Sample records for figure es1 energy

  1. Figure ES1. Schema for Estimating Energy and Energy-Related Statistics,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic38.2001 ES1

  2. Figure ES1. Map of Northern Alaska

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic38.

  3. Figure 1:Energy Consumption in USg gy p 1E Roberts, Energy in US

    E-Print Network [OSTI]

    Sutton, Michael

    ;Figure 2: US Liquid Demand by Sector and Fuel 2E Roberts, Energy in US Source: EIA: Annual Energy Outlook in US EIA Annual Energy Outlook 2012 #12;Figure 9: US Natural Gas Supply and Demand (as projected;Figure 11: US Liquid Fuels Supply and Demand 11E Roberts, Energy in US EIA Annual Energy Outlook 2012

  4. The effect of a multivalley energy band structure on the thermoelectric figure of merit

    E-Print Network [OSTI]

    Boyer, Edmond

    L-49 The effect of a multivalley energy band structure on the thermoelectric figure of merit D. M A comparison is drawn between the dimensionless thermoelectric figure of merit of a multivalleyed semiconductor a multivalleyed semiconductor in thermoelectric applications it is concluded that the beneficial effect

  5. TABLE OF CONTENTS Executive Summary ............................................................................................ ES-1

    E-Print Network [OSTI]

    Gleeson, Joseph G.

    .5.1 Prioritize Emission Reductions in the Following Order: Conservation, Efficiency, Renewable Energy, and Carbon ............................................................................. 2-5 Section 3 Energy and Climate Change

  6. Figure 3. Energy-Related Carbon Dioxide Emissions

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Energy-Related Carbon Dioxide Emissions" " (million metric tons)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,...

  7. Figure 2. Energy Consumption of Vehicles, Selected Survey Years

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic Feet)Gas2

  8. Figure ES6. Fuel Economy Effects on Annual Energy Growth

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves,Light-Duty Vehicles,ES5ES6

  9. The figure shows the current energy pay back time for PV

    E-Print Network [OSTI]

    The figure shows the current energy pay back time for PV systems using different cell technologies and installed either in Central Europe or Southern Europe. Argument B1 PV Fact Sheets Technology improvements: Manufacturing a PV system consumes more energy than it ever produces in its life time." The fact is

  10. BILIWG: Consistent "Figures of Merit" (Presentation) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof EnergyBILIWG: Consistent "Figures of

  11. PHENIX (Pioneering High Energy Nuclear Interaction eXperiment): Data Tables and Figures from Published Papers

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The PHENIX Experiment is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. More than 60 published papers and preprints are listed here with links to the full text and separate links to the supporting PHENIX data in plain text tables and to EPS and GIF figures from the papers.

  12. Figure 1. HomeWindow showing the energy usage of several monitors, displays, and computers with colored

    E-Print Network [OSTI]

    Greenberg, Saul

    Figure 1. HomeWindow showing the energy usage of several monitors, displays, and computers with colored auras. Red is high usage while green is low usage. HomeWindow: An Augmented Reality Domestic that reflects its current and historical energy use. Categories and Subject Descriptors H.5.2 [Information

  13. Finding Six-Figure ROI From Energy Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OFProvides an overview ofblock inKevin Craft What are

  14. M. Steffen et al.: Hydrodynamical Models of Circumstellar Dust Shells 5 Figure 3. Top: Time sequence of spectral energy distributions computed from our oxygen

    E-Print Network [OSTI]

    sequence of spectral energy distributions computed from our oxygen star model with a dust shell composed.: Hydrodynamical Models of Circumstellar Dust Shells Figure 2. Top: Time sequence of spectral energy distributionsM. Steffen et al.: Hydrodynamical Models of Circumstellar Dust Shells 5 Figure 3. Top: Time

  15. EECBG Success Story: Finding Six-Figure ROI from Energy Efficiency |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannah River Site forCommunity'Department of

  16. Figure 7 | OSTI, US Dept of Energy, Office of Scientific and Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.

  17. Figure 8 | OSTI, US Dept of Energy, Office of Scientific and Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.

  18. Figure 30. Decomposition 4941 of Energy Use by Effect, 1988-1994,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic3 PC's

  19. Figure ES5. Actual Annual Energy Growth - All Effects Are Included

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves,Light-Duty Vehicles,ES5

  20. Figure ES7. Adjusted Annual Energy Growth - No Fuel Economy Effects

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves,Light-Duty

  1. Figure 1 | OSTI, US Dept of Energy, Office of Scientific and Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,ConservationPrinceton PlasmaDecember

  2. Figure 10 | OSTI, US Dept of Energy, Office of Scientific and Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,ConservationPrinceton

  3. Figure 11 | OSTI, US Dept of Energy, Office of Scientific and Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,ConservationPrinceton

  4. Figure 12 | OSTI, US Dept of Energy, Office of Scientific and Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,ConservationPrinceton

  5. Figure 13 | OSTI, US Dept of Energy, Office of Scientific and Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,ConservationPrinceton

  6. Figure 2 | OSTI, US Dept of Energy, Office of Scientific and Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,ConservationPrinceton

  7. Figure 4 | OSTI, US Dept of Energy, Office of Scientific and Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,ConservationPrinceton

  8. Figure 5 | OSTI, US Dept of Energy, Office of Scientific and Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,ConservationPrincetonInformation 5 Default

  9. Figure 6 Bottom | OSTI, US Dept of Energy, Office of Scientific and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,ConservationPrincetonInformation 5

  10. Figure 6 Top | OSTI, US Dept of Energy, Office of Scientific and Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,ConservationPrincetonInformation

  11. Figure 9 | OSTI, US Dept of Energy, Office of Scientific and Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 9 Default Caption and Credits Read

  12. Figure 2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed data

  13. Figure 3

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed data5.034,94.287,104.454,93.475,97.921

  14. Figure 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed

  15. Figure 5

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed554,904,209434 18292,933,209254

  16. Figure 6

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed554,904,209434 18292,933,2092544.6

  17. Facts, Figures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014FacilitiesSheet 300Office ofAbout »

  18. Microsoft Word - figure_14.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy,42 Figure

  19. Microsoft Word - Figure_01.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecadeFeet)Proved 3 Figure 1.

  20. Microsoft Word - Figure_05.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecadeFeet)Proved 3 Figure 1.14

  1. Calibration Model Assignments expressed as U3O8, Summary Table ES-1 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom: Utilizing ForestProject |February

  2. MECS Fuel Oil Figures

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 07,755,432 7,466,375: Percentage of

  3. Microsoft Word - Figure_15_2014.docx

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecadeFeet)Proved 3 Figure8

  4. ProClim-Flash | No 57, June 201318 Figure 1: Swiss CH4 fluxes from (a) anthropogenic (agriculture, energy, waste) and (b) natural contributors (wetlands, lakes and

    E-Print Network [OSTI]

    , energy, waste) and (b) natural contributors (wetlands, lakes and reservoirs, wild animals, forest uptake. company Meteotest for the year 2007. This inven- tory has now been updated for 2011 and extended with new hydroelectric res- ervoirs are included. The agricultural sector with its emissions from ruminants and manure

  5. PHOBOS Experiment: Figures and Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The PHOBOS Collaboration

    PHOBOS consists of many silicon detectors surrounding the interaction region. With these detectors physicists can count the total number of produced particles and study the angular distributions of all the products. Physicists know from other branches of physics that a characteristic of phase transitions are fluctuations in physical observables. With the PHOBOS array they look for unusual events or fluctuations in the number of particles and angular distribution. The articles that have appeared in refereed science journals are listed here with separate links to the supporting data plots, figures, and tables of numeric data. See also supporting data for articles in technical journals at http://www.phobos.bnl.gov/Publications/Technical/phobos_technical_publications.htm and from conference proceedings at http://www.phobos.bnl.gov/Publications/Proceedings/phobos_proceedings_publications.htm

  6. Figure 4. Browns Pond Formation at Schodack Landing Figure 5. Breccia within the Middle Granville Slate

    E-Print Network [OSTI]

    Kidd, William S. F.

    Landing 25 #12;#12;Figure 5. Breccia within the Middle Granville Slate 27 #12;Figure 6. Contact between Middle Granville Slate and Hatch Hill. 28 #12;#12;Figure 7. Parallel laminated sandstones of the Hatch the Bomoseen and Hatch Hill. Top of field book marks contact (Long Cut). 135 #12;#12;Figure 47. Green slates

  7. Les figures acoustiques de Chladni. Figures acoustiques de Chladni Ernst Chladni ( 1756-1827) Figures acoustiques de Chladni 1787

    E-Print Network [OSTI]

    d'Orléans, Université

    Les figures acoustiques de Chladni. Figures acoustiques de Chladni Ernst Chladni ( 1756-1827) Figures acoustiques de Chladni 1787 Comme les cordes vibrantes, les plaques peuvent vibrer à différentes phénomène a été découvert par le physicien E. Chladni. Pour cela il fait vibrer à l'aide d'un archet une

  8. Microsoft Word - Figure_01.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG NorthandEnergyConti,09GE June

  9. Microsoft Word - Figure_02.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG NorthandEnergyConti,09GE June6

  10. Microsoft Word - Figure_05.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG NorthandEnergyConti,09GE June6

  11. Microsoft Word - Figure_06.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG NorthandEnergyConti,09GE June690

  12. Microsoft Word - figure_16.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy,42

  13. Microsoft Word - figure_17.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy,423

  14. Microsoft Word - figure_18.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy,4236 10.9

  15. Microsoft Word - figure_19.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy,4236

  16. Microsoft Word - figure_20.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy,42364 0 2

  17. Microsoft Word - figure_21.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy,42364 0 25

  18. Microsoft Word - figure_22.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy,42364 0

  19. Microsoft Word - figure_23.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy,42364 0

  20. Microsoft Word - figure_24.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy,42364 00

  1. Microsoft Word - figure_25.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy,42364 00

  2. Microsoft Word - figure_99.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy,42364 007

  3. Texas Emissions and Energy Calculator (eCALC): Documentation of Analysis Methods, Report to the TCEQ

    E-Print Network [OSTI]

    Haberl, J. S.; Gilman, D.; Culp, C.

    2004-01-01T23:59:59.000Z

    )....................................................................................... 90 Figure 51: Solar Photovoltaic Analysis Flowchart....................................................................................... 92 Figure 52: Solar Photovoltaic Analysis Flowchart (Figure 2: Renewable Energy Production...). .................. 95 Figure 53: Solar Photovoltaic Analysis Flowchart (Figure 3: Output from IMT)........................................ 95 Figure 54: Solar Photovoltaic Analysis Flowchart (Figure 4: Annual and Peak Day Energy Savings). ...... 95 Figure 55: Solar...

  4. EXECUTIVE SUMMARY By USGS World Energy Assessment Team

    E-Print Network [OSTI]

    Laughlin, Robert B.

    petroleum and reserve growth for oil, gas, and natural gas liquids (NGL). Figures Figure ES-1. Graph showing relevant petroleum-resource information essential to the economic and strategic security of the United.S. GEOLOGICAL SURVEY WORLD PETROLEUM ASSESSMENT 2000-- DESCRIPTION AND RESULTS U.S. Geological Survey World

  5. Microsoft Word - figure_03.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High824 2.839 2.835 2.826OE-417,0 U.S.

  6. Cancer Facts & Figures - 2010

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S. S p e c t i R yAL

  7. Microsoft Word - figure_04.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade

  8. Figure2b.eps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 9 Default Caption and Credits

  9. Microsoft Word - Figure_09-Oct2014Update.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecadeFeet)Proved 3 Figure

  10. Supplementary Figure legends Supplementary Figure 1: Long term follow up of changing hair cycle domains on

    E-Print Network [OSTI]

    Maini, Philip K.

    Supplementary Figure legends Supplementary Figure 1: Long term follow up of changing hair cycle to trace the temporal changes of hair cycle domains. Pictures were taken every 2-3 days and selective ones are shown here. In normal pigmented mice, similar hair cycle domains can be revealed by simple hair clipping

  11. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    by Alternative Energy Technology . 75Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

  12. Modeling of customer adoption of distributed energy resources

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    of Dispersed Energy Resources Deployment. Berkeley, LawrenceAdoption of Distributed Energy Resources Ozbek, A. 2001.Adoption of Distributed Energy Resources Figure 39. Figure

  13. Modeling, Animation, and Rendering of Human Figures

    E-Print Network [OSTI]

    Gdkbay, Ugur

    7 Modeling, Animation, and Rendering of Human Figures Ugur Gudukbay, Bulent Ozguc, Aydemir, Ankara, Turkey Human body modeling and animation has long been an important and challenging area virtual humans in action: video games, films, television, virtual reality, ergonomics, medicine

  14. Top 100 historical figures of Wikipedia 1 Top 100 historical figures of Wikipedia

    E-Print Network [OSTI]

    Shepelyansky, Dima

    ] The top persons found are: Napoleon, George W. Bush, Elizabeth II for PageRank; Michael Jackson, Frank] This group found the top figures: Jesus, Napoleon. Muhammad. However, even if this group used the public

  15. Figure correction of multilayer coated optics

    DOE Patents [OSTI]

    Chapman; Henry N. (Livermore, CA), Taylor; John S. (Livermore, CA)

    2010-02-16T23:59:59.000Z

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  16. Figure and finish of grazing incidence mirrors

    SciTech Connect (OSTI)

    Takacs, P.Z. (Brookhaven National Lab., Upton, NY (USA)); Church, E.L. (Picatinny Arsenal, Dover, NJ (USA). Army Armament Research, Development and Engineering Center)

    1989-08-01T23:59:59.000Z

    Great improvement has been made in the past several years in the quality of optical components used in synchrotron radiation (SR) beamlines. Most of this progress has been the result of vastly improved metrology techniques and instrumentation permitting rapid and accurate measurement of the surface finish and figure on grazing incidence optics. A significant theoretical effort has linked the actual performance of components used as x-ray wavelengths to their topological properties as measured by surface profiling instruments. Next-generation advanced light sources will require optical components and systems to have sub-arc second surface figure tolerances. This paper will explore the consequences of these requirements in terms of manufacturing tolerances to see if the present manufacturing state-of-the-art is capable of producing the required surfaces. 15 refs., 14 figs., 2 tabs.

  17. Figure 1. Nicaragua at night. The circled area is the Bluefields region.

    E-Print Network [OSTI]

    Kammen, Daniel M.

    %3 . The electrification rate in rural areas of Nicaragua, where 45% of the population lives, is a meager 25% 2 (Figure 1. Instead, they advocate a focus on rural electrification for this region3 . blueEnergy blueEnergy was founded in 2004 to tackle the issue of rural electrification on the Atlantic coast of Nicaragua and

  18. Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion

    E-Print Network [OSTI]

    Lee, Felix

    2012-01-01T23:59:59.000Z

    List of Figures Flow chart of the energy produced, used, andrising Figure 1.1: Flow chart of the energy produced, used,

  19. Surface figure control for coated optics

    DOE Patents [OSTI]

    Ray-Chaudhuri, Avijit K. (Livermore, CA); Spence, Paul A. (Pleasanton, CA); Kanouff, Michael P. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  20. Fermilab E866 (NuSea) Figures and Data Plots

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    None

    The NuSea Experiment at Fermilab studied the internal structure of protons, in particular the difference between up quarks and down quarks. This experiment also addressed at least two other physics questions: nuclear effects on the production of charmonia states (bound states of charm and anti-charm quarks) and energy loss of quarks in nuclei from Drell-Yan measurements on nuclei. While much of the NuSea data are available only to the collaboration, figures, data plots, and tables are presented as stand-alone items for viewing or download. They are listed in conjunction with the published papers, theses, or presentations in which they first appeared. The date range is 1998 to 2008. To see these figures and plots, click on E866 publications or go directly to http://p25ext.lanl.gov/e866/papers/papers.html. Theses are at http://p25ext.lanl.gov/e866/papers/e866theses/e866theses.html and the presentations are found at http://p25ext.lanl.gov/e866/papers/e866talks/e866talks.html. Many of the items are postscript files.

  1. Annual Energy Outlook 2012

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    5 U.S. Energy Information Administration | Annual Energy Outlook 2012 Regional maps Figure F4. Oil and gas supply model regions Figure F4. Oil and Gas Supply Model Regions Atlantic...

  2. Supplemental Figures Figure S1. Group-level k-means clustering from the three tool-responsive seed regions.

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    Supplemental Figures Figure S1. Group-level k-means clustering from the three tool-responsive seed regions. Group-level k-means clustering maps displayed for each seed region indicate the considerable Fusiform Gyrus Left Ventral Premotor Cortex Supplemental Figure 1. Group-level k-means Clustering Solution

  3. Selling Random Energy

    E-Print Network [OSTI]

    Bitar, Eilyan Yamen

    2011-01-01T23:59:59.000Z

    electric energy generation fleet is comprised predominantly (68%, Figure 1.3) of fossil-fuel based thermal

  4. www.kit.edu Facts and Figures

    E-Print Network [OSTI]

    Stein, Oliver

    Spectroscopy, Biomedical Photonics, Optical Systems, Solar Energy, Optical Signal and Image Processing, X of Technology Unique in German Research In October 2009, the Karlsruhe Institute of Technology (KIT, and tasks are of unique and long-term character. KIT ENERGY CENTER Energy Conversion, Renewable Energies

  5. STAR (Solenoidal Tracker at RHIC) Figures and Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The STAR Collaboration

    The primary physics task of STAR is to study the formation and characteristics of the quark-gluon plasma (QGP), a state of matter believed to exist at sufficiently high energy densities. STAR consists of several types of detectors, each specializing in detecting certain types of particles or characterizing their motion. These detectors work together in an advanced data acquisition and subsequent physics analysis that allows final statements to be made about the collision. The STAR Publications page provides access to all published papers by the STAR Collaboration, and many of them have separate links to the figures and data found in or supporting the paper. See also the data-rich summaries of the research at http://www.star.bnl.gov/central/physics/results/. [See also DDE00230

  6. Figure 3-11 South Table Mountain Utilities Map

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Existing Buildings Electrical Figure 3-11 South Table Mountain Utilities Map Sewer Communication Water Surface Drainage Storm Water WATER TANK FACILITIES QUAKER STREET OLD QUA RRY...

  7. Energy Efficiency Services Sector: Workforce Education and Training Needs

    SciTech Connect (OSTI)

    Goldman, Charles A.; Peters, Jane S.; Albers, Nathaniel; Stuart, Elizabeth; Fuller, Merrian C.

    2010-03-19T23:59:59.000Z

    This report provides a baseline assessment of the current state of energy efficiency-related education and training programs and analyzes training and education needs to support expected growth in the energy efficiency services workforce. In the last year, there has been a significant increase in funding for 'green job' training and workforce development (including energy efficiency), through the American Recovery and Reinvestment Act (ARRA). Key segments of the energy efficiency services sector (EESS) have experienced significant growth during the past several years, and this growth is projected to continue and accelerate over the next decade. In a companion study (Goldman et al. 2009), our research team estimated that the EESS will increase two- to four-fold by 2020, to 220,000 person-years of employment (PYE) (low-growth scenario) or up to 380,000 PYE (high-growth scenario), which may represent as many as 1.3 million individuals. In assessing energy efficiency workforce education and training needs, we focus on energy-efficiency services-related jobs that are required to improve the efficiency of residential and nonresidential buildings. Figure ES-1 shows the market value chain for the EESS, sub-sectors included in this study, as well as the types of market players and specific occupations. Our assessment does not include the manufacturing, wholesale, and retail distribution subsectors, or energy efficiency-focused operations and maintenance performed by facility managers.

  8. Microsoft Word - Figure_03_04.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG NorthandEnergyConti,09GE June6 0

  9. R E N E W A B L E E N E R G Y

    E-Print Network [OSTI]

    Renewable Energy Zones III. Environmental Assessment of Competitive Renewable Energy Zone #12;I. Executive ........................................................................................2 Environmental Assessment of CREZs....................................................10 List of Figures Figure ES-1. Economic and Environmental Assessment of California CREZs

  10. R E N E W A B L E E N E R G Y

    E-Print Network [OSTI]

    of Competitive Renewable Energy Zones III. Environmental Assessment of Competitive Renewable Energy Zone #12;I ........................................................................................3 Environmental Assessment of CREZs....................................................12 List of Figures Figure ES-1. Economic and Environmental Assessment of California CREZs

  11. RETI-1000-2008-003-D Report Organization

    E-Print Network [OSTI]

    of Competitive Renewable Energy Zones III. Environmental Assessment of Competitive Renewable Energy Zone #12;I ........................................................................................3 Environmental Assessment of CREZs of Figures Figure ES-1. Economic and Environmental Assessment of California CREZs...............10 #12;RETI

  12. Figure 3-5 Vicinity Photographs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA Page 3-73 June 2003 Site-Wide Environmental Assessment of FINAL National Renewable Energy Laboratory's South Table Mountain Site Complex 7. View of the undeveloped area east...

  13. U.S. Energy Information Administration | Annual Energy Outlook...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration | Annual Energy Outlook 2011 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office...

  14. U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration | Annual Energy Outlook 2013 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office...

  15. Chladni figures in Andreev billiards F. Libisch 1

    E-Print Network [OSTI]

    Florian, Libisch

    Chladni figures in Andreev billiards F. Libisch 1 , S. Rotter, and J. Burgd¨orfer Institute of the wavefunctions in the electron and hole sheet. We identify cases where the Chladni figures for the electrons of the retroreflection picture. 1 Introduction When Ernst Chladni first studied the formation of nodal patterns

  16. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    122 Figure 5-6 Retail Gasoline Prices in SelectedEnergy Prices Figure 5-6 Retail Gasoline Prices in Selectedwholesale and retail power prices Price cut for gasoline,

  17. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

  18. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01T23:59:59.000Z

    156 Figure B-5: Screenshot 1 of EEM157 Figure B-6: Screenshot 2 of EEMEfficient Commercial Building EEM Energy Efficiency Measure

  19. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    for Defense Districts 216 U.S. Energy Information Administration Annual Energy Outlook 2010 Figure F3. Petroleum Administration for Defense Districts AK WA NV AZ OR...

  20. Figure 1. Census Regions and Divisions

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email: Terminal2,7,7,of2014FORMUS Federal

  1. The Greening of the Middle Kingdom: The Story of Energy Efficiency in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    Energy Consumption FIGURE 2 Actual energy demand in China isvery much lower than energy demand at constant energyGDP Energy FIGURE 3a Energy demand grew twice as fast as GDP

  2. Working Gas in Underground Storage Figure

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan Feb Marper3Working Gas in

  3. Working Gas in Underground Storage Figure

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan Feb Marper3Working Gas

  4. I.D I VI Figure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in Hall C High2 -I-5165Physics

  5. Figure 1. Typical Slow Sand Filter Schematic Supernatant Water

    E-Print Network [OSTI]

    Figure 1. Typical Slow Sand Filter Schematic Headspace Supernatant Water Schmutzdecke Raw water Supernatant drain Filter drain & backfill Sand media Support gravel Drain tile Adjustable weir Overflow weir Vent Control valve Treated Water Effluent flow control structure Overflow Assessing Temperature

  6. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    engines in a vehicle can be better than one. November 29, 2012 The 2011 Renewable Energy Data book contains facts and figures on the U.S. and global renewable energy industry....

  7. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    4. Solar PV Cell Production and Installed Capacity, 2000-23 Figure 12. China's Hydropower Installed Capacity, 1980-4 Table 2. China Installed Capacity for Alternative Energy

  8. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    energy in Chinas overall energy mix, in February 2005 thehalf of the nations energy mix (Figure 2-3). Figure 2-3energy conversion has only slightly increased since 1980 with an increase of only 2.6 Mt, after overall fuel mix

  9. EIA - Annual Energy Outlook 2014 Early Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productions and Imports figure dataNet imports of energy decline both in absolute terms and as a share of total U.S. energy consumption in the AEO2014 Reference case (Figure 10)....

  10. Microsoft Word - Figure_11-Oct-10-2014Update.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecadeFeet)Proved 3 Figure8

  11. Increasing the thermoelectric figure of merit of tetrahedrites by Co-doping with nickel and zinc

    E-Print Network [OSTI]

    Lu, X; Morelli, DT; Morelli, DT; Xia, Y; Ozolins, V

    2015-01-01T23:59:59.000Z

    Increasing the Thermoelectric Figure of Merit of increase in the thermoelectric figure of merit coefficient and thermoelectric power factor; and 2)

  12. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    Issue on Microgrids and Energy Management 3. Marnay, C. , G.Issue on Microgrids and Energy Management 15. PG&E tariffs (Issue on Microgrids and Energy Management Figures Figure 1.

  13. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    Energy, 2007 Buildings Energy Data Book, September 2007.levels (2006 Buildings Energy Data Book). Figure 1 - Shareto the 2007 Buildings Energy Data Book, among all types of

  14. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeff

    2008-01-01T23:59:59.000Z

    words, the sustainable energy balance serves as a goal forthe sustainable energy balance would mean a renewable energythe goal of a sustainable energy balance. Figure 2 shows how

  15. Figure 2 Analysis Tool Interface Level-1 / PBBT Analysis Tool

    E-Print Network [OSTI]

    Figure 2 ­ Analysis Tool Interface Level-1 / PBBT Analysis Tool Introduction The Level-1/PBBT Analysis Tool (LPAT) was designed to assist in the analysis of North American Standard Level-1 Inspection. The data incorporated into the tool includes the results of Level-1 inspections with accompanying PBBT test

  16. ORANGE COUNTY FACTS & FIGURES Center for Demographic Research, March 2014

    E-Print Network [OSTI]

    de Lijser, Peter

    Population Projections (OCP-2010 Modified) Source: Center for Demographic Research HOUSING Current DOF Decennial Census Figure 4/1/2010: 1,048,907 Source: U.S. Bureau of the Census, 2010 Housing Projections (OCP Price of Existing Resale Single Family Dwelling Units Feb 2013 Jan 2014 Feb 2014 Feb `13 to Feb `14

  17. SupplementalFigures1 Supplementary Figure S1: Sample Mean Excess (SME) for a range of thresholds at the grid point closest to 3

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    SupplementalFigures1 2 Supplementary Figure S1: Sample Mean Excess (SME) for a range of thresholds at the grid point closest to 3 Bergen, Norway in the BCMHIRHAM5 downscaling. The SME

  18. A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings

    E-Print Network [OSTI]

    Feng, Wei

    2014-01-01T23:59:59.000Z

    renewable energy harvest. Figure 19 illustrates commercial building energy cost optimization results and associated CO 2 abatement potential,

  19. Figure 1. Microsupercapacitors developed with novel carbon nano-

    E-Print Network [OSTI]

    to future energy technologies, including electrical energy storage (batteries, supercapacitors to advanced energy technologies, including solar energy utilization, energy storage (batteries and capacitors the nanoscale structures, dynamics and reactivities of fluid-solid interfaces encountered in electrical energy

  20. Figure 6. PCs and Terminals per Million Square Feet, 1992 and 1995

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic3 PC's5Figure 6

  1. Figure 6. Projected Production for the Low Development Rate of Technically

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic3 PC's5Figure

  2. NOvA (Fermilab E929) Official Plots and Figures

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The NOvA collaboration, consisting of 180 researchers across 28 institutions and managed by the Fermi National Accelerator Laboratory (FNAL), is developing instruments for a neutrino-focused experiment that will attempt to answer three fundamental questions in neutrino physics: 1) Can we observe the oscillation of muon neutrinos to electron neutrinos; 2) What is the ordering of the neutrino masses; and 3) What is the symmetry between matter and antimatter? The collaboration makes various data plots and figures available. These are grouped under five headings, with brief descriptions included for each individual figure: Neutrino Spectra, Detector Overview, Theta12 Mass Hierarchy CP phase, Theta 23 Delta Msqr23, and NuSterile.

  3. Patterned Fabric Know - How (Plaids, Stripes, Checks, and Figured Designs).

    E-Print Network [OSTI]

    Anoymous,

    1984-01-01T23:59:59.000Z

    DC \\1\\245.7 '13 Fbiterned Fabric mow-Kbw Contents Design Principles and Patterned Fabrics Pattern Selection Fabric Construction Selecting and Preparing Fabric Kinds of Plaids and Stripes Pri nts Other Patterned Fabrics Combining..., Stripes, Checks and Figured Designs) Extension Clothing Specialists The Texas A&M University System Patterned fabrics provide an interesting di mension to anyone's wardrobe. In a garment or as an accent, patterned fabrics are colorful and ex citing...

  4. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption, Energy Efficiency inTV Shipments on Energy Consumption.. 22 Figure 3-1.Estimates of Annual Energy Consumption in 3D mode of 3D TVs

  5. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    of primary energy excluding biomass fuels. Figure 10 showsof primary energy without counting biomass fuels which areFinal Energy Consumption by Fuel (with Biomass) Coal

  6. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    Total Primary Energy Consumption World US China Californiaprimary energy consumption, compared to the world (39%), theFigure 3. Energy consumption by sector for the world, the

  7. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Transportation sector energy demand Transportation energy use grows slowly in comparison with historical trend figure data Transportation sector energy consumption grows at an...

  8. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Transportation sector energy demand Growth in transportation energy consumption flat across projection figure data The transportation sector consumes 27.1 quadrillion Btu of energy...

  9. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    11% oil, 6% coal, and traditional energy. A survey conductedand Renewable Energy Ministry of Coal Ministry of Commerce &in Figure 10, coal represents the largest energy product

  10. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    2.1.1 Energy Production . . . . . . . . . 2.1.2 Spentof Figures Current World Energy Production Broken Down byCurrent US Energy Production Broken Down by

  11. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Buildings Total energy consumption trends for the JapaneseFigure 9. Total energy consumption trends i n the JapaneseFigure 10. Energy consumption intensity trends i n Japanese

  12. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01T23:59:59.000Z

    grid or smart building technology None Figure 2-10:Building envelope improvements Onsite renewable energy Smart

  13. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    SciTech Connect (OSTI)

    TIAX, LLC

    2005-05-04T23:59:59.000Z

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

  14. Representing holy foolishness: an investigation of the holy fool as a critical figure in European cinema

    E-Print Network [OSTI]

    Birzache, Alina Gabriela

    2013-07-05T23:59:59.000Z

    In this thesis I investigate the evolving figure of the holy fool as a critical figure in European cinema. Three national cinemas - Soviet and post-Soviet cinema, French cinema, and Danish cinema form the primary focus ...

  15. Enhancing the Figure-of-Merit in Half-Heuslers for Vehicle Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Figure-of-Merit in Half-Heuslers for Vehicle Waste Heat Recovery Enhancing the Figure-of-Merit in Half-Heuslers for Vehicle Waste Heat Recovery Good ZT can occur in...

  16. Sustainable Development of Renewable Energy Mini-grids for Energy Access: A Framework for Policy Design

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2014-01-01T23:59:59.000Z

    potential areas for decentralized electricity supply, Renewable and Sustainable EnergyPotential for growth Figure 2: Elements of sustainability for assessing renewable energy-

  17. Investigation of Energy-Efficient Supermarket Display Cases

    SciTech Connect (OSTI)

    Walker, D.H.

    2005-01-21T23:59:59.000Z

    Supermarkets represent one of the largest energy-intensive building groups in the commercial sector, consuming 2 to 3 million kWh/yr per store (ES-1). Over half of this energy use is for the refrigeration of food display cases and storage coolers. Display cases are used throughout a supermarket for the merchandising of perishable food products. The cases are maintained at air temperatures ranging from -10 to 35 F, depending upon the type of product stored. The operating characteristics and energy requirements of the refrigeration system are directly related to the refrigeration load. The sources of the display case refrigeration load consist of: (1) Moist and warm air infiltration through the open front of the case--air curtains are employed to inhibit this infiltration, but some ambient air is entrained, which adds a substantial portion to the refrigeration load. (2) Heat conduction through case panels and walls. (3) Thermal radiation from the ambient to the product and display case interior. (4) Internal thermal loads--the use of lights, evaporator fans, periodic defrosts, and antisweat heaters adds to the refrigeration load of the display case as well as directly consuming electric energy. The impact of each of these elements on the refrigeration load is very dependent upon case type (Figure ES-1). For example, air infiltration is the most significant portion of the refrigeration load for open, multi-deck cases, while radiation is the largest part of the load for tub-type cases. The door anti-sweat heaters represent a major share of the refrigeration load for frozen food door reach-in cases. Figure ES-2 shows the distribution of display cases in a typical supermarket (ES-2). Open, multi-deck, medium temperature display cases typically comprise about half of the refrigerated fixtures in a store (ES-3). In addition, medium temperature fixtures and storage coolers account for roughly 70 to 75 percent of the total store refrigeration load with open, multi-deck cases contributing about 3/4 of that fraction. Consequently, the focus of this investigation has tilted toward the open, vertical, multi-deck medium temperature case type. Various technologies and control methods are energy efficiency measures (EEMs) that could be applied to display cases and result in the reduction of the refrigeration load and of the energy consumption of the supermarket refrigeration system. An extensive evaluation of the EEMs was conducted in order to select those that met the following criteria: (1) Near-term implementation--All EEMs considered could be implemented with existing refrigeration hardware and technology. (2) Potential for energy-efficiency improvements--Energy savings and/or refrigeration load reduction must be obtained by the implementation of the EEM. (3) Enhancement of the ability to maintain target product temperature--Proper operation of the display case and maintenance of the stored product temperature could not be compromised by the use of the EEM. The energy impact of a number of viable display case EEMs was quantified by performing whole building hourly simulations. A special version of the U.S. Department of Energy's (DOE-2.3) program was used to develop a model of a supermarket. The model was then calibrated using available end-use monitored data to increase confidence in simulation results.

  18. Constructing thin subgroups commensurable with the figure-eight knot group

    E-Print Network [OSTI]

    Akhmedov, Azer

    Constructing thin subgroups commensurable with the figure-eight knot group S. Ballas & D. D. Long contains thin sub- groups commensurable with the figure-eight knot group. 1 Introduction. Following Sarnak. In this note, we shall exhibit subgroups of the fundamental group of the figure eight knot as subgroups

  19. Thermoelectric figure of merit as a function of carrier propagation angle in semiconducting superlattices

    E-Print Network [OSTI]

    Carlson, Erica

    Thermoelectric figure of merit as a function of carrier propagation angle in semiconducting;Thermoelectric figure of merit as a function of carrier propagation angle in semiconducting superlattices Shuo a fruitful approach for enhancing the figure of merit, ZT, of thermoelectric materials. Generally

  20. Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices

    E-Print Network [OSTI]

    Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices propose a mechanism for enhancement of the thermoelectric figure-of-merit in regimented quantum dot, as a result, to the thermoelectric figure-of-merit enhancement. To maximize the improvement, one has to tune

  1. 9-D polarized proton transport in the MEIC figure-8 collider ring: first steps

    SciTech Connect (OSTI)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, V. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-10-24T23:59:59.000Z

    Spin tracking studies in the MEIC figure-8 collider ion ring are presented, based on a very preliminary design of the lattice. They provide numerical illustrations of some of the aspects of the figure-8 concept, including spin-rotator based spin control, and lay out the path towards a complete spin tracking simulation of a figure-8 ring.

  2. Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies

    E-Print Network [OSTI]

    Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

    2006-01-01T23:59:59.000Z

    Goal.6 Figure 2-2. Accounting for Energy Efficiency2-3. Accounting for Energy Efficiency Resources in LoadFigure 3-1. Plan Energy Efficiency Program Effects: Annual

  3. BRAHMS (Broad Range Hadron Magnetic Spectrometer) Figures and Data Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The BRAHMS experiment was designed to measure charged hadrons over a wide range of rapidity and transverse momentum to study the reaction mechanisms of the relativistic heavy ion reactions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the properties of the highly excited nuclear matter formed in these reactions. The experiment took its first data during the RHIC 2000 year run and completed data taking in June 2006. The BRAHMS archive makes publications available and also makes data and figures from those publications available as separate items. See also the complete list of publications, multimedia presentations, and related papers at http://www4.rcf.bnl.gov/brahms/WWW/publications.html

  4. Figure and finish characterization of high performance metal mirrors

    SciTech Connect (OSTI)

    Takacs, P.Z. [Brookhaven National Lab., Upton, NY (United States); Church, E.L. [Army Armament Research and Development Command, Dover, NJ (United States)

    1991-10-01T23:59:59.000Z

    Most metal mirrors currently used in synchrotron radiation (SR) beam lines to reflect soft x-rays are made of electroless nickel plate on an aluminum substrate. This material combination has allowed optical designers to incorporate exotic cylindrical aspheres into grazing incidence x-ray beam-handling systems by taking advantage of single-point diamond machining techniques. But the promise of high-quality electroless nickel surfaces has generally exceeded the performance. We will examine the evolution of electroless nickel surfaces through a study of the quality of mirrors delivered for use at the National Synchrotron Light Source over the past seven years. We have developed techniques to assess surface quality based on the measurement of surface roughness and figure errors with optical profiling instruments. It is instructive to see how the quality of the surface is related to the complexity of the machine operations required to produce it.

  5. A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    IV. Potential from Renewable Energy Sources--Wind and Solar 9 V. Economics of Electrolysis 12 VI configurations 10 Figure 7 Hydrogen potential from solar and wind resources 11 Figure 8 Components of the cost effects on hydrogen cost in $/kg 17 Figure 14 Future wind hydrogen production system: capacity factor

  6. Figure 6: An MTAH for 11 lung tumor contours generated by MDISC based on area, circularity, and extrusiveness.

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Figure 6: An MTAH for 11 lung tumor contours generated by MDISC based on area, circularity, and extrusiveness. Figure 7: The CT scanned lung image for image 6 (in Figure 3) with the lung tumor contour

  7. Figure 1: Configuration of energy recovering system Modeling of an Electromechanical Energy Harvesting

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    and management power, and batteries charging. The linear generators could be used to, for example, extend induction, v is the displacement's speed of permanent magnet, d is the displacement, pe is the coil position

  8. Evaluation Framework and Tools for Distributed Energy Resources

    SciTech Connect (OSTI)

    Gumerman, Etan Z.; Bharvirkar, Ranjit R.; LaCommare, Kristina Hamachi; Marnay , Chris

    2003-02-01T23:59:59.000Z

    The Energy Information Administration's (EIA) 2002 Annual Energy Outlook (AEO) forecast anticipates the need for 375 MW of new generating capacity (or about one new power plant) per week for the next 20 years, most of which is forecast to be fueled by natural gas. The Distributed Energy and Electric Reliability Program (DEER) of the Department of Energy (DOE), has set a national goal for DER to capture 20 percent of new electric generation capacity additions by 2020 (Office of Energy Efficiency and Renewable Energy 2000). Cumulatively, this amounts to about 40 GW of DER capacity additions from 2000-2020. Figure ES-1 below compares the EIA forecast and DEER's assumed goal for new DER by 2020 while applying the same definition of DER to both. This figure illustrates that the EIA forecast is consistent with the overall DEER DER goal. For the purposes of this study, Berkeley Lab needed a target level of small-scale DER penetration upon which to hinge consideration of benefits and costs. Because the AEO2002 forecasted only 3.1 GW of cumulative additions from small-scale DER in the residential and commercial sectors, another approach was needed to estimate the small-scale DER target. The focus here is on small-scale DER technologies under 500 kW. The technology size limit is somewhat arbitrary, but the key results of interest are marginal additional costs and benefits around an assumed level of penetration that existing programs might achieve. Berkeley Lab assumes that small-scale DER has the same growth potential as large scale DER in AEO2002, about 38 GW. This assumption makes the small-scale goal equivalent to 380,000 DER units of average size 100 kW. This report lays out a framework whereby the consequences of meeting this goal might be estimated and tallied up. The framework is built around a list of major benefits and a set of tools that might be applied to estimate them. This study lists some of the major effects of an emerging paradigm shift away from central station power and towards a more dispersed and heterogeneous power system. Seventeen societal effects of small-scale DER are briefly summarized. Each effect is rated as high, medium or low, on three different scales that will help determine the optimal social investment. The three scales are: the magnitude of the economic benefit; the likelihood that the benefit can be monetized in efficient markets, i.e. internalized; and how tractable it might be to quantify each benefit analytically. Some of the modeling tools that may be used to estimate these effects are described in the Appendix.

  9. Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2005-01-01T23:59:59.000Z

    cost estimates) Figure 4: Capital and O&M Costs Sensitivity Separate Refrigeration Load Distributed Energy Resourcescost estimates) Figure 8: Capital and O&M Costs Sensitivity Analysis Integrated Refrigeration Load Distributed Energy Resources

  10. SUPPLEMENTARY MATERIAL1 INCLUDING ONE TABLE AND SIX FIGURES2

    E-Print Network [OSTI]

    Esper, Jan

    of past solar energy output (total solar irradiance; TSI) assuming solar energy41 varies equally at all12 5 Finnish Forest Research Institute, Rovaniemi Research Unit, 96301 Rovaniemi, Finland13 6

  11. ORNL/SUB/02-4000008627/01 TRANSPORTATION ENERGY SURVEY

    E-Print Network [OSTI]

    OF THE ENERGY SITUATION ....................................... 7 2.3 PERCEIVED EFFECTS OF GASOLINE PRICES ............................................................................................................................ 69 #12;iv #12;v LIST OF FIGURES Figure Page 1 VMT and Gasoline Price Change from Same Period Previous

  12. Modeling Interregional Transmission Congestion in the National Energy Modeling System

    E-Print Network [OSTI]

    Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

    2006-01-01T23:59:59.000Z

    5 Figure 1-4 Four-Node Example Based on the WECC6 Figure 1-5 Four-Node Example Based on the WECCPAE PBA RA RON SERC TWh WECC Annual Energy Outlook U.S.

  13. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    Figure 62 Transport CO2 Emission Reduction under AIS by Fuel57 Figure 67 AIS Power Sector CO2 Emissions Reduction by67 AIS Power Sector CO2 Emissions Reduction by Source Energy

  14. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01T23:59:59.000Z

    Figure 1.1. Ragone plot of various energy storage systems [metal oxides for energy storage devices A dissertationmetal oxides for energy storage devices by Jong Woung Kim

  15. Green queue : a framework for selecting energy optimal DVFS congurations in large scale MPI applications

    E-Print Network [OSTI]

    Peraza, Joshua

    2012-01-01T23:59:59.000Z

    settings . . . . . Green Queue Energy Savings with VariousApplication Figure 4.3: Green Queue Energy Savings withBlind Scaling Relative Energy Green Queue Relative Delay

  16. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01T23:59:59.000Z

    Analysis 4.5 Energy Efficiency Business Models: Conceptual38 Figure 23. Energy efficiency business model conceptualmanagement. Energy Efficiency Business Models: Conceptual

  17. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01T23:59:59.000Z

    Figure 1.1. Ragone plot of various energy storage systems [issues for future energy storage systems. This dissertationin technology and energy storage has become the limiting

  18. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Industrial sector energy demand Manufacturing heat and power energy consumption increases modestly figure data Despite a 49-percent increase in industrial shipments, industrial...

  19. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Industrial sector energy demand Growth in industrial energy consumption is slower than growth in shipments figure data Despite a 76-percent increase in industrial shipments,...

  20. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    40 Figure 3.2. Levelized Cost of Energyof Water and Power Levelized cost of energy Load-servingabove the expected levelized cost of energy (LCOE) for PV-

  1. Behaviour Change at Work: empowering energy efficiency in the workplace through user-centred design

    E-Print Network [OSTI]

    Lockton, Dan; Cain, Rebecca; Harrison, David; Giudice, Sebastiano; Nicholson, Luke; Jennings, Paul

    2011-01-01T23:59:59.000Z

    Behavior, Energy & Climate Change, Washington, DC, November 30-December 2, Figure 1: The CarbonCulture home

  2. Occupancy-Based Energy Management in Buildings: Final Report to Sponsors

    E-Print Network [OSTI]

    Sohn, Michael D.

    2010-01-01T23:59:59.000Z

    Energy Efficient Economy. Emmerich, S.J. and Persily, A.K. ,typical office building (Emmerich and Persily 2001). Figure

  3. 40 Figure 9: Folded, brown weathering carbonate in purple and green slates.

    E-Print Network [OSTI]

    Kidd, William S. F.

    ;#12;#12;#12;#12;#12;#12;#12;#12;40 Figure 9: Folded, brown weathering carbonate in purple and green slates. Figure 10: dismembered folds of brown weathering sandy carbonate and light weathering arenite in purple, green and gray slates. #12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;58 Figure 14: Color laminated slate

  4. Development of Energy Balances for the State of California

    E-Print Network [OSTI]

    Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

    2005-01-01T23:59:59.000Z

    Energy Agency, 2003a. Energy Balances of OECD Countries.Energy Agency, 2003b. Energy Balances of Non-OECD Countries.for constructing the energy balance flow chart (Figure 1).

  5. U.S. Energy Information Administration (EIA)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    (Figure 10). The projected growth in energy imports is moderated by increased use of biofuels (much of which are produced domestically), demand reductions resulting from the...

  6. Assembly and Testing of an On-Farm Manure to Energy Conversion BMP for Animal Waste Pollution Control

    E-Print Network [OSTI]

    Engler, Cady; Capereda, Sergio; Mukhtar, Saqib

    ......................................................................................... 21 Assembly and Testing of an On-Farm Manure to Energy Conversion BMP for Animal Water Pollution Control 3 List of Figures Figure 1. Schematic of the TAMU Fluidized bed gasifier ............................................................ 7... .......................................................... 14 Figure 9. SEM pictures of manure ash at 1200x ....................................................................... 14 Figure 10. Photo of TAMU fluidized bed gasifier ...................................................................... 15...

  7. Microsoft Word - figure_07-2014-update.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy, Natural

  8. Microsoft Word - figure_08_2014-Update.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy, Natural2

  9. Microsoft Word - figure_10_2014-Update.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy, Natural24

  10. Microsoft Word - figure_12-2014-update.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of Energy,

  11. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    and Benefits of Alternative Energy Efficiency Portfolios (Figure 7. Effects of Alternative Energy Efficiency BusinessMassachusetts pursues alternative energy efficiency goals: ~

  12. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    and Benefits of Alternative Energy Efficiency Portfolios (and Benefits of Alternative Energy Efficiency Portfolios (Figure 7. Effects of Alternative Energy Efficiency Business

  13. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    Figure 7. Effects of Alternative Energy Efficiency Businessand Benefits of Alternative Energy Efficiency Portfolios (and Benefits of Alternative Energy Efficiency Portfolios (

  14. Test procedures and protocols: Their relevance to the figure of merit for thermal distribution systems. Volume 1: Informal report

    SciTech Connect (OSTI)

    Andrews, J.W.

    1993-09-01T23:59:59.000Z

    A conceptual framework is developed that categorizes measurement protocols for forced-air thermal distribution systems in small buildings. This framework is based on the distinction between two generic approaches. The {open_quote}system-comparison{close_quote} approach seeks to determine, via a pair of whole-house energy-use measurements, the difference in energy use between the house with the as-found duct system and the same house with no energy losses attributable to the thermal distribution system. The {open_quote}component loss-factor{close_quote} approach identifies and measures the individual causes of duct losses, and then builds up a value for the net overall duct efficiency, usually with the help of computer simulation. Examples of each approach are analyzed and related to a proposed Figure of Merit for thermal distribution systems. This Figure of Merit would serve as the basis for a Standard Method of Test analogous to those already in place for furnaces, boilers, air conditioners, and heat pumps.

  15. BRANCHED SPHERICAL CR STRUCTURES ON THE COMPLEMENT OF THE FIGURE EIGHT KNOT.

    E-Print Network [OSTI]

    Minerbe, Vincent

    eight knot complement as a surface bundle over the circle, the behaviour of of the fundamental group to a set of representations of = 1(M), the fundamental group of the complement of the figure eight knot. Recall that the fundamental group of the figure eight knot complement contains a surface group (a

  16. Technology Transfer award funding data* Figure 1. Current Technology Transfer awards

    E-Print Network [OSTI]

    Rambaut, Andrew

    6 1 4 3 48 23 30 10 Technology Transfer award funding data* Figure 1. Current Technology Transfer awards Numbers represent active grants as at 1 October 2013 Figure 2. Technology Transfer award expenditure 2012/13 by value On 1 October 2013 we were funding 125 active awards through our Technology

  17. Large thermoelectric figure of merit in Si1-xGex nanowires Lihong Shi,1

    E-Print Network [OSTI]

    Li, Baowen

    Large thermoelectric figure of merit in Si1-xGex nanowires Lihong Shi,1 Donglai Yao,1 Gang Zhang,2 transport equation, we investigate composition effects on the thermoelectric properties of silicon thermoelectric figure of merit ZT Refs. 14 due to both enhancement in the power factor through increasing

  18. EXPLORING WITH LOGO Use of Colours, Drawing tools and Predefined figures

    E-Print Network [OSTI]

    Stanchev, Peter

    EXPLORING WITH LOGO Use of Colours, Drawing tools and Predefined figures by Children Peter L in Logo to calculate the colours, drawing tools and predefined figures used by children. The experiment in the paper. Similar to the discussed Logo environment, other environments could be developed by Logo teachers

  19. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    conversion to the needed energy mix. Figure 8 shows thefraction of the States energy mix. The use of fossil fuelleast 33% renewable energy in the mix. The renewables case

  20. Exascale for Energy: The Role of Exascale Computing in Energy Security

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Energy) to develop hydrogen storage systems that can befor nearly 8% weight hydrogen storage. Source: Y. Zhao etas a candidate hydrogen storage medium (Figure 21). However,

  1. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

  2. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  3. revised MS A5-ROR text+figures

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not FoundInformation DOEInformation SummaryTECHNICAL REPORT,m, iC lo seo

  4. exp. Biol. (1976), 65, 483-506 With 14 figures

    E-Print Network [OSTI]

    Denny, Mark

    1976-01-01T23:59:59.000Z

    OF SPIDER'S SILK AND THEIR ROLE IN THE DESIGN OF ORB-WEBS BY MARK DENNY* Department of Zoology, Duke physical properties of the viscid and frame silks of the orb-webs built by the spider Araneus sericatus (Cl; and allow the orb-web to function as an aerial filter with a minimum expen- diture of material and energy

  5. A Computer Scientist Looks at the Energy Problem

    E-Print Network [OSTI]

    O'Brien, James F.

    of utilization of typical servers (and your home PC or laptop is even worse) "The Case for Energy Figure 2. Server power usage and energy efficiency at varying utilization levels, from idle to peak Proportional Computing 12 Figure 4. Power usage and energy efficiency in a more energy-proportional server

  6. Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports

    SciTech Connect (OSTI)

    Zhang, Weiqing [Chinese Academy of Sciences; Yang, Jiong [Chinese Academy of Sciences; Yang, Jihui [General Motors Corporation; Wang, Hsin [ORNL; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Shi, Xun [General Motors Corporation-R& D; Chi, Miaofang [ORNL; Cho, Jung Y [GM R& D and Planning, Warren, Michigan; Bai, Shengqiang [Chinese Academy of Sciences; Chen, Lidong [Chinese Academy of Sciences

    2011-01-01T23:59:59.000Z

    Skutterudites CoSb{sub 3} with multiple cofillers Ba, La, and Yb were synthesized and very high thermoelectric figure of merit ZT = 1.7 at 850 K was realized. X-ray diffraction of the densified multiple-filled bulk samples reveals all samples are phase pure. High-resolution scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) analysis confirm that multiple guest fillers occupy the nanoscale-cages in the skutterudites. The fillers are further shown to be uniformly distributed and the Co-Sb skutterudite framework is virtually unperturbed from atomic scale to a few micrometers. Our results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, at the same time, lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials, through combining filler species of different rattling frequencies to achieve broad-frequency phonon scattering. Therefore, partially filled skutterudites with multiple fillers of different chemical nature render unique structural characteristics for optimizing electrical and thermal transports in a relatively independent way, leading to continually enhanced ZT values from single- to double-, and finally to multiple-filled skutterudites. The idea of combining multiple fillers with different charge states and rattling frequencies for performance optimization is also expected to be valid for other caged TE compounds.

  7. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    Case 25 Figure 9 CO2 Emissions from Commercial Buildings (27 Figure 12 CO2 Emissions by Sector (Primary Energy,16 Office Building CO2 Emissions (Reference Case, Primary

  8. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of primary energy, not including biomass fuels which areResidential Energy Consumption by Fuel (with Biomass) FigurePrimay Energy Consumption by Fuel (without Biomass) 8 of 17

  9. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    LPG is a major energy source, while coal and electricity areoil coal Figure 14 Residential Primary Energy Consumption bytotal primary energy supply in 2000, coal will drop to about

  10. ENERGY ANALYSIS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1980

    E-Print Network [OSTI]

    Authors, Various

    2014-01-01T23:59:59.000Z

    STUDIES Forecas Energy Demand for Hawaii H. Rudernan and P.summarized in Figure 1, The Hawaii Energy Demand ForecastingModel provided energy demand projections for each of the

  11. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of primary energy without counting biomass fuels (Figure 2).the dominant fuel, accounting for 79% of non-biomass energyof traditional biomass fuels. Additional increases in energy

  12. ULTRA HIGH ENERGY COSMIC RAY SPECTRUM Baltrusaitis, R.M., Cady7

    E-Print Network [OSTI]

    ' energy by the relation Figure 1. Raw Energy Distribution of Fly's Eye Data. Eem = å0/X0 f Ne(x)dx where å

  13. EIA - Greenhouse Gas Emissions - Table-Figure Notes and Sources

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23.A1. Notes

  14. Figure 2. PCs and Terminals per Thousand Employees, 1995

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic

  15. Figure 3. PCs and Terminals per Million Square Feet, 1995

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic3 PC's and

  16. Figure 3. Production Schedules at Two Development Rates

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic3 PC's and3.

  17. Figure 8. Technically Recoverable and Commercially Developable Oil

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic38. Technically

  18. Microsoft Word - 1 Cover - No Figure.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverviewCleanupShipping Form3 - March 31, 2014

  19. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  20. Energy Savings in Industrial Buildings

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2001 5. Environmental Protection Agency (EPA), ENERGY STAR program, 2007. ?Useful Facts and Figures.? http://www.energystar.gov/index.cfm?c=energy_awareness.bus_energy_use 6. Navigant Consulting Inc. (2003), Energy Savings Estimate of Light Emitting... Diodes in Niche Lighting Applications, Prepared for Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. 7. National Renewable Energy Laboratory (NREL) (2006), Energy Sector Market Analysis, NREL/TP 620-40541 8. Sentech, Inc...

  1. Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Page 1

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Office of Energy Efficiency and Renewable Energy U.S. Department of Energy ­ Page 1 Argonne greenhouse gas emissions. In terms of key energy and environmental benefits, cornstarch ethanol comes out. This figure illustrates the energy inputs used to produce and deliver a million British Thermal Units (Btu

  2. Resourceful Kansas Puts Energy Efficient Technology on Display...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    place. After the seminar, partner organization GBA Architects + Engineers will do a free energy audit for some participating facilities to help figure out which options are the...

  3. Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

    2008-01-01T23:59:59.000Z

    et al. (2005). "Ethanol as fuels: Energy, carbon dioxidebeen above $25 per barrel. Fuel Ethanol Production PetroleumFigure 1: Worldwide fuel ethanol production and petroleum

  4. U.S. Energy Information Administration (EIA) - Source

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    legs Legislation and Regulations Introduction.... Read full section Cross-State air pollution rule.... Read full section figure data Reference Case Tables Table 1. Total Energy...

  5. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    High, and Low-to examine how alternative price paths could affect future energy markets (Figure 49). The AEO2013 price cases were developed by changing assumptions...

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    actions, develop an energy management plan for business; andFigure 8-1. Main elements of a strategic energy managementCaffal, C. (1995). Energy Management in Industry. Centre for

  7. Assessment of China's Energy-Saving and Emission-Reduction Accomplishments and Opportunities During the 11th Five Year Plan

    E-Print Network [OSTI]

    Levine, Mark D.

    2010-01-01T23:59:59.000Z

    the level defined for a passive house in Germany (see FigureMinerge Germany Standard Passive House Definition Figure 15.low energy buildings or passive houses. Passive housing is

  8. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    Intensity Figure DataThe energy intensity of the U.S. economy, measured as primary energy use (in Btu) per dollar of GDP (in 2005 dollars), declines by 40 percent from 2009 to 2035...

  9. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    USA MODELLING THE IMPACT OF USER BEHAVIOUR ON HEAT ENERGY CONSUMPTIONUSA The second point of interest to research was modelling the excess energy consumptionUSA Figure 3. Actual heating and hot water energy consumption

  10. Graffiti (Figural)

    E-Print Network [OSTI]

    Cruz-Uribe, Eugene

    2008-01-01T23:59:59.000Z

    rock inscriptions 1 - 45 and Wadi el-Hl rock inscriptionsVI: Die Felsinschriften des Wadi Hill. Brussels: Brepols.

  11. Table 1. Annual estimates, uncertainty, and change Figure 1. Area of timberland and forest land by

    E-Print Network [OSTI]

    errors/bars provided in figures and tables represent 68 percent confidence intervals 0.0 1.0 2.0 3.0 4/American elm/red maple White oak/red oak/hickory Area (1,000 acres) Small Medium Large #12;Table 2. Top 10

  12. Poison hemlock, Conium maculatum, (Figure 1) is a member of the plant

    E-Print Network [OSTI]

    Ishida, Yuko

    Poison hemlock, Conium maculatum, (Figure 1) is a member of the plant family Apiaceae, which, cilantro, chervil, fen- nel, anise, dill, and caraway. It is a tall, invasive, highly poisonous weed that is sometimes mistaken for one of its crop relatives. Poison hemlock was introduced from Europe as an ornamental

  13. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide

    E-Print Network [OSTI]

    Zhang, Qinyong

    By adding aluminium (Al) into lead selenide (PbSe), we successfully prepared n-type PbSe thermoelectric materials with a figure-of-merit (ZT) of 1.3 at 850 K. Such a high ZT is achieved by a combination of high Seebeck ...

  14. Figure 1. Recurrent modular network architecture Recurrent modular network architecture for sea ice

    E-Print Network [OSTI]

    Toussaint, Marc

    Figure 1. Recurrent modular network architecture Recurrent modular network architecture for sea ice classification in the Marginal Ice Zone using ERS SAR images Andrey V. Bogdanov1a , Marc Toussaint1b , Stein of SAR images of sea ice. Additionally to the local image information the algorithm uses spatial context

  15. Figure 1: Sample COLLATE documents Automatic Annotation of Historical Paper Documents

    E-Print Network [OSTI]

    Di Mauro, Nicola

    devoted to the management of such annotated documents. The challenge comes from the low layout qualityFigure 1: Sample COLLATE documents Automatic Annotation of Historical Paper Documents S. Ferilli, L classification and labelling of documents. Furthermore, we also discuss the advantages obtained by exploiting

  16. Experimental Setup Measurements were made with the experimental configuration depicted in Figure 1. Tissue

    E-Print Network [OSTI]

    Arthur, R. Martin

    of the transducer was 7.5 MHz. Temperature in the tank was set by a heater that circulated the water in the tank depicted in Figure 1. Tissue samples were heated in an insulated tank that was filled with deionized water, which had been degassed by vacuum pumping in an appropriate vessel. Tissue was placed

  17. Thermoelectric figure of merit calculations for semiconducting nanowires Jane E. Cornett1

    E-Print Network [OSTI]

    Anlage, Steven

    Thermoelectric figure of merit calculations for semiconducting nanowires Jane E. Cornett1 and Oded 2011 A model for the thermoelectric properties of nanowires was used to demonstrate the contrasting influences of quantization and degeneracy on the thermoelectric power factor. The prevailing notion

  18. IN PRINT (Feb. 2012): Am J Psych Word length: 3,983 Tables: 2, Figures: 4

    E-Print Network [OSTI]

    Utah, University of

    in individuals with autism as early as two years of age. Studies using head circumference suggest that brainIN PRINT (Feb. 2012): Am J Psych Word length: 3,983 Tables: 2, Figures: 4 Brain Volume Findings Neurological Institute, McGill University *IBIS Network: The IBIS (Infant Brain Imaging Study) Network

  19. Figure 5 : Inversed attenuation tomography The Fresnel volume thus defined, also called Frchet kernel

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Figure 5 : Inversed attenuation tomography The Fresnel volume thus defined, also called Frchet system with the LSQR algorithm : Because the size of the Fresnel volume thus defined is dependent propose to compute the Fresnel weights for a monochromatic wave, increasing its frequency at each step

  20. Waste Incineration in China page 1 Figure 1: Visit to MWI in Harbin

    E-Print Network [OSTI]

    Columbia University

    Waste Incineration in China page 1 Figure 1: Visit to MWI in Harbin Waste Incineration in China Balz Solenthaler, Rainer Bunge Summary China currently operates 19 municipal waste incinerators (MWI of the low calorific value of the waste (approx. 5 MJ/kg), incineration on a fluidized bed and the addition

  1. The Ivory Tower: the history of a figure of speech and its cultural uses

    E-Print Network [OSTI]

    Shapin, Steven

    The Ivory Tower: the history of a figure of speech and its cultural uses STEVEN SHAPIN* Abstract. This is a historical survey of how and why the notion of the Ivory Tower became part of twentieth- and twenty in the ancient debate between the active and contemplative lives. Holy ivory There never was an Ivory Tower

  2. Keywords: Photovoltaic System, fault-tolerance, recon-figurable PV panel

    E-Print Network [OSTI]

    Pedram, Massoud

    plants, and satellites. The output power of a PV cell (also called solar cell) is dependent on the solar: naehyuck@elpl.snu.ac.kr). output power of a PV cell increases as solar irradiance increases and temperature irradiance level and temperature. Figure 1 shows PV cell output current-voltage and power

  3. 11th International Symposium on Unmanned Untethered Submersible Technology August 1999 Figure 1 SAUV Engineering Prototype

    E-Print Network [OSTI]

    broken down into three distinct concerns:the effects of biofouling on the power output of the solar 100 BiofoulAreaCoverage(%) SolarPanelPowerOutput(%) 0 10 20 30 40 Time in Days Solar Panel Worst Case power out Figure 2: Solar Panel Bio-fouled Area and Power Output versus Time -30 -20 -10 0 10 20 30 Perc

  4. Science Highlight October 2010 Figure 1. Schematic process for the fabrication

    E-Print Network [OSTI]

    Wechsler, Risa H.

    in the past, there is still a need for a low-cost, large-area compatible technology for the productionScience Highlight ­ October 2010 Figure 1. Schematic process for the fabrication of micro. While promising routes towards stretchable matrix- type substrates[1] and electrodes[2] were developed

  5. 2009 Renewable Energy Data Book, August 2010

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    This Renewable Energy Data Book for 2009 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  6. 2011 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2012-10-01T23:59:59.000Z

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  7. 2010 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2011-10-01T23:59:59.000Z

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  8. Energy, water and process technologies integration for the simultaneous production of

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    production process from gasification. Keywords: Bioethanol; Energy and Food Production; Integrated Process production of corn. Figure 1.- Bioethanol Production expectations (source US DOE) However, there are limits

  9. A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings

    E-Print Network [OSTI]

    Jiang, Xiaofan

    2010-01-01T23:59:59.000Z

    Idle Laptop Figure 9.4: Aggregated energy usage by applianceenergy usage based on the appliance types, such CHAPTER 8. FEEDBACK as desktops, laptops,

  10. Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M; Farrell, Alexander E; Plevin, Richard J; Jones, Andrew D; Nemet, Gregory F; Delucchi, Mark A

    2008-01-01T23:59:59.000Z

    et al. (2005). "Ethanol as fuels: Energy, carbon dioxidebeen above $25 per barrel. Fuel Ethanol Production PetroleumFigure 1: Worldwide fuel ethanol production and petroleum

  11. EIA-An Updated Annual Energy Outlook 2009 Reference Case - Preface...

    U.S. Energy Information Administration (EIA) Indexed Site

    the reintroduction of CAIR have impacts in specific sectors. Figure 1. Non-Hydroelectric Renewable Generation (billion kilowatthours). Need help, contact the National Energy...

  12. Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits

    E-Print Network [OSTI]

    Sathaye, Jayant

    2010-01-01T23:59:59.000Z

    S. Das, (2006) Reducing Electricity Deficit through EnergyLV supply. Figure 12: Electricity Productivity (Commercialan interesting result. The electricity productivity in both

  13. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    16 Figure 10. Residential Primary Energy Use in 2000 and3. Fuel Consumption in the Residential Sector in 2005 in10 Table 6. Residential Activity

  14. Preliminary Findings from an Analysis of Building Energy Information System Technologies

    E-Print Network [OSTI]

    Granderson, Jessica

    2009-01-01T23:59:59.000Z

    Energy information systems (EIS) are essential in realizinginformation. Figure 1: EIS translate data into actionablecritical importance of EIS. They enable analytical support

  15. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergy /newsroom/_assets/images/energy-icon.png Energy

  16. Trembling aspen Current Figure S9a. Projected habitat of trembling aspen (Populus tremuloides Michaux). The left image

    E-Print Network [OSTI]

    Hamann, Andreas

    Trembling aspen Current Figure S9a. Projected habitat of trembling aspen (Populus-2006 Recent Average1961-1990 Climate Normal #12;Trembling aspen 2020s Figure S9b. Projected habitat of trembling aspen for the 20112040 normal period according to 18 climate change

  17. What Global Warming Looks Like The July 2010 global map of surface temperature anomalies (Figure 1), relative to the average

    E-Print Network [OSTI]

    What Global Warming Looks Like The July 2010 global map of surface temperature anomalies (Figure 1 anomalies an example of what we can expect global warming to look like? Maps of temperature anomalies, such as Figure 1, are useful for helping people understand the role of global warming in extreme events

  18. Ris Energy Report 6 Energy efficiency policy 1 4 Energy efficiency policy

    E-Print Network [OSTI]

    Ris Energy Report 6 Energy efficiency policy 1 4 Energy efficiency policy JENs-PETER LYNOV, RIs DTU; sVEND sVENDsEN, HENRIk M. TOMMERUP, bYg DTU; JRN bORUP JENsEN, DANIsH ENERgY AssOCIATION 4.1 Introduction Figure 6 shows how energy efficiency improvements have reduced EU energy intensity during the past

  19. Giraffidae from the middle Miocene hominoid locality of andir (Turkey). 1 figure, 2 plates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Giraffidae from the middle Miocene hominoid locality of ?andir (Turkey). 1 figure, 2 plates Denis@ivry.cnrs.fr ** MTA Genel Müdürlügü, Jeoloji Etüdleri Dairesi, 06520 ANKARA, TURKEY Abstract.- The site of ?andir has this area and the Siwaliks raises some interesting phylogenetic problems. Key-words.- Middle Miocene, Turkey

  20. Facts and Figures January 2007 INCOME AND EXPENDITURE (Excluding Press, CA & Trusts) 2005-06

    E-Print Network [OSTI]

    Travis, Adrian

    Facts and Figures January 2007 INCOME AND EXPENDITURE (Excluding Press, CA & Trusts) 2005-06 2004,928 Breakdown of Research Grant Income 2005-06 £'000 % £'000 Total staff 8602 8570 8,623 Research Councils 89,095 Total 203,886 188,711 Total respondents 2,890 100.0% 3,227 100.0 Breakdown of HEFCE/TDA Income 2005-06

  1. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    and analysis based on peak oil models. Energy Policy 36 (and analysis based on peak oil models, Energy Policy, 2008Sharp Peak Figure 71 Coal Demand and Extraction Profiles Oil

  2. First law energy balance as a data screening tool

    E-Print Network [OSTI]

    Shao, Xiaojie

    2006-08-16T23:59:59.000Z

    .............................................................................................135 7.1 Introduction....................................................................................135 7.2 Pre-Screening Case 1: Harrington Tower ......................................136 7.3 Pre-Screening Case 2: The Eller O&M Building.... outside air temperature.......................68 Figure 4.18 Key characteristics of simulated results of Energy Balance Load............. 69 Figure 5.1 Main Effect plot for the Eller Oceanography & Meteorology Building....85 Figure 5...

  3. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging ThreatsEmployment Openings

  4. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    also S.6.l Tidal Energy Only two tidal power electricityCalifornia's energy supply. These In summary, tidal power isTidal Power, Plenum Press, New York, 1972. Al Groncki, USDA, Figures presented at the Conference on Energy

  5. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    Agency. 2008. ?2008 World Energy Outlook. ? Japan Petroleumbelow the 2008 World Energy Outlooks projection (FigureSource: IEA, 2008 World Energy Outlook; LBNL CLU Model. 4.2

  6. GEOTHERMAL ENERGY DEVELOPMENT FROM THE SALTON TROUGH TO THE HIGH CASCADES

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    Figure 1 of the LBL Geothermal Energy A simp1 i f i e dconducted by the LBL Geothermal Energy Group since (XBL 791-that its ux would not GEOTHERMAL ENERGY DEVELOPMENT FROM THE

  7. GEOTHERMAL ENERGY DEVELOPMENT FROM THE SALTON TROUGH TO THE HIGH CASCADES

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    Figure 1 of the LBL Geothermal Energy A simp1 i f i e dconducted by the LBL Geothermal Energy Group since (XBL 791-Californta 94720 GEOTHERMAL ENERGY DEVELOPMENT FROM The map

  8. The Greening of the Middle Kingdom: The Story of Energy Efficiency in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    Coal Raw Mtce FIGURE 1 Coal dominates energy consumption in=1 Mtce Total Energy Consumption Coal Consumption Constantthe dominant use of coal in Chinas energy system from 1950

  9. Californias Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    conversion to the needed energy mix. Figure 8 shows thefraction of the States energy mix. The use of fossil fuelleast 33% renewable energy in the mix. The renewables case

  10. Multi-mode Energy Management for Multi-tier Server Tibor Horvath

    E-Print Network [OSTI]

    Skadron, Kevin

    Multi-mode Energy Management for Multi-tier Server Clusters Tibor Horvath tibor Charlottesville, VA 22904 ABSTRACT This paper presents an energy management policy for recon- figurable clusters General Terms Algorithms, Design, Experimentation, Management, Perfor- mance Keywords energy management

  11. GEOTHERMAL ENERGY DEVELOPMENT FROM THE SALTON TROUGH TO THE HIGH CASCADES

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    o r compiling data on geothermal energy and develop- i n g aFigure 1 of the LBL Geothermal Energy A simp1 i f i e dconducted by the LBL Geothermal Energy Group since (XBL 791-

  12. Electrical Energy Monitoring in an Industrial Plant

    E-Print Network [OSTI]

    Dorhofer, F. J.; Heffington, W. M.

    . Figure 5. Bi-weekly Energy Use Figure 6. Bi-weekly HL&P Demand Figure 7. Bi-weekly Power Factor Software installed on an 8088 personal computer in the production superintendent's office allows plant personnel to call the logger at any time to see real... for the energy audit in 1993 listed the power factor corresponding to the peak demand for that month. This data showed that the plant would benefit from installation of power factor correction, and I AC personnel estimated that about 900 KVAR of capacitance would...

  13. Increasing the thermoelectric figure of merit of tetrahedrites by Co-doping with nickel and zinc

    E-Print Network [OSTI]

    Lu, X; Morelli, DT; Morelli, DT; Xia, Y; Ozolins, V

    2015-01-01T23:59:59.000Z

    and Madsen, G.K.H. Adv. Energy Mater. 2014, 4, and Uher, C. Advanced Energy Materials 2012, (6) for Solid State Energy Conversion, an Ener-?

  14. 2012 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2013-10-01T23:59:59.000Z

    This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  15. Nordic Energy Basics Tiina Koljonen, Esa Pursiheimo

    E-Print Network [OSTI]

    production and fuel reserves; Energy production and consumption ; Hydrogen production in the Nordic fossil fuel production and fossil fuel reserves 4 2 Energy production and consumption 5 3 Hydrogen;2 Energy production and consumption Table 3. Key figures 2002. Total energy consumption and electricity

  16. Desktop Management Energy Practices OOC Report Submission

    E-Print Network [OSTI]

    Desktop Management Energy Practices OOC Report Submission Project: Review energy desktop King, George McCabe, Purpose: To determine if Purdue can establish more effective energy management school. Figures include Discovery Park and CERIAS. #12;Desktop Management Energy Practices OOC Report

  17. 2013 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Esterly, S.

    2014-12-01T23:59:59.000Z

    This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  18. Energy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...) "..

  19. Nuclear Detection Figure Of Merit (NDFOM) Version 1.2 User's Guide

    SciTech Connect (OSTI)

    Stroud, Phillip D [Los Alamos National Laboratory; Dufresne, Thomas A. [Los Alamos National Laboratory

    2012-08-27T23:59:59.000Z

    NDFOM is a detector database and detector evaluation system, accessible as a web service. It runs on the same server as the Patriot service, but uses port 8081. In this user's guide, we will use the example case that the patriot service is running on http://patriot.lanl.gov. Then the NDFOM service would be accessible at the URL http://patriot.lanl.gov:8081/ndfom. In addition to local server installations, common server locations are 1) a patriot server running on a virtual machine (use the virtual machine URL with :8081/ndfom), and 2) a patriot server running on a local machine (use http://localhost:8081/ndfom or http://127.0.0.1:8081/ndfom). The home screen provides panels to select detectors, a scenario, and a figure-of-merit. It also has an 'analyze' button, which will evaluate the selected figure-of-merit for the selected detectors, for the scenario selected by the user. The detector effectiveness evaluations are presented through the browser in a ranked list of detectors. The user does not need to log in to perform analysis with pre-supplied detectors, scenarios, and FOMs. The homepage view is shown in Figure 1. The first panel displays a list of the detectors in the current detector database. The user can select one, some, or all detectors to evaluate. On the right of each listed detector, there is a star icon. Clicking that icon will open a panel that displays the details about that detector, such as detector material, dimensions, thresholds, etc. The center panel displays the pre-supplied scenarios that are in the database. A scenario specifies the source of interest, the spectrum of the radiation, the background radiation spectrum, the distance or distance of closest approach, the allowable false positive rate, and the dwell time or speed. Scenario details can be obtained by clicking the star to the right of a scenario. A scenario can be selected by clicking it.

  20. Supporting information Figure S1: Pump-rePump-Probe kinetics of peridinin in methanol. Peridinin was excited at

    E-Print Network [OSTI]

    van Stokkum, Ivo

    Supporting information Figure S1: Pump-rePump-Probe kinetics of peridinin in methanol. Peridinin spectra (black lines) measured after excitation of peridinin in methanol at 400 nm and dumping at 3 ps

  1. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    SciTech Connect (OSTI)

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2009-03-04T23:59:59.000Z

    Many state regulatory commissions and policymakers want utilities to aggressively pursue energy efficiency as a strategy to mitigate demand and energy growth, diversify the resource mix, and provide an alternative to building new, costly generation. However, as the National Action Plan for Energy Efficiency (NAPEE 2007) points out, many utilities continue to shy away from aggressively expanding their energy efficiency efforts when their shareholder's fundamental financial interests are placed at risk by doing so. Thus, there is increased interest in developing effective ratemaking and policy approaches that address utility disincentives to pursue energy efficiency or lack of incentives for more aggressive energy efficiency efforts. New regulatory initiatives to promote increased utility energy efficiency efforts also affect the interests of consumers. Ratepayers and their advocates are concerned with issues of fairness, impacts on rates, and total consumer costs. From the perspective of energy efficiency advocates, the quid pro quo for utility shareholder incentives is the obligation to acquire all, or nearly all, achievable cost-effective energy efficiency. A key issue for state regulators and policymakers is how to maximize the cost-effective energy efficiency savings attained while achieving an equitable sharing of benefits, costs and risks among the various stakeholders. In this study, we modeled a prototypical vertically-integrated electric investor-owned utility in the southwestern US that is considering implementing several energy efficiency portfolios. We analyze the impact of these energy efficiency portfolios on utility shareholders and ratepayers as well as the incremental effect on each party when lost fixed cost recovery and/or utility shareholder incentive mechanisms are implemented. A primary goal of our quantitative modeling is to provide regulators and policymakers with an analytic framework and tools that assess the financial impacts of alternative incentive approaches on utility shareholders and customers if energy efficiency is implemented under various utility operating, cost, and supply conditions.We used and adapted a spreadsheet-based financial model (the Benefits Calculator) which was developed originally as a tool to support the National Action Plan for Energy Efficiency (NAPEE). The major steps in our analysis are displayed graphically in Figure ES- 1. Two main inputs are required: (1) characterization of the utility which includes its initial financial and physical market position, a forecast of the utility?s future sales, peak demand, and resource strategy to meet projected growth; and (2) characterization of the Demand-Side Resource (DSR) portfolio ? projected electricity and demand savings, costs and economic lifetime of a portfolio of energy efficiency (and/or demand response) programs that the utility is planning or considering implementing during the analysis period. The Benefits Calculator also estimates total resource costs and benefits of the DSR portfolio using a forecast of avoided capacity and energy costs. The Benefits Calculator then uses inputs provided in the Utility Characterization to produce a ?business-as usual? base case as well as alternative scenarios that include energy efficiency resources, including the corresponding utility financial budgets required in each case. If a decoupling and/or a shareholder incentive mechanism are instituted, the Benefits Calculator model readjusts the utility?s revenue requirement and retail rates accordingly. Finally, for each scenario, the Benefits Calculator produces several metrics that provides insights on how energy efficiency resources, decoupling and/or a shareholder incentive mechanism impacts utility shareholders (e.g. overall earnings, return on equity), ratepayers (e.g., average customer bills and rates) and society (e.g. net resource benefits).

  2. ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM RecoveryManagement'sJuneAprilEMS U.S.

  3. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabethTwoJaniceEnerG2Energetics of Hydrogen .M

  4. Method and system for optical figuring by imagewise heating of a solvent

    DOE Patents [OSTI]

    Rushford, Michael C.

    2005-08-30T23:59:59.000Z

    A method and system of imagewise etching the surface of a substrate, such as thin glass, in a parallel process. The substrate surface is placed in contact with an etchant solution which increases in etch rate with temperature. A local thermal gradient is then generated in each of a plurality of selected local regions of a boundary layer of the etchant solution to imagewise etch the substrate surface in a parallel process. In one embodiment, the local thermal gradient is a local heating gradient produced at selected addresses chosen from an indexed array of addresses. The activation of each of the selected addresses is independently controlled by a computer processor so as to imagewise etch the substrate surface at region-specific etch rates. Moreover, etching progress is preferably concurrently monitored in real time over the entire surface area by an interferometer so as to deterministically control the computer processor to image-wise figure the substrate surface where needed.

  5. Gamma and neutron detection modeling in the nuclear detection figure of merit (NDFOM) portal

    SciTech Connect (OSTI)

    Stroud, Phillip D [Los Alamos National Laboratory; Saeger, Kevin J [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The Nuclear Detection Figure Of Merit (NDFOM) portal is a database of objects and algorithms for evaluating the performance of radiation detectors to detect nuclear material. This paper describes the algorithms used to model the physics and mathematics of radiation detection. As a first-principles end-to-end analysis system, it starts with the representation of the gamma and neutron spectral fluxes, which are computed with the particle and radiation transport code MCNPX. The gamma spectra emitted by uranium, plutonium, and several other materials of interest are described. The impact of shielding and other intervening material is computed by the method of build-up factors. The interaction of radiation with the detector material is computed by a detector response function approach. The construction of detector response function matrices based on MCNPX simulation runs is described in detail. Neutron fluxes are represented in a three group formulation to treat differences in detector sensitivities to thermal, epithermal, and fast neutrons.

  6. LED North America - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 1 2 3 4 5 6 7 8 9LDRD, What doesLED

  7. LNG - Engine Delivery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 1 2 3 4 5 6 755826LegacyLM Sites

  8. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    to evaluate the impact on energy investments. figure data In the No GHG Concern case, coal use for both electricity generation in the electric power sector and as part of...

  9. Low complexity radio resource management for energy efficient wireless networks

    E-Print Network [OSTI]

    Vaca Ramirez, Rodrigo Alberto; Vaca, Rodrigo

    2014-11-27T23:59:59.000Z

    Energy consumption has become a major research topic from both environmental and economical perspectives. The telecommunications industry is currently responsible for 0.7% of the total global carbon emissions, a figure ...

  10. U.S. Energy Information Administration (EIA) - Source

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    use grows rapidly (Figure 54). The renewable share of total energy use (including biofuels) grows from 9 percent in 2011 to 13 percent in 2040 in response to the federal...

  11. Piezoelectric Artificial Kelp: Experimentally Validated Parameter Optimization of a Quasi-Static, Flow-Driven Energy Harvester

    E-Print Network [OSTI]

    Pankonien, Alexander Morgan

    2011-10-21T23:59:59.000Z

    Energy Harvesting Circuit..................................................... 25 Figure 11: Assumed Equivalent Circuit ........................................................................ 26 Figure 12: Charge Displaced Versus Time... piezoelectric element which develops stresses as a result of the vibrations. The changing stresses induce a current in the circuit via the electromechanical coupling in the material, demonstrating a novel means to recover waste vibration energy [4-6]. In a...

  12. Enhancement in figure-of-merit with superlattices structures for thin-film thermoelectric devices

    SciTech Connect (OSTI)

    Venkatasubramanian, R.; Colpitts, T.

    1997-07-01T23:59:59.000Z

    Thin-film superlattice (SL) structures in thermoelectric materials are shown to be a promising approach to obtaining an enhanced figure-of-merit, ZT, compared to conventional, state-of-the-art bulk alloyed materials. In this paper the authors describe experimental results on Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} and Si/Ge SL structures, relevant to thermoelectric cooling and power conversion, respectively. The short-period Bi{sub 2}Te{sub 3} and Si/Ge SL structures appear to indicate reduced thermal conductivities compared to alloys of these materials. From the observed behavior of thermal conductivity values in the Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} SL structures, a distinction is made where certain types of periodic structures may correspond to an ordered alloy rather than an SL, and therefore, do not offer a significant reduction in thermal conductivity values. The study also indicates that SL structures, with little or weak quantum-confinement, also offer an improvement in thermoelectric power factor over conventional alloys. They present power factor and electrical transport data in the plane of the SL interfaces to provide preliminary support for the arguments on reduced alloy scattering and impurity scattering in Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} and Si/Ge SL structures. These results, though tentative due to the possible role of the substrate and the developmental nature of the 3-{omega} method used to determine thermal conductivity values, suggest that the short-period SL structures potentially offer factorial improvements in the three-dimensional figure-of-merit (ZT3D) compared to current state-of-the-art bulk alloys. An approach to a thin-film thermoelectric device called a Bipolarity-Assembled, Series-Inter-Connected Thin-Film Thermoelectric Device (BASIC-TFTD) is introduced to take advantage of these thin-film SL structures.

  13. The Thermodynamics of Energy Conservation

    E-Print Network [OSTI]

    Witte, L. C.

    they relate to energy conser vation. Some simple examples of how they are used to analyze energy conservation systems will be presented. The use of device efficiencies will be ex plained. Turbine expansions and other com monly encountered calcul... through the control volume such as the tur bine shown in Figure Z. Steady state, steady flow systems Many energy systems contain devices that involve steady flow through them, such as compressors, turbines, pumps, heat exchan ger~, boilers...

  14. Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films

    SciTech Connect (OSTI)

    Akiyama, Morito; Nagase, Toshimi [Measurement Solution Research Center, National Institute of Advanced Industrials Science and Technology, Tosu, Saga 841-0052 (Japan)] [Measurement Solution Research Center, National Institute of Advanced Industrials Science and Technology, Tosu, Saga 841-0052 (Japan); Umeda, Keiichi; Honda, Atsushi [Murata Manufacturing Co., Ltd., Nagaokakyo, Kyoto 617-8555 (Japan)] [Murata Manufacturing Co., Ltd., Nagaokakyo, Kyoto 617-8555 (Japan)

    2013-01-14T23:59:59.000Z

    The authors have investigated the influence of scandium concentration on the power generation figure of merit (FOM) of scandium aluminum nitride (Sc{sub x}Al{sub 1-x}N) films prepared by cosputtering. The power generation FOM strongly depends on the scandium concentration. The FOM of Sc{sub 0.41}Al{sub 0.59}N film was 67 GPa, indicating that the FOM is five times larger than that of AlN. The FOM of Sc{sub 0.41}Al{sub 0.59}N film is higher than those of lead zirconate titanate and Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} films, which is the highest reported for any piezoelectric thin films. The high FOM of Sc{sub 0.41}Al{sub 0.59}N film is due to the high d{sub 31} and the low relative permittivity.

  15. Electrical properties and figures of merit for new chalcogenide-based thermoelectric materials

    SciTech Connect (OSTI)

    Schindler, J.L.; Hogan, T.P.; Brazis, P.W.; Kannewurf, C.R.; Chung, D.Y.; Kanatzidis, M.G.

    1997-07-01T23:59:59.000Z

    New Bi-based chalcogenide compounds have been prepared using the polychalcogenide flux technique for crystal growth. These materials exhibit characteristics of good thermoelectric materials. Single crystals of the compound CsBi{sub 4}Te{sub 6} have shown conductivity as high as 2440 S/cm with a p-type thermoelectric power of {approx}+110 {micro}V/K at room temperature. A second compound, {beta}-K{sub 2}Bi{sub 8}Se{sub 13} shows lower conductivity {approx}240 S/cm, but a larger n-type thermopower {approx}{minus}200 {micro}V/K. Thermal transport measurements have been performed on hot-pressed pellets of these materials and the results show comparable or lower thermal conductivities than Bi{sub 2}Te{sub 3}. This improvement may reflect the reduced lattice symmetry of the new chalcogenide thermoelectrics. The thermoelectric figure of merit for CsBi{sub 4}Te{sub 6} reaches ZT {approx} 0.32 at 260 K and for {beta}-K{sub 2}Bi{sub 8}Se{sub 13} ZT {approx} 0.32 at room temperature, indicating that these compounds are viable candidates for thermoelectric refrigeration applications.

  16. R E N E W A B L E E N E R G Y

    E-Print Network [OSTI]

    ........................................................................................3 Environmental Assessment of CREZs....................................................12 List of Figures Figure ES-1. Economic and Environmental Assessment of California CREZs..........................................................................................................................2 Economic Assessment of CREZs

  17. Energy and Environment Subcommittee of the Energy and Commerce Committee

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    companies control a mere 3.5 percent of the producible oil equivalent reserves, see Figure 2. The U.S. Gulf, FACTBOXGulf of Mexico oil and gas activity, 04 Jun 2010 20:30:53 GMT, www;2 Energy and Environment Subcommittee... 06/09/2010 2.1 U.S. Gulf of Mexico Oil and Gas Production

  18. Finding Statistics & Data at Queen's Sept/08 STATISTICS Facts & figures in tables, charts, time series, graphs, etc.

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Finding Statistics & Data at Queen's Sept/08 STATISTICS Facts & figures in tables, charts, time series, graphs, etc. 1. Statistics Canada www.statcan.ca English use the search box... REMEMBER: Don't Pay Contact madgic@queensu.ca to get statistics for free if faced with a fee! 2. Social

  19. Ozone Climatologies Figure 1: Ozone climatology for control run in kg/m(a), percentage change in

    E-Print Network [OSTI]

    Feigon, Brooke

    Ozone Climatologies (a) (b) (c) Figure 1: Ozone climatology for control run in kg/m(a), percentage change in ozone for the perturbed runs; tropopause region (b), whole stratosphere (c). Determining the impact of lower stratospheric ozone depletion on Southern Hemisphere climate Sarah P.E. Keeley and Nathan

  20. SOURCE: UNIVERSITY OF CALIFORNIA PAVEMENT RESEARCH CENTER FIGURE 1 Moisture-induced stripping in asphalt treated base layer

    E-Print Network [OSTI]

    California at Berkeley, University of

    SOURCE: UNIVERSITY OF CALIFORNIA PAVEMENT RESEARCH CENTER FIGURE 1 Moisture-induced stripping in asphalt treated base layer PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is provided by the University of California Pavement Research Center. The University of California Pavement

  1. Figure 2a. Common forms of plants. Division of Agricultural Sciences and Natural Resources Oklahoma State University

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Figure 2a. Common forms of plants. Division of Agricultural Sciences and Natural Resources and organizing plants and hardscape elements in the landscape. Mass Mass describes the space or area occupied by an object. Your house as well as the structures and plantings in a land- scape all have mass, as do

  2. Figure 1. ComTouch Concept drawing showing a handheld sleeve that fits onto the back of a mobile phone

    E-Print Network [OSTI]

    Jacob, Robert J.K.

    Touch, is a vibrotactile device sleeve that fits over the back of a mobile phone. The basic concept is a handheld deviceFigure 1. ComTouch Concept drawing showing a handheld sleeve that fits onto the back of a mobile

  3. Figure 1. Schematic drawing showing the components of a Li-ion battery cell and the information that can be

    E-Print Network [OSTI]

    Figure 1. Schematic drawing showing the components of a Li-ion battery cell and the information Proposals In Situ Electron Microscopy and Spectroscopy Studies of Interfaces in Advanced Li-ion Batteries Under Dynamic Operation Conditions Project start date: Spring 2008 EMSL Lead Investigator: Chongmin Wang

  4. Figure 7.1: Opticalmicrograpli for SPC'imcn aust nitiscd at 1060 for 2 liours at 700C.

    E-Print Network [OSTI]

    Cambridge, University of

    Figure 7.1: Opticalmicrograpli for SPC'imcn aust nitiscd at 1060° for 2 liours at 700°C. 166 15mins) and in thC' SPC'CilllC'1IisothNmally hl'at Irl'atN) for 117:1 hours at 700°C h) which r('pr('s('nt c

  5. Time Response Find the output response, y(t), for the system in Figure 1.1 when ( )

    E-Print Network [OSTI]

    Landers, Robert G.

    form of the step response without solving for the inverse Laplace transform. Determine if the time.1 #12;Time Response 3 QUESTION 6 For each of the unit step responses shown in Figure 6.1, find form of the step response without solving for the inverse Laplace transform. Determine if the time

  6. Figure 1. Block diagram of the turbo decoder. A Memory-Reduced Log-MAP Kernel for Turbo Decoder

    E-Print Network [OSTI]

    Hung, Shih-Hao

    Figure 1. Block diagram of the turbo decoder. A Memory-Reduced Log-MAP Kernel for Turbo Decoder--Generally, the Log-MAP kernel of the turbo decoding consume large memories in hardware implement- tation of the turbo decoder is implemented to verify the proposed memory-reduced Log- MAP kernel in 3.04?3.04mm2 core

  7. NIVEAUX DE L'EUROPIUM-155 Cl-119 La figure 2 montre le schma de dsintgration de

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    NIVEAUX DE L'EUROPIUM-155 Cl-119 La figure 2 montre le schma de dsintgration de 147Nd,dduit de niveaux de 147Pm 19'67, A 99, 411. NIVEAUX DE L'EUROPIUM-155 Centre de spectromtrie nuclaire et de

  8. Figures and Data Plots from the Published Papers of the BELLE Experiment at the KEK - B Factory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This resource provides more than 300 citations to preprints and papers with the figures from each one pulled out separately for easy access and downloading. These are physics publications. Be sure to also see the page of Technical Journal publications at http://belle.kek.jp/belle/bellenim/index.htm and the lists of conference presentations from 2000 through 2009. Belle is a high-energy physics (HEP) experiment that began in 1999 at the KEK B-factory in Japan under the direction of the international Belle Collaboration. The original Letter of Intent from the Collaboration stated their scientific goal as follows:

    The laws of nature have a high degree of symmetry between matter and antimatter; violations of this symmetry, the so-called CP violations, are only seen as a small effect in the decays of neutral K mesons. Although experimental evidence for CP violation was first observed 30 years ago, we still do not understand how they occur. In 1973, Kobayashi and Maskawa (KM) noted that CP violation could be accommodated in the Standard Model only if there were at least six quark flavors, twice the number of quark flavors known at that time. The KM model for CP violation is now considered to be an essential part of the Standard Model. In 1980, Sanda and Carter pointed out that the KM model contained the possibility of rather sizable CP violating asymmetries in certain decay modes of the B meson. The subsequent observation of a long b quark lifetime and a large amount of mixing in the neutral B meson system indicated that it would be feasible to carry out decisive tests of the KM model by studying B meson decays. Our collaboration has been formed around the common interest of clarifying the long standing physics puzzle of CP violation. Our goal is to make a definitive test of the Standard Models predictions for CP violations in the decays of B mesons. [Copied, with editing, from Letter of Intent (KEK-Report94-2, April 1994); see http://belle.kek.jp/bdocs/old_publication.html and open the Letter of Intent file]

    That original Belle experiment verified the KM theory, leading to a Nobel prize in 2008 for Kobayashi and Maskawa. Belle II Collaboration is now working on additional discoveries.

  9. "Leveraging University Expertise to Inform Better Policy" Figure: 2050 Scenario from California Air Resources Board

    E-Print Network [OSTI]

    California at Davis, University of

    development, manufacturing, infrastructure and incentives. In addition, the state has helped launch and development, vehicle purchase, infrastructure and manufacturing, each for various environmental, energy

  10. LIVE Q&A TODAY: Answering Your Wind Energy Questions | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 1 2 3 4 5 6 7 84, LINEGasLIVE

  11. Figure-of-merit analysis and cost effectiveness of low-level radioactive waste treatment systems

    SciTech Connect (OSTI)

    Cox, N.D.; Falconer, K.L.; McCormack, M.D.; Hootman, H.D.; Thompson, T.K.

    1982-01-01T23:59:59.000Z

    Two studies were performed to assess low-level waste treatment systems that are available commercially for volume reduction and/or solidification. In the first, a Figure-of-Merit (FOM) decision analysis technique was used to evaluate fourteen low-level radioactive waste processing systems on their ability to treat power reactor wastes. The assessment of the various processing systems was accomplished using a five member task force. The systems were judged on eleven major criteria and twenty subcriteria. The system judged superior to all the others was compaction of dry wastes with liquid wastes and sludges being directly incorporated into concrete. This was also the lowest cost system. The controlled air incinerator was judged the preferred incineration process. The Werner-Pfleider bitumen extruder was the preferred liquid waste treatment system. In the second study, the cost economy of volume reduction measured in land disposal dollars was investigated. The greatest cost savings with volume reduction were realized with a BWR using a deep bed condensate polishing system; the least with a PWR with condensate polishing. For both BWR systems and PWRs without condensate cleanup, over 80% of the savings in land disposal dollars resulted from volume reduction of liquid waste streams (concentrated liquids and filter sludge). For a PWR with a condensate polishing system, which had the least cost effective system for volume reduction, about one-third of the savings resulting from incineration of spent resin and compactible trash was offset by the increased expense of casks required for transporting concentrated liquids which have undergone additional volume reduction.

  12. Studying Thermoelectric Oxides using High-Resolution Scanning Transmission Electron Figure 4: a) Atomic resolution Z-

    E-Print Network [OSTI]

    Ben-Arie, Jezekiel

    the environmental impact, and deliver energy continuously, such as thermo-electric power generation, have often been as distinct peaks. The environmental impact of global climate change due to the combustion of fossil fuels is focused on either carbon-based fuels or wind and solar energy, approaches that are portable, minimize

  13. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    7 Figure 3. Map of China's Solar Resourceand Wang Sicheng, 2007, China Solar PV Report. Beijing:tower. Figure 3. Map of China's Solar Resource Distribution

  14. Issue 271 10 april 2014 Sharing stories of Imperial's community FIGURE HEADS

    E-Print Network [OSTI]

    generation of smart city infrastructure. Start-ups, spin-outs and established businesses will co life and mobility, develop smart energy solutions and more. The London Node is led by Imperial, UCL

  15. Figure 4-4 Photos of Site and Long-Term Visual Impact Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Assessments Final EA Page 4-51 June 2003 Site-Wide Environmental Assessment of FINAL National Renewable Energy Laboratory South Table Mountain Site and Denver West Office...

  16. 1-6 Figure 1.3. View of the field area, looking south-southwest. Left side of the picture shows the

    E-Print Network [OSTI]

    Kidd, William S. F.

    the large reservoir of highly valuable marble deposits. [Note: page reformatted from original; picture above Wallingford marble quarry. #12;2-10 Figure 2.4. Rock sample of Baker Brook Greenschist showing pervasive, Baker Brook Falls Th.16) #12;#12;#12;#12;#12;#12;#12;#12;2-18 Figure 2.7. Imperial Danby Quarry in Danby

  17. Tsien_Supplementary Figure 1 ISO(min) 0 0 1.5 1.5 5 5

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Tsien_Supplementary Figure 1 ISO(min) 0 0 1.5 1.5 5 5 0 1000 2000 3000 4000 5000 Insulin 1000 1200 0.95 1.00 1.05 1.10 1.15 1.20 1.25 Normalizedemissionratio Time (sec) ISO control Insulin CREB phosphorylation. #12;-120 0 120 240 360 480 1.00 1.02 1.04 1.06 1.08 +Ht31p ISO

  18. A Global Personal Energy Meter University of Cambridge Computer Laboratory

    E-Print Network [OSTI]

    Cambridge, University of

    - sumption figures scaled by a predetermined factor for the type of energy used and divided equally amongstA Global Personal Energy Meter Simon Hay University of Cambridge Computer Laboratory Abstract of goods and provision of services. I envisage a personal energy meter which can record and apportion

  19. Speculative Software Management of Datapath-width for Energy Optimization

    E-Print Network [OSTI]

    Seznec, Andr

    Speculative Software Management of Datapath-width for Energy Optimization Gilles Pokam gpokam accommodate the execution of a program on a narrower datapath-width in or- der to save energy the width of the register file to be dynamically recon- figured, providing both static and dynamic energy

  20. Energy Utilization in Fermentation Ethanol Production

    E-Print Network [OSTI]

    Easley, C. E.

    be fermented to ethanol. The energy usage for this design is about 20,900 Btu per gallon of ethanol produced. WATER PARTIAL CONDENSER GRAIN MEA MIX 140?F 360?F FLASH TANK COOLING STEAM MALT COOKER FIGURE 1 - OLD STYLE MASHING SYSTEM Energy savings... ethanol. The basic process for fuel ethanol. as shown in Figure 3. involves steam stripping and rectification to produce 95 volume percent ethanol which is near the ethanol-water azeotropic composition. Except for the modest heat recovery provided...

  1. In the OSTI Collections: Carbon Sequestration, Figure 1 | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTech Connect Journal Article: Improved Dark

  2. Figure 10. U.S. total natural gas proved reserves, 1983-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed data TheJohnErinBOE Reserve

  3. Figure 11b. Components of U.S. natural gas proved reserves changes, 2003-13

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed data TheJohnErinBOE

  4. Figure 8. U.S. crude oil and lease condensate proved reserves, 1983-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826 detailed554,904,209434

  5. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    2008) 5 Figure 1-6 Chinas SolarFigure 1-6). Figure 1-6 Chinas Solar Resources 3,200hs andin rural areas. China has abundant solar resources that can

  6. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    51 Figure 2-15 LNG Terminals inFigure 5-10 Natural Gas (LNG) Price in Selected Countries (2004-2008) . 131 Figure 5-11 LNG Import Price (2006-

  7. Science Highlight July 2010 Figure 1. Representative structures of CODH C-clusters (a) with

    E-Print Network [OSTI]

    Wechsler, Risa H.

    -Fe-S Cluster- containing Metalloenzyme While scientists and engineers struggle to develop technologies and energy source (1-2). This ability derives from the reversible oxidation of CO to CO2 catalyzed at a Ni/ACS complex, with the C-cluster bound by substrate and inhibitor molecules. The first is a native structure

  8. May 2004 Version Tucannon Subbasin Plan ES -1 May 28, 2004

    E-Print Network [OSTI]

    of the Palouse River. The area has an average annual rainfall of 23 inches which includes #12;EXECUTIVE SUMMARY

  9. Free-surface flows from Kinect : Feasibility and limits Benoit Comb`es1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    is to evaluate the ability of the Kinect sensor to estimate time- dependent 3D free-surface geometries (Section 2 Hertz 320240 RGB sensor, a 30 Hertz 320240 infrared sensor and an infrared pattern projector. Range on the object under study is captured by the infrared sensor and the analysis of this projection is used

  10. A Study of Diagnostic Pre-Screening Methods for Analyzing Energy Use of K-12 Public Schools

    E-Print Network [OSTI]

    Landman, D. S.; Haberl, J. S.

    1996-01-01T23:59:59.000Z

    DATA FORNHS 77 FIGURE 4.6: MONTHLY DATA FOR CMS 82 FIGURE 4.7: MONTHLY DATA FOR OES 87 FIGURE 4.8: MONTHLY DATA FOR WMS 95 FIGURE 4.9: MONTHLY DATA FOR PES 97 FIGURE 4.10: MONTHLY DATA FOR MES 102 FIGURE4.il: MONTHLY DATA FOR RES 107 Energy Systems... for the annual peak. In the case of Galveston (OES, WMS, PES, MES, RES), VA/sf were computed from the billed VA (not necessarily the peak VA) instead of using W/sf. These were then converted to W/sf using power factors ranging from 0.7817 to 0.9072, which were...

  11. Manure to Energy: Understanding Processes, Principles and Jargon

    E-Print Network [OSTI]

    Mukhtar, Saqib

    2006-11-30T23:59:59.000Z

    . This publication uses the following figure as a simple illustration of potential sources of energy from biomass, including trees, agricultural crops, animal manure and municipal solid waste. The biomass will be field-harvested, preprocessed and transported... to bio-refineries for treatment and Figure 1. Future of agriculture: supply of food fiber and bio-fuels. Forest Residues Agricultural Crops Aquatic Biomass Root Crops Agricultural Residues Silage/Hay Animal Manure Cities Municipal Solid Wastes...

  12. Comparative Analysis of a Novel Approach to Economical Wind Energy Verterbi School of Engineering Research & Innovation Fund Final Report

    E-Print Network [OSTI]

    Zhou, Chongwu

    ). This system was analyzed using software Figure 2 Figure 1 #12;2 developed at UC Berkeley, SAP2000 of the research project: Conventional wind energy generation is obtained from "wind farms" that are in high of the infrastructure and land required to construct the towers has limited the use of this system. A new cable based

  13. 2012 Renewable Energy Data Book

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The 2012 Renewable Energy Data Book is 128 pages of data in tables, figures and charts, and text. It provides a look at resources and usage for wind, solar, geothermal, hydro, hydrogen, and biopower. Developed at the National Renewable Energy Laboratory (NREL) for DOE's Office of Energy Efficiency and Renewable Energy (EERE), it was produced by Rachel Gelman, edited by Mike Meshek, and designed by Stacy Buchanan and Erica Augustine and released in October, 2013. Report number for this data book is DOE/GO-102013-4291.

  14. Enhancing the Figure-of-Merit in Half-Heuslers for Vehicle Waste Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard

  15. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    Oil Products .154 Figure 6-7 Oil Products Imports and Exports (1999-155 Figure 6-8 Oil and Oil Products Exports Earnings (1975-

  16. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01T23:59:59.000Z

    Figure E- 3. Reduction in earnings and CapEx for Low Growthand Abbreviations APS BAU CapEx CCGT CCS CPUC CT DSM DSR ECWCustomers Fuel Costs O&M Costs CapEx Costs Rate Base Energy

  17. U.S. Aims for Zero-Energy: Support for PV on New Homes

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    Figure 1. Relative Cost of PV on New, Market-Rate Homesfor Zero-Energy: Support for PV on New Homes Galen Barbose,segment for solar photovoltaic (PV) adoption, new homes have

  18. GEOTHERMAL ENERGY DEVELOPMENT FROM THE SALTON TROUGH TO THE HIGH CASCADES

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    785-805 Table 1 MT. HOOD GEOTHERMAL PROJECT Y A. GEOLOGY ai n Transactions o f the Geothermal Resource Council AnnualCAPTIONS Figure 1 of the LBL Geothermal Energy A simp1 i f i

  19. GEOTHERMAL ENERGY DEVELOPMENT FROM THE SALTON TROUGH TO THE HIGH CASCADES

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    785-805 Table 1 MT. Y HOOD GEOTHERMAL PROJECT A. a GEOLOGYi n Transactions o f the Geothermal Resource Council AnnualCAPTIONS Figure 1 of the LBL Geothermal Energy A simp1 i f i

  20. An Olefin Unit's Energy Audit and Implementation

    E-Print Network [OSTI]

    Buehler, J. H.

    1979-01-01T23:59:59.000Z

    conversion Energy Index is essentially constant above 85%jof capacity. Energy consumption increases as capacity is reduced from 85% to 62%. The energy increase results from recycling on the centrifugal cracked gas and propylene compressors. At 62.... The data covering a range of operating rates from 45% to 101% of design is presented in Figure No.2. The Olefins unit has two cracked gas compressors, one ethylene refrigeration and two propylene refrigeration compressors. The curve shows the ethylene...

  1. Integrating Energy Management and Lean Manufacturing

    E-Print Network [OSTI]

    Stocki, M.

    Reduced Building Energy through Lean Case Study Facility floor space typically must be heated, ventilated, and illuminated. When space runs outs, a facility usually looks to expand by adding floor space. A farm equipment manufacturer was facing just... Procedures to optimize operational and production tasks ? Encouraging energy efficiency through the use of Visual Dashboards (sample in Figure 3). ? Root cause analysis to determine the underlying causes (and possible solutions) of energy wastes in a...

  2. Evaluation of Energy Concepts for Office Buildings

    E-Print Network [OSTI]

    Fisch, M.; Norbert, M.; Plesser, S.

    2005-01-01T23:59:59.000Z

    ) Figure 2 Average Annual Consumption of Primary Energy for 16 EVA-buildings and Reference-Studies Reference studies: Schweiz [2], EG-Audit [5], Stadt Frankfurt [6], enerkenn [3] EVA glassed buildings includes 4 buildings with existing data... buildings and analysed existing data on energy consumption suggest that glassed office buildings do not generally have a significantly higher energy consumption than regular office buildings. Introduction Over the last 10 years, some research...

  3. Figure 1. Hurricane Display Illustration Showing Hurricane Earls Path on Sept. 3, 2010

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet) TexasProductionHurricane

  4. Figure 2. Natural gas supply and disposition in the United States, 2013

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet) TexasProductionHurricane 5

  5. Figure 2. Stratigraphic Summary of Ages, Names and Rock Types in the ANWR

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet) TexasProductionHurricane

  6. Improvement in the Thermoelectric Figure of Merit by La/Ag Cosubstitution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP » Important Trinity / NERSC-8Improvedin PbTe |

  7. Figure 5. PCs and Terminals per Thousand Employees, 1992 and 1995

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic3 PC's5 PC's

  8. Figure 5. Production Schedules at Two Development Rates for the 5 Percent

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic3 PC's5

  9. Figure 7. Projected Production for the High Development Rate of Technically

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic3

  10. Figure ES2. Annual Indices of Real Disposable Income, Vehicle-Miles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGasCubic38.2001

  11. Figure ES3. Sales-Weighted Horsepower and On-Road Fuel Mileage for New

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves,

  12. Figure ES4. Sales-Weighted Inertia Weight and On-Road Fuel Mileage for New

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves,Light-Duty Vehicles,

  13. Natural Gas Processing Plants in the United States: 2010 Update / Figure 1

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 Annual Download1. Natural Gas

  14. Natural Gas Processing Plants in the United States: 2010 Update / Figure 2

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 Annual Download1. Natural

  15. Natural Gas Processing Plants in the United States: 2010 Update / Figure 3

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 Annual Download1. Natural3.

  16. Natural Gas Processing Plants in the United States: 2010 Update / Figure 4

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 Annual Download1. Natural3.4.

  17. Natural Gas Processing Plants in the United States: 2010 Update / Figure 5

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 Annual Download1.

  18. Natural Gas Processing Plants in the United States: 2010 Update / Figure 6

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 Annual Download1.6. Natural

  19. Natural Gas Processing Plants in the United States: 2010 Update / Figure 7

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 Annual Download1.6. Natural7.

  20. Plasmonic Figures of Merit in a Doped Graphene Sheet | MIT-Harvard Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics OursourcesEdgephysicsPhysicsfor

  1. Microsoft PowerPoint - EPA_CERCLA Process Figure.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview andSinatraMicroBooNEThis page DOE*theT

  2. A Systematic Approach for the Design of Integrated Energy and Chemicals Production

    E-Print Network [OSTI]

    Noureldin, Mohamed Mahmoud

    2014-12-02T23:59:59.000Z

    on CO2 and H2O production, energy input and carbon deposition in dry reforming (P = 1 bar) ............................................ 36 Figure 12: Impact of CO2 sequestration on the maximum economic potential for hydrogen production... (P = 1 bar) ........................................................................................................ 29 Figure 5: Effect of CH4:H2O ratio on CO2 and H2O generation, energy input and carbon deposition in SR (P = 1 bar...

  3. A Systematic Approach for the Design of Integrated Energy and Chemicals Production

    E-Print Network [OSTI]

    Noureldin, Mohamed Mahmoud

    2014-12-02T23:59:59.000Z

    on CO2 and H2O production, energy input and carbon deposition in dry reforming (P = 1 bar) ............................................ 36 Figure 12: Impact of CO2 sequestration on the maximum economic potential for hydrogen production... (P = 1 bar) ........................................................................................................ 29 Figure 5: Effect of CH4:H2O ratio on CO2 and H2O generation, energy input and carbon deposition in SR (P = 1 bar...

  4. LCA can help determine environmental burdens from"cradle to grave"and facilitate more consistent comparisons of energy

    E-Print Network [OSTI]

    power (CSP), biopower, geothermal, ocean energy, hydropower, nuclear, natural gas, and coal technologies comparisons of energy technologies. Figure 1. Generalized life cycle stages for energy technologies Source and renewable energy technologies, the majority of GHG emissions occur upstream of operation. LCA of Energy

  5. Sample Self-Heating in the Portable Dilution Refrigerator Figure 1. Self-heating of a model sample in a dilution refrigerator. Sample temperature is

    E-Print Network [OSTI]

    Weston, Ken

    1 Sample Self-Heating in the Portable Dilution Refrigerator Figure 1. Self-heating of a model ~ 6 pW, self heating begins to occur. The most dramatic result of this test was that a temperature

  6. Development of A Cryogenic Drift Cell Spectrometer and Methods for Improving the Analytical Figures of Merit for Ion Mobility-Mass Spectrometry Analysis

    E-Print Network [OSTI]

    May, Jody C.

    2010-10-12T23:59:59.000Z

    A cryogenic (325-80 K) ion mobility-mass spectrometer was designed and constructed in order to improve the analytical figures-of-merit for the chemical analysis of small mass analytes using ion mobility-mass spectrometry. ...

  7. Figure 2. Left: Illustration of the relative change in the HRMA effective area caused by different hydrocarbon contamination layers. The range shown

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Figure 2. Left: Illustration of the relative change in the HRMA effective area caused by different- tainties for the Chandra High Resolution Mirror Assembly (HRMA) and Advanced CCD Imaging Spectrograph (ACIS

  8. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ideas. He discovered the Gulf Stream and invented swim fins. He figured out Daylight Savings Time and developed the lighting rod. Learn more. November 24, 2010 Princeton...

  9. How Tenneco manages energy productivity

    SciTech Connect (OSTI)

    Glorioso, J.

    1982-08-01T23:59:59.000Z

    Tenneco's energy-management investments are intended to improve energy productivity, and are reported in terms of avoided costs in a way that highlights the energy value of conservation projects. This accounting approach helps management see that the return on conservation projects has increased faster than the rate of inflation. Tenneco's pursuit of higher productivity extends to labor, capital, and materials as well as energy resources. Data collection is the first step, followed by a ranking of possible projects. Continuous monitoring and energy use figures from each plant track the trend of energy value over time. Specific projects at Tenneco's energy-intensive operations of refining, shipbuilding, and food processing illustrate the company's energy management program. (DCK)

  10. Predictive energy Optimization: The Next Generation of Energy Management

    E-Print Network [OSTI]

    Dickinson, P.

    2013-01-01T23:59:59.000Z

    energy management systems. A quantum leap in building intelligence is required to close the gap between the current state of building operations and the needs of smart grids and smart cities. Unfortunately for the building HVAC controls industry... information and other information and make informed decisions. These informed decisions present the quantum leap required to bridge the gap between buildings run on rules of thumb to the smart buildings required by smart grids and smart cities. Figure...

  11. Predictive energy Optimization: The Next Generation of Energy Management

    E-Print Network [OSTI]

    Dickinson, P.

    2013-01-01T23:59:59.000Z

    energy management systems. A quantum leap in building intelligence is required to close the gap between the current state of building operations and the needs of smart grids and smart cities. Unfortunately for the building HVAC controls industry... information and other information and make informed decisions. These informed decisions present the quantum leap required to bridge the gap between buildings run on rules of thumb to the smart buildings required by smart grids and smart cities. Figure...

  12. Using an Occupant Energy Index for Achieving Zero Energy Homes

    E-Print Network [OSTI]

    Dean, B.; Gamble, D.; Kaiser, D.; Meisegeier, D.

    2006-01-01T23:59:59.000Z

    is to estimate savings relative to a reference home. However, in the case of zero energy homes it is absolute consumption, rather than relative savings, that is of interest. In such cases, a single set of operating assumptions will not suffice because... they impacted the heating, cooling, and water heating consumption. The customized internal gains distribution curve used for the baseline occupant profile is presented in figure 3. House Characteristic Base Case Area per Floor (ft 2 ) 2000 Number...

  13. Energy and Water Conservation Measures for Hanford (2013)

    SciTech Connect (OSTI)

    Reid, Douglas J.; Butner, Ryan S.

    2013-04-01T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) performed an energy and water evaluation of selected buildings on the Hanford Site during the months of May and June 2012. The audit was performed under the direction of the U.S. Department of Energy, Sustainability Performance Office to identify key energy conservation measures (ECMs) and water conservation measures (WCMs). The evaluations consisted of on-site facility walk-throughs conducted by PNNL staff, interviews with building-operating personnel, and an examination of building designs and layouts. Information on 38 buildings was collected to develop a list of energy and water conservation measures. Table ES.1 is a summary of the ECMs, while table ES.2 is a summary of the WCMs.

  14. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  15. Process Energy Audit for Large Industries

    E-Print Network [OSTI]

    Chari, S.

    can provide the necessary feedback signal to the VSO. Cement Manufacture. Figure 2 illustrates the basic generic flow diagram ofPortland cement manufacture (both wet and dry processes). Table 1 is the electricity consumption for various processes... for 230 ESL-IE-93-03-32 Proceedings from the Fifteenth National Industrial Energy Technology Conference, Houston, Tx, March 24-25, 1993 Figure 2 Process Flow Diagram for a Portland Cement Plant SHALE Attl IAON llAE -----+r------ll"'~~ ..., Il...

  16. 2011 Renewable Energy Data Book Author: Rachel Gelman

    E-Print Network [OSTI]

    facts and figures on energy in general, renewable electricity in the United States, and global renewable in U.S. Power Plants: Electricity's Thirst for a Precious Resource Authors: Kristen Averyt, Jeremy In this report of the Energy and Water in a Warming World Initiative, the authors present the first systematic

  17. DCNS, OTEC roadmap May 2013 DCNSDCNS -Ocean Energy Business Unit

    E-Print Network [OSTI]

    DCNS, OTEC roadmap May 2013 DCNSDCNS - Ocean Energy Business Unit Emmanuel BROCHARD, VP OTEC Programs Energie des courants DCNS roadmap on OTEC International OTEC Symposium Sept.2013 #12; DCNS, OTEC roadmap May 2013 2 12 829 employees (2011 figures) 14.8 billion euros on orderbook 1/3 of revenue from

  18. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20T23:59:59.000Z

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  19. HAS 222d/253e Energy & Environment P.B. Rhines, J. Wright, E.Lindahl, R.Koon

    E-Print Network [OSTI]

    in your car. E4 A Heat Engine: an engine using heated air to make mechanical energy, known as a Stirling engine, is quite efficient. Try to figure out how it

  20. Tennessee Energy Statistics Quarterly. Second quarter 1984

    SciTech Connect (OSTI)

    Finley, T.F. III; Hensley, B.D.; Trotter, T.

    1985-01-01T23:59:59.000Z

    The Tennessee Energy Statistics Quarterly presents the most current energy statistics available which are specific to the State of Tennessee. In every instance possible, county-level energy data are also shown. The report covers three substantive areas of the energy flow production, consumption, and pricing. The specific energy types for which data are included are coal, petroleum, natural gas and electricity. The Tennessee Energy Statistics Quarterly has been developed by the Tennessee Energy Data Base Program to serve as a supplement to the Energy Division publication - The Tennessee Energy Profiles: 1960-1980. Historical data reported in this volume cover the production and utilization of major energy supplies by fuel type and economic sectors, as well as other energy data such as prices and fuel distribution. 12 figures, 12 tables.

  1. Development of a Web-based Emissions Reduction Calculator for Green Power Purchases from Texas Wind Energy Providers

    E-Print Network [OSTI]

    Liu, Z.; Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J.; Culp, C.

    2005-01-01T23:59:59.000Z

    . Figure 1. The Enertech Wind Turbine Installed in Randall County, Texas 5 Data for this site was provided by Alternative Energy Institute from West Texas A&M University. The wind turbine operated... for the electric utility provider associated with the user. The user input screens for wind energy projects begin with the project input screen, as shown in the first screen of Figure 14. When the user submits this type of project to the emissions calculator...

  2. Energy Returned On Investment of Engineered Geothermal Systems Annual Report FY2010

    SciTech Connect (OSTI)

    Mansure, A.J.

    2010-12-31T23:59:59.000Z

    Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. EROI analyses of geothermal energy are either out of date or presented online with little supporting documentation. Often comparisons of energy systems inappropriately use 'efficiency' when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electric energy delivered to the consumer compared to the energy consumed to build, operate, and decommission the facility.

  3. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards

    E-Print Network [OSTI]

    Satchwell, Andrew

    2013-01-01T23:59:59.000Z

    business model for energy efficiency Historically, utilities in Arizona have been allowed to recover prudently incurred EE program costs;costs. We presented a comprehensive business model to achieve aggressive energyCosts Net Benefits Figure 1 Flowchart for analyzing impacts of portfolio of energy efficiency programs on stakeholders Model Inputs Business-

  4. Frame-Scheduling for Input-Queued Switches with Energy Reconfiguration Costs

    E-Print Network [OSTI]

    preserving high throughput. The relationship between energy consumption, switch con- figuration and data consumption needed to configure the switching fabric and we assume that the energy depends on the number, power and energy consumption in high speed switches/routers become one of the most critical design

  5. StepGreen.org: Increasing energy saving behaviors via social networks Jennifer Mankoff1

    E-Print Network [OSTI]

    Mankoff, Jennifer

    StepGreen.org: Increasing energy saving behaviors via social networks Jennifer Mankoff1 , Susan R and evaluation of StepGreen.org, a site intended to promote energy-saving behaviors. We present the results of StepGreen.org (Figure 1), a site intended to motivate people to make energy-reducing changes

  6. Economics of Ocean Thermal Energy Conversion Luis A. Vega, Ph.D.

    E-Print Network [OSTI]

    Economics of Ocean Thermal Energy Conversion (OTEC) by Luis A. Vega, Ph.D. Published by the American Society of Civil Engineers (ASCE) Chapter 7 of "Ocean Energy Recovery: The State of the Art" 1992 #12;Published in Ocean Energy Recovery, pp 152-181, ASCE (1992) ii Table of Contents Tables /Figures

  7. EModel: A New Tool for Analyzing Building Energy Use Data

    E-Print Network [OSTI]

    Haberl, J. S.; Claridge, D. E.; Kissock, J. K.; Reddy, T. A.

    to the new control algorithms is the availability of measured energy use, flow and environmental data. It is now common for a building's energy management and control system (EMCS) to regularly process and record hundreds of channels of measured data at time...'s results were identical to four or more significant figures. Figure 8. Information flow diagram for EMCS data. DATA TO KNOWLEDGE TO POWER: THE POTENTIAL OF USER-FRIENDLY ANALYSIS TOOLS "Knowledge and power. Power and knowledge. They circle one another like...

  8. Military Base Off-Taker Opportunities for Tribal Renewable Energy Projects

    SciTech Connect (OSTI)

    Nangle, J.

    2013-05-01T23:59:59.000Z

    This white paper surveys DOD installations that could have an increased potential interest in the purchase of energy from renewable energy projects on tribal lands. Identification of likely purchasers of renewable energy is a first step in the energy project development process, and this paper aims to identify likely electricity customers that tribal commercial-scale projects could serve. This white paper builds on a geospatial analysis completed in November 2012 identifying 53 reservations within 10 miles of military bases (DOE 2012). This analysis builds on those findings by further refining the list of potential opportunity sites to 15 reservations (Table ES-1), based on five additional factors: 1) The potential renewable resources required to meet the installation energy loads; 2) Proximity to transmission lines; 3) Military installation energy demand; 4) State electricity prices; 5) Local policy and regulatory environment.

  9. BLM Lists 2011 Priority Renewable Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof EnergyBILIWG: Consistent "FiguresIncreasesLists

  10. Figure 2: The mercury jet target geometry. The proton beam and mercury jet cross at z=-37.5 cm.

    E-Print Network [OSTI]

    McDonald, Kirk

    that the meson production loss is negligible (beta functions of 0.3m or greater. ENERGY DEPOSITION by the focusing of the proton beam. The energy deposition in the capture system is determined and the shielding. These muons are first produced by focusing a proton beam on to a liquid mercury target, where low-energy pions

  11. BISON Enhanced | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof EnergyBILIWG: Consistent "Figures ofBISON

  12. Numerical Chladni figures

    E-Print Network [OSTI]

    Mller, Thomas

    2013-01-01T23:59:59.000Z

    Chladni patterns of vibrating membranes or thin plates faszinated the people already in the eighteenth century. As a simple way to visualize acoustic phenomena it is a valuable experiment for beginners' courses. In this paper I present NumChladni, an interactive tool for studying arbitrary two-dimensional vibrating membranes based on the Finite Element method. I also describe the straightforward approach of the underlying mathematical details and give some examples. NumChladni is directly applicable in the undergraduate classroom as, for example, complementary application to experimental setups.

  13. This Article Figures Only

    E-Print Network [OSTI]

    Sparks, Donald L.

    by mine wastes and smelter emissions with 100-fold more soil Zn than Cd. Although many plant species can

  14. Figure 1. Top: Theoretical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top: Theoretical prediction of capacitance of nanoporous electrodes in dipolar solvent (red) versus ionic liquid (black- Jiang, 2013a); Middle: Activated graphene electrode in...

  15. Surface Characterization of Heterogeneous Catalysts Using Low Energy Ion Scattering Spectroscopy Combined with Electrochemistry

    E-Print Network [OSTI]

    Axnanda, Stephanus R.

    2010-07-14T23:59:59.000Z

    ..?????.??????????. 128 7. SUMMARY???????????????????????????.. 140 REFERENCES???????????????????????????.. 142 VITA???????????????????????????????. 153 x LIST OF FIGURES Page Figure 1. Schematic of fuel cell... measurements. In this study, Pt-Co is analyzed to obtain a better understanding in the use of this bimetallic system in fuel-cell applications. A fuel cell can be thought of as a cold-combustion device capable of converting stored chemical energy into usable...

  16. Factors affecting the eversion of sorghum grain using microwave energy in the 2450-mc range

    E-Print Network [OSTI]

    Beerwinkle, Kenneth Ray

    1967-01-01T23:59:59.000Z

    for the degree of NASTER OF SCIENCE AUGUST 1967 Hajor Subject: Agricultural Engineering FACTORS AFFECTING THE EVERSION OF SORGHUM GRAIN USING MICROWAVE ENERGY IN THE 2450-MC RANGE A Thesis By KENNETH RAY BEERWINKCE Approved as to style and content by... OF FIGURES Figure Page Phasor Representation of Total Current, I, Trans- vezsing a Condenser. Parallel Equivalent Circuit of a Dielectric in a Condenser. Laboratory Microwave Test Equipment. A. Oven Appli- cator. B. Wave Guide. C. Directional Po. . er...

  17. DuPont Approach to Energy Management: A System Wide Approach to Energy Efficiency

    E-Print Network [OSTI]

    Stewart, J. W.

    1998-01-01T23:59:59.000Z

    the Twentieth National Industrial Energy Technology Conference, Houston, TX, April 22-23, 1998 DuPont is a major industrial consumer of energy in the form of fuels and electricity. In fact, DuPont's global annual energy spending is about $1.5 billion which has... three equal components (Figure 5): ? Purchased electricity ? Purchased fuels ? Operating and maintenance Like all large energy consumers, DuPont worked very hard to improve energy efficiency following the 1974 OPEC oil embargo and the "oil shocks...

  18. 2009 U.S. State Clean Energy Data Book: NREL's Clean Energy Policy Analyses Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The 2009 U.S. State Clean Energy Data Book is 16 pages of data summarized in tables, figures and charts, and text. It provides a look at the states leading the U.S. in renewable energy capacities in 2009. Developed at the National Renewable Energy Laboratory (NREL) for DOE's Office of Energy Efficiency and Renewable Energy (EERE), it was produced by Rachel Gelman, Marissa Hummon, Joyce McLaren and Elizabeth Doris, edited by Michelle Kubik, and designed by Stacy Buchanan. Release date is October, 2010. Report number for this data book is DOE/GO-102010-3139.

  19. Simple Payback: The Wrong Tool for Energy Project Analysis?

    E-Print Network [OSTI]

    Russell, C.

    2008-01-01T23:59:59.000Z

    will want to know the risk of losing their investment, or at least the risk of failing to invest in more valuable alternatives. Here?s how payback measures can frustrate energy management efforts. The greater the investor?s concern with investment loss..., or paying the cost to avoid it. The energy at-risk concept is depicted here: Figure 1: Energy At-Risk Annual energy use, current application in-place Annual energy use, energy-efficient alternative Energy consumption avoided...

  20. The Economics of Energy (and Electricity) Demand

    E-Print Network [OSTI]

    Platchkov, Laura M.; Pollitt, Michael G.

    13 taxation on the use of energy.6 This is in addition to taxation of the profits of energy companies and taxes on the production of oil and gas in the North Sea. Any migration of energy demand from heavily taxed liquid fuels to currently lightly... also be substituted for energy expenditure in the future (e.g. solar panels as part of a new roof). The figure shows that substantial amount of expenditure on transport where expenditure on vehicles and on their repair exceeds expenditure on fuel...

  1. Application of optical triangulation profilometry and optical phase ranging profilometry to the figure evaluation of solar mirrors

    SciTech Connect (OSTI)

    Griffin, J.W.; Lind, M.A.

    1980-12-01T23:59:59.000Z

    The techniques of optical triangulation profilometry (OTP) and optical phase ranging profilometry (OPRP) are proposed for evaluation of the figure of solar mirrors. The theoretical basis for each method is discussed and the results of initial feasibility experiments are reported. In OTP and OPRP the de-specularized mirror surface is probed with one or more visible laser beams. In OTP, two beams are required for the triangulation of coordinates on the mirror surface. In OPRP the second laser beam is retained within the instrument to form the reference leg of a long wavelength interferometer. Both methods are particularly adaptable to computer control for fast, automated analysis of mirror surfaces. In addition the proposed devices are compact and sturdy enough for easy implementation in field evaluation programs. The experimental resolution capability of the unoptimized OTP system is greater than or equal to 0.1 inch (2.54 mm). With further improvement of the beam projection and coincidence assessment systems, the design resolution goal of greater than or equal to 0.1 mm appears achievable. The results of the preliminary resolution capability experiments on the OPRP system are inconclusive. This is thought to be a result of poor performance of components comprising the modulation and detection subsystems. A full assessment of OPRP capability will require a further investigation effort.

  2. LIEE (LOW-INCOME ENERGY EFFICIENCY) GRANT PROGRAM VERSUS THE UTILITY LOW-INCOME

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 1 2 3 4 5 6 7 84, 9/26/14)WIX6/14

  3. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01T23:59:59.000Z

    1990 data. Coal figure includes heat consumption Source:Heat U Total * India's coal consumption figure is for 1989. t 1990 data.

  4. Supplementary Figure 1| Neutron diffraction data at 86 % relative humidity. a) Schematic representation of neutron diffraction geometry for -2 scans. Diffraction data are obtained

    E-Print Network [OSTI]

    White, Stephen

    distributions of lipid and protein under varying levels of hydration. Predicted neutron scattering profiles as number density profiles weighted by the neutron scattering lengths of individual atoms, then symmetrizedSupplementary Figure 1| Neutron diffraction data at 86 % relative humidity. a) Schematic

  5. Figure 5. Wavelet time series analysis for yearly LBM outbreaks. a) The normalized time-series. b) Temporally-local wavelet power spectrum (dark red indicates the strongest

    E-Print Network [OSTI]

    SUPPLEMENT Figure 5. Wavelet time series analysis for yearly LBM outbreaks. a) The normalized time-series. b) Temporally-local wavelet power spectrum (dark red indicates the strongest periodicity while white indicates the weakest periodicity). c) Spatiotemporally-global wavelet spectrum. d) Time-series plot

  6. Figure 1. (a) Various contact angles of water droplets on hydrophilic surface terminated by OH after standard cleaning 1 (SC1) and

    E-Print Network [OSTI]

    Maruyama, Shigeo

    SAM converge; (b) SEM images of SWNTs grown on substrate shown in (a) after catalyst dip-coating. High a self-assembled monolayer (SAM) is both simple and nondestructive.5 In addition, the theoretically perfect flatness of a SAM makes the topography-induced effect negligible. Figure 1a shows the profiles

  7. How many people named Malcom do you think live in Colombia, S.A.? I have no idea but figured it would be a

    E-Print Network [OSTI]

    Bieber, Michael

    How many people named Malcom do you think live in Colombia, S.A.? I have no idea but figured in Newark for two years before going back to Colombia. He worked for several companies in Colombia and is ranked fifth in Colombia in his age group. He won three med- als in the Pan American Cup held in Miami

  8. Le TRAIT De la lettre la figure, Vol. 1, ds. B. Bonhomme, M. Symington, S. Ballestra-Puech, L'Harmattan, 217-231, mai 2007.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Le TRAIT De la lettre à la figure, Vol. 1, éds. B. Bonhomme, M. Symington, S. Ballestra-Puech, L'Harmattan. Bonhomme, M. Symington, S. Ballestra-Puech, L'Harmattan, 217-231, mai 2007. 2 Feuilleter le catalogue de l

  9. Figure 1. Day 1 SPC Fire Weather Outlook graphic showing a critical area over parts of the western U.S.,

    E-Print Network [OSTI]

    Figure 1. Day 1 SPC Fire Weather Outlook graphic showing a critical area over parts of the western. INTRODUCTION The Storm Prediction Center (SPC) in Norman, OK prepares national Fire Weather Outlooks valid thunderstorms, result in a significant threat of wildfires. The SPC Fire Weather Outlook contains both a text

  10. Assignment Carbon Footprints Name__Lachniet__ 1) See Figure 1.1a at the back of the assignment (from IPCC)

    E-Print Network [OSTI]

    Lachniet, Matthew S.

    Assignment Carbon Footprints Name__Lachniet__ 1) See Figure 1.1a at the back capita, relative to other countries. 3) Use the carbon footprint calculator at 1) http utility bill. Use the # of people living in your house. a) What is your carbon footprint, in metric

  11. Figure 3. Socioeconomics drive biomass too. Simple regression with untrans-formed variables. Solid line represents the estimated regression line, whereas

    E-Print Network [OSTI]

    Hall, Sharon J.

    Figure 3. Socioeconomics drive biomass too. Simple regression with untrans- formed variables. Solid line represents the estimated regression line, whereas the dashed lines represent the 95% confidence metropolitan area. I hypothesized that income is the driving factor of vegetation coverage, primarily affecting

  12. Figure 1. Inner Asia and Mongolia showing active survey datasets. (1) Darkhat-Muron, (2) the Khanui and Terhiyn Valleys, and (3) Baga Gazaryn Chuluu.

    E-Print Network [OSTI]

    George Mason University

    Figure 1. Inner Asia and Mongolia showing active survey datasets. (1) Darkhat- Muron, (2 of Sciences, Ulanbataar, Mongolia 1. MOTIVATION AND PURPOSE Inner Asia is the heartland of the Old World is essential. We define Inner Asia as composed of Mongolia, Inner Mongolia, Tibet, Manchuria, Eastern Turkestan

  13. Surface figure and roughness tolerances for NIF optics and the interpretation of the gradient, P-V wavefront and RMS specifications

    SciTech Connect (OSTI)

    Aikens, D M; English, R E; House, W; Lawson, J K; Nichols, M A; Whistler, W T

    1999-07-01T23:59:59.000Z

    In a high energy laser system such as the National Ignition Facility (NIF), the ability to focus light into as small a spot as possible at the highest possible fluence is highly dependent on the quality of the optics used in the system. Typically, surface form errors and transmitted and reflected wavefront errors are specified in terms of a peak-to-valley wavefront error (P-V), or occasionally in terms of an RMS wavefront error (RMS) 1 . It has been shown, however, that the parameter that most closely correlates with beam focusability is neither of these, but the RMS of the gradients of the wavefront error (RMS Gradient). Further, the spatial frequency of the wavefront error plays a significant role in the way that a given error effects the performance of the laser system, so careful attention must be paid to how the spatial filtering is both specified and accomplished. Since ISO 10110 has no specific provisions for a gradient specification, LLNL has developed its own notation and procedures for these critical specifications. In evaluating surface figure errors as specified by the NIF drawings, modern phase modulating interferometers (PMI) will be used. In addition to performing QA testing of the optics, LLNL intends to utilize the software capabilities of the instruments to obtain the information to model the wavefront of the 131 passes through various optical elements comprising the NIF front end. Tests will be performed and documented after coating and as installed in the specified mechanical mounts. This paper describes the evaluation of the wavefront error for NIF small optics including specifications over a given spatial period callout, the proper low pass filtering of the data and the allowable filtering and settings that can be applied to obtain proper wavefront data. This paper also describes the origin and evolution of other NIF wavefront and roughness specifications, and gives examples. Since the wavefront requirements and hence the specifications vary for the different systems in the NIF, we will focus on one system, the injection laser system (ILS) or ''front end''. Also discussed will be the metrology and data manipulation requirements for the large aperture optics. Finally, clarification will be given to the differences between various versions of the RMS wavefront and roughness specifications allowed in ISO 10110, and how they contrast to the RMS roughness specifications used in ANSI-Y14.5.

  14. Engineered Geothermal Systems Energy Return On Energy Investment

    SciTech Connect (OSTI)

    Mansure, A J

    2012-12-10T23:59:59.000Z

    Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use ??efficiency? when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy ?? heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the ??minimum? EROI an energy production system should have to be an asset rather than a liability.

  15. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    35 Table 2-17 Coking Coal Used in Coke Production (1980-Figure 2-5, Figure 2-6). Coking coal accounts for about 45%although less than 40% of coking coal is used for coking (

  16. Alternative stripper configurations to minimize energy for CO2 capture Babatunde A. Oyenekan and Gary T. Rochelle*

    E-Print Network [OSTI]

    Rochelle, Gary T.

    GHGT-8 1 Alternative stripper configurations to minimize energy for CO2 capture Babatunde A. Alternative configurations Figure 1 shows three alternative stripper configurations that reduce the energy, provides 1 to 1.5 times faster rates than 7m MEA. This paper presents energy requirements calculated

  17. Meaningful Energy Efficiency Performance Metrics for the Process Industries

    E-Print Network [OSTI]

    Kumana, J. D.; Sidhwa, N. R.

    industries have developed standard met- rics for their plant performance. A notable example is the Solomon Energy Intensity Index (EII) for Oil Refining, which builds up the overall plant energy index from the energy indices for individual process units.... Energy Intensity, Oil & Gas Industry 0 10 20 30 40 50 60 70 1999 2000 2001 2002 2003 2004 2005 2006 Ce n t s / BO E Oil & Gas prod'n Oil Refining Gas Processing Figure 11. Energy Intensity Trends for Different Business Units The ?standard energy...

  18. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    share). Coal Oil Gas Hydropower Biomass Figure 5 ResidentialRenewables Oil Nuclear Gas Hydropower Figure 6 ResidentialCoal Oil Nuclear Gas Hydropower Figure 10 Commercial Primary

  19. A Survey of the U.S. ESCO Industry: Market Growth and Development from 2000 to 2006

    E-Print Network [OSTI]

    Hopper, Nicole; Goldman, Charles; Gilligan, Donald; Singer, Terry E.; Birr, Dave

    2007-01-01T23:59:59.000Z

    5 3.1 ESCO Industry21 Appendix A: ESCO Companies Included inSummary: Figure ES-1. ESCO Industry Activity: 1990-

  20. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. [eds.] [Lawrence Berkeley Lab., CA (United States); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi [eds.] [Energy Research Inst., Beijing, BJ (China)

    1992-12-31T23:59:59.000Z

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises` investment funds is directed towards providing housing and social services for workers and their families.

  1. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. (eds.) (Lawrence Berkeley Lab., CA (United States)); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi (eds.) (Energy Research Inst., Beijing, BJ (China))

    1992-01-01T23:59:59.000Z

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises' investment funds is directed towards providing housing and social services for workers and their families.

  2. The Engineered Approach to Energy and Maintenance Effective Steam Trapping

    E-Print Network [OSTI]

    Krueger, R. G.; Wilt, G. W.

    1980-01-01T23:59:59.000Z

    # Y Strainer with 0.020" Perlorated Plate Basket 114" NPS - 600# Globe Valve 112" NPS - 600# Gate Valve 112" x 4" Nipple (Schedule 80) 1/2" x 6" Nipple (Schedule 80) 114" x 4" Nipple (Schedule 80) Orifice Plate FIGURE 3 TYPICAL DRIP LEG... down before test rig is installed. 3. "Y" Strainer ahead of steam trap may be blown down and test rig connected at strainer blow down point. FIGURE 3A 398 ESL-IE-80-04-73 Proceedings from the Second Industrial Energy Technology Conference Houston...

  3. Figure 1: A boxcar is towed without friction up a track at an angle 1 with respect to the horizontal. The mass inside the boxcar hangs at an angle 2 with respect to the top of the boxcar.

    E-Print Network [OSTI]

    Texas at Austin. University of

    a m 1 2 Figure 1: A boxcar is towed without friction up a track at an angle 1 with respect: Boxcar on a Hill In the figure, a boxcar of mass M is being towed up a hill by train car without friction. It is accelerating up the slope with a constant acceleration a. Inside the boxcar, an object of mass m hangs

  4. Figure 1. The wet area is flooded by damming up a small stream adjacent to the study area once a year for a period of 2-3 months. By

    E-Print Network [OSTI]

    Schierup, Mikkel Heide

    Figure 1. The wet area is flooded by damming up a small stream adjacent to the study area once. Figure 1.g The wet area is flooded by damming up a small streamded by damming up a smded by damwet area Vegetation data are obtained from two ri- parian grassland sites with strong hydro- logical gradients

  5. Quick Notes on CO2 Diagram and Energy Diagram For the ESRP 285 Website (Spring 2008)

    E-Print Network [OSTI]

    Ford, Andrew

    % of the emissions in the USA (EIA 2003, p. 35). CO2 emissions arise from the combustion of carbon fuels carbon emissions in the US accounted for 24% of the energy related emissions in the world (EIA 2003, p and diagram from the EIA (2005). #12;Figure 2 shows the nation's energy flows in the year 2000 with sources

  6. Studying the Feasibility of Energy Harvesting in a Mobile Sensor Network

    E-Print Network [OSTI]

    Sukhatme, Gaurav S.

    of recharging themselves using energy available in the en- vironment using solar panels. We call these nodes for network maintenance. One of the very scarce resources for these types of networks is energy architecture and low power network design at different com- munication layers. These include (Figure 1): · Low

  7. Cooling Tower Considerations for Energy Optimizations

    E-Print Network [OSTI]

    Burger, R.

    1986-01-01T23:59:59.000Z

    accumulat- ing in the strainers and tubes. The California Redwood Institute states that the service life of thin section Redwood used in cooling towers .is a'pproximately 15 to 20 years. Therefore, in these older-type towers the fill Is usually... of the art cellular film fill packing. Figure 6. Eight cell blow-thru tower where rebuilding lowered the water temperature 4OF greatly reducing compressor head pressures and temperatures thereby lowering energy consumption throughout the system...

  8. (a) k = 2 (b) k = 5 Figure 6.2: Two classi cations of Mars by the k-means algorithm

    E-Print Network [OSTI]

    Wagstaff, Kiri L.

    step. 6.3.2 K-means Results To provide a basis for later comparisons, we ran the regular k-means96 (a) k = 2 (b) k = 5 Figure 6.2: Two classi#12;cations of Mars by the k-means algorithm Finally with k-means, we will #12;rst justify our choice of k-means for this problem. We do not claim that k-means

  9. U.S. Energy Information Administration | Annual Energy Outlook 2014

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 0.11 0.09 0.01Reports RailNatural6 Regional maps Figure

  10. Management of Scientific Images: an approach to the extraction, annotation and retrieval of figures in the field of High Energy Physics

    E-Print Network [OSTI]

    Praczyk, Piotr Adam; Mele, Salvatore

    The information environment of the first decade of the XXIst century is unprecedented. The physical barriers limiting access to the knowledge are disappearing as traditional methods of accessing information are being replaced or enhanced by computer systems. Digital systems are able to manage much larger sets of documents, confronting information users with the deluge of documents related to their topic of interest. This new situation created an incentive for the rapid development of Data Mining techniques and to the creation of more efficient search engines capable of limiting the search results to a small subset of the most relevant ones. However, most of the up to date search engines operate using the text descriptions of the documents. Those descriptions can either be extracted from the content of the document or be obtained from the external sources. The retrieval based on the non-textual content of documents is a subject of ongoing research. In particular, the retrieval of images and unlocking the infor...

  11. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Fridley, D.G.; Levine, M.D. [eds.

    1996-06-01T23:59:59.000Z

    The response to the first edition of the China Energy Databook was overwhelmingly positive, and has encouraged us to issue this revised, updated, and expanded edition. It has been a natural counterpart to the Energy Analysis Program`s continuing program of collaborative research with the Energy Research Institute. No other current reference volume dedicated to China`s energy system contains a similar variety and quality of material. We have revised some of the categories and data that appeared in the old volume. The adjustment for energy consumption in the transportation sector, for instance, has been slightly changed to include some fuel use in the commercial sector, which was previously left out. As another example, natural gas consumption statistics in the first edition greatly overstated electric utility use; we have rectified that error. Some tables have changed as statistical collection and reporting practices change in China. Figures on gross output value by sector stop with 1992, and economic output in subsequent years is covered by various measures of value-added, such as national income and gross domestic product.

  12. Development and Analysis of a Sustainable Low Energy House in a Hot and Humid Climate

    E-Print Network [OSTI]

    Chulsukon, P.; Haberl, J. S.; Degelman, L. O.; Sylvester, K. E.

    2002-01-01T23:59:59.000Z

    cooling. In cold-climate countries, electricity is often used for space heating as well. Natural gas is mainly Energy Used in Building Demolition Demolition Removal Energy Used in Building Operation Space Cooling Lighting Equipment Water... Lifetime Building Energy Consumption Figure 1: Lifetime Building Energy Consumption Components for a Typical Residence in Thailand. used for only cooking for hot and humid climates such as Thailand. In cold climates, gas is also used for space...

  13. World Energy Congress, Sydney, Australia September 5-9, 2004 OFFSHORE WIND POWER: EASING A RENEWABLE

    E-Print Network [OSTI]

    of wind energy are discussed. 2. Offshore wind energy potential Le potentiel de l'énergie éolienne When.0 0.2 0.4 0.6 0.8 1.0 1.2 Relativeenergy onshoreoffshore Figure 1: Wind energy potential at height 10019 th World Energy Congress, Sydney, Australia September 5-9, 2004 1 OFFSHORE WIND POWER: EASING

  14. Figure 9b. Components of U.S. crude oil and lease condensate reserves changes, 2003-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826

  15. Figure 1: Artificially colored image of the plasma produced with a cylindrical lens. The laser travels in the Z-

    E-Print Network [OSTI]

    McDonald, Kirk

    -dimension to form a long focus. Progress on Plasma Lens Experiments at the Final Focus Test Beam* P. Kwok2, P. Chen of the supersonic gas jet as the plasma source, and study on focused beam size measurement techniques. Most demonstrate plasma focusing in a setting close to the true high energy collider with negligible induced

  16. Design for Process Integration and Efficient Energy Utilization

    E-Print Network [OSTI]

    James, A. J.

    1982-01-01T23:59:59.000Z

    intensive. A refinery can internally consume anything between 5% to 10% of the crude feed as fuel, depending upon the complexity of the processing plant. Since oil refining is such a significant energy user, this paper gives particular attention... shows how Refinery Operating costs in Western Europe have changed in the period 1972 to 1980. 593 ESL-IE-82-04-113 Proceedings from the Fourth Industrial Energy Technology Conference, Houston, TX, April 4-7, 1982 Figure 1. Refinery Operating Costs...

  17. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    for Offshore Wind Generation .. 23 Figure 11. ProjectedTransmission for Offshore Wind Generation Source: Vestasof over 100 studies on wind generation (Kubiszewski, et al,

  18. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    32 Table 13. Total Resource Requirements for Hydropower23 Figure 12. China's Hydropower Installed Capacity, 1980-and costs of Chinas hydropower: Development or slowdown?

  19. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    15 Table 7. Material Intensity for CSP13 Figure 6. Components and Layout of Proposed CSP Tower in12 CSP Tower Modeling

  20. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  1. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030 PotentialEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA #12;2 1. Overview

  2. Energy and lighting

    SciTech Connect (OSTI)

    Berman, S.

    1985-01-01T23:59:59.000Z

    Advances in research for new types of lighting with increased efficacies (lumens/watt) are discussed in the following areas: (1) high-frequency, solid-state ballasts, (2) isotopic enhancement of mercury isotopes, (3) magnetic augmentation, (4) electrodeless, ultra-high frequency, (5) tuned phosphors, (6) two-photon phosphors, (7) heat mirrors, and (3) advanced control circuits to take advantage of daylight and occupancy. As of 1985, improvements in efficacy have been accomplished on an economic basis to save energy for (1) high-frequency ballasts (25%), (2) isotopic enhancement (5%), and (8) advanced control circuits (up to 50%). Most of these advances depend on a deeper understanding of the weakly ionized plasma as a radiating and diffusing medium. 3 figures, 4 tables.

  3. The Successful Design Construction and 'Live-ability' of an Energy Efficient Home in a Hot and Humid Climate

    E-Print Network [OSTI]

    Gardner, J. C.

    2006-01-01T23:59:59.000Z

    for an Energy Star home with the extensive use of fluorescent lighting, ceiling fans and Energy Star appliances including a 14 SEER air conditioner. In addition to the energy efficient construction, a hybrid 2 KW wind/solar PV (photovoltaic) system..., computer and a variety of lights are terminated in the separate panel. The 2 KW hybrid PV/wind system (Figure 7) provides power to this panel. A switch allows the utility power to power the separate distribution panel when required. Figure 7...

  4. Essays on energy and environmental policy

    E-Print Network [OSTI]

    Novan, Kevin Michael

    2012-01-01T23:59:59.000Z

    Daily Emissions . 1.9.2 Natural Gas Units by Heat-Rate . . .Hourly Heat Rates for Natural Gas Units Figure Figure FigureShare of Generation Natural Gas (High Heat?Rate) Natural

  5. Uncalibrated Building Energy Simulation Modeling Results

    E-Print Network [OSTI]

    Ahmad, M.; Culp, C.H.

    for the Level 1 and Level 2 models with measured data for WERC (2004 post-commissioning data). ESL-PA-06-10-01 VOLUME 12, NUMBER 4, OCTOBER 2006 1151 Figure 6. Comparison of simulated daily total energy consumption for the Level 1 and Level 2 models with 1999...,450 m2]), the simulation using 1999 data underestimates the energy use in all categories except the whole building electrical usage. Table 3 identifies the magnitude of these discrepancies for a full years consumption. The Level 1 model actually per...

  6. U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-ZandofpointDOE NationalWorkshop Figure 1.

  7. U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-ZandofpointDOE NationalWorkshop Figure 1.

  8. U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-ZandofpointDOE NationalWorkshop Figure 1.

  9. U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-ZandofpointDOE NationalWorkshop Figure 1.4.

  10. U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-ZandofpointDOE NationalWorkshop Figure 1.4.5.

  11. U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-ZandofpointDOE NationalWorkshop Figure

  12. U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-ZandofpointDOE NationalWorkshop Figure7.

  13. U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-ZandofpointDOE NationalWorkshop Figure7.8.

  14. U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-ZandofpointDOE NationalWorkshop Figure7.8.9.

  15. LiH thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, M.; Morris, D.G.

    1994-06-28T23:59:59.000Z

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  16. Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

    E-Print Network [OSTI]

    PNNL-20162 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Cultural February 2011 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest is required. · Please be sure that any PDF submitted to DAHP has its cover sheet, figures, graphics

  17. Energy Conservation Renewable Energy

    E-Print Network [OSTI]

    Delgado, Mauricio

    Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy Climate control reduces green house gases Reduces

  18. High intrinsic energy resolution photon number resolving detectors

    E-Print Network [OSTI]

    Lolli, L; Portesi, C; Monticone, E; Rajteri, M

    2013-01-01T23:59:59.000Z

    Transition Edge Sensors (TESs) are characterized by the intrinsic figure of merit to resolve both the energy and the statistical distribution of the incident photons. These properties lead TES devices to become the best single photon detector for quantum technology experiments. For a TES based on titanium and gold has been reached, at telecommunication wavelength, an unprecedented intrinsic energy resolution (0.113 eV). The uncertainties analysis of both energy resolution and photon state assignment has been discussed. The thermal properties of the superconductive device have been studied by fitting the bias curve to evaluate theoretical limit of the energy resolution.

  19. Essays on energy and environmental policy

    E-Print Network [OSTI]

    Novan, Kevin Michael

    2012-01-01T23:59:59.000Z

    Figure Average Hourly Wind Generation, Load, and MarketFigure Average Hourly Wind Generation and Load by Quarternation in installed wind generation capacity. I combine data

  20. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    60 Figure 55. Reference Coal Generation by61 Figure 56. Max Tech Coal Generation bygeneration and coal generation efficiency improvement. In

  1. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    Figure 57. Electricity Generation Output by Fuel, ReferenceFigure 57. Electricity Generation Output by Fuel, Referenceand fuel substitutions bring the 2030 coal share of total electricity generation

  2. Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +

    E-Print Network [OSTI]

    Zevenhoven, Ron

    pulverised coal combustion and gas clean-up system: dry scrubber + baghouse filter for SO2 and particulate For a conventional pulverised coal-fired power plant a set-up is shown in Figure 10.1, with a gas clean-up system scrubber (pH ~ 6) 60 - 70 7 Re-heater 350 - 400 8 SCR DeNOx 300 - 400 9 Active coke bed 100 - 150 Figure 10

  3. Washington State energy use profile 1960 to 1980

    SciTech Connect (OSTI)

    Hinman G.; Alguire, F.; Devlin, T.; Hanson, J.; Horton, D.; Olsen, D.

    1980-12-01T23:59:59.000Z

    A comprehensive energy data base for the state of Washington is presented to provide energy suppliers, consumers, and policy makers with the most current energy data and information possible so that energy planning and policy decisions may be made on an informed basis. The first section provides an overview of demographic and economic factors, energy use, energy resources, and prices. The second section provides greater detail on the uses, supplies, and prices of the principal energy resources used in the state. The third section focuses on electricity and describes uses, supplies, and prices for this intermediate energy form. The fourth section disaggregates energy consumption by users and provides additional detail on use in the residential, commercial, industrial, agricultural, and transportation sectors. The fifth section shows some comparisons of actual figures with those appearing in some recent forecasts. (MCW)

  4. Quantum confinement effects on the thermoelectric figure of merit in Si/Si{sub 1{minus}x}Ge{sub x} system

    SciTech Connect (OSTI)

    Sun, X.; Dresselhaus, M.S.; Wang, K.L.; Tanner, M.O.

    1997-07-01T23:59:59.000Z

    The Si/Si{sub 1{minus}x}Ge{sub x} quantum well system is attractive for high temperature thermoelectric applications and for demonstration of proof-of-principle for enhanced thermoelectric figure of merit Z, since the interfaces and carrier densities can be well controlled in this system. The authors report here theoretical calculations for Z in this system, and results from theoretical modeling of quantum confinement effects in the presence of {delta}-doping within the barrier layers. The {delta}-doping layers are introduced by growing very thin layers of wide band gap materials within the barrier layers in order to increase the effective barrier height within the barriers and thereby reduce the barrier width necessary for the quantum confinement of carriers within the quantum well. The overall figure of merit is thereby enhanced due to the reduced barrier width and hence reduced thermal conductivity, {kappa}. The {delta}-doping should further reduce {kappa} in the barriers by introducing phonon scattering centers within the barrier region. The temperature dependence of Z for Si quantum wells is also discussed.

  5. Quasi-ASICs: Trading Area for Energy by Exploiting Similarity in Synthesized Cores for Irregular Code

    E-Print Network [OSTI]

    Quasi-ASICs: Trading Area for Energy by Exploiting Similarity in Synthesized Cores for Irregular efficiency, to scale system per- Decreasing Area Budget 1 0.95 0.9 0.85 0.8 0.75 EnergyEfficiency 1 3 5 7 9 11 Fully-Specialized Logic QASICs Figure 1. Trade offs between area and energy efficiency The x- axis

  6. Case study of total energy system, Sher-Den Mall, Sherman, Texas

    SciTech Connect (OSTI)

    Myrtetus, G.B.; Levey, M.D.

    1980-12-01T23:59:59.000Z

    The Sher-Den Mall shopping center receives all of its electricity and heating and cooling energy from a total energy plant located within the shopping center proper. Four engine-generator units are fueled primarily by natural gas, with some fuel oil use. The following are presented: initial corporate planning, investigation, and feasibility studies; a description of the total energy system; capital costs; plant operations, and revenue structure. Tables, figures, exhibits, and equipment specification lists are presented. (MHR)

  7. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    s inconsistent electricity sector development policies.Figure 3-14). The electricity sector, as categorized as anof this increase came from electricity sector emissions. The

  8. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    Industry Investment by Subsector (Unit: %) Electricity Generation & Supply Oil Refining &Industry Investment Figure 8-4 Fix Asset Investments in Oil Refining

  9. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    2007), Current Chinese Refinery Industry and Its Challenges,42 Figure 2-12 Refinery Capacity and Capacity Utilization (43 Table 2-22 Refinery Capacity by Company (2005-

  10. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    new Federal buildings which begin the planning process by 2020 to achieve zero net energy by 2030zero-net

  11. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    National Harbor #12;U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 2 #12 · Efficiencies can be 60% (electrical) and 85% (with CHP) · > 90% reduction in criteria pollutants U.S. Department of Energy #12;7 Market Transformation Government acquisitions could significantly reduce the cost

  12. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    HVAC consumes more electricity in September, the daily trendsHVAC Equipment Figure 44 Building 2 typical weekday electricity consumption trendHVAC Equipment Figure 45 Building 2 typical weekend electricity consumption trend

  13. Sandia Energy - Installation Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Installation Energy Security Home Stationary Power Grid Modernization Resilient Electric Infrastructures Military Installation Energy Security Installation Energy SecurityTara...

  14. The energy absorbing characteristics of plain concrete subjected to dynamic and static loadings

    E-Print Network [OSTI]

    Toole, Irvin

    1966-01-01T23:59:59.000Z

    ARRANGEMENT STRAIN GAGE IN CYLINDER MOLD 13 13 17 6B STRAIN GAGE IN RUPTURED CYLINDER 17 STATIC STRESS VS. STRAIN (4200 PSI) 25 STATIC STRESS VS. STRAIN (3200 PSI) 26 DEFINITION OF SECANT MODULUS 27 10 DEFINITION OF INPUT ENERGY 27 TYPICAL...'d) FIGURE NO. PAGE 16 MEASURED VS. THEORETICAL ENERGY (16Z LB. HAMMER) 41 17 18 MEASUR ED VS . THEOR ET ICAL ENERGY (107 LB, HAMMER) ABSORBED ENERGY PER BLOW 19 VELOCITY VS, INPUT ENERGY (4200 PSI - 107 LB. HAMMER) 48 VELOCITY VS. INPUT ENERGY...

  15. Optimal operation of a Petlyuk Distillation Column: Energy Savings by Over-fractionation

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Optimal operation of a Petlyuk Distillation Column: Energy Savings by Over-fractionation The Petlyuk distillation column, see Figure 1(a), with a pre-fractionator (C1) and a main column (C21 and C22) N-7465 Trondheim, Norway Abstract This work shows the unexpected result that over-fractionating one

  16. MODELICA LIBRARY FOR SIMULATING ENERGY CONSUMPTION OF AUXILIARY UNITS IN HEAVY VEHICLES1

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    MODELICA LIBRARY FOR SIMULATING ENERGY CONSUMPTION OF AUXILIARY UNITS IN HEAVY VEHICLES1 Niklas, a model library is developed in the modelling language Modelica. The library contains a mixture of models library are presented. The Modelica language is used to build models with a modular structure. Figure 1

  17. Letter Report on Testing of Distributed Energy Resource, Microgrid, and End-Use

    E-Print Network [OSTI]

    the same support to the grid. Figure 1 indicates that 1 MW of storage (provided by a battery or ramping as an Enabling Technology. Subtask 8.2: Use of Hydrogen for Energy Storage Under this subtask, HNEI evaluated the use of hydrogen as part of an integrated storage system with emphasis on the use of hydrogen

  18. Energy Savings by Use of Disk/Donut Baffling in Tubular Heat Exchangers

    E-Print Network [OSTI]

    Taborek, J. J.; Klein, D. E.; Fair, J. R.

    . Support Bracke. Figure 1. ConslrUction elements of a single tube pan shell-and?wbe heal exchanger. ESL-IE-88-09-26 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988 This exchanger has a fixed...

  19. 36Super-fast solar flares ! NASA's Ramaty High Energy Solar

    E-Print Network [OSTI]

    36Super-fast solar flares ! NASA's Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite has been studying solar flares since 2002. The sequence of figures to the left shows a flaring region hr/3600 sec = 0.98 kilometers/sec. The solar flare blob was traveling at 207 kilometers per second

  20. Buffer Sizing for Minimum Energy-Delay Product by Using an Approximating Polynomial

    E-Print Network [OSTI]

    Pedram, Massoud

    through a direct current path that is temporarily established during an output transition. Short circuit Figure 1: An inverter driving a capacitive load and electrical waveform showing short circuit current presents an accurate and efficient method of estimating the short circuit energy dissipation and the output

  1. Ris6-M-17G7 r-* Danish Atomic Energy Commission

    E-Print Network [OSTI]

    . Cause consequence analysis Cause consequence diagrams present events in a flow chart form. Alternative consequence diagram can be regarded as a com- bination of fault trees and flow charts. (See example, Figure 1Ris6-M-17G7 r-* Danish Atomic Energy Commission ? Research Establishment Riso o if ELECTRONICS

  2. Improve Industrial Temperature Measurement Precision for Cost-Effective Energy Usage

    E-Print Network [OSTI]

    Lewis, C. W.

    setting, errors between any two measurement instruments of 0.1 OF can result in an error of 4 Megawatts of energy! You do not want to have too many Megawatts disappearing from a nuclear power station before you start to do something about it. FIGURE...

  3. Designing and Implementing Monitoring Based Energy Cost Reduction Programs

    E-Print Network [OSTI]

    McMullan, A. S.; Pretty, B. L.; Hart, D.

    2006-01-01T23:59:59.000Z

    operation where ambient air is heated and used to remove moisture from a slurry. The site in question has multiple dryers. Figure 1. Schematic of drying operation Figure 2 summarizes historical energy performance. XYZ Chemicals Fuel... Consumption Rate vs. Production 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 0 5,000 10,000 15,000 20,000 25,000 TOTAL PRODUCTION (Units/MONTH) E N E R G Y / Unit XYZ Chemicals Specific Energy Use Vs. Ambient Temperature 25.0 30.0 35...

  4. It is in our fundamental National interest to greatly strengthen international cooperation in energy innovation. The President's Committee of Advisors on Science and

    E-Print Network [OSTI]

    , and other renewable energy sources, using fossil fuels far more efficiently, developing tech- nologies coun- tries, and fossil fuels account for 78 percent of the world's energy supply (Figure 2 technologies into substantial international markets, free of the need for ongoing government subsidies

  5. Sustainability Dashboard Quick Start Guide The Sustainability Dashboard is a web based energy management system that allows users to track a

    E-Print Network [OSTI]

    energy management system that allows users to track a building's performance, generate reports individual meters, click on Meter Displays under the main menu item, Graphics & Displays. Then select, energy log and time period parameters to generate custom reports. Figure 9: Utility Report Wizard To use

  6. The Minimax Cache: An Energy-Efficient Framework for Media Processors Osman S. Unsal, Israel Koren, C. Mani Krishna, Csaba Andras Moritz

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    experiments, we report 30% to 60% energy-delay product savings over a range of system con- figurations leverage this information to form our energy-saving Minimax cache framework. Simply put, the Minimax cache was supported in part by the National Science Founda- tion under grant EIA-0102696 employ it to get maximum

  7. Recirculation of Factory Heat and Air to Reduce Energy Consumption

    E-Print Network [OSTI]

    Thiel, G. R.

    1983-01-01T23:59:59.000Z

    the energy cost of make-up air, without sacrificing in-plant air quality. Source-capture Ventilation employs engineered sys tems that confine airborne contaminants at their point of origin, before they can escape into plant air (Figures 3, 4... the workers' breathing zones or the general plant air, they can achieve virtually 100% elimination of airborne pollutants. But they entail the expense of enclosure and/or hooding and duct systems. General ventilation, though simpler and often less costly...

  8. Pressure Swing Adsorption: An Energy Conservation Success Story

    E-Print Network [OSTI]

    Kennedy, P. E.; Hill, J. D.

    problem. A net income of more than 25 million dollars each year is realized by bulk gasoline loading terminals in the United States which utilize pressure swing adsorption for vapor recovery and pollution abatement. A rela tively new application...-hydrocarbon portion of the vapor passes through the adsorbent and therefore, no energy is wasted doing work on the vented air. Figure 2 is a flowsheet of a typical gasoline vapor recovery unit. Approximately 500 PSA gasoline vapor recovery systems have been...

  9. ESL Monthly Energy Consumption Report (MECR) Production Manual

    E-Print Network [OSTI]

    Liu, Z.; Sweeny, J.; Song, S.; Haberl, J. S.

    being monitored . Chapter 1 is an overview of the MECR production process . In Chapter 2 and 3, detail instructions on how to produce the ESL MECR and T AMU MECR. Examples and parts of programming scripts are presented to illustrate the process... of MECR files are provided in the attached CDROM. March 2005 Energy Systems L<1b oratory, Texas A&M University ESL-TR-05-03-01 MECR Production Manual, p3 Table of Contents LIST OF FIGURES...

  10. Quantitative Assessment of Distributed Energy Resource Benefits

    SciTech Connect (OSTI)

    Hadley, S.W.

    2003-05-22T23:59:59.000Z

    Distributed energy resources (DER) offer many benefits, some of which are readily quantified. Other benefits, however, are less easily quantifiable because they may require site-specific information about the DER project or analysis of the electrical system to which the DER is connected. The purpose of this study is to provide analytical insight into several of the more difficult calculations, using the PJM power pool as an example. This power pool contains most of Pennsylvania, New Jersey, Maryland, and Delaware. The techniques used here could be applied elsewhere, and the insights from this work may encourage various stakeholders to more actively pursue DER markets or to reduce obstacles that prevent the full realization of its benefits. This report describes methodologies used to quantify each of the benefits listed in Table ES-1. These methodologies include bulk power pool analyses, regional and national marginal cost evaluations, as well as a more traditional cost-benefit approach for DER owners. The methodologies cannot however determine which stakeholder will receive the benefits; that must be determined by regulators and legislators, and can vary from one location to another.

  11. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems Permalink

  12. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied &ClimateContactEnergyEnergy

  13. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems PermalinkEnergy Storage

  14. Present and future evidence for evolving dark energy

    SciTech Connect (OSTI)

    Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom); Wang Yun [Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2006-12-15T23:59:59.000Z

    We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, {lambda}CDM is currently favored as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.

  15. Present and future evidence for evolving dark energy

    E-Print Network [OSTI]

    Andrew R Liddle; Pia Mukherjee; David Parkinson; Yun Wang

    2006-12-04T23:59:59.000Z

    We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, LambdaCDM is currently favoured as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.

  16. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    In the United States: > 200 fuel cell vehicles > 20 fuel cell buses ~ 60 fueling stations Production & Delivery biomass & solar). Potential U.S. employment from fuel cell and hydrogen industries of up to 925,000 jobsEnergy Efficiency & Renewable Energy DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program

  17. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    None

    2014-05-27T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  18. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  19. A variable parameter thermionic energy converter

    E-Print Network [OSTI]

    Bragg, Bobby Joe

    1967-01-01T23:59:59.000Z

    Point Spacing Figure~ Power Jersus Spacing Wit?&out 'inmmum Power Point CHAPTER III THEORY OF OPERATION Brief History Vacuum diodes. The earliest known analysis and testing of therm- ionic energy converters was made on vacuum converters (i. e.... , a converter in which the interelectrode space is highly evacuated) by W. Schlicter in 1915 (2). He built a vacuum diode with a platinum emitter at 1000 0 yielding 1. 5 x 10 watt with an efficiency of about 10 $. These results, plus his analysis...

  20. U.S. energy independence in 15 years

    SciTech Connect (OSTI)

    Rose, Chris R [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Establish U.S. energy independence within 15 years -- This is a enormous systems engineering challenge to thoroughly analyze the present mix of power generation, energy consumption in all sectors such as transportation, industrial, commercial and residential, and devise new technologies to assist the process to independence. At this level, all citizens will be affected, requiring not only effective technologies, but superior cost/benefit ratios and effective free market interactions. With U.S. energy independence, world markets will be influenced. It will be necessary to develop or modify new energy sources, possibly including storage, and adjust or modify energy consumption profiles. Figure 1 shows the expected transition from present-day energy consumption based on both domestic and imported energy. During the 15 year period, the U.S. transitions to energy independence, eliminating imports, and perhaps reduces total energy consumption due to increased efficiency. In the future, U.S. energy consumption is able to grow in accordance with national policies and enhanced domestic capabilities. At the present time, the primary energy import is hydrocarbon products -- primarily oil. Of that imported oil, most of it is used for transportation. In order to reduce the need for imported oil, the U.S. will need to revamp its energy supply and energy consumption mixes. This change in business and usage in the U.S. will require enonnous effort on the part of many organizations and individuals. Los Alamos National Laboratory (LANL) will take the technological lead on this grand challenge. Nearly all directorates, technical, planning and policy capabilities will be brought together and focused on this objective. A simplified chart of the interactions within LANL is shown in Figure 3. Given the enonnous undertaking of U.S. energy independence, the vast engineering, technological and science-based capabilities of LANL will work together performing systems engineering, applied research and development, while working with policy makers, taking into account environmental, free market, and climate issues and constraints.

  1. Energy Policy

    Broader source: Energy.gov [DOE]

    The Energy Department is focusing on an all-of-the-above energy policy, investing in all sources of American energy.

  2. World Best Practice Energy Intensity Values for SelectedIndustrial Sectors

    SciTech Connect (OSTI)

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

    2007-06-05T23:59:59.000Z

    "World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

  3. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01T23:59:59.000Z

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  4. Use of Crystals for High Energy Photon Beam Linear Polarization Conversion into Circular

    E-Print Network [OSTI]

    N. Z. Akopov; A. B. Apyan; S. M. Darbinyan

    2000-02-17T23:59:59.000Z

    The possibility to convert the photon beam linear polarization into circular one at photon energies of hundreds GeV with the use of crystals is considered. The energy and orientation dependencies of refractive indexes are investigated in case of diamond, silicon and germanium crystal targets. To maximize the values for figure of merit, the corresponding crystal optimal orientation angles and thickness are found. The degree of circular polarization and intensity of photon beam are estimated and possibility of experimental realization is discussed.

  5. Use of Crystals for High Energy Photon Beam Linear Polarization Conversion into Circular

    E-Print Network [OSTI]

    Akopov, N Z; Darbinian, S M

    2000-01-01T23:59:59.000Z

    The possibility to convert the photon beam linear polarization into circularone at photon energies of hundreds GeV with the use of crystals is considered.The energy and orientation dependencies of refractive indexes are investigatedin case of diamond, silicon and germanium crystal targets. To maximize thevalues for figure of merit, the corresponding crystal optimal orientationangles and thickness are found. The degree of circular polarization andintensity of photon beam are estimated and possibility of experimentalrealization is discussed.

  6. Economic applicability of atomic energy as a source of power in underdeveloped countries

    E-Print Network [OSTI]

    Ahmed, Sheik Basheer

    1963-01-01T23:59:59.000Z

    Return on Investment 55 12. Cost of Power, Comparing:Juclear and Oil Plants, at Bodega Bay. . 59 LIST OF ILLUSTRATIONS Figure Page 1, Relationship Between Per Capita Energy Consumption and Per Capita Income of Underdeveloped Countries for the Year... of atomic power would be where areas lack convent, ional energy resources but have highly developed power systems based on imports of foreign fuel. The installation of nuclear plants would considerably save the outlay of foreign exchange for the import...

  7. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home Stationary Power EnergyRenewable Energy

  8. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware HometdheinrWater/Energy

  9. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy CouncilEnergy Surety Home

  10. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia'sEventNotECWillie LukEnergy

  11. Cosmochemistry Problems [2] ASTR/GEOL 4330/5330 Please show all work with references if needed, figures, etc. Due September 5, 2014 by 4pm at

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Cosmochemistry Problems [2] ASTR/GEOL 4330/5330 Please show all work with references if needed in the center. Take the mean temperature throughout the region to be 1.5 107 K. Determine the rate of energy potential energy V (in J)? Energy from gravitational collapse does not for the most part play a significant

  12. Figure 1. Nonhydroelectric renewable generation

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Nonhydroelectric renewable generation" " (billion kilowatthours)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,...

  13. Figure 4. World Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4. World Oil Prices" " (2007 dollars per barrel)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030...

  14. FIGURE 2 : Probl emes astrom

    E-Print Network [OSTI]

    Delmotte, Nausicaa

    strip ## ## min ## ## max ## ## min ## ## max No. images rejet #19; ees 4234 3129 -3.0 +3.0 -4.0 +3.0 -0.109 -0.227 0 4306 3131 -3.0 +3.0 -4.0 +3.0 -0.118 -0.248 0 4232 3339 -3.0 +3.0 -4.0 +3.0 -0.121 -0.227 0 4288 3340 -4.0 +3.0 -4.0 +4.0 -0.179 -0.305 0 4275 3353 -4.0 +3.0 -4.0 +3.0 -0

  15. Microsoft Word - figure_03.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    Report"; state agencies; Form EIA-23, "Annual Survey of Domestic Oil and Gas Reserves"; LCI; Ventyx; and the Bureau of Safety and Environmental Enforcement, and...

  16. Supplemental figure 1 HEP081895

    E-Print Network [OSTI]

    Bhatia, Sangeeta

    .21 Antioxidants related NM_013048 Ttpa: tocopherol transfer protein alpha (3) 40.15 Growth factors and mitogen M angiogenic activity of human recombinant heparin affin regulatory peptide. Growth Factors 1994;10:89-98. #12

  17. Figure 2 Collect 5 horizontally

    E-Print Network [OSTI]

    Mukhtar, Saqib

    storage containers, (e.g., resealable plastic containers) 5% bleach solution Aluminum foil Newspaper, Butcher or Kraft paper Rigid shipping container, (e.g., cardboard box, etc.) Frozen ice packs Packing tape

  18. Sandia Energy - Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need to integrate renewable energy, improve energy efficiency, and allow consumers more control over their energy consumption. One of the challenges of renewable power generation...

  19. Department of Energy - Energy Sources

    Broader source: Energy.gov (indexed) [DOE]

    295 en Using Passive Solar Design to Save Money and Energy http:energy.govenergysaverarticlesusing-passive-solar-design-save-money-and-energy

  20. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    has launched the Energy Data Initiative (EDI). May 17, 2012 The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. |...