Sample records for file transfer forms

  1. GNU Radio & USRPGNU Radio & USRP File transfer through WirelessFile transfer through Wireless

    E-Print Network [OSTI]

    Yu, Chansu

    1 GNU Radio & USRPGNU Radio & USRP File transfer through WirelessFile transfer through WirelessSachin Hirve April 30, 2008April 30, 2008 Contents:Contents: What is Software Radio?What is Software Radio? USRPUSRP ­­ MultiMulti--functional hardwarefunctional hardware GNU RadioGNU Radio Previous Work

  2. Argonne integrated heterogeneous file transfer network

    SciTech Connect (OSTI)

    Schofield, J.

    1984-01-01T23:59:59.000Z

    This presentation describes the computing environment at Argonne National Laboratory and the actions underway to implement a coherent hierarchy of computing systems connected through a heterogeneous file transfer network. A major goal of the Computing Services Division is to integrate heterogeneous computing elements incrementally into a nework, with the goal of having everything somehow connected to everything else. Using standard IBM networking protocols, we have already built a full-function computer-to-computer file transfer network of IBM and DEC VAX systems. Currently, the users on the IBM MVS and VM/CMS systems can use standard IBM commands to send files and mail to DEC VAX users and output devices, and they can receive files from the DEC VAX's as if they had been sent from other IBM systems; similarly, the DEC VAX users can use standard DEC commands to send files and mail to IBM users and output devices, and they can receive files from the IBM systems as if they had been sent from other DEC VAX systems. In fact, the VAXes can exchange files and mail among themselves via the IBM NJE-based network without the need for DECnet links between the VAXes. Because this integrated heterogeneous file transfer network uses the standard IBM peer-to-peer communications protocol, all of the Laboratory's IBM and DEC computers easily communicate with the approximately 170 other computers in the Bitnet university network. Plans call for further integration of existing HP 3000 systems and future word processing systems such as Exxon, NBI, or Wang; we believe it is vitally important to provide smooth paths into this network for users of personal desktop computers. 17 references.

  3. Technology Transfer Reporting Form

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon |1999Energy-Technology TransferThis

  4. Instructions for transmitting Collector files to KFS In order for a department's KFS Collector file to be processed, departments must transfer the file to an

    E-Print Network [OSTI]

    Stephens, Graeme L.

    Instructions for transmitting Collector files to KFS In order for a department's KFS Collector file. The name of the KFS Collector file transferred to the Information Systems server by each department should in .xml. Once a department's Collector file has been processed by KFS it will be removed from

  5. BRYANT UNIVERSITY INTERNATIONAL STUDENT TRANSFER FORM

    E-Print Network [OSTI]

    Blais, Brian

    BRYANT UNIVERSITY INTERNATIONAL STUDENT TRANSFER FORM Bryant University requires this form at __________________________________to provide the information requested below in order to complete my transfer to Bryant University for International Admission Bryant University Office of Admission 1150 Douglas Pike Smithfield, RI 02917 (401) 232

  6. Three Tier Encryption Algorithm For Secure File Transfer

    E-Print Network [OSTI]

    Balakrishnan, Bhargav

    2011-01-01T23:59:59.000Z

    This encryption algorithm is mainly designed for having a secure file transfer in the low privilege servers and as well as in a secured environment too. This methodology will be implemented in the data center and other important data transaction sectors of the organisation where the encoding process of the software will be done by the database administrator or system administrators and his trusted clients will have decoding process of the software. This software will not be circulated to the unauthorised customers.

  7. University of Missouri-Columbia Transfer Recommendation Form

    E-Print Network [OSTI]

    Taylor, Jerry

    University of Missouri-Columbia Transfer Recommendation Form Complete this form if you to the International Center at the University of Missouri-Columbia. For instructions on SEVIS transfer, please go to permission for the information below to be released to the University of Missouri-Columbia. Do you plan

  8. Technology Transfer Reporting Form | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTank 48H Treatment Project (TTP) |ReportTransfer Reporting

  9. Euclid File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File storage File storage Disk Quota Change Request Form Euclid File Systems Euclid has 3 kinds of file systems available to users: home directories, scratch directories and...

  10. Microsoft PowerPoint - File Transfer-Turner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocessEstimating forcloudTomTransfer Best Practices

  11. File:FormA2.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf Jump to:.pdf Jump to:FormA2.pdf

  12. File:FormA4.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf Jump to:.pdf JumpFormA4.pdf Jump

  13. File:FormAInstructionsStationarySource.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf Jump to:.pdf JumpFormA4.pdf

  14. Michigan State University (MSU) and Lake Michigan College (LMC) Reverse Transfer Agreement Transcript Release Form

    E-Print Network [OSTI]

    Michigan State University (MSU) and Lake Michigan College (LMC) Reverse Transfer Agreement Transcript Release Form Please complete, sign, and return this release form to: Michigan State University of the Registrar at Michigan State University in writing. SIGNATURE: _______________________________________ DATE

  15. An examination of electronic file transfer between host and microcomputers for the AMPMODNET/AIMNET (Army Material Plan Modernization Network/Acquisition Information Management Network) classified network environment

    SciTech Connect (OSTI)

    Hake, K.A.

    1990-11-01T23:59:59.000Z

    This report presents the results of investigation and testing conducted by Oak Ridge National Laboratory (ORNL) for the Project Manager -- Acquisition Information Management (PM-AIM), and the United States Army Materiel Command Headquarters (HQ-AMC). It concerns the establishment of file transfer capabilities on the Army Materiel Plan Modernization (AMPMOD) classified computer system. The discussion provides a general context for micro-to-mainframe connectivity and focuses specifically upon two possible solutions for file transfer capabilities. The second section of this report contains a statement of the problem to be examined, a brief description of the institutional setting of the investigation, and a concise declaration of purpose. The third section lays a conceptual foundation for micro-to-mainframe connectivity and provides a more detailed description of the AMPMOD computing environment. It gives emphasis to the generalized International Business Machines, Inc. (IBM) standard of connectivity because of the predominance of this vendor in the AMPMOD computing environment. The fourth section discusses two test cases as possible solutions for file transfer. The first solution used is the IBM 3270 Control Program telecommunications and terminal emulation software. A version of this software was available on all the IBM Tempest Personal Computer 3s. The second solution used is Distributed Office Support System host electronic mail software with Personal Services/Personal Computer microcomputer e-mail software running with IBM 3270 Workstation Program for terminal emulation. Test conditions and results are presented for both test cases. The fifth section provides a summary of findings for the two possible solutions tested for AMPMOD file transfer. The report concludes with observations on current AMPMOD understanding of file transfer and includes recommendations for future consideration by the sponsor.

  16. Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to High Momentum Transfer

    SciTech Connect (OSTI)

    Andrew Puckett

    2010-02-01T23:59:59.000Z

    The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electronnucleon scattering. These form factors are functions of the squared four-momentum transfer Q2 between the electron and the proton. The two main classes of observables of this reaction are the scattering cross section and polarization asymmetries, both of which are sensitive to the form factors in different ways. When considering large f momentum transfers, double-polarization observables offer superior sensitivity to the electric form factor. This thesis reports the results of a new measurement of the ratio of the electric and magnetic form factors of the proton at high momentum transfer using the recoil polarization technique. A polarized electron beam was scattered from a liquid hydrogen target, transferring polarization to the recoiling protons. These protons were detected in a magnetic spectrometer which was used to reconstruct their kinematics, including their scattering angles and momenta, and the position of the interaction vertex. A proton polarimeter measured the polarization of the recoiling protons by measuring the azimuthal asymmetry in the angular distribution of protons scattered in CH2 analyzers. The scattered electron was detected in a large acceptance electromagnetic calorimeter in order to suppress inelastic backgrounds. The measured ratio of the transverse and longitudinal polarization components of the scattered proton is directly proportional to the ratio of form factors GpE=GpM. The measurements reported in this thesis took place at Q2 =5.2, 6.7, and 8.5 GeV2, and represent the most accurate measurements of GpE in this Q2 region to date.

  17. Instructions: Complete this form and save it as a file. Email it to EH&S at jeisert@ucsd.edu. EH&S will review and return and approved copy of the form to you. Keep the approved form on site during the time of your event as it is evidence that

    E-Print Network [OSTI]

    Russell, Lynn

    Instructions: Complete this form and save it as a file. Email it to EH&S at jeisert@ucsd.edu. EH Group Event Save this form as file and email to UCSD EH&S @ jeisert@ucsd.edu for approval #12;

  18. File:FS Form 2800-16.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BVEnergy3(2009).pdfForm 2800-16.pdf Jump to: navigation,

  19. File:UST Construction Notification Form 0495.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdf JumpNotification Form 0495.pdf Jump to:

  20. File:FormH-1Ap.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf Jump to:.pdfFormH-1Ap.pdf Jump

  1. File:FormH-1p.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf Jump to:.pdfFormH-1Ap.pdf

  2. Office of Technology Transfer and Innovation Partnerships, PO Box 6000, Binghamton, NY, 13902-6000. Ph: (607) 777-5870. FORM TT-2 Revised 03/19/09 FORM TT -2

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Office of Technology Transfer and Innovation Partnerships, PO Box 6000, Binghamton, NY, 13902-6000. Ph: (607) 777-5870. FORM TT-2 Revised 03/19/09 FORM TT - 2 Technology Transfer NEW TECHNOLOGY DISCLOSURE PLEASE SUBMIT COMPLETED FORM TO OFFICE OF TECHNOLOGY TRANSFER AND INNOVATIVE PARTNERSHIPS 1

  3. Measurements of the meson-photon transition form factors of light pseudoscalar mesons at large momentum transfer

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Darling, C.; Davis, Robin E. P.; Hancock, N.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan

    1998-01-01T23:59:59.000Z

    with the electromagnetic transitions ?*?? meson. We have measured these form factors in the momentum transfer ranges from 1.5 to 9, 20, and 30GeV(2) for ?(0), ?, and ??, respectively, and have made comparisons to various theoretical predictions....

  4. Transfer of Siegel cusp forms of degree 2 Ameya Pitale1, Abhishek Saha2, Ralf Schmidt3

    E-Print Network [OSTI]

    Schmidt, Ralf

    Transfer of Siegel cusp forms of degree 2 Ameya Pitale1, Abhishek Saha2, Ralf Schmidt3 Abstract apitale@math.ou.edu 2 abhishek.saha@bris.ac.uk 3 rschmidt@math.ou.edu MSC: 11F70, 11F46, 11F67 1 #12

  5. The blue stragglers formed via mass transfer in old open clusters

    E-Print Network [OSTI]

    B. Tian; L. Deng; Z. Han; X. B. Zhang

    2006-05-09T23:59:59.000Z

    In this paper, we present the simulations for the primordial blue stragglers in the old open cluster M67 based on detailed modelling of the evolutionary processes. The principal aim is to discuss the contribution of mass transfer between the components of close binaries to the blue straggler population in M67. First, we followed the evolution of a binary of 1.4M$_\\odot$+0.9M$_\\odot$. The synthetic evolutionary track of the binary system revealed that a primordial blue straggler had a long lifetime in the observed blue straggler region of color-magnitude diagram. Second, a grid of models for close binary systems experiencing mass exchange were computed from 1Gyr to 6Gyr in order to account for primordial blue-straggler formation in a time sequence. Based on such a grid, Monte-Carlo simulations were applied for the old open cluster M67. Adopting appropriate orbital parameters, 4 primordial blue stragglers were predicted by our simulations. This was consistent with the observational fact that only a few blue stragglers in M67 were binaries with short orbital periods. An upper boundary of the primordial blue stragglers in the color-magnitude diagram (CMD) was defined and could be used to distinguish blue stragglers that were not formed via mass exchange. Using the grid of binary models, the orbital periods of the primordial BSs could be predicted. Compared with the observations, it is clear that the mechanism discussed in this work alone cannot fully predict the blue straggler population in M67. There must be several other processes also involved in the formation of the observed blue stragglers in M67.

  6. 988 IEEE COMMUNICATIONS LETTERS, VOL. 9, NO. 11, NOVEMBER 2005 Modeling TCP Long File Transfer Latency over

    E-Print Network [OSTI]

    Kansas, University of

    . However, TCP connections may be running over a multilink connection that aggregates the bandwidth latency for a long transfer. The performance model is experimentally evaluated by running TCP over MLPPP connections is predicted using the proposed model by varying the call drop rate and the packet loss

  7. Recoil polarization measurements of the proton electromagnetic form factor ratio to high momentum transfer

    E-Print Network [OSTI]

    Puckett, Andrew James Ruehe

    2010-01-01T23:59:59.000Z

    The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electronnucleon scattering. These form factors are functions ...

  8. Transferring oxygen isotopes to 1,2,4-benzotriazine 1-oxides forming the corresponding 1,4-dioxides by using the HOF$CH3CN complex

    E-Print Network [OSTI]

    Gates, Kent. S.

    Transferring oxygen isotopes to 1,2,4-benzotriazine 1-oxides forming the corresponding 1,4-dioxides Available online 14 August 2012 Keywords: Oxygen transfer 18 O isotope Tirapazamine HOF$CH3CN F2/N2 N is their ability to capitalize on the low oxygen (hypoxic) environment found in many solid tumors. The lead

  9. Stability of curvature perturbation with new covariant form for energy-momentum transfer in dark sector

    E-Print Network [OSTI]

    Cheng-Yi Sun; Yu Song; Rui-Hong Yue

    2011-10-09T23:59:59.000Z

    It was found that the model with interaction between cold dark matter (CDM) and dark energy (DE) proportional to the energy density of CDM $\\rho_m$ and constant equation of state of DE $w_d$ suffered from instabilities of the density perturbations on the supper-Hubble scales. Here we suggest a new covariant model for the energy-momentum transfer between CDM and DE. Then using the covariant model, we analyze the evolution of density perturbations on the supper-Hubble scale. We find that the instabilities can be avoided in the model with constant $w_d$ and interaction proportional to $\\rho_m$. Furthermore, we analyze the dominant non-adiabatic mode in the radiation era and find that the mode grows regularly.

  10. Near Threshold Neutral Pion Electroproduction at High Momentum Transfers and Generalized Form Factors

    E-Print Network [OSTI]

    P. Khetarpal; P. Stoler; I. G. Aznauryan; V. Kubarovsky; K. P. Adhikari; D. Adikaram; M. Aghasyan; M. J. Amaryan; M. D. Anderson; S. Anefalos Pereira; M. Anghinolfi; H. Avakian; H. Baghdasaryan; J. Ball; N. A. Baltzell; M. Battaglieri; V. Batourine; I. Bedlinskiy; A. S. Biselli; J. Bono; S. Boiarinov; W. J. Briscoe; W. K. Brooks; V. D. Burkert; D. S. Carman; A. Celentano; G. Charles; P. L. Cole; M. Contalbrigo; V. Crede; A. D'Angelo; N. Dashyan; R. De Vita; E. De Sanctis; A. Deur; C. Djalali; D. Doughty; M. Dugger; R. Dupre; H. Egiyan; A. El Alaoui; L. El Fassi; P. Eugenio; G. Fedotov; S. Fegan; R. Fersch; J. A. Fleming; A. Fradi; M. Y. Gabrielyan; M. Garon; N. Gevorgyan; G. P. Gilfoyle; K. L. Giovanetti; F. X. Girod; J. T. Goetz; W. Gohn; E. Golovatch; R. W. Gothe; K. A. Griffioen; B. Guegan; M. Guidal; L. Guo; K. Hafidi; H. Hakobyan; C. Hanretty; N. Harrison; K. Hicks; D. Ho; M. Holtrop; C. E. Hyde; Y. Ilieva; D. G. Ireland; B. S. Ishkhanov; E. L. Isupov; H. S. Jo; K. Joo; D. Keller; M. Khandaker; A. Kim; W. Kim; F. J. Klein; S. Koirala; A. Kubarovsky; S. V. Kuleshov; N. D. Kvaltine; S. Lewis; K. Livingston; H. Y. Lu; I. J. D. MacGregor; Y. Mao; D. Martinez; M. Mayer; B. McKinnon; C. A. Meyer; T. Mineeva; M. Mirazita; V. Mokeev; R. A. Montgomery; H. Moutarde; E. Munevar; C. Munoz Camacho; P. Nadel-Turonski; R. Nasseripour; S. Niccolai; G. Niculescu; I. Niculescu; M. Osipenko; A. I. Ostrovidov; L. L. Pappalardo; R. Paremuzyan; K. Park; S. Park; E. Pasyuk; E. Phelps; J. J. Phillips; S. Pisano; O. Pogorelko; S. Pozdniakov; J. W. Price; S. Procureur; D. Protopopescu; A. J. R. Puckett; B. A. Raue; G. Ricco; D. Rimal; M. Ripani; G. Rosner; P. Rossi; F. Sabati; M. S. Saini; C. Salgado; N. A. Saylor; D. Schott; R. A. Schumacher; E. Seder; H. Seraydaryan; Y. G. Sharabian; G. D. Smith; D. I. Sober; D. Sokhan; S. S. Stepanyan; S. Stepanyan; I. I. Strakovsky; S. Strauch; M. Taiuti; W. Tang; C. E. Taylor; S. Tkachenko; M. Ungaro; B. Vernarsky; H. Voskanyan; E. Voutier; N. K. Walford; L. B. Weinstein; D. P. Weygand; M. H. Wood; N. Zachariou; J. Zhang; Z. W. Zhao; I. Zonta

    2012-11-29T23:59:59.000Z

    We report the measurement of near threshold neutral pion electroproduction cross sections and the extraction of the associated structure functions on the proton in the kinematic range $Q^2$ from 2 to 4.5 GeV$^2$ and $W$ from 1.08 to 1.16 GeV. These measurements allow us to access the dominant pion-nucleon s-wave multipoles $E_{0+}$ and $S_{0+}$ in the near-threshold region. In the light-cone sum-rule framework (LCSR), these multipoles are related to the generalized form factors $G_1^{\\pi^0 p}(Q^2)$ and $G_2^{\\pi^0 p}(Q^2)$. The data are compared to these generalized form factors and the results for $G_1^{\\pi^0 p}(Q^2)$ are found to be in good agreement with the LCSR predictions, but the level of agreement with $G_2^{\\pi^0 p}(Q^2)$ is poor.

  11. JLab Measurement of the 4He Charge Form Factor at Large Momentum Transfers

    SciTech Connect (OSTI)

    Camsonne, Alexandre; Katramatou, A. T.; Olson, M.; Sparveris, Nikolaos; Acha, Armando; Allada, Kalyan; Anderson, Bryon; Arrington, John; Baldwin, Alan; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cisbani, Evaristo; Craver, Brandon; Decowski, Piotr; Dutta, Chiranjib; Folts, Edward; Frullani, Salvatore; Garibaldi, Franco; Gilman, Ronald; Gomez, Javier; Hahn, Brian; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, Jian; Iodice, Mauro; Kelleher, Aidan; Khrosinkova, Elena; Kievsky, A.; Kuchina, Elena; Kumbartzki, Gerfried; Lee, Byungwuek; LeRose, John; Lindgren, Richard; Lott, Gordon; Lu, H.; Marcucci, Laura; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Meekins, David; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Norum, Blaine; Petratos, Gerassimos; Puckett, Andrew; Qian, Xin; Rondon-Aramayo, Oscar; Saha, Arunava; Sawatzky, Bradley; Segal, John; Hashemi, Mitra; Shahinyan, Albert; Solvignon-Slifer, Patricia; Subedi, Ramesh; Suleiman, Riad; Sulkosky, Vincent; Urciuoli, Guido; Viviani, Michele; Wang, Y.; Wojtsekhowski, Bogdan; Yan, X.; Yao, H.; Zhang, W. -M.; Zheng, X.; Zhu, L.

    2014-04-01T23:59:59.000Z

    The charge form factor of 4He has been extracted in the range 29 fm-2 <= Q2 <= 77 fm-2 from elastic electron scattering, detecting 4He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the Q2 range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting.

  12. Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, ProgramsFIRSTClean EnergyForms and

  13. Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProofWorkingEnergyGoForestFormationFormer Forms

  14. Poster Printing Request Form Please make a backup copy of your file before submitting it. The Meyer Tech Desk is not liable for

    E-Print Network [OSTI]

    Ford, James

    of your file before submitting it. The Meyer Tech Desk is not liable for data no extra fee, but require extra business day to process (even RUSH). The Meyer by a student technician at the Meyer Tech Desk. Client signature

  15. Formatting conventions and variable storage are given below for transfer files from Nigel Badnell's dielectronic calculations. Data for an ion is specified by the isoelectronic sequence

    E-Print Network [OSTI]

    Badnell's dielectronic calculations. Data for an ion is specified by the isoelectronic sequence.BADNELL.LIKE() where is the recombining isoelectronic sequence symbol is the specific recombining ion : name meaning SEQ sequence identifier (two characters) IZ0 nuclear charge ADFID ADAS data file type code

  16. Poster Printing Request Form Please make a backup copy of your file before submitting it. The Meyer Tech Desk is not liable for

    E-Print Network [OSTI]

    Ford, James

    of your file before submitting it. The Meyer Tech Desk is not liable for data no extra fee, but require extra business day to process (even RUSH). The Meyer to be completed by a student technician at the Meyer Tech Desk. Client signature

  17. Remote File Access 2010

    E-Print Network [OSTI]

    University of Technology, Sydney

    Remote File Access 2010 Mac Users Guide #12;Remote File Access: MAC Users Guide 2010 2 Table Remote File Access 11 Part IV: Using Remote File Access 15 Part V: FAQ 24 #12;Remote File Access: MAC Users Guide 2010 3 1. What is Remote File Access? UTS Remote File Access service is provided to enable

  18. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »Travel andFifth Annual RadWasteFileFileFile

  19. NERSC File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems NERSC File Systems Overview NERSC file systems can be divided into two categories: local and global. Local file systems are only accessible on a single platform, providing...

  20. Franklin File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Files systems Files systems NERSC's global home and project file systems are available on Franklin. Additionally, Franklin has over 400 TB of locally attached high-performance...

  1. Quick Start The various sample data files after expansion (use Zip)

    E-Print Network [OSTI]

    library (49 signature files and 1 library list file, all in ASCII, 300 KB). Duncan Knob.sdf Lidar full wave form SDF file (60 MB). Duncan Knob.idx Required index file for Duncan Knob.sdf (4.5 MB). sbet_mission 1.out Smoothed Best Estimate of Trajectory file. Needed for Duncan Knob.sdf (98 MB). Immediate

  2. A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target

    SciTech Connect (OSTI)

    Aidan Kelleher

    2010-10-01T23:59:59.000Z

    Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q{sup 2} and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized {sup 3}He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. G{sup n}{sub E} was measured to be 0.0242 0.0020(stat) 0.0061(sys) and 0.0247 0.0029(stat) 0.0031(sys) at Q{sup 2} = 1.7 and 2.5 GeV{sup 2}, respectively.

  3. "Annual Electric Power Industry Report (EIA-861 data file)

    Gasoline and Diesel Fuel Update (EIA)

    FILES Electric power sales, revenue, and energy efficiency Form EIA-861 detailed data files Release Date for 2013: February 19, 2015 Next Release date: October 2015 Annual data for...

  4. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »Travel andFifth Annual RadWasteFileFile

  5. Instructions for Humanities AI/TF Doc Inventory & GSI Appointment Request Using the CEP supplemental form, please determine if the file will require CEP approval,

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Instructions for Humanities AI/TF Doc Inventory & GSI Appointment Request Form Using the CEP document inventory for Associate In or Teaching Fellow appointments and the CEP GSI Appointment Request, please complete the Humanities GSI Appointment Request Form and the Humanities Document Inventory

  6. USDOE Technology Transfer, Responses to the Notice of Inquiry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About the National Labs Designated User Facilities TECH TRANSFER AGREEMENTS (CRADA) Cooperative Research and Development Agreement (PDF file | Word doc) User Agreement -...

  7. Data & File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Management Policies NERSC File Systems HPSS Data Archive IO Resources for Scientific Applications at NERSC Optimizing IO performance on the Lustre file system IO Formats...

  8. FERC Filing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal Columbia River RiskFatigueFERC-Filing Sign

  9. FERC Filing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal Columbia River RiskFatigueFERC-Filing

  10. TO: FILE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;I : T' j-jE:, ,, TO: FILE

  11. TO: FILE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;I : T' j-jE:, ,, TO: FILE3

  12. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »Travel andFifth Annual RadWasteFile Systems

  13. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »Travel andFifth Annual RadWasteFile

  14. Franklin File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) TargetForms &FrancisEmailFile

  15. INCOMING DOCUMENT CONTROL FORM DOCUMENT DESCRIPTION ORGANIZATIO

    Office of Legacy Management (LM)

    INCOMING DOCUMENT CONTROL FORM DOCUMENT DESCRIPTION ORGANIZATIO )ATE COMPLETED: ACTION NUMBER: I I I DOCUMENT CONTROL DATE INITIALS DATA BASE: ACTION LOG: FILED: To : Doug...

  16. PDF file

    E-Print Network [OSTI]

    2006-01-07T23:59:59.000Z

    Dec 1, 2004 ... n :n?n0} forms a complete orthogonal sys- tem in L2 ...... cult to design a suitable finite difference, finite element or collocation-type methods...

  17. Numerical Methods & .m Files

    E-Print Network [OSTI]

    1910-70-10T23:59:59.000Z

    Save this file as a .m file with the SAME name as your function. The above example would be saved as fcn1.m. You can check if your function has been saved...

  18. Standard interface file handbook

    SciTech Connect (OSTI)

    Shapiro, A.; Huria, H.C. (Cincinnati Univ., OH (United States))

    1992-10-01T23:59:59.000Z

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided.

  19. PDF file

    E-Print Network [OSTI]

    Katharina Steingraeber Heidelberg 1107 1997 Oct 17 14:59:21

    2000-09-17T23:59:59.000Z

    Jun 21, 2000 ... using Laguerre-collocation or Laguerre-tau approximations, where difficul- ... to use finite-difference method or finite-element method, since we have ... the Laguerre polynomials form an orthogonal system on the half line, it is.

  20. PDF file

    E-Print Network [OSTI]

    SIAM (#1) 1035 2001 Apr 10 12:32:38

    2003-09-30T23:59:59.000Z

    order of the equationand often exhibit unstable modes if the collocation ... the trial (and test) spaces form a sequence of orthogonal polynomials in a weighted ... Kortewegde Vries (KDV) equation on a finite interval in section 4. ..... Nonzero elements of M, P, Q can be easily determined from the properties of Legendre.

  1. PDF file

    E-Print Network [OSTI]

    SIAM (#1) 1035 1999 Jan 20 12:53:14

    2000-09-19T23:59:59.000Z

    ing Laguerre-collocation or Laguerre-tau approximations can be found in [16 ..... defined as Ln(x) = Ln(x)e?x/2 which forms a sequence of orthogonal basis ..... a preconditioner based on the finite element/finite difference approximation in the.

  2. Form:MapFile | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,Forked River,event

  3. Remote File PC Users Guide

    E-Print Network [OSTI]

    University of Technology, Sydney

    UTS: ITD Remote File Access 2010 PC Users Guide V3.0 #12;UTS:ITD Remote File Access: PC Users Guide Part III: Accessing Remote File Access 8 Part IV: Using Remote File Access 14 Part V: FAQ 25 #12;UTS:ITD Remote File Access: PC Users Guide v3.0 2010 3 1. What is Remote File Access? UTS Remote File Access

  4. DOCTORAL STUDENTS FILING CHECKLIST Consider Your Dissertation Content

    E-Print Network [OSTI]

    Jacobs, Lucia

    DOCTORAL STUDENTS FILING CHECKLIST Consider Your Dissertation Content Does your dissertation before you file. PLAN AHEAD! Check Your Committee Log in to GLOW and verify your dissertation committee-3 business days for your dissertation to be reviewed. Be patient! Complete the Additional Forms o Survey

  5. UNIX file permissions

    E-Print Network [OSTI]

    ... out sensitive information (like promotion documents and qualifier exams). ... about security, you will want to change your "umask" line in your .cshrc file.

  6. ELCAP Data Assembly and Conversion Project: Report on File Contents

    E-Print Network [OSTI]

    ................................................................................................................7 PNNL Data Files.........................................................................................................................................9 PNNL Site Files.SASLIB.XPT.....................................................................................................................................14 PNNL AVAX Files

  7. Register file soft error recovery

    DOE Patents [OSTI]

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15T23:59:59.000Z

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  8. Measurement of the electric form factor of the neutron at low momentum transfers using a vector polarized deuterium gas target at BLAST

    E-Print Network [OSTI]

    Ziskin, Vitaliy

    2005-01-01T23:59:59.000Z

    Elastic form factors are fundamental quantities that characterize the electromagnetic structure of the nucleon. High precision measurements of these quantities are essential in understanding the structure of hadronic matter. ...

  9. BPA files reciprocity tariff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 12 BONNEVILLE POWER ADMINISTRATION FOR IMMEDIATE RELEASE Friday, March 30, 2012 CONTACT: Doug Johnson, 503-230-5840 or 503-230-5131 BPA files reciprocity tariff Portland, Ore. -...

  10. LONG TERM FILE MIGRATION - PART II: FILE REPLACEMENT ALGORITHMS

    E-Print Network [OSTI]

    Jay Smith, Alan

    2011-01-01T23:59:59.000Z

    MIGRATION PART II: FILE REPLACEMENT ALGORITHMS Alan Jaymay vary even though replacement fi~~d the pa~ameter value PIe N - P ;, RT I r:. fILE REPLACEMENT ALGORITHMS. I.lan ~1ar

  11. File:CDPHE Industrial Individual Wastewater Discharge Permit...

    Open Energy Info (EERE)

    Industrial Individual Wastewater Discharge Permit Application.pdf Jump to: navigation, search File File history File usage Metadata File:CDPHE Industrial Individual Wastewater...

  12. Mon. Not. R. Astron. Soc. 000, 000000 (0000) Printed 26 October 2011 (MN LATEX style file v2.2) From Star-Forming Spirals to Passive Spheroids: Integral

    E-Print Network [OSTI]

    Balogh, Michael L.

    .2) From Star-Forming Spirals to Passive Spheroids: Integral Field Spectroscopy of E+A Galaxies A. M and Gravitation, Mercantile House, Hampshire Terrace, University of Portsmouth, Portsmouth, UK PO1 2EG email: a

  13. Measurements of the Proton Electromagnetic Form Factor Ratio From Elastic e + p -> e + p Scattering at Momentum Transfer Q^2 = 2.5, 5.2, 6.7 and 8.5 (GeV/c)^2

    SciTech Connect (OSTI)

    Arthur Mkrtchyan

    2012-05-31T23:59:59.000Z

    Among the fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dyna mics of the nucleon's quark constituents. Electromagnetic probes are traditionally preferered to the hadronic beams. The electromagnetic interaction is a powerful tool for investigating the nucleon structure since it is well understood and it reveals observables that can be directly interpreted in terms of the current carried by the quarks. Elastic scattering leads to the form factors that describe the spatial charge a nd current distributions inside the nucleon. The reaction mechanism is assumed to be one photon exchange, the electromagnetic interaction is exactly calculable in QED, and one can safely extract the information on the hadronic vertex. The most important feature of early measurements of proton form factor ratio G{sub E}{sup p}/G{sub M}{sup p} with recoil polarization technique at Q{sup 2} up to 5.6 (GeV/c){sup 2} is the sharp decline of the ratio with Q{sup 2} increases, indicating that G{sub E}{sup p} falls much faster than G{sub M}{sup p}. This contradicts to data obtained by Rosenbluth separation method. An intriguing question was whether G{sub E}{sup p} will continue to decrease or become constant when Q{sup 2} increases. New set of measurements of proton form factor ratio G{sub E}{sup p}/G{sub M}{sup p} at Q{sup 2} = 2.5, 5.2, 6.7 and 8.5 (GeV/c){sup 2} have been conducted at JLab Hall C using {approx}85% longitudinally polarized electron elastic scattering from unpolarized hydrogen target. Recoil protons were detected in the HMS magnetic spectrometer with the standard detector package, combined with newly installed trigger scintillators and Focal Plane Polarimeter. The BigCal electromagnetic calorimeter (1744 channel) have been used for electron detection. Data obtained in this experiment show that G{sub E}{sup p}/G{sub M}{sup p} ratio continued to drop with Q{sup 2} and may cross 'zero' at Q{sup 2} > 10-15 (GeV/c){sup 2}. Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton form factor ratio G{sub E}{sup p}/G{sub M}{sup p} obtained from cross section and polarization measurements. It was assumed that the two photon exchange contribution might be responsible for difference of G{sub E}{sup p}/G{sub M}{sup p} ratio obtained by Rosenbluth separation method and recoil polarization technique. The kinematical dependence of polarization transfer observables in elastic electron-proton scattering at Q{sup 2} = 2.5 (GeV/c){sup 2} have been used in search of effects of 2{gamma} contribution. For a wide range of values of the virtual photon polarization {epsilon} ({epsilon} = 0.15, 0.63, and 0.77), the proton form factor ratio and longitudinal polarization transfer component were measured with statistical uncertainties of {+-}0.01 and {+-}0.005, respectively. Our data provide significant constraints on models of nucleon structure.

  14. rfs Remote File System Softwarepraktikum fur Fortgeschrittene

    E-Print Network [OSTI]

    rfs Remote File System Softwarepraktikum fur Fortgeschrittene Parallele und Verteilte Systeme. Overview 5 2.1. Remote File System Daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2. Remote File System Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3. Global Remote

  15. How to use the m-files

    E-Print Network [OSTI]

    shaoh

    2008-11-05T23:59:59.000Z

    How to use the m- files? There is a basic idea of using m-files in Matlab. That is : the m-files written by you ( and you want to use it ) should be in the current...

  16. The Umbrella File System: Storage Management Across Heterogeneous Devices

    E-Print Network [OSTI]

    Garrison, John Allen

    2011-08-08T23:59:59.000Z

    coherent directory structure for users. Particular files are directed to appropriate underlying file systems by intercepting system calls connecting the Virtual File System (VFS) to the underlying file systems. Files are evaluated by a policy module...

  17. JPEG File Interchange Format

    E-Print Network [OSTI]

    Hamilton, Eric

    2004-03-30T23:59:59.000Z

    interchange format compressed image representation PC or Mac or Unix workstation compatible Standard color space: one or three components. For three components, YCbCr (CCIR 601-256 levels) APP0 marker used to specify Units, X pixel density, Y pixel... by the Macintosh but not by PCs or workstations. JPEG File Interchange Format, Version 1.02 2 Standard color space The color space to be used is YCbCr as defined by CCIR 601 (256 levels). The RGB components calculated by linear conversion from YCbCr shall...

  18. Signature on File

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSettingUncertainties ElitzaSignon File

  19. Unix File Permissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout Us / OurPast EventsFile

  20. MEMORANDUfl J: FILE DATE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-IGYS IDCSTEJ: FILE

  1. TO: FILE FROM: SUBJECT:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;I : T'ncZl' lO--23,TO: FILE

  2. TO: FILE MEMORANDUM

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;I : T'ncZl'FILE MEMORANDUM

  3. Euclid File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements Archive Email AnnouncementsFile

  4. Franklin File Storage and I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) TargetForms &FrancisEmailFile storage

  5. Globus Online File Transfer - NERSC Tutorial - March 8, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Pump Basics31/2007Global health response

  6. Save PDF files as Word documents You can save a PDF file as a Word document, even if the file was originally created in a

    E-Print Network [OSTI]

    Segraves, Kari A.

    Save PDF files as Word documents You can save a PDF file as a Word document, even if the file to save. 2. Choose File > Save As > Microsoft Word > Word Document. The Word Document command saves File > Save As > Microsoft Word > Word 97-2003 Document to save a DOC file. Tip: If you want to save

  7. MEMORANDU TO: FILE FHOM: SUBJECT:

    Office of Legacy Management (LM)

    TO: FILE FHOM: SUBJECT: Curre"t: Ll&k&&d l- ; if yes, date contacted 0 Production scale testing Cl Pilot Scale 0 Bench Scale Process 0 Theoretical Studies 0 Sample &...

  8. Balancing Peer and Server Energy Consumption in Large Peer-to-Peer File Distribution Systems

    E-Print Network [OSTI]

    Andrew, Lachlan

    Balancing Peer and Server Energy Consumption in Large Peer-to-Peer File Distribution Systems}@swin.edu.au Abstract--Network induced energy consumption is a significant fraction of all ICT energy consumption. It is shown that using peer-to-peer and naively minimizing the transfer time results in energy consumption

  9. Indoor Air Quality Forms 195 Building: _________________________________________________________ File Number: ________________________________

    E-Print Network [OSTI]

    operational? Cooling Coil Inspection access? Clean? Supply water temp. O F Water carryover? Any indication? Odors from outdoors? (describe) Carryover of exhaust heat? Cooling tower within 25 feet? Exhaust outletOKComponent Comments Mist Eliminators Clean, straight, no carryover? Supply Fan Chambers Clean? No trash or storage

  10. File:ErosivityWaiverForm.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size

  11. File:Form h-11.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf Jump to: navigation,FHPLPI-1

  12. File:FormA1.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf Jump to:.pdf Jump to:

  13. File:FormA3.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf Jump to:.pdf Jump

  14. File:Ger geothermal form 1.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf:08, 15GeothermalGer geothermal

  15. File:LulApplicationForm.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametstak.pdf

  16. File:OregonSHPOClearanceForm.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation,camdirsept.pdf

  17. File:Project notification form.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Original Rule from OAR 20.03.15.pdflp.pdfProject

  18. File:TCEQ-CoreDataForm.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Originalfaq.pdf Jump to: navigation,

  19. PeopleSoft (ERP) Finance Access Request Form User Guide

    E-Print Network [OSTI]

    de Lijser, Peter

    PeopleSoft (ERP) Finance Access Request Form User Guide Last Revised: 3/22/11 #12;PeopleSoft ERP Finance Access Request Form User Guide FINAL Last Revised: 3/22/11 Page ii REVISION CONTROL Document Title: PeopleSoft ERP Finance Access Request Form User Guide Author: IT Training & Support File Reference

  20. Data file management in the DIII-D data acquisition and analysis computer systems

    SciTech Connect (OSTI)

    McHarg, B.B. Jr.

    1989-11-01T23:59:59.000Z

    DIII-D is a large tokamak plasma physics and fusion energy research experiment funded by the Department of Energy. Each shot of the experiment results in data files containing between 20 and 30 Mbytes of data. These shots occur about once every 10 minutes with 40 to 50 shots per operating day. Over 1.2 gigabytes have been acquired in one daily session. Most of this data is acquired by MODCOMP Classic computers and is transferred via a Network Systems Hyperchannel to the DIII-D DEC VAX cluster system which is connected via Ether-net to the User Service Center DEC VAX cluster system. Some other data is acquired by local MicroVAX based plasma diagnostic systems and is transferred via DECnet to the DIII-D cluster. A substantial part of these VAX cluster systems is devoted to handling the large data files so as to maintain availability of the data for users, provide for shot archiving and shot restoration capabilities, and at the same time allow for new data to be received into the systems. Many of these tasks are carried out in near real time in sequence with a tokamak shot while other tasks are performed periodically throughout operations or during off hours. These tasks include disk space management, data archiving to 6250 and/or 8 mm tape drives, data file migration from the DIII-D cluster to the User Service Center cluster, data file compression, and network wide data file access. 11 refs., 2 figs.

  1. How to batch upload video files with Unison How to batch upload video files with Unison

    E-Print Network [OSTI]

    Benos, Panayiotis "Takis"

    How to batch upload video files with Unison How to batch upload video files with Unison There are two different ways to upload already existing video files into Unison: Upload from the New Session page (only allows one video file to be uploaded at a time) Launching the editor in Composer (allows

  2. EQPT, a data file preprocessor for the EQ3/6 software package: User`s guide and related documentation (Version 7.0); Part 2

    SciTech Connect (OSTI)

    Daveler, S.A.; Wolery, T.J.

    1992-12-17T23:59:59.000Z

    EQPT is a data file preprocessor for the EQ3/6 software package. EQ3/6 currently contains five primary data files, called datao files. These files comprise alternative data sets. These data files contain both standard state and activity coefficient-related data. Three (com, sup, and nea) support the use of the Davies or B-dot equations for the activity coefficients; the other two (hmw and pit) support the use of Pitzer`s (1973, 1975) equations. The temperature range of the thermodynamic data on these data files varies from 25{degrees}C only to 0-300{degrees}C. The principal modeling codes in EQ3/6, EQ3NR and EQ6, do not read a data0 file, however. Instead, these codes read an unformatted equivalent called a data1 file. EQPT writes a datal file, using the corresponding data0 file as input. In processing a data0 file, EQPT checks the data for common errors, such as unbalanced reactions. It also conducts two kinds of data transformation. Interpolating polynomials are fit to data which are input on temperature adds. The coefficients of these polynomials are then written on the datal file in place of the original temperature grids. A second transformation pertains only to data files tied to Pitzer`s equations. The commonly reported observable Pitzer coefficient parameters are mapped into a set of primitive parameters by means of a set of conventional relations. These primitive form parameters are then written onto the datal file in place of their observable counterparts. Usage of the primitive form parameters makes it easier to evaluate Pitzer`s equations in EQ3NR and EQ6. EQPT and the other codes in the EQ3/6 package are written in FORTRAN 77 and have been developed to run under the UNIX operating system on computers ranging from workstations to supercomputers.

  3. DataMover: robust terabyte-scale multi-file replication overwide-area networks

    SciTech Connect (OSTI)

    Sim, Alex; Gu, Junmin; Shoshani, Arie; Natarajan, Vijaya

    2004-04-05T23:59:59.000Z

    Typically, large scientific datasets (order of terabytes) are generated at large computational centers, and stored on mass storage systems. However, large subsets of the data need to be moved to facilities available to application scientists for analysis. File replication of thousands of files is a tedious, error prone, but extremely important task in scientific applications. The automation of the file replication task requires automatic space acquisition and reuse, and monitoring the progress of staging thousands of files from the source mass storage system, transferring them over the network, archiving them at the target mass storage system or disk systems, and recovering from transient system failures. We have developed a robust replication system, called DataMover, which is now in regular use in High-Energy-Physics and Climate modeling experiments. Only a single command is necessary to request multi-file replication or the replication of an entire directory. A web-based tool was developed to dynamically monitor the progress of the multi-file replication process.

  4. File:Rules and Regulations for the Management and Control of...

    Open Energy Info (EERE)

    Facebook icon Twitter icon File:Rules and Regulations for the Management and Control of Designated Ground Water.pdf Jump to: navigation, search File File history File...

  5. File:5 CCR 1001-5 Colorado Stationary Source Permitting and Air...

    Open Energy Info (EERE)

    icon File:5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements.pdf Jump to: navigation, search File File history File...

  6. File:Texas NOI for Storm Water Discharges Associated with Construction...

    Open Energy Info (EERE)

    NOI for Storm Water Discharges Associated with Construction Activities (TXR150000).pdf Jump to: navigation, search File File history File usage Metadata File:Texas NOI for Storm...

  7. File:App Commercial Leases and Easements or Amendment or Residential...

    Open Energy Info (EERE)

    App Commercial Leases and Easements or Amendment or Residential Coastal Easements HOA.pdf Jump to: navigation, search File File history File usage Metadata File:App Commercial...

  8. A Metadata-Rich File System

    SciTech Connect (OSTI)

    Ames, S; Gokhale, M B; Maltzahn, C

    2009-01-07T23:59:59.000Z

    Despite continual improvements in the performance and reliability of large scale file systems, the management of file system metadata has changed little in the past decade. The mismatch between the size and complexity of large scale data stores and their ability to organize and query their metadata has led to a de facto standard in which raw data is stored in traditional file systems, while related, application-specific metadata is stored in relational databases. This separation of data and metadata requires considerable effort to maintain consistency and can result in complex, slow, and inflexible system operation. To address these problems, we have developed the Quasar File System (QFS), a metadata-rich file system in which files, metadata, and file relationships are all first class objects. In contrast to hierarchical file systems and relational databases, QFS defines a graph data model composed of files and their relationships. QFS includes Quasar, an XPATH-extended query language for searching the file system. Results from our QFS prototype show the effectiveness of this approach. Compared to the defacto standard, the QFS prototype shows superior ingest performance and comparable query performance on user metadata-intensive operations and superior performance on normal file metadata operations.

  9. EIA-411 Data File

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877SouthwestWisconsin profileDatabase Form EIA-411 -

  10. EIA-411 Data File

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877SouthwestWisconsin profileDatabase Form EIA-411

  11. EIA-411 Data File

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJerseyMarkets 19, 4:00Markets FullForm

  12. Small file aggregation in a parallel computing system

    DOE Patents [OSTI]

    Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Grider, Gary; Zhang, Jingwang

    2014-09-02T23:59:59.000Z

    Techniques are provided for small file aggregation in a parallel computing system. An exemplary method for storing a plurality of files generated by a plurality of processes in a parallel computing system comprises aggregating the plurality of files into a single aggregated file; and generating metadata for the single aggregated file. The metadata comprises an offset and a length of each of the plurality of files in the single aggregated file. The metadata can be used to unpack one or more of the files from the single aggregated file.

  13. GDCT Initialization File [gdct.ini] Format Specification Guide

    E-Print Network [OSTI]

    Rosebrugh, Robert

    GDCT Initialization File [gdct.ini] Format Specification Guide Written By: Jeremy Bradbury June 22, 2000 Below is the layout of the gdct.ini file. It is important to note the following: · If the gdct.ini to represent that a file does not exist under the "Recent Files" section of the gdct.ini file. [Internal

  14. Unix/Linux Command Reference .com File Commands

    E-Print Network [OSTI]

    Reluga, Tim

    word in the current line Ctrl+U erases the whole line Ctrl+R type to bring up a recent commandUnix/Linux Command Reference .com File Commands ls directory listing ls -al formatted listing output the contents of file head file output the first 10 lines of file tail file output the last 10

  15. Radiative transfer in molecular lines

    E-Print Network [OSTI]

    A. Asensio Ramos; J. Trujillo Bueno; J. Cernicharo

    2001-02-15T23:59:59.000Z

    The highly convergent iterative methods developed by Trujillo Bueno and Fabiani Bendicho (1995) for radiative transfer (RT) applications are generalized to spherical symmetry with velocity fields. These RT methods are based on Jacobi, Gauss-Seidel (GS), and SOR iteration and they form the basis of a new NLTE multilevel transfer code for atomic and molecular lines. The benchmark tests carried out so far are presented and discussed. The main aim is to develop a number of powerful RT tools for the theoretical interpretation of molecular spectra.

  16. FileName//FileDate//PNNL-SA-##### DPA Calculational Methodologies Used in Fission

    E-Print Network [OSTI]

    McDonald, Kirk

    FileName//FileDate//PNNL-SA-##### DPA Calculational Methodologies Used in Fission and Fusion Reactor Materials Applications David Wootan - david.wootan@pnnl.gov, 1-509-372-6865 Radiation Damage

  17. Saving Output to a File (Using Codeblocks or Dev-C++) Saving Your Output to a File

    E-Print Network [OSTI]

    Sokol, Dina

    Saving Output to a File (Using Codeblocks or Dev-C++) Saving Your Output to a File To save | New | Source File. d. In the new window, right-click and select Paste. e. Then select "File | Save as" to save and name the file. i. In the window that pops up, the bottom fill-in box is labelled "Save as type

  18. Transferring Data at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transfering data - whether over the wide area network...

  19. Reading File Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaising funds forAdvancedAdvancedReading File

  20. Checkout Form Verson 08-11

    E-Print Network [OSTI]

    Karsai, Istvan

    Early Transferring within ETSU from to Transferring within TBR from ETSU to ***Department head form may be completed. Financial Manager (94316) (http://www.etsu Access (idbucs@etsu.edu) CBORD Access (idbucs@etsu.edu) Date: PROCUREMENT Procard (94741) Travel Advances

  1. Faculty Recruitment Summary Form (UPF-1F) (Please see instructions on page 2)

    E-Print Network [OSTI]

    Goodman, Robert M.

    Faculty Recruitment Summary Form (UPF-1F) (Please see instructions on page 2) POSITION PROFILE a copy for your records. Print Form Reset Form #12;INSTRUCTIONS FOR THE COMPLETION AND FILING OF THE UPF, the following steps must be taken: 1. Complete all sections of the UPF-1F form, including the signature

  2. ID BUC$ EQUIPMENT REQUEST FORM CAMPUS EVENT PAYMENT OPTION

    E-Print Network [OSTI]

    Karsai, Istvan

    ID BUC$ EQUIPMENT REQUEST FORM CAMPUS EVENT PAYMENT OPTION FOR ETSU ORGANIZATIONS Name ID BUC$. ETSU account transfer or a check requested? o ETSU Account

  3. Technology transfer 1995

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  4. NERSC Online Training May 3: Navigating NERSC File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Online Training May 3: Navigating NERSC File Systems NERSC Online Training May 3: Navigating NERSC File Systems April 26, 2011 by Richard Gerber A NERSC training event, "Navigating...

  5. DOE Successfully Resolves Three Enforcement Cases and Files Yet...

    Office of Environmental Management (EM)

    Successfully Resolves Three Enforcement Cases and Files Yet Another DOE Successfully Resolves Three Enforcement Cases and Files Yet Another September 29, 2010 - 5:24pm Addthis The...

  6. File:Notice of Termination for Authorization under TPDES General...

    Open Energy Info (EERE)

    | Sign Up Search File Edit History Facebook icon Twitter icon File:Notice of Termination for Authorization under TPDES General Permit TXR150000.pdf Jump to: navigation,...

  7. The relative use of form 8-k disclosures: a trading response analysis

    E-Print Network [OSTI]

    McLelland, Andrew John

    2004-09-30T23:59:59.000Z

    Prior research suggests that the use of accounting information differs substantially by investor class. My analysis extends this line of research to the area of SEC Form 8-K filings. Prior research also provides mixed evidence on the informativeness...

  8. UBC Subject File Collection / UBC Archives (collector)

    E-Print Network [OSTI]

    Handy, Todd C.

    UBC Subject File Collection / UBC Archives (collector) Compiled by Max Steiner (2005) Revised Description o Title / Dates of Creation / Physical Description o Collector's Biographical Sketch o Scope Files Collection / UBC Archives (collector). 1915-2000. 10.8 m of textual materials. Collector

  9. Contributing Storage using the Transparent File System

    E-Print Network [OSTI]

    Berger, Emery

    Contributing Storage using the Transparent File System JAMES CIPAR and MARK D. CORNER and EMERY D barrier to the adoption of contributory storage systems is that contributing a large quantity of local--all of the currently available space-- without impacting the performance of ordinary file access operations. We show

  10. Common File Formats in Rosetta Steven Combs

    E-Print Network [OSTI]

    Meiler, Jens

    different ways Command Line Fixbb.release database -s 1thfD.pdb ex1 ex2 packing.942 19.190 1.00 8.50 P Ligand lines Atom # Atom name Residue name Chain ID Residue # Xcoord Ycoord Zcoord occupancy Bfactor Element name Atom lines #12;Silent Files Specify by in:file:silent and out

  11. TO: FILE FROM: I SUBJECT:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;I : T'ncZl' lO--23,TO: FILE

  12. File:Banglmetst 221.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFile Edit with form

  13. File:Calabarzon Speed 100m | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form History Facebook

  14. File:Cammetst 58.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form History

  15. File:CaveProtectionLaw.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form

  16. File:Cert Compliance inst 0110.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50m Wind

  17. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOE Patents [OSTI]

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12T23:59:59.000Z

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  18. An Analysis of Web File Sizes: New Methods and Models

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    An Analysis of Web File Sizes: New Methods and Models A Thesis presented by Brent Tworetzky consider such models and how to improve their fits. This thesis contributes to file size research-improved file size estimations over type-blind models. We therefore present a range of useful new file size

  19. FILE USAGE RECOMMENDATIONS OCTOBER 31, 2013 | PAGE: 1 AVAILABLE LOGOS

    E-Print Network [OSTI]

    Aronov, Boris

    FILE USAGE RECOMMENDATIONS OCTOBER 31, 2013 | PAGE: 1 AVAILABLE LOGOS EPS JPG PNG LONG LOGO_long_white.png STACKED LOGO engineering_stacked_color.eps engineering_stacked_color.jpg engineering O R - Recommended File Type O - Optional File Type Which file to use Logo formats are available

  20. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If youEIA-906 & EIA-920,Condensate,Electric Power

  1. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If youEIA-906 & EIA-920,Condensate,Electric PowerElectric

  2. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If youEIA-906 & EIA-920,Condensate,Electric

  3. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If youEIA-906 &

  4. FILE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (;%hEROF'

  5. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826Industrial Plants Excluding

  6. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826Industrial Plants ExcludingCoke

  7. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826Industrial Plants

  8. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826Industrial

  9. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S.

  10. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S.3,"Alabama","Alabama","Electric Power

  11. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S.3,"Alabama","Alabama","Electric

  12. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1

  13. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  14. Differential forms

    E-Print Network [OSTI]

    Poniz, Philip

    1976-01-01T23:59:59.000Z

    ~ . . . , e )u A . . . A u REMARK 4. 16. Since there are pk) possibilities to chose among n ele- ments the set of k distinct elements the dimension of the space Ak(R ;R) equals (&) for nk k 26 CHAPTER V DIFFERENTIAL FORMS ? INTRODUCTION AND DEFINITION... v(x) (41, . . . , 4k 1) (m (x) (g )) (62, . . . , 4k I) (7. 1) Since (m (x))(4 ) c A (E;F) Theorem 4. 1. ). it follows that v(x) t Al k(Ei ) ~ ( We now introduce the mapping dm:U ~ A + (E;F) defined as follows: dw(x) = v(x) = Esgn(p)pv(x). Pt...

  15. JLF Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center atdiffusivities inJLF Forms JLF Target Fab

  16. Request Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliability TechnologyRenewalReportReports andRequestForm

  17. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  18. File storage and I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »Travel andFifth Annual RadWasteFileFileFileO

  19. Office of Graduate Studies DISSERTATION AND THESIS RELEASE FORM

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Office of Graduate Studies DISSERTATION AND THESIS RELEASE FORM NAME: PID: PROGRAM: DEGREE QTR & YR IMMEDIATE RELEASE I authorize the Office of Graduate Studies to release my dissertation or thesis to the UC through the library catalog as soon as is feasible after my dissertation/thesis has been filed. EMBARGO

  20. DISSERTATION AND THESIS RELEASE FORM PROGRAM: DEGREE QTR & YR

    E-Print Network [OSTI]

    Talley, Lynne D.

    DISSERTATION AND THESIS RELEASE FORM NAME: PID: PROGRAM: DEGREE QTR & YR IMMEDIATE RELEASE I authorize the Graduate Division to release my dissertation or thesis to the UC California Digital Library catalog as soon as is feasible after my dissertation/thesis has been filed. EMBARGO OF ONE OR TWO YEARS I

  1. Collective operations in a file system based execution model

    DOE Patents [OSTI]

    Shinde, Pravin; Van Hensbergen, Eric

    2013-02-12T23:59:59.000Z

    A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.

  2. Collective operations in a file system based execution model

    DOE Patents [OSTI]

    Shinde, Pravin; Van Hensbergen, Eric

    2013-02-19T23:59:59.000Z

    A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.

  3. Introduction Container Library Container Tools FUSE Container File System Evaluation Container Library and FUSE Container File

    E-Print Network [OSTI]

    The library was completely overhauled It now provides consistently named functions and data types The commentsIntroduction Container Library Container Tools FUSE Container File System Evaluation Container Library and FUSE Container File System Softwarepraktikum fur Fortgeschrittene Michael Kuhn Parallele und

  4. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01T23:59:59.000Z

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  5. NFS File Handle Security Avishay Traeger, Abhishek Rai, Charles P. Wright, and Erez Zadok

    E-Print Network [OSTI]

    Zadok, Erez

    a file han- dle. When an NFS client performs an operation, it passes the file handle to the server, which decodes the file han- dle to determine what object the file handle refers to. Since NFS is a stateless

  6. property transfer form hqf1400-18 altered 20101115

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThePatricia2012)HR5 TRANSITION BRIEFING module 10/2011

  7. Electronic Funds Transfer Authorization Form 4/2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-State Hybridization in Heavy-Fermion Systems

  8. HIGEE Mass Transfer

    E-Print Network [OSTI]

    Mohr, R. J.; Fowler, R.

    HIGEE MASS TRANSFER R.J. Mohr and R. Fowler GLITSCH, INC. Dallas, Texas ABSTRACT Distillation, absorption, and gas stripping have traditionally been performed in tall columns utilizing trays or packing. Columns perform satisfactorily... transfer system which utilizes a rotating bed of packing to achieve high efficiency separations, and consequent reduction in size and weight. INTRODUCTION HIGEE is probably one of the most interesting developments in mass transfer equipment made...

  9. MATERIALS TRANSFER AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

  10. Tunable transfer | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 29, 2013 Scientists gain first quantitative insights into electron transfer from minerals to microbes Scientists have gained the first quantitative insights into electron...

  11. Technology Transfer Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory...

  12. Bus transfer analysis

    SciTech Connect (OSTI)

    Weronick, R.; Hassan, I.D. [Raytheon Engineers and Constructors, Lyndhurst, NJ (United States)

    1996-11-01T23:59:59.000Z

    This paper discusses bus transfer schemes and the methodology used in modeling and analysis. Due to the unavailability of generic acceptance criteria, simulations were performed to analyze the actual fast bus transfer operations at four operating nuclear power generating stations. Sample simulation results illustrating the transient variations in motors currents and torques are included. The analyses were performed to ensure that motors and other rotating parts are not subjected to excessive or accumulated stresses caused by bus transfer operations. A summary of the experience gained in the process of performing this work and suggested bus transfer acceptance criteria are also presented.

  13. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  14. Hadron structure at small momentum transfer

    E-Print Network [OSTI]

    Thomas Walcher

    2008-01-12T23:59:59.000Z

    Giving three examples, the form factors of the nucleon, the polarisability of the charged pion and the interference of the $S_{11}(1535)$ with the $D_{13}(1520)$ excitation of the nucleon in the $\\eta p$-decay channel, it is argued that the hadron structure at low momentum transfer is highly significant for studying QCD.

  15. How-to: Use EMSL's Aurora File System | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How-to: Use EMSL's Aurora File System How-to: Use EMSL's Aurora File System Synopsis The Aurora archive system is used for long-term storage of data collected by EMSL instuments,...

  16. Data Files Monthly Natural Gas Gross Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Data Files Data Files 1 EIA Best Estimate of Gross Withdrawals: Combination of historical production data from the Natural Gas Annual and current estimates based on data from the...

  17. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces

    E-Print Network [OSTI]

    Attinger, Daniel

    Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces Amy Rachel in revised form 30 October 2012 Accepted 31 October 2012 Keywords: Superhydrophobic Superhydrophilic Biphilic- and nanofabrication, superhydrophilic and superhydrophobic surfaces have been developed. The statics and dynamics

  18. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-26T23:59:59.000Z

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.

  19. Duplicate File Names-A Novel Steganographic Data Hiding Technique

    E-Print Network [OSTI]

    Wu, Jie

    or a terrorist plot. None-the-less, these files can also be potentially dangerous viruses, malware, child porn

  20. POSITION DESCRIPTION 2012 TRANSFER MENTOR

    E-Print Network [OSTI]

    POSITION DESCRIPTION 2012 TRANSFER MENTOR TRANSFER MENTOR AS A STAFF MEMBER Thank you for your interest in the Transfer Mentor position with Orientation and Transition Programs' (OTP) Transfer Mentoring Program. The Transfer Mentor (TM) is a member of the Orientation and Transition Programs' staff

  1. Patent subsidy and patent filing in China By Zhen Lei

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    Patent subsidy and patent filing in China By Zhen Lei , Zhen Sun, and Brian Wright Department of patent subsidy policies on patent filings in Chi- na. China had rapid growth in patenting in recent years and became the number one in patent filings in 2011. We study five neighboring cities in Jiangsu province

  2. File Popularity Characterisation. Chris Roadknight, Ian Marshall and Deborah Vearer

    E-Print Network [OSTI]

    Marshall, Ian W.

    , BAE 97]. Caches can bring files nearer the client (with a possible reduction in latency), reduce load curve, which plots the number of requests for each file against the file's popularity ranking. It is often said that this popularity curve follows Zipf's law, Popularity = K* ranking-a , with a being close

  3. The Future of the Andrew File System

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    The talk will discuss the ten operational capabilities that have made AFS unique in the distributed file system space and how these capabilities are being expanded upon to meet the needs of the 21st century. Derrick Brashear and Jeffrey Altman will present a technical road map of new features and technical innovations that are under development by the OpenAFS community and Your File System, Inc. funded by a U.S. Department of Energy Small Business Innovative Research grant. The talk will end with a comparison of AFS to its modern days competitors.

  4. Janus: Automatic Ontology Builder from XSD Files

    E-Print Network [OSTI]

    Bedini, Ivan; Gardarin, Georges

    2010-01-01T23:59:59.000Z

    The construction of a reference ontology for a large domain still remains an hard human task. The process is sometimes assisted by software tools that facilitate the information extraction from a textual corpus. Despite of the great use of XML Schema files on the internet and especially in the B2B domain, tools that offer a complete semantic analysis of XML schemas are really rare. In this paper we introduce Janus, a tool for automatically building a reference knowledge base starting from XML Schema files. Janus also provides different useful views to simplify B2B application integration.

  5. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  6. Friction Stir Welding Download the files fswss.txt and fswdyn.txt from the course website. These files contain

    E-Print Network [OSTI]

    Landers, Robert G.

    Friction Stir Welding QUESTION 1 Download the files fswss.txt and fswdyn.txt from the course website. These files contain experimental data from a friction stir welding process of 6061 aluminum 0 2 1 0 F z b z b d z z a z a + = + + (3) #12;Friction Stir Welding QUESTION 2 Download the files

  7. Summary of EPIC-2001 Rain Map Files EPIC Rainmap files were generated using all surveillance scans (3 tilt, full PPI)

    E-Print Network [OSTI]

    Rutledge, Steven

    information about the rain map cartesian grid and data values of radar reflectivity (dBZ) and rain rate (mm hrSummary of EPIC-2001 Rain Map Files EPIC Rainmap files were generated using all surveillance scans of the surveillance radar scan in UTC. The gif file (1) shows a 1-km height map (CAPPI) of rainfall intensity (mm hr-1

  8. Elevated temperature forming method and preheater apparatus

    DOE Patents [OSTI]

    Krajewski, Paul E; Hammar, Richard Harry; Singh, Jugraj; Cedar, Dennis; Friedman, Peter A; Luo, Yingbing

    2013-06-11T23:59:59.000Z

    An elevated temperature forming system in which a sheet metal workpiece is provided in a first stage position of a multi-stage pre-heater, is heated to a first stage temperature lower than a desired pre-heat temperature, is moved to a final stage position where it is heated to a desired final stage temperature, is transferred to a forming press, and is formed by the forming press. The preheater includes upper and lower platens that transfer heat into workpieces disposed between the platens. A shim spaces the upper platen from the lower platen by a distance greater than a thickness of the workpieces to be heated by the platens and less than a distance at which the upper platen would require an undesirably high input of energy to effectively heat the workpiece without being pressed into contact with the workpiece.

  9. HEAT AND MOISTURE TRANSFER THROUGH CLOTHING

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.between convective heat transfer and mass transferConvective and radiative heat transfer coefficients for

  10. Heat and moisture transfer through clothing

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forbetween convective heat transfer and mass transfer

  11. Ames Lab 101: Technology Transfer

    ScienceCinema (OSTI)

    Covey, Debra

    2012-08-29T23:59:59.000Z

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  12. Transfer reactions at ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    64 Ni+ 64 Ni Strong entrance-channel dependence of fusion enhancement Beckerman et al., PRL 45, 1472 (1980), PRC 25, 837 (1982) Coupling of transfer channels, in addition to...

  13. Seer: An analysis package for LHCO files

    E-Print Network [OSTI]

    Martin, Travis A W

    2015-01-01T23:59:59.000Z

    Seer is a multipurpose package for performing trigger, signal determination and cuts of an arbitrary number of collider processes stored in the LHCO file format. This article details the use of Seer, including the necessary details for users to customize the code for investigating new kinematic variables.

  14. Consanguine Calculations Input File: blood.in

    E-Print Network [OSTI]

    California at Berkeley, University of

    1 of 20 Problem A+ Consanguine Calculations Input File: blood.in Every person's blood has 2 markers in a particular ABO blood type for that person. Combination ABO Blood Type AA A AB AB AO A BB B BO B OO O Likewise, every person has two alleles for the blood Rh factor, represented by the characters + and -. Someone who

  15. Historical_Habitats File Geodatabase Feature Class

    E-Print Network [OSTI]

    Historical_Habitats File Geodatabase Feature Class Tags Historical ecology, Ventura, Oxnard View, Meiners Oaks, Camarillo, Somis, Ventura River, Santa Clara River, Calleguas Creek, Santa Paula Springs, Ormond Beach, Mandalay Beach, Pierpont Bay, McGrath Lake, Ventura County, Los Angeles County

  16. DEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS

    E-Print Network [OSTI]

    for the program is provided by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche&M University, as an account of work performed under the international Ocean Drilling Program which is managedDEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS Ocean Drilling Program Texas A&M University Technical

  17. Design and Implementation of a Metadata-rich File System

    SciTech Connect (OSTI)

    Ames, S; Gokhale, M B; Maltzahn, C

    2010-01-19T23:59:59.000Z

    Despite continual improvements in the performance and reliability of large scale file systems, the management of user-defined file system metadata has changed little in the past decade. The mismatch between the size and complexity of large scale data stores and their ability to organize and query their metadata has led to a de facto standard in which raw data is stored in traditional file systems, while related, application-specific metadata is stored in relational databases. This separation of data and semantic metadata requires considerable effort to maintain consistency and can result in complex, slow, and inflexible system operation. To address these problems, we have developed the Quasar File System (QFS), a metadata-rich file system in which files, user-defined attributes, and file relationships are all first class objects. In contrast to hierarchical file systems and relational databases, QFS defines a graph data model composed of files and their relationships. QFS incorporates Quasar, an XPATH-extended query language for searching the file system. Results from our QFS prototype show the effectiveness of this approach. Compared to the de facto standard, the QFS prototype shows superior ingest performance and comparable query performance on user metadata-intensive operations and superior performance on normal file metadata operations.

  18. Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped Emmanuel Rousseau

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon the role of surface plasmons for nanoscale radiative heat transfer between doped silicon surfaces. We derive a new accurate and closed-form expression of the radiative near- field heat transfer. We also

  19. Resources, framing, and transfer p. 1 Resources, framing, and transfer

    E-Print Network [OSTI]

    Hammer, David

    Resources, framing, and transfer p. 1 Resources, framing, and transfer David Hammer Departments. #12;Resources, framing, and transfer p. 2 Resources, framing, and transfer David Hammer, Andrew Elby of activating resources, a language with an explicitly manifold view of cognitive structure. In this chapter, we

  20. Devices with extended area structures for mass transfer processing of fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E. (Kennewick, WA); Wegeng, Robert S. (Richland, WA); Whyatt, Greg A. (West Richland, WA); King, David L. (Richland, WA); Brooks, Kriston P. (Kennewick, WA); Stenkamp, Victoria S. (Richland, WA)

    2009-04-21T23:59:59.000Z

    A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.

  1. Information Transfer Fidelity in Networks of Spins

    E-Print Network [OSTI]

    Edmond Jonckheere; Frank Langbein; Sophie Schirmer

    2014-10-05T23:59:59.000Z

    Networks of spins, or spintronic networks, are given an Information Transfer Fidelity (ITF) derived from an upper bound on the probability of transmission of the excitation from one spin to another. It is shown that this theoretical bound can be reached asymptotically in time under certain conditions. The process of achieving maximum transfer probability is given a dynamical model, the translation on the torus, and the time to reach the maximum probability is estimated using the simultaneous Diophantine approximation computationally implemented using a variant of the Lenstra-Lenstra-Lov\\'asz (LLL) algorithm. The ITF induces a prametric on the network. For a ring with homogeneous couplings, it is shown that this prametric satisfies the triangle inequality, opening up the road to an ITF geometry, which turns out to be completely different from the geometry of the physical arrangement of the spin in the spintronic device. It is shown that transfer fidelities and transfer times can be improved by means of simple controls taking the form of strong localized magnetic fields, opening up the possibility for intelligent design of spintronic networks and dynamic routing of information encoded in such networks. The approach is much more flexible than engineering the couplings to favor some transfers.

  2. AMS-TeX Source file

    E-Print Network [OSTI]

    We measure success in the following descending order: 1. ..... Massachusetts 1981 B-G Becker,James C. and Gottlieb, Daniel H. Vector fields and transfers 72

  3. March 24, 2008 ADBS: Storage 1 Disk Storage, Basic File Structures, and

    E-Print Network [OSTI]

    Adam, Salah

    March 24, 2008 ADBS: Storage 1 Disk Storage, Basic File Structures, and Hashing. #12;March 24, 2008 ADBS: Storage 2 Chapter Outline The Storage Hierarchy How Far is Your Data Disk Storage Devices Records Blocking Files of Records Unordered Files Ordered Files Hashed Files RAID Technology Storage Area Network

  4. Applied heat transfer

    SciTech Connect (OSTI)

    Ganapathy, V.

    1982-01-01T23:59:59.000Z

    Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

  5. INSPIRE and SPIRES Log File Analysis

    SciTech Connect (OSTI)

    Adams, Cole; /Wheaton Coll. /SLAC

    2012-08-31T23:59:59.000Z

    SPIRES, an aging high-energy physics publication data base, is in the process of being replaced by INSPIRE. In order to ease the transition from SPIRES to INSPIRE it is important to understand user behavior and the drivers for adoption. The goal of this project was to address some questions in regards to the presumed two-thirds of the users still using SPIRES. These questions are answered through analysis of the log files from both websites. A series of scripts were developed to collect and interpret the data contained in the log files. The common search patterns and usage comparisons are made between INSPIRE and SPIRES, and a method for detecting user frustration is presented. The analysis reveals a more even split than originally thought as well as the expected trend of user transition to INSPIRE.

  6. File:03ORENoncompetitiveGeothermalLease.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to: navigation, search File File history File

  7. Three Dimensional Radiative Transfer

    E-Print Network [OSTI]

    Tom Abel

    2000-05-09T23:59:59.000Z

    Radiative Transfer (RT) effects play a crucial role in the thermal history of the intergalactic medium. Here I discuss recent advances in the development of numerical methods that introduce RT to cosmological hydrodynamics. These methods can also readily be applied to time dependent problems on interstellar and galactic scales.

  8. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  9. CARTOGRAPHIC BASE FILES AT LAWRENCE BERKELEY LABORATORY: 1978. INVENTORY

    E-Print Network [OSTI]

    Burkhart, B.R.

    2011-01-01T23:59:59.000Z

    BERKELEY LABORATORY: 1978 INVENTORY f(ECEfVED tAWRENCE!FILES AT LAWRENCE BERKELEY LABORATORY: 1978 INVENTORY B. R.1979 ABSTRACT This inventory describes the cartographic base

  10. Scalable Parallel File System for Data and Metadata-intensive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Host: Rob Ross A critical purpose for parallel file systems used in high performance computing is to capture quickly and durably hold checkpoints of long running massive...

  11. File:03ORCEncroachment.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to: navigation, search File File history File usage File:03ORCEncroachment.pdf

  12. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  13. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  14. Geothermal Electricity Technology Evaluation Model (GETEM) Individual Case Files and Summary Spreadsheet (GETEM version Spring 2013)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hanson, Steven CJ

    This group of files-- 10 GETEM individual case files and 1 summary spreadsheet-- contain final data from the revisions between summer 2011 and spring 2013.

  15. Geothermal Electricity Technology Evaluation Model (GETEM) Individual Case Files and Summary Spreadsheet (GETEM version Spring 2013)

    SciTech Connect (OSTI)

    Hanson, Steven CJ

    2013-03-07T23:59:59.000Z

    This group of files-- 10 GETEM individual case files and 1 summary spreadsheet-- contain final data from the revisions between summer 2011 and spring 2013.

  16. Nucleon Form Factors experiments with 12 GeV CEBAF

    SciTech Connect (OSTI)

    Wojtsekhowski, Bogdan

    2008-11-01T23:59:59.000Z

    A number of precision form factor experiments at high momentum transfer will be performed with the 11 GeV electron beam of CEBAF. We review the approved proposals and the conceptual schemes of several new suggestions. Form factor data will serve as a major input for the construction of a tomographic image of the nucleon.

  17. OSU-Tulsa Helmerich Research Center Card Access Request Form

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OSU-Tulsa Helmerich Research Center Card Access Request Form *Please submit form to the University that it will NOT be loaned or transferred to any person. If this access card is lost or stolen, OSU-Tulsa University Police: ________________________ OSU-Tulsa University Police 2/4/13 University Police use only Date: _____________ Processed by

  18. Faculty Positions Heat Transfer and

    E-Print Network [OSTI]

    Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

  19. QER- Comment of Energy Transfer

    Broader source: Energy.gov [DOE]

    From: Lee Hanse Executive Vice President Interstate Energy Transfer Mobile - 210 464 2929 Office - 210 403 6455

  20. Plastic container bagless transfer

    DOE Patents [OSTI]

    Tibrea, Steven L.; D'Amelio, Joseph A.; Daugherty, Brent A.

    2003-11-18T23:59:59.000Z

    A process and apparatus are provided for transferring material from an isolated environment into a storage carrier through a conduit that can be sealed with a plug. The plug and conduit can then be severed to provide a hermetically sealed storage carrier containing the material which may be transported for storage or disposal and to maintain a seal between the isolated environment and the ambient environment.

  1. Mass transfer andMass transfer and Mass transfer andMass transfer and

    E-Print Network [OSTI]

    Zevenhoven, Ron

    't be determined A correlation for Sherwood number (Sh) based on di i l l i b d l i Sh diff idimensional analysis for mass transfer with convection: I l f d fl d b (l b l ) Internal forced flow: inside a tube (laminar A in fluid medium B in a flow with characteristic velocity and size characteristic d: kA = f(d, w, (= fluid

  2. Working Data File Sets from the Comprehensive Epidemiologic Data Resource (CEDR)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The more-than-100 working data file sets available from CEDR mainly include the data collected and updated by the three epidemiologic research centers. A researcher selects or generates variables from these more dynamic data files in order to form analytic data files. CEDR is a DOE electronic database comprised of health studies of DOE contract workers and environmental studies of areas surrounding DOE facilities. CEDR provides independent researchers and the public with access to de-identified data collected since the Department's early production years. Current holdings include studies of over 1 million workers at 31 DOE sites. Most of CEDR's holdings are derived from epidemiologic studies of DOE workers at many large nuclear weapons plants, such as Hanford, Los Alamos, the Oak Ridge reservation, Savannah River Site, and Rocky Flats. These studies primarily use death certificate information to identify excess deaths and patterns of disease among workers to determine what factors contribute to the risk of developing cancer and other illnesses. In addition, many of these studies have radiation exposure measurements on individual workers.

  3. APPENDIX A: Forms and Instructions Form Form R93D-44 Form R93D...

    U.S. Energy Information Administration (EIA) Indexed Site

    .... Mid-Year Coding Form ... Coding and Data Entry Control Card ... Mid-Year Keying Instructions ......

  4. 3.0 Exporting Models Save model as OBJ file

    E-Print Network [OSTI]

    Gordon, Scott

    3.0 Exporting Models Save model as OBJ file: o Make sure that the model, and the UV-unwrapping, are open and displayed. o File Export wavefront.obj o Navigate to desired directory (remember that single RETURN to accept the name (or use the Export Wavefront button in the upper right) o Click on the Export

  5. Energy Efficient Prefetching with Buffer Disks for Cluster File Systems

    E-Print Network [OSTI]

    Qin, Xiao

    Energy Efficient Prefetching with Buffer Disks for Cluster File Systems Adam Manzanares, Xiaojun the energy- efficiency of large scale parallel storage systems. To address these issues we introduce EEVFS (Energy Efficient Virtual File System), which is able to manage data placement and disk states to help

  6. Harvard Library: FY2011 Volumes, Records, Titles, and Digital Files

    E-Print Network [OSTI]

    Harvard Library: FY2011 Volumes, Records, Titles, and Digital Files Total Expenditures *Digital Millions Fiscal Year Volumes Bibliographic Records Titles Files in DRS* $0 $10 $20 $30 $40 $50 $60 $70 $80 a coordinated management structure and increasingly focus resources on the opportunities presented by new

  7. Measurement of the ??*?? and ??*??' transition form factors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; GarraTico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu.?G.; Lynch, G.; Osipenkov, I. L.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Botov, A. A.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu.?I.; Solodov, E. P.; Todyshev, K.?Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Petzold, A.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; LopesPegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; LiGioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Buenger, C.; Hartmann, T.; Leddig, T.; Schrder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yche, Ch.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; FrancoSevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.

    2011-09-01T23:59:59.000Z

    We study the reactions e?e??e?e??(') in the single-tag mode and measure the ??*??(') transition form factors in the momentum-transfer range from 4 to 40 GeV. The analysis is based on 469 fb? of integrated luminosity collected at PEP-II with the BABAR detector at e?e? center-of-mass energies near 10.6 GeV.

  8. File:Mmpa.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdf Jump to: navigation, search File

  9. Hopper File Storage and I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy 2010 A selectionFile Storage and

  10. Detailed Drawings of NERSC File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavid Turner David3Depth ProfilefromRefinement |File

  11. File:Consultants.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File EditSW NOI

  12. File:Coordination.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File EditSW NOICoordination.pdf Jump

  13. Transportation and Energy Use Data Files

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product:InputData Files

  14. Core File Settings | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControllingCool MagneticCoos BayCore File Settings

  15. Single File Line, Please! | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9Morgan McCorkleSingin' in the Rain NewsSingle File

  16. Category:Map Files | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back to PVMagnetotellurics asFiles

  17. Storing files in a parallel computing system based on user-specified parser function

    DOE Patents [OSTI]

    Faibish, Sorin; Bent, John M; Tzelnic, Percy; Grider, Gary; Manzanares, Adam; Torres, Aaron

    2014-10-21T23:59:59.000Z

    Techniques are provided for storing files in a parallel computing system based on a user-specified parser function. A plurality of files generated by a distributed application in a parallel computing system are stored by obtaining a parser from the distributed application for processing the plurality of files prior to storage; and storing one or more of the plurality of files in one or more storage nodes of the parallel computing system based on the processing by the parser. The plurality of files comprise one or more of a plurality of complete files and a plurality of sub-files. The parser can optionally store only those files that satisfy one or more semantic requirements of the parser. The parser can also extract metadata from one or more of the files and the extracted metadata can be stored with one or more of the plurality of files and used for searching for files.

  18. File:Central America 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50m Wind Power.pdf

  19. File:China Chifeng 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50m Wind50m Wind

  20. File:China Enshi 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50m Wind50m

  1. File:China Fuzhou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50m Wind50mFuzhou

  2. File:China Guangzhou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50m

  3. File:China Haikou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50mHaikou 50m Wind

  4. File:China Hangzhou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50mHaikou 50m

  5. File:China Hohhot 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50mHaikou

  6. File:China Jiamusi 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50mHaikouJiamusi

  7. U.S. Geological Survey Open-File Report 02328 Geological Survey of Canada Open File 4350

    E-Print Network [OSTI]

    Goldfinger, Chris

    U.S. Geological Survey Open-File Report 02­328 Geological Survey of Canada Open File 4350 August, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC, V8W 3P6, Canada #12;ISBN: 0 of Canada and the University of Victoria. This meeting was held at the University of Victoria's Dunsmuir

  8. Dry lubricant films for aluminum forming.

    SciTech Connect (OSTI)

    Wei, J.; Erdemir, A.; Fenske, G. R.

    1999-03-30T23:59:59.000Z

    During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

  9. Wireless Power Transfer

    ScienceCinema (OSTI)

    None

    2013-11-19T23:59:59.000Z

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  10. Wireless Power Transfer

    SciTech Connect (OSTI)

    None

    2013-07-22T23:59:59.000Z

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  11. Manipulator mounted transfer platform

    DOE Patents [OSTI]

    Dobbins, James C. (Idaho Falls, ID); Hoover, Mark A. (Idaho Falls, ID); May, Kay W. (Idaho Falls, ID); Ross, Maurice J. (Pocatello, ID)

    1990-01-01T23:59:59.000Z

    A transfer platform for the conveyance of objects by a manipulator includes a bed frame and saddle clamp secured along an edge of the bed frame and adapted so as to secure the bed frame to a horizontal crosspiece of the manipulator. The platform may thus move with the manipulator in a reciprocal linear path defined by a guide rail. A bed insert may be provided for the support of conveyed objects and a lifting bail may be provided to permit the manipulator arm to install the bed frame upon the crosspiece under remote control.

  12. Data Transfer and Access

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDanielDTN Data Transfer Nodes

  13. Time, energy & form

    E-Print Network [OSTI]

    McInnis, Martha Jane

    1982-01-01T23:59:59.000Z

    Physical manifestations of time occur in natural forms of all sizes. Architectural form serves as shelter while providing a built envelope of human life, simultaneously influencing and influenced by energetic activities ...

  14. ON NEARLY EQUIVALENT FORMS FOR GSp(4) DANIEL FILE AND RAMIN TAKLOO-BIGHASH

    E-Print Network [OSTI]

    Takloo-Bighash, Ramin

    the theta lift of the representations (1, 2) and (JL 1 , JL 2 ) to GSp(4). Lemma 1. In the local situation this lemma is well-known. The non-vanishing of the local theta lifts follows from Remark 6.8 of [P where Tv is split. Let 1,v, 2,v be two non-equivalent supercuspidal representations of D v GL2(Fv) w

  15. File:Air Pollututant Emission Notice (APEN) Form.pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463 × 599 pixels.

  16. File:Form PI-1 Air Pre-Construction Permit.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf Jump to: navigation,FHPLPI-1 Air

  17. File:FormA1-R.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf Jump to:

  18. File:FormBInstructions EmissionUnit .pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf Jump to:.pdf

  19. File:FormW-14p (1).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf Jump

  20. File:UPDES ConstructionInsp formP1.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Originalfaq.pdfFinal.pdf Jump to: navigation,UPDES

  1. File:UPDES ConstructionInsp formP2.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Originalfaq.pdfFinal.pdf Jump to:

  2. File:UST Registration and Self-Certification Form 0724.pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Originalfaq.pdfFinal.pdfNM.pdfUSFWSList.pdf

  3. 11. Working with files in Rhythmyx Lee Bryant v1.3 | 18/06/10

    E-Print Network [OSTI]

    Doran, Simon J.

    11. Working with files in Rhythmyx Lee Bryant v1.3 | 18/06/10 Part One: Uploading a file Lee Bryant v1.3 Part Two: Inserting a link to a file on a page Objectives To insert a link to the file

  4. File system, SaveRestore and Sequencer for LINAC2, DESY2, PETRA3 and FLASH,

    E-Print Network [OSTI]

    File system, SaveRestore and Sequencer for LINAC2, DESY2, PETRA3 and FLASH, a status report Jrgen 4 #12;Basic principle of "Machine file system" disk save rings linacs `set points' `read-back' values position Quads position Beam etc. machine file restore More features: compare: between file

  5. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect (OSTI)

    Hoffman, M.Z.

    1992-07-31T23:59:59.000Z

    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes. (DLC)

  6. DATA META FILE 2004 This file describes the instrumentation, field setup, and quality control procedures

    E-Print Network [OSTI]

    Minnesota, University of

    and analyses were supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-03ER - - - 2 DOY - - - 3 DDOY - - - 4 Time (hour/minute) - - - 5 Solar radiation (K) W/m2 Eppley PSP 3.7 m 6 be approximated from the incoming global solar radiation signal by dividing by a factor of 2.1. Data Files

  7. Double Shell Tank (DST) Transfer Piping Subsystem Specification

    SciTech Connect (OSTI)

    GRAVES, C.E.

    2000-03-22T23:59:59.000Z

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of Waste Feed Delivery. This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of waste feed delivery. This subsystem transfers waste between transfer-associated structures (pits) and to the River Protection Project (RPP) Privatization Contractor Facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

  8. Methods of forming steel

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID); Burch, Joseph V. (Shelley, ID)

    2001-01-01T23:59:59.000Z

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  9. Comparison of leading parallel NAS file systems on commodity hardware

    SciTech Connect (OSTI)

    Hedges, R; Fitzgerald, K; Gary, M; Stearman, D M

    2010-11-08T23:59:59.000Z

    High performance computing has experienced tremendous gains in system performance over the past 20 years. Unfortunately other system capabilities, such as file I/O, have not grown commensurately. In this activity, we present the results of our tests of two leading file systems (GPFS and Lustre) on the same physical hardware. This hardware is the standard commodity storage solution in use at LLNL and, while much smaller in size, is intended to enable us to learn about differences between the two systems in terms of performance, ease of use and resilience. This work represents the first hardware consistent study of the two leading file systems that the authors are aware of.

  10. File:01WAALandUsePlanning.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual1WAALandUsePlanning.pdf Jump to: navigation, search File File history File usage

  11. File:02SiteConsiderations (1).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual1WAALandUsePlanning.pdf Jump to: navigation, search File File history File

  12. File:03TXAStateGeothermalLease.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to: navigation, search File File history File3TXAStateGeothermalLease.pdf Jump

  13. File:03TXBLandAccess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to: navigation, search File File history File3TXAStateGeothermalLease.pdf

  14. File:06UTATransportation.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf JumpUTATransportation.pdf Jump to: navigation, search File File history File usage

  15. File:06UTBStormWaterPermit.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf JumpUTATransportation.pdf Jump to: navigation, search File File history File

  16. File:NREL-asia-dir.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File File history File

  17. Technology transfer | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology transfer Technology Development and Commercialization at Argonne Read more about Technology Development and Commercialization at Argonne New Director to lead Technology...

  18. Kinetic Mechanism of Direct Transfer of Escherichia coli SSB Tetramers between Single-Stranded DNA Molecules

    E-Print Network [OSTI]

    Lohman, Timothy M.

    Kinetic Mechanism of Direct Transfer of Escherichia coli SSB Tetramers between Single-Stranded DNA tetramer forms transiently prior to the release of the acceptor DNA. When an initial 1:1 SSB-ssDNA complex tetramer to form a singly ligated complex. However, when an initial SSB-ssDNA complex is formed with (dT)35

  19. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10T23:59:59.000Z

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  20. General Relativistic Radiative Transfer

    E-Print Network [OSTI]

    S. Knop; P. H. Hauschildt; E. Baron

    2006-11-30T23:59:59.000Z

    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron star atmospheres.

  1. Mitigated subsurface transfer line leak resulting in a surface pool

    SciTech Connect (OSTI)

    SCOTT, D.L.

    1999-02-08T23:59:59.000Z

    This analysis evaluates the mitigated consequences of a potential waste transfer spill from an underground pipeline. The spill forms a surface pool. One waste composite, a 67% liquid, 33% solid, from a single shell tank is evaluated. Even drain back from a very long pipeline (50,000 ft), does not pose dose consequences to the onsite or offsite individual above guideline values.

  2. FINITE ELEMENT METHOD IN FLUID MECHANICS & HEAT TRANSFER

    E-Print Network [OSTI]

    Camci, Cengiz

    completed this course should be able to perform quick analysis of small problems using the finite element of Fluid Mechanics and Heat Transfer An Introduction to Finite Element Analysis Using "Galerkin Weak of Euler's Equation in Finite Element Analysis Generalized Form of Euler's Equation in Three Dimensional

  3. Control of Electron Transfer Rates in Liquid Crystalline Media Mark Lilichenko and Dmitry V. Matyushov*

    E-Print Network [OSTI]

    Matyushov, Dmitry

    The biological environment for photosynthetic charge separa- tion1 and media employed for solar energy conversionControl of Electron Transfer Rates in Liquid Crystalline Media Mark Lilichenko and Dmitry V; In Final Form: December 17, 2002 The solvent reorganization energy of electron-transfer reactions

  4. Dehumidification heat transfer on copper surfaces Abhay Varghese Thomas, Nikhil Koratkar, Yoav Peles

    E-Print Network [OSTI]

    Peles, Yoav

    and Background When a cooled surface is placed in an air-steam mixture, liquid water droplets or film form Heat transfer Condensation Humid air a b s t r a c t Heat transfer during dehumidification on the surface if its temperature is sufficiently low. In this dehumidification process, the ambient airsteam

  5. An experimental, theoretical and numerical investigation of corona wind heat transfer enhancement

    E-Print Network [OSTI]

    Owsenek, Brian Leonard

    1993-01-01T23:59:59.000Z

    Corona wind heat transfer enhancement is a non-mechanical means of augmenting transfer coefficients in free and low-velocity convection flow fields. Ions formed near the surface of a high-voltage electrode are forced along the electric field lines...

  6. Glass foams: formation, transport properties, and heat, mass, and radiation transfer

    E-Print Network [OSTI]

    Pilon, Laurent

    Glass foams: formation, transport properties, and heat, mass, and radiation transfer Andrei G depend, to a large extent, on foams formed on the surface of the molten glass and of the batch due models for thermophysical and transport properties and heat, mass, and radiation transfer in glass foams

  7. Categorical Exclusion Determination Form

    Broader source: Energy.gov (indexed) [DOE]

    Form Proposed Action Title: (0471-1595) Regents of the University of Minnesota - Thermal Fuel: Solar Fuels via Partial Redox Cycles with Heat Recovery Program or Field...

  8. Partnership Agreement Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership Agreement Form Learn more at energy.goveereamobetter-plants The Better Buildings, Better Plants Program is a national initiative to significantly improve energy...

  9. APPLICATION FOR ASSISTANCE EE File xxx STAFF TRAINING & DEVELOPMENT FUND

    E-Print Network [OSTI]

    Martin, Jeff

    APPLICATION FOR ASSISTANCE EE File xxx STAFF TRAINING & DEVELOPMENT FUND Program Information debited account number and amount). Employee Name: ______________________________________ Group: AESES xxx / IUOE xxx / CMP xxx Department: __________________________________________ Dept. Account

  10. APPLICATION FOR ASSISTANCE EE File xxx STAFF TRAINING & DEVELOPMENT FUND

    E-Print Network [OSTI]

    Martin, Jeff

    APPLICATION FOR ASSISTANCE EE File xxx STAFF TRAINING & DEVELOPMENT FUND Program Information Information Employee Name: __________________________________ Group: AESES xxx / IUOE xxx / CMP xxx Department: ______________________________________ Program Type: Seminar xxx / Webinar xxx / Workshop xxx / Conference xxx / Non-Credit Course xxx

  11. Deploying Server-side File System Monitoring at NERSC

    E-Print Network [OSTI]

    Uselton, Andrew

    2009-01-01T23:59:59.000Z

    Deploying Server-side File System Monitoring at NERSC Andrewcenter was equipped with the server-side I/O monitoringfor observing and recording server-side per- formance

  12. An evaluated neutronic data file for elemental cobalt

    SciTech Connect (OSTI)

    Guenther, P.; Lawson, R.; Meadows, J.; Sugimoto, M.; Smith, A.; Smith, D.; Howerton, R.

    1988-08-01T23:59:59.000Z

    A comprehensive evaluated neutronic data file for elemental cobalt is described. The experimental data base, the calculational methods, the evaluation techniques and judgments, and the physical content are outlined. The file contains: neutron total and scattering cross sections and associated properties, (n,2n) and (n,3n) processes, neutron radiative capture processes, charged-particle-emission processes, and photon-production processes. The file extends from 10/sup /minus/5/ eV to 20 MeV, and is presented in the ENDF/B-VI format. Detailed attention is given to the uncertainties and correlations associated with the prominent neutron-induced processes. The numerical contents of the file have been transmitted to the National Nuclear Data Center, Brookhaven National Laboratory. 143 refs., 16 figs., 5 tabs.

  13. administrative files collection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources - Use of Peer-to-Peer File Sharing Software Page 1 of 3 Software Approved October 24, 2006 Revised April 27, 2010 Revised February 10, 2012 Revised August 14, 2013...

  14. File:TCEQ Map.pdf | Open Energy Information

    Open Energy Info (EERE)

    to view the file as it appeared at that time. DateTime Thumbnail Dimensions User Comment current 09:11, 10 July 2013 Thumbnail for version as of 09:11, 10 July 2013 1,275 ...

  15. Proposed database model and file structures for arthropod collection management

    E-Print Network [OSTI]

    Mathis, Wayne N.

    Proposed database model and file structures for arthropod collection management Ronald A for taxonomic analysis or behavioral, physiological, and ecological information. The database model described how specific computerization projects can be related to each other. The proposed database model

  16. COMPUTER APPLICATIONS IN THE GEOSCIENCES For this lab, you will practice editing image files in Adobe Photoshop and construct a

    E-Print Network [OSTI]

    Smith-Konter, Bridget

    "Save Target As" (PCs) or "Save Image As" (Macs). Save the file to your Lab3 folder on \\\\geobase a different editing technique and save to a different file type (ex., .jpg, .ps, .tiff, .pdf,) . Image 1 it to the appropriate location. Save your image as a jPEG file. Go to File Save As. Name your file Image_1

  17. File:03UTBStateEasementProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to: navigation, search File File

  18. Federating LHCb datasets using the DIRAC File catalog

    E-Print Network [OSTI]

    Haen, Christophe; Frank, Markus; Tsaregorodtsev, Andrei

    2015-01-01T23:59:59.000Z

    In the distributed computing model of LHCb the File Catalog (FC) is a central component that keeps track of each file and replica stored on the Grid. It is federating the LHCb data files in a logical namespace used by all LHCb applications. As a replica catalog, it is used for brokering jobs to sites where their input data is meant to be present, but also by jobs for finding alternative replicas if necessary. The LCG File Catalog (LFC) used originally by LHCb and other experiments is now being retired and needs to be replaced. The DIRAC File Catalog (DFC) was developed within the framework of the DIRAC Project and presented during CHEP 2012. From the technical point of view, the code powering the DFC follows an Aspect oriented programming (AOP): each type of entity that is manipulated by the DFC (Users, Files, Replicas, etc) is treated as a separate 'concern' in the AOP terminology. Hence, the database schema can also be adapted to the needs of a Virtual Organization. LHCb opted for a highly tuned MySQL datab...

  19. WeatherMaker: Weather file conversion and evaluation

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1999-07-01T23:59:59.000Z

    WeatherMaker is a weather-data utility for use with the ENERGY-10 design-tool computer program. The three main features are: Convert--Weather files can be converted from one format to another. For example, a TMY2 format file can be converted to an ENERGY-10 binary file that can be used in a simulation. This binary file can then be converted to a text format that allows it to be read and/or manipulated in WordPad or Excel. Evaluate--ENERGY-10 weather files can be studied in great detail. There are 8 graphical displays of the data that provide insight into the data, and a summary tables that presents results calculated from the hourly data. Adjust--Hourly temperature data can be adjusted starting with hourly data from a nearby TMY2 site. Dry-bulb and wet-bulb temperatures are adjusted up or down as required to match given monthly statistics. This feature can be used to generate weather files for any of 3,958 sites in the US where such monthly statistics are tabulated. The paper shows a variety of results, explains the methods used, and discusses the rationale for making the adjustments. It is anticipated that WeatherMaker will be released by the time of the ASES Solar 99 conference.

  20. Method of forming nanodielectrics

    DOE Patents [OSTI]

    Tuncer, Enis [Knoxville, TN; Polyzos, Georgios [Oak Ridge, TN

    2014-01-07T23:59:59.000Z

    A method of making a nanoparticle filled dielectric material. The method includes mixing nanoparticle precursors with a polymer material and reacting the nanoparticle mixed with the polymer material to form nanoparticles dispersed within the polymer material to form a dielectric composite.

  1. Resin infiltration transfer technique

    DOE Patents [OSTI]

    Miller, David V. (Pittsburgh, PA); Baranwal, Rita (Glenshaw, PA)

    2009-12-08T23:59:59.000Z

    A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.

  2. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

    2009-10-06T23:59:59.000Z

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  3. Proton-Coupled Electron Transfer

    SciTech Connect (OSTI)

    Weinberg, Dave; Gagliardi, Christopher J.; Hull, Jonathan F; Murphy, Christine Fecenko; Kent, Caleb A.; Westlake, Brittany C.; Paul, Amit; Ess, Daniel H; McCafferty, Dewey Granville; Meyer, Thomas J

    2012-01-01T23:59:59.000Z

    Proton-Coupled Electron Transfer (PCET) describes reactions in which there is a change in both electron and proton content between reactants and products. It originates from the influence of changes in electron content on acid?base properties and provides a molecular-level basis for energy transduction between proton transfer and electron transfer. Coupled electron?proton transfer or EPT is defined as an elementary step in which electrons and protons transfer from different orbitals on the donor to different orbitals on the acceptor. There is (usually) a clear distinction between EPT and H-atom transfer (HAT) or hydride transfer, in which the transferring electrons and proton come from the same bond. Hybrid mechanisms exist in which the elementary steps are different for the reaction partners. EPT pathways such as PhO/PhOH exchange have much in common with HAT pathways in that electronic coupling is significant, comparable to the reorganization energy with H{sub DA} ~ ?. Multiple-Site Electron?Proton Transfer (MS-EPT) is an elementary step in which an electron?proton donor transfers electrons and protons to different acceptors, or an electron?proton acceptor accepts electrons and protons from different donors. It exploits the long-range nature of electron transfer while providing for the short-range nature of proton transfer. A variety of EPT pathways exist, creating a taxonomy based on what is transferred, e.g., 1e{sup -}/2H{sup +} MS-EPT. PCET achieves redox potential leveling between sequential couples and the buildup of multiple redox equivalents, which is of importance in multielectron catalysis. There are many examples of PCET and pH-dependent redox behavior in metal complexes, in organic and biological molecules, in excited states, and on surfaces. Changes in pH can be used to induce electron transfer through films and over long distances in molecules. Changes in pH, induced by local electron transfer, create pH gradients and a driving force for long-range proton transfer in Photosysem II and through other biological membranes. In EPT, simultaneous transfer of electrons and protons occurs on time scales short compared to the periods of coupled vibrations and solvent modes. A theory for EPT has been developed which rationalizes rate constants and activation barriers, includes temperature- and driving force (?G)-dependences implicitly, and explains kinetic isotope effects. The distance-dependence of EPT is dominated by the short-range nature of proton transfer, with electron transfer being far less demanding.Changes in external pH do not affect an EPT elementary step. Solvent molecules or buffer components can act as proton donor acceptors, but individual H2O molecules are neither good bases (pK{sub a}(H{sub 3}O{sup +}) = ?1.74) nor good acids (pK{sub a}(H{sub 2}O) = 15.7). There are many examples of mechanisms in chemistry, in biology, on surfaces, and in the gas phase which utilize EPT. PCET and EPT play critical roles in the oxygen evolving complex (OEC) of Photosystem II and other biological reactions by decreasing driving force and avoiding high-energy intermediates.

  4. Process for forming transparent aerogel insulating arrays

    DOE Patents [OSTI]

    Tewari, P.H.; Hunt, A.J.

    1985-09-04T23:59:59.000Z

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.

  5. Process for forming transparent aerogel insulating arrays

    DOE Patents [OSTI]

    Tewari, Param H. (Milpitas, CA); Hunt, Arlon J. (Oakland, CA)

    1986-01-01T23:59:59.000Z

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.

  6. adoptively transferred indium-111: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Afshin J. 140 Mass transfer andMass transfer and Mass transfer andMass transfer and Fossil Fuels Websites Summary: eknik Mass transfer andMass transfer and arationste Mass...

  7. Photoinduced charge-transfer materials for nonlinear optical applications

    DOE Patents [OSTI]

    McBranch, Duncan W.

    2006-10-24T23:59:59.000Z

    A method using polyelectrolyte self-assembly for preparing multi-layered organic molecular materials having individual layers which exhibit ultrafast electron and/or energy transfer in a controlled direction occurring over the entire structure. Using a high molecular weight, water-soluble, anionic form of poly-phenylene vinylene, self-assembled films can be formed which show high photoluminescence quantum efficiency (QE). The highest emission QE is achieved using poly(propylene-imine) (PPI) dendrimers as cationic binders. Self-quenching of the luminescence is observed as the solid polymer film thickness is increased and can be reversed by inserting additional spacer layers of transparent polyelectrolytes between each active conjugated layer, such that the QE grows with thickness. A red shift of the luminescence is also observed as additional PPV layers are added. This effect persists as self-quenching is eliminated. Charge transfer superlattices can be formed by additionally incorporating C.sub.60 acceptor layers.

  8. Network analysis of proton transfer in liquid water

    SciTech Connect (OSTI)

    Shevchuk, Roman; Rao, Francesco, E-mail: francesco.rao@frias.uni-freiburg.de [Freiburg Institute for Advanced Studies, School of Soft Matter Research, Freiburg im Breisgau (Germany); Agmon, Noam [Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem (Israel)

    2014-06-28T23:59:59.000Z

    Proton transfer in macromolecular systems is a fascinating yet elusive process. In the last ten years, molecular simulations have shown to be a useful tool to unveil the atomistic mechanism. Notwithstanding, the large number of degrees of freedom involved make the accurate description of the process very hard even for the case of proton diffusion in bulk water. Here, multi-state empirical valence bond molecular dynamics simulations in conjunction with complex network analysis are applied to study proton transfer in liquid water. Making use of a transition network formalism, this approach takes into account the time evolution of several coordinates simultaneously. Our results provide evidence for a strong dependence of proton transfer on the length of the hydrogen bond solvating the Zundel complex, with proton transfer enhancement as shorter bonds are formed at the acceptor site. We identify six major states (nodes) on the network leading from the special pair to a more symmetric Zundel complex required for transferring the proton. Moreover, the second solvation shell specifically rearranges to promote the transfer, reiterating the idea that solvation beyond the first shell of the Zundel complex plays a crucial role in the process.

  9. Nucleon and $?$ elastic and transition form factors

    E-Print Network [OSTI]

    Jorge Segovia; Ian C. Cloet; Craig D. Roberts; Sebastian M. Schmidt

    2014-09-03T23:59:59.000Z

    We compute nucleon and Delta elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a vector-vector contact-interaction. The comparison emphasises that experiment is sensitive to the momentum dependence of the running couplings and masses in the strong interaction sector of the Standard Model and highlights that the key to describing hadron properties is a veracious expression of dynamical chiral symmetry breaking in the bound-state problem. Amongst the results we describe, the following are of particular interest: $G_E^p(Q^2)/G_M^p(Q^2)$ possesses a zero at $Q^2=9.5GeV^2$; any change in the interaction which shifts a zero in the proton ratio to larger $Q^2$ relocates a zero in $G_E^n(Q^2)/G_M^n(Q^2)$ to smaller $Q^2$; and there is likely a value of momentum transfer above which $G_E^n>G_E^p$. Regarding the $\\Delta(1232)$-baryon, we find that, inter alia: the electric monopole form factor exhibits a zero; the electric quadrupole form factor is negative, large in magnitude, and sensitive to the nature and strength of correlations in the $\\Delta(1232)$ Faddeev amplitude; and the magnetic octupole form factor is negative so long as rest-frame P- and D-wave correlations are included. In connection with the N-to-Delta transition, the momentum-dependence of the magnetic transition form factor, $G_M^\\ast$, matches that of $G_M^n$ once the momentum transfer is high enough to pierce the meson-cloud; and the electric quadrupole ratio is a keen measure of diquark and orbital angular momentum correlations.

  10. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates

    E-Print Network [OSTI]

    Rogers, John A.

    Bendable single crystal silicon thin film transistors formed by printing on plastic substrates E on plastic substrates using an efficient dry transfer printing technique. In these devices, free standing-Si is then transferred, to a specific location and with a controlled orientation, onto a thin plastic sheet

  11. Introduction to differential forms

    E-Print Network [OSTI]

    2015-03-08T23:59:59.000Z

    section 8) if it has a potential energy function. In terms of differential forms, F is conservative precisely when F1dx + F2dy is exact. 3 Parametric curves.

  12. Electromagetic proton form factors

    E-Print Network [OSTI]

    M Y Hussein

    2006-10-31T23:59:59.000Z

    The electromagnetic form factors are crucial to our understanding of the proton internal structure, and thus provide a strong constraint of the distributions of the charge and magnetization current within the proton. We adopted the quark-parton model for calculating and understanding the charge structure of the proton interms of the electromagnetic form factors. A remarkable agreement with the available experimental evidence is found.

  13. Method for forming microspheres for encapsulation of nuclear waste

    DOE Patents [OSTI]

    Angelini, Peter (Oak Ridge, TN); Caputo, Anthony J. (Knoxville, TN); Hutchens, Richard E. (Knoxville, TN); Lackey, Walter J. (Oak Ridge, TN); Stinton, David P. (Knoxville, TN)

    1984-01-01T23:59:59.000Z

    Microspheres for nuclear waste storage are formed by gelling droplets containing the waste in a gelation fluid, transferring the gelled droplets to a furnace without the washing step previously used, and heating the unwashed gelled droplets in the furnace under temperature or humidity conditions that result in a substantially linear rate of removal of volatile components therefrom.

  14. Technology Transfer for Brownfields Redevelopment Project | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Transfer for Brownfields Redevelopment Project Technology Transfer for Brownfields Redevelopment Project The U.S. Department of Energy has provided six computers to...

  15. Knowledge Capture and Transfer Program

    Broader source: Energy.gov [DOE]

    The Office of Learning and Workforce Development is working with Heads of Departmental Elements, DOE senior leaders and subject-matter-experts to capture and transfer the knowledge and experiences...

  16. Preparing for Transfer Biological Engineering

    E-Print Network [OSTI]

    Walter, M.Todd

    Environmental Engineering Game Design Industrial Systems & Information Technology Information Science MaterialsPreparing for Transfer Majors: Biological Engineering Chemical Engineering Civil Engineering Computer Science Electrical & Computer Engineering Engineering Physics Environmental Engineering

  17. Spring 2014 Heat Transfer -2

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 Heat Transfer - 2 A thin electronic chip is in the shape of a square wafer, b = 1 cm surface of the chip with a heat transfer coefficient of h = 100 W/m2 -K. Assume the chip has a uniform per side with a mass of m = 0.3 grams and specific heat of C = 103 J/kg-K. The chip is mounted

  18. U-211: EMC Celerra/VNX/VNXe Access Control Bug Lets Remote Authenticated Users Access Files/Directories

    Broader source: Energy.gov [DOE]

    A vulnerability was reported in EMC Celerra/VNX/VNXe. A remote authenticated user can access files and directories on the target file system.

  19. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-20T23:59:59.000Z

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D&D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities.

  20. January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit Parallel Processing Letters

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit Parallel Processing Letters c World (2013)" DOI : 10.1142/S0129626413400033 #12;January 9, 2014 10:13 WSPC/INSTRUCTION FILE ppl-benoit 2

  1. June 11, 2010 12:24 WSPC/INSTRUCTION FILE PPL Parallel Processing Letters

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    June 11, 2010 12:24 WSPC/INSTRUCTION FILE PPL Parallel Processing Letters c World Scientific Processing Letters 20, 4 (2010) 307-324" #12;June 11, 2010 12:24 WSPC/INSTRUCTION FILE PPL 2 Parallel

  2. TABLEFS: Embedding a NoSQL Database Inside the Local File System

    E-Print Network [OSTI]

    monolithic database management system (DBMS) bundles [31]. 1 Background Even in the era of big data, most local file systems [34]. Embedded Databases File system metadata is structured data, a natural fit

  3. Giant radiation heat transfer through the micron gaps

    E-Print Network [OSTI]

    Nefedov, Igor

    2011-01-01T23:59:59.000Z

    Near-field heat transfer between two closely spaced radiating media can exceed in orders radiation through the interface of a single black body. This effect is caused by exponentially decaying (evanescent) waves which form the photon tunnel between two transparent boundaries. However, in the mid-infrared range it holds when the gap between two media is as small as few tens of nanometers. We propose a new paradigm of the radiation heat transfer which makes possible the strong photon tunneling for micron thick gaps. For it the air gap between two media should be modified, so that evanescent waves are transformed inside it into propagating ones. This modification is achievable using a metamaterial so that the direct thermal conductance through the metamaterial is practically absent and the photovoltaic conversion of the transferred heat is not altered by the metamaterial.

  4. Dual circuit embossed sheet heat transfer panel

    DOE Patents [OSTI]

    Morgan, G.D.

    1984-02-21T23:59:59.000Z

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

  5. Forms | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| Department ofForms Forms Engraving To

  6. Aquatic Toxicity Information Retrieval Data Base (ACQUIRE). Data file

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The purpose of Acquire is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. Scientific papers published both nationally and internationally on the toxicity of chemicals to aquatic organisms and plants are collected and reviewed for ACQUIRE. Independently compiled data files that meet ACQUIRE parameter and quality assurance criteria are also included. Selected toxicity test results and related testing information for any individual chemical from laboratory and field aquatic toxicity effects are included for tests with freshwater and marine organisms. The total number of data records in ACQUIRE is now over 105,300. This includes data from 6000 references, for 5200 chemicals and 2400 test species. A major data file, Acute Toxicity of Organic Chemicals (ATOC), has been incorporated into ACQUIRE. The ATOC file contains laboratory acute test data on 525 organic chemicals using juvenile fathead minnows.

  7. Nanoscale heat transfer - from computation to experiment

    E-Print Network [OSTI]

    Luo, Tengfei

    2013-04-09T23:59:59.000Z

    Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in

  8. Inventory Routing and On-line Inventory Routing File Format M. Sevaux1,2

    E-Print Network [OSTI]

    Brest, Université de

    Inventory Routing and On-line Inventory Routing File Format M. Sevaux1,2 M. J. Geiger1 1 Helmut needs in the Inventory Routing Problem types. Instead of creating a new file format or putting ASCII is an extension of the TSPLIB file format description proposed in [1] to be used for the Inventory Routing Problem

  9. Calibration File Manager Morgan Burke Ver. 2.2 1993 Oct 1

    E-Print Network [OSTI]

    CFM Calibration File Manager Morgan Burke Ver. 2.2 1993 Oct 1 1. Introduction What is CFM? CFM, short for Calibration File Manager, is a relational database developed by Brookhaven Experiment 787 to keep track of large numbers of data files containing calibration and related information for a high

  10. Understanding Pollution Dynamics in P2P File Sharing , Junghoo Cho

    E-Print Network [OSTI]

    Cho, Junghoo "John"

    Understanding Pollution Dynamics in P2P File Sharing Uichin Lee , Min Choi , Junghoo Cho , M. Y,cho,medy,gerla}@cs.ucla.edu, min@kaist.ac.kr ABSTRACT Pollution in P2P file sharing occurs when a large number of decoy files that pollution dynamics are closely related to user behavior. Therefore, we first conduct a human subject study

  11. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01T23:59:59.000Z

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  12. Canister Transfer System Description Document

    SciTech Connect (OSTI)

    NONE

    2000-10-12T23:59:59.000Z

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane/hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

  13. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-23T23:59:59.000Z

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

  14. Polarisation Transfer in Proton Compton Scattering at High Momentum Transfer

    SciTech Connect (OSTI)

    David Hamilton

    2004-12-31T23:59:59.000Z

    The Jefferson Lab Hall A experiment E99-114 comprised a series of measurements to explore proton Compton scattering at high momentum transfer. For the first time, the polarisation transfer observables in the p (~ 0 ~ p) reaction were measured in the GeV energy range, where it is believed that quark-gluon degrees of freedom begin to dominate. The experiment utilised a circularly polarised photon beam incident on a liquid hydrogen target, with the scattered photon and recoil proton detected in a lead-glass calorimeter and a magnetic spectrometer, respectively.

  15. EVALUATED NUCLEAR STRUCTURE DATA FILE AND RELATED PRODUCTS.

    SciTech Connect (OSTI)

    TULI,J.K.

    2004-09-26T23:59:59.000Z

    The Evaluated Nuclear Structure Data File (ENSDF) is a leading resource for the experimental nuclear data. It is maintained and distributed by the National Nuclear Data Center, Brookhaven National Laboratory. The file is mainly contributed to by an international network of evaluators under the auspice of the International Atomic Energy Agency. The ENSDF is updated, generally by mass number, i.e., evaluating together all isobars for a given mass number. If, however, experimental activity in an isobaric chain is limited to a particular nuclide then only that nuclide is updated. The evaluations are published in the journal Nuclear Data Sheets, Academic Press, a division of Elsevier.

  16. Deploying Server-side File System Monitoring at NERSC

    SciTech Connect (OSTI)

    Uselton, Andrew

    2009-05-01T23:59:59.000Z

    The Franklin Cray XT4 at the NERSC center was equipped with the server-side I/O monitoring infrastructure Cerebro/LMT, which is described here in detail. Insights gained from the data produced include a better understanding of instantaneous data rates during file system testing, file system behavior during regular production time, and long-term average behaviors. Information and insights gleaned from this monitoring support efforts to proactively manage the I/O infrastructure on Franklin. A simple model for I/O transactions is introduced and compared with the 250 million observations sent to the LMT database from August 2008 to February 2009.

  17. File:LongValley Strat.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdf Jump to: navigation, search File File history

  18. File:MacGyver windmills.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdf Jump to: navigation, search File File

  19. File:03IDELicenseAgreement.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual1WAALandUsePlanning.pdfIDELicenseAgreement.pdf Jump to: navigation, search File File

  20. File:03UTCStateEncroachmentOverview.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to: navigation, search File File3UTCStateEncroachmentOverview.pdf Jump to:

  1. File:05NVBSundryNotice (2).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to:-FD-a -NVBSundryNotice (2).pdf Jump to: navigation, search File File

  2. File:06IDCDrinkingWaterPermit.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to:-FD-aIDCDrinkingWaterPermit.pdf Jump to: navigation, search File File

  3. File:06UTCDrinkingWaterPermit.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf JumpUTATransportation.pdf Jump to: navigation, search File File history

  4. File:0708pmtgpres.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf JumpUTATransportation.pdf Jump to: navigation, search File File

  5. File:08FDCNIETCProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File historyFDCNIETCProcess.pdf Jump to:

  6. File:08HIABulkTransmissionSiting.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File historyFDCNIETCProcess.pdf Jump

  7. File:08HIATransmissionLineApproval.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File historyFDCNIETCProcess.pdf

  8. File:08IDAStateTransmission.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File

  9. File:08MTATransmission (3).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File08MTATransmission (3).pdf Jump to:

  10. File:08NVATransmission.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File08MTATransmission (3).pdf Jump

  11. File:08TXATransmissionSiting.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File08MTATransmission

  12. File:EIA-MTB-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size ofMTB-GAS.pdf Jump to: navigation, search File File

  13. File:NREL-asia-glo.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File File history

  14. File:NREL-asia-tilt.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File File historytilt.pdf Jump

  15. File:NREL-banglmetst-221.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File File

  16. Study of transfer and breakup reactions with the plastic box

    SciTech Connect (OSTI)

    Stokstad, R.G.; Albiston, C.R.; Bantel, M.; Chan, Y.; Countryman, P.J.; Gazes, S.; Harvey, B.G.; Homeyer, H.; Murphy, M.J.; Tserruya, I.

    1984-08-01T23:59:59.000Z

    The study of transfer reactions with heavy-ion projectiles is complicated by the frequent presence of three or more nuclei in the final state. One prolific source of three-body reactions is the production of a primary ejectile in an excited state above a particle threshold. A subset of transfer reactions, viz., those producing ejectiles in bound states, can be identified experimentally. This has been accomplished with a 4..pi.. detector constructed of one-millimeter-thick scintillator paddles of dimension 20 cm x 20 cm. The paddles are arranged in the form of a cube centered around the target with small entrance and exit apertures for the beam and the projectile-like fragments, (PLF). The detection of a light particle (e.g., a proton or an alpha particle) in coincidence with a PLF indicates a breakup reaction. The absence of any such coincidence indicates a reaction in which all the charge lost by the projectile was transferred to the target. With this technique we have studied the transfer and breakup reactions induced by 220 and 341 MeV /sup 20/Ne ions on a gold target. Ejectiles from Li to Ne have been measured at several scattering angles. The absolute cross sections, angular distributions and energy spectra for the transfer and breakup reactions are presented. Relatively large cross sections are observed for the complete transfer of up to seven units of charge (i.e., a nitrogen nucleus). The gross features and trends in the energy spectra for transfer and breakup reactions are similar. However, small differences, in particular for the widths of the energy spectra, are significant. 20 references.

  17. A framework for evaluation of technology transfer programs. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The objective of this volume is to describe a framework with which DOE can develop a program specific methodology to evaluate it`s technology transfer efforts. This approach could also be applied to an integrated private sector technology transfer organization. Several benefits will be realized from the application of this work. While the immediate effect will be to assist program managers in evaluating and improving program performance, the ultimate benefits will accrue to the producing industry, the states, and the nation in the form of sustained or increased domestic oil production. This benefit depends also, of course, on the effectiveness of the technology being transferred. The managers of the Technology Transfer program, and the larger federal oil and gas R&D programs, will be provided with a means to design and assess the effectiveness of program efforts as they are developed, tested and performed. The framework allows deficiencies in critical aspects of the program to be quickly identified, allowing for timely corrections and improvements. The actual process of developing the evaluation also gives the staff of the Oil R&D Program or Technology Transfer subprogram the opportunity to become oriented to the overall program goals. The structure and focus imposed by the evaluation paradigm will guide program staff in selecting activities which are consistent with achieving the goals of the overall R&D program.

  18. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    SciTech Connect (OSTI)

    LESHIKAR, G.A.

    2000-03-27T23:59:59.000Z

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Transfer Pump Subsystem which supports the first phase of Waste Feed Delivery (WFD). This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the DST Transfer Pump Subsystem that supports the first phase of (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

  19. Journal of Heat Transfer1999 JHT Heat Transfer Gallery Department of Mechanical 8. Aerospace Engineering

    E-Print Network [OSTI]

    Kihm, IconKenneth David

    Journal of Heat Transfer1999 JHT Heat Transfer Gallery S. M. You Department of Mechanical 8 Transfer Visualization Committee organized two photo gallery sessions in 1998. The International Heat Transfer Photo Gallery was held at the l la' International Heat Transfer Conference (IHTC) in Kyongju

  20. Nonaqueous purification of mixed nitrate heat transfer media

    DOE Patents [OSTI]

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1983-12-20T23:59:59.000Z

    A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.

  1. LED Price Tracking Form

    Broader source: Energy.gov [DOE]

    DOE intends to update the SSL Pricing and Efficacy Trend Analysis for Utility Program Planning report on an annual basis, but doing so requires that we have sufficient product and purchase data including acquisition date, purchase price, product category, and rated initial lumens. Those interested in helping collect this data are asked to use the LED Price Tracking FormMicrosoft Excel and follow the instructions for submitting data.

  2. ARM - VAP Suggestion Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap DocumentationProductsmwravgProductsaodmfrsraod1michProductsaodsasheniraodSuggestion Form

  3. Energy Transfer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energyof 2005 at Iowa WindUnion7Transfer Energy Transfer Below

  4. Sun's Network File System (NFS) One of the first uses of distributed client/server computing was

    E-Print Network [OSTI]

    Sheridan, Jennifer

    34 Sun's Network File System (NFS) One of the first uses of distributed client/server computing of data across clients. Thus, if 1 #12;2 SUN'S NETWORK FILE SYSTEM (NFS) you access a file on one machine-DUSSEAU #12;SUN'S NETWORK FILE SYSTEM (NFS) 3 even; in the best such case, no network traffic need be gener

  5. Exhibit 7 Filing of Patent Applications Classified Subject Matter UT-B Contracts Div ex7-july10.doc

    E-Print Network [OSTI]

    Pennycook, Steve

    Exhibit 7 Filing of Patent Applications Classified Subject Matter UT-B Contracts Div July 2010 Page 1 of ex7-july10.doc Exhibit 7 Ref: FAR 52.227-10 (Dec 2007) FILING OF PATENT APPLICATIONS - CLASSIFIED SUBJECT MATTER (July 2010) (a) Before filing or causing to be filed a patent application

  6. A second order radiative transfer equation and its solution by meshless method with application to strongly inhomogeneous media

    SciTech Connect (OSTI)

    Zhao, J.M., E-mail: jmzhao@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People's Republic of China (China); Tan, J.Y., E-mail: tanjy@hit.edu.cn [School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People's Republic of China (China); Liu, L.H., E-mail: lhliu@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People's Republic of China (China); School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People's Republic of China (China)

    2013-01-01T23:59:59.000Z

    A new second order form of radiative transfer equation (named MSORTE) is proposed, which overcomes the singularity problem of a previously proposed second order radiative transfer equation [J.E. Morel, B.T. Adams, T. Noh, J.M. McGhee, T.M. Evans, T.J. Urbatsch, Spatial discretizations for self-adjoint forms of the radiative transfer equations, J. Comput. Phys. 214 (1) (2006) 12-40 (where it was termed SAAI), J.M. Zhao, L.H. Liu, Second order radiative transfer equation and its properties of numerical solution using finite element method, Numer. Heat Transfer B 51 (2007) 391-409] in dealing with inhomogeneous media where some locations have very small/zero extinction coefficient. The MSORTE contains a naturally introduced diffusion (or second order) term which provides better numerical property than the classic first order radiative transfer equation (RTE). The stability and convergence characteristics of the MSORTE discretized by central difference scheme is analyzed theoretically, and the better numerical stability of the second order form radiative transfer equations than the RTE when discretized by the central difference type method is proved. A collocation meshless method is developed based on the MSORTE to solve radiative transfer in inhomogeneous media. Several critical test cases are taken to verify the performance of the presented method. The collocation meshless method based on the MSORTE is demonstrated to be capable of stably and accurately solve radiative transfer in strongly inhomogeneous media, media with void region and even with discontinuous extinction coefficient.

  7. January 2001 Open File Report 2001-0027 O

    E-Print Network [OSTI]

    Patterson, William P.

    January 2001 Open File Report 2001-0027 O DESKTOP DATABASE COMPILATION OF SACS UNIT INFORMATION, 2001). Acknowledgements for use of this database should refer to the "SACS database compilation prepared by the Council for Geoscience, Pretoria; as documented by Eglington et al. (2001)". This open

  8. Filing Holes in Complex Surfaces Using Volumetric Diffusion

    E-Print Network [OSTI]

    Kazhdan, Michael

    Method for Building Complex Models From range Images, '96) Applies line of sight constraints based components Complex hole geometry Construction of an arbitrary mesh can result in non-manifold surfaceFiling Holes in Complex Surfaces Using Volumetric Diffusion J. Davis, S. Marschner, M. Garr and M

  9. Population Files for use with CAP88 at Los Alamos

    SciTech Connect (OSTI)

    McNaughton, Michael W [Los Alamos National Laboratory; Brock, Burgandy R [Los Alamos National Laboratory

    2012-07-10T23:59:59.000Z

    CAP88 (Clean Air Act Assessment Package 1988) is a computer model developed for the US Environmental Protection Agency to assess the potential dose from radionuclide emissions to air and to demonstrate compliance with the Clean Air Act. It has options to calculate either individual doses, in units of mrem, or a collective dose, also called population dose, in units of person-rem. To calculate the collective dose, CAP88 uses a population file such as LANL.pop, that lists the number of people in each sector (N, NNE, NE, etc.) as a function of distance (1 to 2 km, etc.) out to a maximum radius of 80 km. Early population files are described in the Los Alamos National Laboratory (LANL) Environmental Reports for 1985 (page 14) and subsequent years. LA-13469-MS describes a population file based on the 1990 census. These files have been updated several times, most recently in 2006 for CAP88 version 3. The 2006 version used the US census for 2000. The present paper describes the 2012 updates, using the 2010 census.

  10. Efficient Private File Retrieval by Combining ORAM and PIR

    E-Print Network [OSTI]

    Efficient Private File Retrieval by Combining ORAM and PIR Travis Mayberry Erik-Oliver Blass Agnes ORAMs which have worst-case communication complexity linear in their capacity and block size. PIR on the server. This paper presents Path-PIR, a hybrid ORAM construction, using techniques from PIR

  11. Ubiquitous Media Agents for Managing Personal Multimedia Files

    E-Print Network [OSTI]

    Liu, Wenyin

    1 Ubiquitous Media Agents for Managing Personal Multimedia Files Liu Wenyin, Zheng Chen, Fan Lin personalized semantic indices of multimedia data on behalf of the user whenever and wherever he/she accesses/uses these multimedia data. The sources of these semantic descriptions are the textual context of the same documents

  12. TIGER:Thermal-Aware File Assignment in Storage Clusters

    E-Print Network [OSTI]

    Qin, Xiao

    energy efficiency of data centers housing storage clusters. Disks have non-negligible thermal impactTIGER:Thermal-Aware File Assignment in Storage Clusters Ajit Chavan, Xunfei Jiang, Mohemmad I/O performance. I. INTRODUCTION Thermal management for power-dense storage clusters can address cooling problems

  13. Comparison-based File Server Verification Yuen-Lin Tan

    E-Print Network [OSTI]

    Comparison-based File Server Verification Yuen-Lin Tan , Terrence Wong, John D. Strunk, Gregory R. Ganger Carnegie Mellon University Abstract Comparison-based server verification involves testing a server by comparing its responses to those of a refer- ence server. An intermediary, called a "server Tee," in

  14. Truffles --Secure File Sharing With Minimal System Administrator Intervention

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Truffles -- Secure File Sharing With Minimal System Administrator Intervention Peter Reiher Thomas sharing between arbitrary users at arbitrary sites connected by a network. Truffles is an interesting the potential of greatly increasing the workload of system administrators, if the services are not designed

  15. Availability in the Sprite Distributed File System John Ousterhout

    E-Print Network [OSTI]

    Baker, Mary G.

    Availability in the Sprite Distributed File System Mary Baker John Ousterhout Computer Science faults means recovering from them quickly. Our position is that performance and availability server recovery is the most cost-effective way of providing such availability. Mechanisms used

  16. VAX/VMS file protection on the KSV VAXes

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    This manual is a guide to use of the file protection mechanisms available on the Martin Marietta Energy Systems, Inc. KSV VAXes. User identification codes (UICs) and general identifiers are discussed as a basis for understanding UIC-based and access control list (ACL) protection.

  17. Harvard Library: FY2010 Volumes, Records, Titles, and Digital Files

    E-Print Network [OSTI]

    Harvard Library: FY2010 Volumes, Records, Titles, and Digital Files Total Expenditures *Digital Repository Service SOURCE: HARVARD LIBRARY OFFICE OF THE EXECUTIVE DIRECTOR 0.00 2.00 4.00 6.00 8.00 10.00 12 Collections Costs Staffing Costs Operations Harvard's library system now includes more than 70 separate

  18. Quality Assurance Procedures for ModCat Database Code Files

    SciTech Connect (OSTI)

    Siciliano, Edward R.; Devanathan, Ram; Guillen, Zoe C.; Kouzes, Richard T.; Schweppe, John E.

    2014-04-01T23:59:59.000Z

    The Quality Assurance procedures used for the initial phase of the Model Catalog Project were developed to attain two objectives, referred to as basic functionality and visualization. To ensure the Monte Carlo N-Particle model input files posted into the ModCat database meet those goals, all models considered as candidates for the database are tested, revised, and re-tested.

  19. Samples of Drug Testing Language Memorandum for Human Resources File

    E-Print Network [OSTI]

    Almor, Amit

    Samples of Drug Testing Language Memorandum for Human Resources File DATE: TO: Employee FROM: Supervisor RE: Drug Testing As you know, the position that you have been selected for requires that you pass a pre-employment drug and alcohol test. In addition to the pre-employment test, you will also be subject

  20. Laser Transferable Polymer-Ionic Liquid Separator/Electrolytes for Solid-State Rechargeable Lithium-Ion Microbatteries

    E-Print Network [OSTI]

    Arnold, Craig B.

    Laser Transferable Polymer-Ionic Liquid Separator/Electrolytes for Solid-State Rechargeable Lithium-Ion characterized by ac-impedance spectroscopy and in lithium- ion microbatteries. Size and weight percent effects be laser transferred onto a substrate to form a solid separator/electrolyte layer for a lithium ion power

  1. An Assessment of the Parameterization of Subgrid-Scale Cloud Effects on Radiative Transfer. Part II: Horizontal Inhomogeneity

    E-Print Network [OSTI]

    Stephens, Graeme L.

    in downwelling radiative fluxes at the surface induced by changes in cloud cover and water vapor distributions. 1An Assessment of the Parameterization of Subgrid-Scale Cloud Effects on Radiative Transfer. Part II form 5 January 2005) ABSTRACT The role of horizontal inhomogeneity in radiative transfer through cloud

  2. Mass Transfer from Giant Donors

    E-Print Network [OSTI]

    Pavlovskii, K

    2014-01-01T23:59:59.000Z

    The stability of mass transfer in binaries with convective giant donors remains an open question in modern astrophysics. There is a significant discrepancy between what the existing methods predict for a response to mass loss of the giant itself, as well as for the mass transfer rate during the Roche lobe overflow. Here we show that the recombination energy in the superadiabatic layer plays an important and hitherto unaccounted-for role in he donor's response to mass loss, in particular on its luminosity and effective temperature. Our improved optically thick nozzle method to calculate the mass transfer rate via $L_1$ allows us to evolve binary systems for a substantial Roche lobe overflow. We propose a new, strengthened criterion for the mass transfer instability, basing it on whether the donor experiences overflow through its outer Lagrangian point. We find that with the new criterion, if the donor has a well-developed outer convective envelope, the critical initial mass ratio for which a binary would evolv...

  3. Spring 2014 Heat Transfer -1

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df the fuel rod, and the volumetric generation rate is known to vary sinusoidally with distance along the rod to exist between the surface of the rod and the water. Axial conduction can be neglected in rod and fluid

  4. Entrepreneurial separation to transfer technology.

    SciTech Connect (OSTI)

    Fairbanks, Richard R.

    2010-09-01T23:59:59.000Z

    Entrepreneurial separation to transfer technology (ESTT) program is that entrepreneurs terminate their employment with Sandia. The term of the separation is two years with the option to request a third year. Entrepreneurs are guaranteed reinstatement by Sandia if they return before ESTT expiration. Participants may start up or helpe expand technology businesses.

  5. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, Richard F. (Ohio Township, Allegheny County, PA); Pollick, Richard D. (Sarver, PA); Nyilas, Charles P. (Monroeville, PA); Denmeade, Timothy J. (Lower Burrell, PA)

    1997-01-01T23:59:59.000Z

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  6. Forms | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf Flash2010-45.pdfFlash2011-43andPropertyForPlans Fact SheetForms

  7. Coach Compliance Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOECoach Compliance Form My team is

  8. FORM EIA-28

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email: Terminal2,7,7,of2014FORM EIA-28 -

  9. Form EIA-920 - 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email:Uranium MarketingAdministration Form

  10. Research Input Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearchMakingHighlightsSubmit Form

  11. Forms | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) TargetForms & Documents

  12. Radiation Safety Work Control Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Work Control Form (see instructions on pg-3) Rev. May 2014 Area: Form : Date: Preliminary Applicability Screen: (a) Will closing the beam line injection stoppers...

  13. How atmospheric ice forms | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric ice forms How atmospheric ice forms Released: September 08, 2014 New insights into atmospheric ice formation could improve climate models This study advances our...

  14. Geo energy research and development: technology transfer

    SciTech Connect (OSTI)

    Traeger, R.K.

    1982-03-01T23:59:59.000Z

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  15. Annual Confidential Financial Disclosure Report (OGE Form 450)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-02-25T23:59:59.000Z

    This Notice amends DOE N 326.14 to add exemptions for NNSA employees who are now in pay bands. DOE N 326.14 contains information on who must file, when and where to file.

  16. Bipolar pulse forming line

    DOE Patents [OSTI]

    Rhodes, Mark A. (Pleasanton, CA)

    2008-10-21T23:59:59.000Z

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  17. DualPhase HotPress Forming Alloy H. K. D. H. Bhadeshia a,b

    E-Print Network [OSTI]

    Cambridge, University of

    steels, before transfer into the forming press. Key words: Hot pressforming, dual phase steel. There are many varieties of such steels, for example those which are TRIPassisted [16] or the dualphase steels that subsequent quenching leads to a dualphase steel. A potential advantage of this mixture of allotriomorphic

  18. Group transfer and electron transfer reactions of organometallic complexes

    SciTech Connect (OSTI)

    Atwood, J.D.

    1994-12-01T23:59:59.000Z

    During 1994, despite the disruptions, the authors have made progress in several aspects of their research on electron transfer reactions between organometallic complexes. This summary covers three areas that are relatively complete: (1) reactions between metal carbonyl anions and metal carbonyl halides, (2) reactions of hydrido- and alkyl-containing anions (RFe(CO){sup {minus}}{sub 4} and RW (CO){sub 5}{sup {minus}}) with metal carbonyl cations and (3) reactions of a seventeen-electron complex (Cp{asterisk}Cr(CO){sub 3}{lg_bullet}) with metal carbonyl derivatives. Two areas of examination that have just begun (possible carbene transfer and the possible role of metal carbonyl anions in carbon-hydrogen bond activation) will also be described.

  19. Case Studies of Mass Transfer and Star Formation in Galaxy Collisions

    E-Print Network [OSTI]

    Curtis Struck

    2003-10-20T23:59:59.000Z

    The amount, timing and ultimate location of mass transfer and induced star formation in galaxy collisions are sensitive functions of orbital and galaxy structural parameters. I discuss the role of detailed case studies and describe the results for two systems, Arp 284 and NGC 2207/IC 2163, that have been studied with both multiwaveband observations, and detailed dynamical models. The models yield the mass transfer and compressional histories of the encounters and the ``probable causes'' or triggers of individual star-forming regions.

  20. Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets

    E-Print Network [OSTI]

    Bellina, Bruno; Kresin, Vitaly V

    2015-01-01T23:59:59.000Z

    We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N-H...N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment.

  1. Plutonium immobilization form evaluation

    SciTech Connect (OSTI)

    Gray, L. W., LLNL

    1998-02-13T23:59:59.000Z

    The 1994 National Academy of Sciences study and the 1997 assessment by DOE`s Office of Nonproliferation and National Security have emphasized the importance of the overall objectives of the Plutonium Disposition Program of beginning disposition rapidly. President Clinton and other leaders of the G-7 plus one (`Political Eight`) group of states, at the Moscow Nuclear Safety And Security Summit in April 1996, agreed on the objectives of accomplishing disposition of excess fissile material as soon as practicable. To meet these objectives, DOE has laid out an aggressive schedule in which large-scale immobilization operations would begin in 2005. Lawrence Livermore National Laboratory (LLNL), the lead laboratory for the development of Pu immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), was requested by MD to recommend the preferred immobilization form and technology for the disposition of excess weapons-usable Pu. In a series of three separate evaluations, the technologies for the candidate glass and ceramic forms were compared against criteria and metrics that reflect programmatic and technical objectives: (1) Evaluation of the R&D and engineering data for the two forms against the decision criteria/metrics by a technical evaluation panel comprising experts from within the immobilization program. (2) Integrated assessment by LLNL immobilization management of the candidate technologies with respect to the weighted criteria and other programmatic objectives, leading to a recommendation to DOE/MD on the preferred technology based on technical factors. (3) Assessment of the decision process, evaluation, and recommendation by a peer review panel of independent experts. Criteria used to assess the relative merits of the immobilization technologies were a subset of the criteria previously used by MD to choose among disposition options leading to the Programmatic Environmental Impact Statement and Record of Decision for the Storage and Disposition of Weapons-Usable Fissile Materials, January 1997. Criteria were: (1) resistance to Pu theft, diversion, and recovery by a terrorist organization or rogue nation; (2) resistance to recovery and reuse by host nation; (3) technical viability, including technical maturity, development risk, and acceptability for repository disposal; (4) environmental, safety, and health factors; (5) cost effectiveness; and (6) timeliness. On the basis of the technical evaluation and assessments, in September, 1997, LLNL recommended to DOE/MD that ceramic technologies be developed for deployment in the planned Pu immobilization plant.

  2. WEATHERIZATION ANNUAL FILE WORKSHEET | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)ActionSolarMayDepartmentForm is

  3. STEP Utility Data Release Form

    Broader source: Energy.gov [DOE]

    STEP Utility Data Release Form, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  4. Nucleon Electromagnetic Form Factors

    SciTech Connect (OSTI)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01T23:59:59.000Z

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  5. Attn Technology Transfer Questions.txt - Notepad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Attn Technology Transfer Questions.txt From: eschaput esandc@prodigy.net Sent: Monday, January 26, 2009 10:31 PM To: GC-62 Subject: Attn: Technology Transfer Questions We have...

  6. Data Communication Principles Reliable Data Transfer

    E-Print Network [OSTI]

    Ramkumar, Mahalingam

    Data Communication Principles Switching Reliable Data Transfer Data Communication Basics Mahalingam Ramkumar Mississippi State University, MS September 8, 2014 Ramkumar CSE 4153 / 6153 #12;Data Communication Principles Switching Reliable Data Transfer 1 Data Communication Principles Data Rate of a Communication

  7. Direct transfer of graphene onto flexible substrates

    E-Print Network [OSTI]

    Araujo, P. T.

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate ...

  8. Power transfer through strongly coupled resonances

    E-Print Network [OSTI]

    Kurs, Andr

    2007-01-01T23:59:59.000Z

    Using self-resonant coils in a strongly coupled regime, we experimentally demonstrate efficient non-radiative power transfer over distances of up to eight times the radius of the coils. We use this system to transfer 60W ...

  9. Engineering nanocarbon interfaces for electron transfer

    E-Print Network [OSTI]

    Hilmer, Andrew J. (Andrew Joseph)

    2013-01-01T23:59:59.000Z

    Electron-transfer reactions at nanometer-scale interfaces, such as those presented by single-walled carbon nanotubes (SWCNTs), are important for emerging optoelectronic and photovoltaic technologies. Electron transfer also ...

  10. The electric and magnetic form factors of the proton

    E-Print Network [OSTI]

    A1 Collaboration; J. C. Bernauer; M. O. Distler; J. Friedrich; Th. Walcher; P. Achenbach C. Ayerbe Gayoso; R. Bhm; L. Debenjak; L. Doria; A. Esser; H. Fonvieille; M. Gmez Rodrgues de la Paz; J. M. Friedrich; M. Makek; H. Merkel; D. G. Middleton; U. Mller; L. Nungesser; J. Pochodzalla; M. Potokar; S. Snchez Majos; B. S. Schlimme; S. irca; M. Weinriefer

    2014-07-29T23:59:59.000Z

    The paper describes a precise measurement of electron scattering off the proton at momentum transfers of $0.003 \\lesssim Q^2 \\lesssim 1$\\ GeV$^2$. The average point-to-point error of the cross sections in this experiment is $\\sim$ 0.37%. These data are used for a coherent new analysis together with all world data of unpolarized and polarized electron scattering from the very smallest to the highest momentum transfers so far measured. The extracted electric and magnetic form factors provide new insight into their exact shape, deviating from the classical dipole form, and of structure on top of this gross shape. The data reaching very low $Q^2$ values are used for a new determination of the electric and magnetic radii. An empirical determination of the Two-Photon-Exchange (TPE) correction is presented. The implications of this correction on the radii and the question of a directly visible signal of the pion cloud are addressed.

  11. Electron transfer reactions in microporous solids

    SciTech Connect (OSTI)

    Mallouk, T.E.

    1992-05-01T23:59:59.000Z

    We have studied electron transfer quenching of the excited state of Ru(bpy){sub 3}{sup 2+} in aqueous suspensions of zeolites Y, L, and mordenite. The internal pore network of the zeolite is ion-exchanged with methylviologen cations, which quench the excited state of the surface-bound sensitizer. A detailed study of the quenching and charge recombination kinetics, using time-resolved luminescence quenching and transient diffuse reflectance spectroscopies, shows to remarkable effects: first, the excited state quenching is entirely dynamic is large-pore zeolites (L and Y), even when they are prepared as apparently dry'' powders (which still contain significant amounts of internally sited water). Second, a lower limit for the diffusion coefficient of the MV{sup 2+} ion in these zeolites, determined by this technique, is 10{sup {minus}7} cm{sup 2}sec, i.e., only about one order of magnitude slower than a typical ion in liquid water, and 2--3 orders of magnitude faster than charge transfer diffusion of cations in polyelectrolyte films or membranes such as Nafion. Surface sensitization of internally platinized layered oxide semiconductors such as K{sub 4-x}H{sub x}Nb{sub 6}O{sub 17}{center dot}nH{sub 2}O (x {approx} 2.5) yields photocatalysts for the production of H{sub 2} and I{sub 3{minus}} in aqueous iodide solutions. Layered alkali niobates and titanates form a class of zeolitic wide-bandap semiconductors, and are the first examples of photocatalysts that evolve hydrogen from an electrochemically reversible (i.e., non-sacrificial) electron donor with visible light excitation.

  12. Waste Feed Delivery Transfer System Analysis

    SciTech Connect (OSTI)

    JULYK, L.J.

    2000-05-05T23:59:59.000Z

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  13. Academic Knowledge Transfer in Social Networks

    E-Print Network [OSTI]

    Slater, Mark David

    2013-01-01T23:59:59.000Z

    4.3 Digital Library Requirements . . . . . . . . . . . 4.43.1.1 Digital Libraries . . . . . . . . . . . .A Prototype Personal Digital Library Knowledge Transfer

  14. AN EXPERIMENTAL INVESTIGATION OF THE HEAT TRANSFER FROM A BUOYANT GAS PLUME TO A

    E-Print Network [OSTI]

    Winfree, Erik

    Temperature E. Heat Transfer Model 1. Determining the Ceiling Heat Transfer 2. Ceiling Heat Transfer

  15. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    Kaviany and B.P. Singh, Radiative heat transfer in porousmedia, Advances in Heat Transfer, vol. 23, no. 23, pp. 133Thermal radiation heat transfer, Hemisphere Publishing Co. ,

  16. Heat transfer via dropwise condensation on hydrophobic microstructured surfaces

    E-Print Network [OSTI]

    Ruleman, Karlen E. (Karlen Elizabeth)

    2009-01-01T23:59:59.000Z

    Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were compared. Heat transfer ...

  17. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect (OSTI)

    Hoffman, M.Z.

    1991-12-31T23:59:59.000Z

    During this period, conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used for the characterization of the intermediates that are involved in transition metal excited-state electron-transfer reactions. The intermediates of interest were the excited states of Ru(II) and Cr(III) photosensitizers, their reduced forms, and the species formed in the reactions of redox quenchers and electron-transfer agents. Of particular concern has been the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes.

  18. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19T23:59:59.000Z

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  19. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

    2001-01-01T23:59:59.000Z

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  20. Alterna(ve Roadmap For Transfer Students

    E-Print Network [OSTI]

    Ravikumar, B.

    Alterna(ve Roadmap For Transfer Students 8/11/14 EE Program #12;Transfer with the roadmap NEXT STEP: Share this with all other transfer students and make 1 (LACKING ES220) SEE THE ROADMAP: h`p://www.sonoma.edu/engineering/bsee/bsee_roadmap

  1. Technology Transfer from the University of Oxford

    E-Print Network [OSTI]

    Paxton, Anthony T.

    Technology Transfer from the University of Oxford www.isis-innovation.com #12;Isis Innovation Ltd Oxford Technology Transfer IP, Patents, Licences, Spin-outs, Material Sales, Seed Funds, Isis Angels Network Oxford Expertise Consulting, Services Isis Consulting Business Technology Transfer and Innovation

  2. Transferring to The University of New Mexico

    E-Print Network [OSTI]

    New Mexico, University of

    Transferring to The University of New Mexico From Central New Mexico College A Transfer Articulation Guide based on Central New Mexico Community College Catalog Year 2007 ­ 2009 Apply to UNM on-line at www.unm.edu #12;Transferring to The University of New Mexico from Central New Mexico Community College

  3. Transferring to The University of New Mexico

    E-Print Network [OSTI]

    New Mexico, University of

    Transferring to The University of New Mexico From Central New Mexico College A Transfer Articulation Guide based on Central New Mexico Community College Catalog Year 2009 ­ 2011 Apply to UNM on-line at www.unm.edu #12;Transferring to The University of New Mexico from Central New Mexico Community College

  4. The nucleon electromagnetic form factors from Lattice QCD

    E-Print Network [OSTI]

    Alexandrou, C; Negele, J W; Tsapalis, A

    2006-01-01T23:59:59.000Z

    We evaluate the isovector nucleon electromagnetic form factors in quenched and full QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at beta=6.0 enabling us to reach low momentum transfers and a lowest pion mass of about 400 MeV. In the full theory we use a lattice of spatial size 1.9 fm at beta=5.6 and lowest pion mass of about 380 MeV enabling comparison with the results obtained in the quenched theory. We compare our lattice results to the isovector part of the experimentally measured form factors.

  5. Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies

    E-Print Network [OSTI]

    Camci, Cengiz

    AU TH O R PR O O F Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies in Rotating Research Facilities CENGIZ CAMCI Turbomachinery Aero-Heat Transfer Laboratory, Department The present paper deals with the experimental aero-heat transfer studies performed in rotating turbine

  6. Handling of Multimedia Files in the Invenio Software

    E-Print Network [OSTI]

    Oltmanns, Bjrn; Schiefer, Bernhard

    Handling of multimedia files in the Invenio Software is motivated by the need for integration of multimedia files in the open-source, large-scale digital library software Invenio, developed and used at CERN, the European Organisation for Nuclear Research. In the last years, digital assets like pictures, presentations podcasts and videos became abundant in these systems and digital libraries have grown out of their classic role of only storing bibliographical metadata. The thesis focuses on digital video as a type of multimedia and covers the complete workflow of handling video material in the Invenio software: from the ingestion of digital video material to its processing on to the storage and preservation and finally the streaming and presentation of videos to the user. The potential technologies to realise a video submission workflow are discussed in-depth and evaluated towards system integration with Invenio. The focus is set on open and free technologies, which can be redistributed with the Inve...

  7. Incorporating uncertainty in RADTRAN 6.0 input files.

    SciTech Connect (OSTI)

    Dennis, Matthew L.; Weiner, Ruth F.; Heames, Terence John (Alion Science and Technology)

    2010-02-01T23:59:59.000Z

    Uncertainty may be introduced into RADTRAN analyses by distributing input parameters. The MELCOR Uncertainty Engine (Gauntt and Erickson, 2004) has been adapted for use in RADTRAN to determine the parameter shape and minimum and maximum of the distribution, to sample on the distribution, and to create an appropriate RADTRAN batch file. Coupling input parameters is not possible in this initial application. It is recommended that the analyst be very familiar with RADTRAN and able to edit or create a RADTRAN input file using a text editor before implementing the RADTRAN Uncertainty Analysis Module. Installation of the MELCOR Uncertainty Engine is required for incorporation of uncertainty into RADTRAN. Gauntt and Erickson (2004) provides installation instructions as well as a description and user guide for the uncertainty engine.

  8. Form Date 4/4/01 Refrigerant Service Order Form

    E-Print Network [OSTI]

    Russell, Lynn

    Form Date 4/4/01 Refrigerant Service Order Form Service ID: Owner: Work Order #: Building: Date: Issued: Completed: Equipment ID: Technicians: Location: Model: Manufact: Serial #: Refrigerant Type Minor Maintenance Recovery Vacuum: __________Inches Dispose of Unit Refrigerant Conversion Major

  9. Flavor decomposition of the elastic nucleon electromagnetic form factors

    SciTech Connect (OSTI)

    C.D. Cates, C.W. Jager, S. Riordan, B. Wojtsekhowski

    2011-06-01T23:59:59.000Z

    The u- and d-quark contributions to the elastic nucleon electromagnetic form factors have been determined using experimental data on GEn , GMn , GpE , and GpM . Such a flavor separation of the form factors became possible up to 3.4 GeV2 with recent data on GEn from Hall A at JLab. At a negative four-momentum transfer squared Q2 above 1 GeV2, for both the u- and d-quark components, the ratio of the Pauli form factor to the Dirac form factor, F2/F1, was found to be almost constant, and for each of F2 and F1 individually, the d-quark component drops continuously with increasing Q2.

  10. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01T23:59:59.000Z

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  11. A program evaluation of on-line file organization methods

    E-Print Network [OSTI]

    Griffith, Byron James

    1973-01-01T23:59:59.000Z

    addresses were extracted from the records and placed in key directories. These different methods of locating records by key information are today known as list structures (5, 6, 3). Although there are many variations of list structuring techniques..., it is helpful to observe two extremes of list structures with most others be1ng combinations of them. The association of key data and DASD addresses permits retrieval of only those records required for processing without requiring a file search (6). Since...

  12. General soil hydrology files for GOSSYM/COMAX

    E-Print Network [OSTI]

    Akins, Dennis C.

    1989-01-01T23:59:59.000Z

    soil hydrology files. Bulk density and hydraulic conductivity values corresponding to the final soil groups. Yield predictions on Westwood silt loam when bubbling pressure snd sir dry water content are varied. Deviation from average yield... predictions on Westwood silt loam when bubbling pressure and air dry water content are varied. Sensitivity of GOSSYM yield predictions to changes in saturated hydraulic conductivity. Sensitivity of GOSSYM yield predictions to changes in beta (P...

  13. A program evaluation of on-line file organization methods

    E-Print Network [OSTI]

    Griffith, Byron James

    1973-01-01T23:59:59.000Z

    addresses were extracted from the records and placed in key directories. These different methods of locating records by key information are today known as list structures (5, 6, 3). Although there are many variations of list structuring techniques..., it is helpful to observe two extremes of list structures with most others be1ng combinations of them. The association of key data and DASD addresses permits retrieval of only those records required for processing without requiring a file search (6). Since...

  14. File:03UTFEncroachmentPermit.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to: navigation, search File

  15. Couette flow regimes with heat transfer in rarefied gas

    SciTech Connect (OSTI)

    Abramov, A. A., E-mail: alabr54@mail.ru; Butkovskii, A. V., E-mail: albutkov@mail.ru [Zhukovski Central Aerohydrodynamics Institute (Russian Federation)

    2013-06-15T23:59:59.000Z

    Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.

  16. Available transfer capability and first order sensitivity

    SciTech Connect (OSTI)

    Gravener, M.H. [PJM Interconnection, L.L.C., Valley Forge, PA (United States)] [PJM Interconnection, L.L.C., Valley Forge, PA (United States); Nwankpa, C. [Drexel Univ., Philadelphia, PA (United States)] [Drexel Univ., Philadelphia, PA (United States)

    1999-05-01T23:59:59.000Z

    A method of calculating Available Transfer Capability and the exploration of the first order effects of certain power system network variables are described. The Federal Energy Regulatory Commission has ordered that bulk electrical control areas must provide to market participants a ``commercially viable`` network transfer capability for the import, export, and through-put of energy. A practical method for deriving this transfer capability utilizing both linear and non-linear power flow analysis methods is developed that acknowledges both thermal and voltage system limitations. The Available Transfer Capability is the incremental transfer capability derived by the method reduced by margins. A procedure for quantifying the first order effect of network uncertainties such as load forecast error and simultaneous transfers on the calculated transfer capability of a power system snapshot are explored. The quantification of these network uncertainties can provide information necessary for system operation, planning, and energy market participation.

  17. SSRL Computer Account Request Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRLLCLS Computer Account Request Form August 2009 Fill in this form and sign the security statement mentioned at the bottom of this page to obtain an account. Your Name:...

  18. 2011 Regional Competitions Student Forms

    E-Print Network [OSTI]

    Miami, University of

    records. If your team advances to the NOSB Finals, these forms will be required and you may resend.nosb.org Student Medical Information and Emergency Notification Form Name:_________________________________________ Phone Number:______________________ Medical Conditions or Previous Surgery

  19. Project Approval Form Concentration in

    E-Print Network [OSTI]

    Goldberg, Bennett

    Project Approval Form Concentration in Nanotechnology Return completed form to ENG Undergraduate of Graduation:____________________________ Instructions: Please check one of the following ways in which you Plan to complete the project as a requirement for the concentration in Nanotechnology. Depending upon

  20. Secondary Waste Form Down-Selection Data PackageFluidized Bed Steam Reforming Waste Form

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

    2011-09-12T23:59:59.000Z

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

  1. 2011_Accelerator_Detector_RD_PI_Meeting_files | U.S. DOE Office...

    Office of Science (SC) Website

    Principal Investigators' Meetings 2011 Accelerator Detector RD PI Meeting files Scientific User Facilities (SUF) Division SUF Home About User Facilities Projects Accelerator &...

  2. Optimizing I/O Performance for the Lustre File System at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bandwidth but striping over too many will cause unnecessary overhead and lead to a loss in performance. NERSC has provided striping command shortcuts based on file size to...

  3. file://C:\\Documents and Settings\\MHerren\\Desktop\\DOE IMC Web...

    Broader source: Energy.gov (indexed) [DOE]

    Conference 2012 432012 file:C:Documents and SettingsMHerrenDesktopDOE IMC Web Agenda 43.htm Last Updated: 432012 Wednesday - DOE Identity Credential and Access...

  4. file://C:\\Documents and Settings\\MHerren\\Desktop\\DOE IMC Web...

    Broader source: Energy.gov (indexed) [DOE]

    Conference 2012 432012 file:C:Documents and SettingsMHerrenDesktopDOE IMC Web Agenda 43.htm Last Updated: 432012 Wednesday - Radio and Spectrum Technology Radio...

  5. [Composite analysis E-area vaults and saltstone disposal facilities]. PORFLOW and FACT input files

    SciTech Connect (OSTI)

    Cook, J.R.

    1997-09-01T23:59:59.000Z

    This diskette contains the PORFLOW and FACT input files described in Appendix B of the accompanying report `Composite Analysis E-Area Vaults and Saltstone Disposal Facilities`.

  6. Multilevel Caching in Distributed File Systems Your cache ain't nuthin' but trash

    E-Print Network [OSTI]

    Honeyman, Peter

    ], and AFP [4], among others. Our principal file servers all run AFS, so the first of these is not a problem

  7. Assessor Training NVLAP Assessment Forms

    E-Print Network [OSTI]

    NVLAP Assessor Training NVLAP Assessment Forms #12;Assessor Training 2009: NVLAP Assessment Forms 2 Summary Test Method Review Summary ProgramSpecific Checklists Examples #12;Assessor Training 2009: NVLAP are completed Assessor Names, Dates, Lab Code #12;Assessor Training 2009: NVLAP Assessment Forms 4 NIST

  8. NORTHWESTERN UNIVERSITY ACCIDENT REPORT FORM

    E-Print Network [OSTI]

    Shahriar, Selim

    NORTHWESTERN UNIVERSITY ACCIDENT REPORT FORM Whenever a University vehicle sustains damage of any kind, or is involved in an accident which results in personal injury or property damage, this accident that this form is for University Use Only and is not meant to supersede the official state accident report form

  9. INTERNATIONAL STUDENT FINANCIAL DOCUMENTATION FORM

    E-Print Network [OSTI]

    Barrash, Warren

    INTERNATIONAL STUDENT FINANCIAL DOCUMENTATION FORM This form is not an application for financial assistance. This form is REQUIRED before we can provide immigration documents, even if your government, photocopied or faxed supporting financial documents. **List your name as it appears on your passport** Family

  10. INTERNATIONAL STUDENT FINANCIAL DOCUMENTATION FORM

    E-Print Network [OSTI]

    Barrash, Warren

    INTERNATIONAL STUDENT FINANCIAL DOCUMENTATION FORM Please complete this form if you this form and supporting financial documents after you have received your admissions decision. To receive will come from that source. Please attach supporting financial support documents that are less than six

  11. INTERNATIONAL STUDENT FINANCIAL DOCUMENTATION FORM

    E-Print Network [OSTI]

    Barrash, Warren

    INTERNATIONAL STUDENT FINANCIAL DOCUMENTATION FORM Please complete this form if you this form and supporting financial documents after you have received your admissions decision. To receive will come from that source. Please attach original supporting financial support documents, issued in English

  12. Nuclear reactor safety heat transfer

    SciTech Connect (OSTI)

    Jones, O.C.

    1982-07-01T23:59:59.000Z

    Reviewed is a book which has 5 parts: Overview, Fundamental Concepts, Design Basis Accident-Light Water Reactors (LWRs), Design Basis Accident-Liquid-Metal Fast Breeder Reactors (LMFBRs), and Special Topics. It combines a historical overview, textbook material, handbook information, and the editor's personal philosophy on safety of nuclear power plants. Topics include thermal-hydraulic considerations; transient response of LWRs and LMFBRs following initiating events; various accident scenarios; single- and two-phase flow; single- and two-phase heat transfer; nuclear systems safety modeling; startup and shutdown; transient response during normal and upset conditions; vapor explosions, natural convection cooling; blockages in LMFBR subassemblies; sodium boiling; and Three Mile Island.

  13. Concurrent Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization andComputer SimulationsConcentrating SolarAboutTransfers

  14. Data Transfer Nodes Yield Results!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDanielDTN Data Transfer Nodes

  15. Aggregate Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA, a highlyTransfers Historical

  16. Aggregate Transfers Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA, a highlyTransfers

  17. Method of forming a dianhydrosugar alcohol

    DOE Patents [OSTI]

    Holladay, Johnathan E. (Kennewick, WA); Hu, Jianli (Kennewick, WA); Wang, Yong (Richland, WA); Werpy, Todd A. (West Richland, WA); Zhang, Xinjie (Burlington, MA)

    2010-01-19T23:59:59.000Z

    The invention includes methods of producing dianhydrosugars. A polyol is reacted in the presence of a first catalyst to form a monocyclic sugar. The monocyclic sugar is transferred to a second reactor where it is converted to a dianhydrosugar alcohol in the presence of a second catalyst. The invention includes a process of forming isosorbide. An initial reaction is conducted at a first temperature in the presence of a solid acid catalyst. The initial reaction involves reacting sorbitol to produce 1,4-sorbitan, 3,6-sorbitan, 2,5-mannitan and 2,5-iditan. Utilizing a second temperature, the 1,4-sorbitan and 3,6-sorbitan are converted to isosorbide. The invention includes a method of purifying isosorbide from a mixture containing isosorbide and at least one additional component. A first distillation removes a first portion of the isosorbide from the mixture. A second distillation is then conducted at a higher temperature to remove a second portion of isosorbide from the mixture.

  18. FormLink/FeynCalcFormLink : Embedding FORM in Mathematica and FeynCalc

    E-Print Network [OSTI]

    Feng Feng; Rolf Mertig

    2012-12-17T23:59:59.000Z

    FORM, a symbolic manipulation system, has been widely used in a lot of calculations for High Energy Physics due to its high performance and fficient design. Mathematica, another computational software program, has also widely been used, but more for reasons of generality and user-friendliness than for speed. Especially calculations involving tensors and noncommutative operations like calculating Dirac traces can be rather slow in Mathematica, compared to FORM. In this article we describe FormLink and FeynCalcFormLink, two Mathematica packages to link Mathematica and FeynCalc with FORM. FormLink can be used without FeynCalc and FeynCalcFormLink, which is an extension loading FormLink and FeynCalc automatically. With these two packages the impressive speed and other special features of FORM get embedded into the generality of Mathematica and FeynCalc in a simple manner. FeynCalcFormLink provides a FORM-based turbo for FeynCalc, making it much more efficient. FormLink turns Mathematica into an editor and code organizer for FORM.

  19. Study of intermediates from transition metal excited-state electron-transfer reactions. [Annual] progress report, August 1, 1989--July 31, 1992

    SciTech Connect (OSTI)

    Hoffman, M.Z.

    1992-07-31T23:59:59.000Z

    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes. (DLC)

  20. HEAT TRANSFER ANALYSIS FOR NUCLEAR WASTE SOLIDIFICATION CONTAINER

    SciTech Connect (OSTI)

    Lee, S.

    2009-06-01T23:59:59.000Z

    The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum. Detailed results and the cases considered in the calculations will be discussed here.

  1. WSDE Change or Transfer a Water Right Forms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah:InformationInformationInformationor

  2. Property Transfer or Turn In Form, HQ F 1400.18 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring Solar forProjectDepartmentPlantsProperty

  3. Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

    E-Print Network [OSTI]

    Barthelat, Francois

    Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com) #12; Create PDF files without this message without this message by purchasing novaPDF printer (http://www.novapdf.com) #12

  4. Container lid gasket protective strip for double door transfer system

    DOE Patents [OSTI]

    Allen, Jr., Burgess M

    2013-02-19T23:59:59.000Z

    An apparatus and a process for forming a protective barrier seal along a "ring of concern" of a transfer container used with double door systems is provided. A protective substrate is supplied between a "ring of concern" and a safety cover in which an adhesive layer of the substrate engages the "ring of concern". A compressive foam strip along an opposite side of the substrate engages a safety cover such that a compressive force is maintained between the "ring of concern" and the adhesive layer of the substrate.

  5. Real Compton Scattering at High Transverse Momentum Transfer

    E-Print Network [OSTI]

    Alan M. Nathan

    1998-07-16T23:59:59.000Z

    We discuss the physics motivation for a program of Real Compton Scattering on the proton in the regime where both the incident energy and the transverse momentum transfer are large. It is shown that such a program can test which of the various hard scattering mechanisms is dominant and can allow a measurement of a new generalized form factor that is sensitive to both the flavor and spin structure of the proton. It is further shown that the measurements are experimentally feasible using existing or already planned equipment up to incident energies of 12 GeV.

  6. DEMONSTRATION OF MIXING AND TRANSFERRING SETTLING COHESIVE SLURRY SIMULANTS IN THE AY-102 TANK

    SciTech Connect (OSTI)

    Adamson, D.

    2011-08-04T23:59:59.000Z

    In support of Hanford's waste certification and delivery of tank waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring tank waste in a Double Shell Tank (DST) to the WTP Receipt Tank. The work discussed in this report (Phase III) address the impacts cohesive simulants have on mixing and batch transfer performance. The objective of the demonstrations performed in Phase III was to determine the impact that cohesive particle interactions in the simulants have on tank mixing using 1/22{sup nd} scale mixing system and batch transfer of seed particles. This testing is intended to provide supporting evidence to the assumption that Hanford Small Scale Mixing Demonstration (SSMD) testing in water is conservative. The batch transfers were made by pumping the simulants from the Mixing Demonstration Tank (MDT) to six Receipt Tanks (RTs), and the consistency in the amount of seed particles in each batch was compared. Tests were conducted with non-Newtonian cohesive simulants with Bingham yield stress ranging from 0.3 Pa to 7 Pa. Kaolin clay and 100 {mu}m stainless steel seed particles were used for all the non-Newtonian simulants. To specifically determine the role of the yield stress on mixing and batch transfer, tests were conducted with a Newtonian mixture of glycerol and water with at viscosity of 6.2 cP that was selected to match the Bingham consistency (high shear rate viscosity) of the higher yield stress kaolin slurries. The water/glycerol mixtures used the same 100 {mu}m stainless steel seed particles. For the transfer demonstrations in Phase III, the mixer jet pumps were operated either at 10.0 gpm (28 ft/s nozzle velocity, U{sub o}D=0.63 ft{sup 2}/s) or 8.0 gpm (22.4 ft/s nozzle velocity, U{sub o}D=0.504 ft{sup 2}/s). All batch transfers from the MDT to the RTs were made at 0.58 gpm (MDT suction velocity 3.95 ft/s). The demonstrations that used simulants that ranged from 1.6 Pa to 7 Pa yield stress had the most successful batch transfer of solids to the RTs in terms of the total quantity of seed particles transferred. Testing suggest that when mixing water/seed particles and transferring, water provides the least desired batch transfer of solids based on the total quantity transferred. For the water tests, large dead zones of solids formed in the MDT and fewer solids get transferred to the RTs. For simulants with a yield stress of 0.3 Pa and below, the batch transfer behavior in terms of total transfer of seed particles was slightly higher than water test results. The testing did show somewhat more batch-to-batch variation in the transfer of seed particles with the slurries in comparison to water. A comparison of batch transfers with the kaolin slurries that had Bingham consistencies (viscosities) that wernearly the same as the Newtonian glycerol/water mixtures showed that the kaolin slurries with Bingham yield stresses of 1.6 and 7 Pa gave better batch transfer of seed particles based on the total quantities transferred. Overall, the batch transfer testing results show that testing with water is conservative, since using a simulant with a yield stress and/or elevated viscosity always resulted in a better total transfer of solids.

  7. April 11, 2012 18:15 WSPC/INSTRUCTION FILE ppl-hlpgpu-final Parallel Processing Letters

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    April 11, 2012 18:15 WSPC/INSTRUCTION FILE ppl-hlpgpu-final Parallel Processing Letters c World:15 WSPC/INSTRUCTION FILE ppl-hlpgpu-final 2 M. Bourgoin, E. Chailloux, J-L Lamotte is proprietary

  8. Design, implementation, and benchmarking of a file manager for a relational database management system on a raw UNIX disk

    E-Print Network [OSTI]

    Narayanan, Pudugramam Shanker

    1994-01-01T23:59:59.000Z

    The file management component of a database management system (DBMS) has to be tailor designed to meet the performance demands of large database applications. The operating system (OS) file systems are typically not suitable for storing...

  9. A literature Review on Radioactivity Transfer to

    E-Print Network [OSTI]

    as possible. Suggestions for further research have also been given. INIS descriptors; CESIUM 137; DEPOSITION be exposed by ingestion of contaminated terrestial foodstuffs. Even though the intermediate transfer

  10. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for "Outstanding Commercialization Success" from the Federal Laboratory Consortium for Technology Transfer. On October 4, 2012, the NETL team who developed this alloy received...

  11. Heat Transfer Fluids Containing Nanoparticles | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Containing Nanoparticles Technology available for licensing: A stable, nonreactive nanofluid that exhibits enhanced heat transfer properties with only a minimal increase in...

  12. This form may be submitted to the EIA by mail, fax, e-mail, or secure file trans

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energy Energy Information32.Carbon705 2.672The using

  13. This form may be submitted to the EIA by mail, fax, e-mail, or secure file trans

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energy Energy Information32.Carbon705 2.672The

  14. This form may be submitted to the EIA by mail, fax, e-mail, or secure file trans

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energy Energy Information32.Carbon705

  15. This form may be submitted to the EIA by mail, fax, e-mail, or secure file trans

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energy Energy

  16. This form may be submitted to the EIA by mail, fax, e-mail, or secure file trans

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energy Energy5.5 or later or Netscape 4.77 or later.

  17. This form may be submitted to the EIA by mail, fax, e-mail, or secure file trans

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energy Energy5.5 or later or Netscape 4.77 or

  18. This form may be submitted to the EIA by mail, fax, e-mail, or secure file trans

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energy Energy5.5 or later or Netscape 4.77 or using a

  19. This form may be submitted to the EIA by mail, fax, e-mail, or secure file trans

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energy Energy5.5 or later or Netscape 4.77 or using

  20. Acoustically Enhanced Boiling Heat Transfer

    E-Print Network [OSTI]

    Z. W. Douglas; M. K. Smith; A. Glezer

    2008-01-07T23:59:59.000Z

    An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

  1. Miniature mechanical transfer optical coupler

    SciTech Connect (OSTI)

    Abel, Philip (Overland Park, KS); Watterson, Carl (Kansas City, MO)

    2011-02-15T23:59:59.000Z

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  2. The transfer from nuclear development

    SciTech Connect (OSTI)

    Smith, L.

    1993-12-31T23:59:59.000Z

    The Department of Energy`s task of cleaning up the extensive nuclear weapons complex is of such enormous proportions that there can be no definitive solution that can be adjusted to a predictable cost. The cleanup and disposition of hazardous wastes in many cases will take thirty or more years. In the near term, the economic impact affecting the communities and large number of displaced workers is a significant concern to the Department and the nation. However, before a useful transfer of DOE land, facilities, and sites to the public for economic development can be realized, a consistent and comprehensive process of compliance with regulatory requirements needs to be established. The simultaneous pursuit of these goals creates an unprecedented challenge to the Department of Energy and the US.

  3. Seal for fluid forming tools

    DOE Patents [OSTI]

    Golovashchenko, Sergey Fedorovich (Beverly Hills, MI); Bonnen, John Joseph Francis (Milford, MI)

    2012-03-20T23:59:59.000Z

    An electro-hydraulic forming tool for forming a sheet metal blank in a one-sided die has first and second rigid rings that engage opposite sides of a sheet metal blank. The rigid rings are contained within slots on a die portion and a hydraulic force applicator portion of the forming tool. The seals are either resiliently biased by an elastomeric member or inherently resiliently biased into contact with the blank.

  4. Open-File Report OFOG 1001.0 CHEMISTRY AND ORIGIN

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    and production of gas from the Marcellus shale. Recent analyses of flow- back water from Marcellus wells indicateOpen-File Report OFOG 1001.0 2010 CHEMISTRY AND ORIGIN OF OIL AND GAS WELL BRINES IN WESTERN AND GEOLOGIC SURVEY George E. W. Love, Director #12;[BLANK PAGE] #12;Open-File Oil and Gas Report 10

  5. Active Bank Switching for Temperature Control of the Register File in a Microprocessor

    E-Print Network [OSTI]

    Pedram, Massoud

    Active Bank Switching for Temperature Control of the Register File in a Microprocessor Kimish Patel, called active bank switching, for temperature control in the register file of a microprocessor to microprocessor performance and a significant component of its cost. Expensive packaging and heat removal

  6. Coupling from the Past in Hybrid Models for File Sharing Peer to Peer Systems

    E-Print Network [OSTI]

    Boyer, Edmond

    Coupling from the Past in Hybrid Models for File Sharing Peer to Peer Systems Bruno Gaujal1 systems can be modeled by hybrid systems with a continuous part corresponding to a fluid limit of files of sto- chastic hybrid systems. 1 Introduction Hybrid systems are very useful to model discrete systems

  7. Geothermal-energy files in computer storage: sites, cities, and industries

    SciTech Connect (OSTI)

    O'Dea, P.L.

    1981-12-01T23:59:59.000Z

    The site, city, and industrial files are described. The data presented are from the hydrothermal site file containing about three thousand records which describe some of the principal physical features of hydrothermal resources in the United States. Data elements include: latitude, longitude, township, range, section, surface temperature, subsurface temperature, the field potential, and well depth for commercialization. (MHR)

  8. International Patenting at the European Patent Office (EPO): Aggregate and Sectoral Filings

    E-Print Network [OSTI]

    Lansky, Joshua

    International Patenting at the European Patent Office (EPO): Aggregate and Sectoral Filings Walter: This studyanalyzes thebehaviorof patent filings at the European Patent Office (EPO), andconducts forecasting exercises using the models of patenting behavior in the EPO. The study examines the behavior of total EPO

  9. An Online Controller Towards Self-Adaptive File System Availability and Performance

    E-Print Network [OSTI]

    Engelmann, Christian

    An Online Controller Towards Self-Adaptive File System Availability and Performance Xin Chen1 availability and high per- formance. Although many fault tolerance technologies have been proposed and used in both commercial and academic distributed file systems to achieve high avail- ability, most of them

  10. April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010 Parallel Processing Letters

    E-Print Network [OSTI]

    Guerraoui, Rachid

    April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010 Parallel Processing Letters c World Scientific, Switzerland. Email: vin- cent.gramoli@epfl.ch 1 #12;April 4, 2010 20:55 WSPC/INSTRUCTION FILE ppl2010 2

  11. How to run PATSEE 1.) In the INS file remove all commands save

    E-Print Network [OSTI]

    Meagher, Mary

    How to run PATSEE 1.) In the INS file remove all commands save TITL compound SAVE as *.RES ii. Start XP, read the *.res file iii. Use the PICK command to trim the molecule to the desired fragment iv. Save the fragment with the ORTH command b. Second method : Use a modelling program

  12. A Special-Purpose Peer-to-Peer File Sharing System for Mobile Ad Hoc Networks

    E-Print Network [OSTI]

    Lindemann, Christoph

    application scenarios include sharing traffic and weather data by car-to-car communication in a wideA Special-Purpose Peer-to-Peer File Sharing System for Mobile Ad Hoc Networks Alexander Klemm-to-peer (P2P) file sharing for mobile ad hoc networks (MANET) requires the construction of a search algorithm

  13. CFG: A simple handler for config files and command line options Tim Menzies

    E-Print Network [OSTI]

    Menzies, Tim

    CFG: A simple handler for config files and command line options Tim Menzies Lane Department!2¥3) . ­ Or, on the Prolog command line. When placing options on the command line, they must come after a -- mark. Options in files have be followed by a full stop ". ". Op- tions on the command line have

  14. Fast In-Place File Carving For Digital Forensics Xinyan Zha and Sartaj Sahni

    E-Print Network [OSTI]

    Sahni, Sartaj K.

    }@cise.ufl.edu Abstract--Scalpel, a popular open source file recovery tool, performs file carving using the Boyer such as the multipattern Boyer-Moore and Aho-Corasick algorithms as well as asynchronous disk reads and multithreading to read disk faster. Keywords: Digital forensics, Scalpel, Aho-Corasick, multi- pattern Boyer

  15. Mining Logs Files for Data-Driven System Management School of Computer Science

    E-Print Network [OSTI]

    Li, Tao

    Mining Logs Files for Data-Driven System Management Wei Peng School of Computer Science Florida of the log files have been less emphasized in existing methods from data mining and machine learning in data representation pose new challenges. In this paper, we will describe our research efforts on mining

  16. Supporting Application-Tailored Grid File System Sessions with WSRF-Based Services

    E-Print Network [OSTI]

    Figueiredo, Renato J.

    }@acis.ufl.edu Abstract This paper presents novel service-based Grid data management middleware that leverages standards defined by WSRF specifications to create and manage dynamic Grid file system sessions. A unique aspect features (file system copy-on-write checkpointing to aid recovery of client-side failures; replication

  17. Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells

    E-Print Network [OSTI]

    Stockie, John

    Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells M.J. Kermani1 J and N2, through the cathode of a proton exchange membrane (PEM) fuel cell is studied numerically) an energy equation, written in a form that has enthalpy as the dependent variable. Keywords: PEM fuel cells

  18. Energy transfer in nanowire solar cells with photon-harvesting shells C. H. Peters,a

    E-Print Network [OSTI]

    McGehee, Michael

    Energy transfer in nanowire solar cells with photon-harvesting shells C. H. Peters,a A. R. Guichard; published online 23 June 2009 The concept of a nanowire solar cell with photon-harvesting shells are bonded to the surface of the SiNWs forming a thin shell. They absorb the low-energy photons

  19. Silver diffusion bonding and layer transfer of lithium niobate to silicon Kenneth Diest,a

    E-Print Network [OSTI]

    Atwater, Harry

    Silver diffusion bonding and layer transfer of lithium niobate to silicon Kenneth Diest,a Melissa J July 2008; accepted 8 August 2008; published online 5 September 2008 A diffusion bonding method has, and upon heating, a diffusion bond was formed. Transmission electron microscopy confirms the interface

  20. Chevron, GE form Technology Alliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    form Technology Alliance February 3, 2014 HOUSTON, TX, Feb. 3, 2014-Chevron Energy Technology Company and GE Oil & Gas announced today the creation of the Chevron GE Technology...