Powered by Deep Web Technologies
Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Modeling and control of thin film surface morphology: application to thin film solar cells  

E-Print Network [OSTI]

of a p-i-n thin-film solar cell with front transparent con-for thin-film a-si:h solar cells. Progress in Photovoltaics,in thin-film silicon solar cells. Optics Communications,

Huang, Jianqiao

2012-01-01T23:59:59.000Z

2

US polycrystalline thin film solar cells program  

SciTech Connect (OSTI)

The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

Ullal, H.S.; Zweibel, K.; Mitchell, R.L. (Solar Energy Research Inst., Golden, CO (USA)) [Solar Energy Research Inst., Golden, CO (USA)

1989-11-01T23:59:59.000Z

3

A Review of Thin Film Silicon for Solar Cell Applications  

E-Print Network [OSTI]

A Review of Thin Film Silicon for Solar Cell Applications May 99 Contents 1 Introduction 3 2 Low 2.2.3 Deposition onto foreign substrates with the intention of improving crystallographic nature Field Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11

4

DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important

Sites, James R.

5

Efficient light trapping structure in thin film silicon solar cells  

E-Print Network [OSTI]

Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

Sheng, Xing

6

Recent technological advances in thin film solar cells  

SciTech Connect (OSTI)

High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

Ullal, H.S.; Zwelbel, K.; Surek, T.

1990-03-01T23:59:59.000Z

7

DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS Submitted by Kuo-Jui Hsiao ELECTRON- REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS SOLAR CELLS The CdTe thin-film solar cell has a large absorption coefficient and high theoretical

Sites, James R.

8

Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell  

E-Print Network [OSTI]

We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

Li, Tong; Jiang, Chun

2010-01-01T23:59:59.000Z

9

Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells  

E-Print Network [OSTI]

Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells H. Kim,a) G. P­20 m thick) layers incorporated in dye-sensitized solar cells. Laser direct-write is a laser techniques to produce porous nc- TiO2 films required for dye-sensitized solar cells. The dye solar cells

Arnold, Craig B.

10

Thin crystalline silicon solar cells based on epitaxial films grown at 165C by RF PECVD  

E-Print Network [OSTI]

1 Thin crystalline silicon solar cells based on epitaxial films grown at 165°C by RF PECVD Romain temperatures. Keywords : Low temperature, epitaxy, PECVD, Si thin film, Solar cell hal-00749873,version1-25Nov shortage until 2010. Research on epitaxial growth for thin film crystalline silicon solar cells has gained

11

Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova*  

E-Print Network [OSTI]

1 Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova* , I be minimized throughout the fabrication process. Amorphous silicon thin-film transistors and solar cells, thin-film transistor, solar cell, flexible electronics Phone: (609) 258-4626, Fax: (609) 258-3585, E

12

Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells  

E-Print Network [OSTI]

Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells D.L. Pulfrey*, J. Dell): pulfrey@ece.ubc.ca ABSTRACT Cadmium telluride thin-film solar cells are now commercially available be attainable. 1. INTRODUCTION Thin film solar cells based on polycrystalline CdTe have been investigated

Pulfrey, David L.

13

Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells  

E-Print Network [OSTI]

Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells Qiumei Bian in the fabrication and assembly of thin film solar cells. Using a femtosecond (fs) laser, we selectively removed a unique scheme to ablate the indium tin-oxide layer for the fabrication of thin film solar cells

Van Stryland, Eric

14

Plasmonic enhancement of thin-film solar cells using gold-black C.J. Fredricksena  

E-Print Network [OSTI]

Plasmonic enhancement of thin-film solar cells using gold-black coatings C.J. Fredricksena , D. R thin-film amorphous-silicon solar cells enhance the short-circuit current by 20% over a broad spectrum and locally enhance the field strength. Keywords: plasmonics, thin-film, solar cell, metallic nanoparticles

Peale, Robert E.

15

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell  

E-Print Network [OSTI]

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic­4]. In this context, a basic idea is to periodically texture the metallic back reflector of a thin-film solar cell

16

METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS  

E-Print Network [OSTI]

METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS by DEEP R surface of thin-film solar cells to improve efficiency. The principle is that scattering, which film solar cell. The particular types of particles investigated here are known as "metal-black", well

Peale, Robert E.

17

Extended light scattering model incorporating coherence for thin-film silicon solar cells  

E-Print Network [OSTI]

Extended light scattering model incorporating coherence for thin-film silicon solar cells Thomas film solar cells. The model integrates coherent light propagation in thin layers with a direct, non potential for light trapping in textured thin film silicon solar cells. VC 2011 American Institute

Lenstra, Arjen K.

18

Metal-black scattering centers to enhance light harvesting by thin-film solar cells  

E-Print Network [OSTI]

Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

Peale, Robert E.

19

Ablation of film stacks in solar cell fabrication processes  

DOE Patents [OSTI]

A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.

Harley, Gabriel; Kim, Taeseok; Cousins, Peter John

2013-04-02T23:59:59.000Z

20

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS  

E-Print Network [OSTI]

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS solar cells using back reflectors. We studied absorption enhancement in InGaAs and InGaAsP thin film and metal, on InGaAs thin film solar cell performance by device modeling and nu- merical simulations. DEVICE

Atwater, Harry

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Polycrystalline thin-film solar cells and modules  

SciTech Connect (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

22

Polycrystalline thin-film solar cells and modules  

SciTech Connect (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

23

Thin film solar cell including a spatially modulated intrinsic layer  

DOE Patents [OSTI]

One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

1989-03-28T23:59:59.000Z

24

Focused ion beam specimen preparation for electron holography of electrically biased thin film solar cells  

E-Print Network [OSTI]

, biased TEM specimen, thin film solar cell, FIB Thin films of hydrogenated Si (Si:H) can be used as active for electron holography of a thin film solar cell using conventional lift-out specimen preparation and a homeFocused ion beam specimen preparation for electron holography of electrically biased thin film

Dunin-Borkowski, Rafal E.

25

Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics  

E-Print Network [OSTI]

nanowire networks as window layers in thin film solar cells.window layer for fully solution-deposited thin filmITO) thin films by silver nanowire composite window layers

Chung, Choong-Heui

2012-01-01T23:59:59.000Z

26

Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells  

DOE Patents [OSTI]

High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

Bhattacharya, Raghu N. (Littleton, CO); Contreras, Miguel A. (Golden, CO); Keane, James (Lakewood, CO); Tennant, Andrew L. (Denver, CO), Tuttle, John R. (Denver, CO); Ramanathan, Kannan (Lakewood, CO); Noufi, Rommel (Golden, CO)

1998-08-08T23:59:59.000Z

27

CNT-SI HETEROJUNCTION SOLAR CELLS WITH STRUCTURE-CONTROLLED SINGLE-WALL CARBON NANOTUBE FILMS  

E-Print Network [OSTI]

CNT-SI HETEROJUNCTION SOLAR CELLS WITH STRUCTURE- CONTROLLED SINGLE-WALL CARBON NANOTUBE FILMS. The heterojunction solar cell was fabricated by dry depositing the SWNT film to the 3 mm by 3 mm n-type silicon solar cells. We proposed a water-vapor treatment to build up SWNTs to a self-assembled micro- honeycomb

Maruyama, Shigeo

28

Thin crystalline silicon solar cells based on epitaxial films grown at 165C by RF PECVD  

E-Print Network [OSTI]

1 Thin crystalline silicon solar cells based on epitaxial films grown at 165°C by RF PECVD Romain temperatures. Keywords : Low temperature, epitaxy, PECVD, Si thin film, Solar cell #12;2 1. Introduction: martin.labrune@polytechnique.edu ABSTRACT We report on heterojunction solar cells whose thin intrinsic

29

Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint  

SciTech Connect (OSTI)

We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

2011-07-01T23:59:59.000Z

30

EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS  

E-Print Network [OSTI]

EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1; * Corresponding author: buonassisi@mit.edu; ABSTRACT We investigate earth abundant materials for thin- film solar cuprous oxide (Cu2O) as a prototype candidate for investigation as an absorber layer in thin film solar

Ceder, Gerbrand

31

Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer  

E-Print Network [OSTI]

Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric current gain obtained...

Lu, Tianlin

2012-07-16T23:59:59.000Z

32

Impurity and back contact effects on CdTe/CdS thin film solar cells.  

E-Print Network [OSTI]

??CdTe/CdS thin film solar cells are the most promising cost-effective solar cells. The goal of this project is to improve the performance for CdS/CdTe devices (more)

Zhao, Hehong

2008-01-01T23:59:59.000Z

33

Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells  

E-Print Network [OSTI]

Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells trapping, for the nc- Si:H absorber in the Si-based thin film solar cells. Furthermore, nc-Si:H is usually bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc- Si) triple-junction solar cell due to its higher optical

Deng, Xunming

34

LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle  

E-Print Network [OSTI]

LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle Physics response map, was developed and used to map defects in thin-film solar cells [4]. Improvements to the two) measurements are providing a direct link between the spatial non-uniformities inherent in thin-film

Sites, James R.

35

Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells  

E-Print Network [OSTI]

Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells Nicholas P of solar energy conversion be- cause they use thin films of photoactive material and can be manufactured and photocurrent in flexible organic solar cells. We demonstrate that this enhancement is attributed to a broadband

Fan, Shanhui

36

Identification, Characterization, and Implications of Shadow Degradation in Thin Film Solar Cells  

E-Print Network [OSTI]

cells [4]. The problem of shadowing of solar panels has been studied for quite some time; however of a solar cell, showing the dark and light current components. (b) The series connection in a solar panelIdentification, Characterization, and Implications of Shadow Degradation in Thin Film Solar Cells

Alam, Muhammad A.

37

CARRIER COLLECTION IN THIN-FILM CDTE SOLAR CELLS: THEORY AND EXPERIMENT  

E-Print Network [OSTI]

-n junction solar cell theory predicts that the total solar cell current in the light, JLCARRIER COLLECTION IN THIN-FILM CDTE SOLAR CELLS: THEORY AND EXPERIMENT A.E. Delahoy, Z. Cheng and K.K. Chin Department of Physics, Apollo Solar Energy Research Center, New Jersey Institute

38

1. INTRODUCTION Polycrystalline CdTe thin films solar cells have shown long  

E-Print Network [OSTI]

to the solar panel that can be adapted to any kind of shape and is easy to deploy in space. We have developed1. INTRODUCTION Polycrystalline CdTe thin films solar cells have shown long term stable performance for the solar cell, therefore high specific power (ratio of out- put power to the weight) solar cells

Romeo, Alessandro

39

Methods for fabricating thin film III-V compound solar cell  

DOE Patents [OSTI]

The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

2011-08-09T23:59:59.000Z

40

FILM ADHESION IN TRIPLE JUNCTION a-Si SOLAR CELLS ON POLYIMIDE and X. Deng1,2  

E-Print Network [OSTI]

FILM ADHESION IN TRIPLE JUNCTION a-Si SOLAR CELLS ON POLYIMIDE SUBSTRATES A. Vijh1,2 , X. Yang1 , W of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous), and the effect of tie coats on film adhesion. INTRODUCTION Amorphous silicon (a-Si) based solar cells

Deng, Xunming

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing  

E-Print Network [OSTI]

One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

42

Anti-reflection zinc oxide nanocones for higher efficiency thin-film silicon solar cells  

E-Print Network [OSTI]

Thin film silicon solar cells, which are commonly made from microcrystalline silicon ([mu]c-Si) or amorphous silicon (a-Si), have been considered inexpensive alternatives to thick polycrystalline silicon (polysilicon) solar ...

Mailoa, Jonathan P

2012-01-01T23:59:59.000Z

43

Air-Stable High-Efficiency Solar Cells Using Improved Single-Walled Carbon Nanotube Films  

E-Print Network [OSTI]

1 Air-Stable High-Efficiency Solar Cells Using Improved Single-Walled Carbon Nanotube Films Kehang-3-5800-6983. #12;2 ABSTRACT We present the single-walled carbon nanotube/silicon (SWNT/Si) solar cells approaching, the PCEs of the fabricated solar cells slightly increased after six-month exposure in air without any

Maruyama, Shigeo

44

Dual gratings for enhanced light trapping in thin-film solar cells  

E-Print Network [OSTI]

, Ireland * christian.schuster@york.ac.uk Abstract: Thin film solar cells benefit significantly from; (350.6050) Solar energy. References and links 1. M. A. Green, J. Zhao, A. Wang, and S. R. Wenham, "Progress and outlook for high-efficiency crystalline silicon solar cells," Sol. Energy Mater. Sol. Cells 65

45

Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a  

E-Print Network [OSTI]

Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a J. D. Servaites thin-film solar cell types: hydrogenated amorphous silicon a-Si:H p-i-n cells, organic bulk understanding of thin film solar cell device physics, including important module performance variability issues

Alam, Muhammad A.

46

DISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

-scale problems such as energy demand, pollution, and environment safety. The cost ($/kWh) is the primaryDISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS AND MODULES WITH 2-D-FILM SOLAR CELLS AND MODULES WITH 2-D SIMULATIONS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS

Sites, James R.

47

Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)  

SciTech Connect (OSTI)

Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

Gessert, T. A.

2010-09-01T23:59:59.000Z

48

High Efficiency Thin Film CdTe and a-Si Based Solar Cells Final Technical Report for the Period  

E-Print Network [OSTI]

High Efficiency Thin Film CdTe and a-Si Based Solar Cells Final Technical Report for the PeriodTe-based thin-film solar cells and on high efficiency a-Si-based thin-film solar cells. Phases I and II have the performance of a-SiGe solar cells and properties of a-SiGe single layer films with different Ge contents

Deng, Xunming

49

THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te-CdTe HETEROJUNCTIONS (1)  

E-Print Network [OSTI]

195 THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te This paper is a short status report on the continuing development of Cu22014xTe-CdTe thin film solar cells Company has had a conti- nuous effort on thin film solar cells for the past four and a half years

Paris-Sud XI, Université de

50

THIN FILM SOLAR CELLS AND A REVIEW OF RECENT RESULTS ON GaAs By PAUL RAPPAPORT,  

E-Print Network [OSTI]

154. THIN FILM SOLAR CELLS AND A REVIEW OF RECENT RESULTS ON GaAs By PAUL RAPPAPORT, RCA been known that non-single- crystals films can be used for solar cells as, for example, in the selenium and copper oxide photo- electric exposnre meter. More recently [1], the cadmium sulfide film-type solar cell

Paris-Sud XI, Université de

51

Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property  

E-Print Network [OSTI]

Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High-conductor-free organic lead iodide thin film solar cells have been fabricated with a sequential deposition method are comparable to that of the high-efficiency thin-film solar cells. VC 2014 AIP Publishing LLC. [http

Wang, Wei Hua

52

innovati nNREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells  

E-Print Network [OSTI]

. Low-bandgap cells can lose 25% of their power output and efficiency ratings as solar cell operating energy output than a low-bandgap cell with the same wattage or power rating. NREL is a nationalinnovati nNREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells Researchers

53

Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells  

E-Print Network [OSTI]

Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells O. Lundberga,*, J. Lua , A. Rockettb , M. Edoffa , L. Stolta a A°ngstro¨m Solar Center, Uppsala University, P.O. Box 534, SE-751 21 Abstract The diffusion of indium and gallium in polycrystalline thin film Cu(In,Ga)Se2 layers has been

Rockett, Angus

54

Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings  

E-Print Network [OSTI]

Enhancement of optical absorption in thin-film organic solar cells through the excitation 2010 We theoretically investigate the enhancement of optical absorption in thin-film organic solar.1063/1.3377791 Thin-film organic solar cells OSCs are a promising candidate for low-cost energy conversion.1­6 However

Veronis, Georgios

55

NREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) are finding new ways to manufacture thin-film solar cells made from copper, indium, gallium, and selenium - called CIGS cells - that are different than conventional CIGS solar cells. Their use of high-temperature glass, designed by SCHOTT AG, allows higher fabrication temperatures, opening the door to new CIGS solar cells employing light-absorbing materials with wide 'bandgaps.'

Not Available

2012-09-01T23:59:59.000Z

56

High Efficiency Thin Film CdTe and a-Si Based Solar Cells Annual Technical Report for the Period  

E-Print Network [OSTI]

High Efficiency Thin Film CdTe and a-Si Based Solar Cells Annual Technical Report for the Period solar cells and on high efficiency a-Si-based thin-film solar cells. The effort on CdTe- based materials the performance of a-SiGe solar cells and properties of a-SiGe single layer films with different Ge contents

Deng, Xunming

57

Electron-reflector strategy for CdTe thin-film solar cells.  

E-Print Network [OSTI]

??The CdTe thin-film solar cell has a large absorption coefficient and high theoretical efficiency. Moreover, large-area photovoltaic panels can be economically fabricated. These features potentially (more)

Hsiao, Kuo-Jui

2010-01-01T23:59:59.000Z

58

Earth abundant materials for high efficiency heterojunction thin film solar cells  

E-Print Network [OSTI]

We investigate earth abundant materials for thin-film solar cells that can meet tens of terawatts level deployment potential. Candidate materials are identified by combinatorial search, large-scale electronic structure ...

Buonassisi, Tonio

59

Technological assessment of light-trapping technology for thin-film Si solar cell  

E-Print Network [OSTI]

The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was analyzed from the technology, market, and ...

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

60

Integrated photonic structures for light trapping in thin-film Si solar cells  

E-Print Network [OSTI]

We explore the mechanisms for an efficient light trapping structure for thin-film silicon solar cells. The design combines a distributed Bragg reflector (DBR) and periodic gratings. Using photonic band theories and numerical ...

Sheng, Xing

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa  

E-Print Network [OSTI]

HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa , Alessio in the fabrication of high efficiency CdTe/CdS thin film solar cells. Usually, it is done first by etching the Cd: Back Contact, CdTe, Thin Film 1 INTRODUCTION The back contact in the CdTe/CdS thin film solar cell

Romeo, Alessandro

62

Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin Film Solar Cells  

E-Print Network [OSTI]

We suggest a novel concept of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from plasmonic resonances. The operation principle of our structures relies on the excitation of chessboard-like collective modes of the nanoantenna arrays with the field localized between the neighboring metal elements. We demonstrated theoretically substantial enhancement of solar-cell short-circuit current by the designed light-trapping structure in the whole spectrum range of the solar-cell operation compared to conventional structures employing anti-reflecting coating. Our approach provides a general background for a design of different types of efficient broadband light-trapping structures for thin-film solar-cell technologically compatible with large-area thin-film fabrication techniques.

Simovski, Constantin R; Voroshilov, Pavel M; Guzhva, Michael E; Belov, Pavel A; Kivshar, Yuri S

2013-01-01T23:59:59.000Z

63

Processing and analysis of polycrystalline thin-film solar cells made from uniform single phase materials  

SciTech Connect (OSTI)

This paper presents processes for producing uniform single phase polycrystalline films of Cu(InGa)Se{sub 2} and CdTe and the analysis of the resulting films and solar cell devices. The first two sections discuss Cu(InGa)Se{sub 2} cells prepared by the selenization of Cu-In-Ga films and of elemental evaporation. The third section describes a CdCl{sub 2} vapor treatment of CdTe that results in uniform large grain films with reduced {ital S} diffusion and reproducible performance. {copyright} {ital 1996 American Institute of Physics.}

Birkmire, R.W.; Hichri, H.; Klenk, R.; Marudachalam, M.; McCandless, B.E.; Phillips, J.E.; Schultz, J.M.; Shafarman, W.N. [Institute of Energy Conversion, Department of Energy, University Center of Excellence for Photovoltaic, Research and Education (National Renewable Energy Laboratory), University of Delaware, Newark, Delaware 19716 (United States)

1996-01-01T23:59:59.000Z

64

Novel wide band gap materials for highly efficient thin film tandem solar cells  

SciTech Connect (OSTI)

Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PVâ??s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

Brian E. Hardin, Stephen T. Connor, Craig H. Peters

2012-06-11T23:59:59.000Z

65

Application of Vertically-Aligned SWNT Films for the Counter Electrode of Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

Application of Vertically-Aligned SWNT Films for the Counter Electrode of Dye-Sensitized Solar a solar cell in which VA-SWNT films were used for a CE, in place of conventional sputtered Pt on fluorine to use vertically aligned single-walled carbon nanotube (VA-SWNT) films [1] synthesized by ACCVD method

Maruyama, Shigeo

66

Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells  

E-Print Network [OSTI]

Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells. de Bariloche, Argentina 3 ECN Solar Energy, High Tech Campus, Building 5, 5656 AE Eindhoven energy-loss spectroscopy (EELS) is used to study p-doped layers in n-i-p amorphous thin film Si solar

Dunin-Borkowski, Rafal E.

67

Thin-film solar cell fabricated on a flexible metallic substrate  

DOE Patents [OSTI]

A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

Tuttle, John R.; Noufi, Rommel; Hasoon, Falah S.

2006-05-30T23:59:59.000Z

68

Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate  

DOE Patents [OSTI]

A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

2006-05-30T23:59:59.000Z

69

DOI: 10.1002/adma.200602927 Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

DOI: 10.1002/adma.200602927 Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells* The interest in dye-sensitized solar cells has increased due to reduced energy sources and higher energy, zinc oxide (ZnO) has recently been explored as an alternative material in dye-sensitized solar cells

Cao, Guozhong

70

Solar Energy Materials & Solar Cells 92 (2008) 821829 Modeling the optical properties of WO3 and WO3SiO2 thin films  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 92 (2008) 821­829 Modeling the optical properties of WO3 the optical response of the films in the near-UV and visible region: two interband transitions for energies E

Thirumalai, Devarajan

71

STRUCTURAL AND CHEMICAL STUDIES ON CdTe/CdS THIN FILM SOLAR CELLS WITH ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY  

E-Print Network [OSTI]

STRUCTURAL AND CHEMICAL STUDIES ON CdTe/CdS THIN FILM SOLAR CELLS WITH ANALYTICAL TRANSMISSION, A. N. Tiwari Thin Film Physics Group, Laboratory for Solid State Physics, Technopark ETH-Building, Technoparkstr. 1, CH-8005 Zurich, Switzerland ABSTRACT: CdTe/CdS thin £lm solar cells have been grown by closed

Romeo, Alessandro

72

Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly,,3-hexylthiophene...  

E-Print Network [OSTI]

Investigation of annealing effects and film thickness dependence of polymer solar cells based spectroscopy on the P3HT:PCBM films to explain the effect of thermal annealing. By keeping the optimized shown the possibility of putting them into practical applica- tions. Polymeric solar cells based

73

Real time intelligent process control system for thin film solar cell manufacturing  

SciTech Connect (OSTI)

This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStratas fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process on-the-fly in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

George Atanasoff

2010-10-29T23:59:59.000Z

74

Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars  

E-Print Network [OSTI]

Monocrystalline silicon solar cells, polycrystalline silicon solar cells, and amorphous silicon (thin-film) solar

Tu, Bor-An Clayton

2013-01-01T23:59:59.000Z

75

First-Principles Study of Back Contact Effects on CdTe Thin Film Solar Cells  

SciTech Connect (OSTI)

Forming a chemically stable low-resistance back contact for CdTe thin-film solar cells is critically important to the cell performance. This paper reports theoretical study of the effects of the back-contact material, Sb{sub 2}Te{sub 3}, on the performance of the CdTe solar cells. First-principles calculations show that Sb impurities in p-type CdTe are donors and can diffuse with low diffusion barrier. There properties are clearly detrimental to the solar-cell performance. The Sb segregation into the grain boundaries may be required to explain the good efficiencies for the CdTe solar cells with Sb{sub 2}Te{sub 3} back contacts.

Du, Mao-Hua [ORNL

2009-01-01T23:59:59.000Z

76

p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells  

E-Print Network [OSTI]

p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells Ken K. Chin n Department of Physics and Apollo CdTe Solar Energy Research Center, NJIT, Newark, NJ 07058, USA a r t i c l e May 2010 Keywords: CdTe p-Doping Hole density Non-shallow Acceptor Activation energy a b s t r a c

77

Structural and chemical investigations of CBD-and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells  

E-Print Network [OSTI]

(In,Ga)Se2-based thin film solar cells D. Abou-Rasa,b,*, G. Kostorza , A. Romeob,1 , D. Rudmannb , A Available online 8 December 2004 Abstract It is known that high-efficiency thin film solar cells based on Cu; Chemical bath deposition; CdS buffer 1. Introduction The highest efficiencies for thin film solar cells

Romeo, Alessandro

78

Low cost and high performance light trapping structure for thin-film solar cells  

E-Print Network [OSTI]

Nano-scaled dielectric and metallic structures are popular light tapping structures in thin-film solar cells. However, a large parasitic absorption in those structures is unavoidable. Most schemes based on such structures also involve the textured active layers that may bring undesirable degradation of the material quality. Here we propose a novel and cheap light trapping structure based on the prism structured SiO2 for thin-film solar cells, and a flat active layer is introduced purposefully. Such a light trapping structure is imposed by the geometrical shape optimization to gain the best optical benefit. By examining our scheme, it is disclosed that the conversion efficiency of the flat a-Si:H thin-film solar cell can be promoted to exceed the currently certified highest value. As the cost of SiO2-based light trapping structure is much cheaper and easier to fabricate than other materials, this proposal would have essential impact and wide applications in thin-film solar cells.

Wang, DongLin; Su, Gang

2015-01-01T23:59:59.000Z

79

A Review of Thin Film Crystalline Silicon for Solar Cell Applications. Part 1 : Native Substrates.  

E-Print Network [OSTI]

A Review of Thin Film Crystalline Silicon for Solar Cell Applications. Part 1 : Native Substrates. Michelle J. Mc Cann, Kylie R. Catchpole, Klaus J. Weber and Andrew W. Blakers Centre for Sustainable Energy Systems Engineering Department, The Australian National University, ACT 0200, Australia. Email : michelle

80

Disorder improves nanophotonic light trapping in thin-film solar cells  

SciTech Connect (OSTI)

We present a systematic experimental study on the impact of disorder in advanced nanophotonic light-trapping concepts of thin-film solar cells. Thin-film solar cells made of hydrogenated amorphous silicon were prepared on imprint-textured glass superstrates. For periodically textured superstrates of periods below 500?nm, the nanophotonic light-trapping effect is already superior to state-of-the-art randomly textured front contacts. The nanophotonic light-trapping effect can be associated to light coupling to leaky waveguide modes causing resonances in the external quantum efficiency of only a few nanometer widths for wavelengths longer than 500?nm. With increasing disorder of the nanotextured front contact, these resonances broaden and their relative altitude decreases. Moreover, overall the external quantum efficiency, i.e., the light-trapping effect, increases incrementally with increasing disorder. Thereby, our study is a systematic experimental proof that disorder is conceptually an advantage for nanophotonic light-trapping concepts employing grating couplers in thin-film solar cells. The result is relevant for the large field of research on nanophotonic light trapping in thin-film solar cells which currently investigates and prototypes a number of new concepts including disordered periodic and quasi periodic textures.

Paetzold, U. W., E-mail: u.paetzold@fz-juelich.de; Smeets, M.; Meier, M.; Bittkau, K.; Merdzhanova, T.; Smirnov, V.; Carius, R.; Rau, U. [IEK5Photovoltaik, Forschungszentrum Jlich GmbH, 52425 Jlich (Germany); Michaelis, D.; Waechter, C. [Fraunhofer Institut fr Angewandte Optik und Feinmechanik, Albert Einstein Str. 7, D-07745 Jena (Germany)

2014-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Method of forming particulate materials for thin-film solar cells  

DOE Patents [OSTI]

A method for preparing particulate materials useful in fabricating thin-film solar cells is disclosed. Particulate materials is prepared by the method include for example materials comprising copper and indium and/or gallium in the form of single-phase, mixed-metal oxide particulates; multi-phase, mixed-metal particulates comprising a metal oxide; and multinary metal particulates.

Eberspacher, Chris; Pauls, Karen Lea

2004-11-23T23:59:59.000Z

82

Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film  

SciTech Connect (OSTI)

We investigated the growth mechanism of amorphous silicon thin films by implementing hot-wire chemical vapor deposition and fabricated thin film solar cell devices. The fabricated cells showed efficiencies of 7.5 and 8.6% for the samples without and with the rear-reflector decomposed by sputtering, respectively. The rear-reflector enhances the quantum efficiency in the infrared spectral region from 550 to 750?nm. The more stable quantum efficiency of the sample with the inclusion of a rear-reflector than the sample without the rear-reflector due to the bias effect is related to the enhancement of the short circuit current.

Park, Seungil [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Energy Conversions Technology Center, Korea Institute of Industrial Technology, Cheonan 331-825 (Korea, Republic of); Yong Ji, Hyung; Jun Kim, Myeong; Hyeon Peck, Jong [Energy Conversions Technology Center, Korea Institute of Industrial Technology, Cheonan 331-825 (Korea, Republic of); Kim, Keunjoo, E-mail: kimk@chonbuk.ac.kr [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

2014-02-17T23:59:59.000Z

83

Study of a-SiGe:H films and nip devices used in high efficiency triple junction solar cells  

E-Print Network [OSTI]

Study of a-SiGe:H films and n­i­p devices used in high efficiency triple junction solar cells-Si:H films). This allows the capture of the full range of the solar spectra in different layers and thus, North Guwahati, Guwahati 781 039, India Abstract We report our systematic studies on a-SiGe:H thin films

Deng, Xunming

84

Characterization of the Electronic and Chemical Structure at the Thin Film Solar Cell Interfaces: June 2005 -- June 2009  

SciTech Connect (OSTI)

Study using photoelectron spectroscopy, inverse photoemission, and X-ray absorption and emission to derive the electronic structure of interfaces in CIGSS and CdTe thin-film solar cells.

Heske, C.

2009-09-01T23:59:59.000Z

85

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells  

E-Print Network [OSTI]

Light trapping has been an important issue for thin film silicon solar cells because of the low absorption coefficient in the near infrared range. In this paper, we present a photonic structure which combines anodic aluminum ...

Sheng, Xing

86

Controlling the Texture and Crystallinity of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells  

E-Print Network [OSTI]

Controlling the Texture and Crystallinity of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells Karolien Vasseur,, Katharina Broch,§ Alexander L. Ayzner, Barry P. Rand, David Cheyns: To achieve organic solar cells with a broadened spectral absorption, we aim to promote the growth of the near

Schreiber, Frank

87

Group I-III-VI.sub.2 semiconductor films for solar cell application  

DOE Patents [OSTI]

This invention relates to an improved thin film solar cell with excellent electrical and mechanical integrity. The device comprises a substrate, a Group I-III-VI.sub.2 semiconductor absorber layer and a transparent window layer. The mechanical bond between the substrate and the Group I-III-VI.sub.2 semiconductor layer is enhanced by an intermediate layer between the substrate and the Group I-III-VI.sub.2 semiconductor film being grown. The intermediate layer contains tellurium or substitutes therefor, such as Se, Sn, or Pb. The intermediate layer improves the morphology and electrical characteristics of the Group I-III-VI.sub.2 semiconductor layer.

Basol, Bulent M. (Redondo Beach, CA); Kapur, Vijay K. (Northridge, CA)

1991-01-01T23:59:59.000Z

88

Mat. Res. Soc. Symp. Proc. Vol. 609 2000 Materials Research Society Comparison of Structural Properties and Solar Cell Performance of a-Si:H Films Prepared  

E-Print Network [OSTI]

of Structural Properties and Solar Cell Performance of a-Si:H Films Prepared at Various Deposition Rates using be made. EXPERIMENT The a-Si:H films and nip solar cells were fabricated using a research-scale, multi (above 5 ?/s) for intrinsic layers (i-layer) of solar cells has been well documented. In an effort

Deng, Xunming

89

Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate  

E-Print Network [OSTI]

Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light://jap.aip.org/about/rights_and_permissions #12;Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light require light-trapping schemes that are predominantly based on depositing the solar cells on rough

Psaltis, Demetri

90

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 06 · Solar Cell Materials & Structures 1Montana State University: Solar Cells Lecture 6: Solar Cells Solar Cell Technologies · A) Crystalline Silicon · B) Thin Film · C) Group III-IV Cells 2Montana State University: Solar Cells Lecture 6: Solar

Kaiser, Todd J.

91

Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In1-xGax)Se2 Thin-Film Solar Cells  

E-Print Network [OSTI]

1 Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In1-xGax)Se2 Thin-Film Solar Cells, Setagaya-ku, Tokyo 157-8572, Japan (Received ) KEYWORDS: ZnS buffer, Cu(In,Ga)Se2, thin-film solar cells alternative to CdS in polycrystalline thin-film Cu(In1-xGax)Se2 (CIGS) solar cells. Cells with efficiency

Sites, James R.

92

Thin Film Solar Cells Derived from Sintered Semiconductor Quantum Dots: Cooperative Research and Development Final Report, CRADA number CRD-07-00226  

SciTech Connect (OSTI)

The NREL/Evident team will develop techniques to fabricate thin film solar cells where the absorption layers comprising the solar cells are derived from sintered semiconductor quantum dots.

Ginley, D. S.

2010-07-01T23:59:59.000Z

93

Angular behavior of the absorption limit in thin film silicon solar cells  

E-Print Network [OSTI]

We investigate the angular behavior of the upper bound of absorption provided by the guided modes in thin film solar cells. We show that the 4n^2 limit can be potentially exceeded in a wide angular and wavelength range using two-dimensional periodic thin film structures. Two models are used to estimate the absorption enhancement; in the first one, we apply the periodicity condition along the thickness of the thin film structure but in the second one, we consider imperfect confinement of the wave to the device. To extract the guided modes, we use an automatized procedure which is established in this work. Through examples, we show that from the optical point of view, thin film structures have a high potential to be improved by changing their shape. Also, we discuss the nature of different optical resonances which can be potentially used to enhance light trapping in the solar cell. We investigate the two different polarization directions for one-dimensional gratings and we show that the transverse magnetic pola...

Naqavi, Ali; Sderstrm, Karin; Battaglia, Corsin; Paeder, Vincent; Scharf, Toralf; Herzig, Hans Peter; Ballif, Christophe

2013-01-01T23:59:59.000Z

94

Active barrier films of PET for solar cell application: Processing and characterization  

SciTech Connect (OSTI)

A preliminary investigation was carried out on the possibility to improve the protective action offered by the standard multilayer structures used to encapsulate photovoltaic devices. With this aim, a commercial active barrier PET-based material, able to absorb oxygen when activated by liquid water, was used to produce flexible and transparent active barrier films, by means of a lab-scale film production plant. The obtained film, tested in terms of thermal, optical and oxygen absorption properties, shows a slow oxygen absorption kinetics, an acceptable transparency and an easy roll-to-roll processability, so proving itself as a good candidate for the development of protective coating for solar cells against the atmospheric degradation agents like the rain.

Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano (Italy)

2014-05-15T23:59:59.000Z

95

High Efficiency CdTe/CdS Thin Film Solar Cells Prepared by Treating CdTe Films with a Freon Gas in Substitution of CdCl2  

E-Print Network [OSTI]

High Efficiency CdTe/CdS Thin Film Solar Cells Prepared by Treating CdTe Films with a Freon Gas delle Scienze, 37/A-43010 Fontanini, Parma, Italy ABSTRACT: CdTe/CdS thin film solar cells have reached in the preparation of high efficiency CdTe/CdS solar cells is the activation treatment of CdTe film. Most research

Romeo, Alessandro

96

Light trapping in thin-film solar cells measured by Raman spectroscopy  

SciTech Connect (OSTI)

In this study, Raman spectroscopy is used as a tool to determine the light-trapping capability of textured ZnO front electrodes implemented in microcrystalline silicon (?c-Si:H) solar cells. Microcrystalline silicon films deposited on superstrates of various roughnesses are characterized by Raman micro-spectroscopy at excitation wavelengths of 442?nm, 514?nm, 633?nm, and 785?nm, respectively. The way to measure quantitatively and with a high level of reproducibility the Raman intensity is described in details. By varying the superstrate texture and with it the light trapping in the ?c-Si:H absorber layer, we find significant differences in the absolute Raman intensity measured in the near infrared wavelength region (where light trapping is relevant). A good agreement between the absolute Raman intensity and the external quantum efficiency of the ?c-Si:H solar cells is obtained, demonstrating the validity of the introduced method. Applications to thin-film solar cells, in general, and other optoelectronic devices are discussed.

Ledinsk, M., E-mail: ledinsky@fzu.cz [Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i., Cukrovarnick 10, 162 00 Prague (Czech Republic); Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), cole Polytechnique Fdrale de Lausanne (EPFL), Rue de la Maladire 71b, CH-2000 Neuchtel (Switzerland); Moulin, E.; Bugnon, G.; Meillaud, F.; Ballif, C. [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), cole Polytechnique Fdrale de Lausanne (EPFL), Rue de la Maladire 71b, CH-2000 Neuchtel (Switzerland); Ganzerov, K.; Vetushka, A.; Fejfar, A. [Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i., Cukrovarnick 10, 162 00 Prague (Czech Republic)

2014-09-15T23:59:59.000Z

97

Back contact buffer layer for thin-film solar cells  

DOE Patents [OSTI]

A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

Compaan, Alvin D.; Plotnikov, Victor V.

2014-09-09T23:59:59.000Z

98

Method and making group IIB metal - telluride films and solar cells  

DOE Patents [OSTI]

A technique is disclosed forming thin films (13) of group IIB metal-telluride, such as Cd.sub.x Zn.sub.1-x Te (0.ltoreq.x.ltoreq.1), on a substrate (10) which comprises depositing Te (18) and at least one of the elements (19) of Cd, Zn, and Hg onto a substrate and then heating the elements to form the telluride. A technique is also provided for doping this material by chemically forming a thin layer of a dopant on the surface of the unreacted elements and then heating the elements along with the layer of dopant. A method is disclosed of fabricating a thin film photovoltaic cell which comprises depositing Te and at least one of the elements of Cd, Zn, and Hg onto a substrate which contains on its surface a semiconductor film (12) and then heating the elements in the presence of a halide of the Group IIB metals, causing the formation of solar cell grade Group IIB metal-telluride film and also causing the formation of a rectifying junction, in situ, between the semiconductor film on the substrate and the Group IIB metal-telluride layer which has been formed.

Basol, Bulent M. (Redondo Beach, CA); Kapur, Vijay K. (Northridge, CA)

1990-08-21T23:59:59.000Z

99

Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics  

E-Print Network [OSTI]

energy sources, the potential of solar energy is the mostuse of solar cells as an energy source [2]. Therefore, thinspread use of solar cells as a renewable energy source [2].

Chung, Choong-Heui

2012-01-01T23:59:59.000Z

100

Low resistance thin film organic solar cell electrodes  

DOE Patents [OSTI]

A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the reentrant structures aligning deposition so that the third electrically conductive material does not directly contact the first electrically conductive material, and does not directly contact the second electrically conductive material.

Forrest, Stephen (Princeton, NJ); Xue, Jiangeng (Piscataway, NJ)

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DEVELOPMENT OF A NOVEL PRECURSOR FOR THE PREPARATION BY SELENIZATION OF HIGH EFFICIENCY CuInGaSe2/CdS THIN FILM SOLAR CELLS  

E-Print Network [OSTI]

/CdS THIN FILM SOLAR CELLS N. Romeo1 , A. Bosio1 , V. Canevari2 , R. Tedeschi1 , S. Sivelli1 , A. Solar cells prepared by depositing in sequence on top of the CuInGaSe2 film 60 nm of CdS, 100 nm of pure(InGa)Se2, Thin Films, Selenization 1 INTRODUCTION CuInGaSe2 based solar cells exhibit the highest

Romeo, Alessandro

102

Film Si Solar Cells with Nano Si: Cooperative Research and Development Final Report, CRADA Number CRD-09-00356  

SciTech Connect (OSTI)

Nevada Nanotechnology Center and Si group at NREL will work together to develop a-Si based solar cells with nano-Si technique. We will explore the existing a-Si based film solar cell technology at NREL and nano scale Si technology at Nevada Nanotechnology Center. By exchanging information, we will come; up with some new cell structures using nano-Si. We expect the new a-Si based cells will have optical enhancement or better electronic or optical properties of absorber layer to improve solar cell performance.

Wang, Q.

2011-05-01T23:59:59.000Z

103

Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars  

E-Print Network [OSTI]

Monocrystalline silicon solar cells, polycrystalline silicon solar cells, and amorphous silicon (thin-film)

Tu, Bor-An Clayton

2013-01-01T23:59:59.000Z

104

A non-resonant dielectric metamaterial for enhancement of thin-film solar cells  

E-Print Network [OSTI]

Recently, we have suggested dielectric metamaterial composed as an array of submicron dielectric spheres located on top of an amorphous thin-film solar cell. We have theoretically shown that this metamaterial can decrease the reflection and simultaneously can suppress the transmission through the photovoltaic layer because it transforms the incident plane wave into a set of focused light beams. This theoretical concept has been strongly developed and experimentally confirmed in the present paper. Here we consider the metamaterial for oblique angle illumination, redesign the solar cell and present a detailed experimental study of the whole structure. In contrast to our precedent theoretical study we show that our omnidirectional light-trapping structure may operate better than the optimized flat coating obtained by plasma-enhanced chemical vapor deposition.

Omelyanovich, Mikhail; Simovski, Constantin

2014-01-01T23:59:59.000Z

105

Electron and hole drift mobility measurements on thin film CdTe solar cells Qi Long, Steluta A. Dinca, E. A. Schiff, Ming Yu, and Jeremy Theil  

E-Print Network [OSTI]

.1063/1.2220491 Lock-in thermography and nonuniformity modeling of thin-film CdTe solar cells Appl. Phys. Lett. 84, 729

Schiff, Eric A.

106

Non-Uniformities in Thin-Film Cadmium Telluride Solar Cells Using Electroluminescence and Photoluminescence  

SciTech Connect (OSTI)

It is the purpose of this research to develop specific imaging techniques that have the potential to be fast, inline tools for quality control in thin-film CdTe solar cells. Electroluminescence (EL) and photoluminescence (PL) are two techniques that are currently under investigation on CdTe small area devices made at Colorado State University. It is our hope to significantly advance the understanding of EL and PL measurements as applied to CdTe. Qualitative analysis of defects and non-uniformities is underway on CdTe using EL, PL, and other imaging techniques.

Zaunbrecher, K.; Johnston, S.; Yan, F.; Sites, J.

2011-01-01T23:59:59.000Z

107

Non-Uniformities in Thin-Film Cadmium Telluride Solar Cells Using Electroluminescence and Photoluminescence: Preprint  

SciTech Connect (OSTI)

It is the purpose of this research to develop specific imaging techniques that have the potential to be fast, in-line tools for quality control in thin-film CdTe solar cells. Electroluminescence (EL) and photoluminescence (PL) are two techniques that are currently under investigation on CdTe small area devices made at Colorado State University. It is our hope to significantly advance the understanding of EL and PL measurements as applied to CdTe. Qualitative analysis of defects and non-uniformities is underway on CdTe using EL, PL, and other imaging techniques.

Zaunbrecher, K.; Johnston, S.; Yan, F.; Sites, J.

2011-07-01T23:59:59.000Z

108

Identification of critical stacking faults in thin-film CdTe solar cells  

SciTech Connect (OSTI)

Cadmium telluride (CdTe) is a p-type semiconductor used in thin-film solar cells. To achieve high light-to-electricity conversion, annealing in the presence of CdCl{sub 2} is essential, but the underlying mechanism is still under debate. Recent evidence suggests that a reduction in the high density of stacking faults in the CdTe grains is a key process that occurs during the chemical treatment. A range of stacking faults, including intrinsic, extrinsic, and twin boundary, are computationally investigated to identify the extended defects that limit performance. The low-energy faults are found to be electrically benign, while a number of higher energy faults, consistent with atomic-resolution micrographs, are predicted to be hole traps with fluctuations in the local electrostatic potential. It is expected that stacking faults will also be important for other thin-film photovoltaic technologies.

Yoo, Su-Hyun; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Global E3 Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Soon, Aloysius [Global E3 Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Abbas, Ali; Walls, John M., E-mail: j.m.wall@loughborough.ac.uk [Centre for Renewable Energy Systems Technology, School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

2014-08-11T23:59:59.000Z

109

Oxidation of In2S3 films to synthetize In2S3(1-x)O3x thin films as a buffer layer in solar cells  

E-Print Network [OSTI]

Oxidation of In2S3 films to synthetize In2S3(1-x)O3x thin films as a buffer layer in solar cells S layers for solar cells. PACS : 68.55.ag Semiconductors, 68.55.J Morphology of films , 68.55.Nq the oxidation occurs is strongly dependent on the texture of deposited films. As-grown films deposited

Boyer, Edmond

110

Investigation of porous alumina as a self-assembled diffractive element to facilitate light trapping in thin film silicon solar cells  

E-Print Network [OSTI]

Thin film solar cells are currently being investigated as an affordable alternative energy source because of the reduced material cost. However, these devices suffer from low efficiencies, compared to silicon wafer solar ...

Coronel, Naomi (Naomi Cristina)

2009-01-01T23:59:59.000Z

111

Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209  

SciTech Connect (OSTI)

NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

Sopori, B.

2013-03-01T23:59:59.000Z

112

QUANTIFICATION OF LOSSES IN THIN-FILM CdS/CdTe SOLAR CELLS S.H. Demtsu and J.R. Sites  

E-Print Network [OSTI]

QUANTIFICATION OF LOSSES IN THIN-FILM CdS/CdTe SOLAR CELLS S.H. Demtsu and J.R. Sites Department of Physics, Colorado State University, Fort Collins, CO 80523, USA ABSTRACT Quantification of solar cell Thin-film CdS/CdTe devices have been studied extensively, but some basic underlying properties

Sites, James R.

113

Copper and Transparent-Conductor Reflectarray Elements on Thin-Film Solar Cell Panels  

E-Print Network [OSTI]

This work addresses the integration of reflectarray antennas (RA) on thin film Solar Cell (SC) panels, as a mean to save real estate, weight, or cost in platforms such as satellites or transportable autonomous antenna systems. Our goal is to design a good RA unit cell in terms of phase response and bandwidth, while simultaneously achieving high optical transparency and low microwave loss, to preserve good SC and RA energy efficiencies, respectively. Since there is a trade-off between the optical transparency and microwave surface conductivity of a conductor, here both standard copper and transparent conductors are considered. The results obtained at the unit cell level demonstrates the feasibility of integrating RA on a thin-film SC, preserving for the first time good performance in terms of both SC and RA efficiency. For instance, measurement at X-band demonstrate families of cells providing a phase range larger than 270{\\deg} with average microwave loss of -2.45dB (resp. -0.25dB) and average optical transpa...

Dreyer, Philippe; Nicolay, Sylvain; Ballif, Christophe; Perruisseau-Carrier, Julien

2013-01-01T23:59:59.000Z

114

Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells  

E-Print Network [OSTI]

applications. However, one of the most persistent issues in solar cell design continues to be how to most and integration of active and passive media in solar cells. Myriad photonic structures containing sub of semiconductor nanostructures have inspired a host of new solar cell structures, including designs based

Yu, Edward T.

115

The Roles of Cu Impurity States in CdTe Thin Film Solar Cells Ken K. Chin1  

E-Print Network [OSTI]

, to a better p-type, to insulating, and then to n-type -- is all due to different levels of Cu involvement treatment temperature. #12;2 I. Introduction CdTe based solar panels have emerged in recent years1 The Roles of Cu Impurity States in CdTe Thin Film Solar Cells Ken K. Chin1 , T.A. Gessert2

116

Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure  

E-Print Network [OSTI]

.5403) Plasmonics; (310.2790) Guided waves. References and links 1. O. Morton, "Solar energy: A new day dawning Society of America OCIS codes: (350.6050) Solar energy; (050.2770) Gratings; (310.0310) Thin films; (250? Silicon valley sunrise," Nature 443(7107), 1922 (2006). 2. M. A. Green and S. Pillai, "Harnessing

Levy, Uriel

117

Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for Improved Performance  

SciTech Connect (OSTI)

We report on CdS/CdTe photovoltaic devices that contain a thin Ta2O5 film deposited onto the CdS window layer by sputtering. We show that for thicknesses below 5 nm, Ta2O5 films between CdS and CdTe positively affect the solar cell performance, improving JSC, VOC, and the cell power conversion efficiency despite the insulating nature of the interlayer material. Using the Ta2O5 interlayer, a VOC gain of over 100 mV was demonstrated compared to a CdTe/CdS baseline. Application of a 1nm Ta2O5 interlayer enabled the fabrication of CdTe solar cells with extremely thin (less than 30 nm) CdS window layers. The efficiency of these cells exceeded that of a base line cell with 95 nm of CdS.

Lemmon, John P.; Polikarpov, Evgueni; Bennett, Wendy D.; Kovarik, Libor

2012-05-05T23:59:59.000Z

118

Spin Coated Plasmonic Nanoparticle Interfaces for Photocurrent Enhancement in Thin Film Si Solar Cells  

E-Print Network [OSTI]

Nanoparticle (NP) arrays of noble metals strongly absorb light in the visible to infrared wavelengths through resonant interactions between the incident electromagnetic field and the metal's free electron plasma. Such plasmonic interfaces enhance light absorption and photocurrent in solar cells. We report a cost effective and scalable room temperature/pressure spin-coating route to fabricate broadband plasmonic interfaces consisting of silver NPs. The NP interface yields photocurrent enhancement (PE) in thin film silicon devices by up to 200% which is significantly greater than previously reported values. For coatings produced from Ag nanoink containing particles with average diameter of 40 nm, an optimal NP surface coverage of 7% was observed. Scanning electron microscopy of interface morphologies revealed that for low surface coverage, particles are well-separated, resulting in broadband PE. At higher surface coverage, formation of particle strings and clusters caused red-shifting of the PE peak and a narro...

Israelowitz, Miriam; Cong, Tao; Sureshkumar, Radhakrishna

2013-01-01T23:59:59.000Z

119

Polycrystalline thin-film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report  

SciTech Connect (OSTI)

During the past year, Colorado School of Mines (CSM) researchers performed systematic studies of the growth and properties of electrodeposition CdS and back-contact formation using Cu-doped ZnTe, with an emphasis on low Cu concentrations. CSM also started to explore the stability of its ZnTe-Cu contacted CdTe solar cells. Researchers investigated the electrodeposition of CdS and its application in fabricating CdTe/CdS solar cells. The experimental conditions they explored in this study were pH from 2.0 to 3.0; temperatures of 80 and 90 C; CdCl{sub 2} concentration of 0.2 M; deposition potential from {minus}550 to {minus}600 mV vs. Ag/AgCl electrode; [Na{sub 2}S{sub 2}O{sub 4}] concentration between 0.005 and 0.05 M. The deposition rate increases with increase of the thiosulfate concentration and decrease of solution pH. Researchers also extended their previous research of ZnTe:Cu films by investigating films doped with low Cu concentrations (< 5 at. %). The low Cu concentration enabled them to increase the ZnTe:Cu post-annealing temperature without causing excessive Cu diffusion into CdTe or formation of secondary phases. The effects of Cu doping concentration and post-deposition annealing temperature on the structural, compositional, and electrical properties of ZnTe were studied systematically using X-ray diffraction, atomic force microscopy, electron microprobe, Hall effect, and conductivity measurements.

Trefny, J.U.; Mao, D. [Colorado School of Mines, Golden, CO (United States). Dept. of Physics

1998-01-01T23:59:59.000Z

120

Microstructured surface design for omnidirectional antireflection coatings on solar cells  

E-Print Network [OSTI]

to current crystalline silicon solar cells, as well as future thin film, quantum dot, and organic solar cells as the precise control of film thick- ness. In solar cell applications, a single layer thin film AR coating, e.g., silicon nitride SiNx thin film for silicon Si solar cells, is often used as a cost effective approach

Zhou, Weidong

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells  

E-Print Network [OSTI]

Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350nm-800nm, the conversion efficiency of solar cells can be further enhanced.

Wang, DongLin

2014-01-01T23:59:59.000Z

122

Detailed balance analysis of nanophotonic solar cells  

E-Print Network [OSTI]

, "Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, "Design of plasmonic thin-film solar of surface textures for thin-film si solar cells," Opt. Express 19, A841­A850 (2011). 15. A. Raman, Z. Yu

Fan, Shanhui

123

Methods for forming thin-film heterojunction solar cells from I-III-VI{sub 2}  

DOE Patents [OSTI]

An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI{sub 2} chalcopyrite ternary materials which is vacuum deposited in a thin ``composition-graded`` layer ranging from on the order of about 2.5 microns to about 5.0 microns ({approx_equal}2.5 {mu}m to {approx_equal}5.0 {mu}m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii) a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion occurs (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer. 16 figs.

Mickelsen, R.A.; Chen, W.S.

1985-08-13T23:59:59.000Z

124

Characterization of Epitaxial Film Silicon Solar Cells Grown on Seeded Display Glass: Preprint  

SciTech Connect (OSTI)

We report characterizations of epitaxial film crystal silicon (c-Si) solar cells with open-circuit voltages (Voc) above 560 mV. The 2-um absorber cells are grown by low-temperature (<750 degrees C) hot-wire CVD (HWCVD) on Corning EAGLE XG display glass coated with a layer-transferred (LT) Si seed. The high Voc is a result of low-defect epitaxial Si (epi-Si) growth and effective hydrogen passivation of defects. The quality of HWCVD epitaxial growth on seeded glass substrates depends on the crystallographic quality of the seed and the morphology of the epitaxial growth surface. Heterojunction devices consist of glass/c-Si LT seed/ epi n+ Si:P/epi n- Si:P/intrinsic a-Si:H/p+ a-Si:H/ITO. Similar devices grown on electronically 'dead' n+ wafers have given Voc {approx}630 mV and {approx}8% efficiency with no light trapping features. Here we study the effects of the seed surface polish on epi-Si quality, how hydrogenation influences the device character, and the dominant junction transport physics.

Young, D. L.; Grover, S.; Teplin, C.; Stradins, P.; LaSalvia, V.; Chuang, T. K.; Couillard, J. G.; Branz, H. M.

2012-06-01T23:59:59.000Z

125

Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2  

DOE Patents [OSTI]

An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order ot about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.

Mickelsen, Reid A. (Bellevue, WA) [Bellevue, WA; Chen, Wen S. (Seattle, WA) [Seattle, WA

1985-08-13T23:59:59.000Z

126

Investigation of CdS Nanowires and Planar Films for Enhanced Performance as Window Layers in CdS-CdTe Solar Cell Devices.  

E-Print Network [OSTI]

??Cadmium sulfide (CdS) and cadmium telluride (CdTe) are two leading semiconductor materials used in the fabrication of thin film solar cells of relatively high power (more)

Chen, Jianhao

2013-01-01T23:59:59.000Z

127

High Efficiency CdTe/CdS Thin Film solar Cells by a Process Suitable for Large Scale Production. N. Romeo, A. Bosio, A. Romeo, M. Bianucci, L. Bonci, C. Lenti  

E-Print Network [OSTI]

High Efficiency CdTe/CdS Thin Film solar Cells by a Process Suitable for Large Scale Production. N-mail:Nicola.Romeo@fis.unipr.it ABSTRACT: It has been demonstrated that CdTe/CdS thin film solar cells can exhibit an efficiency around 16 Film. 1 INTRODUCTION CdTe/CdS thin film solar cells have a good possibility to be produced on large

Romeo, Alessandro

128

Ames Lab 101: Improving Solar Cell Efficiency  

SciTech Connect (OSTI)

Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

Biswas, Rana

2011-01-01T23:59:59.000Z

129

Ames Lab 101: Improving Solar Cell Efficiency  

ScienceCinema (OSTI)

Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

Biswas, Rana

2012-08-29T23:59:59.000Z

130

Nanocrystal Solar Cells  

E-Print Network [OSTI]

Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensionalinorganic nanocrystal solar cells 5.1 Introduction In recentoperation of organic based solar cells and distinguish them

Gur, Ilan

2006-01-01T23:59:59.000Z

131

Solar Energy Materials & Solar Cells 91 (2007) 17261732 Optical and structural properties of Ta2O5CeO2 thin films  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 91 (2007) 1726­1732 Optical and structural properties of Ta2O5

Thirumalai, Devarajan

132

Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics  

E-Print Network [OSTI]

CuIn(Se,S) 2 solar cell with a PCE of 11.1% under dark andpower conversion efficiency (PCE) of around 20% among thinAchievement of such high PCE can be largely ascribed to the

Chung, Choong-Heui

2012-01-01T23:59:59.000Z

133

Molybdenum Nitride Films in the Back Contact Structure of Flexible Substrate CdTe Solar Cells.  

E-Print Network [OSTI]

??CdTe solar cells in the superstrate configuration have achieved record efficiencies of 16% but those in the substrate configuration have reached efficiencies of only 7.8%. (more)

Guntur, Vasudha

2011-01-01T23:59:59.000Z

134

Light trapping in thin film solar cells using textured photonic crystal  

DOE Patents [OSTI]

A solar cell includes a photoactive region that receives light. A photonic crystal is coupled to the photoactive region, wherein the photonic crystal comprises a distributed Bragg reflector (DBR) for trapping the light.

Yi, Yasha (Somerville, MA); Kimerling, Lionel C. (Concord, MA); Duan, Xiaoman (Amesbury, MA); Zeng, Lirong (Cambridge, MA)

2009-01-27T23:59:59.000Z

135

Barrier Coatings for Thin Film Solar Cells: Final Subcontract Report, September 1, 2002 -- January 30, 2008  

SciTech Connect (OSTI)

This program has involved investigations of the stability of CdTe and copper-indium-gallium-diselenide (CIGS) solar cells under damp heat conditions and effects of barrier coatings.

Olsen, L. C.

2010-03-01T23:59:59.000Z

136

Highly oriented polycrystalline Cu{sub 2}O film formation using RF magnetron sputtering deposition for solar cells  

SciTech Connect (OSTI)

Room temperature sputtering deposition and re-crystallization of the deposited thin films by rapid thermal annealing have been evaluating in detail as a formation method of Cu{sub 2}O active layer for solar cells, which minimize thermal budget in fabrication processes. Single phase polycrystalline Cu{sub 2}O films were obtained by a magnetron rf sputtering deposition and its crystallinity and electrical characteristics were controlled by the annealing. Hall mobility was improved up to 17 cm{sup 2}V{sup ?1}s{sup ?1} by the annealing at 600C for 30s. Since this value was smaller than 47 cm{sup 2}V{sup ?1}s{sup ?1} of the film deposited under thermal equilibrium state using pulsed laser deposition at 600C, some contrivances were necessary to compensate the deficiency. It was understood that the sputter-deposited Cu{sub 2}O films on (111)-oriented Pt films were strongly oriented to (111) face also by the self-assembly and the crystallinity was improved by the annealing preserving its orientation. The sputter-deposited film quality was expected to become equivalent to the pulsed laser deposition film from the results of X-ray diffractometry and photoluminescence.

Noda, S.; Shima, H.; Akinaga, H. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

2014-02-20T23:59:59.000Z

137

Hydrogenated TiO{sub 2} film for enhancing photovoltaic properties of solar cells and self-sensitized effect  

SciTech Connect (OSTI)

Hydrogenated TiO{sub 2} film was obtained by annealing TiO{sub 2} film at 350?C for 2?h with hydrogen, and TiO{sub 2} films were prepared by screen printing on fluorine-doped tin oxide glass. Structural characterization by X-ray diffraction and electron microscopy did not show obvious difference between hydrogenated TiO{sub 2} film and pristine TiO{sub 2} film. Through optical and electrochemical characterization, the hydrogenated TiO{sub 2} film showed enhanced absorption and narrowed band gap, as well as reduced TiO{sub 2} surface impedance and dark current. As a result, an obviously enhanced photovoltaic effect was observed in the solar cell with hydrogenated TiO{sub 2} as photoanode without adding any dye due to the self-sensitized effect of hydrogenated TiO{sub 2} film, which excited electrons injecting internal conduction band of TiO{sub 2} to generate more photocurrent.

He, Hongcai; Yang, Kui; Wang, Ning, E-mail: ning-wang@uestc.edu.cn; Luo, Feifei; Chen, Haijun [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

2013-12-07T23:59:59.000Z

138

Thin film solar cells using impure polycrystalline silicon M. Rodot (1), M. Barbe (1), J. E. Bouree (1), V. Perraki (*) (1), G. Revel (2),R. Kishore (2) (**), J. L. Pastol (2), R. Mertens (3), M. Caymax (3) and M. Eyckmans  

E-Print Network [OSTI]

687 Thin film solar cells using impure polycrystalline silicon M. Rodot (1), M. Barbe (1), J. E avec les autres aptes à l'utilisation de Si-UMG bon marché. Abstract. 2014 Epitaxial solar cells have and electron diffusion length adequate to produce good solar cells. 10.3 % efficiency cells have been obtained

Paris-Sud XI, Université de

139

A survey of thin-film solar photovoltaic industry & technologies  

E-Print Network [OSTI]

A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

Grama, Sorin

2007-01-01T23:59:59.000Z

140

Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor  

DOE Patents [OSTI]

A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.

Dhere, Neelkanth G.; Kadam, Ankur A.

2009-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Configuration Optimization of a Nanosphere Array on Top of a Thin Film Solar Cell  

E-Print Network [OSTI]

solar cell fabrication. Index Terms -- Nanospheres, Whispering gallery modes, Photovoltaic systems is done. For a hexagonally close packed sphere configuration, we vary the size of the spheres as well in the photovoltaics industry [2]. II. DESCRIPTION OF THE MODEL Our approach here is to consider an array

Atwater, Harry

142

Simulation of nanostructure-based and ultra-thin film solar cell devices beyond the classical picture  

E-Print Network [OSTI]

In this paper, an optoelectronic device simulation framework valid for arbitrary spatial variation of electronic potentials and optical modes, and for transport regimes ranging from ballistic to diffusive, is used to study non-local photon absorption, photocurrent generation and carrier extraction in ultra-thin film and nanostructure-based solar cell devices at the radiative limit. Among the effects that are revealed by the microscopic approach and which are inaccessible to macroscopic models is the impact of structure, doping or bias induced nanoscale potential variations on the local photogeneration rate and the photocarrier transport regime.

Aeberhard, Urs

2014-01-01T23:59:59.000Z

143

Absorber processing issues in high-efficiency, thin-film Cu(In,Ga)Se{sub 2}-based solar cells  

SciTech Connect (OSTI)

Three approaches to thin-film Cu(In,Ga)Se{sub 2} absorber fabrication are considered. They are generically described in terms of the sequential or concurrent nature of source material delivery, selenium delivery, and compound formation. A two-stage evaporation process successfully produced the absorber component of a world-record, 17.1{percent} efficient solar cell. Alternative approaches that reduce the requirements for high substrate temperatures are considered. The relationship between absorber process parameters, band gap profile, and device performance are examined. Engineering the [Ga]/([Ga]+[In]) profile in the absorber has led to the reported advances. {copyright} {ital 1996 American Institute of Physics.}

Tuttle, J.R.; Gabor, A.M.; Contreras, M.A.; Tennant, A.L.; Ramanathan, K.R.; Franz, A.; Matson, R.; Noufi, R. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

1996-01-01T23:59:59.000Z

144

Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby  

DOE Patents [OSTI]

A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

Wu, Xuanzhi (Golden, CO); Sheldon, Peter (Lakewood, CO)

2000-01-01T23:59:59.000Z

145

Identification and Analysis of Distinct Features in Imaging Thin-Film Solar Cells: Preprint  

SciTech Connect (OSTI)

Electroluminescence and photoluminescence (EL and PL) are two imaging techniques employed at NREL that are used to qualitatively evaluate solar cells. In this work, imaging lab-scale CdTe and CIGS devices provides information about small-area PV response, which will aid in determining the effects of non-uniformities on cell performance. EL, PL, and dark lock-in thermography signatures are first catalogued. Their responses to varying conditions are then studied. Further analysis includes acquiring spectral data, making microscopy measurements, and correlating luminescence to device performance. The goal of this work is to quantitatively determine non-uniformity effects on cell performance using rapid imaging techniques.

Zaunbrecher, K. N.; Johnston, S. W.; Sites, J. R.

2012-06-01T23:59:59.000Z

146

Amorphous thin films for solar-cell applications. Final report, September 11, 1978-September 10, 1979  

SciTech Connect (OSTI)

In Section II, Theoretical Modeling, theories for the capture of electrons by deep centers in hydrogenated amorphous silicon (a-Si:H) and for field-dependent quantum efficiency in a-Si:H are presented. In Section III, Deposition and Doping Studies, the optimization of phosphorus-doped a-Si:H carried out in four different discharge systems is described. Some details of the dc proximity and rf magnetron discharge systems are also provided. Preliminary mass spectroscopy studies of the rf magnetron discharge in both SiH/sub 4/ and SiF/sub 4/ are presented. In Section IV, Experimental Methods for Characterizing a-Si:H, recent work involving photoluminescence of fluorine-doped a-Si:H, photoconductivity spectra, the photoelectromagnetic effect, the photo-Hall effect and tunneling into a-Si:H is presented. Also, studies of the growth mechanism of Pt adsorbed on both crystalline Si and a-Si:H are described. Measurements of the surface photovoltage have been used to estimate the distribution of surface states of phosphorus-doped and undoped a-Si:H. Section V, Formation of Solar-Cell Structures, contains information on stacked or multiple-junction a-Si:H solar cells. In Section VI, Theoretical and Experimental Evaluation of Solar-Cell Parameters, an upper limit of approx. = 400 A is established for the hole diffusion length in undoped a-Si:H. A detailed description of carrier generation, recombination and transport in a-Si:H solar cells is given. Finally, some characteristics of Pd-Schottky-barrier cells are described for different processing histories.

Carlson, D E; Balberg, I; Crandall, R S; Goldstein, B C; Hanak, J J; Pankove, J I; Staebler, D L; Weakliem, H A; Williams, R

1980-02-01T23:59:59.000Z

147

Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations  

SciTech Connect (OSTI)

Thin-film solar cells based on silicon have emerged as an alternative to standard thick wafers technology, but they are less efficient, because of incomplete absorption of sunlight, and non-radiative recombinations. In this paper, we focus on the case of crystalline silicon (c-Si) devices, and we present a full analytic electro-optical model for p-n junction solar cells with Lambertian light trapping. This model is validated against numerical solutions of the drift-diffusion equations. We use this model to investigate the interplay between light trapping, and bulk and surface recombination. Special attention is paid to surface recombination processes, which become more important in thinner devices. These effects are further amplified due to the textures required for light trapping, which lead to increased surface area. We show that c-Si solar cells with thickness of a few microns can overcome 20% efficiency and outperform bulk ones when light trapping is implemented. The optimal device thickness in presence of light trapping, bulk and surface recombination, is quantified to be in the range of 1080??m, depending on the bulk quality. These results hold, provided the effective surface recombination is kept below a critical level of the order of 100?cm/s. We discuss the possibility of meeting this requirement, in the context of state-of-the-art techniques for light trapping and surface passivation. We show that our predictions are within the capability of present day silicon technologies.

Bozzola, A., E-mail: angelo.bozzola@unipv.it; Kowalczewski, P.; Andreani, L. C. [Physics Department, University of Pavia and CNISM, via Bassi 6, I-27100 Pavia (Italy)

2014-03-07T23:59:59.000Z

148

Nanocrystal Solar Cells  

E-Print Network [OSTI]

Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional5 All-inorganic nanocrystal solar cells 5.1 Introduction Inoperation of organic based solar cells and distinguish them

Gur, Ilan

2006-01-01T23:59:59.000Z

149

Processing and modeling issues for thin-film solar cell devices. Annual subcontract report, January 16, 1994--January 15, 1995  

SciTech Connect (OSTI)

This report describes results achieved during the second phase of a four year subcontract to develop and understand thin film solar cell technology related to a-Si and its alloys, CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2}, and CdTe. Accomplishments during this phase include, development of equations and reaction rates for the formation of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} films by selenization, fabrication of a 15% efficient CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} cell, development of a reproducible, reliable Cu-diffused contact to CdTe, investigation of the role of CdTe-CdS interdiffusion on device operation, investigation of the substitution of HCl for CdCl{sub 2} in the post-deposition heat treatment of CdTe/CdS, demonstration of an improved reactor design for deposition of a-Si films, demonstration of improved process control in the fabrication of a ten set series of runs producing {approximately}8% efficient a-Si devices, demonstration of the utility of a simplified optical model for determining quantity and effect of current generation in each layer of a triple stacked a-Si cell, presentation of analytical and modeling procedures adapted to devices produced with each material system, presentation of baseline parameters for devices produced with each material system, and various investigations of the roles played by other layers in thin film devices including the Mo underlayer, CdS and ZnO in CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} devices, the CdS in CdTe devices, and the ZnO as window layer and as part of the back surface reflector in a-Si devices. In addition, collaborations with over ten research groups are briefly described. 73 refs., 54 figs., 34 tabs.

Birkmire, R.W.; Phillips, J.E.; Buchanan, W.A.; Hegedus, S.S.; McCandless, B.E.; Shafarman, W.N. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion

1995-06-01T23:59:59.000Z

150

Development of Thin Film Silicon Solar Cell Using Inkjet Printed Silicon and Other Inkjet Processes: Cooperative Research and Development Final Report, CRADA Number CRD-07-260  

SciTech Connect (OSTI)

The cost of silicon photovoltaics (Si-PV) can be greatly lowered by developing thin-film crystalline Si solar cells on glass or an equally lower cost substrate. Typically, Si film is deposited by thermal evaporation, plasma enhanced chemical vapor deposition, and sputtering. NREL and Silexos have worked under a CRADA to develop technology to make very low cost solar cells using liquid organic precursors. Typically, cyclopentasilane (CPS) is deposited on a glass substrate and then converted into an a-Si film by UV polymerization followed by low-temperature optical process that crystallizes the amorphous layer. This technique promises to be a very low cost approach for making a Si film.

Sopori, B.

2012-04-01T23:59:59.000Z

151

In-depth analysis of CIGS film for solar cells, structural and optical characterization  

E-Print Network [OSTI]

Space-resolved X-ray diffraction measurements performed on gradient-etched CuIn$_{1-x}$Ga$_x$Se$_2$ (CIGS) solar cells provide information about stress and texture depth profiles in the absorber layer. An important parameter for CIGS layer growth dynamics, the absorber thickness-dependent stress in the molybdenum back contact is analyzed. Texturing of grains and quality of the polycrystalline absorber layer are correlated with the intentional composition gradients (band gap grading). Band gap gradient is determined by space-resolved photoluminescence measurements and correlated with composition and strain profiles.

Slobodskyy, A; ~Ulyanenkova, T; ~Doyle, S; Powalla, M; ~Baumbach, T; ~Lemmer, U

2010-01-01T23:59:59.000Z

152

FABRICATION AND CHARACTERIZATION OF 3-D ALL POLYMER FLEXIBLE SOLAR CELL  

E-Print Network [OSTI]

....................................................................................3 2 LITERATURE SURVEY ON THIN FILM ANDORGANIC/TANDEM SOLAR CELL........................................................................7 2.3 Thin Film Solar CellFABRICATION AND CHARACTERIZATION OF 3-D ALL POLYMER FLEXIBLE SOLAR CELL _______________ A Thesis

Kassegne, Samuel Kinde

153

RANDOM DEPOSITION MODEL OF CDS LAYER IN CDS/CDTE THINFILM SOLAR CELLS  

E-Print Network [OSTI]

THESIS RANDOM DEPOSITION MODEL OF CDS LAYER IN CDS/CDTE THIN­FILM SOLAR CELLS Submitted by Lei Chen LAYER IN CDS/CDTE THIN­FILM SOLAR CELLS BE AC- CEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE MODEL OF CDS LAYER IN CDS/CDTE THIN­FILM SOLAR CELLS Thin­film solar cells are developing dramatically

Sites, James R.

154

CuIn1-xGaxS2 thin film solar cells with ZnxCd1-xS as heterojunction partner Bhaskar Kumar  

E-Print Network [OSTI]

CuIn1-xGaxS2 thin film solar cells with ZnxCd1-xS as heterojunction partner Bhaskar Kumar 1 , Parag). i:ZnO/Al:ZnO transparent and conducting window bilayer was deposited by RF magnetron sputtering

Sites, James R.

155

Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4 Shiyou Chen,1,2  

E-Print Network [OSTI]

Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4 Shiyou Chen,1,2 X. G. Gong Physics Laboratory, Fudan University, Shanghai 200433, People's Republic of China 2 Laboratory of Polar Materials and Devices, East China Normal University, Shanghai 200241, People's Republic of China 3

Gong, Xingao

156

Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells  

E-Print Network [OSTI]

In this paper, we present a theoretical study on the absorption efficiency enhancement of a thin film amorphous Silicon (a-Si) photovoltaic cell over a broad spectrum of wavelengths using multiple nanoparticle arrays. The light absorption efficiency is enhanced in the lower wavelengths by a nanoparticle array on the surface and in the higher wavelengths by another nanoparticle array embedded in the active region. The efficiency at intermediate wavelengths is enhanced by the constructive interference of plasmon coupled light. We optimize this design by tuning the radius of particles in both arrays, the period of the array and the distance between the two arrays. The optimization results in 61.44% increase in total quantum efficiency for a 500 nm thick a-Si substrate.

Krishnan, Aravind; Krishna, Siva Rama; Khan, Mohammed Zafar Ali

2013-01-01T23:59:59.000Z

157

(Sr,Ba)(Si,Ge){sub 2} for thin-film solar-cell applications: First-principles study  

SciTech Connect (OSTI)

In order to meet the increasing demand for electric power generation from solar energy conversion, the development of efficient light absorber materials has been awaited. To this end, the electronic and optical properties of advanced alkaline-earth-metals disilicides and digermanides (SrSi{sub 2}, BaSi{sub 2}, SrGe{sub 2}, and BaGe{sub 2}) are studied by means of the density functional theory using HSE06 exchange-correlation energy functional. Our calculations show that all these orthorhombic structured compounds have fundamental indirect band gaps in the range E{sub g} ? 0.891.25 eV, which is suitable for solar cell applications. The estimated lattice parameters and band gaps are in good agreement with experiments. Our calculations show that the electronic band structures of all four compounds are very similar except in the vicinity of the ?-point. The valence band of these compounds is made up by Si(Ge)-p states, whereas the conduction band is composed of Sr(Ba)-d states. Their band alignments are carefully determined by estimating the work function of each compound using slab model. The optical properties are discussed in terms of the complex dielectric function ?(?)?=??{sub 1}(?)?+?i?{sub 2}(?). The static and high-frequency dielectric constants are calculated, taking into account the ionic contribution. The absorption coefficient ?(?) demonstrates that a low energy dispersion of the conduction band, which results in a flat conduction band minimum, leads to large optical activity in these compounds. Therefore, alkaline-earth-metals disilicides and digermanides possess great potential as light absorbers for applications in thin-film solar cell technologies.

Kumar, Mukesh, E-mail: Kumar.Mukesh@nims.go.jp, E-mail: mkgarg79@gmail.com [Environmental Remediation Materials Unit, National Institute for Materials Science, Ibaraki 305-0044 (Japan); Umezawa, Naoto [Environmental Remediation Materials Unit, National Institute for Materials Science, Ibaraki 305-0044 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin (China); Imai, Motoharu [Superconducting Properties Unit, National Institute for Materials Science, Ibaraki 305-0047 (Japan)

2014-05-28T23:59:59.000Z

158

Formation of solar cells based on Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) ferroelectric thick film  

SciTech Connect (OSTI)

Growth of Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) 1 M thick films are conducted with variation of annealing hold time of 8 hours, 15 hours, 22 hours, and 29 hours at a constant temperature of 850 C on p-type Si (100) substrate using sol-gel method then followed by spin coating process at 3000 rpm for 30 seconds. The BST thick film electrical conductivity is obtained to be 10{sup ?5} to 10{sup ?4} S/cm indicate that the BST thick film is classified as semiconductor material. The semiconductor energy band gap value of BST thick film based on annealing hold time of 8 hours, 15 hours, 22 hours, and 29 hours are 2.58 eV, 3.15 eV, 3.2 eV and 2.62 eV, respectively. The I-V photovoltaic characterization shows that the BST thick film is potentially solar cell device, and in accordance to annealing hold time of 8 hours, 15 hours, 22 hours and 29 hours have respective solar cell energy conversion efficiencies of 0.343%, 0.399%, 0.469% and 0.374%, respectively. Optical spectroscopy shows that BST thick film solar cells with annealing hold time of 8 hours, 15 hours, and 22 hours absorb effectively light energy at wavelength of ? 700 nm. BST film samples with annealing hold time of 29 hours absorb effectively light energy at wavelength of ? 700 nm. The BST thick film refraction index is between 1.1 to 1.8 at light wavelength between 370 to 870 nm.

Irzaman,, E-mail: irzaman@yahoo.com; Syafutra, H., E-mail: irzaman@yahoo.com; Arif, A., E-mail: irzaman@yahoo.com; Alatas, H., E-mail: irzaman@yahoo.com [Department of Physics, FMIPA Bogor Agricultural Unversity, Campus Darmaga Gedung Wing S Bogor (Indonesia); Hilaluddin, M. N.; Kurniawan, A.; Iskandar, J.; Dahrul, M.; Ismangil, A.; Yosman, D.; Aminullah [Department of Biophysics, FMIPA Bogor Agricultural Unversity (Indonesia); Prasetyo, L. B. [Department of Forest Resources Conservation, FAHUTAN, Bogor Agricultural Unversity, Campus Darmaga Bogor (Indonesia); Yusuf, A.; Kadri, T. M. [LAPAN Rancabungur Ciampea Bogor (Indonesia)

2014-02-24T23:59:59.000Z

159

Thin film solar energy collector  

DOE Patents [OSTI]

A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

1983-11-22T23:59:59.000Z

160

Solar cells  

DOE Patents [OSTI]

Organic photosensitive optoelectronic devices are disclosed. The devises are thin-film crystalline organic optoelectronic devices capable of generating a voltage when exposed to light, and prepared by a method including the steps of: depositing a first organic layer over a first electrode; depositing a second organic layer over the first organic layer; depositing a confining layer over the second organic layer to form a stack; annealing the stack; and finally depositing a second electrode over the second organic layer.

Peumans, Peter; Uchida, Soichi; Forrest, Stephen R.

2013-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alta Devices Develops World Record Setting Thin-Film Solar Cell  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE supported the development of Alta Devices' thin film Gallium Arsenide photovoltaic technology that set a world record for conversion efficiency.

162

Commercialization of thick film solar cell. Final technical report, 9/15/79-9/14/80  

SciTech Connect (OSTI)

Films of cadmium sulfide and cadmium telluride have been produced by screen printing and sintering. Cadmium sulfide films ten microns thick had a resistivity in the 10 ohm-cm range. A technique was developed for forming a cadmium telluride layer on top of a cadmium sulfide layer. Process control and device preparation are areas requiring further study.

None

1980-01-01T23:59:59.000Z

163

Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells  

E-Print Network [OSTI]

Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells Vivian E. Ferry, Luke in thin film solar cells. In particular, the ability of plasmonic structures to localize light sunlight into guided modes in thin film Si and GaAs plasmonic solar cells whose back interface is coated

Atwater, Harry

164

Solar Energy Materials & Solar Cells 71 (2002) 261271 Photoelectric behavior of nanocrystalline TiO2  

E-Print Network [OSTI]

. A sandwich-type solar cell fabricated by this dye-sensitized nanocrystalline TiO2 film generated 6:1 mA cm?2; Nanocrystalline TiO2; Dye sensitized solar cell; Terpyridyl ruthenium dyes; Photoelectrochemical solar cells unmatched performance in dye staff studied as solar cell sensitizer before 1997. Only recently, a black dye

Huang, Yanyi

165

Development of high efficieny CdTe thin-film solar cell.  

E-Print Network [OSTI]

??CdTe films were deposited by sputtering technique and were then carried out by CdCl2 treatment. The SEM micrographs show that the grain sizes of the (more)

Huang, Yein-rein

2011-01-01T23:59:59.000Z

166

Development of CdTe thin film solar cells on flexible foil substrates.  

E-Print Network [OSTI]

??Cadmium telluride (CdTe) is a leading thin film photovoltaic (PV) material due to its near ideal band gap of 1.45 eV, its high optical absorption (more)

Hodges, Deidra Ranel

2009-01-01T23:59:59.000Z

167

CdTe/CdS Thin Film Solar Cells Fabricated on Flexible Substrates.  

E-Print Network [OSTI]

??Cadmium Telluride (CdTe) is a leading thin film photovoltaic (PV) material due to its near ideal bandgap of 1.45 eV and its high optical absorption (more)

Palekis, Vasilios

2011-01-01T23:59:59.000Z

168

Facile method for synthesis of TiO{sub 2} film and its application in high efficiency dye sensitized-solar cell (DSSC)  

SciTech Connect (OSTI)

Dye-sensitized solar cells (DSSC) is a device which converts a solar energy to electrical energy. Different with semiconductor thin film based solar cell, DSSC utilize the sensitized-dye to absorb the photon and semiconductor such as titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) as a working electrode photoanode. In this report, the preparation of TiO{sub 2} film using a facile method of spray deposition and its application in DSSC have been presented. TiO{sub 2} photoanode was synthesized by growing the droplet of titanium tetraisopropoxide diluted in acid solution on the substrate of conductive glass flourine-doped tin oxide (FTO) with variation of precursor volume. DSSC was assemblied by sandwiching both of photoanode electrode and platinum counter electrode subsequently filling the area between these electrodes with triodine/iodine electrolite solution as redox pairs. The characterization of the as prepared DSSC using solar simulator (AM 1.5G, 100 mW/cm{sup 2}) and I-V source meter Keithley 2400 showed that the performance of DSSC was affected by the precursor volume.. The overall conversion efficiency of DSSC using the optimum TiO{sub 2} film was about 1.97% with the open circuit voltage (V{sub oc}) of 0.73 V, short circuit current density (J{sub sc}) of 4.61 mA and fill factor (FF) of 0.58.

Widiyandari, Hendri, E-mail: h.widiyandari@undip.ac.id; Gunawan, S. K.V.; Suseno, Jatmiko Endro [Department of Physics, Diponegoro University, Jl. Prof. H. Soedarto SH, Semarang, Central Java 50275 (Indonesia); Purwanto, Agus [Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami No. 36 A, Surakarta (Indonesia); Diharjo, Kuncoro [Department of Mechanical Engineering, Sebelas Maret University, Jl. Ir. Sutami No. 36 A, Surakarta (Indonesia)

2014-02-24T23:59:59.000Z

169

Optical and electrical properties study of sol-gel derived Cu{sub 2}ZnSnS{sub 4} thin films for solar cells  

SciTech Connect (OSTI)

The fabrication of environmental-friendly Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films with pure kesterite phase is always a challenge to researchers in the field of solar cells. We introduce a simple non-vacuum sol-gel method to fabricate kesterite CZTS films. Ethylenediamine is used as the chelating agent and stabilizer and plays an important role in preparing stable precursor. X-ray diffraction, Raman and scanning electron microscopy studies suggest that the microstructure and optical properties of CZTS films depend strongly on annealing temperatures. The temperature dependence of conductivity of 500?C annealed CZTS film shows that the Mott law dominates in the low temperature region and thermionic emission is predominant at high temperatures.

Guo, B. L.; Liu, X. J.; Li, A. D., E-mail: wcliu@nju.edu.cn, E-mail: adli@nju.edu.cn [National Laboratory of Solid State Microstructures, College of Engineering and Applied Science, Nanjing University, Nanjing 210093 (China); Chen, Y. H. [National Laboratory of Solid State Microstructures, Photovoltaic Engineering Center, Nanjing University, Nanjing 210093 (China); Liu, W. C., E-mail: wcliu@nju.edu.cn, E-mail: adli@nju.edu.cn [National Laboratory of Solid State Microstructures, College of Engineering and Applied Science, Nanjing University, Nanjing 210093 (China); National Laboratory of Solid State Microstructures, Photovoltaic Engineering Center, Nanjing University, Nanjing 210093 (China)

2014-09-15T23:59:59.000Z

170

The novel usage of spectroscopic ellipsometry for the development of amorphous Si solar cells  

E-Print Network [OSTI]

May 2010 Keywords: a-Si:H Thin film Si solar cell Spectroscopic ellipsometry (SE) a b s t r a c t We analyzed with relation to structural and electrical properties of a-Si:H thin film for solar cell and faster methodology to develop a-Si:H thin film for thin film Si solar cells using SE measurements

Park, Byungwoo

171

Solar Energy Materials & Solar Cells 88 (2005) 6573 Investigation of pulsed non-melt laser annealing  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 88 (2005) 65­73 Investigation of pulsed non-melt laser annealing on the film properties and performance of Cu(In,Ga)Se2 solar cells Xuege Wanga , Sheng S. Lia,?, C time to modify near- surface defects and related junction properties in Cu(In,Ga)Se2 (CIGS) solar cells

Anderson, Timothy J.

172

Solar Energy Materials & Solar Cells 75 (2003) 307312 Extreme radiation hardness and light-weighted  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 75 (2003) 307­312 Extreme radiation hardness and light-weighted thin-film indium phosphide solar cell and its computer simulation Guohua Lia, *, Qingfen Yanga+ -i-p+ InP solar cell is developed. The total thickness of its epitaxial layer is only 0.22 mm

Woodall, Jerry M.

173

Plastic Schottky-barrier solar cells  

DOE Patents [OSTI]

A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.

Waldrop, J.R.; Cohen, M.J.

1981-12-30T23:59:59.000Z

174

Structure of All-Polymer Solar Cells Impedes Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thin films of semiconducting polymers as a possible alternative to silicon-based solar cells. Such devices would have the advantages of being cheap to produce,...

175

arsenide solar cells: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pankaj J Edla; Dr. Bhupendra Gupta 92 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

176

arsenide solar cell: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pankaj J Edla; Dr. Bhupendra Gupta 92 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

177

alloy solar cells: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pankaj J Edla; Dr. Bhupendra Gupta 91 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

178

Thermal Management of Solar Cells  

E-Print Network [OSTI]

cells by cooling and concentration techniques," inheat. Different techniques of cooling solar cells have been

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

179

Enhancement of current collection in epitaxial lift-off InAs/GaAs quantum dot thin film solar cell and concentrated photovoltaic study  

SciTech Connect (OSTI)

We report the fabrication of a thin film InAs/GaAs quantum dot solar cell (QD cell) by applying epitaxial lift-off (ELO) approach to the GaAs substrate. We confirmed significant current collection enhancement (?0.91?mA/cm{sup 2}) in the ELO-InAs QD cell within the wavelength range of 700?nm900?nm when compared to the ELO-GaAs control cell. This is almost six times of the sub-GaAs bandgap current collection (?0.16?mA/cm{sup 2}) from the wavelength range of 900?nm and beyond, we also confirmed the ELO induced resonance cavity effect was able to increase the solar cell efficiency by increasing both the short circuit current and open voltage. The electric field intensity of the resonance cavity formed in the ELO film between the Au back reflector and the GaAs front contact layer was analyzed in detail by finite-differential time-domain (FDTD) simulation. We found that the calculated current collection enhancement within the wavelength range of 700?nm900?nm was strongly influenced by the size and shape of InAs QD. In addition, we performed concentrated light photovoltaic study and analyzed the effect of intermediate states on the open voltage under varied concentrated light intensity for the ELO-InAs QD cell.

Sogabe, Tomah, E-mail: sogabe@mbe.rcast.u-tokyo.ac.jp; Shoji, Yasushi; Tamayo, Efrain; Okada, Yoshitaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8504 (Japan); Mulder, Peter; Schermer, John [Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

2014-09-15T23:59:59.000Z

180

Heterojunction solar cell  

DOE Patents [OSTI]

A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

Olson, J.M.

1994-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR...  

Office of Environmental Management (EM)

ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS This presentation was delivered...

182

Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells  

DOE Patents [OSTI]

A photovoltaic cell exhibiting an overall conversion efficiency of 13.6% is prepared from a copper-indium-gallium-diselenide precursor thin film. The film is fabricated by first simultaneously electrodepositing copper, indium, gallium, and selenium onto a glass/molybdenum substrate (12/14). The electrodeposition voltage is a high frequency AC voltage superimposed upon a DC voltage to improve the morphology and growth rate of the film. The electrodeposition is followed by physical vapor deposition to adjust the final stoichiometry of the thin film to approximately Cu(In.sub.1-n Ga.sub.x)Se.sub.2, with the ratio of Ga/(In+Ga) being approximately 0.39.

Bhattacharya, Raghu N. (Littleton, CO); Hasoon, Falah S. (Arvada, CO); Wiesner, Holm (Golden, CO); Keane, James (Lakewood, CO); Noufi, Rommel (Golden, CO); Ramanathan, Kannan (Golden, CO)

1999-02-16T23:59:59.000Z

183

Mixed ternary heterojunction solar cell  

DOE Patents [OSTI]

A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

Chen, Wen S. (Seattle, WA); Stewart, John M. (Seattle, WA)

1992-08-25T23:59:59.000Z

184

Manipulating hybrid structures of polymer/a-Si for thin film solar cells  

SciTech Connect (OSTI)

A series of uniform polymer/amorphous silicon hybrid structures have been fabricated by means of solution-casting for polymer and radio frequency excited plasma enhanced chemical vapour deposition for amorphous silicon (a-Si:H). Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) functioned as a photoactive donor, while the silicon layer acted as an acceptor. It is found that matching the hole mobility of the polymer to the electron mobility of amorphous silicon is critical to improve the photovoltaic performance from hybrid cells. A three-layer p-i-n structure of ITO/PEDOT:PSS(200?nm)/i-Si(450?nm)/n-Si(200?nm)/Al with a power conversion efficiency of 4.78% under a standard test condition was achieved.

Peng, Ying; He, Zhiqun, E-mail: zhqhe@bjtu.edu.cn, E-mail: J.I.B.Wilson@hw.ac.uk; Zhang, Zhi; Liang, Chunjun [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Diyaf, Adel; Ivaturi, Aruna; Wilson, John I. B., E-mail: zhqhe@bjtu.edu.cn, E-mail: J.I.B.Wilson@hw.ac.uk [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

2014-03-10T23:59:59.000Z

185

Thermal Management of Solar Cells  

E-Print Network [OSTI]

Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,heat exchangers, and solar cells," Sci-Tech News, vol. 65,in crystalline silicon solar cells," Renewable Energy, vol.

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

186

Correlations of Capacitance-Voltage Hysteresis with Thin-Film CdTe Solar Cell Performance During Accelerated Lifetime Testing  

SciTech Connect (OSTI)

In this paper we present the correlation of CdTe solar cell performance with capacitance-voltage hysteresis, defined presently as the difference in capacitance measured at zero-volt bias when collecting such data with different pre-measurement bias conditions. These correlations were obtained on CdTe cells stressed under conditions of 1-sun illumination, open-circuit bias, and an acceleration temperature of approximately 100 degrees C.

Albin, D.; del Cueto, J.

2011-03-01T23:59:59.000Z

187

Effects of hydrochloric acid treatment of TiO{sub 2} nanoparticles/nanofibers bilayer film on the photovoltaic properties of dye-sensitized solar cells  

SciTech Connect (OSTI)

Highlights: ? The TiO{sub 2} nanoparticles/TiO{sub 2} nanofibers bilayer film was fabricated for DSSC. ? The effects of HCl treated TiO{sub 2} on the performance of DSSC were investigated. ? The potential methods of improving conversion efficiency are suggested. - Abstract: The TiO{sub 2} nanoparticles/nanofibers bilayer film has been fabricated via spin coating and electrospinning followed by calcination. The TiO{sub 2} bilayer film with thickness of about 6.0 ?m is composed of anatase TiO{sub 2} phase. Dye-sensitized solar cells (DSSC) were assembled by hydrochloric acid (HCl) treated TiO{sub 2} film. The results of the photocurrent action spectra, electrochemical impedance spectroscopy (EIS), and IV curves showed that each photovoltaic parameter of DSSC increased with the concentration of HCl increasing, and reached a maximum value and afterwards decreased. The maximum incident monochromatic photo-to-electron conversion efficiency (at 350 nm) and maximum overall conversion efficiency (?) of 0.05 M HCl treated TiO{sub 2} based DSSC were enhanced to 48.0% and 4.75%, which were respectively increased by 14% and 6.3% than those of DSSC based on untreated TiO{sub 2} film.

Song, Lixin; Du, Pingfan; Shao, Xiaoli; Cao, Houbao; Hui, Quan [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Xiong, Jie, E-mail: jxiong@zstu.edu.cn [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

2013-03-15T23:59:59.000Z

188

Solar cell efficiency enhancement via light trapping in printable resonant  

E-Print Network [OSTI]

Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere for addressing the key challenge of light trapping in thin-film solar cells. We experimentally and theoretically the absorber, junction, and passivation layers. Recently, a number of innovative solar cell light

Atwater, Harry

189

Dielectric nanostructures for broadband light trapping in organic solar cells  

E-Print Network [OSTI]

Dielectric nanostructures for broadband light trapping in organic solar cells Aaswath Raman, Zongfu light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501 (2007). 8. M@stanford.edu Abstract: Organic bulk heterojunction solar cells are a promising candidate for low-cost next

Fan, Shanhui

190

Solar cell efficiency enhancement via light trapping in printable resonant  

E-Print Network [OSTI]

Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere for addressing the key challenge of light trapping in thin-film solar cells. We experimentally and theoretically, photovoltaics, resonant dielectric structures, solar cells * Corresponding author: e-mail jgrandid

Grandidier, Jonathan

191

An Unconventional Route to High-Efficiency Dye-Sensitized Solar Cells via Embedding Graphitic Thin Films into TiO2 Nanoparticle  

E-Print Network [OSTI]

An Unconventional Route to High-Efficiency Dye-Sensitized Solar Cells via Embedding Graphitic Thin into the conventional dye- sensitized solar cells (DSSCs), resulting in a remarkably improved cell efficiency due to its followed by direct carbonization. For dye-sensitized TiO2 based solar cells containing carbon/TiO2 thin

Lin, Zhiqun

192

Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation  

E-Print Network [OSTI]

We study polarization independent improved light trapping in commercial thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic cells using a three-dimensional silver array of multi-resonant nano-disk structures embedded in a silicon nitride anti-reflection coating (ARC) to enhance optical absorption in the intrinsic layer (i-a-Si:H) for the visible spectrum for any polarization angle. Predicted total optical enhancement (OE) in absorption in the i-a-Si:H for AM-1.5 solar spectrum is 18.51% as compared to the reference, and producing a 19.65% improvement in short-circuit current density (JSC) over 11.7 mA/cm2 for a reference cell. The JSC in the nano-disk patterned solar cell (NDPSC) was found to be higher than the commercial reference structure for any incident angle. The NDPSC has a multi-resonant optical response for the visible spectrum and the associated mechanism for OE in i-a-Si:H layer is excitation of Fabry-Perot resonance facilitated by surface plasmon resonances. The detrimental Staebl...

Vora, Ankit; Pearce, Joshua M; Bergstrom, Paul L; Gney, Durdu

2014-01-01T23:59:59.000Z

193

Thermal Management of Solar Cells  

E-Print Network [OSTI]

D. Mills, "Cooling of photovoltaic cells under concentratedelectric performance of a photovoltaic cells by cooling andSolar Cell A photovoltaic cell is a semiconductor that

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

194

Theoretical Analysis of Effects of Deep Level, Back Contact, and Absorber Thickness on Capacitance-Voltage Profiling of CdTe Thin-Film Solar Cells  

SciTech Connect (OSTI)

The apparent carrier density profile measured by the capacitance-voltage technique in CdTe thin-film solar cells frequently displays a distinctive U-shape. We show that, even assuming a uniform carrier density, such a U-shape may arise from deep levels, a non-ohmic back-contact, and a thin absorber, which are commonly present in practical CdTe thin-film solar cells. A thin CdTe absorber contributes to the right branch of the U-shape due to a punch-through effect at reverse or zero biases, when the CdTe absorber is nearly fully depleted. A rectifying back-contact contributes to both branches of the U-shape due to voltage sharing with the front junction under a forward bias and early punch-through under a reverse bias. Deep levels contribute to the right branch, but also raise the bottom of the U-shape, leading to an overestimate of carrier density.

Li, J. V.; Halverson, A. F.; Sulima, O. V.; Bansal, S.; Burst, J. M.; Barnes, T. M.; Gessert, T. A.; Levi, D. H.

2012-05-01T23:59:59.000Z

195

Thin film photovoltaic cells  

DOE Patents [OSTI]

A solar cell has as its transparent electrical contact a grid made from a non-noble metal by providing a layer of copper oxide between the transparent electrical contact and the absorber-generator.

Rothwarf, Allen (Philadelphia, PA)

1981-01-01T23:59:59.000Z

196

Solar cell array interconnects  

DOE Patents [OSTI]

Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

1995-11-14T23:59:59.000Z

197

Solar cell array interconnects  

DOE Patents [OSTI]

Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Colella, Nicolas J. (Livermore, CA); Williams, Kenneth A. (Livermore, CA)

1995-01-01T23:59:59.000Z

198

Photovoltaic solar cell  

DOE Patents [OSTI]

A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

2013-11-26T23:59:59.000Z

199

Photovoltaic solar cell  

DOE Patents [OSTI]

A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

2014-05-20T23:59:59.000Z

200

Nanowire-based All Oxide Solar Cells  

SciTech Connect (OSTI)

We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode.

Yang*, Benjamin D. Yuhas and Peidong; Yang, Peidong

2008-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Print Wednesday,...

202

Reproduced with pennission from Elsevier Solar CelLS',30 (1991) 515-523 515'f'  

E-Print Network [OSTI]

emerged since the early 1980s. In particular, thin film solar cell technologies such as amorphous silicon To investigate the implications of projected advances in thin film solar cells for PV hydrogen production, we set). A large (> 10 MW) tilted, fixed, flat plate PV array using thin film solar modules is coupled directly

203

WORKING QUANTUM EFFICIENCY OF CDTE SOLAR CELL Zimeng Cheng  

E-Print Network [OSTI]

in -Si thin film solar cells because there are more defects and surface effects. Figure 1. The diode darkWORKING QUANTUM EFFICIENCY OF CDTE SOLAR CELL Zimeng Cheng 1 , Kwok Lo 2 , Jingong Pan 1 , Dongguo Chen 1 , Tao Zhou 2 , Qi Wang 3 , George E. Georgiou 1 , Ken K. Chin 1 1 Apollo CdTe Solar Energy

204

Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b  

E-Print Network [OSTI]

Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b , Ounsi of an absorbing planar photonic crystal within a thin film photovoltaic cell. The devices are based on a stack with large areas. Keywords: Photonic crystal, Photovoltaic solar cell, Thin film solar cell, Hydrogenated

Paris-Sud XI, Université de

205

Research on polycrystalline thin-film CuGaInSe{sub 2} solar cells. Annual subcontract report, 3 May 1991--2 May 1992  

SciTech Connect (OSTI)

This report describes research to fabricate high-efficiency CdZnS/CuInGaSe{sub 2} (CIGS) thin-film solar cells, and to develop improved transparent conductor window layers such as ZnO. A specific technical milestone was the demonstration of an air mass (AM) 1.5 global, 13% efficient, 1-cm{sup 2}-total-area CIGS thin-film solar cell. Our activities focused on three areas. First, a CIGS deposition: system was modified to double its substrate capacity, thus increasing throughput, which is critical to speeding the process development by providing multiple substrates from the same CIGS run. Second, new tooling was developed to enable an investigation of a modified aqueous CdZnS process. The goal was to improve the yield of this critical step in the device fabrication process. Third, our ZnO sputtering system was upgraded to improve its reliability, and the sputtering parameters were further optimized to improve its properties as a transparent conducting oxide. The characterization of the new CIGS deposition system substrate fixturing was completed, and we produced good thermal uniformity and adequately high temperatures for device-quality CIGS deposition. Both the CIGS and ZnO deposition processes were refined to yield a ZnO//Cd{sub 0.82}Zn{sub 0.18}S/CuIn{sub 0.80}Ga{sub 0.20}Se{sub 2} cell that was verified at NREL under standard testing conditions at 13.1% efficiency with V{sub oc} = 0.581 V, J{sub sc} = 34.8 mA/cm{sup 2}, FF = 0.728, and a cell area of 0.979 cm{sup 2}.

Stanbery, B.J.; Chen, W.S.; Devaney, W.E.; Stewart, J.W. [Boeing Co., Seattle, WA (United States). Defense and Space Systems Group

1992-11-01T23:59:59.000Z

206

Thermal Management of Solar Cells  

E-Print Network [OSTI]

ratio of the solar cell output power to the incident lightpower to operate the fan. Natural cooling is preferred for solar

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

207

Thermal Management of Solar Cells  

E-Print Network [OSTI]

is the ratio of the solar cell output power to the incidentmaximum power output at: The fill factor of a solar cell FFsolar cell temperature by about 15C, which increases the output power

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

208

Influences of alcoholic solvents on spray pyrolysis deposition of TiO{sub 2} blocking layer films for solid-state dye-sensitized solar cells  

SciTech Connect (OSTI)

Influences of alcoholic solvents for titanium diisopropoxide bis(acetylacetonate) (TPA) precursor solutions on the spray pyrolysis deposited TiO{sub 2} films and the photovoltaic performance of the solid-state dye-sensitized solar cells (SDSCs) using these TiO{sub 2} films as the blocking layers were investigated. Smooth TiO{sub 2} films were obtained by spray pyrolysis deposition of a TPA solution in isopropanol (IPA) at a relatively low temperature of 260 Degree-Sign C. On the other hand, when ethanol was used as solvent, the TiO{sub 2} films fabricated at the same temperature showed much rougher surfaces with many pinholes. Our results showed that ethanol reacts with TPA to form titanium diethoxide bis(acetylacetonate) (TEA), which requires a higher thermal decomposition temperature than that of TPA. SDSCs with TiO{sub 2} blocking layer films fabricated using a TPA solution in IPA showed higher power conversion efficiencies with smaller variations. - Graphical abstract: Alcoholic solvents used for the TiO{sub 2} precursor play a critical role in determining the surface morphology of blocking layers and thus the photovoltaic performance of the SDSCs. Highlights: Black-Right-Pointing-Pointer Solvent influences morphology of spray pyrolysis deposited TiO{sub 2} blocking layer. Black-Right-Pointing-Pointer Ethanol reacts with TPA, resulting poor quality of blocking layer. Black-Right-Pointing-Pointer Isopropanol is better than ethanol for obtaining smooth blocking layer. Black-Right-Pointing-Pointer SDSC with blocking layer made with isopropanol showed better performance.

Jiang, Changyun, E-mail: jiangc@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore)] [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore); Koh, Wei Lin; Leung, Man Yin [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore)] [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore); Hong, Wei [Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West ON, Waterloo, Canada N2L 3G1 (Canada)] [Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West ON, Waterloo, Canada N2L 3G1 (Canada); Li, Yuning, E-mail: yuning.li@uwaterloo.ca [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore) [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore); Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West ON, Waterloo, Canada N2L 3G1 (Canada); Zhang, Jie [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore)] [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore)

2013-02-15T23:59:59.000Z

209

Broad spectrum solar cell  

DOE Patents [OSTI]

An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

2007-05-15T23:59:59.000Z

210

NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL  

E-Print Network [OSTI]

efficiency in dye-sensitized solar cells based on Tio2Conversion by Dye-Sensitized Photovoltaic cells. InorganicConversion by Dye-Sensitized Photovoltaic Cells. Inorganic

Phuyal, Dibya

2012-01-01T23:59:59.000Z

211

Monolithic tandem solar cell  

SciTech Connect (OSTI)

It is an object of the invention to provide a monolithic tandem photovoltaic solar cell which is highly radiation resistant and efficient; in which the energy bandgap of the lower subcell can be tailored for specific applications; solar cell comprising layers of InP and GaInAsP (or GaInAs), where said photovoltaic cell is useful, for example, in space power applications; having an improved power-to-mass ratio; in which subcells are lattice-matches; and are both two terminal and three terminal monolithic tandem photovoltaic solar cells. To achieve the foregoing and other objects and in accordance with the purpose of the present invention, as embodied and broadly described herein, the monolithic tandem photovoltaic solar cell may comprise; (a) an InP substrate having an upper surface; (b) a first photoactive subcell on the upper surface of the InP substrate; wherein the first subcell comprises GaInAs (which could include GaInAsP) and includes a homojunction; and (c) a second photoactive subcell on the first subcell; wherein the second subcell comprises InP and includes a homojunction. The cell is described in detail. 5 figs., 2 tabs.

Wanlass, M.W.

1989-11-03T23:59:59.000Z

212

Fabrication and Characterization of Organic Solar Cells  

E-Print Network [OSTI]

electrodes for dye? sensitizedsolarcells. Nanosolar cells and dye-sensitized solar cells. Figure 1-3 The

Yengel, Emre

2010-01-01T23:59:59.000Z

213

Monolithic tandem solar cell  

DOE Patents [OSTI]

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

Wanlass, Mark W. (Golden, CO)

1991-01-01T23:59:59.000Z

214

Monolithic tandem solar cell  

SciTech Connect (OSTI)

This patent describes a single-crystal, monolithic, tandem, photovoltaic solar cell which includes an InP substrate having an upper and lower surfaces, a first photoactive subcell on the upper surface of the InP substrate, and a second photoactive subcell on the first subcell. The first photovoltaic subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two- terminal device or a three-terminal device.

Wanlass, M.W.

1991-05-28T23:59:59.000Z

215

Nano-photonic Light Trapping In Thin Film Solar Dennis M. Callahan Jr.  

E-Print Network [OSTI]

Nano-photonic Light Trapping In Thin Film Solar Cells Thesis by Dennis M. Callahan Jr. In Partial. Jeremy Munday for helping me get started on the thin-film GaAs project and for all the time we spent to thank Dr. Jonathan Grandidier for working closely with me for a couple years on the nano sphere solar

Winfree, Erik

216

Toward microscale Cu,,In,Ga...Se2 solar cells for efficient conversion and optimized material usage: Theoretical evaluation  

E-Print Network [OSTI]

solar cells are gaining a growing market share in the photovoltaic field. CIGS thin film solar cells. In this paper, the behavior of microscale thin film solar cells under concen- tration will be studied. We focusToward microscale Cu,,In,Ga...Se2 solar cells for efficient conversion and optimized material usage

Boyer, Edmond

217

Thin film photovoltaic cell  

DOE Patents [OSTI]

A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

1982-01-01T23:59:59.000Z

218

Modeling of capacitance transients of thin-film solar cells: A valuable tool to gain information on perturbing layers or interfaces  

SciTech Connect (OSTI)

Thin-film electronic and photovoltaic devices often comprise, in addition to the anticipated p-n junctions, additional non-ideal ohmic contacts between layers. This may give rise to additional signals in capacitance spectroscopy techniques that are not directly related to defects in the structure. In this paper, we present a fitting algorithm for transient signals arising from such an additional junction. The fitting results are in excellent agreement with the diode characteristics extracted from static measurements on individual components. Finally, the algorithm is applied for determining the barriers associated with anomalous signals reported for selected CuIn{sub 1x}Ga{sub x}Se{sub 2} and CdTe solar cells.

Lauwaert, Johan, E-mail: Johan.Lauwaert@UGent.be; Van Puyvelde, Lisanne; Vrielinck, Henk [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium); Lauwaert, Jeroen; Thybaut, Joris W. [Laboratory for Chemical Technology (LCT), Ghent University, Krijgslaan 281-S5, 9000 Gent (Belgium)

2014-02-03T23:59:59.000Z

219

Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells  

DOE Patents [OSTI]

The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.

Ramanathan, Kannan V. (Lakewood, CA); Contreras, Miguel A. (Golden, CA); Bhattacharya, Raghu N. (Littleton, CA); Keane, James (Lakewood, CA); Noufi, Rommel (Golden, CA)

1999-01-01T23:59:59.000Z

220

Impact of environmental conditions on the chemical surface properties of Cu(In,Ga)(S,Se){sub 2} thin-film solar cell absorbers  

SciTech Connect (OSTI)

Environmentally driven aging effects play a crucial role in thin-film solar cells based on Cu(In,Ga)(S,Se){sub 2}, both for long-term stability and short air exposure during production. For a better understanding of such effects, Cu(In,Ga)(S,Se){sub 2} absorber surfaces were investigated by x-ray photoelectron and Auger electron spectroscopy after exposure to different environmental conditions. Identical absorbers were stored in a nitrogen atmosphere, in damp heat, and under ambient conditions for up to 14 days. We find varying degrees of diffusion of sulfur, copper, and sodium towards the surface, with potential impact on the electronic surface structure (band gap) and the properties of the interface to a buffer layer in a solar cell device. Furthermore, we observe an oxidation (in decreasing order) of indium, copper, and selenium (but no oxidation of sulfur). And finally, varying amounts of carbon- and oxygen-containing adsorbates are found. In particular, the findings suggest that, for ambient air exposure, sodium carbonate is formed at the surface.

Hauschild, D., E-mail: dirk.hauschild@physik.uni-wuerzburg.de, E-mail: l.weinhardt@kit.edu; Meyer, F. [Experimental Physics VII, University of Wrzburg, Am Hubland, 97074 Wrzburg (Germany); Pohlner, S.; Lechner, R.; Dietmller, R.; Palm, J. [AVANCIS GmbH and Co. KG, Otto-Hahn-Ring 6, 81739 Munich (Germany); Heske, C. [Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003 (United States); Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 18/20, 76128 Karlsruhe (Germany); Weinhardt, L., E-mail: dirk.hauschild@physik.uni-wuerzburg.de, E-mail: l.weinhardt@kit.edu [Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003 (United States); Reinert, F. [Experimental Physics VII, University of Wrzburg, Am Hubland, 97074 Wrzburg (Germany); Karlsruhe Institute of Technology (KIT), Gemeinschaftslabor fr Nanoanalytik, 76021 Karlsruhe (Germany)

2014-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

High-Rate Fabrication of a-Si-Based Thin-Film Solar Cells Using Large-Area VHF PECVD Processes  

SciTech Connect (OSTI)

The University of Toledo (UT), working in concert with its a-Si-based PV industry partner Xunlight Corporation (Xunlight), has conducted a comprehensive study to develop a large-area (3ft x 3ft) VHF PECVD system for high rate uniform fabrication of silicon absorber layers, and the large-area VHF PECVD processes to achieve high performance a-Si/a-SiGe or a-Si/nc-Si tandem junction solar cells during the period of July 1, 2008 to Dec. 31, 2011, under DOE Award No. DE-FG36-08GO18073. The project had two primary goals: (i) to develop and improve a large area (3 ft 3 ft) VHF PECVD system for high rate fabrication of > = 8 /s a-Si and >= 20 /s nc-Si or 4 /s a-SiGe absorber layers with high uniformity in film thicknesses and in material structures. (ii) to develop and optimize the large-area VHF PECVD processes to achieve high-performance a-Si/nc-Si or a-Si/a-SiGe tandem-junction solar cells with >= 10% stable efficiency. Our work has met the goals and is summarized in Accomplishments versus goals and objectives.

Deng, Xunming [University of Toledo] [University of Toledo; Fan, Qi Hua

2011-12-31T23:59:59.000Z

222

Silicon Solar Cell Light-Trapping Using Defect Mode Photonic Kelsey A. Whitesell*a  

E-Print Network [OSTI]

Silicon Solar Cell Light-Trapping Using Defect Mode Photonic Crystals Kelsey A. Whitesell to enhance performance of thin film solar cells because of their unique ability to control light. We show for light trapping in thin film photovoltaics. Keywords: photonic crystals, defect, silicon, solar cell

Atwater, Harry

223

Light harvesting by planar photonic crystal in solar cells: The case of amorphous silicon  

E-Print Network [OSTI]

Light harvesting by planar photonic crystal in solar cells: The case of amorphous silicon Guillaume on light management in silicon thin film solar cells, using photonic crystals (PhC) structures. We by means of optical simulations performed on realistic thin film solar cell stacks. Theoretically

Boyer, Edmond

224

Amorphous thin films for solar-cell applications. Technical progress report, 11 October 1980 to 15 January 1981  

SciTech Connect (OSTI)

Progress has been ahead of planned expectations in three instances: (a) achievement of 4 mA/cm/sup 2/, short circuit current density in a MIS structure solar cell under AM1 illumination; (b) fabrication of large area (4 cm/sup 2/) MIS cells with external J/sub sc/ > 3 mA/cm/sup 2/; and (c) deposition of p/sup +/ layers by B/sub 2/H/sub 6/ gas phase doping. A program status table is included. Reproducible n layers are now routinely deposited by sputtering in Ar, H/sub 2/, and PH/sub 3/ gases. The major remaining obstacle to the goal of a 3.5% cell is the deposition of a quality i-layer. Although information deduced from infrared absorption and Raman data indicates that most of the hydrogen is bonded in the SiH configuration, the photoconductivity of the intrinsic material requires marked improvement. Two forms of magnetron sputtering, planar and cylindrical, are being exploited. The planar deposition system has the advantage that experimental costs are low; the cylindrical system is easily scalable to large product throughput. Schematic illustrations of the two systems and descriptions of apparatus modifications incorporated are included.

Jonath, A.D.; Anderson, W.W.; Crowley, J.L.; MacMillan H.F. Jr.; Thornton, J.A.

1981-02-20T23:59:59.000Z

225

Organic solar cells: An overview focusing on active layer morphology Travis L. Benanti & D. Venkataraman*  

E-Print Network [OSTI]

Review Organic solar cells: An overview focusing on active layer morphology Travis L. Benanti & D/acceptor blend, morphology, photovoltaic devices, plastic solar cells, thin films Abstract Solar cells heterojunction concept. This review provides an overview of organic solar cells. Topics covered include: a brief

Venkataraman, Dhandapani "DV"

226

Flexible Solar-Energy Harvesting System on Plastic with Thin-film LC Oscillators Operating Above ft for  

E-Print Network [OSTI]

Flexible Solar-Energy Harvesting System on Plastic with Thin-film LC Oscillators Operating Above ft- This paper presents an energy-harvesting system consisting of amorphous-silicon (a-Si) solar cells and thin of the energy-harvesting system. The solar module consists of solar cells in series operating at an output

227

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 08 · Solar Cell Characterization 1Montana State University: Solar Cells Lecture 8: Characterization Solar Cell Operation n Emitter p Base Rear completing the circuit 2Montana State University: Solar Cells Lecture 8: Characterization Solar Cell

Kaiser, Todd J.

228

a-si solar cells: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the development of amorphous Si solar cells Seung May 2010 Keywords: a-Si:H Thin film Si solar cell Spectroscopic ellipsometry (SE) a b s t r a c t We Park, Byungwoo...

229

a-si solar cell: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the development of amorphous Si solar cells Seung May 2010 Keywords: a-Si:H Thin film Si solar cell Spectroscopic ellipsometry (SE) a b s t r a c t We Park, Byungwoo...

230

The Making of the Film, SOLAR CORONA  

E-Print Network [OSTI]

The film SOLAR CORONA was made from data taken from August 14, 1969 through May 7, 1970, by OSO-VI, one of the Orbiting Satellite Observatories. One of the experiments on board scanned across and up and down the image of ...

Beeler, Michael

1973-02-01T23:59:59.000Z

231

Organic Solar Cells: Absolute Measurement of Domain Composition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

00:00 This front cover represents the morphology and resulting device dynamics in organic solar cell blend films of PTB7 and PC71BM, as revealed by combined resonant x-ray...

232

Dye-sensitized solar cells  

DOE Patents [OSTI]

A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

Skotheim, Terje A. [Berkeley, CA

1980-03-04T23:59:59.000Z

233

Dye-sensitized solar cells  

DOE Patents [OSTI]

A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

Skotheim, T.A.

1980-03-04T23:59:59.000Z

234

Nighttime solar cell  

SciTech Connect (OSTI)

Currently photovoltaic (PV) cells convert solar energy into electrical energy at an efficiency of about 18%, with the maximum conversion rate taking place around noon on a cloudless day. In many applications, the PV cells are utilized to recharge a stand-by battery pack that provides electrical energy at night or on cloudy days. Increasing the utilization of the panel array area by producing electrical power at night will reduce the amount of required electrical energy storage for a given array size and increase system reliability. Thermoelectric generators (TEG) are solid state devices that convert thermal energy into electrical energy. Using the nighttime sky, or deep space, with an effective temperature of 3.5 K as a cold sink, the TEG presented here can produce electrical power at night. The hot junction is supplied energy by the ambient air temperature or some other warm temperature source. The cold junction of the TEG is insulated from the surroundings by a vacuum cell, improving its overall effectiveness. Combining the TEG with the PV cell, a unique solid state device is developed that converts electromagnetic radiant energy into usable electrical energy. The thermoelectric-photovoltaic (TEPV) cell, or the Nighttime Solar Cell, is a direct energy conversion device that produces electrical energy both at night and during the day.

Parise, R.J.

1998-07-01T23:59:59.000Z

235

Bilevel contact solar cells  

SciTech Connect (OSTI)

This patent describes a solar cell. It comprises a body of semiconductor material having at least one P/N junction therein, the body including a front face having no electrodes thereon, and a bilevel elevation back face having at least one P-doped region at a first level interdigitated with at least one N-doped region at a second level, wherein the at least one P-doped region and the at least one N-doped region partially overlap to form at least one compensated region; and a positive electrode contacting the at lease one P-doped region and a negative electrode contacting the at least one N-doped region, both electrodes contacting the solar cell on the back face.

Sinton, R.A.

1991-10-01T23:59:59.000Z

236

The Protocol Of KFM Characterization On Cross-section Of CdS/CdTe Thin Film Solar Cell  

SciTech Connect (OSTI)

In this work, we report a series of Kelvin Force Microscopy (KFM) measurements, suitable to observe the topography and the contact potential difference (CPD) distribution of the following stack: CdTe/CdS/ITO/glass. The sample is prepared by mechanical polishing after cleavage to decrease the roughness. In order to have a better understanding of the charge transport inside the solar cell and to vary the Fermi level pinning effect, different bias are applied to the sample. The CPD variations with different bias on cross-section in dark condition are presented. We observe the reverse bias widens the CdTe/CdS depletion region. Under illumination, electron and holes are generated near the interface and varies the CPD distribution. Additionally, the chemical composition of each layer has been investigated by nano-Auger electron spectroscopy (AES). We observe the interdiffusion at the CdTe/CdS interface and determine the composition of the active layers to be CdTe/CdS{sub 0.7}Te{sub 0.3}.

You, L. [CEA - LETI, MINATEC Campus, 17 rue des Martyrs - 38054 Grenoble Cedex 9 (France); LTM-CNRS, 17, rue des Martyrs, F38054 Grenoble Cedex 9 (France); Chevalier, N.; Bernardi, S.; Martinez, E.; Mariolle, D.; Feuillet, G.; Chabli, A.; Bertin, F. [CEA - LETI, MINATEC Campus, 17 rue des Martyrs - 38054 Grenoble Cedex 9 (France); Kogelschatz, M. [LTM-CNRS, 17, rue des Martyrs, F38054 Grenoble Cedex 9 (France); Bremond, G. [Universite de Lyon, Institut des Nanotechnologies de Lyon (INL), CNRS UMR-5270, INSA-LYON, 7 Avenue Jean Capelle, Bat. Blaise Pascal, F69621 Villeurbanne Cedex (France)

2011-11-10T23:59:59.000Z

237

Solar Energy Materials & Solar Cells 91 (2007) 13881391 Bifacial configurations for CdTe solar cells  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 91 (2007) 1388­1391 Bifacial configurations for CdTe solar We present a different back contact for CdTe solar cell by the application of only a transparent that acts as a free-Cu stable back contact and at the same time allows to realize bifacial CdTe solar cells

Romeo, Alessandro

238

1. INTRODUCTION CdTe/CdS solar cells are among the most promising  

E-Print Network [OSTI]

Te/CdS SOLAR CELLS A.Romeo, A.N. Tiwari, and H. Zogg Thin Films Physics Group, Institute of Quantum ElectronicsTe/CdS thin film solar cells. The merits of different TCOs and the properties of the CdTe/CdS solar cells1. INTRODUCTION CdTe/CdS solar cells are among the most promising devices for low cost and high

Romeo, Alessandro

239

Thin film absorber for a solar collector  

DOE Patents [OSTI]

This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1985-01-01T23:59:59.000Z

240

NREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions and identify  

E-Print Network [OSTI]

and Characterization team examined local junction breakdown in silicon and thin-film solar cells by electroluminescenceNREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions is an increasingly important issue for silicon solar cells. The issue has taken center stage now that the solar

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Superlattice cascade solar cell  

SciTech Connect (OSTI)

This paper reports progress toward realization of a new cascade solar cell structure whose chief advantages over other present concepts are: use of silicon for the substrate and low bandgap cell; avoidance of the necessity of lattice matching; and incorporation of a GaAs/GaP superlattice to enhance efficiency and provide a low-resistance connecting junction. Details of the design and operation of an OMCVD system for growing this structure are presented. Results of experiments to optimize layer thickness, compositional uniformity, and surface morphology are described.

Wanlass, M.W.; Blakeslee, A.E.

1982-09-01T23:59:59.000Z

242

Apparatus for forming thin-film heterojunction solar cells employing materials selected from the class of I-III-VI.sub.2 chalcopyrite compounds  

DOE Patents [OSTI]

Apparatus for forming thin-film, large area solar cells having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n-type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in the first semiconductor layer to evolve into p-type material, thereby defining a thin layer heterojunction device characterized by the absence of voids, vacancies and nodules which tend to reduce the energy conversion efficiency of the system.

Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

1983-01-01T23:59:59.000Z

243

DISSERTATION Role of the Cu-O Defect in CdTe Solar Cells  

E-Print Network [OSTI]

OF THE CU-O DEFECT COMPLEX IN CDTE SOLAR CELLS Thin-film CdTe is one of the leading materials used the defects present in thin-film CdTe deposited for solar cells. One key defect seen in the thin-film CdDISSERTATION Role of the Cu-O Defect in CdTe Solar Cells Submitted by Caroline R. Corwine

Sites, James R.

244

Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells  

DOE Patents [OSTI]

High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

Bhattacharya, Raghu N. (Littleton, CO); Contreras, Miguel A. (Golden, CO); Keane, James (Lakewood, CO); Tennant, Andrew L. (Denver, CO); Tuttle, John R. (Denver, CO); Ramanathan, Kannan (Lakewood, CO); Noufi, Rommel (Golden, CO)

1998-03-24T23:59:59.000Z

245

Fabricating solar cells with silicon nanoparticles  

DOE Patents [OSTI]

A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

2014-09-02T23:59:59.000Z

246

Solar cell module lamination process  

DOE Patents [OSTI]

A solar cell module lamination process using fluoropolymers to provide protection from adverse environmental conditions and thus enable more extended use of solar cells, particularly in space applications. A laminate of fluoropolymer material provides a hermetically sealed solar cell module structure that is flexible and very durable. The laminate is virtually chemically inert, highly transmissive in the visible spectrum, dimensionally stable at temperatures up to about 200.degree. C. highly abrasion resistant, and exhibits very little ultra-violet degradation.

Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Aceves, Randy C. (Tracy, CA)

2002-01-01T23:59:59.000Z

247

Monolithic tandem solar cell  

DOE Patents [OSTI]

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

Wanlass, Mark W. (Golden, CO)

1994-01-01T23:59:59.000Z

248

Monolithic tandem solar cell  

DOE Patents [OSTI]

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

Wanlass, M.W.

1994-06-21T23:59:59.000Z

249

The Effect of Offcut Angle on Electrical Conductivity of Direct Wafer-Bonded n-GaAs/n-GaAs Structures for Wafer-Bonded Tandem Solar Cells  

E-Print Network [OSTI]

Efficiency of p?n Junction Solar Cells, J. Appl. Phys. 32,Inverted Triple- Junction Solar Cell with Two Independentlyof Thin-Film GaAs Solar Cells on Si Substrates, J. Appl.

Yeung, King Wah Sunny

2012-01-01T23:59:59.000Z

250

Thermal Management of Solar Cells.  

E-Print Network [OSTI]

??The focus on solar cells as a source of photovoltaic energy is rapidly increasing nowadays. The amount of sun's energy entering earth surface in one (more)

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

251

The effects of Ta2O5ZnO films as cathodic buffer layers in inverted polymer solar cells  

E-Print Network [OSTI]

O CBL films were examined by XPS, AFM, UV-Vis absorption spectra, and goniometry. It was found that CBLs.e. a rapid performance degradation due to the low work function top metal electrode, and an unstable interface between the ITO substrate and HTL;17­19 such a rapid performance degradation is unacceptable

Cao, Guozhong

252

Plasmonic light trapping in thin-film Si solar cells This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

worldwide energy demand. Growth in installed solar power has been very large over the last few years, as new of energy. Reducing the overall cost per watt is thus one of the major challenges in solar cell research watt of sola

Polman, Albert

253

Plastic Schottky barrier solar cells  

DOE Patents [OSTI]

A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

Waldrop, James R. (Thousand Oaks, CA); Cohen, Marshall J. (Thousand Oaks, CA)

1984-01-24T23:59:59.000Z

254

Study of molybdenum oxide as a back contact buffer for thin film n-CdS/p-CdTe solar cells.  

E-Print Network [OSTI]

??Back contact improvement is one of the most crucial issues for the realization of highly efficient n-CdS/p-CdTe solar cells. Conventional methods for making a sufficiently (more)

Lin, Hao

2013-01-01T23:59:59.000Z

255

Sputtered Nickel Oxide Thin Film for Efficient Hole Transport Layer in Polymer-Fullerene Bulk-Heterojunction Organic Solar Cell  

SciTech Connect (OSTI)

Bulk-heterojunction (BHJ) organic photovoltaics (OPV) are very promising thin film renewable energy conversion technologies due to low production cost by high-throughput roll-to-roll manufacturing, an expansive list of compatible materials, and flexible device fabrication. An important aspect of OPV device efficiency is good contact engineering. The use of oxide thin films for this application offers increased design flexibility and improved chemical stability. Here we present our investigation of radio frequency magnetron sputtered nickel oxide (NiO{sub x}) deposited from oxide targets as an efficient, easily scalable hole transport layer (HTL) with variable work-function, ranging from 4.8 to 5.8 eV. Differences in HTL work-function were not found to result in statistically significant changes in open circuit voltage (V{sub oc}) for poly(3-hexylthiophene):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM) BHJ device. Ultraviolet photoemission spectroscopy (UPS) characterization of the NiO{sub x} film and its interface with the polymer shows Fermi level alignment of the polymer with the NiO{sub x} film. UPS of the blend also demonstrates Fermi level alignment of the organic active layer with the HTL, consistent with the lack of correlation between V{sub oc} and HTL work-function. Instead, trends in j{sub sc}, V{sub oc}, and thus overall device performance are related to the surface treatment of the HTL prior to active layer deposition through changes in active layer thickness.

Widjonarko, N. E.; Ratcliff, E. L.; Perkins, C. L.; Sigdel, A. K.; Zakutayev, A.; Ndione, P. F.; Gillaspie, D. T.; Ginley, D. S.; Olson, D. C.; Berry, J. J.

2012-03-01T23:59:59.000Z

256

Formation of Porous Layers by Electrochemical Etching of Germanium and Gallium Arsenide for Cleave Engineered Layer Transfer (CELT) Application in High Efficiency Multi-Junction Solar Cells  

E-Print Network [OSTI]

film photovoltaics [1]. This roughly doubling of efficiencyMJ photovoltaics. MJ solar cells achieve higher efficiencies

Fong, David Michael

2012-01-01T23:59:59.000Z

257

The challenges of organic polymer solar cells  

E-Print Network [OSTI]

The technical and commercial prospects of polymer solar cells were evaluated. Polymer solar cells are an attractive approach to fabricate and deploy roll-to-roll processed solar cells that are reasonably efficient (total ...

Saif Addin, Burhan K. (Burhan Khalid)

2011-01-01T23:59:59.000Z

258

Fabrication and Characterization of Organic Solar Cells  

E-Print Network [OSTI]

WrfelP. Physicsofsolarcells:fromprinciplestonewgeneration photovoltaics: solar cells for 2020 andSpitzer MB. INDIUM?PHOSPHIDE SOLAR?CELLS MADE BY ION?

Yengel, Emre

2010-01-01T23:59:59.000Z

259

Commercialization of Novel Organic Solar Cells  

E-Print Network [OSTI]

Commercialization of Novel Organic Solar Cells Master of Engineering Final Report Shanel C. Miller................................................................................................................... 12 2.1 How do Solar Cells Work?.................................................................................................. 12 2.2 Types of Solar Cells that Exist Today

Kassegne, Samuel Kinde

260

Nontoxic quantum dot research improves solar cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nontoxic quantum dot research improves solar cells Nontoxic quantum dot research improves solar cells Solar cells made with low-cost, nontoxic copper-based quantum dots can achieve...

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Modeling of thin-film solar thermoelectric generators  

E-Print Network [OSTI]

Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

Weinstein, Lee Adragon

262

Low-Cost Light Weigh Thin Film Solar Concentrators  

Broader source: Energy.gov (indexed) [DOE]

Light Weight Thin Film Solar Concentrators PI: Gani B. Ganapathi (JPLCaltech) Other Contributors: L'Garde: Art Palisoc, Gyula Greschik, Koorosh Gidanian JPL: Bill Nesmith,...

263

Novel Materials Development for Polycrystalline Thin-Film Solar Cells: Final Subcontract Report, 26 July 2004--15 June 2008  

SciTech Connect (OSTI)

Focus on player interfacial assessment using Schottky barrier and heterojunction theory, and analysis of p-windows for CIGS and CdTe cells.

Keszler, D. A.; Wager, J. F.

2008-11-01T23:59:59.000Z

264

Method of fabricating high-efficiency Cu(In,Ga)(Se,S){sub 2} thin films for solar cells  

DOE Patents [OSTI]

A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S){sub 2} comprises depositing a first layer of (In,Ga){sub x} (Se,S){sub y} followed by depositing just enough Cu+(Se,S) or Cu{sub x} (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga){sub x} (Se,S){sub y} is deposited first, followed by deposition of all the Cu+(Se,S) or Cu{sub x} (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu{sub x} (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga){sub x} (Se,S){sub y} to go slightly Cu-poor in the final Cu(In,Ga)(Se,S){sub 2} thin film. 5 figs.

Noufi, R.; Gabor, A.M.; Tuttle, J.R.; Tennant, A.L.; Contreras, M.A.; Albin, D.S.; Carapella, J.J.

1995-08-15T23:59:59.000Z

265

Method of fabricating high-efficiency Cu(In,Ga)(SeS).sub.2 thin films for solar cells  

DOE Patents [OSTI]

A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S).sub.2 comprises depositing a first layer of (In,Ga).sub.x (Se,S).sub.y followed by depositing just enough Cu+(Se,S) or Cu.sub.x (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga).sub.x (Se,S).sub.y is deposited first, followed by deposition of all the Cu+(Se,S) or Cu.sub.x (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu.sub.x (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga).sub.x (Se,S).sub.y to go slightly Cu-poor in the final Cu(In,Ga)(Se,S).sub.2 thin film.

Noufi, Rommel (Golden, CO); Gabor, Andrew M. (Boulder, CO); Tuttle, John R. (Denver, CO); Tennant, Andrew L. (Denver, CO); Contreras, Miguel A. (Golden, CO); Albin, David S. (Denver, CO); Carapella, Jeffrey J. (Evergreen, CO)

1995-01-01T23:59:59.000Z

266

Simulation of Polycrystalline Cu(In,Ga)Se2 Solar Cells in Two Dimensions Markus Gloeckler, Wyatt K. Metzger1  

E-Print Network [OSTI]

that a plausible reason behind highly efficient thin-film CIGS solar cells ( > 17%) is an inherent valenceSimulation of Polycrystalline Cu(In,Ga)Se2 Solar Cells in Two Dimensions Markus Gloeckler, Wyatt K) solar cells and its effects on solar-cell performance. The simulations predict that (1) for device

Sites, James R.

267

DISSERTATION IMPACT OF SECONDARY BARRIERS ON CuIn1-xGaxSe2 SOLAR-CELL  

E-Print Network [OSTI]

Impact of Secondary Barriers on CuIn1-xGaxSe2 Solar-Cell Operation Thin-film solar cells based on CuInSe2 of thin-film solar-cell tandems. Since the bottom cells are exposed to practically only "red" photonsDISSERTATION IMPACT OF SECONDARY BARRIERS ON CuIn1-xGaxSe2 SOLAR-CELL OPERATION Submitted by Alexei

Sites, James R.

268

ELECTROSPUN POLYMER-FIBER SOLAR CELL.  

E-Print Network [OSTI]

??A study of fabricating the first electrospun polymer-fiber solar cell with MEHPPV is presented. Motivation for the work and a brief history of solar cell (more)

Nagata, Shinobu

2011-01-01T23:59:59.000Z

269

Biomimetic Dye Molecules for Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

such as those used in solar cells. This requires close monitoring to obtain reproducible solar cells. The polarization dependence of the spectra reveals the orientation of the...

270

Hydroxamate Anchors for Improved Photoconversion in Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

Hydroxamate Anchors for Improved Photoconversion in Dye- Sensitized Solar Cells Timothy P. Brewster-polypyridyl dyes to TiO2 surfaces in dye-sensitized solar cells (DSSCs). The study provides fundamental insight materials such as dye-sensitized solar cells (DSSCs) made of sensitized nano- particulate thin-films.4 Since

271

Dye-Sensitized Solar Cells DOI: 10.1002/anie.200704919  

E-Print Network [OSTI]

Dye-Sensitized Solar Cells DOI: 10.1002/anie.200704919 Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells** Qifeng Zhang, Tammy P. Chou, Bryan Russo, Samson A system consisting of a dye-sensitized semiconductor film and an electrolyte, dye-sensitized solar cells

Cao, Guozhong

272

Towards an understanding of light activation processes in titanium oxide based inverted organic solar cells  

E-Print Network [OSTI]

solar cells S. Chambon, E. Destouesse, B. Pavageau, L. Hirsch, and G. Wantz Citation: J. Appl. Phys. 112. Related Articles Power losses in bilayer inverted small molecule organic solar cells Appl. Phys. Lett. 101, 233903 (2012) Thin-film encapsulation of inverted indium-tin-oxide-free polymer solar cells by atomic

Paris-Sud XI, Université de

273

STUDY OF THE EFFECT OF ABSORBER ETCHING ON THE BACK CONTACT PERFORMANCE OF CDTE SOLAR CELLS  

E-Print Network [OSTI]

STUDY OF THE EFFECT OF ABSORBER ETCHING ON THE BACK CONTACT PERFORMANCE OF CDTE SOLAR CELLS Ivan that has shown a remarkable market success in thin film solar cells. It is well known that deposition and defects are addressed. 2 EXPERIMENTAL CdTe solar cells, in our laboratory, are usually prepared as follows

Romeo, Alessandro

274

innovati nNREL Designs Promising New Oxides for Solar Cells  

E-Print Network [OSTI]

material. The upper TCO contact in a solar cell allows light to reach the absorber material below, whichinnovati nNREL Designs Promising New Oxides for Solar Cells High-efficiency, thin-film solar cells electricity but are 90% transparent to visible light. Scientists at the National Renewable Energy Laboratory

275

Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings  

E-Print Network [OSTI]

Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light ABSTRACT: Enhancing the light absorption in ultrathin-film silicon solar cells is important for improving in the back reflector. KEYWORDS: Solar cells, light trapping, antireflection, crystalline silicon, absorption

Fan, Shanhui

276

Solar Cells from Earth-Abundant Semiconductors with Plasmon-Enhanced Light Absorption  

SciTech Connect (OSTI)

Progress is reported in these areas: Plasmonic Light Trapping in Thin Film a-Si Solar Cells; Plasmonic Light Trapping in Thin InGaN Quantum Well Solar Cells; and Earth Abundant Cu{sub 2}O and Zn{sub 3}P{sub 2} Solar Cells.

Atwater, Harry

2012-04-30T23:59:59.000Z

277

Solar Energy Materials & Solar Cells 90 (2006) 664677 Invited article  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 90 (2006) 664­677 Invited article Recent developments in evaporated CdTe solar cells G. Khrypunova , A. Romeob , F. Kurdesauc , D.L. Ba¨ tznerd , H. Zogge , A Abstract Recent developments in the technology of high vacuum evaporated CdTe solar cells are reviewed

Romeo, Alessandro

278

Modeling and simulation of CuIn{sub 1?x}Ga{sub x}Se{sub 2} based thin film solar cell  

SciTech Connect (OSTI)

In this work, CIGS (Copper Indium Gallium Diselenide) based solar cell structure has been simulated. We have been calculated short circuit current, open circuit voltage and efficiency of the cell. The thickness of the absorption layer is varied from 400 to 3000 nm, keeping the thickness of other layers unchanged. The effect of absorption layer thickness over cell performance has been analyzed and found that the efficiency increases upto 22% until the thickness of the absorption layer reaches around 2000 nm.

Kumari, S., E-mail: sarita.kumari132@gmail.com; Verma, A. S. [Department of Physics, Banasthali University, Rajasthan-304022 (India); Singh, P.; Gautam, R. [Department of Electronics and Communication, Krishna Institute of Engg. and Tech., Ghaziabad-201206 (India)

2014-04-24T23:59:59.000Z

279

Module level solutions to solar cell polarization  

DOE Patents [OSTI]

A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

Xavier, Grace (Fremont, CA), Li; Bo (San Jose, CA)

2012-05-29T23:59:59.000Z

280

Un-Nanostructuring Solar Cells | ANSER Center | Argonne-Northwestern...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Un-Nanostructuring Solar Cells Home > Research > ANSER Research Highlights > Un-Nanostructuring Solar Cells...

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mat. Res. Soc. Symp. Proc. Vol. 668 @ 2001 Materials Research Society Influence of proton irradiation and development of flexible CdTe solar cells on polyimide  

E-Print Network [OSTI]

power (defined as the ratio of output electrical power to the solar module weight). Thin film solar cells on polymer films can yield more than 2- kW/kg specific power. CIGS solar cells of about 10 to 12 irradiation and development of flexible CdTe solar cells on polyimide A. Romeo, D.L. Bätzner, H. Zogg and A

Romeo, Alessandro

282

Solar Energy Materials & Solar Cells 91 (2007) 15991610 Improving solar cell efficiency using photonic band-gap materials  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 91 (2007) 1599­1610 Improving solar cell efficiency using) solar energy conversion systems (or solar cells) are the most widely used power systems. However and reliable solar-cell devices is presented. We show that due their ability to modify the spectral and angular

Dowling, Jonathan P.

283

Dye-Sensitized Solar Cells  

Broader source: Energy.gov [DOE]

DOE supports research and development projects aimed at increasing the efficiency and lifetime of dye-sensitized solar cells (DSSCs). Below are a list of current projects, summary of the benefits,...

284

Optical films for solar energy applications  

SciTech Connect (OSTI)

A number of solar energy conversion materials and coatings are considered stratified media. They are generally classified as graded-index media or layered media. With index coatings, two components (such as air and SiO/sub 2/ or Cr and Cr/sub 2/O/sub 3/) are created in a non-linear fashion with depth into the coating. By simple materials admixing, a coating is formed with varying optical constants (n, k). Layered media generally consist of interference films, films with thicknesses below the wavelength of light, made of alternating dissimilar media such as a dielectric and metal combination. This paper presents details of the properties of stratified coatings. Coatings that serve as antireflection films, transparent optical insulation (silica aerogel), thermal heat mirrors, or selective absorbers are also discussed. Both interference and semiconductor types of heat mirrors are evaluated. Four types of selective absorbers are also covered: dendritic optical trapping, graded composite, metal/dielectric tandems, and optical interference techniques.

Lampert, C.M.

1983-05-01T23:59:59.000Z

285

Solar cell with back side contacts  

DOE Patents [OSTI]

A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

2013-12-24T23:59:59.000Z

286

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 10 · Summary 1Montana State University: Solar Cells Lecture 10: Summary Summer 2010 Class Montana State University: Solar Cells Lecture 10: Summary 2 Solar Cell Operation n Emitter p Base Rear Contact Antireflection coating Absorption of photon

Kaiser, Todd J.

287

Stabilization of solar films against hi temperature deactivation  

DOE Patents [OSTI]

A multi-layer solar energy collector of improved stability comprising: (1) a solar absorptive film consisting essentially of copper oxide, cobalt oxide and manganese oxide; (2) a substrate of quartz, silicate glass or a stainless steel; and (3) an interlayer of platinum, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of platinum to obtain a stable conductor-dielectric tandem.

Jefferson, Clinton F. (Millburn, NJ)

1984-03-20T23:59:59.000Z

288

Nanocrystal Solar Cells  

E-Print Network [OSTI]

research on organic photovoltaic cells since small molecule10 years prior (4). Photovoltaic cells with an active layerof the associated photovoltaic cells. 2.4 Charge transport

Gur, Ilan

2006-01-01T23:59:59.000Z

289

Process Development for High Voc CdTe Solar Cells  

SciTech Connect (OSTI)

This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

Ferekides, C. S.; Morel, D. L.

2011-05-01T23:59:59.000Z

290

Light trapping in solar cells at the extreme coupling limit  

E-Print Network [OSTI]

We calculate the maximal absorption enhancement obtainable by guided mode excitation in a weakly absorbing dielectric slab over wide wavelength ranges. The slab mimics thin film silicon solar cells in the low absorption regime. We consider simultaneously wavelength-scale periodicity of the texture, small thickness of the film, modal properties of the guided waves and their confinement to the film. Also we investigate the effect of the incident angle on the absorption enhancement. Our calculations provide tighter bounds for the absorption enhancement but still significant improvement is possible. Our explanation of the absorption enhancement can help better exploitation of the guided modes in thin film devices.

Naqavi, Ali; Battaglia, Corsin; Herzig, Hans Peter; Ballif, Christophe

2012-01-01T23:59:59.000Z

291

Process and structures for fabrication of solar cells with laser ablation steps to form contact holes  

DOE Patents [OSTI]

Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.

Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

2013-11-19T23:59:59.000Z

292

INVESTIGATIONS OF CuInTe2 / CdS & CdTe / CdS HETEROJUNCTION SOLAR CELLS.  

E-Print Network [OSTI]

??Thin film solar cells of Copper Indium Telluride and Cadmium Sulfide junctions were fabricated on plain ITO glass slides and also on those coated with (more)

Gutta, Venkatesh

2011-01-01T23:59:59.000Z

293

Solar cells with a twist Comments ( 35)  

E-Print Network [OSTI]

Solar cells with a twist Article Comments ( 35) JULIE STEENHUYSEN REUTERS OCTOBER 7, 2008 AT 9:58 AM EDT CHICAGO -- U.S. researchers have found a way to make efficient silicon-based solar cells of buildings as opportunities for solar energy," Prof. Rogers said in a telephone interview. Solar cells, which

Rogers, John A.

294

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network [OSTI]

M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinthan both. Solar-hydrogen and fuel-cell vehicles wouldberegulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA. DeLuchi

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

295

Influence of different sulfur to selenium ratios on the structural and electronic properties of Cu(In,Ga)(S,Se){sub 2} thin films and solar cells formed by the stacked elemental layer process  

SciTech Connect (OSTI)

In this study, we investigate the effect of different elemental selenium to elemental sulfur ratios on the chalcopyrite phase formation in Cu(In,Ga)(S,Se){sub 2} thin films. The films are formed by the stacked elemental layer process. The structural and electronic properties of the thin films and solar cells are analyzed by means of scanning electron microscopy, glow discharge optical emission spectrometry, X-ray diffraction, X-ray fluorescence, Raman spectroscopy, spectral photoluminescence as well as current-voltage, and quantum efficiency measurements. The influence of different S/(S+Se) ratios on the anion incorporation and on the Ga/In distribution is investigated. We find a homogenous sulfur concentration profile inside the film from the top surface to the bottom. External quantum efficiency measurements show that the band edge of the solar cell device is shifted to shorter wavelength, which enhances the open-circuit voltages. The relative increase of the open-circuit voltage with S/(S+Se) ratio is lower than expected from the band gap energy trend, which is attributed to the presence of S-induced defects. We also observe a linear decrease of the short-circuit current density with increasing S/(S+Se) ratio which can be explained by a reduced absorption. Above a critical S/(S+Se) ratio of around 0.61, the fill factor drops drastically, which is accompanied by a strong series resistance increase which may be attributed to changes in the back contact or p-n junction properties.

Mueller, B. J., E-mail: bjm.mueller@web.de [Robert Bosch GmbH, Corporate Research and Advance Engineering, Advanced Functional Materials and Microsystems, D-70839 Gerlingen (Germany); Institute of Micro- and Nanomaterials, University of Ulm, D-89081 Ulm (Germany); Zimmermann, C.; Haug, V., E-mail: veronika.haug@de.bosch.com; Koehler, T.; Zweigart, S. [Robert Bosch GmbH, Corporate Research and Advance Engineering, Advanced Functional Materials and Microsystems, D-70839 Gerlingen (Germany); Hergert, F. [Bosch Solar CISTech GmbH, D-14772 Brandenburg (Germany); Herr, U., E-mail: ulrich.herr@uni-ulm.de [Institute of Micro- and Nanomaterials, University of Ulm, D-89081 Ulm (Germany)

2014-11-07T23:59:59.000Z

296

Solar Energy Materials & Solar Cells 78 (2003) 567595 Low-mobility solar cells: a device physics primer  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 78 (2003) 567­595 Low-mobility solar cells: a device physics, Syracuse, New York 13244-1130, USA Abstract The properties of pin solar cells based on photogeneration for the solar conversion efficiency of amorphous silicon-based cells that are limited by valence bandtail

Schiff, Eric A.

297

California: TetraCell Silicon Solar Cell Improves Efficiency...  

Energy Savers [EERE]

California: TetraCell Silicon Solar Cell Improves Efficiency, Wins R&D 100 Award California: TetraCell Silicon Solar Cell Improves Efficiency, Wins R&D 100 Award August 16, 2013 -...

298

Development of concentrator solar cells  

SciTech Connect (OSTI)

A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

Not Available

1994-08-01T23:59:59.000Z

299

Oligo and Poly-thiophene/Zno Hybrid Nanowire Solar Cells  

E-Print Network [OSTI]

ZnO Hybrid Nanowire Solar Cells Alejandro L. Briseno, Thomashybrid single nanowire solar cell. End-functionalized oligo-Individual nanowire solar cell devices exhibited well-

Briseno, Alejandro L.

2010-01-01T23:59:59.000Z

300

Investigation of polycrystalline thin-film CuInSe{sub 2} solar cells based on ZnSe windows. Annual subcontract report, 15 Febraury 1992--14 February 1993  

SciTech Connect (OSTI)

Investigations of ZnSe/CIS solar cells are being carried out in an effort to improve the efficiencies CIS cells and to determine if ZnSe is a viable alternative to CdS as a window material. MOCVD growth of ZnSe is accomplished in a SPIRE 500XT reactor housed in the Electronic Materials Laboratory at WSU Tri-Cities by reacting a zinc adduct with H{sub 2}Se. Conductive n-type ZnSe is grown by using iodine as a dopant. Ethyliodide was mixed with helium and installed on one of the gas lines to the system. ZnSe films have been grown on CIS substrates at 200{degrees}C to 250{degrees}C. ZnO is also being deposited by MOCVD by reacting tetrahydrofuran (THF) with a zinc adduct. ZnSe/CIS heterojunctions have been studied by growing n-ZnSe films onto 2 cm x 2 cm CIS substrates diced from materials supplied by Siemens and then depositing an array of aluminum circular areas 2.8.mm in diameter on top of the ZnSe to serve as contacts. Al films are deposited with a thickness of 80 to l00 {angstrom}so that light can pass through the film, thus allowing the illuminated characteristics of the ZnSe/CIS junction to be tested. Accounting for the 20 to 25 % transmittance through the Al film into the ZnSe/CIS structure, current devices have estimated, active-area AM1.5 efficiencies of 14 %. Open circuit voltages > 500 mV are often attained.

Olsen, L C [Washington State Univ. at Tri-Cities, Richland, WA (United States)

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

(Melanin-Sensitized Solar Cell) : 696220016  

E-Print Network [OSTI]

the majority dye-sensitized solar cell research all uses the Ruthenium-complex as a light harvester. Dye-sensitized solar cell, DSSC 1991GrätzelDSSC[1] DSSCGrätzel cellDSSC polypyridyl complexes (Melanin-Sensitized Solar Cell) : : : 696220016 #12; #12;#12; #12;I PLD

302

FLEXIBLE CdTe SOLAR CELLS BY A LOW TEMPERATURE PROCESS ON ITO/ZnO COATED A. Salavei, I. Rimmaudo, F. Piccinelli1  

E-Print Network [OSTI]

FLEXIBLE CdTe SOLAR CELLS BY A LOW TEMPERATURE PROCESS ON ITO/ZnO COATED POLYMERS A. Salavei, I will be discussed. Keywords: Flexible Substrate, CdTe, ITO, Laser Processing, Thin Film Solar Cell 1 INTRODUCTION Thin film solar cells deposited on a flexible substrate are easier to integrate in buildings; they also

Romeo, Alessandro

303

Microscale solar cells for high concentration on polycrystalline Cu(In,Ga)Se2 Myriam Paire,1,2,3,4,a)  

E-Print Network [OSTI]

Microscale solar cells for high concentration on polycrystalline Cu(In,Ga)Se2 thin films Myriam experiments on polycrystalline thin film solar cells. High level regime is reached, thanks to the micrometric grids are used on concentrator solar cells. The grid coverage is a trade-off between the decreased

Paris-Sud XI, Université de

304

Aerogel tempelated ZnO dye-sensitized solar cells.  

SciTech Connect (OSTI)

Atomic layer deposition is employed to conformally coat low density, high surface area aerogel films with ZnO. The ZnO/aerogel membranes are incorporated as photoanodes in dye-sensitized solar cells, which exhibit excellent power efficiencies of up to 2.4% under 100 mW cm{sup -2} light intensity.

Hamann, T. W.; Martinson , A. B. E.; Elam, J. W.; Pellin, M. J.; Hupp, J. T.; Materials Science Division; Northwestern Univ.

2008-01-01T23:59:59.000Z

305

Effects of Dye Loading Conditions on the Energy Conversion Efficiency of ZnO and TiO2 Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

light conversion efficiency of zinc oxide (ZnO) film electrodes in dye-sensitized solar cellsO) has been explored as an alternative material in dye-sensitized solar cells. The use of Zn as an alternative material for improving the solar cell performance in dye-sensitized solar cells due to (1) Zn

Cao, Guozhong

306

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 05 · P-N Junction 1Montana State University: Solar Cells Lecture 5: P-N Junction P-N Junction · Solar Cell is a large area P-N junction electron (hole) positive) 2Montana State University: Solar Cells Lecture 5: P-N Junction p-n Junction p n P

Kaiser, Todd J.

307

Process of making solar cell module  

DOE Patents [OSTI]

A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.

Packer, M.; Coyle, P.J.

1981-03-09T23:59:59.000Z

308

Key Physical Mechanisms in Nanostructured Solar Cells  

SciTech Connect (OSTI)

The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

Dr Stephan Bremner

2010-07-21T23:59:59.000Z

309

Enhanced light-conversion efficiency of titanium-dioxide dye-sensitized solar cells with the addition of  

E-Print Network [OSTI]

Enhanced light-conversion efficiency of titanium- dioxide dye-sensitized solar cells-doped tin oxide (FTO) nanoparticles and the application of such electrodes on dye-sensitized solar cell to the presence of ITO or FTO nanoparticles. Keywords: dye-sensitized solar cell, nanoparticle, electrode film

Cao, Guozhong

310

Ultra-Thin Metal Films for Enhanced Solar Absorption  

E-Print Network [OSTI]

This paper presents modelled results for optical absorption in ultra-thin films of nickel, gold and silver over the solar spectrum. It is found in the case of nickel there is an optimum thickness for maximum solar absorption around 10-13nm. This effect is not observed for gold or silver. It is postulated that this is an interference effect occurring due the particular real and imaginary refractive profile of nickel across the solar spectrum.

Ahmad, N; Teng, M; Cryan, M J

2012-01-01T23:59:59.000Z

311

Solar module having reflector between cells  

DOE Patents [OSTI]

A photovoltaic module comprising an array of electrically interconnected photovoltaic cells disposed in a planar and mutually spaced relationship between a light-transparent front cover member in sheet form and a back sheet structure is provided with a novel light-reflecting means disposed between adjacent cells for reflecting light falling in the areas between cells back toward said transparent cover member for further internal reflection onto the solar cells. The light-reflecting comprises a flexible plastic film that has been embossed so as to have a plurality of small V-shaped grooves in its front surface, and a thin light-reflecting coating on said front surface, the portions of said coating along the sides of said grooves forming light-reflecting facets, said grooves being formed so that said facets will reflect light impinging thereon back into said transparent cover sheet with an angle of incidence greater than the critical angle, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to said solar modules, thereby increasing the current output of the module.

Kardauskas, Michael J. (Billerica, MA)

1999-01-01T23:59:59.000Z

312

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 02 Microfabrication ­ A combination · Photolithograpy · Depostion · Etching 1 Montana State University: Solar Cells Lecture 2: Microfabrication Flow Montana State University: Solar Cells Lecture 2: Microfabrication Questions · What is heat? · Heat

Kaiser, Todd J.

313

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 09 · Photovoltaic Systems 1Montana State University: Solar Cells Lecture 9: PV Systems Several types of operating modes · Centralized power plant or wanted Montana State University: Solar Cells Lecture 9: PV Systems 2 Residential Side Mounted Montana

Kaiser, Todd J.

314

Nanowire-based All Oxide Solar Cells  

E-Print Network [OSTI]

7: 471. 6) Rai, B.P. Solar Cells, 1988, 25, 265. 7) Minami,1999, 2) Green, M.A. , Solar Cells, 1982, Prentice-Hall,of ZnO nanowire array used in solar cells, prior to Cu 2 O

Yang, Peidong

2009-01-01T23:59:59.000Z

315

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 Solar Cells Todd J. Kaiser Lecture 04 Semiconductor Materials Chapter 1 1Montana State University: Solar Cells Lecture 4: Semiconductor Materials Semiconductor Bond Model Bohr electrons interact to form bonds 2Montana State University: Solar Cells Lecture 4: Semiconductor Materials

Kaiser, Todd J.

316

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 Solar Cells Todd J. Kaiser Lecture 03 Nature of Sunlight 1Montana State University: Solar Cells Lecture 3: Nature of Sunlight Wave-Particle Duality Light acts as Waves University: Solar Cells Lecture 3: Nature of Sunlight Properties of Light Sunlight contains photons of many

Kaiser, Todd J.

317

When Function Follows Form: Plastic Solar Cells | ANSER Center...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

When Function Follows Form: Plastic Solar Cells Home > Research > ANSER Research Highlights > When Function Follows Form: Plastic Solar Cells...

318

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network [OSTI]

electrodes for dye-sensitized solar cells, Nano Lett. 8 (electrodes for dye-sensitized solar cells, Nano Letters 8,

Shao, Qinghui

2009-01-01T23:59:59.000Z

319

Method of making quasi-grain boundary-free polycrystalline solar cell structure and solar cell structure obtained thereby  

DOE Patents [OSTI]

A new solar cell structure is provided which will increase the efficiency of polycrystalline solar cells by suppressing or completely eliminating the recombination losses due to the presence of grain boundaries. This is achieved by avoiding the formation of the p-n junction (or other types of junctions) in the grain boundaries and by eliminating the grain boundaries from the active area of the cell. This basic concept can be applied to any polycrystalline material; however, it will be most beneficial for cost-effective materials having small grains, including thin film materials.

Gonzalez, Franklin N. (Gainesville, FL); Neugroschel, Arnost (Gainesville, FL)

1984-02-14T23:59:59.000Z

320

NANO REVIEW Enhancing Solar Cell Efficiencies through 1-D Nanostructures  

E-Print Network [OSTI]

include dye-sensitized solar cells, quantum- dot-sensitized solar cells, and p-n junction solar cells their efficiencies more practical. Now the third-generation solar cells, such as dye-sensitized solar cells (DSSCsNANO REVIEW Enhancing Solar Cell Efficiencies through 1-D Nanostructures Kehan Yu ? Junhong Chen

Chen, Junhong

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Compensated amorphous silicon solar cell  

DOE Patents [OSTI]

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

Devaud, Genevieve (629 S. Humphrey Ave., Oak Park, IL 60304)

1983-01-01T23:59:59.000Z

322

Solar cells Improved Hybrid Solar Cells via in situ UV Polymerization  

E-Print Network [OSTI]

Solar cells Improved Hybrid Solar Cells via in situ UV Polymerization Sanja Tepavcevic, Seth B-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples mobility of the photoactive layer can be enhanced. 1. Introduction Hybrid solar cells have been developed

Sibener, Steven

323

Solar Cells, 3 (1981) 337 -340 337 HIGH EFFICIENCY BIFACIAL BACK SURFACE FIELD SOLAR CELLS  

E-Print Network [OSTI]

. CUEVAS, A. LUQUE, J. EGUREN and J. DEL ALAMO Instituto de Energia Solar, Escuela Tdcnica Superior deSolar Cells, 3 (1981) 337 - 340 337 HIGH EFFICIENCY BIFACIAL BACK SURFACE FIELD SOLAR CELLS A solar cells are presented. Effi- ciencies of 15.7% and 13.6% were measured under front and back air mass

del Alamo, Jesús A.

324

Influence of Cationic Precursors on CdS Quantum-Dot-Sensitized Solar Cell Prepared by Successive Ionic Layer Adsorption and  

E-Print Network [OSTI]

as 15% was achieved for perovskite-sensitized solar cells.7 As a derivative of dye-sensitized solarInfluence of Cationic Precursors on CdS Quantum-Dot-Sensitized Solar Cell Prepared by Successive (QDs) onto porous oxide films for quantum-dot-sensitized solar cell (QDSC) applications. In this work

Cao, Guozhong

325

Three-junction solar cell  

DOE Patents [OSTI]

A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

Ludowise, Michael J. (Cupertino, CA)

1986-01-01T23:59:59.000Z

326

Spectral sensitization of nanocrystalline solar cells  

DOE Patents [OSTI]

This invention relates to dye sensitized polycrystalline photoelectrochemical solar cells for use in energy transduction from light to electricity. It concerns the utility of highly absorbing organic chromophores as sensitizers in such cells and the degree to which they may be utilized alone and in combination to produce an efficient photoelectrochemical cell, e.g., a regenerative solar cell.

Spitler, Mark T. (Concord, MA); Ehret, Anne (Malden, MA); Stuhl, Louis S. (Bedford, MA)

2002-01-01T23:59:59.000Z

327

Tax Credits Give Thin-Film Solar a Big Boost | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Thin-Film Solar a Big Boost October 18, 2010 - 2:00pm Addthis MiaSol will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery...

328

A replaceable reflective film for solar concentrators  

SciTech Connect (OSTI)

The 3M Company manufactures a silvered acrylic film called ECP-305 that is regarded as the preferred reflective film for use on stretched-membrane heliostats. However, ECP-305 will degrade in time, due to both corrosion of the silver layer and delamination at the film's silver-to-acrylic interface, and will eventually need to be replaced. 3M uses a very aggressive adhesive on this film, and once it is laminated, replacement is very difficult. The purpose of this investigation was the development of a replaceable reflector, a reflective film that can be easily removed and replaced. A replaceable reflector was successfully configured by laminating ECP-305 to the top surface of a smooth, dimensionally stable polymer film, with a removable adhesive applied to the underside of the polymer film. Several stages of screening and testing led to the selection of a 0.010-inch thick polycarbonate (GE 8030) as the best polymer film and a medium tack tape (3M Y-9425) was selected as the best removable adhesive. To demonstrate the feasibility of the replaceable reflector concept and to provide a real-time field test, the chosen construction was successfully applied to the 50-m{sup 2} SKI heliostat at the Central Receiver Test Facility at Sandia National Laboratories in Albuquerque. 4 refs., 13 figs., 7 tabs.

Not Available

1991-09-01T23:59:59.000Z

329

The reversal of the laser-beam-induced-current contrast with varying illumination density in a Cu{sub 2}ZnSnSe{sub 4} thin-film solar cell  

SciTech Connect (OSTI)

We apply an array of correlated spatially-resolved techniques, including ?-Raman/photoluminescence/reflectance/laser-beam-induced-current in conjunction with scanning electron microscopy and atomic force microscopy, to study the impact of the microscopic-scale thickness inhomogeneity of CdS layer in a Cu{sub 2}ZnSnSe{sub 4} thin-film solar cell. Thicker CdS regions are found to cause more light reflecting loss thus yield lower external quantum efficiencies and energy conversion efficiencies than the general area. However, these regions show much less efficiency degradation at high illumination intensity, leading to an inversion of laser-beam-induced-current contrast in the area mapping. While improving the CdS layer uniformity can boost the device performance, the finding further points out the possibility of operating thin-film photovoltaic devices based on the similar materials (such as CuInGaSe{sub 2}, CdTe, Cu{sub 2}ZnSn(S,Se){sub 4}) under a substantially higher illumination density for concentrated photovoltaic and photo-detection.

Chen, Qiong; Zhang, Yong, E-mail: yong.zhang@uncc.edu [Department of Electrical and Computer Engineering, and Energy Production and Infrastructure Center (EPIC), The University of North Carolina at Charlotte, Charlotte, North Carolina 28223 (United States)] [Department of Electrical and Computer Engineering, and Energy Production and Infrastructure Center (EPIC), The University of North Carolina at Charlotte, Charlotte, North Carolina 28223 (United States)

2013-12-09T23:59:59.000Z

330

Direct measurements of band gap grading in polycrystalline CIGS solar cells  

E-Print Network [OSTI]

We present direct measurements of depth-resolved band gap variations of CuIn(1-x)Ga(x)Se2 thin-film solar cell absorbers. A new measurement technique combining parallel measurements of local thin-film interference and spectral photoluminescence was developed for this purpose. We find sample-dependent correlation parameters between measured band gap depth and composition profiles, and emphasize the importance of direct measurements. These results bring a quantitative insight into the electronic properties of the solar cells and open a new way to analyze parameters that determine the efficiency of solar cells.

M. P. Heinrich; Z-H. Zhang; Y. Zhang; O. Kiowski; M. Powalla; U. Lemmer; A. Slobodskyy

2010-09-20T23:59:59.000Z

331

Direct measurements of band gap grading in polycrystalline CIGS solar cells  

E-Print Network [OSTI]

We present direct measurements of depth-resolved band gap variations of CuIn(1-x)Ga(x)Se2 thin-film solar cell absorbers. A new measurement technique combining parallel measurements of local thin-film interference and spectral photoluminescence was developed for this purpose. We find sample-dependent correlation parameters between measured band gap depth and composition profiles, and emphasize the importance of direct measurements. These results bring a quantitative insight into the electronic properties of the solar cells and open a new way to analyze parameters that determine the efficiency of solar cells.

Heinrich, M P; Zhang, Y; Kiowski, O; Powalla, M; Lemmer, U; Slobodskyy, A

2010-01-01T23:59:59.000Z

332

Parabolic-Dish Solar Concentrators of Film on Foam  

E-Print Network [OSTI]

Parabolic and spherical mirrors are constructed of aluminized PET polyester film on urethane foam. During construction, the chosen shape of the mirror is created by manipulating the elastic/plastic behavior of the film with air pressure. Foam is then applied to the film and, once hardened, air pressure is removed. At an f-number of 0.68, preliminary models have an optical angular spread of less than 0.25 degrees, a factor of 3.3 smaller than that for a perfectly spherical mirror. The possibility exists for creating large-lightweight mirrors with excellent shape and stiffness. These "film-on-foam" construction techniques may also be applicable to parabolic-trough solar concentrators but do not appear to be suitable for optical imaging applications because of irregularities in the film.

Barton, Sean A

2009-01-01T23:59:59.000Z

333

Solar Cell Modules With Improved Backskin  

DOE Patents [OSTI]

A laminated solar cell module comprises a front light transmitting support, a plurality of interconnected solar cells encapsulated by a light-transmitting encapsulant material, and an improved backskin formed of an ionomer/nylon alloy. The improved backskin has a toughness and melting point temperature sufficiently great to avoid any likelihood of it being pierced by any of the components that interconnect the solar cells.

Gonsiorawski, Ronald C. (Danvers, MA)

2003-12-09T23:59:59.000Z

334

Bypass diode for a solar cell  

DOE Patents [OSTI]

Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

Rim, Seung Bum (Palo Alto, CA); Kim, Taeseok (San Jose, CA); Smith, David D. (Campbell, CA); Cousins, Peter J. (Menlo Park, CA)

2012-03-13T23:59:59.000Z

335

Improved monolithic tandem solar cell  

SciTech Connect (OSTI)

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surf ace of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

Wanlass, M.W.

1991-04-23T23:59:59.000Z

336

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network [OSTI]

organic, hybrid and dye sensitized solar cells took place insolar cells, dye-sensitized solar cells, solar inks using

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

337

Very High Efficiency Solar Cell Modules  

SciTech Connect (OSTI)

The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

2009-01-01T23:59:59.000Z

338

Pennsylvania Company Develops Solar Cell Printing Technology  

Broader source: Energy.gov [DOE]

The technology uses Plextronics conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper.

339

COLLOIDAL SEMICONDUCTOR NANOCRYSTALS BASED SOLAR CELLS  

E-Print Network [OSTI]

-II heterojunction bi-layer structure in solar-cells based on CdTe and CdSe nanocrystals. Submitted to ACS NANO. 2011

Tessler, Nir

340

Cost Effectiveness for Solar Control Film for Residential Applications  

E-Print Network [OSTI]

For the existing housing, retrofitting single or double glazed clear glass window with solar films can be an effective measure to reduce their peak power demand, and large scale application of the same on national level can be an effective tool...

Al-Taqi, H. H.; Maheshwari, G. P.; Alasseri, R.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Current and lattice matched tandem solar cell  

DOE Patents [OSTI]

A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

Olson, Jerry M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

342

Front contact solar cell with formed emitter  

SciTech Connect (OSTI)

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John

2014-11-04T23:59:59.000Z

343

Front contact solar cell with formed emitter  

DOE Patents [OSTI]

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John (Menlo Park, CA)

2012-07-17T23:59:59.000Z

344

EELE408 Photovoltaics Lecture 10 Solar Cell Operation  

E-Print Network [OSTI]

@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman P-N Junction Solar Cell of the number of carriers collected by the solar cell to the number of photons of a given energy incident energy is not utilized by the solar cell and instead goes to heating the solar cell 12 solar cell

Kaiser, Todd J.

345

Method for processing silicon solar cells  

DOE Patents [OSTI]

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

1997-05-06T23:59:59.000Z

346

Method for processing silicon solar cells  

DOE Patents [OSTI]

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

Tsuo, Y. Simon (Golden, CO); Landry, Marc D. (Lafayette, CO); Pitts, John R. (Lakewood, CO)

1997-01-01T23:59:59.000Z

347

Sensitized energy transfer for organic solar cells, optical solar concentrators, and solar pumped lasers  

E-Print Network [OSTI]

The separation of chromophore absorption and excitonic processes, such as singlet exciton fission and photoluminescence, offers several advantages to the design of organic solar cells and luminescent solar concentrators ...

Reusswig, Philip David

2014-01-01T23:59:59.000Z

348

Reducing the Cost of Solar Cells  

SciTech Connect (OSTI)

Solar-powered electricity prices could soon approach those of power from coal or natural gas thanks to collaborative research with solar startup Ampulse Corporation at the National Renewable Energy Laboratory. Silicon wafers account for almost half the cost of today's solar photovoltaic panels, so reducing or eliminating wafer costs is essential to bringing prices down. Current crystalline silicon technology converts energy in a highly efficient manner; however, that technology is manufactured with processes that could stand some improvement. The industry needs a method that is less complex, creates less waste and uses less energy. First, half the refined silicon is lost as dust in the wafer-sawing process, driving module costs higher. Wafers are sawn off of large cylindrical ingots, or boules, of silicon. A typical 2-meter boule loses as many as 6,000 potential wafers during sawing. Second, the wafers produced are much thicker than necessary. To efficiently convert sunlight into electricity, the wafers need be only one-tenth the typical thickness. NREL, the Oak Ridge National Laboratory and Ampulse have partnered on an approach to eliminate this waste and dramatically lower the cost of the finished solar panels. By using a chemical vapor deposition process to grow the silicon on inexpensive foil, Ampulse is able to make the solar cells just thick enough to convert most of the solar energy into electricity. No more sawdust - and no more wasting refined silicon materials. NREL developed the technology to grow high-quality silicon and ORNL developed the metal foil that has the correct crystal structure to support that growth. Ampulse is installing a pilot manufacturing line in NREL's Process Development Integration Laboratory, where solar companies can work closely with lab scientists on integrated equipment to answer pressing questions related to their technology development, as well as rapidly overcoming R and D challenges and risk. NREL's program is focused on transformative innovation in the domestic PV industry. With knowledge and expertise acquired from the PDIL pilot production line tools, Ampulse plans to design a full-scale production line to accommodate long rolls of metal foil. The Ampulse process 'goes straight from pure silicon-containing gas to high-quality crystal silicon film,' said Brent Nelson, the operational manager for the Process Development Integration Laboratory. 'The advantage is you can make the wafer just as thin as you need it - 10 microns or less.' Most of today's solar cells are made out of wafer crystalline silicon, though thin-film cells made of more exotic elements such as copper, indium, gallium, arsenic, cadmium, tellurium and others are making a strong push into the market. The advantage of silicon is its abundance, because it is derived from sand. Silicon's disadvantage is that purifying it into wafers suitable for solar cells can be expensive and energy intensive. Manufacturers add carbon and heat to sand to produce metallurgical-grade silicon, which is useful in other industries, but not yet suitable for making solar cells. So this metallurgical-grade silicon is then converted to pure trichlorosilane (SiCl3) or silane (SiH4) gas. Typically, the purified gas is then converted to create a silicon feedstock at 1,000 degrees Celsius. This feedstock is melted at 1,414 C and recrystallized into crystal ingots that are finally sawed into wafers. The Ampulse method differs in that it eliminates the last two steps in the traditional process and works directly with the silane gas growing only the needed silicon right onto a foil substrate. A team of NREL scientists had developed a way to use a process called hot-wire chemical vapor deposition to thicken silicon wafers with near perfect crystal structure. Using a hot tungsten filament much like the one found in an incandescent light bulb, the silane gas molecules are broken apart and deposited onto the wafer using the chemical vapor deposition technique at about 700 C - a much lower temperature than needed to make the wafer. The hot filament dec

Scanlon, B.

2012-04-01T23:59:59.000Z

349

Si concentrator solar cell development. [Final report  

SciTech Connect (OSTI)

This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

Krut, D.D. [Spectrolab, Inc., Sylmar, CA (United States)

1994-10-01T23:59:59.000Z

350

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing  

E-Print Network [OSTI]

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing light within a specific wavelength. Today's thin-film solar cells could not function light to pass through to the cell's active layers. Until recently, TCOs were seen as a necessary

351

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network [OSTI]

1.6 Schematic of a solar panel with PV cells connected inand installation cost of solar panels and enhance PV cell1.6 Schematic of a solar panel with PV cells connected in

Leow, Shin Woei

2014-01-01T23:59:59.000Z

352

REVIEW OF SCIENTIFIC INSTRUMENTS 85, 106103 (2014) Note: Calibration of EBT3 radiochromic film for measuring solar  

E-Print Network [OSTI]

work has focused on the use of film detectors for passive monitoring the solar (UVA + UVB) radiation. used the EBT film2 and EBT2 film12 for measuring solar (UVA + UVB) exposures. The EBT film had been to assess the feasibility of using the EBT3 film for measuring solar UV radiation and to provide information

Yu, K.N.

353

Quantum Junction Solar Cells Jiang Tang,,  

E-Print Network [OSTI]

Quantum Junction Solar Cells Jiang Tang,, Huan Liu,, David Zhitomirsky, Sjoerd Hoogland, Xihua, 1037 Luoyu Road, Wuhan, Hubei 430074, China Department of Electrical and Computer Engineering-type and p-type materials to create the first quantum junction solar cells. We present a family

354

Joint Development of Coated Conductor and Low Cost Thin Film Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-007-213  

SciTech Connect (OSTI)

UES plans on developing CIGS thin films by using Metal Organic Deposition (MOD) technique as it is a low-cost, non-vacuum method for scale-up to large area PV modules. NREL will support UES, Inc. through expert processing, characterization and device fabrication. NREL scientists will also help develop a processing phase diagram which includes composition, film thickness, annealing temperature and ambient conditions. Routine measurements of devices and materials will be done under NREL's core support project.

Bhattacharya, R.

2011-02-01T23:59:59.000Z

355

CRADA Final Report: Process development for hybrid solar cells  

E-Print Network [OSTI]

development for hybrid solar cells Summary of the specific20 wafers with full tandem solar cell test structure perNitride/Silicon Tandem Solar Cell, Appl. Phys. Express 2

Ager, Joel W

2011-01-01T23:59:59.000Z

356

Thermodynamics, Entropy, Information and the Efficiency of Solar Cells  

E-Print Network [OSTI]

91, 43. T. Markvart, Solar cell as a heat engine: energyTiedje, Physical Limits to Solar Cell Efficiency, in EnergyThe Carnot Factor in Solar-Cell Theory. Solid State

Abrams, Zeev R.

2012-01-01T23:59:59.000Z

357

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network [OSTI]

the intermediate band solar cell under nonideal space chargeInGaP/GaAs tandem solar cells, Appl. Phys. Lett. 70, 381 (band impact ionization and solar cell efficiency, J. Appl.

Shao, Qinghui

2009-01-01T23:59:59.000Z

358

Recent improvements in materials for thin GaAs and multibandgap solar cells  

SciTech Connect (OSTI)

The High Efficiency Concepts Program at SERI supports research on III-V compound semiconductors with the objective of achieving the maximum attainable photovoltaic conversion efficiencies for terrestrial solar electric power. The outcome of this research may also affect the future of space photovoltaic cells. While the interest in thin-film, high-efficiency solar cells for terrestrial applications is driven principally by consideration of system costs, such cells would also improve the power density of space power arrays.

Benner, J.P.

1985-05-01T23:59:59.000Z

359

Silicon point contact concentrator solar cells  

SciTech Connect (OSTI)

Experimental results are presented for thin high resistivity concentrator silicon solar cells which use a back-side point-contact geometry. Cells of 130 and 233 micron thickness were fabricated and characterized. The thin cells were found to have efficiencies greater than 22 percent for incident solar intensities of 3 to 30 W/sq cm. Efficiency peaked at 23 percent at 11 W/sq cm measured at 22-25 C. Strategies for obtaining higher efficiencies with this solar cell design are discussed. 8 references.

Sinton, R.A.; Kwark, Y.; Swirhun, S.; Swanson, R.M.

1985-08-01T23:59:59.000Z

360

On the Design of Oxide Films, Nanomaterials, and Heterostructures for Solar Water Oxidation Photoanodes  

E-Print Network [OSTI]

to a series of dye-sensitized solar cells to achieve waterthe design of dye-sensitized solar cells, which require dyeevident in dye-sensitized solar cells when planar TiO 2 dye

Kronawitter, Coleman

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Coating for Silicon Solar Cell by Using Silvaco Software  

E-Print Network [OSTI]

efficiency of SiO 2/Si3N 4silicon solar cell. The solar cell structure was modelled by using Silvaco software

A. Lennie; H. Abdullah; Z. M. Shila; M. A. Hannan

362

Understanding Collection-Related Losses in Organic Solar Cells...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Collection-Related Losses in Organic Solar Cells Home > Research > ANSER Research Highlights > Understanding Collection-Related Losses in Organic Solar Cells...

363

New Morphological Paradigm Uncovered in Organic Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive...

364

New Morphological Paradigm Uncovered in Organic Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paradigm Uncovered in Organic Solar Cells Print Wednesday, 27 April 2011 00:00 Organic solar cells are made of light, flexible, renewable materials; they require simple and...

365

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network [OSTI]

MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS A thesisADVANCED MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS Insilicon layers. The technology to add the intrinsic layer

Han, Tao

2014-01-01T23:59:59.000Z

366

A Highly Efficient Solar Cell Made from a Dye-Modified ZnO-Covered TiO2 Nanoporous Electrode  

E-Print Network [OSTI]

-circuit photovoltage. Introduction Overall power conversion efficiency1,2 reaching 10% for dye sensitized solar cellA Highly Efficient Solar Cell Made from a Dye-Modified ZnO-Covered TiO2 Nanoporous Electrode Zhong A photoelectrochemical solar cell based on porous ZnO-covered TiO2 film has been fabricated with ruthenium bipyridyl

Huang, Yanyi

367

Layer-By-Layer Self-Assembly of CIGS Nanoparticles and Polymers for All-Solution Processable Low-Cost, High-Efficiency Solar Cells  

E-Print Network [OSTI]

-Cost, High-Efficiency Solar Cells Tung Ho1 , Robert Vittoe3 , Namratha Kakumanu2 , Sudhir Shrestha2-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202 Thin film solar cells made from copper indium gallium thereby affecting solar cell efficiency. This research aims to study various polymer materials to replace

Zhou, Yaoqi

368

Conducting polymers based counter electrodes for dye-sensitized solar cells  

SciTech Connect (OSTI)

Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

Veerender, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Saxena, Vibha, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gusain, Abhay, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Jha, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Koiry, S. P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Chauhan, A. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Aswal, D. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gupta, S. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

2014-04-24T23:59:59.000Z

369

NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films  

E-Print Network [OSTI]

NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films is critical of these materials could open new opportunities for introducing thin-film solar technologies that combine both low near the FeS2 thin-film surfaces and grain boundaries that limit its open-circuit voltage, rather than

370

Local Charge Neutrality Condition, Fermi Level, and Carrier Compensation of CdTe Polycrystalline Thin Film in CdS/CdTe Solar Cells  

E-Print Network [OSTI]

Te Solar Energy Research Center, NJIT, Newark, NJ 07102 2 National Renewable Energy Laboratory, Golden, CO in the band gap of semiconductors according to the charging and transition energy levels of the state being single or multiple, and according to the atomic configuration and formation of energy of the state being

371

Bypass diode for a solar cell  

DOE Patents [OSTI]

Methods of fabricating bypass diodes for solar cells are described. In once embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed on the first conductive region. In another embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed within, and surrounded by, an uppermost portion of the first conductive region but is not formed in a lowermost portion of the first conductive region.

Rim, Seung Bum; Kim, Taeseok; Smith, David D; Cousins, Peter J

2013-11-12T23:59:59.000Z

372

Heterojunction solar cell with passivated emitter surface  

DOE Patents [OSTI]

A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

Olson, J.M.; Kurtz, S.R.

1994-05-31T23:59:59.000Z

373

Heterojunction solar cell with passivated emitter surface  

DOE Patents [OSTI]

A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1994-01-01T23:59:59.000Z

374

Boron-doped amorphous diamondlike carbon as a new p-type window material in amorphous silicon p-i-n solar cells  

E-Print Network [OSTI]

-i-n solar cells Chang Hyun Lee and Koeng Su Lim Department of Electrical Engineering, Korea Advanced this film, amorphous silicon (a-Si solar cells with a novel p-a-DLC:H/p-a-SiC double p-layer structure were as window materials for amorphous silicon (a-Si based solar cells.14 In using such films as a p layer

Kim, Yong Jung

375

Effects of Electron Trapping and Protonation on the Efficiency of Water-Splitting Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

energy in fuels is a key challenge for solar energy research. Water-splitting dye- sensitized light illumination. In these cells, a mesoporous anatase TiO2 anode is sensitized with a dye and a water- sensitized solar cells. In nanocrystalline TiO2 films, trap states are thought to be the related

376

ULTRA-LIGHTWEIGHT AMORPHOUS SILICON SOLAR CELLS DEPOSITED OIN 7.5pn-1 THICK STAINLESS STEEL SUBSTRATES  

E-Print Network [OSTI]

ULTRA-LIGHTWEIGHT AMORPHOUS SILICON SOLAR CELLS DEPOSITED OIN 7.5pn-1 THICK STAINLESS STEEL specific power for space application, we deposited a-Si thin film solar cells on ultra-thin stainless steel-thin stainless steel (SS) substrates (down to 7.5 pm) for space power applications. In this paper, we report our

Deng, Xunming

377

Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier  

SciTech Connect (OSTI)

Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells.

Ip, Alexander H.; Labelle, Andr J.; Sargent, Edward H., E-mail: ted.sargent@utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4 (Canada)

2013-12-23T23:59:59.000Z

378

Fabrication and Characterization of Organic Solar Cells  

E-Print Network [OSTI]

conversion efficiency (PCE) by %16 and %30, respectively.it is demonstrated that the PCE of the graphene based solarpower conversion efficiency (PCE). PCE of a solar cell is

Yengel, Emre

2010-01-01T23:59:59.000Z

379

Rational design of hybrid organic solar cells  

E-Print Network [OSTI]

In this thesis, we will present a novel design for a nano-structured organic-inorganic hybrid photovoltaic material that will address current challenges in bulk heterojunction (BHJ) organic-based solar cell materials. ...

Lentz, Levi (Levi Carl)

2014-01-01T23:59:59.000Z

380

Colloidal cluster phases and solar cells  

E-Print Network [OSTI]

The arrangement of soft materials through solution processing techniques is a topic of profound importance for next generation solar cells; the resulting morphology has a major influence on construction, performance and ...

Mailer, Alastair George

2012-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Texturization of multicrystalline silicon solar cells  

E-Print Network [OSTI]

A significant efficiency gain for crystalline silicon solar cells can be achieved by surface texturization. This research was directed at developing a low-cost, high-throughput and reliable texturing method that can create ...

Li, Dai-Yin

2010-01-01T23:59:59.000Z

382

End-Capping Effect of a Narrow Bandgap Conjugated Polymer on Bulk Heterojunction Solar Cells  

SciTech Connect (OSTI)

Device performances of BHJ solar cells based on poly[(4,4-didodecyldithieno[3,2-b:2,3-d]silole)-2,6-diyl-alt-(2,1,3-benzoxadiazole)-4,7-diyl]and PC??BM improve by capping the chain ends with thiophene fragments. This structural modification yields materials that are more thermally robust and that can be used in devices with thicker films important considerations for enabling the mass production of plastic solar cells.

Park, Jin Kuen [Univ. of California, Santa Barbara, CA (United States); Jo, Jang [Univ. of California, Santa Barbara, CA (United States); Seo, Jung Hwa [Univ. of California, Santa Barbara, CA (United States); Moon, Ji Seo [Univ. of California, Santa Barbara, CA (United States); Park, Yeong Don [Univ. of California, Santa Barbara, CA (United States); Lee, Kwanghee [Gwangiu Inst. of Science and Technology (Korea); Heeger, Alan J. [Univ. of California, Santa Barbara, CA (United States); Bazan, Guillermo C. [Univ. of California, Santa Barbara, CA (United States)

2011-06-03T23:59:59.000Z

383

Highly conductive PEDOT:PSS on flexible substrate as ITO-free anode for polymer solar cells  

SciTech Connect (OSTI)

In this work, highly conductive anode based on PEDOT:PSS is proposed as substitute of Indio-Tin Oxide (ITO) in flexible solar cells. The anodic conductive polymer was spin coated on a 125 ?m thick polyethylene naphthalate (PEN) substrate. The obtained film was characterized in terms of structure and physical- chemical proprieties. The obtained results are very promising and the conductive film will be investigated in future as electrode in a complete polymeric solar cell.

Del Mauro, A. De Girolamo; Ricciardi, R.; Montanino, M.; Morvillo, P.; Minarini, C. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, p.le E. Fermi 1, 80055 Portici (Italy)

2014-05-15T23:59:59.000Z

384

Hybrid Silicon Nanocone-Polymer Solar Cells Sangmoo Jeong,  

E-Print Network [OSTI]

alternative energy solution. KEYWORDS: Nanotexture, solar cell, heterojunction, conductive polymer, light solar cell.1 Conventional Si solar cells have p-n junctions inside for an efficient extraction of lightHybrid Silicon Nanocone-Polymer Solar Cells Sangmoo Jeong, Erik C. Garnett, Shuang Wang, Zongfu Yu

Cui, Yi

385

Development efforts on silicon solar cells  

SciTech Connect (OSTI)

This report presents a summary of the major results from the silicon high-concentration solar cell program at Stanford University from the period 1983--1990. Following a detailed design study, efforts were focused upon experimental verification of the modeled results that predicted 28% efficiencies for a new 500X concentrator solar cell design. A history of the research progress is given detailing the critical experiments that enabled the demonstration of 19.6% cells in 1983, then subsequent improvements culminating in efficiencies over 28% by 1987. In addition to laboratory efficiency improvements, the report details advances in the understanding of the fundamental device physics and modeling of silicon solar cell operation. The latter stages of the program included the development of module-ready cells in large quantity for the EPRI prototype 500X concentrator modules. Several of these 48-cell modules are currently in the field under test.

Sinton, R.A.; Swanson, R.M. (Stanford Univ., CA (United States))

1992-02-01T23:59:59.000Z

386

High open circuit voltages of solar cells based on quantum dot and dye hybrid-sensitization  

SciTech Connect (OSTI)

A type of solar cell based on quantum dot (QD) and dye hybrid-sensitized mesoporous TiO{sub 2} film electrode was designed and reported. The electrode was consisted of a TiO{sub 2} nanoparticle (NP) thin film layer sensitized with CdS quantum dot (QD) and an amorphous TiO{sub 2} coated TiO{sub 2} NP thin film layer that sensitized with C106 dye. The amorphous TiO{sub 2} layer was obtained by TiCl{sub 4} post-treatment to improve the properties of solar cells. Research showed that the solar cells fabricated with as-prepared hybrid-sensitized electrode exhibited excellent photovoltaic performances and a fairly high open circuit voltage of 796?mV was achieved.

Zhao, Yujie; Zhao, Wanyu; Chen, Jingkuo; Li, Huayang; Fu, Wuyou, E-mail: hari@hpu.edu.cn, E-mail: fuwy56@163.com; Sun, Guang; Cao, Jianliang; Zhang, Zhanying [School of Materials Science and Engineering and Cultivating Base for Key Laboratory of Environment-friendly Inorganic Materials in University of Henan Province, Henan Polytechnic University, Jiaozuo 454000 (China)] [School of Materials Science and Engineering and Cultivating Base for Key Laboratory of Environment-friendly Inorganic Materials in University of Henan Province, Henan Polytechnic University, Jiaozuo 454000 (China); Bala, Hari, E-mail: hari@hpu.edu.cn, E-mail: fuwy56@163.com [School of Materials Science and Engineering and Cultivating Base for Key Laboratory of Environment-friendly Inorganic Materials in University of Henan Province, Henan Polytechnic University, Jiaozuo 454000 (China) [School of Materials Science and Engineering and Cultivating Base for Key Laboratory of Environment-friendly Inorganic Materials in University of Henan Province, Henan Polytechnic University, Jiaozuo 454000 (China); College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028043 (China)

2014-01-06T23:59:59.000Z

387

Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Cells  

E-Print Network [OSTI]

Light trapping in solar cells allows for increased current and voltage, as well as reduced materials cost. It is known that in geometrical optics, a maximum 4n^2 absorption enhancement factor can be achieved by randomly texturing the surface of the solar cell, where n is the material refractive index. This ray-optics absorption enhancement limit only holds when the thickness of the solar cell is much greater than the optical wavelength. In sub-wavelength thin films, the fundamental questions remain unanswered: (1) what is the sub-wavelength absorption enhancement limit and (2) what surface texture realizes this optimal absorption enhancement? We turn to computational electromagnetic optimization in order to design nanoscale textures for light trapping in sub-wavelength thin films. For high-index thin films, in the weakly absorbing limit, our optimized surface textures yield an angle- and frequency-averaged enhancement factor ~39. They perform roughly 30% better than randomly textured structures, but they fall...

Ganapati, Vidya; Yablonovitch, Eli

2013-01-01T23:59:59.000Z

388

Limit of light coupling into solar cells  

E-Print Network [OSTI]

We introduce a limit for the strength of coupling light into the modes of solar cells. This limit depends on both a cell's thickness and its modal properties. For a cell with refractive index n and thickness d, we obtain a maximal coupling rate of 2c*sqrt(n^2-1)/d where c is speed of light. Our method can be used in the design of solar cells and in calculating their efficiency limits; besides, it can be applied to a broad variety of resonant phenomena and devices.

Naqavi, A; Ballif, C; Scharf, T; Herzig, H P

2013-01-01T23:59:59.000Z

389

NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL  

E-Print Network [OSTI]

by Dye-Sensitized Photovoltaic cells. Inorganic Chemistry,by Dye-Sensitized Photovoltaic Cells. Inorganic ChemistryThe characteristics of a photovoltaic cell. Generally,

Phuyal, Dibya

2012-01-01T23:59:59.000Z

390

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network [OSTI]

using front-facing photovoltaic cell luminescent solarwith front-facing photovoltaic cells using weighted Montefor tandem photovoltaic cells, Thin Solid Films, vol. 516,

Leow, Shin Woei

2014-01-01T23:59:59.000Z

391

Predicted roles of defects on band offsets and energetics at CIGS (Cu(In,Ga)Se2/CdS) solar cell interfaces and implications for improving performance  

E-Print Network [OSTI]

, and in- deed the global operating capacity for solar photovoltaics is increasing steadily.1 CurrentlyPredicted roles of defects on band offsets and energetics at CIGS (Cu(In,Ga)Se2/CdS) solar cell ZnO sputtering on the performance of Cu(In,Ga)Se2 thin film solar cells Appl. Phys. Lett. 105, 083906

Goddard III, William A.

392

CIBS Solar Cell Development Final Scientific/Technical Report  

SciTech Connect (OSTI)

Efforts to fabricate and study a new photovoltaic material, copper indium boron diselenide (CuInxB1-xSe2 or CIBS), were undertaken. Attempts to prepare CIBS using sputtering deposition techniques resulted in segregation of boron from the rest of elements in the material. CIBS nanocrystals were prepared from the reaction of elemental Se with CuCl, InCl3, and boric acid in solution, but the product material quickly decomposed upon heating that was required in attempts to convert the nanocrystals into a thin film. The investigation of the reasons for the lack of CIBS material stability led to new structure-property studies of closely-related photovoltaic systems as well as studies of new solar cell materials and processing methods that could enhance the development of next-generation solar technologies. A detailed compositional study of CuIn1-xAlxSe2 (CIAS, a system closely related to CIBS) revealed a non-linear correlation between crystal lattice size and the Al/(In+Al) ratios with dual-phase formation being observed. A new nanocrystal-to-thin-film processing method was developed for the preparation of CuIn1-xGaxSe2 (CIGS) thin films in which colloidal Se particles are sprayed in contact with CuIn1-xGaxS2 nanoparticles and heated in an argon atmosphere with no other Se source in the system. The process is non-vacuum and does not require toxic gases such as Se vapor or H2Se. Expertise gained from these studies was applied to new research in the preparation of thin-film pyrite FeS2, an attractive earth-abundant candidate material for next-generation photovoltaics. Three methods successfully produced pure pyrite FeS2 films: sulfurization of sputtered Fe films, chemical bath deposition, and sulfurization of Fe2O3 sol-gel precursors. The last method produced pinhole-free films that may be viable for device development. Nickel, platinum, and possibly carbon would appear to serve as good ohmic contact materials. While CdS has a reasonable conduction band energy match to serve as an n-type buffer material in a pyrite FeS2-based solar cell, the less toxic SnS2 is being explored for this purpose.

Exstrom, Christopher L.; Soukup, Rodney J.; Ianno, Natale J.

2011-09-28T23:59:59.000Z

393

Nanoscale Charge Transport in Excitonic Solar Cells  

SciTech Connect (OSTI)

Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

Venkat Bommisetty, South Dakota State University

2011-06-23T23:59:59.000Z

394

NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL  

E-Print Network [OSTI]

technologies. Silicon photovoltaic module cost have continuegeneration photovoltaic panels due to their low cost, easycost-efficient multiple junction solar devices with remarkably high efficiency should be the direction and objective of photovoltaic

Phuyal, Dibya

2012-01-01T23:59:59.000Z

395

* Corresponding author. Solar Energy Materials & Solar Cells 58 (1999) 209}218  

E-Print Network [OSTI]

* Corresponding author. Solar Energy Materials & Solar Cells 58 (1999) 209}218 A highly e solar cells based on the CdTe/CdS heterojunction still exhibits quite a few open problems$cient and stable CdTe/CdS thin "lm solar cell N. Romeo, A. Bosio, R. Tedeschi*, A. Romeo, V. Canevari Dipartimento

Romeo, Alessandro

396

Effective Optical Properties of Highly Ordered Mesoporous Thin Films  

E-Print Network [OSTI]

a solid-state dye-sensitized solar cells, Thin Solid Films,tions include dye-sensitized solar cells [8 10], low-ke?ciency solar cell based on dye- a sensitized colloidal

Hutchinson, Neal J.; Coquil, Thomas; Navid, Ashcon; Pilon, Laurent

2010-01-01T23:59:59.000Z

397

Singlet fission efficiency in tetracene-based organic solar cells  

SciTech Connect (OSTI)

Singlet exciton fission splits one singlet exciton into two triplet excitons. Using a joint analysis of photocurrent and fluorescence modulation under a magnetic field, we determine that the triplet yield within optimized tetracene organic photovoltaic devices is 153%??5% for a tetracene film thickness of 20?nm. The corresponding internal quantum efficiency is 127%??18%. These results are used to prove the effectiveness of a simplified triplet yield measurement that relies only on the magnetic field modulation of fluorescence. Despite its relatively slow rate of singlet fission, the measured triplet yields confirm that tetracene is presently the best candidate for use with silicon solar cells.

Wu, Tony C., E-mail: tonyw@mit.edu; Thompson, Nicholas J.; Congreve, Daniel N.; Hontz, Eric; Yost, Shane R.; Van Voorhis, Troy; Baldo, Marc A., E-mail: baldo@mit.edu [Energy Frontier Research Center for Excitonics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2014-05-12T23:59:59.000Z

398

Questions I will answer What is a solar cell?  

E-Print Network [OSTI]

grid 4 #12;5 #12;Solar panels on the Interna9onal Space Sta9on 6 #12;Area#12;Questions I will answer · What is a solar cell? · How are solar cells are solar cells made? · How do they work? · How efficient can they be? · How

McGehee, Michael

399

Investigating the efficiency of Silicon Solar cells at  

E-Print Network [OSTI]

Investigating the efficiency of Silicon Solar cells at different temperatures and wavelengths to study the characteristics of silicon photovoltaic cells (solar cells). We vary the wavelength of light as well as the temperature of the solar cell to investigate how the open voltage across the cell varies

Attari, Shahzeen Z.

400

Liquid cooled, linear focus solar cell receiver  

DOE Patents [OSTI]

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, Aaron S. (Broomall, PA)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

High-efficiency concentrator silicon solar cells  

SciTech Connect (OSTI)

This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

1990-11-01T23:59:59.000Z

402

Liquid cooled, linear focus solar cell receiver  

DOE Patents [OSTI]

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, A.S.

1983-12-08T23:59:59.000Z

403

Method of restoring degraded solar cells  

DOE Patents [OSTI]

Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200 C for at least 30 minutes restores their efficiency. 2 figs.

Staebler, D.L.

1983-02-01T23:59:59.000Z

404

Method of restoring degraded solar cells  

DOE Patents [OSTI]

Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200.degree. C. for at least 30 minutes restores their efficiency.

Staebler, David L. (Lawrenceville, NJ)

1983-01-01T23:59:59.000Z

405

Method of fabricating a solar cell array  

DOE Patents [OSTI]

A first set of pre-tabbed solar cells are assembled in a predetermined array with at least part of each tab facing upward, each tab being fixed to a bonding pad on one cell and abutting a bonding pad on an adjacent cell. The cells are held in place with a first vacuum support. The array is then inverted onto a second vacuum support which holds the tabs firmly against the cell pads they abut. The cells are exposed to radiation to melt and reflow the solder pads for bonding the tab portions not already fixed to bonding pads to these pads.

Lazzery, Angelo G. (Oaklyn, NJ); Crouthamel, Marvin S. (Pennsauken, NJ); Coyle, Peter J. (Oaklyn, NJ)

1982-01-01T23:59:59.000Z

406

The Kanatzidis - Chang Cell: dye sensitized all solid state solar...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Kanatzidis - Chang Cell: dye sensitized all solid state solar cell Home > Research > ANSER Research Highlights > The Kanatzidis - Chang Cell: dye sensitized all solid state...

407

STATEMENT OF CONSIDERATIONS REQUEST BY SHELL SOLAR INDUSTRIES...  

Broader source: Energy.gov (indexed) [DOE]

to item 2 of SSI's waiver petition, the purpose of this subcontract encompasses thin film solar cell and module development including improved thin film module efficiencies,...

408

Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals  

E-Print Network [OSTI]

polymer bulk heterojunction solar cells. Journal of PhysicalS. & Meissner, D. Hybrid solar cells based on nanoparticlesmodelling of organic solar cells: The dependence of internal

Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, Antonios G.; Alivisatos, A. Paul

2006-01-01T23:59:59.000Z

409

Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars  

E-Print Network [OSTI]

Nanocrystalline dye-sensitized solar cell/copper indium3, pp. M. Grtzel, Dye-sensitized solar cells, Journal ofefficiency solar cell based on dye- sensitized colloidal

Tu, Bor-An Clayton

2013-01-01T23:59:59.000Z

410

EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques  

E-Print Network [OSTI]

;3 Screen Printed Solar Cells · Firing the contacts ­ The furnace heats the cell to a high temperature by Efficiency 22 Rear Panel before Lamination 23 Buried Contact Solar Cells · High Efficiency · Laser groved1 EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques Dr. Todd J. Kaiser

Kaiser, Todd J.

411

Origami-enabled deformable silicon solar cells  

SciTech Connect (OSTI)

Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Tu, Hongen; Xu, Yong [Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Michigan 48202 (United States); Song, Zeming; Jiang, Hanqing, E-mail: hanqing.jiang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Yu, Hongyu, E-mail: hongyu.yu@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)

2014-02-24T23:59:59.000Z

412

High throughput solar cell ablation system  

DOE Patents [OSTI]

A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

2012-09-11T23:59:59.000Z

413

High throughput solar cell ablation system  

DOE Patents [OSTI]

A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

2014-10-14T23:59:59.000Z

414

Solar cell contact formation using laser ablation  

DOE Patents [OSTI]

The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

Harley, Gabriel; Smith, David; Cousins, Peter

2012-12-04T23:59:59.000Z

415

Solar cell contact formation using laser ablation  

DOE Patents [OSTI]

The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

Harley, Gabriel; Smith, David D.; Cousins, Peter John

2014-07-22T23:59:59.000Z

416

Novel buried contact technology for advanced silicon solar cells  

SciTech Connect (OSTI)

Increased efficiency of silicon solar cells has resulted in the increased complexity and cost of manufacture. Optical properties can be enhanced by increasing the optical path length, while minimizing both bulk and surface recombination. Conventional silicon based solar cells are fabricated by a series of physical or chemical vapor deposition processes followed by photolithography and etching processes for each layer. These repeated deposition and etching cycles are not only difficult to perform but they also generate severe surface topography. This topography is a major cause of yield loss and reliability problems for advanced solar cells. These problems are especially severe for high aspect ratio contact holes. An alternative method of performing this metallization inexpensively and reliably is by the use of electroless plating. As the plating process occurs selectively on Si and not on the surface passivation layer, thick metal films (Ni and Cu) can be deposited which depend entirely upon the depth of the trench used. The advantages of electroless plating as an alternative to standard metallization will be presented.

Ni Dheasuna, C.; Mathewson, A.; Hecking, L.; Wrixon, G.T. [National Microelectronics Research Centre, Cork (Ireland)

1994-12-31T23:59:59.000Z

417

Multi-junction solar cell device  

DOE Patents [OSTI]

A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

2007-12-18T23:59:59.000Z

418

Method for producing textured substrates for thin-film photovoltaic cells  

DOE Patents [OSTI]

The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.

Lauf, Robert J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

419

Method for producing textured substrates for thin-film photovoltaic cells  

DOE Patents [OSTI]

The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells.

Lauf, Robert J. (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

420

Method for producing textured substrates for thin-film photovoltaic cells  

DOE Patents [OSTI]

The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells. 4 figures.

Lauf, R.J.

1994-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Method for producing textured substrates for thin-film photovoltaic cells  

DOE Patents [OSTI]

The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells. 4 figs.

Lauf, R.J.

1996-04-02T23:59:59.000Z

422

November 21, 2000 PV Lesson Plan 1 Solar Cells  

E-Print Network [OSTI]

November 21, 2000 PV Lesson Plan 1 Solar Cells Prepared for the Oregon Million Solar Roofs Coalition By Frank Vignola University of Oregon Solar Radiation Monitoring Lab John Hocken South Eugene High School Gary Grace South Eugene High School In Schools #12;1 Solar Cells Lesson Plan Content

Oregon, University of

423

Institute of Photo Electronic Thin Film Devices and Technology...  

Open Energy Info (EERE)

Technology of Nankai University Place: Tianjin Municipality, China Zip: 300071 Sector: Solar Product: A thin-film solar cell research institute in China. References: Institute...

424

Near perfect solar absorption in ultra-thin-film GaAs photonic crystals  

E-Print Network [OSTI]

Near perfect solar absorption in ultra-thin-film GaAs photonic crystals Sergey Eyderman,*a Alexei Deinegaa and Sajeev Johnab We present designs that enable a significant increase of solar absorption­99.5% solar absorption is demonstrated depending on the photonic crystal architecture used and the nature

John, Sajeev

425

Electrical overstress failure in silicon solar cells  

SciTech Connect (OSTI)

A solar-cell electrical-overstress-failure model and the results of experimental measurements of threshold pulsed failure currents on four types of silicon solar cells are presented. The transient EMP field surrounding a lightning stroke has been identified as a potential threat to a photovoltaic array, yet failure analysis of solar cells in a pulsed environment had not previously been reported. Failure in the low-resistivity concentrator cells at pulse widths between 1 ..mu..s and 1 ms occurred initially in the junction. Finger damage in the form of silver melting occurs at currents only slightly greater than that required for junction damage. The result of reverse-bias transient-overstress tests on high-resistivity (10 ..cap omega..cm) cells demonstrated that the predominant failure mode was due to edge currents. These flat-plate cells failed at currents of only 4 to 20 A, which is one or two orders of magnitude below the model predictions. It thus appears that high-resistivity flat-plate cells are quite vulnerable to electrical overstress which could be produced by a variety of mechanisms.

Pease, R.L.; Barnum, J.R.; van Lint, V.A.J.; Vulliet, W.V.; Wrobel, T.F.

1982-11-01T23:59:59.000Z

426

DOI: 10.1002/adma.200702781 Aerogel Templated ZnO Dye-Sensitized Solar Cells**  

E-Print Network [OSTI]

DOI: 10.1002/adma.200702781 Aerogel Templated ZnO Dye-Sensitized Solar Cells** By Thomas W. Hamann silica aerogel films, featuring a large range of controllable thickness and porosity, are prepared as substructure templates. The aerogel templates are coated with ZnO via atomic layer deposition (ALD) to yield

427

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption  

E-Print Network [OSTI]

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption--Gallium arsenide, nanospheres, photovoltaic systems, whispering gallery modes (WGMs). I. INTRODUCTION THE route as the active layer is thinned [2]. Thin-film photovoltaics offer the possibility to significantly reduce

Grandidier, Jonathan

428

Micro-Honeycomb Network Structure of Single-Walled Carbon Nanotubes for Heterojunction Solar Cell  

E-Print Network [OSTI]

Micro-Honeycomb Network Structure of Single-Walled Carbon Nanotubes for Heterojunction Solar Cell, The University of Tokyo, Tokyo 113-8656, Japan We propose a self-organized micro-honeycomb network structure in Fig. 2. The micro-honeycomb SWNTs network film was placed on top of the substrate which has a 3 mm ? 3

Maruyama, Shigeo

429

Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)  

SciTech Connect (OSTI)

First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

Not Available

2013-08-01T23:59:59.000Z

430

Photovoltaic nanocrystal scintillators hybridized on Si solar cells  

E-Print Network [OSTI]

Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion@bilkent.edu.tr Abstract: We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit

Demir, Hilmi Volkan

431

High temperature investigations of crystalline silicon solar cell materials  

E-Print Network [OSTI]

Crystalline silicon solar cells are a promising candidate to provide a sustainable, clean energy source for the future. In order to bring about widespread adoption of solar cells, much work is needed to reduce their cost. ...

Hudelson, George David Stephen, III

2009-01-01T23:59:59.000Z

432

Light incoherence theory revisited by Heisenberg time-energy uncertainty challenges solar cell optimization  

E-Print Network [OSTI]

Optimization of the efficiency of solar cells is a major challenge for renewable energies. Using a rigorous theoretical approach, we show that the photocurrent generated in a solar cell depends strongly on the degree of coherence of the incident light. In accordance with Heisenberg uncertainty time-energy, incoherent light at photons of carrier energy lower than the active material bandgap can be absorbed whereas coherent light at the same carrier energy cannot. We identify cases where incoherence does enhance efficiency. This result has a dramatical impact on the way solar cells must be optimized regarding sunlight. As an illustration, surface-corrugated GaAs and c-Si thin-film solar cells are considered.

Herman, Aline; Deparis, Olivier

2014-01-01T23:59:59.000Z

433

Metal electrode for amorphous silicon solar cells  

DOE Patents [OSTI]

An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

Williams, Richard (Princeton, NJ)

1983-01-01T23:59:59.000Z

434

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

­ Unleashes electrical energy ­ Unpredictable ­ Destructive · Harnesses electrical energy for human· Harnesses of Electrical Principles · Electric Charge · Electric Current · Electric Fields · Electric Potential Difference University: Solar Cells Lecture 7: EE Fundamentals Electric Potential Difference (Voltage) · Charges

Kaiser, Todd J.

435

Method of fabricating a solar cell  

DOE Patents [OSTI]

Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.

Pass, Thomas; Rogers, Robert

2014-02-25T23:59:59.000Z

436

Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization  

E-Print Network [OSTI]

Research, Thin-Film Photovoltaic (PV) Cells Market Analysiscost of photovoltaic systems (such as solar cells) due tosolar cells are created by depositing layers of photovoltaic

Bielecki, Anthony

2013-01-01T23:59:59.000Z

437

Assessing Possibilities & Limits for Solar Cells  

E-Print Network [OSTI]

What are the solar cell efficiencies that we can strive towards? We show here that several simple criteria, based on cell and module performance data, serve to evaluate and compare all types of today's solar cells. Analyzing these data allows to gauge in how far significant progress can be expected for the various cell types and, most importantly from both the science and technology points of view, if basic bounds, beyond those known today, may exist, that can limit such progress. This is important, because half a century after Shockley and Queisser (SQ) presented limits, based on detailed balance calculations for single absorber solar cells, those are still held to be the only ones, we need to consider; most efforts to go beyond SQ are directed towards attempts to circumvent them, primarily via smart optics, or optoelectronics. After formulating the criteria and analyzing known loss mechanisms, use of such criteria suggests - additional limits for newer types of cells, Organic and Dye-Sensitized ones, and th...

Nayak, Pabitra K; Cahen, David

2011-01-01T23:59:59.000Z

438

Optoelectronic simulation of GaAs solar cells with angularly selective filters  

SciTech Connect (OSTI)

We discuss the influence of angularly selective filters on thin film gallium arsenide solar cells. For this reason, the detailed balance model was refined to fit our needs with respect to Auger recombination, reflection, transmission, and realistic absorption. For calculating real systems, an approach was made to include optical effects of angularly selective filters into electron-hole dynamic equations implemented in PC1D, a one dimensional solar cell calculation tool. With this approach, we find a relative V{sub oc} increase of 5% for an idealized 100?nm GaAs cell, including Auger recombination.

Kraus, Tobias, E-mail: tobias.kraus@ise.fraunhofer.de; Hhn, Oliver; Hauser, Hubert; Blsi, Benedikt [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

2014-02-07T23:59:59.000Z

439

Flexible thermal cycle test equipment for concentrator solar cells  

DOE Patents [OSTI]

A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

2012-06-19T23:59:59.000Z

440

ZnO Nanotube Based Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

ZnO Nanotube Based Dye-Sensitized Solar Cells Alex B. F. Martinson,, Jeffrey W. Elam, Joseph T templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition of the best dye- sensitized solar cells (DSSCs) is the product of a dye with moderate extinction

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solar Cells DOI: 10.1002/anie.200904492  

E-Print Network [OSTI]

* Renewable and green energy are the technological drivers of the future economy. Solar cells (SCs) are one-sensitized solar cells (DSSCs) that have a significantly enhanced energy conversion efficiency. The ZnO NWs grow. This research demonstrates a new approach from 2D to 3D solar cells with advantages of high efficiency, expanded

Wang, Zhong L.

442

Light Trapping in Solar Cells Using Resonant Nanostructures P. Spinelli  

E-Print Network [OSTI]

Light Trapping in Solar Cells Using Resonant Nanostructures P. Spinelli #12;Summary Photovoltaics solar cell is reduced, due to incomplete absorption of light. In this thesis, we investigate new ways of enhancing light absorption in Si solar cells by using nanostructures that show resonant interaction

van Rooij, Robert

443

Phototransistor Behavior Based on Dye-Sensitized Solar Cell  

E-Print Network [OSTI]

In the present work, a light-controlled device cell is established based on the dye-sensitized solar cell using nanocrystalline TiO2 films. Voltage-current curves are characterized by three types of transport behaviors: linear increase, saturated plateau and breakdown-like increase, which are actually of the typical performances for a photo-gated transistor. Moreover, an asymmetric behavior is observed in the voltage-current loops, which is believed to arise from the difference in the effective photo-conducting areas. The photovoltaic voltage between the shared counter electrode and drain (VCE-D) is investigated as well, clarifying that the predominant dark process in source and the predominant photovoltaic process in drain are series connected, modifying the electric potential levels and thus resulting in the characteristic phototransistor behaviors.

Wang, X Q; Wang, Y F; Zhou, W Q; Lu, Y M; Liu, Z Y

2012-01-01T23:59:59.000Z

444

27. 5-percent silicon concentrator solar cells  

SciTech Connect (OSTI)

Recent advances in silicon solar cells using the backside point-contact configuration have been extended resulting in 27.5-percent efficiencies at 10 W/sq cm (100 suns, 24 C), making these the most efficient solar cells reported to date. The one-sun efficiencies under an AM1.5 spectrum normalized to 100 mW/sq cm are 22 percent at 24 C based on the design area of the concentrator cell. The improvements reported here are largely due to the incorportation of optical light trapping to enhance the absorption of weakly absorbed near bandgap light. These results approach the projected efficiencies for a mature technology which are 23-24 percent at one sun and 29 percent in the 100-350-sun (10-35 W/sq cm) range. 10 references.

Sinton, R.A.; Kwark, Y.; Gan, J.Y.; Swanson, R.M.

1986-10-01T23:59:59.000Z

445

Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells  

E-Print Network [OSTI]

plasmon-enhanced dye- sensitized solar cells through metalnanostructure- based or dye-sensitized solar cells represent

Mariani, Giacomo

2013-01-01T23:59:59.000Z

446

Method of fabricating a solar cell with a tunnel dielectric layer  

DOE Patents [OSTI]

Methods of fabricating solar cells with tunnel dielectric layers are described. Solar cells with tunnel dielectric layers are also described.

Dennis, Tim; Harrington, Scott; Manning, Jane; Smith, David; Waldhauer, Ann

2012-12-18T23:59:59.000Z

447

Method of fabricating a solar cell with a tunnel dielectric layer  

DOE Patents [OSTI]

Methods of fabricating solar cells with tunnel dielectric layers are described. Solar cells with tunnel dielectric layers are also described.

Dennis, Tim; Harrington, Scott; Manning, Jane; Smith, David D; Waldhauer, Ann

2014-04-29T23:59:59.000Z

448

Polycrystalline CdTe Solar Cells on Buffered Commercial TCO-Coated Glass with Efficiencies Above 15%  

SciTech Connect (OSTI)

EPIR Technologies, Inc. reports the production of thin film polycrystalline CdTe devices with National Renewable Energy Laboratory (NREL)-verified efficiencies above 15%. While previous reporting of high efficiency poly-CdTe solar cells utilized high-temperature technical glass, EPIR's cells were produced on commercially-available conductive glass. The devices exhibit fill factors up to 77% and short-circuit current densities around 24 mA/cm{sup 2}. EPIR developed a robust process for producing thin film CdTe solar cells through implementation of a high resistivity SnO{sub 2} buffer layer and optimization of the CdS window layer thickness. The effects of the high resistivity buffer layer on device performance were investigated, demonstrating improved overall performance and yield. To our knowledge, these are among the highest efficiencies yet reported and NREL-verified for a thin film CdTe solar cell fabricated using commercial conductive glass.

Banai, R.; Blissett, C.; Buurma, C.; Colegrove, E.; Bechmann, P.; Ellsworth, J.; Morley, M.; Barnes, S.; Lennon, C.; Gilmore, C.; Dhere, R.; Bergeson, J.; Scott, M.; Gessert, T.

2011-01-01T23:59:59.000Z

449

Solar cells with low cost substrates and process of making same  

DOE Patents [OSTI]

A solar cell having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron.sup.2. The intermediate recrystallized film has a grain size in the range of from about 10 microns.sup.2 to about 10,000 microns.sup.2 and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns.sup.2. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.

Mitchell, Kim W. (Indian Hills, CO)

1984-01-01T23:59:59.000Z

450

Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells  

E-Print Network [OSTI]

Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells Xunming Deng and Eric A. Schiff Table of Contents 1 Overview 3 1.1 Amorphous Silicon: The First Bipolar Amorphous Semiconductor 3 1.2 Designs for Amorphous Silicon Solar Cells: A Guided Tour 6

Deng, Xunming

451

Effective Optical Properties of Absorbing Nanoporous and Nanocomposite Thin-Films  

E-Print Network [OSTI]

a solid-state dye-sensitized solar cells, Thin Solid Films,cations include dye-sensitized solar cells [5, 6, 7], low-ke?ciency solar cell based on dye- sensitized colloidal TiO

Garahan, Anna; Pilon, Laurent; Yin, Juan; Saxena, Indu

2007-01-01T23:59:59.000Z

452

Indium doped zinc oxide nanowire thin films for antireflection and solar absorber coating applications  

SciTech Connect (OSTI)

Indium doped ZnO nanowire thin films were prepared by thermal oxidation of Zn-In metal bilayer films at 500C. The ZnO:In nanowires are 20-100 nm in diameter and several tens of microns long. X-ray diffraction patterns confirm the formation of oxide and indicate that the films are polycrystalline, both in the as deposited and annealed states. The transmission which is <2% for the as deposited Zn-In films increases to >90% for the ZnO:In nanowire films. Significantly, the reflectance for the as deposited films is < 10% in the region between 200 to 1500 nm and < 2% for the nanowire films. Thus, the as deposited films can be used solar absorber coatings while the nanowire films are useful for antireflection applications. The growth of nanowires by this technique is attractive since it does not involve very high temperatures and the use of catalysts.

Shaik, Ummar Pasha [ACRHEM, University of Hyderabad, Hyderabad-500046 (India); Krishna, M. Ghanashyam, E-mail: mgksp@uohyd.ac.in [ACRHEM and School of Physics, University of Hyderabad, Hyderabad-500046 (India)

2014-04-24T23:59:59.000Z

453

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Cell Operation  

E-Print Network [OSTI]

is lost as heat. energy Eg 2 31 Absorption process #12;ELEG620: Solar Electric Systems UniversityELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Cell and shunt resistance). #12;ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C

Honsberg, Christiana

454

E-Print Network 3.0 - area solar cells Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

<< < 1 2 3 4 5 > >> 1 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, Sept. 2009 THE BURIED EMITTER SOLAR CELL CONCEPT Summary: back contacted solar cell...

455

Wrinkling of Stiff Films on Stretched Compliant Films: Experimental and Theoretical Studies  

E-Print Network [OSTI]

substrate has not been well understood. The composite bilayer comprised with a stiff film and a stretched film has a critical application in developing advanced thin film solar cells for long duration stratosphere balloons. The presented thesis focuses...

Yang, Yi

2013-12-06T23:59:59.000Z

456

Initial Study of Solar Control Film in a Hotel Guest Room in Winter  

E-Print Network [OSTI]

studies about energy performance and its related financial savings and environmental improvement brought by those facilities, such as heat pumps, solar-control film on the window, sensor and dimmer for lighting control, etc. Nevertheless, there is a lack...

Chan, W. C.; Chen, Y.; Mak, B.; Li, D.; Huang, Y.; Xie, H.; Hou, G.

2006-01-01T23:59:59.000Z

457

Compensated amorphous-silicon solar cell  

DOE Patents [OSTI]

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

Devaud, G.

1982-06-21T23:59:59.000Z

458

Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials by  

E-Print Network [OSTI]

Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials­2077). Given the proposed scales of PV adoption, the health and environmental impacts of PV technology should also be considered. This project would examine the proposed solar cell materials and designs and create

Iglesia, Enrique

459

Investigation of Cd1-XMgxTe Alloys for Tandem Solar Cell Applications: Preprint  

SciTech Connect (OSTI)

Theoretical modeling of two-junction tandem solar cells shows that for optimal device performance, the bandgap of the top cell should be in the range of 1.6 to 1.8 eV. Cd1-xMgxTe (CMT) alloys have a lattice constant close to that of CdTe, and the addition of a small amount of Mg changes the bandgap considerably. In this paper, we present our work on developing CMT for solar cell applications. CMT films were prepared by vacuum deposition with co-evaporation of CdTe and Mg on substrates heated to 300-400 C. Films with a composition in the range of x = 0 to 0.66 were fabricated, and optical analysis of the films showed that the bandgap of the samples ranged from 1.5 to 2.3 eV and varied linearly with composition. For the fabrication of devices using these alloy films, we also investigated the effect of post-deposition CdCl2 heat treatment. We have investigated junctions between CdS and CMT alloys in the bandgap range of 1.5 to 1.8 eV for tandem cell applications. We have also worked on the ohmic contacts to the CMT alloy films using Cu/Au bilayers, and the preliminary data shows a significant effect of the contact processing on the device performance.

Dhere, R.; Ramanathan, K.; Scharf, J.; Moutinho, H.; To, B.; Duda, A.; Noufi, R.

2006-05-01T23:59:59.000Z

460

Core-shell ITO/ZnO/CdS/CdTe nanowire solar cells  

SciTech Connect (OSTI)

Radial p-n junction nanowire (NW) solar cells with high densities of CdTe NWs coated with indium tin oxide (ITO)/ZnO/CdS triple shells were grown with excellent heterointerfaces. The optical reflectance of the devices was lower than for equivalent planar films by a factor of 100. The best efficiency for the NW solar cells was ??=?2.49%, with current transport being dominated by recombination, and the conversion efficiencies being limited by a back contact barrier (?{sub B}?=?0.52?eV) and low shunt resistances (R{sub SH}?

Williams, B. L.; Phillips, L.; Major, J. D.; Durose, K. [Stephenson Institute for Renewable Energy, University of Liverpool, Chadwick Building, Peach St., Liverpool L69 7ZF (United Kingdom); Taylor, A. A.; Mendis, B. G.; Bowen, L. [G. J. Russell Microscopy Facility, University of Durham, South Road, Durham DH1 3LE (United Kingdom)

2014-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fabrication and Characterization of Organic Solar Cells  

E-Print Network [OSTI]

logistical problems associated with solar energy. One of theor environmental problems. 1.2 Solar Energy As being thephotovoltaic solar energy all suffer from the problem of not

Yengel, Emre

2010-01-01T23:59:59.000Z

462

Solar Energy Materials & Solar Cells 71 (2002) 511522 In situ Raman spectroscopy of the  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 71 (2002) 511­522 In situ Raman spectroscopy. In this situation, a low energy excitation (e.g. visible light) is needed to excite an electron to a neighboring

Nabben, Reinhard

463

Piezoelectric film load cell robot collision detector  

DOE Patents [OSTI]

A piezoelectric load cell which can be utilized for detecting collisions and obstruction of a robot arm end effector includes a force sensing element of metallized polyvinylidene fluoride (PVDF) film. The piezoelectric film sensing element and a resilient support pad are clamped in compression between upper and lower plates. The lower plate has a central recess in its upper face for supporting the support pad and sensing element, while the upper plate has a corresponding central projection formed on its lower face for bearing on the sensing element and support pad. The upper and lower plates are doweled together for concentric alignment and screwed together. The upper and lower plates are also adapted for mounting between the robot arm wrist and end effector. 3 figs.

Lembke, J.R.

1989-04-18T23:59:59.000Z

464

Piezoelectric film load cell robot collision detector  

DOE Patents [OSTI]

A piezoelectric load cell which can be utilized for detecting collisions and obstruction of a robot arm end effector includes a force sensing element of metallized polyvinylidene fluoride (PVDF) film. The piezoelectric film sensing element and a resilient support pad are clamped in compression between upper and lower plates. The lower plate has a central recess in its upper face for supporting the support pad and sensing element, while the upper plate has a corresponding central projection formed on its lower face for bearing on the sensing element and support pad. The upper and lower plates are dowelled together for concentric alignment and screwed together. The upper and lower plates are also adapted for mounting between the robot arm wrist and end effector. 3 figs.

Lembke, J.R.

1988-03-15T23:59:59.000Z

465

Piezoelectric film load cell robot collision detector  

DOE Patents [OSTI]

A piezoelectric load cell which can be utilized for detecting collisions and obstruction of a robot arm end effector includes a force sensing element of metallized polyvinylidene fluoride (PVDF) film. The piezoelectric film sensing element and a resilient support pad are clamped in compression between upper and lower plates. The lower plate has a central recess in its upper face for supporting the support pad and sensing element, while the upper plate has a corresponding central projection formed on its lower face for bearing on the sensing element and support pad. The upper and lower plates are dowelled together for concentric alignment and screwed together. The upper and lower plates are also adapted for mounting between the robot arm wrist and end effector.

Lembke, John R. (Overland Park, KS)

1989-04-18T23:59:59.000Z

466

Evaluation of concentration solar cells for terrestrial applications  

E-Print Network [OSTI]

Solar energy has become a hot prospect for the future replacement of fossil fuels, which have limited reserves and cause environmental problems. Solar cell is such a device to directly generate electricity from this clean ...

An, Tao, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

467

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network [OSTI]

efficiency of solar panels and power to weight ratio insolar cells, there exist two basic processes to convert sunlight power topower to a load connected when charged by Sun. The typical output voltage of a silicon based solar

Shao, Qinghui

2009-01-01T23:59:59.000Z

468

TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH  

SciTech Connect (OSTI)

Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT patterning and alignment, advances in commercial and research materials and field effect schemes. In addition, Eikos continued to develop improved efficiency coating materials and transfer methods suitable for batch and continuous roll-to-roll fabrication requirements. Finally, Eikos collaborated with NREL and the PV-community at large in fabricating and characterizing Invisicon???® enabled solar cells.

Glatkowski, P.J.; Landis, D.A.

2013-04-16T23:59:59.000Z

469

Engineering Schottky Contacts in Open-Air Fabricated Heterojunction Solar Cells to Enable High Performance and Ohmic Charge Transport  

E-Print Network [OSTI]

. Mater. 2010, 22, E254?E258. (10) Sarkar, K.; Braden, E. V.; Pogorzalek, S.; Yu, S.; Roth, S. V.; Mu?ller-Buschbaum, P. Monitoring Structural Dynamics of in Situ Spray-Deposited Zinc Oxide Films for Application in Dye-Sensitized Solar Cells. Chem... , 2112?2114. (17) Sarkar, K.; Braden, E. V.; Fro?schl, T.; Hu?sing, N.; Mu?ller- Buschbaum, P. Spray-Deposited Zinc Titanate Films Obtained via Sol?Gel Synthesis for Application in Dye-Sensitized Solar Cells. J. Mater. Chem. A 2014, 2, 15008?15014. (18...

Hoye, Robert L. Z.; Heffernan, Shane; Ievskaya, Yulia; Sadhanala, Aditya; Flewitt, Andrew; Friend, Richard H.; MacManus-Driscol, Judith L.; Musselman, Kevin P.

2014-11-24T23:59:59.000Z

470

Band structure engineering for solar energy applications: ZnO1-xSex films and devices  

E-Print Network [OSTI]

W. Walukiewicz, and J. Wu, Solar Energy Materials and Solarand M. J. Carter, Solar Energy Materials and Solar Cells 51,structure engineering for solar energy applications: ZnO 1-x

Mayer, Marie Annette

2012-01-01T23:59:59.000Z

471

Solare Cell Roof Tile And Method Of Forming Same  

DOE Patents [OSTI]

A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.

Hanoka, Jack I. (Brookline, MA); Real, Markus (Oberberg, CH)

1999-11-16T23:59:59.000Z

472

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network [OSTI]

Production of Solar Photovoltaic Cells Severin BorensteinProduction of Solar Photovoltaic Cells Severin Borenstein 1concerns is so- lar photovoltaic cells (PVs), which capture

Borenstein, Severin

2005-01-01T23:59:59.000Z

473

DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS A.Romeo, M. Arnold, D.L. Btzner, H. Zogg and A.N. Tiwari*  

E-Print Network [OSTI]

to the solar panel that can be adapted to any kind of shape and is easy to deploy in space. In the last yearsDEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS A.Romeo, M. Arnold, D.L. Bätzner, H. Zogg Telephone: +44-1509-227031 E-mail: a.n.tiwari@lboro.ac.uk ABSTRACT: Polycrystalline thin film solar cells

Romeo, Alessandro

474

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network [OSTI]

of degradation of solar cells, since a material structure,higher effect on the solar cells stability and performance.en.wikipedia.org/wiki/Solar_cell_efficiency, accessed 10) J.

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

475

Enhancing solar cells with plasmonic nanovoids  

E-Print Network [OSTI]

E (2.13) Here m? is an approximation of the effective mass of each electron incor- porating the effects of the lattice potential and electron-electron interactions alongside ? the characteristic damping term. Considering a harmonic in- cident electric... of plasmonic electric field enhance- ments at 3.3 eV (a) and 2.5 eV (b) in spherical silver nanovoids surrounded by a non-absorbing dielectric. Nanovoid plasmonic solar cells are placed on top of these silver structures, harnessing the electric field...

Lal, Niraj Narsey

2012-07-03T23:59:59.000Z

476

Method of fabricating bifacial tandem solar cells  

DOE Patents [OSTI]

A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

2014-10-07T23:59:59.000Z

477

Boosting Accuracy of Testing Multijunction Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

This NREL Highlight describes research into a more precise technology for measuring efficiency of concentrating solar cells, which will enable the industry to advance.

Not Available

2015-01-01T23:59:59.000Z

478

Solution-Processed Solar Cells using Colloidal Quantum Dots ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physical understanding, and performance-oriented engineering of colloidal quantum dot solar cells and light sensors. Bio: Ted Sargent received the B.Sc.Eng. (Engineering...

479

Putting together the full solar tandem cell | Center for Bio...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery Putting together the full solar tandem cell 24 Oct 2012 Ben...

480

Simple Method Quantifies Recombination Pathways in Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

NREL's analytic equation uses open-circuit voltage data to determine how much recombination occurs via different channels in a solar cell.

Not Available

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "film solar cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solar Energy Materials & Solar Cells 77 (2003) 319330 Structure and photoelectrochemical properties  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 77 (2003) 319­330 Letters Structure and photoelectrochemical a promis- ing strategy for solar energy conversion, with energy conversion efficiency as high monochromatic photon to current conversion efficiency, overall energy conversion yield (Z) and transient

Huang, Yanyi

482

Band structure engineering for solar energy applications: ZnO1-xSex films and devices  

E-Print Network [OSTI]

photovoltaics (CPV) from being economical. Instead, Si-based solar cells (with just under 20% efficiency

Mayer, Marie Annette

2012-01-01T23:59:59.000Z

483

An Overview of Solar Cell Technology Mike McGehee  

E-Print Network [OSTI]

An Overview of Solar Cell Technology Mike McGehee Materials Science and Engineering Global ClimateWatt and Evergreen Solar went bankrupt Jon Stewart, The Daily Show Solyndra, SpectraWatt and Evergreen Solar went provide 20 % of that. It takes a panel rated at 5 W, to average 1 W of power through the day and year, sog

McGehee, Michael

484

Efficiency limits of quantum well solar cells  

E-Print Network [OSTI]

The quantum well solar cell (QWSC) has been proposed as a flexible means to ensuring current matching for tandem cells. This paper explores the further advantage afforded by the indication that QWSCs operate in the radiative limit because radiative contribution to the dark current is seen to dominate in experimental data at biases corresponding to operation under concentration. The dark currents of QWSCs are analysed in terms of a light and dark current model. The model calculates the spectral response (QE) from field bearing regions and charge neutral layers and from the quantum wells by calculating the confined densities of states and absorption coefficient, and solving transport equations analytically. The total dark current is expressed as the sum of depletion layer and charge neutral radiative and non radiative currents consistent with parameter values extracted from QE fits to data. The depletion layer dark current is a sum of Shockley-Read-Hall non radiative, and radiative contributions. The charge neu...

Connolly, J P; Barnham, K W J; Bushnell, D B; Tibbits, T N D; Roberts, J S

2010-01-01T23:59:59.000Z

485

Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same  

DOE Patents [OSTI]

A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

Lindsey, Jonathan S. (Raleigh, NC); Chinnasamy, Muthiah (Raleigh, NC); Fan, Dazhong (Raleigh, NC)

2009-12-15T23:59:59.000Z

486

Fabrication and Characterization of Organic Solar Cells  

E-Print Network [OSTI]

Sources .1 1.2 Solar Energy..sources available are largely covered by hydropower, biomass energy, solar energy,Solar Energy As being the largest among carbon-neutral energy source,

Yengel, Emre

2010-01-01T23:59:59.000Z

487

Final Report: Sintered CZTS Nanoparticle Solar Cells on Metal Foil; July 26, 2011 - July 25, 2012  

SciTech Connect (OSTI)

This is the final report covering 12 months of this subcontract for research on high-efficiency copper zinc tin sulfide (CZTS)-based thin-film solar cells on flexible metal foil. Each of the first three quarters of the subcontract has been detailed in quarterly reports. In this final report highlights of the first three quarters will be provided and details will be given of the final quarter of the subcontract.

Leidholm, C.; Hotz, C.; Breeze, A.; Sunderland, C.; Ki, W.; Zehnder, D.

2012-09-01T23:59:59.000Z

488

Laser beam apparatus and method for analyzing solar cells  

DOE Patents [OSTI]

A laser beam apparatus and method for analyzing, inter alia, the current versus voltage curve at the point of illumination on a solar cell and the open circuit voltage of a solar cell. The apparatus incorporates a lock-in amplifier, and a laser beam light chopper which permits the measurement of the AC current of the solar cell at an applied DC voltage at the position on the solar cell where the cell is illuminated and a feedback scheme which permits the direct scanning measurements of the open circuit voltage. The accuracy of the measurement is a function of the intensity and wavelength of the laser light with respect to the intensity and wavelength distribution of sunlight and the percentage the dark current is at the open circuit voltage to the short circuit current of the solar cell.

Staebler, David L. (Lawrenceville, NJ)

1980-01-01T23:59:59.000Z

489

A study of various encapsulation schemes for c-Si solar cells with EVA encapsulants  

SciTech Connect (OSTI)

Several encapsulation schemes for crystalline Si (c-Si) solar cells, grouped into three categories of superstrate/encapsulant/Si-cell/encapsulant/substrate, were studied using different superstrates and substrates with extruded EVA films as the main encapsulant materials. A number of technical problems were observed and practical solutions to the problems are presented. The results are useful for designing and fabricating various samples of encapsulated c-Si cells and mini-modules for accelerated weathering tests in our future work. {copyright} {ital 1997 American Institute of Physics.}

Pern, F.J.; Glick, S.H. [Center for Performance Engineering and Reliability, National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, Colorado 80401 (United States)

1997-02-01T23:59:59.000Z

490

Emerging High-Efficiency Low-Cost Solar Cell Technologies  

E-Print Network [OSTI]

. A Manufacturing Cost Analysis Relevant to Photovoltaic Cells Fabricated with IIIEmerging High-Efficiency Low-Cost Solar Cell Technologies Mike McGehee Materials Science and Engineering Center for Advanced Molecular Photovoltaics Bay Area Photovoltaic Consortium Precourt Institute

McGehee, Michael

491

High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers  

SciTech Connect (OSTI)

Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

Antoniadis, H.

2011-03-01T23:59:59.000Z

492

Diamond-Like Carbon Coatings as Encapsulants for Photovoltaic Solar Cells  

SciTech Connect (OSTI)

High-quality single-layer and bilayer diamond-like carbon (DLC) thin films are fabricated by two technologies, namely, ion-assisted plasma-enhanced deposition (IAPED) and electron cyclotron resonance (ECR) deposition. Deposition on various substrates, such as sapphires and solar cells, has been performed at low substrate temperatures (50 {approx} 80 C). The two deposition technologies allow good control over the growth conditions to produce DLC films with desired optical properties, thickness, and energy bandgap. The bilayer-structured DLC can be fabricated by using IAPED for the bottom layer followed by ECR for the top layer, or just by IAPED for both layers with different compositions. The DLC films have shown good spatial uniformity, density, microhardness, and adhesion strength. They exhibit excellent stability against attack by strong acids, prolonged damp-heat exposure at 85 C and 85% relative humidity, mechanical scratch, ultrasonication, and irradiation by ultraviolet (UV), protons, and electrons. When deposited on crystalline Si and GaAs solar cells in single-layer and/or bilayer structure, the DLC films not only serve as antireflection coating and protective encapsulant, but also improve the cell efficiencies.

Pern, F. J.; Panosyan, Zh.; Gippius, A. A.; Kontsevoy, J. A.; Touryan, K.; Voskanyan, S.; Yengibaryan, Y.

2005-02-01T23:59:59.000Z

493

ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR...  

Broader source: Energy.gov (indexed) [DOE]

film based panel -formed at high accuracy (<1.5 mrad RMS slope error) Adaptive optics (minimizes canting errors) Space frame based support structure Operation and...

494

Hierarchically structured photoelectrodes for dye-sensitized solar cells  

E-Print Network [OSTI]

Hierarchically structured photoelectrodes for dye-sensitized solar cells Qifeng Zhang and Guozhong or one-dimensional assemblies. Introduction Dye-sensitized solar cells (DSCs) are a category Cao* DOI: 10.1039/c0jm04345a This paper highlights several significant achievements in dye-sensitized

Cao, Guozhong

495

Radial Electron Collection in Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

Radial Electron Collection in Dye-Sensitized Solar Cells Alex B. F. Martinson,, Jeffrey W. Elam photoelectrode architecture consisting of concentric conducting and semiconducting nanotubes for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is employed to grow indium tin oxide (ITO) within a porous

496

CRADA Final Report: Process development for hybrid solar cells  

SciTech Connect (OSTI)

TCF funding of a CRADA between LBNL and RSLE leveraged RSLE's original $1M investment in LBNL research and led to development of a solar cell fabrication process that will bring the high efficiency, high voltage hybrid tandem solar cell closer to commercialization. RSLE has already built a pilot line at its Phoenix, Arizona site.

Ager, Joel W

2011-02-14T23:59:59.000Z

497

CURRENT NEWS Sandwich Solar Cells May See Off Silicon  

E-Print Network [OSTI]

CURRENT NEWS Sandwich Solar Cells May See Off Silicon May 24, 2010 A new manufacturing technique of devices using GaAs chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cells. The authors also provide a detailed cost comparison. Another advantage of the multilayer

Rogers, John A.

498

Fundamental limit of nanophotonic light trapping in solar cells  

E-Print Network [OSTI]

Fundamental limit of nanophotonic light trapping in solar cells Zongfu Yu1 , Aaswath Raman and is becoming increasingly urgent for current solar cell research. The standard theory of light trapping) Establishing the fundamental limit of nanophotonic light-trapping schemes is of paramount importance

Fan, Shanhui

499

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells  

E-Print Network [OSTI]

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells., University of Pittsburgh The most efficient organic solar cell today is made from blending conjugated donors and acceptors in bulk heterojunction organic solar cells. Most microscopic characterization

Fisher, Frank

500

In Situ X-Ray Scattering Helps Optimize Printed Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In Situ X-Ray Scattering Helps Optimize Printed Solar Cells In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Wednesday, 25 February 2015 00:00 Plastic solar cells...