation: Direct and Diffuse Light Power Maximum: An Electrical Determination Calibration Curve for a Radiation Meter Solarize a Toy Solar Cells as Control Devices Solar-Powered Electrolysis of Water and the Hydrogen Economy Solar Kit Lesson #1 Solar Cell Inquiry TEACHER INFORMATION LEARNING OUTCOME

219

Panel Session  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview IGTI ASME Turbo Expo Montreal, Canada, May 14-17, 2007 Panel Presentation Tuesday, May 15, 2007 @ 2:30 - 5:00 PM CO2 Compression Opportunities in Fossil Fueled Power...

220

EERE Roofus' Solar and Efficient Home: Appliances  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliances Front-Loading Washing Machine Electric Meter Lights Solar Car Solar Hot Water Solar Panels Walls Windows Activities Printable Version Appliances Illustration of Roofus,...

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

American Way Solar AWS | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name American Way Solar (AWS) Place Plzen, Czech Republic Sector Solar Product Czech subsidiary of US PV panel manufacturer, American Way Solar (AWS)....

222

Department of Energy Offers Support for Arizona Solar Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arizona Solar Project Arizona Solar Project Department of Energy Offers Support for Arizona Solar Project January 20, 2011 - 12:00am Addthis Washington D.C. --- U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment to Agua Caliente Solar, LLC for a loan guarantee of up to $967 million. The loan guarantee will support the construction of a 290-megawatt photovoltaic solar generating facility located in Yuma County, Arizona that will use thin film solar panels from First Solar, Inc. The project sponsor, NRG Solar, estimates the project will be the largest photovoltaic generation facility in the world when it is completed. "Solar projects like this are helping the U.S. to compete globally for the clean energy jobs of today and the future," said Secretary Chu. "The

223

Department of Energy Offers Support for Arizona Solar Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Support for Arizona Solar Project Support for Arizona Solar Project Department of Energy Offers Support for Arizona Solar Project January 20, 2011 - 12:00am Addthis Washington D.C. --- U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment to Agua Caliente Solar, LLC for a loan guarantee of up to $967 million. The loan guarantee will support the construction of a 290-megawatt photovoltaic solar generating facility located in Yuma County, Arizona that will use thin film solar panels from First Solar, Inc. The project sponsor, NRG Solar, estimates the project will be the largest photovoltaic generation facility in the world when it is completed. "Solar projects like this are helping the U.S. to compete globally for the clean energy jobs of today and the future," said Secretary Chu. "The

224

Thin film polycrystalline silicon solar cells. Quarterly report No. 1, October 1-December 31, 1979  

DOE Green Energy (OSTI)

The MoSi/sub 2/ separation layer growth rate has been studied as a function of time and temperature. The presence of small amounts of O/sub 2/ in the silicon deposition ambient were found to inhibit the growth rate of the MoSi/sub 2/ layer and also to affect the reliability of shear separation. Void formation in silicon at the Si-MoSi/sub 2/ interface, due predominantly to diffusion of silicon through the MoSi/sub 2/ layer was observed. This is believed to be responsible for shear separation occurring in the silicon film. Gas chromatograhic procedures were developed for characterizing the silicon deposition process. Coherent twin bundles in the grain-enhanced silicon films were not found to adversely influence solar cell efficiency. Several 1 cm x 2 cm solar cells were fabricated. Performance characteristics of these cells are discussed; the best device had a conversion efficiency of 10.7% (under simulated AM1 illumination) with V/sub OC/ = 0.545 V, J/sub SC/ = 28.65 mA/cm/sup 2/ and FF = 68.3%.

Sarma, K.R.; Rice, M.J.; Legge, R.

1979-01-01T23:59:59.000Z

225

Film Si Solar Cells with Nano Si: Cooperative Research and Development Final Report, CRADA Number CRD-09-00356  

DOE Green Energy (OSTI)

Nevada Nanotechnology Center and Si group at NREL will work together to develop a-Si based solar cells with nano-Si technique. We will explore the existing a-Si based film solar cell technology at NREL and nano scale Si technology at Nevada Nanotechnology Center. By exchanging information, we will come; up with some new cell structures using nano-Si. We expect the new a-Si based cells will have optical enhancement or better electronic or optical properties of absorber layer to improve solar cell performance.

Wang, Q.

2011-05-01T23:59:59.000Z

226

Epitaxial Thin Film Silicon Solar Cells Fabricated by Hot Wire Chemical Vapor Deposition Below 750 ..deg..C: Preprint  

SciTech Connect

We report on fabricating film c-Si solar cells on Si wafer templates by hot-wire chemical vapor deposition. These devices, grown at glass-compatible temperatures < 750..deg..C, demonstrate open-circuit voltages > 500 mV and efficiencies > 5%.

Alberi, K.; Martin, I. T.; Shub, M.; Teplin, C. W.; Iwaniczko, E.; Xu, Y.; duda, A.; Stradin, P.; Johnston, S. W.; Romero, M. J.; Branz, H. M.; Young, D. L.

2009-06-01T23:59:59.000Z

227

Processing and modeling issues for thin-film solar cell devices. Annual subcontract report, January 16, 1993--January 15, 1994  

DOE Green Energy (OSTI)

The overall objective of the research presented in this report is to advance the development and acceptance of thin-film photovoltaic modules by increasing the understanding of film growth and processing and its relationship to materials properties and solar cell performance. The specific means toward meeting this larger goal include: (1) investigating scalable, cost-effective deposition processes; (2) preparing thin-film materials and device layers and completed cell structures; (3) performing detailed material and device analysis; and (4) participating in collaborative research efforts that address the needs of PV-manufacturers. These objectives are being pursued with CuInSe{sub 2}, CdTe and a-Si based solar cells.

Birkmire, R.W.; Phillips, J.E.; Buchanan, W.A.; Hegedus, S.S.; McCandless, B.E.; Shafarman, W.N.; Yokimcus, T.A. [Institute of Energy Conversion, Newark, DE (United States)

1994-09-01T23:59:59.000Z

228

Thin film gallium arsenide solar cell research. Third quarterly project report, September 1, 1980-November 30, 1980. [Antireflection coating  

DOE Green Energy (OSTI)

The major objective of this contract is to produce gallium arsenide solar cells of 10% conversion efficiency in films of less than 10 micrometers thick which have been deposited by chemical vapor deposition on graphite or tungsten coated graphite substrates. Major efforts during this quarter were directed to: (1) the optimization of the deposition of gallium arsenide films of 10 ..mu..m thickness or less on tungsten/graphic substrates, (2) the investigation of the effectiveness of various grain boundary passivation techniques, (3) the deposition of tantalum pentoxide by ion beam sputtering as an antireflection coating, (4) the deposition of gallium aluminium arsenide by the organometallic process, and (5) the fabrication and characterization of large area Schottky barrier type solar cells from gallium arsenide films of about 10 ..mu..m thickness. Various grain boundary passivation techniques, such as the anodic oxidation, thermal oxidation, and ruthenium treatment, have been investigated. The combination of thermal oxidation and ruthenium treatment has been used to fabricate Schottky barrier type solar cells. Large area MOS solar cells of 9 cm/sup 2/ area with AMl efficiency of 8.5% have been fabricated from ruthenium treated gallium arsenide films of 10 ..mu..m thickness. The construction of the apparatus for the deposition of gallium aluminum arsenide by the organometallic process has been completed. The deposition of good quality tantalum pentoxide film as an antireflection coating has been carried out by the ion beam sputtering technique. The short-circuit current density and AMl efficiency of the solar cells are increased by approximately 60%, with a slight increase in the open-circuit voltage. Details are presented. (WHK)

Chu, S. S.

1980-12-01T23:59:59.000Z

229

Reflective Optics CPV Panels Enabling Large Scale, Reliable Generation of Solar Energy Cost Competitive with Fossil Fuels: 15 November 2007 - 30 June 2009  

DOE Green Energy (OSTI)

SolFocus developed a CPV panel with conversion efficiency >22% and manufacturing run-rate capacity far exceeding 3 MW.

Horne, S.; McDonald, M.; Hartsoch, N.; Desy, K.

2009-12-01T23:59:59.000Z

230

Participate on an Expert Panel  

Science Conference Proceedings (OSTI)

AOCS Lab Services - Participate on an Expert Panel. Participate on an Expert Panel Participate on an Expert Panel Expert Panels

231

Solar Power as a Source of Noise-free Power for Research  

E-Print Network (OSTI)

that of the solar panels, to measure the Sun intensity. Wesun power (P sun ): One of the three solar panels isof the Sun intensity that is radiated on the solar panels,

Dutta, Akshita; Chorescu, Irinel

2011-01-01T23:59:59.000Z

232

Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet), Energy Development in Island Nations, U.S. Virgin Islands (EDIN)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office Grant Helps the Virgin Islands Environmental Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% Organization Virgin Islands Energy Office www.vienergy.org Industry/Sector Government/Nonprofit Deployment Location St. John, U.S. Virgin Islands This project is such a great learning tool, and I am excited about its progress and being able to show students visiting either VIERS or our website the impact of solar energy. -Randy Brown VIERS Administrator The Virgin Islands Environmental Resource Station developed a solar classroom to educate young people in the U.S. Virgin Islands about renewable energy technologies and their energy and environmental impacts. Photo from Don Buchanan, Virgin Islands Energy Office,

233

Dark Current Transients in Thin-Film CdTe Solar Cells: Preprint  

DOE Green Energy (OSTI)

This conference paper describes the Dark current transients measured by changing the voltage bias in a stepwise fashion on CdTe cells results in minutes-long transients after each step. Transients measured at room temperature are controlled by carrier trapping that corresponds to the well known voltage transient phenomena[1]. Transients measured on the same CdTe cell at elevated temperature (60C and 90C) show a much slower decay process. We associate this physical process with''shunt'' current paths induced with reverse bias and removed with forward bias. A different back contact process may produce an opposite voltage dependence. The lack of these transients may be required for the fabrication of ''stable'' thin-film CdTe solar cells.

McMahon, T. J.

2002-05-01T23:59:59.000Z

234

Electronic film with embedded micro-mirrors for solar energy concentrator systems  

E-Print Network (OSTI)

A novel electronic film solar energy concentrator with embedded micro-mirrors that track the sun is described. The potential viability of this new concept is presented. Due to miniaturization, the amount of material needed for the optical system is minimal. Because it is light-weight and flexible, it can easily be attached to the land or existing structures. This presents an economic advantage over conventional concentrators which require the construction of a separate structure to support them, and motors to orient them to intercept and properly reflect sunlight. Such separate structures must be able to survive gusts, windstorms, earthquakes, etc. This concentrator utilizes the ground or existing edifices which are already capable of withstanding such vicissitudes of nature.

Mario Rabinowitz; Mark Davidson

2004-04-16T23:59:59.000Z

235

Energy Materials Blue Ribbon Panel Releases Vision Report  

Science Conference Proceedings (OSTI)

Jun 22, 2010 ... Said Blue Ribbon Panel member Michael J. Dolan, senior vice ... Solar technology, while being designated as a moderately important MSE...

236

Polycrystalline thin-film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report  

DOE Green Energy (OSTI)

During the past year, Colorado School of Mines (CSM) researchers performed systematic studies of the growth and properties of electrodeposition CdS and back-contact formation using Cu-doped ZnTe, with an emphasis on low Cu concentrations. CSM also started to explore the stability of its ZnTe-Cu contacted CdTe solar cells. Researchers investigated the electrodeposition of CdS and its application in fabricating CdTe/CdS solar cells. The experimental conditions they explored in this study were pH from 2.0 to 3.0; temperatures of 80 and 90 C; CdCl{sub 2} concentration of 0.2 M; deposition potential from {minus}550 to {minus}600 mV vs. Ag/AgCl electrode; [Na{sub 2}S{sub 2}O{sub 4}] concentration between 0.005 and 0.05 M. The deposition rate increases with increase of the thiosulfate concentration and decrease of solution pH. Researchers also extended their previous research of ZnTe:Cu films by investigating films doped with low Cu concentrations (< 5 at. %). The low Cu concentration enabled them to increase the ZnTe:Cu post-annealing temperature without causing excessive Cu diffusion into CdTe or formation of secondary phases. The effects of Cu doping concentration and post-deposition annealing temperature on the structural, compositional, and electrical properties of ZnTe were studied systematically using X-ray diffraction, atomic force microscopy, electron microprobe, Hall effect, and conductivity measurements.

Trefny, J.U.; Mao, D. [Colorado School of Mines, Golden, CO (United States). Dept. of Physics

1998-01-01T23:59:59.000Z

237

Research on polycrystalline thin-film CuGaInSe[sub 2] solar cells  

DOE Green Energy (OSTI)

This report describes research to fabricate high-efficiency CdZnS/CuInGaSe[sub 2] (CIGS) thin-film solar cells, and to develop improved transparent conductor window layers such as ZnO. A specific technical milestone was the demonstration of an air mass (AM) 1.5 global, 13% efficient, 1-cm[sup 2]-total-area CIGS thin-film solar cell. Our activities focused on three areas. First, a CIGS deposition: system was modified to double its substrate capacity, thus increasing throughput, which is critical to speeding the process development by providing multiple substrates from the same CIGS run. Second, new tooling was developed to enable an investigation of a modified aqueous CdZnS process. The goal was to improve the yield of this critical step in the device fabrication process. Third, our ZnO sputtering system was upgraded to improve its reliability, and the sputtering parameters were further optimized to improve its properties as a transparent conducting oxide. The characterization of the new CIGS deposition system substrate fixturing was completed, and we produced good thermal uniformity and adequately high temperatures for device-quality CIGS deposition. Both the CIGS and ZnO deposition processes were refined to yield a ZnO//Cd[sub 0.82]Zn[sub 0.18]S/CuIn[sub 0.80]Ga[sub 0.20]Se[sub 2] cell that was verified at NREL under standard testing conditions at 13.1% efficiency with V[sub oc] = 0.581 V, J[sub sc] = 34.8 mA/cm[sup 2], FF = 0.728, and a cell area of 0.979 cm[sup 2].

Stanbery, B.J.; Chen, W.S.; Devaney, W.E.; Stewart, J.W. (Boeing Co., Seattle, WA (United States). Defense and Space Systems Group)

1992-11-01T23:59:59.000Z

238

Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells  

DOE Green Energy (OSTI)

This document describes the progress made in obtaining stable, a-Si-based submodules that have a large area and high efficiency. Conversion efficiencies of up to 11.95% were obtained in small-area, single-junction a-Si solar cells using textured TiO{sub 2}, superlattice p-layers, graded carbon concentrations near the p/i interface, and highly reflective ITO/silver back contacts. Single- junction a-SiC and a-SiGe p-i-n cells were also fabricated that had conversion efficiencies of 9%--11%, and some recently fabricated stacked-junction cells had conversion efficiencies of about 10%. In materials research boron-doped microcrystalline SiC films were recently developed containing up to 6 at. % carbon with conductivities of 3 {times} 10{sup {minus}3}/{Omega}-cm at room temperature and activation energies of 0.11 eV. Microcrystalline film growth was shown to be strongly influenced by the nature of the substrate, with nucleation occurring more readily on a-Si substrates than on TiO{sub 2}. Stability studies show that light-induced degradation is usually enhanced by the presence of carbon grading near the p/i interface. In general, adding either germanium (from GeH{sub 4}) or carbon (from CH{sub 4}) to the i-layer of a p-i-n cell leads to enhanced light-induced degradation. 13 refs., 80 figs., 17 tabs.

Catalano, A.W.; Carlson, D.E.; Ayra, R.R.; Bennett, M.S.; D'Aiello, R.V.; Dickson, C.R.; Fortmann, C.M.; Goldstein, B.; McVeigh, J.; Morris, J.; Newton, J.L.; Wiedeman, S. (Solarex Corp., Newtown, PA (USA). Thin Film Div.)

1989-10-01T23:59:59.000Z

239

Damp-Heat Induced Degradation of Transparent Conducting Oxides for Thin-Film Solar Cells: Preprint  

DOE Green Energy (OSTI)

The stability of intrinsic and Al-doped single- and bi-layer ZnO for thin-film CuInGaSe2 solar cells, along with Al-doped Zn1-xMgxO alloy and Sn-doped In2O3 (ITO) and F-doped SnO2, was evaluated by direct exposure to damp heat (DH) at 85oC and 85% relative humidity. The results show that the DH-induced degradation rates followed the order of Al-doped ZnO and Zn1-xMgxO >> ITO > F:SnO2. The degradation rates of Al:ZnO were slower for films of higher thickness, higher substrate temperature in sputter-deposition, and with dry-out intervals. As inferred from the optical micro-imaging showing the initiation and propagation of degrading patterns and regions, the degradation behavior appears similar for all TCOs, despite the obvious difference in the degradation rate. A degradation mechanism is proposed to explain the temporal process involving thermal hydrolysis.

Pern, F. J.; Noufi, R.; Li, X.; DeHart, C.; To, B.

2008-05-01T23:59:59.000Z

240

High-Efficiency CdTe and CIGS Thin-Film Solar Cells: Highlights and Challenges  

Science Conference Proceedings (OSTI)

Thin-film photovoltaic (PV) modules of CdTe and Cu(In,Ga)Se{sub 2} (CIGS) have the potential to reach cost-effective PV-generated electricity. These technologies have transitioned from the laboratory to the market place. Pilot production and first-time manufacturing are ramping up to higher capacity and enjoying a flood of venture-capital funding. CIGS solar cells and modules have achieved 19.5% and 13% efficiencies, respectively. Likewise, CdTe cells and modules have reached 16.5% and 10.2% efficiencies, respectively. Even higher efficiencies from the laboratory and from the manufacturing line are only a matter of time. Manufacturing-line yield continues to improve and is surpassing 85%. Long-term stability has been demonstrated for both technologies; however, some failures in the field have also been observed, emphasizing the critical need for understanding degradation mechanisms and packaging options. These two thin-film technologies have a common device/module structure: substrate, base electrode, absorber, junction layer, top electrode, patterning steps for monolithic integration, and encapsulation. The monolithic integration of thin-film solar cells can lead to significant manufacturing cost reduction compared to crystalline Si technology. The CdTe and CIGS modules share common structural elements. In principle, this commonality should lead to similar manufacturing cost per unit area, and thus, the module efficiency becomes the discriminating factor that determines the cost per watt. The long-term potential of the two technologies require R&D emphasis on science and engineering-based challenges to find solutions to achieve targeted cost-effective module performance, and in-field durability. Some of the challenges are common to both, e.g., in-situ process control and diagnostics, thinner absorber, understanding degradation mechanisms, protection from water vapor, and innovation in high-speed processing and module design. Other topics are specific to the technology, such as lower-cost and fast-deposition processes for CIGS, and improved back contact and voltage for CdTe devices.

Noufi, R.; Zweibel, K.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Processing and modeling issues for thin-film solar cell devices: Annual subcontract report, January 16, 1995 -- January 15, 1996  

DOE Green Energy (OSTI)

The overall mission of the Institute of Energy Conversion is the development of thin film photovoltaic cells, modules, and related manufacturing technology and the education of students and professionals in photovoltaic technology. The objectives of this four-year NREL subcontract are to advance the state of the art and the acceptance of thin film PV modules in the areas of improved technology for thin film deposition, device fabrication, and material and device characterization and modeling, relating to solar cells based on CuInSe{sub 2} and its alloys, on a-Si and its alloys, and on CdTe. In the area of CuInSe{sub 2} and its alloys, EEC researchers have produced CuIn{sub 1-x}GaxSe{sub 2} films by selenization of elemental and alloyed films with H{sub 2}Se and Se vapor and by a wide variety of process variations employing co-evaporation of the elements. Careful design, execution and analysis of these experiments has led to an improved understanding of the reaction chemistry involved, including estimations of the reaction rate constants. Investigation of device fabrication has also included studies of the processing of the Mo, US and ZnO deposition parameters and their influence on device properties. An indication of the success of these procedures was the fabrication of a 15% efficiency CuIn{sub 1-x}GaxSe{sub 2} solar cell.

Birkmire, R.W.; Phillips, J.E.; Buchanan, W.A.; Eser, E.; Hegedus, S.S.; McCandless, B.E.; Meyers, P.V.; Shafarman, W.N. [Univ. of Delaware, Newark, DE (United States)

1996-08-01T23:59:59.000Z

242

Solar  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) leads a large network of researchers and other partners to deliver innovative solar photovoltaic and concentrating solar power technologies that will make solar...

243

Has sempra found El Dorado in solar PVs? grid parity may now be within reach  

SciTech Connect

Instead of using conventional polycrystalline silicon modules that turn sunlight into electricity, these solar panels use cadmium telluride, a lower-cost semiconductor manufactured into thin-film cells that are cheaper to manufacture than their silicon-based counterparts. Electricity is being produced at costs as low as 7.5 {cents}/kWh.

NONE

2009-03-15T23:59:59.000Z

244

Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for Improved Performance  

Science Conference Proceedings (OSTI)

We report on CdS/CdTe photovoltaic devices that contain a thin Ta2O5 film deposited onto the CdS window layer by sputtering. We show that for thicknesses below 5 nm, Ta2O5 films between CdS and CdTe positively affect the solar cell performance, improving JSC, VOC, and the cell power conversion efficiency despite the insulating nature of the interlayer material. Using the Ta2O5 interlayer, a VOC gain of over 100 mV was demonstrated compared to a CdTe/CdS baseline. Application of a 1nm Ta2O5 interlayer enabled the fabrication of CdTe solar cells with extremely thin (less than 30 nm) CdS window layers. The efficiency of these cells exceeded that of a base line cell with 95 nm of CdS.

Lemmon, John P.; Polikarpov, Evgueni; Bennett, Wendy D.; Kovarik, Libor

2012-05-05T23:59:59.000Z

245

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

investments. Thin Film PV Solar Heating & Cooling Projectused in the report. Solar water heating, space heating ande.g. , PV, CSP, solar water heating) Types of industry

Price, S.

2010-01-01T23:59:59.000Z

246

Solar access of residential rooftops in four California cities  

E-Print Network (OSTI)

the 14th European Photovoltaic Solar Energy Conference androoftop solar-energy systems, including photovoltaic panelsrooftop solar-energy systems, including photovoltaic panels

Levinson, Ronnen

2010-01-01T23:59:59.000Z

247

DOE Solar Decathlon: 2007 Teams - Lawrence Technological University  

NLE Websites -- All DOE Office Websites (Extended Search)

reflect its healing effect on the Earth. It features a central solar chimney, extensive solar electric panels on the roof, and solar thermal collectors extending from its west...

248

Apollo Solar Energy Co Ltd ASEC | Open Energy Information  

Open Energy Info (EERE)

Ltd ASEC Jump to: navigation, search Name Apollo Solar Energy Co Ltd (ASEC) Place Taoyuan Hsien, Taiwan Zip 325 Sector Solar Product Producer of modules for solar panels....

249

Interconnection Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interconnection Panel Dan Tunnicliff, P.E. Manager, Government Segment, Southern California Edison Southern California Edison Application Processing Technical Scoping Meeting Technical Studies Interconnection Agreement Project Implementation Overview of Generation Interconnection Process (GIP) * Transmission Level Interconnections - Governed by CAISO Tariff. * Generally for 220 kV and higher. * All applications must be submitted to the CAISO. * CAISO administers its tariff, which is approved by FERC. * Distribution Level Interconnections - Governed by SCE's WDAT. * Generally below 220 kV. * All applications must be submitted to SCE. * SCE administers its tariff, which is approved by FERC. 2 Southern California Edison Interconnection agreements are critically

250

Science news doi:10.1038/nindia.2012.185; Published online 17 December 2012 Stacked panels boost solar energy production  

E-Print Network (OSTI)

Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials­2077). Given the proposed scales of PV adoption, the health and environmental impacts of PV technology should also be considered. This project would examine the proposed solar cell materials and designs and create

Harinarayana, T.

251

High-efficiency cadmium and zinc-telluride-based thin-film solar cells  

DOE Green Energy (OSTI)

This report describes research into polycrystalline CdTe solar cells grown by metal-organic chemical vapor deposition. Efficiencies of {approximately}10% were achieved using both p-i-n and p-n structures. A pre-heat treatment of CdS/SnO{sub 2}/glass substrates at 450{degrees}C in hydrogen atmosphere prior to the CdTe growth was found to be essential for high performance because this heat treatment reduces oxygen-related defects from the CdS surface. However, this treatment also resulted in a Cd-deficient CdS surface, which may in part limit the CdTe cell efficiency to 10% due to Cd vacancy-related interface defects. Preliminary model calculations suggest that removing these states can increase the cell efficiency from 10% to 13.5%. Photon absorption in the CdS film also limits the cell performance, and eliminating this loss mechanism can result in CdTe efficiencies in excess of 18%. Polycrystalline, 1.7-e, CdZnTe films were also grown for tandem-cell applications. CdZnTe/CdS cells processed using the standard CdTe cell fabrication procedure resulted in 4.4% efficiency, high series resistance, and a band-gap shift to 1.55 eV. The formation of Zn-O at and near the CdZnTe surface is the source of high contact resistance. A saturated dichromate each prior to contact deposition was found to solve the contact resistance problem. The CdCl{sub 2} treatment was identified as the cause of the observed band-gap shift due to the preferred formation of ZnCl{sub 2}. 59 refs.

Rohatgi, A.; Sudharsanan, R.; Ringel, S. (Georgia Inst. of Tech., Atlanta, GA (United States))

1992-02-01T23:59:59.000Z

252

Development of copper sulfide/cadmium sulfide thin-film solar cells  

DOE Green Energy (OSTI)

The purpose of this work has been to identify aspects of cell fabrication and treatment which are critical for achieving high efficiency Cu/sub 2/S/CdS solar cells. In approaching the problem several comparisons were made of the effects of specific steps in two methods of cell fabrication. These methods had previously given cells of about 6% and a maximum of 9% efficiency. Three areas requiring special attention and specific means to achieve acceptable results were identified. (1) The Cu/sub 2/S/CdS heterojunction area must be minimized. If single source evaporations of CdS are made on substrates whose temperatures (approx. 220/sup 0/C) are monitored and controlled using welded thermocouples, the CdS films will have adequately large grains (grain diameter greater than or equal to 2 ..mu..m) and will not develop significant etch pits during texturing in a mild etchant solution. (2) The termination of the wet barrier processing steps must be done carefully. An acceptable termination involves minimizing the amount of cuprous chloride retained on the cell surface during transfer to a rinsing stage while providing adequate exclusion of air from the space above the surface of the cuprous chloride solution. (3) Once formed, the Cu/sub 2/S layer should not be exposed to high temperatures (>100/sup 0/C) for long periods of time (> 5 min) if surface adsorbed moisture or oxygen are present. Heat treatments in ampoules under flowing hydrogen atmospheres should be preceded and followed by periods of at least 30 minutes at room temperature in the reducing ambient. If all these precautions are taken, wet chemical barrier processing of thermally evaporated CdS films on zinc-plated copper foil substrates yields cells of nearly 8% conversion efficiency without AR coating.

Szedon, J.R.; Biter, W.J.; Abel, J.A.; Dickey, H.C.; Shirland, F.A.

1981-02-27T23:59:59.000Z

253

Solar Array Ventures Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Solar Array Ventures Inc Place Austin, Texas Product Texas-based start-up thin film PV panel maker, which plans to develop five production plants over the next five years, with four of those facilities located at a site in New Mexico. References Solar Array Ventures Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Array Ventures Inc is a company located in Austin, Texas . References ↑ "Solar Array Ventures Inc" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Array_Ventures_Inc&oldid=351246" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

254

Department of Energy Offers Support for an Oregon Solar Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an Oregon Solar an Oregon Solar Manufacturing Project Department of Energy Offers Support for an Oregon Solar Manufacturing Project February 17, 2011 - 12:00am Addthis Washington D.C. --- U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment to SoloPower, Inc. for a $197 million loan guarantee to support the retrofit of an existing building and installation of additional equipment to operate a thin-film solar panel manufacturing facility in Wilsonville, Oregon. When completed and at full capacity, the facility is expected to produce over 400 megawatts of flexible photovoltaic (PV) panels annually. According to SoloPower estimates, the project will create approximately 500 permanent jobs and 270 construction jobs. "Investments like these are going to help America become a world leader

255

Characterization of Epitaxial Film Silicon Solar Cells Grown on Seeded Display Glass: Preprint  

DOE Green Energy (OSTI)

We report characterizations of epitaxial film crystal silicon (c-Si) solar cells with open-circuit voltages (Voc) above 560 mV. The 2-um absorber cells are grown by low-temperature (<750 degrees C) hot-wire CVD (HWCVD) on Corning EAGLE XG display glass coated with a layer-transferred (LT) Si seed. The high Voc is a result of low-defect epitaxial Si (epi-Si) growth and effective hydrogen passivation of defects. The quality of HWCVD epitaxial growth on seeded glass substrates depends on the crystallographic quality of the seed and the morphology of the epitaxial growth surface. Heterojunction devices consist of glass/c-Si LT seed/ epi n+ Si:P/epi n- Si:P/intrinsic a-Si:H/p+ a-Si:H/ITO. Similar devices grown on electronically 'dead' n+ wafers have given Voc {approx}630 mV and {approx}8% efficiency with no light trapping features. Here we study the effects of the seed surface polish on epi-Si quality, how hydrogenation influences the device character, and the dominant junction transport physics.

Young, D. L.; Grover, S.; Teplin, C.; Stradins, P.; LaSalvia, V.; Chuang, T. K.; Couillard, J. G.; Branz, H. M.

2012-06-01T23:59:59.000Z

256

Methods for forming thin-film heterojunction solar cells from I-III-VI{sub 2}  

DOE Patents (OSTI)

An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI{sub 2} chalcopyrite ternary materials which is vacuum deposited in a thin ``composition-graded`` layer ranging from on the order of about 2.5 microns to about 5.0 microns ({approx_equal}2.5 {mu}m to {approx_equal}5.0 {mu}m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii) a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion occurs (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer. 16 figs.

Mickelsen, R.A.; Chen, W.S.

1985-08-13T23:59:59.000Z

257

Characterization of Epitaxial Film Silicon Solar Cells Grown on Seeded Display Glass: Preprint  

Science Conference Proceedings (OSTI)

We report characterizations of epitaxial film crystal silicon (c-Si) solar cells with open-circuit voltages (Voc) above 560 mV. The 2-um absorber cells are grown by low-temperature (EAGLE XG display glass coated with a layer-transferred (LT) Si seed. The high Voc is a result of low-defect epitaxial Si (epi-Si) growth and effective hydrogen passivation of defects. The quality of HWCVD epitaxial growth on seeded glass substrates depends on the crystallographic quality of the seed and the morphology of the epitaxial growth surface. Heterojunction devices consist of glass/c-Si LT seed/ epi n+ Si:P/epi n- Si:P/intrinsic a-Si:H/p+ a-Si:H/ITO. Similar devices grown on electronically 'dead' n+ wafers have given Voc {approx}630 mV and {approx}8% efficiency with no light trapping features. Here we study the effects of the seed surface polish on epi-Si quality, how hydrogenation influences the device character, and the dominant junction transport physics.

Young, D. L.; Grover, S.; Teplin, C.; Stradins, P.; LaSalvia, V.; Chuang, T. K.; Couillard, J. G.; Branz, H. M.

2012-06-01T23:59:59.000Z

258

Methods for forming thin-film heterojunction solar cells from I-III-VI[sub 2  

DOE Patents (OSTI)

An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (1) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI[sub 2] chalcopyrite ternary materials which is vacuum deposited in a thin composition-graded'' layer ranging from on the order of about 2.5 microns to about 5.0 microns ([approx equal]2.5[mu]m to [approx equal]5.0[mu]m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (2), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, is allowed.

Mickelsen, R.A.; Chen, W.S.

1982-06-15T23:59:59.000Z

259

Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2  

DOE Patents (OSTI)

An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order ot about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.

Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

1985-01-01T23:59:59.000Z

260

Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2  

DOE Patents (OSTI)

An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5.mu.m to .congruent.5.0.mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.

Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar and Wind Powering Wyoming Home Terry Sandstrom never thought he would run his house...

262

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 26, 2010 Butte College's solar panels are helping it make more energy than it uses, providing it financial as well environmental benefits. | Photo courtesy of Butte College...

263

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is making an effort to reduce costs and help the environment by installing renewable energy projects, including solar panels on the center's roof and on poles around the...

264

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finalized 535 Million Loan Guarantee for Solyndra Recovery Act funding will accelerate job creation and help expand marketplace for innovative solar electric panels July 15, 2009...

265

Protecting Solar Rights in California Through an Exploration of the California Water Doctrine  

E-Print Network (OSTI)

increasedaffordabilityofsolarPVinstallationmeansthatofphotovoltaic(PV)solarpanels,growsincreasinglymore

Fedman, Anna

2011-01-01T23:59:59.000Z

266

Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells. Final subcontract report, 1 July 1988--31 December 1991  

DOE Green Energy (OSTI)

This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

Chu, T.L. [University of South Florida, Tampa, FL (United States)

1992-04-01T23:59:59.000Z

267

NREL: Learning - Solar Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Photo of a solar electric system in Colorado with snow-covered mountain peaks in the background. Solar panels installed on a home in Colorado. Solar is the Latin word...

268

NREL: Solar Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

148 million Solar America Initiative, will support the development of more efficient solar panels, known as photovoltaic devices. August 23, 2006 U.S. Department of Energy...

269

Development of recrystallization and thin-film solar cell processes. Final report, October 1, 1977-September 30, 1978  

DOE Green Energy (OSTI)

The program had two thrusts: (1) based upon electron-beam thermal treatment of deposited silicon films, to increase crystallite sizes to the range thought to be useful for polycrystalline, thin-film cell fabrication; and (2) to explore the feasibility of applying the directed-energy technologies of ion implantation and pulsed electron beam activation, previously developed for silicon cell fabrication, to junction formation in III-V compounds. The culmination of the recrystallization effort was demonstrating grains broader than the 30-..mu..m film in which they were regrown. This proof of principle was accomplished by means of two-step thermal process that consisted of large-area pulsed electron beam melting followed by small-area heating in a moving DC electron beam. The pulsed beam treatment reduced the three-dimensional disorder of the initial submicrometer crystallite silicon film to one characterized by submicrometercross-section, full-film-thickness, columnar crystallites. The swept beam treatment allowed coalesence of these columnar crystallites, through directional freezing, in the melt path of the beam. It is believed that this demonstration is the first evidence of greater-than-film thickness recrystallization of useful thickness silicon films other than by extended heat treatment at greater than 1350/sup 0/C. The results of the studies on junction formation in III-V materials, while not so dramatic, have shown that low-energy ion implantation is a potentially viable alternative to liquid or vapor phase epitaxy in the fabrication of GaAs solar cells. Further, the technical feasibility of pulsed electron beam activation of ion implanted junctions in GaAs has been demonstrated. Lastly, the concept of forming front-layer windows of GaP and AlGaAs on GaAs by high-dose ion implantation has been shown to be technically feasible.

Solomon, S.J.

1979-05-01T23:59:59.000Z

270

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

motors, lighting retrofits and controls, and a white reflective roof. April 29, 2011 Solar panels on display at the the San Jose Solar and Energy Efficiency Fair | Photo credit:...

271

Survey of Development of CZTS-based Thin Film Solar Cells  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Alloys and Compounds for Thermoelectric and Solar Cell Applications.

272

Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems (Invited Paper)  

E-Print Network (OSTI)

power point tracking, energy harvest- ing, solar panel, photovoltaic cell, supercapacitor, ultracapac

Shinozuka, Masanobu

273

High efficiency thin-film GaAs solar cells. First interim report, March 1--August 30, 1977  

DOE Green Energy (OSTI)

The objective is to demonstrate the feasibility of producing high-efficiency (15% or greater) thin-film GaAs solar cells with costs suitable for terrestrial solar electric power generation. The approach is that of growing GaAs by organio-metallic chemical vapor deposition on recrystallized germanium (Ge) films previously deposited on metal substrates and fabricating AMOS (Antireflecting Metal-Oxide-Semiconductor) solar cells on the GaAs. Previously it had been determined that a water vapor-grown native oxide (temperature = 25/sup 0/C) was the most useful native oxide for AMOS cells. A new chemical surface preparation prior to oxide growth led to more uniform oxides and reduced interface contamination, yielding lower reverse saturation current densities, a near-unity diode ideality factor, and better reproducibility. Substituting silver (Ag) for gold metallization showed no change in starting cell efficiency, but did greatly improve high temperature stability of the AMOS solar cell. A new study was completed on antireflection coatings on AMOS GaAs solar cells, taking into account the spectral response of the cell and nature of the solar spectra, and the results submitted for publication. XPS (X-ray Photoelectron Spectroscopy) studies had found earlier that the more efficient native oxides had primarily As/sub 2/O/sub 3/ and Ga/sub 2/O/sub 3/ with little GaAsO/sub 4/. A new chemical step etching was developed which can be used to profile the oxide in 5- to 7-A/sup 0/ steps without modifying the oxide chemistry as does ion sputtering. A new Schottky barrier structure is described which can give cell efficiencies up to 16% without oxide interfacial layer effects and 20 to 22% with a moderate interfacial layer effect. AMOS solar cells fabricated on sliced polycrystalline GaAs wafers with 100- to 500-..mu..m grains using Sb/sub 2/O/sub 3/ deposited oxides showed 14% cell efficiency compared to 16.2% in a region with few grains.

Stirn, R.J.

1977-12-01T23:59:59.000Z

274

Novel R2R Manufacturable Photonic-Enhanced Thin Film Solar Cells; January 28, 2010 -- January 31, 2011  

DOE Green Energy (OSTI)

Final subcontract report for PV Incubator project 'Novel R2R Manufacturable Photonic-Enhanced Thin Film Solar Cells.' The goal of this program was to produce tandem Si cells using photonic bandgap enhancement technology developed at ISU and Lightwave Power that would have an NREL-verified efficiency of 7.5% on 0.25 cm{sup 2} area tandem junction cell on plastic substrates. This goal was met and exceeded within the timeframe and budget of the program. On smaller area cells, the efficiency was even higher, {approx}9.5% (not verified by NREL). Appropriate polymers were developed to fabricate photonic and plasmonic devices on stainless steel, Kapton and PEN substrates. A novel photonic-plasmon structure was developed which shows a promise of improving light absorption in thin film cells, a better light absorption than by any other scheme.

Slafer, D.; Dalal, V.

2012-03-01T23:59:59.000Z

275

Thin-film polycrystalline silicon solar cells. Quarterly report no. 3, October 16, 1980-January 15, 1981  

DOE Green Energy (OSTI)

The objectives of the project are: 1) to develop cell fabrication procedures to further define the maximum capabilities of the conducting oxide/silicon heterojunction solar cells; 2) to optimize the spray fabrication technique for making reproducible high efficiency cells; 3) to assess the stability and the projected lifetime of the cell structure; 4) to identify through appropriate measurements the effects of grain boundaries and intragrain defects on the electronic transport mechanisms in thin-film polycrystalline silicon; and 5) to determine the feasibility of a large-scale fabrication process. Progress is reported.

Ghosh, A. K.; Feng, T.; Eustace, D. J.; Maruska, H. P.

1981-01-01T23:59:59.000Z

276

Solar Power Systems Find A Professional Solar Energy Installer For Any  

E-Print Network (OSTI)

Solar Power Systems Find A Professional Solar Energy Installer For Any Type Of System www.CleanEnergyAuthority.com Install Solar Panels Enter Your Zip Code & Connect To Pre-Screened Solar Panel Installers www.ServiceMagic.com Biomass Pumps Reliable metering for apps from microflow to scale-up & pilot plant www.isco.com The Solar

Lovley, Derek

277

Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet highlights the energy challenges faced by the Virgin Islands Environmental Resource Station (VIERS), the renewable energy and energy efficiency solutions implemented, the resulting energy efficiency savings, and other project benefits. In 2011, VIERS installed a 9.4 kW solar system funded by a $50,000 American Recovery and Reinvestment Act (ARRA) grant, which was administered by VIEO. To identify additional energy-saving opportunities, VIERS performed an energy audit of appliances, which resulted in the removal of two water coolers and the installation of a water meter to monitor water use and how it relates to electric pump use. VIERS also added an educational component to the project, developing a solar classroom near the original solar system. By building on previous energy conservation measures and making additional investments in renewable energy technology, VIERS has lowered its average monthly energy consumption nearly 30%, even with an increase in guests. The VIERS efforts are not limited to the technology installations, however. They also serve to impact the youth of the U.S. Virgin Islands (USVI) by educating young people about energy efficiency and renewable energy technologies and their energy and environmental impacts. VIERS solar system is connected to the Web via a live feed that posts solar output data in real time, increasing the VIERS solar classroom's potential educational impact exponentially.

Not Available

2012-03-01T23:59:59.000Z

278

Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet)  

SciTech Connect

This fact sheet highlights the energy challenges faced by the Virgin Islands Environmental Resource Station (VIERS), the renewable energy and energy efficiency solutions implemented, the resulting energy efficiency savings, and other project benefits. In 2011, VIERS installed a 9.4 kW solar system funded by a $50,000 American Recovery and Reinvestment Act (ARRA) grant, which was administered by VIEO. To identify additional energy-saving opportunities, VIERS performed an energy audit of appliances, which resulted in the removal of two water coolers and the installation of a water meter to monitor water use and how it relates to electric pump use. VIERS also added an educational component to the project, developing a solar classroom near the original solar system. By building on previous energy conservation measures and making additional investments in renewable energy technology, VIERS has lowered its average monthly energy consumption nearly 30%, even with an increase in guests. The VIERS efforts are not limited to the technology installations, however. They also serve to impact the youth of the U.S. Virgin Islands (USVI) by educating young people about energy efficiency and renewable energy technologies and their energy and environmental impacts. VIERS solar system is connected to the Web via a live feed that posts solar output data in real time, increasing the VIERS solar classroom's potential educational impact exponentially.

2012-03-01T23:59:59.000Z

279

Properties of double-layered Ga-doped Al-zinc-oxide/titanium-doped indium-tin-oxide thin films prepared by dc magnetron sputtering applied for Si-based thin film solar cells  

Science Conference Proceedings (OSTI)

In this article, Ga-doped Al-zinc-oxide (GAZO)/titanium-doped indium-tin-oxide (ITIO) bi-layer films were deposited onto glass substrates by direct current (dc) magnetron sputtering. The bottom ITIO film, with a thickness of 200 nm, was sputtered onto the glass substrate. The ITIO film was post-annealed at 350 deg. C for 10-120 min as a seed layer. The effect of post-annealing conditions on the morphologies, electrical, and optical properties of ITIO films was investigated. A GAZO layer with a thickness of 1200 nm was continuously sputtered onto the ITIO bottom layer. The results show that the properties of the GAZO/ITIO films were strongly dependent on the post-annealed conditions. The spectral haze (T{sub diffuse}/T{sub total}) of the GAZO/ITIO bi-layer films increases upon increasing the post-annealing time. The haze and resistivity of the GAZO/ITIO bi-layer films were improved with the post-annealed process. After optimizing the deposition and annealing parameters, the GAZO/ITIO bi-layer film has an average transmittance of 83.20% at the 400-800 nm wavelengths, a maximum haze of 16%, and the lowest resistivity of 1.04 x 10{sup -3}{Omega} cm. Finally, the GAZO/ITIO bi-layer films, as a front electrode for silicon-based thin film solar cells, obtained a maximum efficiency of 7.10%. These encouraging experimental results have potential applications in GAZO/ITIO bi-layer film deposition by in-line sputtering without the wet-etching process and enable the production of highly efficient, low-cost thin film solar cells.

Wang, Chao-Chun; Wuu, Dong-Sing; Lin, Yang-Shih; Lien, Shui-Yang; Huang, Yung-Chuan; Liu, Chueh-Yang; Chen, Chia-Fu; Nautiyal, Asheesh; Lee, Shuo-Jen [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Department of Materials Science and Engineering, MingDao University, Changhua 52345, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Taoyuan 320, Taiwan (China)

2011-11-15T23:59:59.000Z

280

Development of Thin Film Silicon Solar Cell Using Inkjet Printed Silicon and Other Inkjet Processes: Cooperative Research and Development Final Report, CRADA Number CRD-07-260  

Science Conference Proceedings (OSTI)

The cost of silicon photovoltaics (Si-PV) can be greatly lowered by developing thin-film crystalline Si solar cells on glass or an equally lower cost substrate. Typically, Si film is deposited by thermal evaporation, plasma enhanced chemical vapor deposition, and sputtering. NREL and Silexos have worked under a CRADA to develop technology to make very low cost solar cells using liquid organic precursors. Typically, cyclopentasilane (CPS) is deposited on a glass substrate and then converted into an a-Si film by UV polymerization followed by low-temperature optical process that crystallizes the amorphous layer. This technique promises to be a very low cost approach for making a Si film.

Sopori, B.

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SOLAR ENERGY Andrew Blakers  

E-Print Network (OSTI)

Thermal Power Plants: Simple and Compound Cycles 6. Large Scale Solar PV Plants 7. Solar Air conditioning Friday, June 22nd o Morning-PV Systems o Afternoon-Solar Toy and Battery Testing Monday, June 25th o Morning-Large Scale PV and Solar Thermal Plants o Afternoon-Test of a Combined Hot Water PV Panel

282

A NOVEL LOW THERMAL BUDGET THIN-FILM POLYSILICON FABRICATION PROCESS FOR LARGE-AREA, HIGH-THROUGHPUT SOLAR CELL PRODUCTION  

DOE Green Energy (OSTI)

methods. The poly-Si solar cell structure and the performance have been examined. In principle, the new process is potentially applicable to produce large-area thin-film poly-Si solar cells at a high throughput and low cost. A critical issue in this process is to prevent the excessive dopant diffusion during crystallization. Process parameters and the cell structure have to be optimized to achieve the production goal.

Yue Kuo

2010-08-15T23:59:59.000Z

283

Boron arsenide thin film solar cell development. Quarterly report No. 1  

DOE Green Energy (OSTI)

A large portion of the effort expended in the first quarter was devoted to the design, assembly, and testing of the film growth apparatus. The reactor has been completed and tested by depositing boron from diborane gas onto heated quartz substrates. The objective of this effort was to achieve film growth, which has been accomplished. Within the last month, attempts to grow boron arsenide films have been made by introducing both diborane and arsine into the reactor. Thin films have been grown on quartz and sapphire (alumina) substrates. Variations in film thickness, composition, degree of crystallinity, and conductivity have been observed as a result of variation of the deposition parameters, such as type and flow rate of carrier gases, substrate temperature, and substrate materials. X-ray analysis of several samples indicates that films containing boron and arsenic have been grown. No crystalline films have been produced to date. Electrical and optical measurements indicate some correlation between at least one of the films grown and the results achieved by Chu, et al. on BAs. Thus far, the electrical conductivity, film topography, optical absorption, index of refraction, impurity type, and photo-conductivity have been investigated on one sample. This material appears to be B/sub x/As/sub y/ and could be BAs. Further investigations will be required to be conclusive.

Boone, J.L.; Van Doren, T.P.

1979-07-01T23:59:59.000Z

284

Photon Sciences | About Photon Sciences | Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Fabrics? Solar Backpacks? Go Organic! Solar Fabrics? Solar Backpacks? Go Organic! « Back Ioana Gearba and Ron Pindak Ioana Gearba (right), a former researcher at the CFN, and Ron Pindak, Physical and Chemical Sciences Division Head at the NSLS, display the enhanced polythiophene blended solar cells. You've probably noticed solar panels sprouting on rooftops in your neighborhood. Solar panels are made out of multiple solar cells, which are commonly manufactured out of silicon, the same material in sand. When sunlight hits a solar panel, electrons in the silicon get agitated and flow through wires built into the panel, making electricity. Solar panels on roofs are now commonplace. But have you spotted any backpacks sporting solar cells? They're made out of organic materials - commonly polymers, or plastics, for absorbing light and transporting

285

Solar Energy Materials & Solar Cells 91 (2007) 17261732 Optical and structural properties of Ta2O5CeO2 thin films  

E-Print Network (OSTI)

Solar Energy Materials & Solar Cells 91 (2007) 1726­1732 Optical and structural properties of Ta2O5

Thirumalai, Devarajan

286

Estimating solar access of typical residential rooftops: A case study in San Jose, CA  

E-Print Network (OSTI)

the 14 th European Photovoltaic Solar Energy Conference androoftop solar-energy systems, including photovoltaic panelsrooftop solar-energy systems, including photovoltaic panels

Levinson, Ronnen M

2008-01-01T23:59:59.000Z

287

Simulation of geometry and shadow effects in 3D organic polymer solar cells.  

E-Print Network (OSTI)

??Rising inventory levels of Solar panels and new production capacity is driving solar PV prices lower and thereby, bringing solar energy closer to grid price (more)

Parikh, Mihir Prakashbhai

2013-01-01T23:59:59.000Z

288

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network (OSTI)

1 March 2005 Abstract: Solar PV panels generate electricityhigh. Thus, a valuation of solar PV electricity productionbene?ts to many owners of solar PV in reduced electricity

Borenstein, Severin

2005-01-01T23:59:59.000Z

289

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Solar Completes 10MW Thin Film Solar Power Plant for SempraT. ; (2008) Concentrating Solar PowerTechnology, Cost, and2009). Concentrating solar power plants of the southwest

Price, S.

2010-01-01T23:59:59.000Z

290

Integrated solar collector  

DOE Patents (OSTI)

A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.

Tchernev, Dimiter I. (9 Woodman Rd., Chestnut Hill, MA 02167)

1985-01-01T23:59:59.000Z

291

Commercialization of thick film solar cell. Final technical report, 9/15/79-9/14/80  

DOE Green Energy (OSTI)

Films of cadmium sulfide and cadmium telluride have been produced by screen printing and sintering. Cadmium sulfide films ten microns thick had a resistivity in the 10 ohm-cm range. A technique was developed for forming a cadmium telluride layer on top of a cadmium sulfide layer. Process control and device preparation are areas requiring further study.

None

1980-01-01T23:59:59.000Z

292

Studies of pure and nitrogen-incorporated hydrogenated amorphous carbon thin films and their possible application for amorphous silicon solar cells  

Science Conference Proceedings (OSTI)

Hydrogenated amorphous carbon (a-C:H) and nitrogen-incorporated a-C:H (a-C:N:H) thin films were deposited using radio frequency-plasma-enhanced chemical vapor deposition technique and studied for their electrical, optical, and nano-mechanical properties. Introduction of nitrogen and increase of self bias enhanced the conductivity of a-C:H and a-C:N:H films, whereas current-voltage measurement reveals heterojunction formation due to their rectifying behavior. The bandgap of these films was changed over wide range from 1.9 eV to 3.45 eV by varying self bias and the nitrogen incorporation. Further, activation energy was correlated with the electronic structure of a-C:H and a-C:N:H films, and conductivity was discussed as a function of bandgap. Moreover, a-C:N:H films exhibited high hardness and elastic modulus, with maximum values as 42 GPa and 430 GPa, respectively, at -100 V. Observed fascinating electrical, optical, and nano-mechanical properties made it a material of great utility in the development of optoelectronic devices, such as solar cells. In addition, we also performed simulation study for an a-Si:H solar cell, considering a-C:H and C:N:H as window layers, and compared their performance with the a-Si:H solar cell having a-SiC:H as window layer. We also proposed several structures for the development of a near full-spectrum solar cell. Moreover, due to high hardness, a-C:N:H films can be used as a protective and encapsulate layer on solar cells, especially in n-i-p configuration on metal substrate. Nevertheless, a-C:H and a-C:N:H as a window layer can avoid the use of additional hard and protective coating and, hence, minimize the cost of the product.

Dwivedi, Neeraj [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), K.S. Krishnan Road, New Delhi 110012 (India); Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Kumar, Sushil [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), K.S. Krishnan Road, New Delhi 110012 (India); Malik, Hitendra K. [Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India)

2012-01-01T23:59:59.000Z

293

Proposal Review Panel Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal Review Panel Descriptions Proposal Review Panel Descriptions To ensure competent scientific review, a proposal may be assigned to a different panel (at the discretion of the Review Panel Chair), or the panel may seek additional ad hoc reviews from other experts. High-Pressure This panel reviews scattering and diffraction proposals that focus on materials at high pressure. Techniques such as (but not limited to) diffraction, nuclear resonant scattering, and inelastic x-ray scattering for materials at high pressure are appropriate for this panel to consider. Instrumentation This panel reviews proposals related to the development of beamline instrumentation, sample environments, x-ray optical components, and/or detectors that are relevant to synchrotron radiation research. This panel

294

SOLAR ROOF POWERS THE NJIT CAMPUS CENTER  

E-Print Network (OSTI)

SOLAR ROOF POWERS THE NJIT CAMPUS CENTER THE SKY'S THE LIMIT: BERNADETTE MOKE SITS ON THE ROOF, ARE 160 SOLAR PANELS, SOME OF WHICH AUTOMATICALLY FOLLOW THE PATH OF THE SUN. 10 NJITMAGAZINE COVER STORY'S THE LIMIT: SOLAR ROOF POWERS THE NJIT CAMPUS CENTER "The solar panels even move a little at night," says

Bieber, Michael

295

Preparation of thin film solar cells under very low pressure conditions. Final report, October 1, 1976--September 30, 1977  

DOE Green Energy (OSTI)

In this study the feasibility of fabricating backwall Schottky barrier polycrystalline solar cells under ultra-high vacuum conditions of 1 x 10/sup -10/ torr (N/sub 2/) was investigated. Thin films of electron beam vaporized silicon were deposited on cleaned metal substrates of tungsten, tantalum and hafnium. Mass spectra from the quadrapole residual gas analyzer were used to determine the partial pressure of peak heights of 13 residual gases during each processing step. During separate silicon depositions, the substrate temperature was varied between 400 and 750/sup 0/C and deposition rates between 20 and 750 A/min were used. Surface contamination and metal diffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition and annealing. Auger depth profiling, x-ray analysis, and SEM in the topographic and channeling modes, were utilized to characterize the samples with respect to silicon-metal boundary layer, interdiffusion, silicide formation and grain size of silicon. The clean metal surface was found to enhance thin film silicide growth. Fine grain silicon films were obtained for all samples that were not completely converted to a metallic silicide. Tungsten, tantalum and hafnium were found to form silicides at temperatures as low as 600/sup 0/C.

Schmidt, F.A.; Shanks, H.R.; Bevolo, A.J.; Campisi, G.J.

1977-01-01T23:59:59.000Z

296

Mirror Film Company Has 'Concentrated' Plans for Expansion | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mirror Film Company Has 'Concentrated' Plans for Expansion Mirror Film Company Has 'Concentrated' Plans for Expansion Mirror Film Company Has 'Concentrated' Plans for Expansion September 10, 2010 - 1:19pm Addthis Lorelei Laird Writer, Energy Empowers In concentrating solar power, glass is king-but it's fighting to hold on to its crown. The reflectivity of glass mirrors makes them a great choice for focusing sunlight onto a heat generator. However, the glass mirrors can be expensive and heavy -- reducing their ability to compete with conventional energy sources. ReflecTech Inc. has an option: a silvered polymer-based film that does the same job, but with half the weight and cost. Using that film, the company can make 100,000 square feet of mirror panels per year at its factory in Arvada, Colo. Through an Advanced Manufacturing 48C tax credit through the Recovery Act,

297

DOE Solar Decathlon: Middlebury College  

NLE Websites -- All DOE Office Websites (Extended Search)

replaces the traditional rooftop array to create an exterior walkway shaded by solar panels. A lush green roof contributes to the thermal envelope of the house, sequesters...

298

Solar Impulse Takes on America  

Science Conference Proceedings (OSTI)

May 4, 2013 ... Solar panels across the wings of the ultra-lightweight plane capture energy from sunlight during the day, and lithium-polymer batteries store the...

299

2007 Solar Decathlon Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Solar Decathlon Citations from Select Technical Publications Changing Behaviors: Market Transformation Web Sites as Online Narrative Hicks, D. Panel 6 - Market Transformation:...

300

Processing and modeling issues for thin-film solar cell devices. Annual subcontract report, January 16, 1994--January 15, 1995  

DOE Green Energy (OSTI)

This report describes results achieved during the second phase of a four year subcontract to develop and understand thin film solar cell technology related to a-Si and its alloys, CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2}, and CdTe. Accomplishments during this phase include, development of equations and reaction rates for the formation of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} films by selenization, fabrication of a 15% efficient CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} cell, development of a reproducible, reliable Cu-diffused contact to CdTe, investigation of the role of CdTe-CdS interdiffusion on device operation, investigation of the substitution of HCl for CdCl{sub 2} in the post-deposition heat treatment of CdTe/CdS, demonstration of an improved reactor design for deposition of a-Si films, demonstration of improved process control in the fabrication of a ten set series of runs producing {approximately}8% efficient a-Si devices, demonstration of the utility of a simplified optical model for determining quantity and effect of current generation in each layer of a triple stacked a-Si cell, presentation of analytical and modeling procedures adapted to devices produced with each material system, presentation of baseline parameters for devices produced with each material system, and various investigations of the roles played by other layers in thin film devices including the Mo underlayer, CdS and ZnO in CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} devices, the CdS in CdTe devices, and the ZnO as window layer and as part of the back surface reflector in a-Si devices. In addition, collaborations with over ten research groups are briefly described. 73 refs., 54 figs., 34 tabs.

Birkmire, R.W.; Phillips, J.E.; Buchanan, W.A.; Hegedus, S.S.; McCandless, B.E.; Shafarman, W.N. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-bandgap cells can lose 25% of their power output and efficiency ratings as solar cell operating temperatures climb to 75C or more, a common occurrence in hot and arid...

302

Barrier Coatings for Thin Film Solar Cells: Final Subcontract Report, September 1, 2002 -- January 30, 2008  

DOE Green Energy (OSTI)

This program has involved investigations of the stability of CdTe and copper-indium-gallium-diselenide (CIGS) solar cells under damp heat conditions and effects of barrier coatings.

Olsen, L. C.

2010-03-01T23:59:59.000Z

303

Light trapping in thin film solar cells using textured photonic crystal  

DOE Patents (OSTI)

A solar cell includes a photoactive region that receives light. A photonic crystal is coupled to the photoactive region, wherein the photonic crystal comprises a distributed Bragg reflector (DBR) for trapping the light.

Yi, Yasha (Somerville, MA); Kimerling, Lionel C. (Concord, MA); Duan, Xiaoman (Amesbury, MA); Zeng, Lirong (Cambridge, MA)

2009-01-27T23:59:59.000Z

304

Information tracking and sharing in organic photovoltaic panel manufacturing  

E-Print Network (OSTI)

The MIT MEng team of four worked with Konarka Technologies, a world leading organic solar panel manufacturer, on production tracking and analysis as well as various operational improvement projects. MIT's collaborative ...

Gong, Ming, M. Eng. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

305

DOE Solar Decathlon: 2009 Team Ontario/BC  

NLE Websites -- All DOE Office Websites (Extended Search)

northern latitudes also means taking a different approach to passive solar heating and solar electric panels. The team could not count on much power from rooftop panels in the...

306

Solar Water Heater Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat...

307

Solar Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heaters Solar Water Heaters August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate...

308

Solar Fair in San Jos Tomorrow | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Fair in San Jos Tomorrow Solar Fair in San Jos Tomorrow April 29, 2011 - 12:53pm Addthis Solar panels on display at the the San Jose Solar and Energy Efficiency Fair |...

309

Precise Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and Photovoltaic Cells  

Argonne has developed a new method for applying thin film coatings of transparent conducting oxides (TCOs) to large panel displays and photovoltaic (PV) cells.

310

Cu(In,Ga)Se2 Thin-Film Concentrator Solar Cells: Preprint  

DOE Green Energy (OSTI)

Presented at the 2001 NCPV Program Review Meeting: CIGS cells were designed for operation under concentrated sunlight. This is first report of polycrystalline thin-film cell with efficiency>20%.

Ward, J.; Ramanathan, K.; Hasoon, F.; Coutts, T.; Keane, J.; Moriarty, T; Noufi, R.

2001-10-01T23:59:59.000Z

311

Development of high-efficiency, thin-film CdTe solar cells. Annual subcontract report, January 1, 1993--December 31, 1993  

DOE Green Energy (OSTI)

Polycrystalline thin film CdTe solar cells are one of the leading candidates for terrestrial photovoltaic applications. Theoretical calculations project an efficiency of 27% for single crystal, single junction CdTe cells, and the practically achievable efficiency for polycrystalline CdTe cells is 18-20%. Polycrystalline CdTe cells made by different groups show a significant variation in short circuit currents, open circuit voltages, and cell efficiencies. A better understanding of carrier loss and transport mechanism is crucial for explaining these differences, improving the yield, and bridging the gap between current and practically achievable limits in CdTe cell efficiencies. The goal of this program is to improve the understanding of the loss mechanisms in thin film CdS/CdTe solar cells and to improve their efficiency by characterizing the properties of the films as well as the finished devices.

Rohatgi, A.; Chou, H.C.; Kamra, S.; Bhat, A. [Georgia Institute of Technology, Atlanta, GA (United States)

1994-09-01T23:59:59.000Z

312

Shengrui Solar | Open Energy Information  

Open Energy Info (EERE)

search Name Shengrui Solar Place Hong Kong Product Hong Kong headquartered company with thin-film PV production in China. References Shengrui Solar1 LinkedIn Connections...

313

Finding Solutions to Solar's Soft Cost Dilemma | Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Webster installs rooftop solar panels on a home in Englewood, Colorado. The Energy Department is working to streamline rooftop solar installations so that its faster,...

314

Building Energy Software Tools Directory: Raymaps Solar Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

energy requirement of a household and based upon that calculates the number of solar panels and batteries required by the solar system. The application contains the default...

315

High Volume Manufacturing of Silicon-Film Solar Cells and Modules; Final Subcontract Report, 26 February 2003 - 30 September 2003  

DOE Green Energy (OSTI)

The objective of the PV Manufacturing R&D subcontract was to continue to improve AstroPower's technology for manufacturing Silicon-Film* wafers, solar cells, and modules to reduce costs, and increase production yield, throughput, and capacity. As part of the effort, new technology such as the continuous back metallization screen-printing system and the laser scribing system were developed and implemented. Existing processes, such as the silicon nitride antireflection coating system and the fire-through process were optimized. Improvements were made to the statistical process control (SPC) systems of the major manufacturing processes: feedstock preparation, wafer growth, surface etch, diffusion, and the antireflection coating process. These process improvements and improved process control have led to an increase of 5% relative power, and nearly 15% relative improvement in mechanical and visual yield.

Rand, J. A.; Culik, J. S.

2005-10-01T23:59:59.000Z

316

Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.  

Science Conference Proceedings (OSTI)

The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

Kronawitter, Coleman X. [Lawrence Berkeley National Laboratory, Berkeley, CA; Antoun, Bonnie R.; Mao, Samuel S. [Lawrence Berkeley National Laboratory, Berkeley, CA

2012-01-01T23:59:59.000Z

317

High efficiency cadmium and zinc telluride-based thin film solar cells  

DOE Green Energy (OSTI)

Polycrystalline Cd{sub 1-x}Zn{sub x}Te and Cd{sub 1-x}Mn{sub x}Te films with a band gap of 1.7 eV were successfully grown on glass/SnO{sub 2}/CdS substrates by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), respectively. Polycrystalline Cd{sub 1-x}Zn{sub x}Te films grown by MBE resulted in uniform composition and sharp interfaces. However, polycrystalline Cd{sub 1-x}Mn{sub x}Te films grown by MOCVD showed nonuniform compositions and evidence of manganese accumulation at the Cd{sub 1-x}Mn{sub x}Te/CdS interface. We found that manganese interdiffuses and replaces cadmium in the CdS film. By improving the CdTe/CdS interface and, thus, reducing the collection function effects, the efficiency of the MOCVD CdTe cell can be improved to about 13.5%. MBE-grown CdTe cells also produced 8%--9% efficiencies. The standard CdTe process was not optimum for ternary films and resulted in a decrease in the band gap. Recent results indicate that CdCl{sub 2} + ZnCl{sub 2} chemical treatment may prevent the band-gap reduction, and that chromate etch (rather than bromine etch) may provide the solution to contact resistance in the ternary cells.

Rohatgi, A.; Summers, C.J.; Erbil, A.; Sudharsanan, R.; Ringel, S. (Georgia Inst. of Tech., Atlanta, GA (USA). School of Electrical Engineering)

1990-10-01T23:59:59.000Z

318

Ultrasonically Sprayed and Inkjet Printed Thin Film Electrodes for Organic Solar Cells  

Science Conference Proceedings (OSTI)

Thin film pi-conjugated poly(3,4ethylenedioxythiophene): poly(styrenesulphonate) (PEDOT:PSS) as a hole transport layer on indium tin oxide is a key element in some of the most efficient organic photovoltaic and light emitting devices to date. Films are typically deposited by spincoating, which is not readily scalable. In this paper we investigate the critical parameters for both inkjet and ultrasonic spray deposition of PEDOT:PSS thin films on commercial indium tin oxide as a potentially scalable approach to contact formation. Inkjet parameters investigated include drop spacing and substrate temperature. Ultrasonic spray coating parameters investigated include substrate temperature and solution flow rate. We also show that the ink viscosity has a Newtonian character, making it well suited for inkjet printing. Films were characterized via optical profilometry, sheet resistance and atomic force microscopy. Optimized inkjet printed and ultrasonic sprayed PEDOT:PSS films were then compared to spincast layers in a prototypical bulk heterojunction photovoltaic device employing a poly(3-hexylthiophene) and [6,6]-PCBM (6,6-phenylC61-butyric acid-methyl ester) blend as the absorber. Practically all three approaches produced devices of comparable efficiency. Efficiencies were 3.6%, 3.5% and 3.3% for spin, spray and inkjet depositions respectively.

Steirer, K. X.; Berry, J. J.; Reese, M. O.; van Hest, M. F. A. M.; Miedaner, A.; Liberatore, M. W.; Collins, R. T.; Ginley, D. S.

2009-01-01T23:59:59.000Z

319

DOE Solar Decathlon: 2005 Teams - Canadian Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

moment in front of its winter-ready house. Computer-generated image of Canada's 2005 Solar Decathlon house. Sleek rooftop PV panels are just one example of team Canada's...

320

Interactive optical panel  

DOE Patents (OSTI)

An interactive optical panel assembly 34 includes an optical panel 10 having a plurality of ribbon optical waveguides 12 stacked together with opposite ends thereof defining panel first and second faces 16, 18. A light source 20 provides an image beam 22 to the panel first face 16 for being channeled through the waveguides 12 and emitted from the panel second face 18 in the form of a viewable light image 24a. A remote device 38 produces a response beam 40 over a discrete selection area 36 of the panel second face 18 for being channeled through at least one of the waveguides 12 toward the panel first face 16. A light sensor 42,50 is disposed across a plurality of the waveguides 12 for detecting the response beam 40 therein for providing interactive capability.

Veligdan, James T. (Manorville, NY)

1995-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

High Performance CIGS Thin-Film Solar Cells: A Laboratory Perspective  

DOE Green Energy (OSTI)

We present a summary of our work on the preparation of CuInGaSe2 (CIGS) absorbers that has led to fabricating record-efficiency solar cells. The use of the three-stage process in conjunction with composition monitoring facilitates the fabrication of solar cells with efficiencies between 18% and 19.5% for absorber bandgap in the range of 1.1-1.2 eV. We describe our recent results in reducing absorber thickness and low-temperature deposition. Our preliminary results on absorbers grown from low-purity source materials show promise of reducing the cost of fabricating the absorber.

Ramanathan, K.; Bhattacharya, R.; Contreras, M.; Keane, J. C.; To, B.; Dhere, R. G.; Noufi, R.

2005-11-01T23:59:59.000Z

322

Wide-Gap Thin Film Si n-i-p Solar Cells Deposited by Hot-Wire CVD: Preprint  

DOE Green Energy (OSTI)

High-voltage wide bandgap thin-film Si n-i-p solar cells have been made using the hot-wire chemical vapor deposition (HWCVD) technique. The best open-circuit voltage (Voc) has exceeded 0.94 V in solar cells using HWCVD in the entire n-i-p structure. A Voc of 0.97V has been achieved using HWCVD in the n and i layers and plasma-enhanced (PE) CVD for the p layer. The high voltages are attributed to the wide-gap i layer and an improved p/i interface. The wide-gap i layer is obtained by using low substrate temperatures and sufficient hydrogen dilution during the growth of the i layer to arrive at the amorphous-to-microcrystalline phase transition region. The optical band gap (E04) of the i layer is found to be 1.90 eV. These high-voltage cells also exhibit good fill factors exceeding 0.7 with short-circuit-current densities of 8 to 10 mA/cm2 on bare stainless steel substrates. We have also carried out photoluminescence (PL) spectroscopy studies and found a correlation between Voc and the PL peak energy position.

Wang, Q.; Iwaniczko, E.; Yang, J.; Lord, K.; Guha, S.; Wang, K.; Han, D.

2002-05-01T23:59:59.000Z

323

Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells: Annual subcontract report, May 1985 - Jul 1986  

DOE Green Energy (OSTI)

A study was undertaken of the optoelectronic properties of amorphous silicon-hydrogen thin films deposited from disilane at high deposition rates. The information derived from this study was used to fabricate amorphous silicon solar cells with efficiencies exceeding 7%. The intrinsic layer of these solar cells was deposited at 15 angstroms/second. Material properties investigated included dark conductivity, photoconductivity, minority carrier diffusion length, and density of states. The solar cells properties characterized were absolute quantum yield and simulated global AM 1.5 efficiencies. Investigations were undertaken utilizing optical and infrared spectroscopy to optimize the microstructures of the intrinsic amorphous silicon. That work was sponsored by the New York State Energy Research and Development Authority. The information was used to optimize the intrinsic layer of amorphous silicon solar cells, resulting in AM 1.5 efficiencies exceeding 7%.

Wiesmann, H.; Dolan, J.; Fricano, G.; Danginis, V.

1987-02-01T23:59:59.000Z

324

Optimization of processing and modeling issues for thin film solar cell devices: Final report, February 3, 1997--September 1, 1998  

DOE Green Energy (OSTI)

This final report describes results achieved under a 20-month NREL subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE's long-range efficiency, reliability and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development and improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to device structure and module encapsulation.

Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S.; McCandless, B. E.

2000-02-28T23:59:59.000Z

325

Institute of Photo Electronic Thin Film Devices and Technology...  

Open Energy Info (EERE)

Place Tianjin Municipality, China Zip 300071 Sector Solar Product A thin-film solar cell research institute in China. References Institute of Photo-Electronic Thin Film Devices...

326

A NOVEL LOW THERMAL BUDGET THIN-FILM POLYSILICON FABRICATION PROCESS FOR LARGE-AREA, HIGH-THROUGHPUT SOLAR CELL PRODUCTION  

SciTech Connect

A novel thin-film poly-Si fabrication process has been demonstrated. This low thermal budget process transforms the single- and multi-layer amorphous silicon thin films into a poly-Si structure in one simple step over a pulsed rapid thermal annealing process with the enhancement of an ultrathin Ni layer. The complete poly-Si solar cell was fabricated in a short period of time without deteriorating the underneath glass substrate. The unique vertical crystallization process including the mechanism is discussed. Influences of the dopant type and process parameters on crystal structure will be revealed. The poly-Si film structure has been proved using TEM, XRD, Raman, and XPS methods. The poly-Si solar cell structure and the performance have been examined. In principle, the new process is potentially applicable to produce large-area thin-film poly-Si solar cells at a high throughput and low cost. A critical issue in this process is to prevent the excessive dopant diffusion during crystallization. Process parameters and the cell structure have to be optimized to achieve the production goal.

Yue Kuo

2010-08-15T23:59:59.000Z

327

Surface Treatment of CuInGaSe2 Thin Films and Its Effect on the Photovoltaic Properties of Solar Cells: Preprint  

DOE Green Energy (OSTI)

Solar cells have been fabricated with partial electrolyte treatments of CuInGaSe2 (CIGS) thin-film absorbers in lieu of a CdS layer. Treatment of the absorbers in a containing Cd or Zn solution is shown to produce conditions under which efficient solar cells can be fabricated. A similar effect is also observed in CuInGaSSe2 (CIGSS) graded-bandgap absorbers. These observations can be explained by the ability of Cd and Zn to produce n-type doping or inversion in the surface region. We also provide a brief review of similar work done elsewhere and identify directions for future investigations.

Ramanathan, K.; Hasoon, F.S.; Smith, S.; Young, D.L.; Contreras, M.A.; Johnson, P.K.; Pudov, A.O.; Sites, J.R.

2002-10-01T23:59:59.000Z

328

Physical models of thin film polycrystalline solar cells based on measured grain-boundary and electronic-parameter properties. Final report, September 18, 1978-December 31, 1979  

DOE Green Energy (OSTI)

The research has sought the following: to identify and characterize the basic photovoltaic mechanisms that govern the conversion efficiency of polycrystalline thin-film solar cells; to experimentally determine the electronic parameters related to these photovoltaic mechanisms; and to relate these mechanisms and parameters to the conversion efficiency through theoretical physical models developed for engineering design. These objectives are all intimately related. The emphasis of the work has been on polysilicon, although it is building a foundation of understanding useful for similar research in the future on other thin-film materials. Progress is reported. (WHK)

Lindholm, F.A.; Fossum, J.G.; Holloway, P.A.; Neugroschel, A.

1979-01-01T23:59:59.000Z

329

Solar Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Solar Blog RSS November 4, 2010 Sen. Menendez, Rep. Pascrell, John Lushetsky and other officials at the ribbon cutting. Largest Solar Panel Installation at a U.S. University Goes Live John Lushetsky, Program Manager of the Solar Technologies Program at the Energy Department, shares his thoughts on the recent ribbon cutting event for the largest solar installation on a United States university campus. May 10, 2010 Five Iowa schools will receive rooftop solar panels this summer to help teach students about the technology | File Photo Solar Panels to Help Iowa Students Learn About Renewable Energy Learning about the sun's power is just as important as harnessing it. New solar panels to be installed on the rooftops of five Iowa middle schools will give students hands-on experience with the technology and help offset

330

Amorphous thin films for solar-cell applications. Final report, September 11, 1978-September 10, 1979  

Science Conference Proceedings (OSTI)

In Section II, Theoretical Modeling, theories for the capture of electrons by deep centers in hydrogenated amorphous silicon (a-Si:H) and for field-dependent quantum efficiency in a-Si:H are presented. In Section III, Deposition and Doping Studies, the optimization of phosphorus-doped a-Si:H carried out in four different discharge systems is described. Some details of the dc proximity and rf magnetron discharge systems are also provided. Preliminary mass spectroscopy studies of the rf magnetron discharge in both SiH/sub 4/ and SiF/sub 4/ are presented. In Section IV, Experimental Methods for Characterizing a-Si:H, recent work involving photoluminescence of fluorine-doped a-Si:H, photoconductivity spectra, the photoelectromagnetic effect, the photo-Hall effect and tunneling into a-Si:H is presented. Also, studies of the growth mechanism of Pt adsorbed on both crystalline Si and a-Si:H are described. Measurements of the surface photovoltage have been used to estimate the distribution of surface states of phosphorus-doped and undoped a-Si:H. Section V, Formation of Solar-Cell Structures, contains information on stacked or multiple-junction a-Si:H solar cells. In Section VI, Theoretical and Experimental Evaluation of Solar-Cell Parameters, an upper limit of approx. = 400 A is established for the hole diffusion length in undoped a-Si:H. A detailed description of carrier generation, recombination and transport in a-Si:H solar cells is given. Finally, some characteristics of Pd-Schottky-barrier cells are described for different processing histories.

Carlson, D E; Balberg, I; Crandall, R S; Goldstein, B C; Hanak, J J; Pankove, J I; Staebler, D L; Weakliem, H A; Williams, R

1980-02-01T23:59:59.000Z

331

Technical Review Panel Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRP Report v7, 12 Aug 2012 TRP Report Final December 2012 TRP Report v7, 12 Aug 2012 TRP Report Final December 2012 Advanced Reactor Concepts Technical Review Panel Report Evaluation and Identification of future R&D on eight Advanced Reactor Concepts, conducted April - September 2012 December 2012 Public release version 2 Public release version 3 Table of Contents Summary ................................................................................................................................... 4 1. Overview of the Technical Review Panel Process ............................................................... 5 2. Technical Review Panel Criteria ......................................................................................... 6 3. Concept Summaries ........................................................................................................... 8

332

Solar Power Beginner | Open Energy Information  

Open Energy Info (EERE)

Solar Power Beginner Solar Power Beginner Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Power Beginner Agency/Company /Organization: Solar Power Beginner Sector: Energy Focus Area: Renewable Energy, Solar Topics: Resource assessment Website: www.solarpowerbeginner.com/index.html References: Solar Power Beginner[1] Solar Power Beginner is a website that specializes in providing simple solar information to people who are new to solar power. The site features information on photovoltaic panels[2], solar thermal energy[3], and everyday uses for solar power. Also included are interviews[4] with various experts in the solar industry. References ↑ "Solar Power Beginner" ↑ Solar Panels Page ↑ Solar Thermal Page ↑ Solar Interviews Page Retrieved from

333

High Efficiency Thin Film CdTe and a-Si Based Solar Cells: Final Technical Report, 4 March 1998--15 October 2001  

DOE Green Energy (OSTI)

This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Si materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.

Compaan, A. D.; Deng, X.; Bohn, R. G.

2003-10-01T23:59:59.000Z

334

Diffraction: Enhanced Light Absorption of Solar Cells and ...  

Solar and Renewable Energy Photovoltaic Thin-film Solar Cells Space Solar Cells Polarization-Dependent Photodetectors BENEFITS Improved performance of

335

Thin film polycrystalline silicon solar cells. Quarterly report No. 1, January 1, 1979-March 31, 1979  

DOE Green Energy (OSTI)

A theory capable of predicting the performance of polycrystalline silicon solar cells is formulated. It relates grain size to mobility, lifetime, diffusion length, reverse saturation current, open circuit photovoltage and fill factor. Only the diffusion lengths measured by the surface photovoltage technique for grains less than or equal to 5 ..mu..m do not agree with our theory. The reason for this discrepancy is presently being investigated. We conclude that grains greater than or equal to 100 ..mu..m are necessary to achieve efficiencies greater than or equal to 10 percent at AM1 irradiance. The calculations were performed for the case of no grain boundary passivation. At present we are investigating the improvements to be expected from grain boundary passivation. We have determined that the parameters that best fit the available data are as follows: (1) Number of surface states at grain boundaries acting as recombination centers - 1.6 x 10/sup 13//cm/sup 2/. (2) Capture cross section - 2 x 10/sup -16/ cm/sup 2/. (3) Surface recombination velocity at grain boundary - 3.2 x 10/sup 4/ cm/sec. The following types of solar cells are considered in the model: SnO/sub 2//Si Heterostructure, MIS, and p/n junction. In all types of solar cells considered, grain boundary recombination plays a dominant role, especially for small grains. Though the calculations were originally expected to yield only order of magnitude results, they have proven to be accurate for most parameters within 10 percent.

Ghosh, A.K.; Feng, T.; Maruska, H.P.; Fishman, C.

1979-01-01T23:59:59.000Z

336

Identification and Analysis of Distinct Features in Imaging Thin-Film Solar Cells: Preprint  

DOE Green Energy (OSTI)

Electroluminescence and photoluminescence (EL and PL) are two imaging techniques employed at NREL that are used to qualitatively evaluate solar cells. In this work, imaging lab-scale CdTe and CIGS devices provides information about small-area PV response, which will aid in determining the effects of non-uniformities on cell performance. EL, PL, and dark lock-in thermography signatures are first catalogued. Their responses to varying conditions are then studied. Further analysis includes acquiring spectral data, making microscopy measurements, and correlating luminescence to device performance. The goal of this work is to quantitatively determine non-uniformity effects on cell performance using rapid imaging techniques.

Zaunbrecher, K. N.; Johnston, S. W.; Sites, J. R.

2012-06-01T23:59:59.000Z

337

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Panels Generate Clean Electricity Along with Clean Water Thanks to San Diego's ambitious solar energy program, the Otay Water Treatment Plant may soon be able to do that with net...

338

Flexible optical panel  

DOE Patents (OSTI)

A flexible optical panel includes laminated optical waveguides, each including a ribbon core laminated between cladding, with the core being resilient in the plane of the core for elastically accommodating differential movement thereof to permit winding of the panel in a coil.

Veligdan, James T. (Manorville, NY)

2001-01-01T23:59:59.000Z

339

Development of high-efficiency, thin-film CdTe solar cells. Final subcontract report, 1 February 1992--30 November 1995  

DOE Green Energy (OSTI)

This report describes work performed by the Georgia Institute of Technology (GIT) to bring the polycrystalline CdTe cell efficiency a step closer to the practically achievable efficiency of 18% through fundamental understanding of detects and loss mechanisms, the role of chemical and heat treatments, and investigation of now process techniques. The objective was addressed by a combination of in-depth characterization, modeling, materials growth, device fabrication, and `transport analyses of Au/Cu/CdTe/CdS/SnO {sub 2} glass front-wall heterojunction solar cells. GiT attempted to understand the loss mechanism(s) in each layer and interface by a step-by-step investigation of this multilayer cell structure. The first step was to understand, quantify, and reduce the reflectance and photocurrent loss in polycrystalline CdTe solar calls. The second step involved the investigation of detects and loss mechanisms associated with the CdTe layer and the CdTe/CdS interface. The third stop was to investigate the effect of chemical and heat treatments on CdTe films and cells. The fourth step was to achieve a better and reliable contact to CdTe solar cells by improving the fundamental understanding. Of the effects of Cu on cell efficiency. Finally, the research involved the investigation of the effect of crystallinity and grain boundaries on Cu incorporation in the CdTe films, including the fabrication of CdTe solar calls with larger CdTe grain size.

Rohatgi, A.; Chou, H.C.; Kamra, S.; Bhat, A. [Georgia Inst. of Tech., Atlanta, GA (United States)

1996-01-01T23:59:59.000Z

340

Development of economical improved thick film solar cell contact. Extension final report, April-December 1979  

DOE Green Energy (OSTI)

In the second half of the investigation of all metal screened electrodes, the focus was on base metal pastes in addition to further work with the silver systems. Contact resistance measurements were refined. A facility allowing firing in hydrogen and other atmospheres was acquired. Several experiments were made applying screenable pastes to solar cells. Doping investigations emphasized eutectic alloys reduced to powders. Metal systems were reviewed. A previously published vapor pressure curve for silver fluoride was corrected. Base metal experiments were done with nickel and copper using lead and tin as the frit metals. Severe adhesion problems were experienced with hydrogen atmospheres in all metal systems. A two step firing schedule was devised based upon experimentation which gave evidence that the silver fluoride-silicon dioxide reaction was modified by the presence of hydrogen. It was found that nitrogen prefiring allowed the silver fluoride dissociation and oxide removal without causing catastrophic oxidation of the base metal powders. The subsequent hydrogen firing step reduced oxides tht had formed and gave the proper sintered structure. Electrodes were coherent, adherent, and solderable in both nickel lead and copper lead systems. Towards the end of the contractual period aluminum-silicon and aluminum-germanium eutectic doping additions to copper pastes were tried on 2 1/4'' diameter solar cell back contacts, both with good results (eta = 9.4% AM1 uncoated).

Ross, B.

1979-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar - AZ Applied Materials - CA Primestar Solar - CO Miasole - CA Power Films - IA AVA Solar - CO Energy PV - NJ Energy PV - NJ Solar Fields - OH Ascent Solar - CO MV Systems -...

342

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network (OSTI)

if moderate efficiency (10%) solar panels were used just forsolar cells and panels. A chart of the record efficienciessolar panel technology today is single crystal silicon (c-Si), since it can achieve relatively high device efficiencies,

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

343

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

time, they looked up. October 6, 2010 DuPont is betting on major growth in the market for solar energy -- and therefore for its Tedlar film, a durable backing for silicon solar...

344

Energy 101: Solar PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar PV Solar PV Energy 101: Solar PV Addthis Below is the text version for the Energy 101: Solar PV video. The video opens with "Energy 101: Solar PV." This is followed by a timelapse shot of a city skyline as day turns to night. All right, we all know that the sun's energy creates heat and light, but it can also be converted to make electricity...and lots of it. The video shows images of building roofs, with and without solar photovoltaic panels. The words "Solar Photovoltaics (PV) appear onscreen over an image of a photovoltaic panel. One technology is called solar photovoltaics, or PV for short. Various images of solar panels appear onscreen, followed by images of photovoltaic manufacturing processes. You've probably seen PV panels around for years... but recent advancements

345

CdSiAs/sub 2/ thin films for solar cell applications. First quarter report April 9, 1979-June 30, 1979  

DOE Green Energy (OSTI)

Near stoichiometric bulk polycrystalline CdSiAs/sub 2/ has been synthesized by two techniques: (1) direct fusion of the elements and (2) direct fusion of the binaries SiAs, Cd/sub 3/As/sub 2/ and CdAs/sub 2/. The latter technique resulted in denser ternary material with good homogeneity. The above binaries melt congruently and were also formed by direct fusion. Sputtered ternary films were formed using a bulk CdSiAs/sub 2/ target, and a composite target of CdAs/sub 2/ discs in a Si plate. Composition of the CdSiAS/sub 2/ target changed with sputtering time. Amorphous films deposited from that target were heat treated, and became crystalline and near stoichiometric but with poor mechanical properties. It appears that films deposited from the composite target (Si + CdAs/sub 2/) can be adjusted to stoichiometry by means of sputtering power and target geometry. As deposited, these films also were amorphous. With respect to evaporated films, the study of thermal decomposition of CdSiAs/sub 2/ in vacuum was completed. The decomposition is preferential toward Cd between 570/sup 0/ and 710/sup 0/C, and toward As in the 710 to 1010/sup 0/C range. It is concluded that evaporation of the ternary is not a suitable method for forming CdSiAs/sub 2/ films. Plans for the next reporting period include continued sputtering studies with the composite target, constructing a two-source setup for evaporated films, expanded film characterization and fabrication of bulk CdSiAs/sub 2//CdS solar cells.

Burton, L.C.; Slack, L.H.

1979-07-25T23:59:59.000Z

346

DOE Solar Decathlon: 2005 Teams - Cornell University  

NLE Websites -- All DOE Office Websites (Extended Search)

benefited from interdisciplinary cooperation. Computer-generated image of Cornell's 2005 Solar Decathlon house. The Cornell house's crystalline-silicon PV panels power a heat pump...

347

DOE Solar Decathlon: Solar Village Energy Balance  

NLE Websites -- All DOE Office Websites (Extended Search)

man installing PV panels on the roof of a house. man installing PV panels on the roof of a house. U.S. Department of Energy Solar Decathlon Bookmark and Share - Home About Competition Scores & Standings Teams News Photos Videos Product Directory Village Energy Balance Education Sponsors History FAQs Contacts Solar Decathlon Village Energy Balance The U.S. Department of Energy Solar Decathlon 2013 used a small power grid, or microgrid, to distribute energy safely and reliably among the competition houses and to the utility grid. hen the sun was shining, the solar electric panels on the houses produced energy that was used to power appliances, lights, mechanical systems, and electronics. Excess energy flowed from the houses, through the microgrid, and to the Orange County community when more energy was generated than

348

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 06 · Solar Cell Materials & Structures 1Montana State University: Solar Cells Lecture 6: Solar Cells Solar Cell Technologies · A) Crystalline Silicon · B) Thin Film · C) Group III-IV Cells 2Montana State University: Solar Cells Lecture 6: Solar

Kaiser, Todd J.

349

AsahiSolar Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Co Ltd Place Oita-Ken, Japan Zip 870-0844 Sector Solar Product Manufactures simple solar panels and hybrid systems of solar passive system and electricity-generating system...

350

Fourth Graders Power Their Classroom with Solar Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Le Program Manager, Solar Program LEARN MORE Watch Aaron's students explain how their solar panels work. Find out the Top 6 Things You Didn't Know About Solar. A group of...

351

Solar Projects Provide Energy to County Fairgrounds | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Projects Provide Energy to County Fairgrounds Solar Projects Provide Energy to County Fairgrounds September 23, 2010 - 1:01pm Addthis Solar panels have been installed at a...

352

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

to lowering the cost of solar power and hence to making itefficiency of solar panels and power to weight ratio inimprove the solar cell power conversion efficiency and it is

Shao, Qinghui

2009-01-01T23:59:59.000Z

353

NSLS Committees | Proposal Oversight Panel  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal Oversight Panel Charge Assume responsibility for completing any missing third reviews of the regular Proposal Review Panels. Review proposals with large rating...

354

21-kW Thin-Film PV Technology Validation -- An NREL/Solar Energy Centre of India MOU Cooperative Project  

SciTech Connect

This paper summarizes findings during a one-week (27-31 October 2003) site visit to the Thin-Film Technology Test Bed at India's Solar Energy Centre (SEC) near New Delhi. The U.S. and Indian governments signed a Memorandum of Understanding in March 2000 to undertake a 50-50 cost-shared 21-kW thin-film PV technology validation project to evaluate the performance of thin-film photovoltaic (PV) modules under Indian climatic conditions. This project benefits Indian researchers by giving them experience with cost-effective PV materials, and it benefits the United States because data will be sent to the appropriate U.S. thin-film PV manufacturers for evaluation and analysis. During the visit, NREL personnel engaged in technical discussions regarding thin-film PV technologies with Ministry of Non-Conventional Energy Sources engineers and scientists. Issues included inspecting the newly constructed arrays, discussing better methods of electrically loading the PV arrays, taking I-V traces, and gathering baseline I-V data.

McNutt, P. F.; Ullal, H. S.

2005-01-01T23:59:59.000Z

355

21-kW Thin-Film PV Technology Validation -- An NREL/Solar Energy Centre of India MOU Cooperative Project  

DOE Green Energy (OSTI)

This paper summarizes findings during a one-week (27-31 October 2003) site visit to the Thin-Film Technology Test Bed at India's Solar Energy Centre (SEC) near New Delhi. The U.S. and Indian governments signed a Memorandum of Understanding in March 2000 to undertake a 50-50 cost-shared 21-kW thin-film PV technology validation project to evaluate the performance of thin-film photovoltaic (PV) modules under Indian climatic conditions. This project benefits Indian researchers by giving them experience with cost-effective PV materials, and it benefits the United States because data will be sent to the appropriate U.S. thin-film PV manufacturers for evaluation and analysis. During the visit, NREL personnel engaged in technical discussions regarding thin-film PV technologies with Ministry of Non-Conventional Energy Sources engineers and scientists. Issues included inspecting the newly constructed arrays, discussing better methods of electrically loading the PV arrays, taking I-V traces, and gathering baseline I-V data.

McNutt, P. F.; Ullal, H. S.

2005-01-01T23:59:59.000Z

356

Low-cost, Efficient, Flexible Solar Cells with 3D Nanopillar ...  

The technology was also used to produce solar modules on flexible substrates that offer more efficient light ... Solar panels; Consumer electronics; More Information ...

357

Organic Thin-Film Solar Cells Based on Donor-Acceptor Interpenetrating Nano-Interface  

SciTech Connect

Photovoltaic cells with interpenetrating interfaces between a conducting polymer layer and a fullerene layer fabricated by a solvent corrosion method have been investigated. Using a weakly dissoluble combination of a solvent and an underlayer film, we fabricated a ''semi-layered'' structure that was maintaining a bilayer structure and furthermore interpenetrating at the interface of the conducting polymer and the fullerene layers. In these cells, high external quantum efficiencies (EQE) were obtained. The photovoltaic properties have been interpreted by the effective absorption of incident photons around the interface of conducting polymer and fullerene, the interpenetrating fullerene / conducting polymer interface involving the efficient photo-induced charge transfer, and the short distance between the electron-generation region and electrode resulting in the enhancement of the electron collection to the electrode. In these cells, both of the efficient exciton dissociations at the interpenetrating interface and the efficient carrier transports by each continuous pathway for electrons between fullerene molecules and for holes between conducting polymers occur.

Fujii, Akihiko; Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Ozaki, Masanori [Division of Electrical, Electronic and Information Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

2010-12-23T23:59:59.000Z

358

Applied Films Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Place Longmont, Colorado Zip 80504 Sector Services, Solar Product Provider of thin film deposition equipment and services, particularly to the solar industry....

359

Gas filled panel insulation  

DOE Patents (OSTI)

A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

Griffith, Brent T. (Berkeley, CA); Arasteh, Dariush K. (Oakland, CA); Selkowitz, Stephen E. (Piedmont, CA)

1993-01-01T23:59:59.000Z

360

Gas filled panel insulation  

DOE Patents (OSTI)

A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

1993-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE Solar Decathlon: 2009 Cornell University  

NLE Websites -- All DOE Office Websites (Extended Search)

that shows the three silos that form the structure and open onto a common courtyard. Solar panels are visible atop the roof. Cornell's Solar Decathlon entry is Silo House,...

362

DOE Solar Decathlon: 2009 Team California  

NLE Websites -- All DOE Office Websites (Extended Search)

A solar hot water system that uses waste heat from the chiller to preheat potable water Solar panels in two series that generate up to 8.1 kW of direct current power, which is...

363

Smart grid adds value to solar photovoltaics  

Science Conference Proceedings (OSTI)

This panel session examines the challenges and opportunities of integrating large scale solar photovoltaic units into the electric power grid. As large solar PV projects (hundreds of MW) come online, their output variation due to weather changes will ...

2012-01-01T23:59:59.000Z

364

High-Efficiency CdTe and CIGS Thin-Film Solar Cells: Highlights and Challenges; Preprint  

DOE Green Energy (OSTI)

Thin-film photovoltaic (PV) modules of CdTe and Cu(In,Ga)Se2 (CIGS) have the potential to reach cost-effective PV-generated electricity. These technologies have transitioned from the laboratory to the market place. Pilot production and first-time manufacturing are ramping up to higher capacity and enjoying a flood of venture-capital funding. CIGS solar cells and modules have achieved 19.5% and 13% efficiencies, respectively. Likewise, CdTe cells and modules have reached 16.5% and 10.2% efficiencies, respectively. Even higher efficiencies from the laboratory and from the manufacturing line are only a matter of time. Manufacturing-line yield continues to improve and is surpassing 85%. Long-term stability has been demonstrated for both technologies; however, some failures in the field have also been observed, emphasizing the critical need for understanding degradation mechanisms and packaging options. The long-term potential of the two technologies require R&D emphasis on science and engineering-based challenges to find solutions to achieve targeted cost-effective module performance, and in-field durability. Some of the challenges are common to both, e.g., in-situ process control and diagnostics, thinner absorber, understanding degradation mechanisms, protection from water vapor, and innovation in high-speed processing and module design. Other topics are specific to the technology, such as lower-cost and fast-deposition processes for CIGS, and improved back contact and voltage for CdTe devices.

Noufi, R.; Zweibel, K.

2006-05-01T23:59:59.000Z

365

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS  

E-Print Network (OSTI)

solar cells enable very high photovoltaic efficiencies by virtue of employing different band gap to increase the short circuit current and the photovoltaic efficiency of solar cells. INTRODUCTION Multi-junction solar cells based on III-V compound semiconductors are the most efficient photovoltaic devic- es

Heaton, Thomas H.

366

Charge Controller and Inverter: for Solar Panel  

Science Conference Proceedings (OSTI)

The main purpose of this project is to design an inverter that will enable the inversion of a DC power source, supplied by Photovoltaic (PV) Cells, to an AC power source that will be either used to supply a load or connected directly to the utility grid. ...

Hadaate Ullah; Golam Moktader Nayeem; Mohammad Arif Sobhan Bhuiyan

2012-03-01T23:59:59.000Z

367

DIFFRA TION: ENHAN ED LIGHT A SORPTION OF SOLAR ELLS AND PHOTODETE ...  

POTENTIAL APPLI ATIONS Improved performance of thin For more information or Solar & renewable energy Photovoltaic Thin-film solar cells

368

EERE Postdoctoral Research Awards: Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

EERE Postdoctoral Research Awards: Solar to someone EERE Postdoctoral Research Awards: Solar to someone by E-mail Share EERE Postdoctoral Research Awards: Solar on Facebook Tweet about EERE Postdoctoral Research Awards: Solar on Twitter Bookmark EERE Postdoctoral Research Awards: Solar on Google Bookmark EERE Postdoctoral Research Awards: Solar on Delicious Rank EERE Postdoctoral Research Awards: Solar on Digg Find More places to share EERE Postdoctoral Research Awards: Solar on AddThis.com... Home Award Information Research Topics Renewable Energy Fuel Cell Technologies Solar Water Power How to Apply For Research Mentors Annual Meetings Frequently Asked Questions Contacts Solar Photo of an array of bright blue solar panels. The Solar Program (SP) focuses on developing cost-effective solar energy technologies that have the greatest potential to benefit the nation and the

369

Development of a Wide Bandgap Cell for Thin Film Tandem Solar Cells: Final Technical Report, 6 November 2003 - 5 January 2007  

DOE Green Energy (OSTI)

The objective of this research program was to develop approaches for a transparent wide-bandgap cell to be used in a thin-film tandem polycrystalline solar cell that can ultimately attain 25% efficiency. Specific goals included the research and development of Cu(InGa)(SeS)2 and Cd1-xZnxTe alloys with a bandgap from 1.5 to 1.8 eV, demonstrating the potential of a 15% cell efficiency with a transparent contact, and supporting the High Performance PV Program. This Final Report presents results that emphasize the 3rd phase of the program.

Shafarman, W.; McCandless, B.

2008-08-01T23:59:59.000Z

370

Federal Utility Partnership Working Group - Utility Interconnection Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WORKING GROUP - Utility Interconnection Panel M. Renee Jewell, Program/Energy Manager, & Contracting Officer, Forest Service (reneejewell@fs.fed.us) SCENARIO: Fed Agencies had Solar PV Projects To Connect with Utility in California * United States (US) Forest Service (FS) - 1 small Solar Photovoltaic (PV) project; and - 1 small Renewable project (Solar PV) exporting energy to grid. * U.S. National Park Service (NPS) - 24 Small Solar Photovoltaic projects. * U.S. Dept. of Veterans Affairs (VA) - 6 Renewable generation projects of different sizes. FS Region 5 (California) - Solar Photovoltaic Installations Solar PV Project @ Mono Lake Visitor Center (Inyo NF) Solar PV Project (net exporter) @ San Dimas Technology and Development Center SITUATION - Utility Wanted Feds to Sign Its

371

Oven wall panel construction  

DOE Patents (OSTI)

An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

Ellison, Kenneth (20 Avondale Cres., Markham, CA); Whike, Alan S. (R.R. #1, Caledon East, both of Ontario, CA)

1980-04-22T23:59:59.000Z

372

SSRL- Proposal Review Panel  

NLE Websites -- All DOE Office Websites (Extended Search)

Stanford Synchrotron Radiation Lab Stanford Synchrotron Radiation Lab search Go [an error occurred while processing this directive] Proposal Review Panel Sub Panels Structural Molecular Biology & Biophysics Materials 1: Structure, Reactivity & Self-Assembly Materials 2: Electronic Properties, Magnetic Properties & Surface Science Molecular Environmental & Interface Science Membership Torgny Gustafsson Rutgers University Dept of Physics & Astronomy 136 Frelinghuysen Rd Piscataway NJ 08854-0849 Victor Henrich Yale University Dept of Applied Physics 327 Becton Center, 15 Prospect St. New Haven CT 06511 Christopher P. Hill University of Utah Biochemistry 15 N. Medical Dr. East, Rm 4100 Salt Lake City, UT 84112-5650 Franz Himpsel University of Wisconsin Dept of Physics 1150 University Avenue

373

2009 Smart Distribution Panel  

Science Conference Proceedings (OSTI)

The smart distribution panel (SDP) is an integrated demand management system, designed to manage demand by automatically switching user-prioritized branch circuits, either off the grid or to a secondary power source. In 2008, EPRI tested the performance of an IEC (European) compliant modelresults can be found in EPRI report 1016079. After the 2008 test, the SDP received UL 50 and UL 67 approvals for a new 240/120V 250A panel designed for the North American market. In 2009, EPRI tested the UL certified pa...

2009-12-11T23:59:59.000Z

374

Feasibility Study of Economics and Performance of Solar Photovoltaics...  

NLE Websites -- All DOE Office Websites (Extended Search)

For the Standard Chlorine of Delaware site, there are two area types that could contain solar panels: roof and ground space. Fixed-axis panels will be the system used for covered...

375

Northeast Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Northeast Solar Energy Northeast Solar Energy Research Center (NSERC) A multi-purpose research facility on the BNL campus Solar PV Array Size and Type * ~1.0 MW total - Area 1 sized for testing utility-scale inverters * System voltage level of 1,000V * Connected to BNL electrical distribution system * Capability to test multiple panel technologies with crystalline silicon PV modules making up the bulk of the array * Capability to re-configure the array into

376

Numerical study of a ventilated facade panel  

Science Conference Proceedings (OSTI)

An energy-saving facade panel for non-residential buildings has been numerically investigated. Structured like a composite Trombe-Michel wall, the panel consists of a glazing, an absorber plate and insulation and contains a dead air space between glazing and absorber, as well as a convection channel between absorber and insulation. The influence of convection channel spacing on both recovery of solar energy during sunshine periods and on heat losses during night hours has been assessed. Two different options have been considered. First, the total panel thickness was maintained, which involves an increase of channel spacing having to be compensated by a corresponding decrease of the insulation thickness. Then, this constraint was removed so that an increase in channel spacing was allowed to entail an equivalent increase of the total panel thickness. The results indicate that large spacing favors energy recovery during sunshine periods for both options and reduces, although only slightly, heat losses during night hours for the second option. In the case of the first option, however, these losses tend to grow when channel spacing increases. 15 refs., 5 figs.

Mootz, F.; Bezian, J.J. [Centre d`Energetique de l`Ecole des Mines de Paris (France)

1996-07-01T23:59:59.000Z

377

Solar Trailer Group EGDSN 297 D  

E-Print Network (OSTI)

Solar Trailer Group EGDSN 297 D Project Recap The objective of the Solar Trailer team was to design and implement a solar PV system for the ToolMaster Trailer HAZ-16 that is used by the Center for Sustainability was constructed. Finally in an all night effort to complete the project the racking and solar panels were

Demirel, Melik C.

378

Theoretical Analysis of Effects of Deep Level, Back Contact, and Absorber Thickness on Capacitance-Voltage Profiling of CdTe Thin-Film Solar Cells  

Science Conference Proceedings (OSTI)

The apparent carrier density profile measured by the capacitance-voltage technique in CdTe thin-film solar cells frequently displays a distinctive U-shape. We show that, even assuming a uniform carrier density, such a U-shape may arise from deep levels, a non-ohmic back-contact, and a thin absorber, which are commonly present in practical CdTe thin-film solar cells. A thin CdTe absorber contributes to the right branch of the U-shape due to a punch-through effect at reverse or zero biases, when the CdTe absorber is nearly fully depleted. A rectifying back-contact contributes to both branches of the U-shape due to voltage sharing with the front junction under a forward bias and early punch-through under a reverse bias. Deep levels contribute to the right branch, but also raise the bottom of the U-shape, leading to an overestimate of carrier density.

Li, J. V.; Halverson, A. F.; Sulima, O. V.; Bansal, S.; Burst, J. M.; Barnes, T. M.; Gessert, T. A.; Levi, D. H.

2012-05-01T23:59:59.000Z

379

Bexar County Parking Garage Photovoltaic Panels  

Science Conference Proceedings (OSTI)

The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimated annual electricity production of the PV system is 147,000 kWh per year.

Golda Weir

2012-01-23T23:59:59.000Z

380

DOE Solar Decathlon: 2007 Teams - Kansas Project Solar House  

NLE Websites -- All DOE Office Websites (Extended Search)

shape is ideal for showing off its efficiency and renewable energy features. A facade of solar panels easily attached to standing-seam metal roofing covers most of the south wall,...

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Formosun Solar Corp | Open Energy Information  

Open Energy Info (EERE)

Corp. Place Hsinchu County, Taiwan Zip 303-51 Sector Solar Product Thin-film solar cell producer based in Taiwan. References Formosun Solar Corp.1 LinkedIn Connections...

382

AOS Solar Inc | Open Energy Information  

Open Energy Info (EERE)

AOS Solar Inc Jump to: navigation, search Name AOS Solar Inc Product Manufacturer of thin-film silicon-on-glass. References AOS Solar Inc1 LinkedIn Connections CrunchBase...

383

AxunTek Solar Energy | Open Energy Information  

Open Energy Info (EERE)

AxunTek Solar Energy Jump to: navigation, search Name AxunTek Solar Energy Place Taiwan Sector Solar Product Taiwan-based CIGS thin film solar cell producer. References AxunTek...

384

Design Method for Light Absorption Enhancement in Ultra-Thin Film ...  

Science Conference Proceedings (OSTI)

ultra-thin film organic solar cells (OSCs) to improve the light absorption. ... In the promising field of solar cells, organic solar cells (OSCs) are advantageous in its...

385

20-kW solar photovoltaic flat-panel power system for an uninterruptible power-system load in El Paso, Texas. Phase II. System fabrication. Final report October 1, 1979-May 31, 1981  

DOE Green Energy (OSTI)

The system plans, construction, integration and test, and performance evaluation are discussed for the photovoltaic power supply at the Newman Power Station in El Paso, Texas. The system consists of 64 parallel-connected panels, each panel containing nine series-connected photovoltaic modules. The system is connected, through power monitoring equipment, to an existing DC bus that supplies uninterruptible power to a computer that controls the power generating equipment. The site is described and possible environmental hazards are assessed. Site preparation and the installation of the photovoltaic panels, electrical cabling, and instrumentation subsystems are described. System testing includes initial system checkout, module performance test, control system test. A training program for operators and maintenance personnel is briefly described, including visual aids. Performance data collection and analysis are described, and actual data are compared with a computer simulation. System drawings are included. (LEW)

Risser, V.V.

1981-12-01T23:59:59.000Z

386

Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells: Phase II annual subcontract report, 1 January 1985--31 January 1986  

DOE Green Energy (OSTI)

This report presents results of the second phase of research on high-efficiency, single-junction, monolithic, thin-film a-Si solar cells. Five glow-discharge deposition systems, including a new in-line, multichamber system, were used to grow both doped and undoped a-Si:H. A large number of silane and disilane gas cylinders were analyzed with a gas chromatography/mass spectroscopy system. Strong correlations were found between the breakdown voltage, the deposition rate, the diffusion length, and the conversion efficiency for varying cathode-anode separations in a DC glow-discharge deposition mode. Tin oxide films were grown by chemical vapor deposition with either tetramethyl tin (TMT) or tin tetrachloride (TTC). The best were grown with TMT, but TTC films had a more controlled texture for light trapping and provided a better contact to the p-layer. The best results were obtained with 7059 glass substrates. Efficiencies as high as 10.86% were obtained in p-i-n cells with superlattice p-layers and as high as 10.74% in cells with both superlattice p- and n-layers. Measurements showed that the boron-doping level in the p-layer can strongly affect transport in the i-layer, which can be minimized by reactive flushing before i-layer deposition. Stability of a-Si:H cells is improved by light doping. 51 refs., 64 figs., 21 tabs.

Carlson, D.E.; Ayra, R.R.; Bennett, M.S.; Catalano, A.; D'Aiello, R.V.; Dickson, C.R.; McVeigh, J.; Newton, J.; O'Dowd, J.; Oswald, R.S.; Rajan, K.

1988-09-01T23:59:59.000Z

387

Solar Industry At Work: Streamlining Home Solar Installation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation June 12, 2012 - 11:59am Addthis Sunrun is a home solar installation company based in San Francisco. | Photo by Francis Fine Art Photography. Sunrun is a home solar installation company based in San Francisco. | Photo by Francis Fine Art Photography. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What are the key facts? Tillie Peterson works at Sunrun a home solar installation company based in San Francisco. As Director of Operations, Tillie works to get solar panels up and running for homeowners as simply and quickly as possible. Our Solar Industry At Work Series shares the personal success of

388

President Obama Discusses Solar Power in Nevada | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discusses Solar Power in Nevada Discusses Solar Power in Nevada President Obama Discusses Solar Power in Nevada March 22, 2012 - 10:26am Addthis President Barack Obama delivers remarks on energy after a tour of a solar panel field at the Copper Mountain Solar 1 Facility, the largest photovoltaic plant operating in the country with nearly one million solar panels powering 17,000 homes, in Boulder City, Nevada, March 21, 2012. | Official White House Photo by Lawrence Jackson. President Barack Obama delivers remarks on energy after a tour of a solar panel field at the Copper Mountain Solar 1 Facility, the largest photovoltaic plant operating in the country with nearly one million solar panels powering 17,000 homes, in Boulder City, Nevada, March 21, 2012. | Official White House Photo by Lawrence Jackson.

389

Lighting Technology Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Panel Technology Panel Federal Utility Partnership Working Group N b 2009 November 1 1 8, 2009 Doug Avery Southern California Edison Southern California Edison National Energy Conservation M d t Mandates * There are Federal and State Mandates to reduce energy consumption - California Investor Owned Electric Utilities are ordered to save around 3 Billion kWh's each y year from 2007-2113 - Federal buildings ordered to reduce electrical Federal buildings ordered to reduce electrical energy consumption 35% by 2012 Energy Consump ption gy Lighting accounts for 42 7% of energy consumption Lighting accounts for 42.7% of energy consumption Data Courtesy of SDG&E Data Courtesy of SDG&E Energy Consump ption gy More than ¾ of the lighting load is non-residential. Data Courtesy of SDG&E

390

Definition: Passive Solar | Open Energy Information  

Open Energy Info (EERE)

Passive Solar Passive Solar Jump to: navigation, search Dictionary.png Passive Solar Passive Solar techniques include selecting materials with favorable thermal properties, designing spaces that naturally circulate air, and referencing the position of a building to the Sun.[1] View on Wikipedia Wikipedia Definition Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heating, solar photovoltaics, solar thermal electricity, solar architecture and artificial photosynthesis. Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy.

391

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network (OSTI)

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

392

Development effort of sheet molding compound (SMC) parabolic trough panels  

SciTech Connect

The objectives of the development effort are to: investigate the problems of molding parabolic trough solar reflector panels of sheet molding compound (SMC); develop molding techniques and processes by which silvered glass reflector sheets can be integrally molded into SMC trough panels; provide representative prototype panels for evaluation; and provide information regarding the technical feasibility of molding SMC panels in high volume production. The approach taken to meet the objectives was to design the parabolic panel, fabricate a prototype die, choose an SMC formulation and mold the glass and SMC together into a vertex to rim mirrored panel. The main thrust of the program was to successfully co-mold a mirrored glass sheet with the SMC. Results indicate that mirrored glass sheets, if properly strengthened to withstand the temperature and pressure of the molding process, can be successfully molded with SMC in a single press stroke using standard compression molding techniques. The finalized design of the trough panel is given. The SMC formulation chosen is a low shrink, low profile SMC using 40% by weight one inch chopped glass fibers in a uv stabilized polyester resin matrix. A program to test for the adhesion between mirrored glass sheets and the SMC is discussed briefly. (LEW)

Kirsch, P.A.; Champion, R.L.

1982-01-01T23:59:59.000Z

393

Amelio Solar | Open Energy Information  

Open Energy Info (EERE)

low-cost, thin-film photovoltaic module technology, related product manufacturing and power-generation systems. References Amelio Solar1 LinkedIn Connections CrunchBase...

394

Former Construction Worker Finds New Career in Solar | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 4:00pm Addthis Eco Technologies, Inc., hired eleven workers to install these solar panels at the Hillsborough County judicial center. | Photo courtesy of Hillsborough County...

395

DOE Solar Decathlon: 2005 Teams - University of Colorado  

NLE Websites -- All DOE Office Websites (Extended Search)

emphasizes use of natural building materials. Computer-generated image of Colorado's 2005 Solar Decathlon house. From soy insulation to PV panels, Colorado's modular house...

396

Structure of All-Polymer Solar Cells Impedes Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

device technology that will help realize the intrinsic potential of these materials. Solar Panels To Go Photovoltaic cells are a key component of most visions of a...

397

Prince George's County - Solar Zoning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Program Information Maryland Program Type Siting & Permitting Prince George's County has created special provisions for solar panels in their zoning codes. Maryland...

398

Influence of copper to indium atomic ratio on the properties of Cu-In-Te based thin-film solar cells prepared by low-temperature co-evaporation  

SciTech Connect

The influence of copper to indium atomic ratio (Cu/In) on the properties of Cu-In-Te based thin films and solar cells was investigated. The films (Cu/In = 0.38-1.17) were grown on both bare and Mo-coated soda-lime glass substrates at 250 Degree-Sign C by single-step co-evaporation using a molecular beam epitaxy system. Highly (112)-oriented CuInTe{sub 2} films were obtained at Cu/In ratios of 0.84-0.99. However, stoichiometric and Cu-rich films showed a poor film structure with high surface roughness. The films consist of polyhedron-shaped grains, which are related to the coexistence of a Cu{sub 2-x}Te phase, and significant evidence for the coexistence of the Cu{sub 2-x}Te phase in the stoichiometric and Cu-rich films is presented. KCN treatment was performed for the films in order to remove the Cu{sub 2-x}Te phase. The stoichiometric CuInTe{sub 2} thin films exhibited a high mobility above 50 cm{sup 2}/V s at room temperature after the KCN treatment. A preliminary solar cell fabricated using a 1.4-{mu}m-thick Cu-poor CuInTe{sub 2} thin film (Cu/In = 0.84, E{sub g} = 0.988 eV) yielded a total-area efficiency of 2.10%. The photovoltaic performance of the cell was improved after long-term ambient aging in dark conditions.

Mise, Takahiro; Nakada, Tokio [Department of Electrical Engineering and Electronics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5258 (Japan)

2012-09-15T23:59:59.000Z

399

Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells  

DOE Patents (OSTI)

A photovoltaic cell exhibiting an overall conversion efficiency of 13.6% is prepared from a copper-indium-gallium-diselenide precursor thin film. The film is fabricated by first simultaneously electrodepositing copper, indium, gallium, and selenium onto a glass/molybdenum substrate (12/14). The electrodeposition voltage is a high frequency AC voltage superimposed upon a DC voltage to improve the morphology and growth rate of the film. The electrodeposition is followed by physical vapor deposition to adjust the final stoichiometry of the thin film to approximately Cu(In.sub.1-n Ga.sub.x)Se.sub.2, with the ratio of Ga/(In+Ga) being approximately 0.39.

Bhattacharya, Raghu N. (Littleton, CO); Hasoon, Falah S. (Arvada, CO); Wiesner, Holm (Golden, CO); Keane, James (Lakewood, CO); Noufi, Rommel (Golden, CO); Ramanathan, Kannan (Golden, CO)

1999-02-16T23:59:59.000Z

400

High efficiency thin film CdTe solar cells. Second quarterly progress report, June 19-September 18, 1979  

DOE Green Energy (OSTI)

During the second quarter of this program primary emphasis was put into depositing and evaluating both n and p-type CdTe films on a variety of conducting and non-conducting substrates. Improvements in the deposition apparatus permitted preparation of a large number of CdTe films and numerous analytic techniques available at Tufts University were utilized to examine these films. It was found that the introduction of a thin (100 A). In layer between the ITO and the CdTe significantly reduced the previously observed barrier present at the ITO/n-CdTe interface without adversely reducing optical transmission. While the resistivity of the films is still rather high, very recent results show that proper changes in procedure are capable of markedly lowering the resistivity. Preliminary Schottky barrier devices have been made which show promising photovoltaic characteristics.

Serreze, H.B.; Entine, G.; Goldner, R.B.

1979-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Research on polycrystalline thin-film CuInGaSe{sub 2} solar cells. Annual subcontract report, 3 May 1991--21 May 1993  

DOE Green Energy (OSTI)

This report describes work to fabricate high-efficiency CdZnS/CuInGaSe{sub 2}, thin-film solar cells and to develop improved transparent conductor window layers such as ZnO. The specific technical milestone for Phase I was to demonstrate an air mass (AM) 1.5 global 13% , 1-cm{sup 2} total-area CuInGaSe{sub 2} (CIGS) thin-film solar cell. For Phase II, the objective was to demonstrate an AM1.5 global 13.5%, 1-cm{sup 2} total-area efficiency. We focused our activities on three areas. First, we modified the CIGS deposition system to double its substrate capacity. Second, we developed new tooling to enable investigation of a modified aqueous CdZnS process in which the goal was to improve the yield of this critical step in the device fabrication process. Third, we upgraded the ZnO sputtering system to improve its reliability and reproducibility. A dual rotatable cathode metallic source was installed, and the sputtering parameters were further optimized to improve ZnO`s properties as a transparent conducting oxide (TCO). Combining the refined CdZnS process with CIGS from the newly fixtured deposition system enable us to fabricate and deliver a ZnO/Cd{sub 0.08}Zn{sub 0.20}S/CuIn{sub 0.74}Ga{sub 0.26}Se{sub 2} cell on alumina with I-V characteristics, as measured by NREL under standard test conditions, of 13.7% efficiency with V{proportional_to} = 0.5458 V, J{sub sc} = 35.48 mA/cm{sup 2}, FF = 0.688, and efficiency = 14.6%.

Chen, W.S.; Stewart, J.M.; Mickelsen, R.A.; Devaney, W.E.; Stanbery, B.J. [Boeing Co., Seattle, WA (United States). Defense and Space Systems Group

1993-10-01T23:59:59.000Z

402

Research on polycrystalline thin-film CuGaInSe{sub 2} solar cells. Annual subcontract report, 3 May 1991--2 May 1992  

DOE Green Energy (OSTI)

This report describes research to fabricate high-efficiency CdZnS/CuInGaSe{sub 2} (CIGS) thin-film solar cells, and to develop improved transparent conductor window layers such as ZnO. A specific technical milestone was the demonstration of an air mass (AM) 1.5 global, 13% efficient, 1-cm{sup 2}-total-area CIGS thin-film solar cell. Our activities focused on three areas. First, a CIGS deposition: system was modified to double its substrate capacity, thus increasing throughput, which is critical to speeding the process development by providing multiple substrates from the same CIGS run. Second, new tooling was developed to enable an investigation of a modified aqueous CdZnS process. The goal was to improve the yield of this critical step in the device fabrication process. Third, our ZnO sputtering system was upgraded to improve its reliability, and the sputtering parameters were further optimized to improve its properties as a transparent conducting oxide. The characterization of the new CIGS deposition system substrate fixturing was completed, and we produced good thermal uniformity and adequately high temperatures for device-quality CIGS deposition. Both the CIGS and ZnO deposition processes were refined to yield a ZnO//Cd{sub 0.82}Zn{sub 0.18}S/CuIn{sub 0.80}Ga{sub 0.20}Se{sub 2} cell that was verified at NREL under standard testing conditions at 13.1% efficiency with V{sub oc} = 0.581 V, J{sub sc} = 34.8 mA/cm{sup 2}, FF = 0.728, and a cell area of 0.979 cm{sup 2}.

Stanbery, B.J.; Chen, W.S.; Devaney, W.E.; Stewart, J.W. [Boeing Co., Seattle, WA (United States). Defense and Space Systems Group

1992-11-01T23:59:59.000Z

403

Photovoltaic panel clamp  

SciTech Connect

A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

Mittan, Margaret Birmingham (Oakland, CA); Miros, Robert H. J. (Fairfax, CA); Brown, Malcolm P. (San Francisco, CA); Stancel, Robert (Loss Altos Hills, CA)

2012-06-05T23:59:59.000Z

404

Photovoltaic panel clamp  

DOE Patents (OSTI)

A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

2013-03-19T23:59:59.000Z

405

City of Milwaukee - Milwaukee Shines Solar Financing | Open Energy...  

Open Energy Info (EERE)

years. Eligible equipment includes solar electric systems of up to 6 kilowatts (kW) and solar hot water systems of up to 8 panels. Projects must be installed by a Focus on Energy...

406

EERE: Roofus' Solar and Efficient Home Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

smart, too' The illustration shows an electric meter on the side of the house, a solar car in the driveway, a washer and dryer in the house, a solar panel on the house roof,...

407

Baltimore Vet Cuts Energy Bills With Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 28, 2010 - 5:09pm Addthis Baltimore resident Paul Bennett installed 14 solar panels such as these on his historic row home with the help of a state solar grant and...

408

Union Training Future Electricians in Solar Power | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Solar Power August 12, 2010 - 3:48pm Addthis IBEW 725 electricians install solar panels at the union's hall in Terre Haute. | Photo courtesy of IBEW 725 IBEW 725...

409

DOE Solar Decathlon: 2009 University of Louisiana at Lafayette  

NLE Websites -- All DOE Office Websites (Extended Search)

at Lafayette to compete in the Solar Decathlon. Drawing of a single-story house with solar panels atop its gabled roof. The exterior is clad in wood. A deck extends from the...

410

Solar Field Gives Tennessee Economy a Boost | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Field Gives Tennessee Economy a Boost Solar Field Gives Tennessee Economy a Boost September 14, 2010 - 6:24pm Addthis Efficient Energy of Tennessee installs panels at a 1-MW...

411

CdSiAs/sub 2/ thin films for solar cell applications. Final report, April 9, 1979-April 8, 1980  

DOE Green Energy (OSTI)

Compounds of Cd-Si-As required for sputtering targets and evaporation charges were synthesized by direct fusion. These include CdSiAs/sub 2/, Cd/sub 3/As/sub 2/, CdAs/sub 2/ and SiAs. Polycrystalline ingots of CdSiAs/sub 2/ were found to be porous, with the chalcopyrite structure, and with minor amounts of other phases such as CdAs/sub 2/, SiAs,As and Cd/sub 3/As/sub 2/. Sputtered films were formed in a single target RF system. A homogeneous CdSiAs/sub 2/ target was initially used, followed by composite targets consisting of CdAs/sub 2/ + Si. Films from the latter targets were superior to the others and were more extensively studied. As deposited films were amorphous, off stoichiometry, with resistivities over 10/sup 8/..cap omega..-cm and band gaps of approx. 1.4 eV. Subsequent reactive heat treatments in the 515/sup 0/ to 615/sup 0/C range resulted in crystalline films, resistivities of 1 to 10 ..cap omega.. cm, CdSiAs/sub 2/ compositions within 1% of stoichiometry, energy gap of approx. 1.55 eV, absorption coefficient of 2 x 10/sup 4/cm/sup -1/ at 0.6 ..mu..m, but with poor mechanical properties (mainly cracking). A Ta/Si0/sub 2/ substrate proved to be the best for these films. Thermal evaporation studies of CdSiAs/sub 2/ established that effusion is preferential toward Cd between 570 and 710/sup 0/C, and toward As in the 710 to 1010/sup 0/C range. All films resulting from CdAs/sub 2/ charges were found to be Cd deficient. For these reasons, over the last 6 months of the program, only sputtered films were studied further. Preliminary CdSiAs/sub 2//CdS junctions were formed on bulk and sputtered CdSiAs/sub 2/. The bulk junctions produced photoresponse up to 0.25V and several ..mu..A. The thin film junctions were rectifying, but generated insignificant photoresponse, apparently due to the poor properties of the CdSiAs/sub 2/ films.

Burton, L.C.; Slack, L.H.

1980-06-01T23:59:59.000Z

412

SBM Solar | Open Energy Information  

Open Energy Info (EERE)

SBM Solar SBM Solar Jump to: navigation, search Name SBM Solar Place North Carolina Sector Solar Product SBM Solar is a solar panel manufacturer based in North Carolina. References SBM Solar[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SBM Solar is a company located in North Carolina . References ↑ "SBM Solar" Retrieved from "http://en.openei.org/w/index.php?title=SBM_Solar&oldid=350649" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2084745150

413

Physical models of thin film polycrystalline solar cells based on measured grain-boundary and electronic-parameter properties. Quarterly report  

DOE Green Energy (OSTI)

Solar cells fabricated on polycrystalline silicon, either bulk or thin-film, can potentially be cost-effective when used in terrestrial photovoltaic energy-conversion systems. To achieve this goal, the polysilicon cell efficiency must be increased considerably from its present values. A severe limitation to the cell efficiency is due to the grain boundaries and their influence on carrier recombination. To remove this limitation, an understanding of the fundamental physics underlying the effects of the grain boundaries on cell performance is helpful. This fundamental physics is discussed, and models are developed for recombination currents in polysilicon pn-junction solar cells. Several analytic approximations, suggested by physical insight, are used and checked ultimately for self-consistency with the results of the analysis. The models are defined such that their parameters can be related directly to measurements, and the models are hence useful in interpreting experimental results. They also can be used to study, in a systematic way, cell-design modifications to improve the efficiency, e.g., grain-boundary passivation techniques.

Lindholm, F.A.; Fossum, J.G.; Holloway, P.A.; Neugroschel, A.

1979-12-01T23:59:59.000Z

414

Optimization of Processing and Modeling Issues for Thin-Film Solar Cell Devices; Annual Report, 3 February 1997-2 February 1998  

DOE Green Energy (OSTI)

This report describes results achieved during phase I of a four-phase subcontract to develop and understand thin-film solar cell technology associated with CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for developing viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.

Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S.; McCandless, B. E. (IEC, University of Delaware)

1998-12-08T23:59:59.000Z

415

Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices: Final Report, 24 August 1998-23 October 2001  

DOE Green Energy (OSTI)

This report describes results achieved during a three-year subcontract to develop and understand thin-film solar cell technology associated to CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.

Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Eser, E.; Hegedus, S. S.; McCandless, B. E.; Aparicio, R.; Dobson, K.

2003-01-01T23:59:59.000Z

416

WIPP_Panel_7_Approved  

NLE Websites -- All DOE Office Websites (Extended Search)

Panel 7 Certified and Ready for Waste Disposal Panel 7 Certified and Ready for Waste Disposal CARLSBAD, N.M., August 1, 2013 - In mid-July 2013, the New Mexico Environment Department (NMED) approved the use of Panel 7 for disposal of defense- related transuranic (TRU) waste at the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP). Approval by NMED for each underground waste disposal panel prior to use is required under the WIPP Hazardous Waste Facility Permit (Permit). A panel consists of seven waste disposal rooms and each room is approximately 13 feet high, 33 feet wide and 300 feet long. Mining and outfitting, which includes installation of electricity, monitoring equipment and air regulating bulkheads, of a panel takes about two to two and a half years. Once the mining and outfitting are completed,

417

Microgap flat panel display  

DOE Patents (OSTI)

A microgap flat panel display which includes a thin gas-filled display tube that utilizes switched X-Y "pixel" strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a "pixel" in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel.

Wuest, Craig R. (Danville, CA)

1998-01-01T23:59:59.000Z

418

Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells  

DOE Patents (OSTI)

High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

Bhattacharya, Raghu N. (Littleton, CO); Contreras, Miguel A. (Golden, CO); Keane, James (Lakewood, CO); Tennant, Andrew L. (Denver, CO); Tuttle, John R. (Denver, CO); Ramanathan, Kannan (Lakewood, CO); Noufi, Rommel (Golden, CO)

1998-03-24T23:59:59.000Z

419

Green Systems Solar Hot Water  

E-Print Network (OSTI)

Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1,2; basement) Pre-heats water so water heaters don't need to use as much energy Gas-powered, high efficiency

Schladow, S. Geoffrey

420

Keywords: Photovoltaic System, fault-tolerance, recon-figurable PV panel  

E-Print Network (OSTI)

1 Keywords: Photovoltaic System, fault-tolerance, recon- figurable PV panel Photovoltaic (PV plants, and satellites. The output power of a PV cell (also called solar cell) is dependent on the solar irradiance level and temperature. Figure 1 shows PV cell output current-voltage and power

Pedram, Massoud

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Thermal insulations using vacuum panels  

DOE Patents (OSTI)

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

422

Optical method for automated real time control of elemental composition, distribution, and film thickness in CIGS solar cell production  

The solar industry has shown significant growth over the past decade. From 2002 to 2007 the market for Copper Indium Gallium Selenide (CIGS) grew at a 60% annual rate and it is estimated that the global CIGS market will grow to $7.6 billion by 2016. ...

423

Feasibility Study of Economics and Performance of Solar Photovoltaics in Nitro, West Virginia  

DOE Green Energy (OSTI)

The study described in this report assessed brownfield sites designated by the City of Nitro, West Virginia for solar photovoltaic (PV) installations. The study analyzed three different types of PV systems for eight sites. The report estimates the cost, performance, and site impacts of thin film technology and crystalline silicon panels (both fixed-axis tracking and single-axis tracking systems). Potential job creation and electrical rate increases were also considered, and the report recommends financing options that could assist in the implementation of a system.

Lisell, L.; Mosey, G.

2010-08-01T23:59:59.000Z

424

Amorphous silicon solar cells  

SciTech Connect

The fabrication, performance, and applications of a-Si solar cells are discussed, summarizing the results of recent experimental investigations and trial installations. Topics examined include the fundamental principles and design strategies of solar power installations; the characteristics of monocrystalline-Si solar cells; techniques for reducing the cost of solar cells; independent, linked, and hybrid solar power systems; proposed satellite solar power systems; and the use of solar cells in consumer appliances. Consideration is given to the history of a-Si, a-Si fabrication techniques, quality criteria for a-Si films, solar cells based on a-Si, and techniques for increasing the efficiency and lowering the cost of a-Si solar cells. Graphs, diagrams, drawings, and black-and-white and color photographs are provided. 136 references.

Takahashi, K.; Konagai, M.

1986-01-01T23:59:59.000Z

425

Solar heat collector  

Science Conference Proceedings (OSTI)

A solar heat collector is described that pre-heats water for a household hot water heating system, and also heats the air inside a house. The device includes solar heating panels set into an A-shape, and enclosing an area therein containing a water tank and a wristatic fan that utilize the heat of the enclosed air, and transmit the thermal energy therefrom through a water line and an air line into the house.

Sykes, A.B.

1981-07-28T23:59:59.000Z

426

The properties of sprayed nanostructured P-type CuI films for dye-sensitized solar cells application  

Science Conference Proceedings (OSTI)

In our experiments, we provide a new approach for depositing CuI (inorganic compound) thin films using the mister atomizer technique. The CuI solution was sprayed into fine droplets using argon as a carrier gas at different solution concentrations. The ...

M. N. Amalina; N. A. Rasheid; M. Rusop

2012-01-01T23:59:59.000Z

427

Solar collector  

DOE Patents (OSTI)

The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1982-01-01T23:59:59.000Z

428

Solar Torx New Solar Ventures | Open Energy Information  

Open Energy Info (EERE)

Torx New Solar Ventures Torx New Solar Ventures Jump to: navigation, search Name Solar Torx / New Solar Ventures Place Arizona Product Set up in November 2005 to secure finance for a thin-film amorphous silicon cell and module manufacturing plant, and an associated 300MW power project. No evidence of progress as of June 2008, has probably been abandoned. References Solar Torx / New Solar Ventures[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Torx / New Solar Ventures is a company located in Arizona . References ↑ "Solar Torx / New Solar Ventures" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Torx_New_Solar_Ventures&oldid=351340" Categories:

429

DOE Solar Decathlon: 2007 Juries  

NLE Websites -- All DOE Office Websites (Extended Search)

Two jurors holding notebooks listen intently as a young member of the Lawrence Technological Team explains the home's environmental features and sustainable materials during the 2007 Solar Decathlon. Between them is a desk and chair made from sustainable wood. Two jurors holding notebooks listen intently as a young member of the Lawrence Technological Team explains the home's environmental features and sustainable materials during the 2007 Solar Decathlon. Between them is a desk and chair made from sustainable wood. A Lawrence Technological University student explains to architectural jurors that the team's environmental ethic is reflected in the choice of materials used in their home during the 2007 Solar Decathlon. Solar Decathlon 2007 Juries The following panel of jurors assembled to judge the 2007 Solar Decathlon. The panels are composed of individuals at the top of their respective professions, who bring academic excellence and practical, in-the-field experience to the 10 contests. Using objective and subjective measures to evaluate the teams' solar

430

Solar Systems and Solutions Soluciones Sistemas Solares 3S | Open Energy  

Open Energy Info (EERE)

Solutions Soluciones Sistemas Solares 3S Solutions Soluciones Sistemas Solares 3S Jump to: navigation, search Name Solar Systems and Solutions / Soluciones Sistemas Solares (3S) Place Navarre, Spain Sector Solar Product Installs and engineers solar passive panels. References Solar Systems and Solutions / Soluciones Sistemas Solares (3S)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Systems and Solutions / Soluciones Sistemas Solares (3S) is a company located in Navarre, Spain . References ↑ "Solar Systems and Solutions / Soluciones Sistemas Solares (3S)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Systems_and_Solutions_Soluciones_Sistemas_Solares_3S&oldid=351332

431

Photovoltaic mechanisms in polycrystalline thin film silicon solar cells. Final report, 30 June 1979-29 June 1980  

DOE Green Energy (OSTI)

The objectives of this program were: (1) to develop appropriate measurement techniques to facilitate a quantitative study of the electrical activity of structural defects and at a grain boundary (G.B.) in terms of generation-recombination, barrier height, and G.B. conductivity; (2) to characterize G.B.s in terms of physical properties such as angle of misfit and local stress, and to correlate them with the electrical activity; (3) to determine the influence of solar cell processing on the electrical behavior of structural defects and G.B.s; and (4) to evaluate polycrystalline solar cell performance based on the above study, and to compare it with the experimentally measured performance. Progress is reported in detail. (WHK)

Sopori, B.L.

1980-11-01T23:59:59.000Z

432

Immodo Solar | Open Energy Information  

Open Energy Info (EERE)

Immodo Solar Immodo Solar Jump to: navigation, search Name Immodo Solar Place Spain Sector Solar Product Spanish company which installs and maintains solar panels. References Immodo Solar[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Immodo Solar is a company located in Spain . References ↑ "Immodo Solar" Retrieved from "http://en.openei.org/w/index.php?title=Immodo_Solar&oldid=346813" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863393361 Varnish cache server

433

Correlations of Capacitance-Voltage Hysteresis with Thin-Film CdTe Solar Cell Performance During Accelerated Lifetime Testing  

SciTech Connect

In this paper we present the correlation of CdTe solar cell performance with capacitance-voltage hysteresis, defined presently as the difference in capacitance measured at zero-volt bias when collecting such data with different pre-measurement bias conditions. These correlations were obtained on CdTe cells stressed under conditions of 1-sun illumination, open-circuit bias, and an acceleration temperature of approximately 100 degrees C.

Albin, D.; del Cueto, J.

2011-03-01T23:59:59.000Z

434

Sputtered Nickel Oxide Thin Film for Efficient Hole Transport Layer in Polymer-Fullerene Bulk-Heterojunction Organic Solar Cell  

SciTech Connect

Bulk-heterojunction (BHJ) organic photovoltaics (OPV) are very promising thin film renewable energy conversion technologies due to low production cost by high-throughput roll-to-roll manufacturing, an expansive list of compatible materials, and flexible device fabrication. An important aspect of OPV device efficiency is good contact engineering. The use of oxide thin films for this application offers increased design flexibility and improved chemical stability. Here we present our investigation of radio frequency magnetron sputtered nickel oxide (NiO{sub x}) deposited from oxide targets as an efficient, easily scalable hole transport layer (HTL) with variable work-function, ranging from 4.8 to 5.8 eV. Differences in HTL work-function were not found to result in statistically significant changes in open circuit voltage (V{sub oc}) for poly(3-hexylthiophene):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM) BHJ device. Ultraviolet photoemission spectroscopy (UPS) characterization of the NiO{sub x} film and its interface with the polymer shows Fermi level alignment of the polymer with the NiO{sub x} film. UPS of the blend also demonstrates Fermi level alignment of the organic active layer with the HTL, consistent with the lack of correlation between V{sub oc} and HTL work-function. Instead, trends in j{sub sc}, V{sub oc}, and thus overall device performance are related to the surface treatment of the HTL prior to active layer deposition through changes in active layer thickness.

Widjonarko, N. E.; Ratcliff, E. L.; Perkins, C. L.; Sigdel, A. K.; Zakutayev, A.; Ndione, P. F.; Gillaspie, D. T.; Ginley, D. S.; Olson, D. C.; Berry, J. J.

2012-03-01T23:59:59.000Z

435

Turbulent heating of the corona and solar wind: the heliospheric  

E-Print Network (OSTI)

of telegraph services - Once per 500 years (ice cores) - Solar-terrestrial connection - Interplanetary space of radiators - Dust environment - Cp/Cg problems - Solar panels and power #12;Solar Probe Plus 2018 launch 35Turbulent heating of the corona and solar wind: the heliospheric dark energy problem Stuart D. Bale

436

Solar air heating system for combined DHW and space heating  

E-Print Network (OSTI)

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren ?stergaard Jensen

437

Microbial Electrosynthesis Turns Solar Energy into Chemicals May 31, 2010  

E-Print Network (OSTI)

Microbial Electrosynthesis Turns Solar Energy into Chemicals May 31, 2010 A new way to make electrosynthesis (ME) process is carbon neutral and uses solar energy more efficiently than plants. In fact, but the technology is primarily designed to be used with solar panels as a source of clean, renewable solar energy

Lovley, Derek

438

Finding Solutions to Solar's Soft Cost Dilemma | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding Solutions to Solar's Soft Cost Dilemma Finding Solutions to Solar's Soft Cost Dilemma Finding Solutions to Solar's Soft Cost Dilemma January 8, 2013 - 1:22pm Addthis Brian Webster installs rooftop solar panels on a home in Englewood, Colorado. The Energy Department is working to streamline rooftop solar installations so that its faster, easier and cheaper for Americans to go solar. | Photo courtesy of Dennis Schroeder, NREL. Brian Webster installs rooftop solar panels on a home in Englewood, Colorado. The Energy Department is working to streamline rooftop solar installations so that its faster, easier and cheaper for Americans to go solar. | Photo courtesy of Dennis Schroeder, NREL. Minh Le Minh Le Program Manager, Solar Program Learn More about Solar's Soft Costs Check out Clean Power Finance's study on solar's soft costs here.

439

Denver Public Schools Get Solar Energy System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Denver Public Schools Get Solar Energy System Denver Public Schools Get Solar Energy System Denver Public Schools Get Solar Energy System November 1, 2010 - 11:22am Addthis Workers install a solar photovoltaic system on the roof of a Denver school.| Photo courtesy of Main Street Power Workers install a solar photovoltaic system on the roof of a Denver school.| Photo courtesy of Main Street Power Kevin Craft What are the key facts? Local company adds five full-time jobs to support solar panel project. Solar panels are estimated to generate 1,640,457 kWh of electricity per year. Denver Public Schools are expected to save more than $500,000 over a 20-year period . This school year, students in the Denver Public School system are getting a first-hand look at solar panel technology. Main Street Power, a solar development company based in Boulder, Colo., is

440

Denver Public Schools Get Solar Energy System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Denver Public Schools Get Solar Energy System Denver Public Schools Get Solar Energy System Denver Public Schools Get Solar Energy System November 1, 2010 - 11:22am Addthis Workers install a solar photovoltaic system on the roof of a Denver school.| Photo courtesy of Main Street Power Workers install a solar photovoltaic system on the roof of a Denver school.| Photo courtesy of Main Street Power Kevin Craft What are the key facts? Local company adds five full-time jobs to support solar panel project. Solar panels are estimated to generate 1,640,457 kWh of electricity per year. Denver Public Schools are expected to save more than $500,000 over a 20-year period . This school year, students in the Denver Public School system are getting a first-hand look at solar panel technology. Main Street Power, a solar development company based in Boulder, Colo., is

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Definition: Solar energy | Open Energy Information  

Open Energy Info (EERE)

energy energy Radiant energy emitted by the sun[1] View on Wikipedia Wikipedia Definition Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heating, solar photovoltaics, solar thermal electricity, solar architecture and artificial photosynthesis. Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. In 2011, the International

442

Tunable Nanocrystalline CZTS for Solar Photovoltaics with No Required Annealing  

Thin-film solar cells are expected to replace the current first generation of solar photovoltaic technology due to their lower manufacturing cost and increased electrical output. Nanocrystal cells, one of the second generation of solar photovoltaics, ...

443

Tianjin Jinneng Solar Cell Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Municipality, China Zip 300384 Sector Solar Product Chinese manufacturer of a-si Tandem thin-film solar cells and PV system integrator. References Tianjin Jinneng Solar Cell Co...

444

Installation system for integral mounting of thermal or photovoltaic panels  

Science Conference Proceedings (OSTI)

A unique installation system for mounting solar thermal or photovoltaic solar collector panels as an integral part of a structure is described. The most common example would have the collector array replacing the sheathing and shingles of a roof supported by trusses or rafters on 24 inch centers. The design achieves the goals of a good integral installation which is reliably weathertight, rapid and easy to execute by typical construction workers with little specific extra training and no special tools. All materials and components are commercially available and have proven performance.

Rost, D.F. (Solar Energy Engineering, Poland, OH); Ameduri, G.; Groves, L.

1981-01-01T23:59:59.000Z

445

High-efficiency cadmium and zinc-telluride-based thin-film solar cells. Annual subcontract report, 1 March 1990--28 February 1991  

DOE Green Energy (OSTI)

This report describes research into polycrystalline CdTe solar cells grown by metal-organic chemical vapor deposition. Efficiencies of {approximately}10% were achieved using both p-i-n and p-n structures. A pre-heat treatment of CdS/SnO{sub 2}/glass substrates at 450{degrees}C in hydrogen atmosphere prior to the CdTe growth was found to be essential for high performance because this heat treatment reduces oxygen-related defects from the CdS surface. However, this treatment also resulted in a Cd-deficient CdS surface, which may in part limit the CdTe cell efficiency to 10% due to Cd vacancy-related interface defects. Preliminary model calculations suggest that removing these states can increase the cell efficiency from 10% to 13.5%. Photon absorption in the CdS film also limits the cell performance, and eliminating this loss mechanism can result in CdTe efficiencies in excess of 18%. Polycrystalline, 1.7-e, CdZnTe films were also grown for tandem-cell applications. CdZnTe/CdS cells processed using the standard CdTe cell fabrication procedure resulted in 4.4% efficiency, high series resistance, and a band-gap shift to 1.55 eV. The formation of Zn-O at and near the CdZnTe surface is the source of high contact resistance. A saturated dichromate each prior to contact deposition was found to solve the contact resistance problem. The CdCl{sub 2} treatment was identified as the cause of the observed band-gap shift due to the preferred formation of ZnCl{sub 2}. 59 refs.

Rohatgi, A.; Sudharsanan, R.; Ringel, S. [Georgia Inst. of Tech., Atlanta, GA (United States)

1992-02-01T23:59:59.000Z

446

Panelized wall system with foam core insulation  

DOE Patents (OSTI)

A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

2009-10-20T23:59:59.000Z

447

DOE Solar Decathlon: 2009 Penn State  

NLE Websites -- All DOE Office Websites (Extended Search)

university's mascot. Illustration of a dark brown, rectangular house with a silver-edged, flat roof. Solar panels sit atop the roof at a slight angle. A flat awning, also edged in...

448

DOE Solar Decathlon: 2009 Team Alberta  

NLE Websites -- All DOE Office Websites (Extended Search)

experience. Illustration of the Team Alberta house. It has a dual rooftop structure for solar panels that is separated by a rooftop terrace. The Team Alberta home packs a lot of...

449

DOE Solar Decathlon: 2009 Team Boston  

NLE Websites -- All DOE Office Websites (Extended Search)

so the "L" is horizontal, with the long side composed of the top and roof. Three rows of solar panels peek up above the roof. The wood section sits atop a rectangular black...

450

DOE Solar Decathlon: 2005 Daily Journals  

NLE Websites -- All DOE Office Websites (Extended Search)

sky, allowing the first rays of sunshine we have seen in more than a week to dapple solar panels and brighten facades along Decathlete Way. Read more. Friday October 14, 2005...

451

Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells  

DOE Patents (OSTI)

The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.

Ramanathan, Kannan V. (Lakewood, CA); Contreras, Miguel A. (Golden, CA); Bhattacharya, Raghu N. (Littleton, CA); Keane, James (Lakewood, CA); Noufi, Rommel (Golden, CA)

1999-01-01T23:59:59.000Z

452

Method of fabricating high-efficiency Cu(In,Ga)(Se,S){sub 2} thin films for solar cells  

DOE Patents (OSTI)

A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S){sub 2} comprises depositing a first layer of (In,Ga){sub x} (Se,S){sub y} followed by depositing just enough Cu+(Se,S) or Cu{sub x} (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga){sub x} (Se,S){sub y} is deposited first, followed by deposition of all the Cu+(Se,S) or Cu{sub x} (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu{sub x} (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga){sub x} (Se,S){sub y} to go slightly Cu-poor in the final Cu(In,Ga)(Se,S){sub 2} thin film. 5 figs.

Noufi, R.; Gabor, A.M.; Tuttle, J.R.; Tennant, A.L.; Contreras, M.A.; Albin, D.S.; Carapella, J.J.

1995-08-15T23:59:59.000Z

453

Method of fabricating high-efficiency Cu(In,Ga)(SeS).sub.2 thin films for solar cells  

DOE Patents (OSTI)

A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S).sub.2 comprises depositing a first layer of (In,Ga).sub.x (Se,S).sub.y followed by depositing just enough Cu+(Se,S) or Cu.sub.x (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga).sub.x (Se,S).sub.y is deposited first, followed by deposition of all the Cu+(Se,S) or Cu.sub.x (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu.sub.x (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga).sub.x (Se,S).sub.y to go slightly Cu-poor in the final Cu(In,Ga)(Se,S).sub.2 thin film.

Noufi, Rommel (Golden, CO); Gabor, Andrew M. (Boulder, CO); Tuttle, John R. (Denver, CO); Tennant, Andrew L. (Denver, CO); Contreras, Miguel A. (Golden, CO); Albin, David S. (Denver, CO); Carapella, Jeffrey J. (Evergreen, CO)

1995-01-01T23:59:59.000Z

454

Signet Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Signet Solar Inc Jump to: navigation, search Name Signet Solar Inc Place Palo Alto, California Zip 94306 Product US-based manufacturer of amorphous silicon thin-film modules....

455

Exascale Workshop Panel Report Meeting  

SciTech Connect

The Exascale Review Panel consists of 12 scientists and engineers with experience in various aspects of high-performance computing and its application, development, and management. The Panel hear presentations by several representatives of the workshops and town meetings convened over the past few years to examine the need for exascale computation capability and the justification for a U.S. Department of Energy (DOE) program to develop such capability. This report summarizes information provided by the presenters and substantial written reports to the Panel in advance of the meeting in Washington D.C. on January 19-20, 2010. The report also summarizes the Panel's conclusions with regard to the justification of a DOE-led exascale initiative.

Khaleel, Mohammad A.

2010-07-01T23:59:59.000Z

456

Exascale Workshop Panel Report Meeting  

SciTech Connect

The Exascale Review Panel consists of 12 scientists and engineers with experience in various aspects of high-performance computing and its application, development, and management. The Panel hear presentations by several representatives of the workshops and town meetings convened over the past few years to examine the need for exascale computation capability and the justification for a U.S. Department of Energy (DOE) program to develop such capability. This report summarizes information provided by the presenters and substantial written reports to the Panel in advance of the meeting in Washington D.C. on January 19-20, 2010. The report also summarizes the Panel's conclusions with regard to the justification of a DOE-led exascale initiative.

Khaleel, Mohammad A.

2010-07-01T23:59:59.000Z

457

IBM's New Flat Panel Displays  

NLE Websites -- All DOE Office Websites (Extended Search)

by J. Sthr (SSRL), M. Samant (IBM), J. Lning (SSRL) Today's laptop computers utilize flat panel displays where the light transmission from the back to the front of the display...

458

Advanced processing technology for high-efficiency thin-film CuInSe{sub 2} solar cells. Annual subcontract report, 1 March 1992--28 February 1993  

DOE Green Energy (OSTI)

This report describes work to develop novel fabrication for CuInSe{sub 2} (CIS) solar cells that will result in improved performance and cost effectiveness at the manufacturing level. The primary approach involves all solid-state processing for CIS. This was augmented by work to provide novel alternatives for the formation of the window layer/heterojunction contact. Inherent to the project was the need to develop a generic understanding of the relationship between processing and performance so that broad-based transfer to industry can be facilitated. We achieved good-electronic-quality CIS by the use of two selenization procedures for predeposited metal layers. We achieved good stoichiometry throughout the bulk of the film, attained grain sizes of up to 1 {mu}m, and measured electron mobilities of up to 60 cm{sup 2}V-s. However, there is a complex relationship between grain size, adhesion, and performance. Our primary approach to characterization was to fabricate ZnO/CIS test devices and measure as many properties as possible in device format. We are also developing reactive sputtering of ZnO as an alternative window layer technology.

Morel, D.L.; Attar, G.; Karthikeyan, S.; Muthaiah, A.; Zafar, A. [University of South Florida, Tampa, FL (United States)

1993-08-01T23:59:59.000Z

459

Apparatus for forming thin-film heterojunction solar cells employing materials selected from the class of I-III-VI.sub.2 chalcopyrite compounds  

DOE Patents (OSTI)

Apparatus for forming thin-film, large area solar cells having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n-type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in the first semiconductor layer to evolve into p-type material, thereby defining a thin layer heterojunction device characterized by the absence of voids, vacancies and nodules which tend to reduce the energy conversion efficiency of the system.

Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

1983-01-01T23:59:59.000Z

460

Preparation and properties of high deposition a-Si:H films and solar cells using disilane: Final subcontract report, 1 May 1988--30 April 1989  

DOE Green Energy (OSTI)

The focus of research during the second phase of SERI Contract No. ZB-7-06002-1 was the fabrication of high efficiency amorphous silicon p-i-n solar cells using intrinsic layers deposited at high deposition rate (/minus/2 nm/s) from disilane discharges. In order to achieve this goal, we utilized higher discharge excitation frequencies (10-110 MRz) to improve the intrinsic layer properties. In this report, we discuss the influence of the driving frequency at fixed fr power density on silane and disilane discharges, the properties of materials deposited from these discharges, and the performance of p-i-n devices fabricated using intrinsic layers deposited at a rate of /minus/2 nm/s from disilane 110 MRz discharges. The use of higher excitation frequency in disilane discharges increases the deposition rate and results in films with improved properties compared with those deposited at similar deposition rate by increasing the rf power. As a result of these improvements, we have fabricated a p-i-n device at a deposition rate of 2nm/s with an AM1.5 efficiency of 9/7% over an area of 1 cm/sup 2/. This result exceeds the goals of this contract. 24 refs., 16 figs., 2 tabs.

Chatham, H.; Bhat, P.K.

1989-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Use of 2nd and 3rd Level Correlation Analysis for Studying Degradation in Polycrystalline Thin-Film Solar Cells  

DOE Green Energy (OSTI)

The correlation of stress-induced changes in the performance of laboratory-made CdTe solar cells with various 2nd and 3rd level metrics is discussed. The overall behavior of aggregated data showing how cell efficiency changes as a function of open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) is explained using a two-diode, PSpice model in which degradation is simulated by systematically changing model parameters. FF shows the highest correlation with performance during stress, and is subsequently shown to be most affected by shunt resistance, recombination and in some cases voltage-dependent collection. Large decreases in Jsc as well as increasing rates of Voc degradation are related to voltage-dependent collection effects and catastrophic shunting respectively. Large decreases in Voc in the absence of catastrophic shunting are attributed to increased recombination. The relevance of capacitance-derived data correlated with both Voc and FF is discussed.

Albin, D. S.; del Cueto, J. A.; Demtsu, S. H.; Bansal, S.

2011-03-01T23:59:59.000Z

462

Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection  

SciTech Connect

Molecular beam epitaxy grown MgS on GaAs(111)B substrate was resulted in wurtzite phase, as demonstrated by detailed structural characterizations. Phenomenological arguments were used to account for why wurtzite phase is preferred over zincblende phase or its most stable rocksalt phase. Results of photoresponse and reflectance measurements performed on wurtzite MgS photodiodes suggest a direct bandgap at around 5.1 eV. Their response peaks at 245 nm with quantum efficiency of 9.9% and enjoys rejection of more than three orders at 320 nm and close to five orders at longer wavelengths, proving the photodiodes highly competitive in solar-blind ultraviolet detection.

Lai, Y. H.; He, Q. L. [Nano Science and Nano Technology Program, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China) [Nano Science and Nano Technology Program, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Cheung, W. Y.; Lok, S. K.; Wong, K. S.; Sou, I. K. [Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China)] [Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Ho, S. K. [Faculty of Science and Technology, University of Macau, Macau, People's Republic of China (China)] [Faculty of Science and Technology, University of Macau, Macau, People's Republic of China (China); Tam, K. W. [Department of Electrical and Electronics Engineering, University of Macau, Macau, People's Republic of China (China)] [Department of Electrical and Electronics Engineering, University of Macau, Macau, People's Republic of China (China)

2013-04-29T23:59:59.000Z

463

All Day Solar | Open Energy Information  

Open Energy Info (EERE)

stage company planning to manufacture flexible thin-film PV modules for vehicular rooftop applications. References All Day Solar1 LinkedIn Connections CrunchBase Profile...

464

Bangkok Solar Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Co Ltd Jump to: navigation, search Name Bangkok Solar Co Ltd Place Chachoengsao, Thailand Zip 24140 Product Manufacturer of thin-film amorphous silicon modules, distributes in...

465

DOE Solar Decathlon: 2009 University of Illinois at Urbana-Champaign  

NLE Websites -- All DOE Office Websites (Extended Search)

wood from a grain elevator echo traditional home features. Rather than having a single flat roof facing south for maximum installation of solar panels, the gable design presents...

466

Applying Solar Pyrometallurgy to the Recovery of High-Value Metals ...  

Science Conference Proceedings (OSTI)

It is hoped that by employing solar pyrometallurgy techniques, these regions would ... due to an increased chance of burning out panels on the parabolic mirror.

467

Thin Film Photovoltaics - Programmaster.org  

Science Conference Proceedings (OSTI)

Thin Film Structures for Energy Efficient Systems: Thin Film Photovoltaics ... Full- inorganic Heterojunction Ink-printed Solar Cells: Seigo Ito1; 1University of Hyogo ... electrochemical impedance spectroscopy (EIS) measurements were used for...

468

Small Solar Electric Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Solar Electric Systems Small Solar Electric Systems Small Solar Electric Systems July 15, 2012 - 4:11pm Addthis A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. What are the key facts? Because PV technologies use both direct and scattered sunlight to create electricity, the solar resource across the United States is ample for home solar electric systems. Solar cells-the basic building blocks of a PV system -- consist of semiconductor materials. A typical home solar electric, or PV, system consists solar cells, modules or panels (which consist of solar cells), arrays (which consist of modules), and balance-of-system parts. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV

469

Small Solar Electric Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Solar Electric Systems Small Solar Electric Systems Small Solar Electric Systems July 15, 2012 - 4:11pm Addthis A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. What are the key facts? Because PV technologies use both direct and scattered sunlight to create electricity, the solar resource across the United States is ample for home solar electric systems. Solar cells-the basic building blocks of a PV system -- consist of semiconductor materials. A typical home solar electric, or PV, system consists solar cells, modules or panels (which consist of solar cells), arrays (which consist of modules), and balance-of-system parts. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV

470

Sandwich Construction Solar Structural Facets  

DOE Green Energy (OSTI)

Silver/glass mirrors have excellent optical properties but need a method of support in order to be used in concentrating solar thermal systems. In collaboration with the Cummins dish/Stirling development program, they started investigating sandwich construction as a way to integrate silver/glass mirrors into solar optical elements. In sandwich construction, membranes such as sheet metal or plastic are bonded to the front and back of a core (like a sandwich). For solar optical elements, a glass mirror is bonded to one of the membranes. This type of construction has the advantages of a high strength-to-weight ratio, and reasonable material and manufacturing cost. The inherent stiffness of sandwich construction mirror panels also facilitates large panels. This can have cost advantages for both the amount of hardware required as well as reduced installation and alignment costs. In addition, by incorporating the panels into the support structure reductions in the amount of structural support required are potentially possible.

Diver, R. B.; Grossman, J.W.

1998-12-22T23:59:59.000Z

471

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Solar Solar EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Image of a neighborhood of single-story homes with solar panels on the roofs. The U.S. Department of Energy (DOE) leads a large network of researchers and other partners to deliver innovative solar photovoltaic and

472

Microwave-Assisted Synthesis of TiO2 Nanorod Films for Dye ...  

Science Conference Proceedings (OSTI)

Abstract Scope, One of limitations of conventional dye sensitized solar cells ( DSSC) is the use of TiO2 ... Radio Frequency Lamination for Photovoltaic Panels.

473

Available Technologies: Indium Phosphide Polycrystalline Films on ...  

Hot Electron Photovoltaics Using Low Cost Materials and Simple Design, IB-2195. Thinner Film Silicon Solar Cells, IB-2564. REFERENCE NUMBER: IB-3173, IB-3238.

474

SPUTTERED THIN FILM PHOTOVOLTAICS - Home - Energy ...  

for photovoltaic (PV) applications .These processes result in films with better unif ormity over ... ultimately resulting in a more efficient solar ce ...

475

NIST Scientists Address 'Wrinkles' in Transparent Film ...  

Science Conference Proceedings (OSTI)

NIST Scientists Address 'Wrinkles' in Transparent Film Development. ... High on the wish list of the solar power industry is a cheap, flexible ...

2012-10-02T23:59:59.000Z