Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

New Models Help Optimize Development of Bakken Shale Resources | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Models Help Optimize Development of Bakken Shale Resources Models Help Optimize Development of Bakken Shale Resources New Models Help Optimize Development of Bakken Shale Resources February 7, 2012 - 12:00pm Addthis Washington, DC - Exploration and field development in the largest continuous oil play in the lower 48 states, located in North Dakota and eastern Montana, will be guided by new geo-models developed with funding from the Department of Energy's (DOE) Office of Fossil Energy (FE). The three-year project to develop exploration and reservoir models for the Bakken Shale resource play was conducted by the Colorado School of Mines (CSM), through research funded by FE's Oil and Natural Gas Program. A "play" is a shale formation containing significant accumulations of natural gas or oil. The U.S. Geological Survey estimates the Bakken Shale

2

New Models Help Optimize Development of Bakken Shale Resources | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Models Help Optimize Development of Bakken Shale Resources New Models Help Optimize Development of Bakken Shale Resources New Models Help Optimize Development of Bakken Shale Resources February 7, 2012 - 12:00pm Addthis Washington, DC - Exploration and field development in the largest continuous oil play in the lower 48 states, located in North Dakota and eastern Montana, will be guided by new geo-models developed with funding from the Department of Energy's (DOE) Office of Fossil Energy (FE). The three-year project to develop exploration and reservoir models for the Bakken Shale resource play was conducted by the Colorado School of Mines (CSM), through research funded by FE's Oil and Natural Gas Program. A "play" is a shale formation containing significant accumulations of natural gas or oil. The U.S. Geological Survey estimates the Bakken Shale

3

Bakken shale typifies horizontal drilling success  

SciTech Connect

Given the favorable production response that has been obtained from horizontal drilling in vertical- fractured reservoirs such as the Bakken shale and, more recently, the Austin chalk, industry interest in this technology has mushroomed in the U.S. Indeed, it is difficult to find a good-sized oil company these days that is not involved in a horizontal drilling project or is giving it serious consideration. In response to growing evidence of successful field applications, the realization is dawning on the investment community that horizontal drilling represents a significant technological development with positive implications for both the exploration and production business, and the oilfield services industry.

Leibman, P.R. (Petrie Parkman and Co., Denver, CO (US))

1990-12-01T23:59:59.000Z

4

Thermal history of Bakken shale in Williston basin  

SciTech Connect

Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships include factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.

Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J. (Univ. of North Dakota, Grand Forks (USA))

1989-12-01T23:59:59.000Z

5

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken?  

Gasoline and Diesel Fuel Update (EIA)

Technology-Based Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken? Through the use of technology, U.S. oil and natural gas operators are converting previously uneconomic oil and natural gas resources into proved reserves and production. The Bakken Formation of the Williston Basin is a success story of horizontal drilling, fracturing, and completion technologies. The recent, highly productive oil field discoveries within the Bakken Formation did not come from venturing out into deep uncharted waters heretofore untapped by man, nor from blazing a trail into pristine environs never open to drilling before. Instead, success came from analysis of geologic data on a decades-old producing area, identification of uptapped resources, and application of the new drilling and completion technology necessary to exploit them. In short, it came from using technology

6

Correlation and Stratigraphic Analysis of the Bakken and Sappington Formations in Montana  

E-Print Network (OSTI)

The Upper Devonian-Lower Mississippian (Late Fammenian-Tournaisian) Bakken Formation in the Williston Basin is one of the largest continuous oil fields in the U.S. The upper and the lower shale members are organic rich source rocks that supplied oil...

Adiguzel, Zeynep 1986-

2012-09-24T23:59:59.000Z

7

Shale Oil and Gas, Frac Sand, and Watershed  

E-Print Network (OSTI)

;Bakken Oil Shale scope · Light, Sweet crude ­ ideal for automotive fuels and mid-size refineries (Midwest

Minnesota, University of

8

Horizontal drilling in the Bakken Formation - The hunt for an elephant that never left the source system  

SciTech Connect

New organic-geochemical studies show that bitumen extracted from the upper and lower shale members of the Mississippian Madison Group oils, and that the Bakken shales have contributed only a minor percentage of the conventionally produced oil in the Williston basin. Instead, organic-rich madison marls are an adequate source for the Madison oils. Also, few pathways exist for vertical migration of Bakken-generated oil to shallower Madison reservoirs. Vertical wells in older Bakken oil pools are perforated in one or all of the three units adjacent to the two Bakken shales but are not necessarily perforated in the Bakken shales. Rock-Eval analyses of 6- to 12-in. spaced core samples show that where Bakken shales are thermally mature, the three adjacent organic-poor units contain 10-20 times the hydrocarbons (HCs) they could have generated. Thus, Bakken-generated HCs appear to have moved into the three adjacent units, probably via fractures created by volume expansion of organic matter during HC generation in the Bakken shales. Bakken well histories reveal that unsuccessful Bakken wells appear due to questionable techniques during these operations and not a lack of fractures. If a large in-place resource base exists in the Bakken source system, its commercial recovery will depend on new exploration, drilling, completion, and production technologies and on how much of the generated oil is in fractures rather than dispersed throughout the rocks.

Price, L. (Geological Survey, Denver, CO (United States)); Le Fever, J. (North Dakota Geological Survey, Grand Forks (United States))

1991-06-01T23:59:59.000Z

9

Bakken Shale Oil Production Trends  

E-Print Network (OSTI)

) database and in the format of monthly production for oil, water and gas. Additional 95 well data including daily production rate, completion, Pressure Volume Temperature (PVT), pressure data are given from companies who sponsor for this research study...

Tran, Tan

2012-07-16T23:59:59.000Z

10

Sequence stratigraphy, depositional environments, and regional mapping of the late Devonian interval, upper Three Forks Formation, Sanish Member, and lower Bakken Shale, U.S. portion of the Williston Basin.  

E-Print Network (OSTI)

??Cores of the Late Devonian upper Three Forks, Sanish, and lower Bakken units from eight wells were examined and described at the North Dakota core (more)

Sesack, Steven A.

2011-01-01T23:59:59.000Z

11

Miscellaneous States Shale Gas Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

12

Horizontal drilling the Bakken Formation, Williston basin: A new approach  

SciTech Connect

Horizontal drilling is an attractive new approach to exploration and development of the Mississippian/Devonian Bakken Formation in the southwestern part of North Dakota. This drilling technique increases the probability of success, the profit potential, the effective drainage area maximizing recoverable reserves, and the productivity by encountering more natural occurring fractures. The target formation, the Mississippian/Devonian Bakken, consists of three members in an overlapping relationship, a lower organic-rich black shale, a middle siltstone/limestone, and an upper organic-rich black shale. It attains a maximum thickness of 145 ft and thins to a feather edge along its depositional limit. Considered to be a major source rock for the Williston basin, the Bakken is usually overpressured where productive. Overpressuring is attributed to intense hydrocarbon generation. Reservoir properties are poor with core fluid porosities being generally 5% or less and permeabilities ranging from 0.1 to 0.2 md. The presence of natural fractures in the shale are necessary for production. Two types of fractures are associated with Bakken reservoirs: large vertical fractures (of tectonic origin) and microfractures (probably related to hydrocarbon generation). An economic comparison between horizontal and vertical wells show that well completion costs are approximately two times higher (average costs; $1,500,000 for a horizontal to $850,000 for a vertical) with average payout for horizontal wells projected to occur in half the time (1.5 yr instead of 3.4 yr). Projected production and reserves are considered to be 2 to 4 times greater from a horizontal well.

Lefever, J.A. (North Dakota Geological Survey, Grand Forks (USA))

1990-05-01T23:59:59.000Z

13

Geomechanical Study of Bakken Formation for Improved Oil Recovery  

SciTech Connect

On October 1, 2008 US DOE-sponsored research project entitled Geomechanical Study of Bakken Formation for Improved Oil Recovery under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.

Ling, Kegang; Zeng, Zhengwen; He, Jun; Pei, Peng; Zhou, Xuejun; Liu, Hong; Huang, Luke; Ostadhassan, Mehdi; Jabbari, Hadi; Blanksma, Derrick; Feilen, Harry; Ahmed, Salowah; Benson, Steve; Mann, Michael; LeFever, Richard; Gosnold, Will

2013-12-31T23:59:59.000Z

14

Impact of fabric, microcracks and stress field on shale anisotropy  

Science Journals Connector (OSTI)

......some of these factors on shale velocity and anisotropic response. This study investigates...documented rock responses. This shale is also highly anisotropic with its anisotropy factors...velocity surfaces of indurated anisotropic shales, Surv. Geophys., 15......

David N. Dewhurst; Anthony F. Siggins

2006-04-01T23:59:59.000Z

15

Examination of eastern oil shale disposal problems - the Hope Creek field study  

SciTech Connect

A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

1985-02-01T23:59:59.000Z

16

SUBTASK 1.7 EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA PHASE II  

SciTech Connect

Production from the Bakken and Three Forks Formations continues to trend upward as forecasts predict significant production of oil from unconventional resources nationwide. As the U.S. Geological Survey reevaluates the 3.65 billion bbl technically recoverable estimate of 2008, technological advancements continue to unlock greater unconventional oil resources, and new discoveries continue within North Dakota. It is expected that the play will continue to expand to the southwest, newly develop in the northeastern and northwestern corners of the basin in North Dakota, and fully develop in between. Although not all wells are economical, the economic success rate has been near 75% with more than 90% of wells finding oil. Currently, only about 15% of the play has been drilled, and recovery rates are less than 5%, providing a significant future of wells to be drilled and untouched hydrocarbons to be pursued through improved stimulation practices or enhanced oil recovery. This study provides the technical characterizations that are necessary to improve knowledge, provide characterization, validate generalizations, and provide insight relative to hydrocarbon recovery in the Bakken and Three Forks Formations. Oil-saturated rock charged from the Bakken shales and prospective Three Forks can be produced given appropriate stimulation treatments. Highly concentrated fracture stimulations with ceramic- and sand-based proppants appear to be providing the best success for areas outside the Parshall and Sanish Fields. Targeting of specific lithologies can influence production from both natural and induced fracture conductivity. Porosity and permeability are low, but various lithofacies units within the formation are highly saturated and, when targeted with appropriate technology, release highly economical quantities of hydrocarbons.

Darren D. Schmidt; Steven A. Smith; James A. Sorensen; Damion J. Knudsen; John A. Harju; Edward N. Steadman

2011-10-31T23:59:59.000Z

17

TOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS Shahab D. Mohaghegh1 & Grant Bromhal2  

E-Print Network (OSTI)

development in the oil and gas industry and is being used on some shale formations. BAKKEN SHALE MuchTOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS based on measure data, called Top-Down, Intelligent Reservoir Modeling for the shale formations

Mohaghegh, Shahab

18

Recognition of hydrocarbon expulsion using well logs: Bakken Formation, Williston Basin  

SciTech Connect

The Upper Mississippian-Lower Devonian Bakken Formation forms a source/carrier/reservoir system in the Williston basin. Hydrocarbon expulsion within the Bakken has been identified by overlaying sonic and resistivity logs. Typically, these curves track in organically lean, water-saturated mudrocks because both respond mainly to porosity; however, in thermally mature organic-rich rocks and hydrocarbon reservoirs or carrier beds, the curves separate due to the anomalously high resistivity associated with replacement of pore water by hydrocarbons. Sonic/resistivity-log overlays for wells throughout the Montana and North Dakota parts of the Williston basin reveal significant increases and maximum in-curve separation within the middle siltstone member of the Bakken at subsurface temperatures of about 170 and 200{degree}F, respectively. Sequence-stratigraphic characteristics of the Bakken define the framework within which the expulsion process operates. The organic-rich upper and lower shale members represent the transgressive and early highstand systems tracts of two adjacent depositional sequences. A sequence boundary within the intervening middle siltstone member separates nearshore siltstone and sandstone of the late highstand systems tract in the lower sequence from cross-bedded subtidal to intertidal sandstones of the lowstand systems tract in the upper sequence. Reservoir properties vary across this sequence boundary. The authors attribute the log separation in the siltstone member to hydrocarbons expelled from the adjacent shales. Abrupt shifts in several geochemical properties of the shale members, indicative of hydrocarbon generation occur over the same subsurface temperature range as the rapid increase in log separation in the middle siltstone, thus indicating the contemporaneity of generation and expulsion.

Cunningham, R.; Zelt, F.B.; Morgan, S.R.; Passey, Q.R. (Exxon Production Research Co., Houston, TX (USA)); Snavely, P.D. III; Webster, R.L. (Exxon Co., U.S.A., Houston, TX (USA))

1990-05-01T23:59:59.000Z

19

Treating-pressure analysis in the Bakken formation  

SciTech Connect

The Bakken formation is an oil-producing interval in the Williston basin. Usually, commercial Bakken wells are linked to an anisotropic natural fracture network. Hydraulic fracturing treatments have been used extensively in vertical wells and to a limited extent in horizontal wells. In this paper, bottom hole treating pressure (BHTP's) are analyzed to improve understanding of hydraulic fracture propagation in the Bakken.

Cramer, D.D. (BJ Services (US))

1992-01-01T23:59:59.000Z

20

Water Intensity Assessment of Shale Gas Resources in the Wattenberg Field in Northeastern Colorado  

Science Journals Connector (OSTI)

Water Intensity Assessment of Shale Gas Resources in the Wattenberg Field in Northeastern Colorado ... Efficient use of water, particularly in the western U.S., is an increasingly important aspect of many activities including agriculture, urban, and industry. ...

Stephen Goodwin; Ken Carlson; Ken Knox; Caleb Douglas; Luke Rein

2014-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Analysis of horizontal and vertical in-situ oil-shale retorting: comparison of field experiments  

SciTech Connect

Currently two different processing techniques are utilized for in situ oil shale retorting. Horizontal In Situ (HIS), in which the retort front moves parallel to the shale bedding planes, is being utilized on relatively thin, near-surface oil shale. Vertical Modified In Situ (VMIS), in which the retort front moves perpendicular to the shale bedding planes, is being utilized for thicker deposits of shale at greater depths. While chemical effects in the two processes should be similar, physical phenomena (such as fluid product flow and heat transfer) can be substantially different due to gravity and anisotropic shale properties associated with the shale bedding planes. To illustrate both similarities between the processes and some striking differences, we present thermal data (detailing movement of the steam and retorting fronts) and offgas and oil analysis data (allowing material and energy balance closures) from two recent field experiments, Sandia/Geokinetics Retort 23 (HIS) and Occidental Retort 8 (VMIS). These data show, for example, a broader combustion front in the horizontal process, resulting in a lower thermal efficiency. However, because of a lower shale grade in the VMIS experiment, local oil yield (50 to 60% of Fischer Assay) was similar in the two experiments, with roughly two-thirds of the loss to oil combustion and one-third to oil coking and cracking reactions.

Tyner, C.E.; Bickel, T.C.; Stevens, A.L.; Lekas, J.M.

1983-01-01T23:59:59.000Z

22

05643_GeoMech_Bakken | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

from the Bakken Formation in eastern Montana, the horizontal drilling and hydraulic fracture stimulation technology applied in western North Dakota has been less successful, thus...

23

Thermal modeling of Bakken Formation of Williston basin  

SciTech Connect

Organic geochemical analyses provide a quantitative basis on which conceptual models of thermal maturation may be built. Contour maps of maturation indices of the Mississippian-Devonian Bakken Formation of the Williston basin show anomalous patterns that are not dependent on burial depth. One such area is on the western side of the Nesson anticline. One-dimensional modeling incorporating a uniform, constant heat flow, lithology-dependent thermal conductivities, and decompaction factors indicates that these areas are less mature than surrounding regions. This is due primarily to decreasing burial depth and thinning of low-thermal-conductivity Tertiary and Cretaceous shales. Additional heat transfer to these regions may be due in part to heat transfer by fluid movement through aquifers or vertical fractures. The influence of these fluid systems is simulated through the use of a two-dimensional finite difference program. Basic assumptions are made concerning heat flow, thermal properties, and ground-water flow rates through time. Modeling of the time-temperature history is simplified by restricting the study to the time of greatest maturation, the post-Jurassic.

Anderson, D.

1986-08-01T23:59:59.000Z

24

Diagenesis of the Terry sandstone member of the Pierre Shale, Spindle field, Weld County, Colorado  

E-Print Network (OSTI)

DIAGENESIS OF THE TERRY SANDSTONE MEMBER OF THE PIERRE SHALE, SPINDLE FIELD, WELD COUNTY, COLORADO A Thesis PHILLIP DEAN HAYS Submitted to the Gradute College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1986 Major Subject: Geology DIAGNESIS OF THE TERRY SANDSTONE MEMBER OF THE PIERRE SHALE ~ SP INDLE F I ELD ~ WELD COUNTY ~ COLORADO A Thesis by PHILLIP DEAN HAYS Approved as to style and content by: -, ~jD Thomas T...

Hays, Phillip Dean

1986-01-01T23:59:59.000Z

25

Crosswell seismic waveguide phenomenology of reservoir sands & shales at offsets >600 m, Liaohe Oil Field, NE China  

Science Journals Connector (OSTI)

......employed to lower the cost of hydrocarbon production monitoring (de Waal...2001. Development Production (Special Section...continuity logging for oil and gas field applications...from the Antrim Shale gas play, Michigan Basin......

P. C. Leary; W. Ayres; W. J. Yang; X. F. Chang

2005-10-01T23:59:59.000Z

26

Evaluation of naturally fractured gas shale production utilizing multiwell transient tests: A field study  

SciTech Connect

A series of multiple well transient tests were conducted in a Devonian shale gas field in Meigs County, Ohio. Production parameters were quantified and it was determined that the reservoir is highly anisotropic, which is a significant factor in calculating half-fracture length from pressure transient data. Three stimulation treatments, including conventional explosive shooting, nitrogen foam frac, and high energy gas frac (HEGF), were compared on the basis of overall effectiveness and performance. Based on the evaluation of results, the nitrogen foam frac provided the most improved productivity. The study provided new type curves and analytical solutions for the mathematical representation of naturally fractured reservoirs and confirmed that the shale reservoir in Meigs County can be modeled as a dual porosity system using pseudosteady-state gas transfer from the matrix to the fracture system.

Chen, C.C.; Alam, J.; Blanton, T.L.; Vozniak, J.P.

1984-05-01T23:59:59.000Z

27

OIL SHALE  

E-Print Network (OSTI)

Seyitmer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

Fields (in-situ Combustion Approach; M. V. Kk; G. Guner; S. Bagci?

28

Research of Shale Gas in China  

Science Journals Connector (OSTI)

The shale gas is an efficient and abundant energy sources ... field. With the support of our country, shale gas research has very progress. The researchers commenced ... in the early period of 21st century. Shale

Haifeng Chen; Miao He; Bing Han; Zhonglin Li

2013-01-01T23:59:59.000Z

29

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Joint Forum on US Shale Gas & Pacific Gas Markets Joint Forum on US Shale Gas & Pacific Gas Markets May 14, 2013 | New York, NY By Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , May 14, 2013 Domestic production of shale gas has grown dramatically over the past few years Adam Sieminski , May 14, 2013 3 0 5 10 15 20 25 30 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) shale gas production (dry) billion cubic feet per day Sources: LCI Energy Insight gross withdrawal estimates as of March 2013 and converted to dry production estimates with EIA-calculated average gross-to-dry shrinkage factors by state and/or shale play. Shale gas leads growth in total gas production through 2040 to

30

Subtask 1.8 - Investigation of Improved Conductivity and Proppant Applications in the Bakken Formation  

SciTech Connect

Given the importance of hydraulic fracturing and proppant performance for development of the Bakken and Three Forks Formations within the Williston Basin, a study was conducted to evaluate the key factors that may result in conductivity loss within the reservoirs. Various proppants and reservoir rock cores were exposed to several different fracturing and formation fluids at reservoir conditions. The hardness of the rock cores and the strength of the proppants were evaluated prior to and following fluid exposure. In addition, the conductivity of various proppants, as well as formation embedment and spalling, was evaluated at reservoir temperatures and pressures using actual reservoir rock cores. The results of this work suggest that certain fluids may affect both rock and proppant strength, and therefore, fluid exposure needs to be considered in the field. In addition, conductivity decreases within the Bakken Formation appear to be a function of a variety of factors, including proppant and rock strength, as well as formation embedment and spalling. The results of this study highlight the need for advanced conductivity testing, coupled with quantification of formation embedment and spalling. Given the importance of proppant performance on conductivity loss and, ultimately, oil recovery, better understanding the effects of these various factors on proppant and rock strength in the field is vital for more efficient production within unconventional oil and gas reservoirs.

Bethany Kurz; Darren Schmidt; Steven Smith Christopher Beddoe; Corey Lindeman; Blaise Mibeck

2012-07-31T23:59:59.000Z

31

Subsurface horizontal microfracture propagation within the middle member of the Bakken Formation, Williston Basin, North Dakota.  

E-Print Network (OSTI)

??The Devonian-Mississippian Bakken Formation of the Williston basin does not outcrop. All rock samples are obtained by coring. Open, uncemented, horizontal mode I (joints, with (more)

Warner, Travis Blackburn.

2011-01-01T23:59:59.000Z

32

Sensitivity of seismic reflections to variations in anisotropy in the Bakken Formation, Williston Basin, North Dakota.  

E-Print Network (OSTI)

??The Upper DevonianLower Mississippian Bakken Formation in the Williston Basin is estimated to have significant amount of technically recoverable oil and gas. The objective of (more)

Ye, Fang, geophysicist.

2010-01-01T23:59:59.000Z

33

Oil shale technology  

SciTech Connect

Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

1991-01-01T23:59:59.000Z

34

Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock  

SciTech Connect

Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

2011-06-20T23:59:59.000Z

35

A Study of Decline Curve Analysis in the Elm Coulee Field  

E-Print Network (OSTI)

In the last two years, due in part to the collapse of natural gas prices, the oil industry has turned its focus from shale gas exploration to shale oil/tight oil. Some of the important plays under development include the Bakken, Eagle Ford...

Harris, Seth C

2013-08-22T23:59:59.000Z

36

Mineralogy and diagenesis of Gulf Coast Tertiary shales Ann-Mag Field, Brooks County, Texas  

E-Print Network (OSTI)

basins containing sediments of the same age (Bruce, 19S4). Shale dehydration and subsequent fluid movement has also been proposed as a mechanism to redistribute ions and form cements ( Towe, 1962; Boles and pranks, 1979) and authi genic minerals... composition with increasing depth of burial provides evidence of systematic diagenetic conversions (Boles and Franks, 1979; Hower et al. , 1976; Perry and Hower, 1972; Weaver and Beck, 1971; Dunoyer De Segonzac, 1970; Burst, 1969; Powers, 1967). When...

Bott, Winston Frederick

1985-01-01T23:59:59.000Z

37

Bakken and other Devonian-Mississippian petroleum source rocks, northern Rocky Mtns.-Williston basin: Depositional and burial history and maturity estimations  

SciTech Connect

The three-member Devonian-Mississippian Bakken-Exshaw organic-rich shaly facies is widely distributed in the northern U.S. and southern Canadian Cordillera. Equivalent facies are also present as far south as Utah and Nevada. Paleogeographically, these rocks thin markedly or pinchout to the west approximately along the Devonian-Mississippian carbonate reef-mound belt of the Cordilleran shelf margin. Although these rocks reach maximum organic richness approximately at the Devonian-Carboniferous transition, similar but somewhat less organic-rich Bakken-like beds are also present in underlying Upper Devonian and overlying Lower Carboniferous carbonate depositional cycles. At least ten cycles are identified in the underlying Duperow and Jefferson Formations, characterized by basal organic-rich Bakken-like shale or shaly carbonate that grades upward into carbonate mound or reefal beds, overlain by evaporite or solution breccia. Cycles in the overlying Lodgepole and Mission Canyon Formations, as many as 10-12 in number, are similar except that the carbonates are composed of algal-oolith, crinoid, or mixed skeletal beds, and end-cycle evaporitic units are less prevalent in the lower cycles. These dark shaly beds are the most important source of hydrocarbon reserves in Montana and the Williston basin. Maximum net thickness of the Devonian-Mississippian organic-rich facies is in the Williston basin. However, variable thicknesses of these potential source rocks is present in parts of Montana as far west as the thrust belt. Burial history studies suggest that in some areas these rocks are probably thermally immature. However, in much of the area original burial depths are sufficient for them to reach the thermally mature stage, and therefore are of importance to further exploration efforts in the Devonian-Mississippian Madison-Duperow-Jefferson Formations.

Peterson, J.A. [Univ. of Montana, Missoula, MT (United States)

1996-06-01T23:59:59.000Z

38

A chemical kinetic model of hydrocarbon generation from the Bakken Formation, Williston Basin, North Dakota  

SciTech Connect

This report describes a model of hydrocarbon generation and expulsion in the North Dakota portion of the Williston Basin. The modeling incorporates kinetic methods to simulate chemical reactions and 1-dimensional conductive heat flow models to simulate thermal histories of the Mississippian-Devonian Bakken Formation source rock. We developed thermal histories of the source rock for 53 wells in the basin using stratigraphic and heat flow data obtained by the University of North Dakota. Chemical kinetics for hydrocarbon generation, determined from Pyromat pyrolysis, were, then used with the diennal histories to calculate the present day value of the Rock-Eval T{sub max} for each well. The calculated Rock-Eval T{sub max} values agreed with measured values within amounts attributable to uncertainties in the chemical kinetics and the heat flow. These optimized thermal histories were then used with a more detailed chemical kinetic model of hydrocarbon generation and expulsion, modified from a model developed for the Cretaceous La Luna shale, to simulate pore pressure development and detailed aspects of the hydrocarbon chemistry. When compared to values estimated from sonic logs, the pore pressure calculation underestimates the role of hydrocarbon generation and overestimates the role of compaction disequilibrium, but it matches well the general areal extent of pore pressures of 0.7 times lithostatic and higher. The simulated chemistry agrees very well with measured values of HI, PI, H/C atomic ratio of the kerogen, and Rock-Eval S1. The model is not as successful in simulating the amount of extracted bitumen and its saturate content, suggesting that detailed hydrous pyrolysis experiments will probably be needed to further refine the chemical model.

Sweeney, J.J.; Braun, R.L.; Burnham, A.K. [Lawrence Livermore National Lab., CA (United States); Gosnold, W.D. [North Dakota Univ., Grand Forks, ND (United States)

1992-10-01T23:59:59.000Z

39

A comparison of the rates of hydrocarbon generation from Lodgepole, False Bakken, and Bakken formation petroleum source rocks, Williston Basin, USA  

SciTech Connect

Recent successes in the Lodgepole Waulsortian Mound play have resulted in the reevaluation of the Williston Basin petroleum systems. It has been postulated that hydrocarbons were generated from organic-rich Bakken Formation source rocks in the Williston Basin. However, Canadian geoscientists have indicated that the Lodgepole Formation is responsible for oil entrapped in Lodgepole Formation and other Madison traps in portions of the Canadian Williston Basin. Furthermore, geoscientists in the U.S. have recently shown oils from mid-Madison conventional reservoirs in the U.S. Williston Basin were not derived from Bakken Formation source rocks. Kinetic data showing the rate of hydrocarbon formation from petroleum source rocks were measured on source rocks from the Lodgepole, False Bakken, and Bakken Formations. These results show a wide range of values in the rate of hydrocarbon generation. Oil prone facies within the Lodgepole Formation tend to generate hydrocarbons earlier than the oil prone facies in the Bakken Formation and mixed oil/gas prone and gas prone facies in the Lodgepole Formation. A comparison of these source rocks using a geological model of hydrocarbon generation reveals differences in the timing of generation and the required level of maturity to generate significant amounts of hydrocarbons.

Jarvie, D.M.; Elsinger, R.J. [Humble Geochemical Services Division, TX (United States); Inden, R.F. [Lithologic & Stratigraphic Solutions, Denver, CO (United States); Palacas, J.G. [Lakewood, CO (United States)

1996-06-01T23:59:59.000Z

40

Harvard University Job Market Candidates 2013-2014  

E-Print Network (OSTI)

in the Bakken Shale" Fields: Industrial Organization, Energy and Environmental Economics, Finance, Applied Naritomi, Joana (PEG) JMP: "Consumers as Tax Auditors" Fields: Public Finance, Development Economics

Chen, Yiling

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Modeling overpressures in sedimentary basins: Consequences for permeability and rheology of shales, and petroleum expulsion efficiency  

SciTech Connect

The prediction of overpressures using Institut Francais du Petrole's 2-D numerical model TEMISPACK is applied to several provinces of the world. In the Paris basin, France, normally pressured Liassic shales are shown to have permeabilities around a microdarcy, independently confirmed by laboratory measurements. In contrast, in the Norway section of the North Sea, Williston Basin, Canada, Gulf Coast, and in the Mahakam delta, observed overpressures of 10-50 MPa are consistently modeled with shale permeabilities around 1-10 nanodarcys. This theoretical value fits well with the lowest permeability measured in compacted shales. For these basins, compaction disequilibrium was found to explain most (>85%) of the overpressures. The only exception was the Williston basin in which overpressures observed in the organic-rich Bakken shales are entirely due to hydrocarbon generation. In Mahakam delta, the rheology of shales is nonlinear, i.e., the strength of shales increases rapidly with death. Consequently, shale compaction cannot be described by the linear behavior often assumed in hydrology. In the absence of fault barriers, numerical simulations and geological evidence suggest that overpressured source rocks have low or very low expulsion efficiency, irrespective of their organic content. However, shales with a permeability on the order of a microdarcy do not hinder petroleum migration.

Burrus, J.; Schneider, F.; Wolf, S. (Institut Francais du Petrole, Rueil-Malmaison (France))

1994-07-01T23:59:59.000Z

42

Field-scale acoustic investigation of a damaged anisotropic shale during a gallery excavation  

Science Journals Connector (OSTI)

In the Opalinus Clay formation at the Mont Terri Underground Rock Laboratory, the gallery Ga08 was excavated in August 2008 to join the end-face of the pre-existing gallery Ga04. The aim of the present work was to perform in situ acoustic experiments to monitor the evolution of the Excavation Damaged Zone (EDZ) induced during the gallery construction. The end-face of Ga04 was instrumented with two arrays of acoustic transducers allowing for the active and passive seismic monitoring, i.e. acoustic survey and micro-seismicity. From the acoustic survey data, which required a high energy acoustic source to emit high frequency signals (21, 25, 31 and 38kHz), the rock mass was observed to be anisotropic and heterogeneous at the scale of the experiment. P-wave velocities were determined to be, in average, between 3300m/s along a structural bedding plane, and 2700m/s at ? ? 70 incidence relative to that. Assuming a transversely isotropic shale formation, the P-wave velocity dependence versus ? was modeled using Thomsen's Weak Transverse Isotropy model (Thomsen, 1986) [36]. Thomsen's P-wave anisotropy parameter was found to be ? ? 0.15 , and the fifth Thomsen's parameter controlling the deviation of the wave front from an ellipsoidal geometry was found to be ? ? 0.16 . The S-wave velocity was estimated along a single direction of aligned receivers and turned out to be around 1560m/s at ? ? 30 . We also show that the rock mass acts as a frequency filter for acoustic waves, related to the rock mass heterogeneities, i.e. the inter-bedding structure, which induces wave scattering and refraction. From the micro-seismicity data, we identified a large number of micro-seismic events (MSEs) detected on the acoustic arrays during and following the excavation. Most of the \\{MSEs\\} were induced on the excavated face but we also located some \\{MSEs\\} inside the rock mass itself. We show that these events are located close to a major fault, which seems to be reactivated by the excavation process.

Y. Le Gonidec; A. Schubnel; J. Wassermann; D. Gibert; C. Nussbaum; B. Kergosien; J. Sarout; A. Maineult; Y. Guguen

2012-01-01T23:59:59.000Z

43

Terry sandstone member of the Pierre Shale, Upper Cretaceous, Spindle field, Denver Basin, Colorado  

E-Print Network (OSTI)

are not shown. Cores were examined from the circled wells Electric and density log character of Terry sand- stones in the productive interval, Amoco Rocky Mountain E-4, Spindle Field, showing response of depositional units. The basal stratigraphic marker... occurs at 4774 ft (1455. 1 m). Sedimentary structures of Terry sandstones, Amoco Rocky Mountain E-4, Spindle Field. Compositional and textural haracteristics of the Terry sandstone as seen in the Amoco Rocky Mountain E-4, Spindle Field...

Helsley, Robert James

1985-01-01T23:59:59.000Z

44

Estimation of the anisotropy parameters of transversely isotropic shales with a tilted symmetry axis  

Science Journals Connector (OSTI)

......spherical and cylindrical anisotropic shale samples. Seismic anisotropy...anisotropy in saturated shale, Geophys. J. Int...pulse-transmission experiments yield anisotropic group or phase velocities...and stress field on shale anisotropy, Geophys......

Dariush Nadri; Jol Sarout; Andrej Bna; David Dewhurst

2012-08-01T23:59:59.000Z

45

Shale gas: Opportunities and challenges  

Science Journals Connector (OSTI)

...in Mexicali Valley, Mexico and fluid extraction...2012, Americas new energy future: The unconventional...a/americas-new-energy-future.aspx . Jamtveit...advancing regulatory reforms: A two-state review...in the Bakken play, Energy and Environmental Research...

Paul Meakin; Hai Huang; Anders Malthe-Srenssen; Kjetil Thgersen

46

The elastic anisotrophy of shales  

SciTech Connect

Shales constitute about 75% of the clastic fill sedimentary basins and have a decisive effect on fluid flow and seismic wave propagation because of their low permeability and anisotropic microstructure. The elastic stiffnesses of a shale with partially oriented clay particles is expressed in terms of the coefficients W(sub lmn) in an expansion of the clay-particle orientation distribution function in generalized Legendre functions. Application is made to the determination of the anellipticity of shales. For transverse isotrophy the anellipticity quantifies the deviation of the P wave slowness curve from an ellipse and is shown to depend on a single coefficient W(sub 400) in the expansion of the clay-particle orientation distribution function. If W(sub 400) is small, the anellipticity may be neglected, as is apparently the case for a near-surface late Tertiary shale studied by Winterstein and Paulson. Strongly aligned clay particles result in a positive value of W(sub 400) and a positive anellipticity, in agreement with the majority of the field measurements. However, less well ordered shales could have a significantly positive second moment W(sub 200) but only a small positive or even negative value of W(sub 400). For such shales the anellipticity would be small or negative despite a preferred alignment of clay particles in the bedding plane. Numerical examples of clay particle orientation distribution functions leading to zero or negative anellipticity are given.

Sayers, C.M. [Schlumberger Cambridge Research, Cambridge (United Kingdom)] [Schlumberger Cambridge Research, Cambridge (United Kingdom)

1994-01-01T23:59:59.000Z

47

Chemostratigraphy And Geochemical Constraints On The Deposition Of The Bakken Formation, Williston Basin, Eastern Montana And Western North Dakota.  

E-Print Network (OSTI)

??Rowe, Harold The late Devonian-early Mississippian Bakken Formation was deposited in a structural-sedimentary intracratonic basin that extends across a large part of modern day North (more)

Maldonado, David Nyrup

2013-01-01T23:59:59.000Z

48

Chemostratigraphy And Geochemical Constraints On The Deposition Of The Bakken Formation, Williston Basin, Eastern Montana And Western North Dakota.  

E-Print Network (OSTI)

??Rowe, Harold The late Devonian-early Mississippian Bakken Formation was deposited in a structural-sedimentary intracratonic basin that extends across a large part of modern day North (more)

Maldonado, David Nyrup

2014-01-01T23:59:59.000Z

49

Red Leaf Resources and the Commercialization of Oil Shale  

E-Print Network (OSTI)

Red Leaf Resources and the Commercialization of Oil Shale #12;About Red Leaf Resources 2006 Company commercial development field activities #12;Highlights Proven, Revolutionary Oil Shale Extraction Process Technology Significant Owned Oil Shale Resource #12;· The executive management team of Red Leaf Resources

Utah, University of

50

Apparatus for distilling shale oil from oil shale  

SciTech Connect

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

51

Fracture-enhanced porosity and permeability trends in Bakken Formation, Williston basin, western North Dakota  

SciTech Connect

Fractures play a critical role in oil production from the Bakken Formation (Devonian and Mississippian) in the North Dakota portion of the Williston basin. The Bakken Formation in the study area is known for its low matrix porosity and permeability, high organic content, thermal maturity, and relative lateral homogeneity. Core analysis has shown the effective porosity and permeability development within the Bakken Formation to be related primarily to fracturing. In theory, lineaments mapped on the surface reflect the geometry of basement blocks and the zones of fracturing propagated upward from them. Fracturing in the Williston basin is thought to have occurred along reactivated basement-block boundaries in response to varying tectonic stresses and crustal flexure throughout the Phanerozoic. Landsat-derived lineament maps were examined for the area between 47/degrees/ and 48/degrees/ north lat. and 103/degrees/ and 104/degrees/ west long. (northern Billings and Golden Valley Counties, and western McKenzie County, North Dakota) in an attempt to identify large-scale fracture trends. In the absence of major tectonic deformation in the craton, a subtle pattern of fracturing has propagated upward through the sedimentary cover and emerged as linear topographic features visible on these large-scale, remote-sensed images.

Freisatz, W.B.

1988-07-01T23:59:59.000Z

52

What is shale gas? | Department of Energy  

Office of Environmental Management (EM)

What is shale gas? What is shale gas? What is shale gas? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary How is shale gas produced?...

53

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network (OSTI)

temperature, type of shale and oil content of shale iscontent of the shale, and shale oil content of the rock cantemperatures. Lean and Rich Shale Oil shales vary in their

Bellman Jr., R.

2012-01-01T23:59:59.000Z

54

Shale Gas Glossary | Department of Energy  

Office of Environmental Management (EM)

Glossary Shale Gas Glossary Shale Gas Glossary More Documents & Publications Natural Gas from Shale: Questions and Answers Modern Shale Gas Development in the United States: A...

55

Macrodispersion in sand-shale sequences  

SciTech Connect

Macrodispersion in sand-shale sequences is investigated by a series of numerical tracer tests. Hydraulic conductivity is modeled as a binary, spatially correlated random function. Realizations of the random conductivity field are simulated on a nodal grid discretizing the heterogeneous formation. Corresponding realizations of the random velocity field are obtained by solving the equation for saturated steady state flow. Particle tracking, with flux-weighted tracer injection and detection, is used to generate experimental residence time distributions (RTDs). Moments of the RTD are used to characterize longitudinal tracer spreading. Results show that macrodispersive transport in sand-shale sequences cannot be represented by a Fickian model. RTDs display a bimodal structural caused by the fast arrival of particles traveling along preferential sandstone and shale. The relative importance of channeling and tortuous flow transport mechanisms is determined by sand-shale conductivity contrast, shale volume fraction, and conductivity spatial correlation structure. Channeling is promoted by high conductivity contrasts, low shale fractions, and flow parallel to bedding in anisotropic media. Low contrasts, high shale fractions, and flow perpendicular to bedding act to break up channels and to enhance tracer spreading.

Desbarats, A.J. (Geological Survey of Canada, Ottawa, Ontario (Canada))

1990-01-01T23:59:59.000Z

56

Studies of New Albany shale in western Kentucky. Final report  

SciTech Connect

The New Albany (Upper Devonian) Shale in western Kentucky can be zoned by using correlative characteristics distinguishable on wire-line logs. Wells drilled through the shale which were logged by various methods provided a basis for zonation of the subsurface members and units of the Grassy Creek, Sweetland Creek, and Blocher. Structure and isopach maps and cross sections were prepared. The Hannibal Shale and Rockford Limestone were found in limited areas; isopach maps were not made for these members. Samples of cuttings from selected wells were studied in order to identify the contact of the shale with underlying and overlying rock units. A well-site examination of cuttings through the shale section was conducted, and the presence of natural gas was observed in the field. The New Albany Shale has the potential for additional commercially marketable natural gas production. Exploratory drilling is needed to evaluate the reservoir characteristics of the New Albany Shale.

Schwalb, H.R.; Norris, R.L.

1980-02-01T23:59:59.000Z

57

Oil shale retorted underground  

Science Journals Connector (OSTI)

Oil shale retorted underground ... Low-temperature underground retorting of oil shale produces a crude oil with many attractive properties, Dr. George R. Hill of the University of Utah told a meeting of the American Institute of Mining, Metallurgical, and Petroleum Engineers last week in Los Angeles. ... Typical above-ground retorting of oil shale uses temperatures of 900 to 1100 F. because of the economic need ... ...

1967-02-27T23:59:59.000Z

58

Shale Gas Hydraulic Fracturing in the Dutch Posidonia Shale:.  

E-Print Network (OSTI)

??Recently the oil and gas industry is looking at the Posidonia shale in the Dutch subsurface for production of the unconventional shale gas. This is (more)

Janzen, M.R.

2012-01-01T23:59:59.000Z

59

Shale Gas 101  

Energy.gov (U.S. Department of Energy (DOE))

This webpage has been developed to answer the many questions that people have about shale gas and hydraulic fracturing (or fracking). The information provided below explains the basics, including what shale gas is, where its found, why its important, how its produced, and challenges associated with production.

60

Why is shale gas important? | Department of Energy  

Office of Environmental Management (EM)

Why is shale gas important? Why is shale gas important? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary How is shale gas...

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

How is shale gas produced? | Department of Energy  

Office of Environmental Management (EM)

How is shale gas produced? How is shale gas produced? How is shale gas produced? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary...

62

Los Alamos environmental activities/oil shale effluents  

SciTech Connect

The objectives of this research are to determine the nature, magnitude, and time dependence of the major and trace element releases as functions of the raw shale mineralogy, retorting conditions, and spent shale mineral assemblages. These experimental studies will focus on retorting variable regimes characteristic of most retorting processes. As an adjunct objective, the relation of laboratory results to those obtained from both bench-scale and pilot-scale retorts, when both have been operated under similar retorting conditions, will be defined. The goal is to develop a predictive capability for spent shale chemistry as a function of the raw material feedstock and process parameters. Key accomplishments follow: completed an overview of health, environmental effects, and potential ''show stoppers'' in oil shale development; elucidated the importance of both raw material and process in the identity and behavior of spent shale wastes (Occidental raw and spent shales from the Logan Wash site); completed a balanced factorial design experiment to investigate the influence of shale type, temperature, and atmosphere on spent shale behavior; compared the behavior of spent shales from laboratory experiments with shales generated from MIS retorting by OOSI at Logan Wash, Colorado; completed a study of the partitioning of minerals, inorganics, and organics as a function of particle size in a raw shale from Anvil Points, Colorado; evaluated the application of the Los Alamos nuclear microprobe to the characterization of trace element residences in shale materials; established the use of chemometrics as a major tool for evaluating large data bases in oil shale research and for relating field and laboratory results; conceptualized and evaluated experimentally a multistaged leaching control for abandonment of underground retorts; and coordinated activities with other DOE laboratories, industry laboratories, and universities. 13 refs., 1 fig., 2 tabs.

Peterson, E.J.

1985-01-01T23:59:59.000Z

63

Technically recoverable Devonian shale gas in Kentucky  

SciTech Connect

This report evaluates the natural gas potential of the Devonian Age shales of Kentucky. For this, the study: (1) compiles the latest geologic and reservoir data to establish the gas in-place; (2) analyzes and models the dominant gas production mechanisms; and (3) examines alternative well stimulation and production strategies for most efficiently recovering the in-place gas. The major findings of the study include the following: (1) The technically recoverable gas from Devonian shale (Lower and Upper Huron, Rhinestreet, and Cleveland intervals) in Kentucky is estimated to range from 9 to 23 trillion cubic feet (Tcf). (2) The gas in-place for the Devonian shales in eastern Kentucky is 82 Tcf. About one half of this amount is found in the Big Sandy gas field and its immediate extensions. The remainder is located in the less naturally fractured, but organically rich area to the west of the Big Sandy. (3) The highly fractured shales in the Big Sandy area in southeast Kentucky and the more shallow shales of eastern Kentucky respond well to small-scale stimulation. New, larger-scale stimulation technology will be required for the less fractured, anisotropic Devonian shales in the rest of the state. 44 refs., 49 figs., 24 tabs.

Kuuskraa, V.A.; Sedwick, K.B.; Thompson, K.B.; Wicks, D.E.

1985-05-01T23:59:59.000Z

64

Oil shale research in China  

SciTech Connect

There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

1989-01-01T23:59:59.000Z

65

Shale Gas Development Challenges: Fracture Fluids | Department...  

Office of Environmental Management (EM)

Fluids Shale Gas Development Challenges: Fracture Fluids More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary FracFocus 2.0 Task Force...

66

Shale gas - what happened? | Department of Energy  

Office of Environmental Management (EM)

seems like shale gas came out of nowhere - what happened? More Documents & Publications Natural Gas from Shale: Questions and Answers Natural Gas from Shale Challenges associated...

67

Shale Gas Development Challenges: Surface Impacts | Department...  

Office of Environmental Management (EM)

Impacts Shale Gas Development Challenges: Surface Impacts More Documents & Publications Natural Gas from Shale: Questions and Answers Challenges associated with shale gas...

68

Challenges associated with shale gas production | Department...  

Office of Environmental Management (EM)

What challenges are associated with shale gas production? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Development Challenges: Air...

69

Shale Gas Development Challenges: Earthquakes | Department of...  

Office of Environmental Management (EM)

Shale Gas Development Challenges: Induced Seismic Events More Documents & Publications Natural Gas from Shale: Questions and Answers Challenges associated with shale gas...

70

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

during oil shale retorting: retort water and gas condensate.commercial oil shale plant, retort water and gas condensateunique to an oil shale retort water, gas condensate, and

Fox, J.P.

2010-01-01T23:59:59.000Z

71

Characterization of interim reference shales  

SciTech Connect

Measurements have been made on the chemical and physical properties of two oil shales designated as interim reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Anvil Points mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, kerogen concentrates, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. The measured properties of the interim reference shales are comparable to results obtained from previous studies on similar shales. The western interim reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern interim reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the interim reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. The experimental determination of many of the shale oil properties was beyond the scope of this study. Therefore, direct comparison between calculated and measured values of many properties could not be made. However, molecular weights of the shale oils were measured. In this case, there was poor agreement between measured molecular weights and those calculated from API and other published correlations. 23 refs., 12 figs., 15 tabs.

Miknis, F.P.; Sullivan, S.; Mason, G.

1986-03-01T23:59:59.000Z

72

Production of Shale Oil  

E-Print Network (OSTI)

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...

Loper, R. D.

1982-01-01T23:59:59.000Z

73

Statistical model for source rock maturity and organic richness using well-log data, Bakken Formation, Williston basin, United States  

SciTech Connect

A study of the Bakken Formation, the proposed source rock for much of the hydrocarbons generated in the Williston basin, was done using bulk density, neutron porosity, and resistivity logs, and formation temperatures. Principal components, cluster, and discriminant analyses indicate that the present-day distribution of organic matter controls much of the variability in the log values. Present-day total organic carbon values are high in the central part of the basin near northeastern Montana and along the east edge of the basin, and low in the area of the Nesson anticline and along the southwest edge of the basin. Using a regression of density on temperature and the analysis of residuals from this regression, hydrocarbon maturity effects were partially separated from depositional effects. These analyses suggest that original concentrations of organic matter were low near the limits of the Bakken and increased to a high in northeastern Montana. The pre-maturation distribution of total organic carbon and the present-day total organic carbon distribution, as determined by statistical analyses of well-log data, agree with the results of geochemical analyses. The distributions can be explained by a relatively simple depositional pattern and thermal history for the Bakken. 6 figures, 3 tables.

Krystinik, K.B.; Charpentier, R.R.

1987-01-01T23:59:59.000Z

74

Thermomechanical properties of selected shales  

SciTech Connect

The experimental work discussed in this report is part of an ongoing program concerning evaluation of sedimentary and other rock types as potential hosts for a geologic repository. The objectives are the development of tools and techniques for repository characterization and performance assessment in a diversity of geohydrologic settings. This phase of the program is a laboratory study that investigates fundamental thermomechanical properties of several different shales. Laboratory experiments are intrinsically related to numerical modeling and in situ field experiments, which together will be used for performance assessment.

Hansen, F.D.; Vogt, T.J.

1987-08-01T23:59:59.000Z

75

Carcinogenicity Studies of Estonian Oil Shale Soots  

E-Print Network (OSTI)

determine the carcinogenicity of Estonian oil shale soot as well as the soot from oil shale fuel oil. All

A. Vosamae

76

January 20, 2011 Marcellus Shale 101  

E-Print Network (OSTI)

. Will oil shale be viable as well? Oil shale will not be economically viable anytime in the near future

Hardy, Christopher R.

77

Generic Argillite/Shale Disposal Reference Case  

E-Print Network (OSTI)

of eastern Devonian gas shale: Society of PetroleumShale Disposal Reference Case August 2014 Borehole activity: Oil and gas

Zheng, Liange

2014-01-01T23:59:59.000Z

78

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network (OSTI)

products, percent: Oil Gas Spent Shale TOTAL Average tracecontent of the gases for the lean shale exceeded that for

Bellman Jr., R.

2012-01-01T23:59:59.000Z

79

Shale Gas R&D  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas from shales has the potential to significantly increase Americas security of energy supply, reduce greenhouse gas emissions, and lower prices for consumers. Although shale gas has been...

80

Process for oil shale retorting  

DOE Patents (OSTI)

Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

1981-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nineteenth oil shale symposium proceedings  

SciTech Connect

This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

Gary, J.H.

1986-01-01T23:59:59.000Z

82

Oil shale retort apparatus  

DOE Patents (OSTI)

A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

1990-01-01T23:59:59.000Z

83

Oil shale: Technology status report  

SciTech Connect

This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

Not Available

1986-10-01T23:59:59.000Z

84

Probabilistic Performance Forecasting for Unconventional Reservoirs With Stretched-Exponential Model  

E-Print Network (OSTI)

and Montana's Elm Coulee field producing from the Bakken oil shale (400 wells). This section aims to present the utility of proposed methodology for assessing reserves in tight gas and oil reservoirs. The overall results are presented in Table 4...

Can, Bunyamin

2011-08-08T23:59:59.000Z

85

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

Mineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. LivermoreEffects Lawrence of Steam on Oil Shale Retorting: Livermore

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

86

Natural Gas from Shale: Questions and Answers | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale: Questions and Answers Natural Gas from Shale: Questions and Answers Natural Gas from Shale: Questions and Answers More Documents & Publications Shale Gas Development...

87

Solar retorting of oil shale  

DOE Patents (OSTI)

An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

88

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

89

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

90

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

for the grout. SPENT SHALE Oil shale, which is a low-gradeMineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. Livermore

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

91

I. Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment I. CANADA SUMMARY  

E-Print Network (OSTI)

by this resource study. Figure I-1 illustrates certain of the major shale gas and shale oil basins in

unknown authors

92

The twentieth oil shale symposium proceedings  

SciTech Connect

This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

Gary, J.H.

1987-01-01T23:59:59.000Z

93

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA) Indexed Site

Technically Recoverable Shale Oil and Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 June 2013 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources 1 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

94

Horizontal low-void retorting of eastern and western oil shale  

SciTech Connect

Horizontal in situ retorting processes have been developed to recover oil from thin, shallow oil shale deposits. To date the most successful field tests have been conducted in Green River oil shale located in Utah. Consideration is being given to applying this technology to the New Albany oil shales in Indiana. Western Research Institute (WRI) conducted two horizontal in situ oil shale experiments using eastern oil shale and the results are compared with results obtained from a similar experiment using Green River oil shale. The objectives of the three experiments were to simulate the horizontal retorting process and determine oil yield, retorting zone profiles and product characteristics using alternative operating conditions for eastern and western oil shales. The tests proved that horizontal retorting could be simulated in the laboratory. However, air bypass problems occurred in the experiments, which probably reduced oil recovery compared with recovery from field tests. During the eastern oil shale tests plugging was encountered in the gas recovery system because of the production of a solid material containing sulfur compounds. This plugging could be a potential problem for future laboratory and field experimentation. The oil produced from eastern oil shale has different properties from western shale oil. The oil is highly aromatic and when hydrogenated may yield a prototype high density jet fuel. 10 refs., 8 figs., 11 tabs.

Fahy, L.J.

1986-02-01T23:59:59.000Z

95

Deep, water-free gas potential is upside to New Albany shale play  

SciTech Connect

The New Albany shale of the Illinois basin contains major accumulations of Devonian shale gas, comparable both to the Antrim shale of the Michigan basin and the Ohio shale of the Appalachian basin. The size of the resource originally assessed at 61 tcf has recently been increased to between 323 tcf and 528 tcf. According to the 1995 US Geological Survey appraisal, New Albany shale gas represents 52% of the undiscovered oil and gas reserves of the Illinois basin, with another 45% attributed to coalbed methane. New Albany shale gas has been developed episodically for over 140 years, resulting in production from some 40 fields in western Kentucky, 20 fields in southern Indiana, and at least 1 field in southern Illinois. The paper describes two different plays identified by a GRI study and prospective areas.

Hamilton-Smith, T. [Hamilton-Smith LLC, Lexington, KY (United States)

1998-02-16T23:59:59.000Z

96

Barriers to the development of China's shale gas industry  

Science Journals Connector (OSTI)

Abstract Shale gas has become a promising onshore energy prospect in China. As much as the country aspires for greater energy independence through the use of its shale gas reserves, this process is slowed down by the combined weight of relative inexperience, lack of technology, geographical complexity, a hostile economic environment, a disincentive pipeline regime, and a complex land ownership system. To foster a better understanding of the current circumstances of the country's shale gas sector, a panel of scholars and experts shared their perspectives and insider knowledge on China's shale gas industry. It was found that some of the country's man-made institutional barriers are factors that have been hindering shale gas development in China, in addition to natural conditions such as water concerns and the complex geography of shale fields. Resolving this situation necessitates breaking the monopoly that major state-owned oil companies have over high-quality shale gas resources, opening pipeline network access, providing geological data, developing the domestic oil service market, creating conditions for fair competition between service providers, and improving the water management system.

Zheng Wan; Tao Huang; Brian Craig

2014-01-01T23:59:59.000Z

97

Shale oil recovery process  

DOE Patents (OSTI)

A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

Zerga, Daniel P. (Concord, CA)

1980-01-01T23:59:59.000Z

98

Shale Gas and Hydrofracturing  

Science Journals Connector (OSTI)

Advances in horizontal drilling technology and hydrofracturing allow natural gas to escape from shale formations following high pressure treatment, i.e. fracking with sand, water and chemicals. ... With fracking, natural gas prices have remained low at less than $2.50 per million BTU. ... Fracking chemicals, petrochemicals, and metals and radionuclides from source rock cause major environmental burdens if not properly treated or deep-injected. ...

Jerald L. Schnoor

2012-04-05T23:59:59.000Z

99

AVESTAR® - Shale Gas Processing (SGP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Shale Gas Processing (SGP) Shale Gas Processing (SGP) SPG The shale gas revolution is transforming America's energy landscape and economy. The shale gas boom, including the Marcellus play in Appalachia, is driving job creation and investment in the energy sector and is also helping to revive other struggling sectors of the economy like manufacturing. Continued growth in domestic shale gas processing requires that energy companies maximize the efficiency and profitability from their operations through excellent control and drive maximum business value from all their plant assets, all while reducing negative environmental impact and improving safety. Changing demographics and rapidly evolving plant automation and control technologies also necessitate training and empowering the next-generation of shale gas process engineering and

100

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

is in intimate contact with oil and shale during In in-situin contact with the oil and shale. These methods and othersWaters from Green River Oil Shale," Chem. and Ind. , 1. ,

Fox, J.P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

T-matrix approach to shale acoustics  

Science Journals Connector (OSTI)

......when modelling the anisotropic elastic properties of a perfect shale. One of the reviewers...aligned cracks in anisotropic shales can dramatically...J.A., 1994. Anisotropic effective medium...elastic properties of shales, Geophysics, 59......

Morten Jakobsen; John A. Hudson; Tor Arne Johansen

2003-08-01T23:59:59.000Z

102

Case Study: Shale Bings in Central  

E-Print Network (OSTI)

and oil shale was widespread. The extraction of oil from shales began in the 1850s and developed within the region that the oil-shale bings constitute one of the eight main habi- tats in West Lothian

103

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalSimulated effects of oil-shale development on the hydrology

Mehta, P.K.

2013-01-01T23:59:59.000Z

104

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

105

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network (OSTI)

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

Bellman Jr., R.

2012-01-01T23:59:59.000Z

106

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

Fox, J.P.

2010-01-01T23:59:59.000Z

107

Little Knife field - US Williston basin  

SciTech Connect

Little Knife field is a combination structural and stratigraphic trap located near the structural center of the Williston basin, North Dakota. The field is approximately 12 mi (19.3 km) long and 2.5 to 5.5 mi (4 to 8.9 km) wide. Little Knife was discovered by Gulf Oil in 1976 as part of a regional exploration play involving a transition from impermeable to porous carbonate rocks. In 1987, ultimate recovery from the Mission Canyon (Mississippian) reservoir was estimated to be 97.5 MMBO. This included 57.5 MMBO primary, 27 MMBO secondary, and 13 MMBO tertiary (CO{sub 2}) oil. At present the field is still under primary recovery, since utilization efforts have not been successful. Approximately one-third of Little Knife's 130 ft (39.6 m) oil column is trapped by structural closure beneath a regional anhydrite seal in a north-south-trending anticline. The remaining two-thirds of the oil column is trapped where the reservoir beds change facies from porous dolostones and dolomitic limestones to nonporous limestones. Structural entrapment accounts for approximately 50% (127 MMBO) of the OOIP, but covers only 30% of the producing area. Production is from the upper portions of the Mission Canyon Formation, a regressive, shoaling-upward carbonate-anhydrite sequence deposited in a slowly shrinking epeiric sea. The Mission Canyon in the Little Knife area is divided into six zones that record predominantly cyclic, subtidal deposition. These are overlain by prograding lagoonal, tidal flat, and sabkha beds. The source of Mission Canyon oil is thought to be the Bakken Formation, an organic-rich shale at the base of the Mississippian.

Wittstrom, M.D.; Lindsay, R.F. (Chevron USA, Inc., Midland, TX (United States))

1991-03-01T23:59:59.000Z

108

Geologic analysis of Devonian Shale cores  

SciTech Connect

Cleveland Cliffs Iron Company was awarded a DOE contract in December 1977 for field retrieval and laboratory analysis of cores from the Devonian shales of the following eleven states: Michigan, Illinois, Indiana, Ohio, New York, Pennsylvania, West Virginia, Maryland, Kentucky, Tennessee and Virginia. The purpose of this project is to explore these areas to determine the amount of natural gas being produced from the Devonian shales. The physical properties testing of the rock specimens were performed under subcontract at Michigan Technological University (MTU). The study also included LANDSAT information, geochemical research, structural sedimentary and tectonic data. Following the introduction, and background of the project this report covers the following: field retrieval procedures; laboratory procedures; geologic analysis (by state); references and appendices. (ATT)

none,

1982-02-01T23:59:59.000Z

109

Apparatus for oil shale retorting  

DOE Patents (OSTI)

A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

1986-01-01T23:59:59.000Z

110

Methane adsorption on Devonian shales  

E-Print Network (OSTI)

important regional source of natural gas. In addition to the free gas which is located in the pore space and the natural fractures of the shales, the natural gas is also stored iu the shale matrix as an adsorbed state; therefore, these shales... are considered an uuconvcsstional gas us(. rvo(r. 8('hfle it is estimated tlrat, the adsorbed phas( may account, I'or morc thau half of the total gas content of th(. Devonian shales, very I'ew studi( s hav( been done on this topic, arrcl few measured data...

Li, Fan-Chang

2012-06-07T23:59:59.000Z

111

Oil shale - Heir to the petroleum kingdom  

Science Journals Connector (OSTI)

Oil shale - Heir to the petroleum kingdom ... A discussion of oil shale provides students with real-world problems that require chemical literacy. ...

Y. Schachter

1983-01-01T23:59:59.000Z

112

Oil shale: The environmental challenges III  

SciTech Connect

This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

Petersen, K.K.

1983-01-01T23:59:59.000Z

113

Optimising the Use of Spent Oil Shale.  

E-Print Network (OSTI)

??Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and high quality, and could (more)

FOSTER, HELEN,JANE

2014-01-01T23:59:59.000Z

114

Shale Reservoir Characterization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil & Gas » Shale Gas » Shale Reservoir Oil & Gas » Shale Gas » Shale Reservoir Characterization Shale Reservoir Characterization Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Gas-producing shales are predominantly composed of consolidated clay-sized particles with a high organic content. High subsurface pressures and temperatures convert the organic matter to oil and gas, which may migrate to conventional petroleum traps and also remains within the shale. However, the clay content severely limits gas and fluid flow within the shales. It is, therefore, necessary to understand the mineral and organic content, occurrence of natural fractures, thermal maturity, shale volumes, porosity

115

Shale Play Industry Transportation Challenges,  

E-Print Network (OSTI)

in excess of 50 MMT/Yr. · Life of current Shale Oil & Gas explora-on trend ­ High volume commodi-es flows in and out of shale plays · Sand In....Oil Demand and Supply Factors ­Gas and Oil Commodity Pricing ­Finite Demand ­Rapid

Minnesota, University of

116

Expansion of the commercial output of Estonian oil shale mining and processing  

SciTech Connect

Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

1996-09-01T23:59:59.000Z

117

Oil shale, tar sands, and related materials  

SciTech Connect

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

118

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Glossary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glossary Glossary Acquifer - A single underground geological formation, or group of formations, containing water. Antrim Shale - A shale deposit located in the northern Michigan basin that is a Devonian age rock formation lying at a relatively shallow depth of 1,000 feet. Gas has been produced from this formation for several decades primarily via vertical, rather than horizontal, wells. The Energy Information Administration (EIA) estimates the technically recoverable Antrim shale resource at 20 trillion cubic feet (tcf). Appalachian Basin - The geological formations that roughly follow the Appalachian Mountain range and contain

119

Oil Shale Research in the United States  

Energy.gov (U.S. Department of Energy (DOE))

Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public Agencies

120

Favorable conditions noted for Australia shale oil  

SciTech Connect

After brief descriptions of the Rundle, Condor, and Stuart/Kerosene Creek oil shale projects in Queensland, the competitive advantages of oil shale development and the state and federal governments' attitudes towards an oil shale industry in Australia are discussed. It is concluded that Australia is the ideal country in which to start an oil shale industry.

Not Available

1986-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Bureau of Land Management Oil Shale Development  

E-Print Network (OSTI)

Bureau of Land Management Oil Shale Development Unconventional Fuels Conference University of Utah May 17, 2011 #12;#12;Domestic Oil Shale Resources Primary oil shale resources in the U.S. are in the Green River Formation in Wyoming, Utah, and Colorado. 72 % of this oil shale resource is on Federal

Utah, University of

122

Fire and explosion hazards of oil shale  

SciTech Connect

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

Not Available

1989-01-01T23:59:59.000Z

123

NATURAL GAS FROM SHALE: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Where is shale gas found Where is shale gas found in the United States? Shale gas is located in many parts of the United States. These deposits occur in shale "plays" - a set of discovered, undiscovered or possible natural gas accumulations that exhibit similar geological characteristics. Shale plays are located within large-scale basins or accumulations of sedimentary rocks, often hundreds of miles across, that also may contain other oil and gas resources. 1 Shale gas production is currently occurring in 16 states. 1 U.S. Government Accountability Office, Report to Congressional Requesters, "Oil and Gas: Information on Shale Resources, Development, and

124

Oil shale retorting method and apparatus  

SciTech Connect

Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

York, E.D.

1983-03-22T23:59:59.000Z

125

Carbon sequestration in depleted oil shale deposits  

SciTech Connect

A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

Burnham, Alan K; Carroll, Susan A

2014-12-02T23:59:59.000Z

126

Interior acts on oil shale  

Science Journals Connector (OSTI)

Interior acts on oil shale ... The Interior Department has taken the first step to open up the vast oil-shale deposits on public lands. ... According to Secretary of the Interior Stewart L. Udall, the new program is designed to encourage competition in developing oil-shale resources, prevent speculation and windfall profits, promote mining operation and production practices that are consistent with good conservation management, encourage the fullest use of the resources, and provide reasonable revenues to the states and to the Federal Government. ...

1967-02-06T23:59:59.000Z

127

Shale Gas Development Challenges: Water | Department of Energy  

Office of Environmental Management (EM)

Challenges: Water Shale Gas Development Challenges: Water More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Development Challenges: Fracture...

128

Shale Gas Development Challenges: Air | Department of Energy  

Office of Environmental Management (EM)

Challenges: Air Shale Gas Development Challenges: Air More Documents & Publications Natural Gas from Shale: Questions and Answers Challenges associated with shale gas...

129

Oil Shale and Other Unconventional Fuels Activities | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on...

130

Eastern shale hydroretorting  

SciTech Connect

The overall objective of the Bench-Scale Unit (BSU) test program was to determine the effects of major process variables on conversion of organic carbon, yields and properties of oil and gas and consumption of hydrogen for hydroretorting of a specific Indiana New Albany shale. A preliminary error-propagation analysis was performed to identify possible improvements in BSU measurements that could lead to better overall material and elemental balances. A list of additional potential sources of uncertainty (primarily due to the operating procedures used) was compiled. Based on the identification of these possible sources of uncertainty, additional equipment was ordered and installed and existing operating procedures and calculation methods were modified. The result was excellent overall material balance closures (100% +/- 1%).

Roberts, M.J.; Feldkirchner, H.L.; Punwani, D.V.; Rex, R.C. Jr.

1984-01-01T23:59:59.000Z

131

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

pore-volume study of retorted oil shale," Lawrence Livermoreits contact with the oil and shale. The gas condensate, onkinetics between and oil-shale residual carbon. 1. co Effect

Fox, J.P.

2013-01-01T23:59:59.000Z

132

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

pore-volume study of retorted oil shale," Lawrence Livermorekinetics between and oil-shale residual carbon. 1. co Effectkinetics between and oil-shale residual carbon. 2. co 2

Fox, J.P.

2013-01-01T23:59:59.000Z

133

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

pore-volume study of retorted oil shale," Lawrence LivermoreReaction kinetics between and oil-shale residual carbon. 1.Reaction kinetics between and oil-shale residual carbon. 2.

Fox, J.P.

2013-01-01T23:59:59.000Z

134

Top-Down Intelligent Reservoir Modeling of New Albany Shale A. Kalantari-Dahaghi, SPE, S.D. Mohaghegh, SPE, West Virginia University  

E-Print Network (OSTI)

SPE 125859 Top-Down Intelligent Reservoir Modeling of New Albany Shale A. Kalantari-Dahaghi, SPE, S contain conspicuous acknowledgment of SPE copyright. Abstract Although the New Albany Shale the potential of New Albany shale using a novel integrated workflow, which incorporates field production data

Mohaghegh, Shahab

135

MARCELLUS SHALE APRIL 2011 EDITION  

E-Print Network (OSTI)

Wells (213111); Support Activities for Oil & Gas Operations (213112); Oil & Gas Pipeline & Related Structures Construction (237120); and Pipeline Transportation of Natural Gas (486210). Marcellus Shale (541620); Remediation Services (562910); Commercial & Industrial Machinery & Equipment Repair

Boyer, Elizabeth W.

136

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

recovery Vent gas '\\Raw shale oil Recycled gas compressorThis process produces shale oil, a low BTU gas, and char,Oil Shale Process" in Oil Shale and Tar Sands, J. W. Smith

Persoff, P.

2011-01-01T23:59:59.000Z

137

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

the carbon, oil, and gas from the shale are combusted; andceases t II Burner gas and shale heat shale ll>" ~Air AirFigure 2. Oil recovery Vent gas '\\Raw shale oil Recycled gas

Persoff, P.

2011-01-01T23:59:59.000Z

138

Stress anisotropy and velocity anisotropy in low porosity shale  

Science Journals Connector (OSTI)

Shales are known for often marked intrinsic anisotropy of many of their properties, including strength, permeability and velocity for example. In addition, it is well known that anisotropic stress fields can also have a significant impact on anisotropy of velocity, even in an isotropic medium. This paper sets out to investigate the ultrasonic velocity response of well-characterised low porosity shales from the Officer Basin in Western Australia to both isotropic and anisotropic stress fields and to evaluate the velocity response to the changing stress field. During consolidated undrained multi-stage triaxial tests on core plugs cut normal to bedding, Vpv increases monotonically with increasing effective stress and Vs1 behaves similarly although with some scatter. Vph and Vsh remain constant initially but then decrease within each stage of the multi-stage test, although velocity from stage to stage at any given differential stress increases. This has the impact of decreasing both P-wave (?) and S-wave anisotropy (?) through application of differential stress within each loading stage. However, increasing the magnitude of an isotropic stress field has little effect on the velocity anisotropies. The intrinsic anisotropy of the shale remains reasonably high at the highest confining pressures. The results indicate the magnitude and orientation of the stress anisotropy with respect to the shale microfabric has a significant impact on the velocity response to changing stress fields.

U. Kuila; D.N. Dewhurst; A.F. Siggins; M.D. Raven

2011-01-01T23:59:59.000Z

139

Proceedings of the first thermomechanical workshop for shale  

SciTech Connect

Chapter 2 provides a description of the three federal regulations that pertain to the development of a high-level nuclear waste repository regardless of the rock type. Chapter 3 summarizes the reference shale repository conditions selected for this workshop. A room-and-pillar configuration was considered at an extraction ratio of about 0.25. The depth was assumed to be 700 m. Chapter 4 gives a summary of several case histories that were considered to be valuable in gaining an understanding of some of the design and construction features that might be unique in creating underground openings in shale. Chapter 5 assesses the data and information needs, availability, technology for acquisition, and the research and development necessary for analytical/numerical modeling in heat transfer, fluid flow, and thermomechanics. Chapter 6 assesses data and information needs in the laboratory and considerations associated with shale rock characterization. Chapter 7 assesses the data and information needs, availability, technology for acquisition, and the research and development necessary for field/in situ testing. Chapter 8 presents the consensus of the workshop participants that there is a definite need to advance the state of knowledge concerning the thermomechanical behavior of shales and to gain experience in applying this knowledge to the design of room-and-pillar excavations. Finally, Chapter 9 provides a summary of the research and development needs in the various interacting activities of repository development, including analytical/numerical modeling, laboratory testing, and field/in situ testing. The main conclusion of the workshop was that a need exists for an aggressive program in laboratory, field, numerical modeling, and design studies to provide a thermomechanical, technological base for comparison of shale types and shale regions/areas/sites.

Not Available

1986-03-01T23:59:59.000Z

140

POLYVINYLCHLORIDE WASTE WITH OIL SHALE ASH TO CAPTURE  

E-Print Network (OSTI)

alkaline oil shale ash. Solid heat carrier (Galoter process)-type oil shale retorting units, where the

V. Oja; A. Elenurm; I. Rohtla; E. Tearo; E. Tali

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Evaluation of Devonian shale potential in Illinois, Indiana, and western Kentucky  

SciTech Connect

Potential natural gas resources in the New Albany Shale of the Illinois basin may be related to five key factors: relative organic content of the shale; relative thickness of the organically-rich shale; thermal maturity as related to depth of burial; presence of natural fractures; and type of organic matter. The shale that is organically richest is in southeastern Illinois and in most of the Indiana and Kentucky portions of the Illinois basin. The shales are thickest (about 400 feet) near the center of the basin in southeastern Illinois, southwestern Indiana, and adjacent parts of Kentucky. The area is deeply buried by younger rocks, and the organic matter has the highest thermal maturity. In addition, natural fault-induced fractures in the shale, which may aid in collecting gas from a larger volume of shale, may be present, since major faults along the Rough Creek Lineament and Wabash Valley Fault System cross the deeper part of the basin. Thus, this area near the basin center where the shale is thickest and rich organically and where fault-induced fractures may be present has the greatest potential for natural-gas resources. The eastern side of the basin, where the shale is organic-rich but thin, may have poor to moderate potential for additional discoveries of small gas fields similar to those found in the past. In western Illinois and the northern part of the basin, the potential is poor, because the organic content of the dominantly greenish-gray shale in this area is low. More exploration will be required to properly evaluate potential resources of natural gas that may exist in the New Albany Shale.

Not Available

1981-01-01T23:59:59.000Z

142

Shale gas is natural gas trapped inside  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

143

Ammonia evolution during oil shale pyrolysis  

Science Journals Connector (OSTI)

Ammonia evolution during oil shale pyrolysis ... Parallel pyrolytic studies were carried out on an immature, ultralaminae-rich, type I kerogen (Gynk oil shale kerogen) and a related algaenan (isolated from the extant green microalga Scenedesmus communis). ...

Myongsook S. Oh; Robert W. Taylor; Thomas T. Coburn; Richard W. Crawford

1988-01-01T23:59:59.000Z

144

Net thickness of the radioactive shale facies in the lower Olentangy shale (Hamilton group)  

SciTech Connect

The net thickness of radioactive shale is determined by first establishing a normal base line for each well based upon the gamma ray log response of shale units, such as the Bedford, Chagrin, and certain units within the Olentangy, observed to be fairly consistently radioactive. Radioactive shales are then defined as those shales having a gamma ray response 20 API units or more to the right of the shale base line. The combined thickness of beds reaching the radioactive shale threshold value is reported as the net thickness of radioactive shale facies within the mapping unit. Maps are included.

Majchszak, F.L.; Honeycutt, M.

1980-01-01T23:59:59.000Z

145

Net thickness of the radioactive shale facies in the Cleveland member of the Ohio shale  

SciTech Connect

The net thickness of radioactive shale is determined by first establishing a normal base line for each well based upon the gamma ray log response of shale units, such as the Bedford, Chagrin, and certain units within the Olentangy, observed to be fairly consistently radioactive. Radioactive shales are then defined as those shales having a gamma ray response 20 API units or more to the right of the shale base line. The combined thickness of beds reaching the radioactive shale threshold value is reported as the net thickness of radioactive shale facies within the mapping unit.

Majchszak, F.L.; Honeycutt, M.

1980-01-01T23:59:59.000Z

146

Eastern mineback: study of advanced stimulation/production in the Devonian shales  

SciTech Connect

The Eastern Gas Shale Mineback Program has evolved from an assessment of the state-of-the-art problems of gas recovery from the eastern Devonian shales. After 10 years of Devonian shale research conducted under the direction of the Eastern Gas Shale Project (EGSP) Office at the U.S. DOE's Morgantown Energy Technology Center (METC), the remaining major issues for developing the shale resource have been defined, and this program has been formulated to address those specific recovery problems. Numerous field, laboratory, and theoretical stimulation studies have been conducted. However, the large number of reservoir pre-existing, unmeasureable conditions and the numerous post-stimulation effects that cannot be measured or observed have virtually stagnated further stimulation technology development through the normal indirect engineering research and development approach.

Shuck, L.Z.; Komar, C.A.; Zielinski, R.E.

1982-08-01T23:59:59.000Z

147

Net thickness of the radioactive shale facies in the upper Olentangy Shale  

SciTech Connect

This map represents the net thickness of the radioactive shale facies included in that part of the Olentangy Shale of Ohio which correlates to the West Falls, Sonyea, and Genesee Formations of New York State. Specifically excluded from consideration is the uppermost part of the upper Olentangy Shale which correlates to the Java Formation of New York. The net thickness of radioactive shale is determined by first establishing a normal base line for each well based upon the gamma ray log response of shale units, such as the Bedford, Chagrin, and certain units within the Olentangy, observed to be fairly consistently radioactive. Radioactive shales are then defined as those shales having a gamma ray response 20 API units or more to the right of the shale base line. The combined thickness of beds reaching the radioactive shale threshold value is reported as the net thickness of radioactive shale facies within the mapping unit.

Honeycutt, M.; Majchszak, F.L.

1980-01-01T23:59:59.000Z

148

THERMAL PROCESSING OF OIL SHALE/SANDS  

E-Print Network (OSTI)

)-based simulation tools to a modified in-situ process for production of oil from oil shale. The simulation tools

Michal Hradisky; Philip J. Smith; Doe Award; No. De-fe

2009-01-01T23:59:59.000Z

149

Shale Gas Development: A Smart Regulation Framework  

Science Journals Connector (OSTI)

Shale Gas Development: A Smart Regulation Framework ... Mandatory reporting of greenhouse gases: Petroleum and natural gas systems; Final rule. ...

Katherine E. Konschnik; Mark K. Boling

2014-02-24T23:59:59.000Z

150

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network (OSTI)

Minor elements in oil shale and oil~shale products, LERCmercury to the oil shale, shale oil, and retort water. Thesemercury to spent shale, shale oil, retort water and offgas

Fox, J. P.

2012-01-01T23:59:59.000Z

151

Oil shale technology. Final report  

SciTech Connect

This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

NONE

1995-03-01T23:59:59.000Z

152

Heat Requirements for Retorting Oil Shale  

Science Journals Connector (OSTI)

Heat Requirements for Retorting Oil Shale ... Converting Oil Shale to Liquid Fuels: Energy Inputs and Greenhouse Gas Emissions of the Shell in Situ Conversion Process ... Converting Oil Shale to Liquid Fuels: Energy Inputs and Greenhouse Gas Emissions of the Shell in Situ Conversion Process ...

H. W. Sohns; L. E. Mitchell; R. J. Cox; W. I. Barnet; W. I. R. Murphy

1951-01-01T23:59:59.000Z

153

Restraint urged in developing oil shale  

Science Journals Connector (OSTI)

Restraint urged in developing oil shale ... An oil shale industry producing 400,000 bbl per day could be created by 1990 using existing technologies and without additional leasing of federal land. ... "Utah and Colorado, with most of the nation's oil shale reserves," Hatch says, "are looking at the business end of a very large federal cannon, loaded with billions for synthetic fuels development." ...

1980-06-30T23:59:59.000Z

154

Oil shale technology and evironmental aspects  

SciTech Connect

Oil shale processes are a combination of mining, retorting, and upgrading facilities. This work outlines the processing steps and some design considerations required in an oil shale facility. A brief overview of above ground and in situ retorts is presented; 6 retorts are described. The development aspects which the oil shale industry is addressing to protect the environment are presented.

Scinta, J.

1982-01-01T23:59:59.000Z

155

Australian developments in oil shale processing  

SciTech Connect

This study gives some background on Australian oil shale deposits, briefly records some history of oil shale processing in the country and looks at the current status of the various proposals being considered to produce syncrudes from Australian oil shales. 5 refs.

Baker, G.L.

1981-01-01T23:59:59.000Z

156

Shale oil processes ready for commercialization  

Science Journals Connector (OSTI)

Shale oil processes ready for commercialization ... However, Lurgi has been in the shale processing business by itself since the 1930s, and hopes to capitalize on this experience. ... Lurgi developed the Lurgi-Ruhrgas (LR) process in concert with Ruhrgas with an eye on the U.S. shale oil markets of the future. ...

1982-04-12T23:59:59.000Z

157

Chapter 2: BACKGROUND (I) Description of the coal Conversion and Oil Shale Retorting Fuel Cycles 2  

E-Print Network (OSTI)

oil shale 2.2 Coal and Oil Shale Resources energy systems retorting. Coal and oil shale resources are

unknown authors

158

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 XX-1 XX. CHINA SUMMARY China has abundant shale gas and shale oil potential in seven prospective basins: Sichuan, Tarim, Junggar, Songliao, the Yangtze Platform, Jianghan and Subei, Figure XX-1. Figure XX-1. China's Seven Most Prospective Shale Gas and Shale Oil Basins are the Jianghan, Junggar, Sichuan, Songliao, Subei, Tarim, and Yangtze Platform. Source: ARI, 2013. XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment

159

Table 15: Shale natural gas proved reserves, reserves changes, and production, w  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

160

Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics  

E-Print Network (OSTI)

International Coalbed and Shale Gas Symposium, Paper 808.Shale RVSP, New Albany Shale Gas Project, RVSP SeismicWave Analysis from Antrim Shale Gas Play, Michigan Basin,

Dobson, Patrick

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hydrotreating of oil from eastern oil shale  

SciTech Connect

Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

Scinta, J.; Garner, J.W.

1984-01-01T23:59:59.000Z

162

NATURAL GAS FROM SHALE: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is shale gas? is shale gas? Basically, it is natural gas - primarily methane - found in shale formations, some of which were formed 300-million-to-400-million years ago during the Devonian period of Earth's history. The shales were deposited as fine silt and clay particles at the bottom of relatively enclosed bodies of water. At roughly the same time, primitive plants were forming forests on land and the first amphibians were making an appearance. Some of the methane that formed from the organic matter buried with the sediments escaped into sandy rock layers adjacent to the shales, forming conventional accumulations of natural gas which are relatively easy to extract. But some of it remained locked in the tight, low permeability shale layers, becoming shale gas.

163

New Albany shale group of Illinois  

SciTech Connect

The Illinois basin's New Albany shale group consists of nine formations, with the brownish-black laminated shales being the predominant lithology in southeastern Illinois and nearby parts of Kentucky where the group reaches its maximum thickness of 460 ft. A second depositional center lies in west-central Illinois and southeastern Iowa, where the group is about 300 ft thick and the predominant lithology is bioturbated olive-gray to greenish-gray shale. A northeast-trending area of thin strata (mostly interfingering gray and black shales) separates these two depocenters. The distribution and types of lithofacies in the New Albany suggest that the shale was deposited across a shelf-slope-basin transition in a marine, stratified anoxic basin. The record of depositional events in the shale group could serve as a baseline for interpreting the history of tectonically more complex sequences such as the Appalachian basin's Devonian shales.

Cluff, R.M.; Reinbold, M.L.; Lineback, J.A.

1981-01-01T23:59:59.000Z

164

Jordan ships oil shale to China  

SciTech Connect

Jordan and China have signed an agreement to develop oil shale processing technology that could lead to a 200 ton/day oil shale plant in Jordan. China will process 1200 tons of Jordanian oil shale at its Fu Shun refinery. If tests are successful, China could build the demonstration plant in Jordan's Lajjun region, where the oil shale resource is estimated at 1.3 billion tons. China plans to send a team to Jordan to conduct a plant design study. A Lajjun oil shale complex could produce as much as 50,000 b/d of shale oil. An earlier 500 ton shipment of shale is said to have yielded promising results.

Not Available

1986-12-01T23:59:59.000Z

165

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fracture Fluids Fracture Fluids Key Points: * Shale fracture fluid, or "slickwater," is largely composed of water (99%); but a number of additives are mixed in with it to increase the effectiveness of the fracturing operation. These additives vary as a function of the well type and the preferences of the operator. * Hydraulic fracturing fluids can contain hazardous chemicals and, if mismanaged, spills could leak harmful substances into ground or surface water. However, good field practice, governed by existing regulations, "should provide an adequate level of protection" from fracturing fluid risks. 1 1 Massachusetts Institute of Technology, "MIT Study on the Future of Natural Gas," June 6, 2011, Chapter 2: Supply, page 41.

166

Conversion characteristics of 10 selected oil shales  

SciTech Connect

The conversion behavior of 10 oil shale from seven foreign and three domestic deposits has been studied by combining solid- and liquid-state nuclear magnetic resonance (NMR) measurements with material balance Fischer assay conversion data. The extent of aromatization of aliphatic carbons was determined. Between zero and 42% of the raw shale aliphatic carbon formed aromatic carbon during Fischer assay. For three of the shales, there was more aromatic carbon in the residue after Fisher assay than in the raw shale. Between 10 and 20% of the raw shale aliphatic carbons ended up as aliphatic carbons on the spent shale. Good correlations were found between the raw shale aliphatic carbon and carbon in the oil and between the raw shale aromatic carbon and aromatic carbon on the spent shale. Simulated distillations and molecular weight determinations were performed on the shale oils. Greater than 50% of the oil consisted of the atmospheric and vacuum gas oil boiling fractions. 14 refs., 15 figs., 1 tab.

Miknis, F.P.

1989-08-01T23:59:59.000Z

167

Production of hydrogen from oil shale  

SciTech Connect

A process for production of hydrogen from oil shale fines by direct introduction of the oil shale fines into a fluidized bed at temperatures about 1200/sup 0/ to about 2000/sup 0/ F. to obtain rapid heating of the oil shale. The bed is fluidized by upward passage of steam and oxygen, the steam introduced in the weight ratio of about 0.1 to about 10 on the basis of the organic carbon content of the oil shale and the oxygen introduced in less than the stoichiometric quantity for complete combustion of the organic carbonaceous kerogen content of the oil shale. Embodiments are disclosed for heat recovery from the spent shale and heat recovery from the spent shale and product gas wherein the complete process and heat recovery is carried out in a single reaction vessel. The process of this invention provides high conversion of organic carbon component of oil shale and high production of hydrogen from shale fines which when used in combination with a conventional oil shale hydroconversion process results in increased overall process efficiency of greater than 15 percent.

Schora, F. C.; Feldkirchner, H. L.; Janka, J. C.

1985-12-24T23:59:59.000Z

168

Evaluation of Lower Cambrian Shale in Northern Guizhou Province, South China: Implications for Shale Gas Potential  

Science Journals Connector (OSTI)

The overall minerals are similar to those present in the Ohio and Woodford/Barnett shales (west Texas), which have successfully produced commercial shale gas. ... Adsorption of gases in multimolecular layers ...

Shuangbiao Han; Jinchuan Zhang; Yuxi Li; Brian Horsfield; Xuan Tang; Wenli Jiang; Qian Chen

2013-05-07T23:59:59.000Z

169

Shale Energy Resources Alliance (SERA)  

NLE Websites -- All DOE Office Websites (Extended Search)

contActS contActS George Darakos Business Manager 412-386-7390 george.darakos@netl.doe.gov Barbara Kutchko, PhD Shallow Stray Gas, Research Team Leader 412-386-5149 barbara.kutchko@netl.doe.gov Natalie Pekney, PhD Air Emissions, Research Team Leader 412-386-5953 natalie.pekney@netl.doe.gov Paul Ziemkiewicz, PhD Water, Research Team Leader 304-293-6958 pziemkie@wvu.edu nEtL-RUA PARtnERS Carnegie Mellon University Penn State University of Pittsburgh URS Corporation Virginia Tech West Virginia University Shale Energy Resources Alliance (SERA) Mission To support the environmentally and socially sustainable development of shale resources through collaborative research and development among industry, university, and government partners on: resource characterization; drilling and

170

Shale Oil Value Enhancement Research  

SciTech Connect

Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

James W. Bunger

2006-11-30T23:59:59.000Z

171

Developments in oil shale in 1987  

SciTech Connect

Oil shale development continued at a slow pace in 1987. The continuing interest in this commodity is demonstrated by the 342 oil shale citations added to the US Department of Energy Energy Database during 1987. The Unocal project in Parachute, Colorado, produced 600,000 bbl of synfuel in 1987. An appreciable amount of 1987's activity was associated with the nonsynfuel uses of oil shale. 4 figs., 2 tabs.

Knutson, C.F.; Dana, G.F.; Solti, G.; Qian, J.L.; Ball, F.D.; Hutton, A.C.; Hanna, J.; Russell, P.L.; Piper, E.M.

1988-10-01T23:59:59.000Z

172

ORGANIC GEOCHEMICAL CHARACTERIZATION AND MINERALOGIC PROPERTIES OF MENGEN OIL SHALE (LUTETIAN  

E-Print Network (OSTI)

, lignite, and oil shale sequences. Oil shale deposit has been accumulated in shallow restricted back

unknown authors

173

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 I-1 I. CANADA SUMMARY Canada has a series of large hydrocarbon basins with thick, organic-rich shales that are assessed by this resource study. Figure I-1 illustrates certain of the major shale gas and shale oil basins in Western Canada. Figure I-1. Selected Shale Gas and Oil Basins of Western Canada Source: ARI, 2012. I. Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 I-2 The full set of Canadian shale gas and shale oil basins assessed in this study include:

174

Heat of combustion of Green River oil shale  

Science Journals Connector (OSTI)

Heat of combustion of Green River oil shale ... AMSOs Novel Approach to In-Situ Oil Shale Recovery ... AMSOs Novel Approach to In-Situ Oil Shale Recovery ...

Michael J. Muehlbauer; Alan K. Burnham

1984-04-01T23:59:59.000Z

175

Mathematical modelling of anisotropy of illite-rich shale  

Science Journals Connector (OSTI)

......clay minerals in shale is one of the causes for its anisotropic behaviour with the...Hudson J., 1994. Anisotropic effective-medium...elastic properties of shales, Geophysics, 59...surfaces of indurated anisotropic shales, Surv. Geophys......

Evgeni M. Chesnokov; Dileep K. Tiwary; Irina O. Bayuk; Matthew A. Sparkman; Raymon L. Brown

2009-09-01T23:59:59.000Z

176

Control Strategies for Abandoned in situ Oil Shale Retorts  

E-Print Network (OSTI)

Presented elt the TUJelfth Oil Shale Synlposittnz, Golden,for Abandoned In Situ Oil Shale Retorts P. Persoll and ]. P.Water Pollution of Spent Oil Shale Residues, EDB Lea,

Persoff, P.; Fox, J.P.

1979-01-01T23:59:59.000Z

177

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

Controls for a Commercial Oil Shale In~try, Vol. I, An En~in Second Briefing on In-Situ Oil Shale Technology, LawrenceReactions in Colorado Oil Shale, Lawrence Report UCRL-

Persoff, P.

2011-01-01T23:59:59.000Z

178

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

E-Print Network (OSTI)

CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,CEMENTS FROM SPENT OIL SHALE P, K, Mehta Civil Engineering

Mehta, P.K.

2012-01-01T23:59:59.000Z

179

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

E-Print Network (OSTI)

20 to 40% of the oil shale, and explosively rubblizing andCEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,

Mehta, P.K.

2012-01-01T23:59:59.000Z

180

Comparison of organic-rich shales of Pennsylvanian age in Indiana with New Albany Shale  

SciTech Connect

Abundant black organic-rich shales occur in rocks of Pennsylvanian age in southwestern Indiana. They have not been well characterized except for a few thin intervals in small areas, the best example being at the abandoned Mecca Quarry in west-central Indiana. Although these shales are thinner and less widespread than the organic-rich shales of the New Albany Shale (Devonian and Mississippian age) they warrant characterization because of their accessibility during strip mining of underlying coals. Organic-rich shales of Pennsylvanian age contain up to 44% organic carbon and might be considered potential oil shales. Carbon to hydrogen ratios in these shales are similar to those in the New Albany. Relatively high concentrations of certain metals occur in shales of both ages, especially where phosphate is abundant, and sulfur values for both shales range from < 1 to 6%. Sulfur values are much higher for thin pyrite-rich units. Siderite nodules are common in Pennsylvania shales, but little siderite if found in the New Albany. Dolomite, commonly ferroan, and calcite in a variety of forms are the dominant carbonates in the New Albany. Some Pennsylvanian shales may contain large fossils or mica flakes, but such coarse-grained features are uncommon in the New Albany Shale.

Shaffer, N.R.; Leininger, R.K.; Ennis, M.V.

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Organic-matter preservation in Chattanooga Shale: revised Late Devonian correlations, Kentucky and Tennessee  

SciTech Connect

Continued interest in the carbon-rich shale of Devonian and Mississippian age in Kentucky is reflected by intensive leasing and drilling to evaluate the potential reserves of oil shale. Thicker accumulations of shale suitable for surface extraction lie along the flanks of the Cincinnati arch in both the Illinois and Appalachian basins. The shale tends to thin across the Cincinnati arch by an order of magnitude (100 versus 10 m, 330 versus 33 ft), and individual units disappear entirely. Key beds have been used with mixed success in tracing these changes. Recognition of these key beds in cores provided by a recently completed 70-core drilling program in and near the outcrop is the basis for revising earlier suggested correlations. One key bed, marked by the occurrence of the alga. Foerstia (Protosalvinia), occurs in the lower part of the lower (Huron) member of the Ohio Shale in the Appalachian basin. The Huron Member is overlain by a lithostratigraphic marker, the Three Lick Bed. The Foerstia Zone has been traced in core and outcrop to the upper part of the uppermost (Clegg Creek) member of the New Albany Shale in the Illinois basin. Discovery in this widespread continuous biostratigraphic marker at the top of the upper (Gassaway) member of the Chattanooga Shale near the designated reference section in Dekalb County, Tennessee, suggests that the Three Lick Bed of the Ohio Shales does not correlate with the unit of the Gassaway Member of the Chattanooga Shale as thought. Field relations indicate that the Three Lick Bed is absent by nondeposition, and starved-basin conditions prevailed into Early Mississippian time in this part of Tennessee.

Kepferle, R.C.; Pollock, J.D.; Barron, L.S.

1983-03-01T23:59:59.000Z

182

NATURAL GAS FROM SHALE: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges are Associated with Challenges are Associated with Shale Gas Production? Developing any energy resource - whether conventional or non-conventional like shale - carries with it the possibility and risk of environmental, public health, and safety issues. Some of the challenges related to shale gas production and hydraulic fracturing include: * Increased consumption of fresh water (volume and sources); * Induced seismicity (earthquakes) from shale flowback water disposal;Chemical disclosure of fracture fluid additives; * Potential ground and surface water contamination; * Air quality impacts; * Local impacts, such as the volume of truck traffic, noise, dust and land disturbance.

183

Challenges and strategies of shale gas development.  

E-Print Network (OSTI)

??The objective of this paper is to help new investors and project developers identify the challenges of shale gas E&P and to enlighten them of (more)

Lee, Sunje

2012-01-01T23:59:59.000Z

184

Production Optimization in Shale Gas Reservoirs.  

E-Print Network (OSTI)

?? Natural gas from organic rich shales has become an important part of the supply of natural gas in the United States. Modern drilling and (more)

Knudsen, Brage Rugstad

2010-01-01T23:59:59.000Z

185

Decline Curve Analysis of Shale Oil Production.  

E-Print Network (OSTI)

?? Production of oil and gas from shale is often described as a revolution to energyproduction in North America. Since the beginning of this century (more)

Lund, Linnea

2014-01-01T23:59:59.000Z

186

TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY  

E-Print Network (OSTI)

Chemicals Identified in Oil Shale and Shale Oil. list." 1.of Trace Contaminants in Oil Shale Retort Wa- ters", Am.Trace Contaminants in Oil Shale Retort Waters", in Oil Shale

Kland, M.J.

2010-01-01T23:59:59.000Z

187

INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER  

E-Print Network (OSTI)

Minor Elements in Oil Shale and Oil Shale Products. LERCfor Use 1n Oil Shale and Shale Oil. OSRD-32, 1945. Jeris, J.Water coproduced with shale oil and decanted from it is

Farrier, D.S.

2011-01-01T23:59:59.000Z

188

TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY  

E-Print Network (OSTI)

Identified in Oil Shale and Shale Oil. list." 1. Preliminaryrisks of large scale shale oil production are sufficient tofound in oil shale and shale oil by EMIC and ETIC, has

Kland, M.J.

2010-01-01T23:59:59.000Z

189

CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE  

E-Print Network (OSTI)

decomposition of kerogen to shale oil and related by~of Oil Shale to Produce Shale Oil and Related Byproducts.Ref. 3). Chemis of Oil Shale Oil shale is a sedimentary

Amy, Gary L.

2013-01-01T23:59:59.000Z

190

Characterization of DOE reference oil shales: Mahogany Zone, Parachute Creek Member, Green River Formation Oil Shale, and Clegg Creek Member, New Albany Shale  

SciTech Connect

Measurements have been made on the chemical and physical properties of two oil shales designated as reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Exxon Colony mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. Kerogen concentrates were prepared from both shales. The measured properties of the reference shales are comparable to results obtained from previous studies on similar shales. The western reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. There was poor agreement between measured and calculated molecular weights for the total shale oil produced from each shale. However, measured and calculated molecular weights agreed reasonably well for true boiling point distillate fractions in the temperature range of 204 to 399/sup 0/C (400 to 750/sup 0/F). Similarly, measured and calculated viscosities of the total shale oils were in disagreement, whereas good agreement was obtained on distillate fractions for a boiling range up to 315/sup 0/C (600/sup 0/F). Thermal and dielectric properties were determined for the shales and shale oils. The dielectric properties of the reference shales and shale oils decreased with increasing frequency of the applied frequency. 42 refs., 34 figs., 24 tabs.

Miknis, F. P.; Robertson, R. E.

1987-09-01T23:59:59.000Z

191

Method for forming an in-situ oil shale retort in differing grades of oil shale  

SciTech Connect

An in-situ oil shale retort is formed in a subterranean formation containing oil shale. The formation comprises at least one region of relatively richer oil shale and another region of relatively leaner oil shale. According to one embodiment, formation is excavated from within a retort site for forming at least one void extending horizontally across the retort site, leaving a portion of unfragmented formation including the regions of richer and leaner oil shale adjacent such a void space. A first array of vertical blast holes are drilled in the regions of richer and leaner oil shale, and a second array of blast holes are drilled at least in the region of richer oil shale. Explosive charges are placed in portions of the blast holes in the first and second arrays which extend into the richer oil shale, and separate explosive charges are placed in portions of the blast holes in the first array which extend into the leaner oil shale. This provides an array with a smaller scaled depth of burial (sdob) and closer spacing distance between explosive charges in the richer oil shale than the sdob and spacing distance of the array of explosive charges in the leaner oil shale. The explosive charges are detonated for explosively expanding the regions of richer and leaner oil shale toward the horizontal void for forming a fragmented mass of particles. Upon detonation of the explosive, greater explosive energy is provided collectively by the explosive charges in the richer oil shale, compared with the explosive energy produced by the explosive charges in the leaner oil shale, resulting in comparable fragmentation in both grades of oil shale.

Ricketts, T.E.

1984-04-24T23:59:59.000Z

192

Strategic Significance of Americas Oil Shale Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

II Oil Shale Resources Technology and Economics Office of Deputy Assistant Secretary for Petroleum Reserves Office of Naval Petroleum and Oil Shale Reserves U.S. Department of...

193

DOE - Office of Legacy Management -- Naval Oil Shale Reserves...  

Office of Legacy Management (LM)

Oil Shale Reserves Site - 013 FUSRAP Considered Sites Site: Naval Oil Shale Reserves Site (013 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

194

Shale Natural Gas New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

868 557 232 2009-2011 868 557 232 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 868 557 232 2009-2011 Alabama 0 0 2009-2010 Arkansas 0 0 0 2009-2011 California 0 2011-2011 San Joaquin Basin Onshore 0 2011-2011 Colorado 4 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 244 48 0 2009-2011 North 244 48 0 2009-2011 Michigan 0 2 0 2009-2011 Montana 0 0 0 2009-2011 New Mexico 0 0 0 2009-2011 East 0 0 0 2009-2011 West 0 0 0 2009-2011 North Dakota 6 8 2 2009-2011 Ohio 0 0 2009-2010 Oklahoma 0 54 37 2009-2011 Pennsylvania 120 49 162 2009-2011 Texas 353 396 31 2009-2011 RRC District 1 353 114 20 2009-2011 RRC District 2 Onshore 282 0 2010-2011 RRC District 3 Onshore 0 0 0 2009-2011 RRC District 4 Onshore 0 0 0 2009-2011 RRC District 5 0 0 0 2009-2011

195

Shale Natural Gas New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

868 557 232 2009-2011 868 557 232 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 868 557 232 2009-2011 Alabama 0 0 2009-2010 Arkansas 0 0 0 2009-2011 California 0 2011-2011 San Joaquin Basin Onshore 0 2011-2011 Colorado 4 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 244 48 0 2009-2011 North 244 48 0 2009-2011 Michigan 0 2 0 2009-2011 Montana 0 0 0 2009-2011 New Mexico 0 0 0 2009-2011 East 0 0 0 2009-2011 West 0 0 0 2009-2011 North Dakota 6 8 2 2009-2011 Ohio 0 0 2009-2010 Oklahoma 0 54 37 2009-2011 Pennsylvania 120 49 162 2009-2011 Texas 353 396 31 2009-2011 RRC District 1 353 114 20 2009-2011 RRC District 2 Onshore 282 0 2010-2011 RRC District 3 Onshore 0 0 0 2009-2011 RRC District 4 Onshore 0 0 0 2009-2011 RRC District 5 0 0 0 2009-2011

196

Insulated dipole antennas for heating oil shale  

Science Journals Connector (OSTI)

Insulated dipole antennas in the HF band are potentially useful in heating shale i n s i t u to extract oil. To help evaluate the efficiency of such antennas the spatial distribution of the power absorbed per unit volume in the shale is computed.

John P. Casey; Rajeev Bansal

1987-01-01T23:59:59.000Z

197

Fluidized bed retorting of eastern oil shale  

SciTech Connect

This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

Gaire, R.J.; Mazzella, G.

1989-03-01T23:59:59.000Z

198

Chemical kinetics and oil shale process design  

SciTech Connect

Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

Burnham, A.K.

1993-07-01T23:59:59.000Z

199

This Week In Petroleum Printer-Friendly Version  

NLE Websites -- All DOE Office Websites (Extended Search)

crude oil reserves in 2007 came largely from the unconventional Bakken Formation. Oil Shale or Oil Produced from Shale? It is important to recognize the distinction between the...

200

This Week In Petroleum Summary Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

the Bakken and other U.S. shale formations. Operators are combining horizontal wells and hydraulic fracturing-the same technologies used to significantly boost shale gas...

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

SciTech Connect

The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

1992-06-01T23:59:59.000Z

202

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

SciTech Connect

The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

1992-06-01T23:59:59.000Z

203

Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III  

SciTech Connect

The primary objective of this project was to conduct advanced reservoir characterization and modeling studies in the Antelope Shale of the Bureau Vista Hills Field. Work was subdivided into two phases or budget periods. The first phase of the project focused on a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work would then be used to evaluate how the reservoir would respond to enhanced oil recovery (EOR) processes such as of CO2 flooding. The second phase of the project would be to implement and evaluate a CO2 in the Buena Vista Hills Field. A successful project would demonstrate the economic viability and widespread applicability of CO2 flooding in siliceous shale reservoirs of the San Joaquin Valley.

Perri, Pasquale R.; Cooney, John; Fong, Bill; Julander, Dale; Marasigan, Aleks; Morea, Mike; Piceno, Deborah; Stone, Bill; Emanuele, Mark; Sheffield, Jon; Wells, Jeff; Westbrook, Bill; Karnes, Karl; Pearson, Matt; Heisler, Stuart

2000-04-24T23:59:59.000Z

204

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota DE-FC26-08NT43291 – 01.2 Goal The goal of this project is to quantitatively describe and understand the Bakken Formation in the Williston Basin by collecting and analyzing a wide range of parameters, including seismic and geochemical data, that impact well productivity/oil recovery. Performer Energy & Environmental Research Center, Grand Forks, ND 58202-9018 Background The Bakken Formation is rapidly emerging as an important source of oil in the Williston Basin. The formation typically consists of three members, with the upper and lower members being shales and the middle member being dolomitic siltstone and sandstone. Total organic carbon (TOC) within the shales may be as high as 40%, with estimates of total hydrocarbon generation across the entire Bakken Formation ranging from 200 to 400 billion barrels. While the formation is productive in numerous reservoirs throughout Montana and North Dakota, with the Elm Coulee Field in Montana and the Parshall area in North Dakota being the most prolific examples of Bakken success, many Bakken wells have yielded disappointing results. While variable productivity within a play is nothing unusual to the petroleum industry, the Bakken play is noteworthy because of the wide variety of approaches and technologies that have been applied with apparently inconsistent and all too often underachieving results. This project will implement a robust, systematic, scientific, and engineering research effort to overcome these challenges and unlock the vast resource potential of the Bakken Formation in the Williston Basin.

205

LLNL oil shale project review: METC third annual oil shale contractors meeting  

SciTech Connect

The Lawrence Livermore National Laboratory combines laboratory and pilot-scale experimental measurements with mathematical modeling of fundamental chemistry and physics to provide a technical base for evaluating oil shale retorting alternatives. Presented herein are results of four research areas of interest in oil shale process development: Recent Progress in Solid-Recycle Retorting and Related Laboratory and Modeling Studies; Water Generation During Pyrolysis of Oil Shale; Improved Analytical Methods and Measurements of Rapid Pyrolysis Kinetics for Western and Eastern Oil Shale; and Rate of Cracking or Degradation of Oil Vapor In Contact with Oxidized Shale. We describe operating results of a 1 tonne-per-day, continuous-loop, solid-recycle, retort processing both Western And Eastern oil shale. Sulfur chemistry, solid mixing limits, shale cooling tests and catalyst addition are all discussed. Using a triple-quadrupole mass spectrometer, we measure individual species evolution with greater sensitivity and selectivity. Herein we discuss our measurements of water evolution during ramped heating of Western and Eastern oil shale. Using improved analytical techniques, we determine isothermal pyrolysis kinetics for Western and Eastern oil shale, during rapid heating, which are faster than previously thought. Finally, we discuss the rate of cracking of oil vapor in contact with oxidized shale, qualitatively using a sand fluidized bed and quantitatively using a vapor cracking apparatus. 3 refs., 4 figs., 1 tab.

Cena, R.J.; Coburn, T.T.; Taylor, R.W.

1988-01-01T23:59:59.000Z

206

Gas potential of new Albany shale (Devonian-Mississippian) in the Illinois Basin  

SciTech Connect

A study to update and evaluate publicly available data relating to present and potential gas production from New Albany Shale in the Illinois basin was conducted cooperatively by the Indiana. Illinois, and Kentucky geological surveys (Illinois Basin Consortium), and was partially funded by the Gas Research Institute. Deliverables included a plate of stratigraphic cross sections and six basin-wide maps at a scale of 1:1,000,000. The New Albany Shale is an organic-rich brownish black shale present throughout the Illinois basin. Gas potential of the New Albany Shale may be great because it contains an estimated 86 tcf of natural gas and has produced modest volumes since 1858 from more than 60 fields, mostly in the southeastern part of the basin. Reservoir beds include organic-rich shales of the Grassy Creek (Shale), Clegg Creek, and Blocher (Shale) members. Limited geologic and carbon isotope data indicate that the gas is indigenous and thermogenic. T[sub max] data suggest that the gas generation begins at R[sub o] values of 0.53% and may begin at R[sub 0] values as low as 0.41% in some beds. New Albany Shale reservoirs contain both free gas in open-pore space and gas adsorbed on clay and kerogen surfaces. Natural fracturing is essential for effective reservoir permeability. Fractures are most common near structures such as faults, flexures, and buried carbonate banks. Based on limited data, fractures and joints have preferred orientations of 45-225[degrees] and 135-315[degrees]. Commercial production requires well stimulation to connect the well bore with the natural fracture system and to prop open pressure-sensitive near-borehole fractures. Current stimulations employ hydraulic fracture treatments using nitrogen and foam, with sand as a propping agent.

Comer, J.B.; Hasenmueller, N.R. (Indiana Geological Survey, Bloomington, IN (United States)); Frankie, W.T. (Illinois State Geological Survey, Champaign, IL (United States)); Hamilton-Smith, T. (Kentucky Geological Survey, Lexington, KY (United States))

1993-08-01T23:59:59.000Z

207

Secure Fuels from Domestic Resources- Oil Shale and Tar Sands  

Energy.gov (U.S. Department of Energy (DOE))

Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

208

Morphological Investigations of Fibrogenic Action of Estonian Oil Shale Dust  

E-Print Network (OSTI)

dust produced in the mining and processing of Estonian oil shale is given. Histological examination of

V. A. Kung

209

Study of composite cement containing burned oil shale  

E-Print Network (OSTI)

Study of composite cement containing burned oil shale Julien Ston Supervisors : Prof. Karen properties. SCMs can be by-products from various industries or of natural origin, such as shale. Oil shale correctly, give a material with some cementitious properties known as burned oil shale (BOS). This study

Dalang, Robert C.

210

Focus on the Marcellus Shale By Lisa Sumi  

E-Print Network (OSTI)

Shale Gas: Focus on the Marcellus Shale By Lisa Sumi FOR THE OIL & GAS ACCOUNTABILITY PROJECT on potential oil and gas development in the Marcellus Shale formation in northeastern Pennsylvania and gas development. We hope that this report will help address many questions about the Marcellus Shale

Boyer, Elizabeth W.

211

In situ retorting or oil shale  

SciTech Connect

An improved method of in situ retorting of oil shale wherein a cavern of crushed shale is created within an oil shale deposit, preferably by igniting a powerful explosion within the oil shale deposit, thereby creating a localized area or cavern of rubblized oil shale. Combustion gases are injected into the bottom of this cavern and particulate material, preferably a cracking catalyst, is deposited into a void at the top of the cavern and allowed to trickle down and fill the voids in the rubblized cavern. The oil shale is ignited at the bottom of the cavern and a combustion zone proceeds upwardly while the particulate material is caused by gas flow to percolate downwardly. A fluidized bed of particulate material is thereby formed at the combustion zone providing a controlled, evelny advancing combustion zone. This, in turn, efficiently retorts oil shale, provides increased recovery of hydrocarbon while ismultaneously producing a catalytically cracked volatile, high octane gasoline exiting from the top of the retort.

Hettinger, W.P. Jr.

1984-09-11T23:59:59.000Z

212

Adsorption of pyridine by combusted oil shale  

SciTech Connect

Large volumes of solid waste material will be produced during the commercial production of shale oil. An alternative to the disposal of the solid waste product is utilization. One potential use of spent oil shale is for the stabilization of hazardous organic compounds. The objective of this study was to examine the adsorption of pyridine, commonly found in oil shale process water, by spent oil shale. The adsorption of pyridine by fresh and weathered samples of combusted New Albany Shale and Green River Formation oil shale was examined. In general, pyridine adsorption can be classified as L-type and the isotherms modeled with the Langmuir and Freundlich equations. For the combusted New Albany Shale, weathering reduced the predicted pyridine adsorption maximum and increased the amount of pyridine adsorption maximum. The pyridine adsorption isotherms were similar to those mathematically described by empirical models, the reduction in solution concentrations of pyridine was generally less than 10 mg L{sup {minus}1} at an initial concentration of 100 mg L{sup {minus}1}. 31 refs., 3 figs., 3 tabs.

Essington, M.E.; Hart, B.K.

1990-03-01T23:59:59.000Z

213

Nitrogen chemistry during oil shale pyrolysis  

SciTech Connect

Real time evolution of ammonia (NH{sub 3}) and hydrogen cyanide (HCN), two major nitrogen-containing volatiles evolved during oil shale pyrolysis, was measured by means of a mass spectrometer using chemical ionization and by infrared spectroscopy. While the on-line monitoring of NH{sub 3} in oil shale pyrolysis games was possible by both techniques, HCN measurements were only possible by IR. We studied one Green River Formation oil shale and one New Albany oil shale. The ammonia from the Green River oil shale showed one broad NH{sub 3} peak maximizing at a high temperature. For both oil shales, most NH{sub 3} evolves at temperatures above oil-evolving temperature. The important factors governing ammonia salts such as Buddingtonite in Green River oil shales, the distribution of nitrogen functional groups in kerogen, and the retorting conditions. The gas phase reactions, such as NH{sub 3} decomposition and HCN conversion reactions, also play an important role in the distribution of nitrogen volatiles, especially at high temperatures. Although pyrolysis studies of model compounds suggests the primary nitrogen product from kerogen pyrolysis to be HCN at high temperatures, we found only a trace amount of HCN at oil-evolving temperatures and none at high temperatures (T {gt} 600{degree}C). 24 refs., 6 figs., 2 tabs.

Oh, Myongsook S.; Crawford, R.W.; Foster, K.G.; Alcaraz, A.

1990-01-10T23:59:59.000Z

214

Gasification characteristics of eastern oil shale  

SciTech Connect

The Institute of Gas Technology (IGT) is evaluating the gasification characteristics of Eastern oil shales as a part of a cooperative agreement between the US Department of Energy and HYCRUDE Corporation to expand the data base on moving-bed hydroretorting of Eastern oil shales. Gasification of shale fines will improve the overall resource utilization by producing synthesis gas or hydrogen needed for the hydroretorting of oil shale and the upgrading of shale oil. Gasification characteristics of an Indiana New Albany oil shale have been determined over temperature and pressure ranges of 1600 to 1900/sup 0/F and 15 to 500 psig, respectively. Carbon conversion of over 95% was achieved within 30 minutes at gasification conditions of 1800/sup 0/F and 15 psig in a hydrogen/steam gas mixture for the Indiana New Albany oil shale. This paper presents the results of the tests conducted in a laboratory-scale batch reactor to obtain reaction rate data and in a continuous mini-bench-scale unit to obtain product yield data. 2 refs., 7 figs., 4 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1986-11-01T23:59:59.000Z

215

Isothermal kinetics of new Albany oil shale  

SciTech Connect

From the development of technologies for the utilization of eastern U.S. oil shales, fluidized bed pyrolysis technology is emerging as one of the most promising in terms of oil yield, operating cost, and capital investment. Bench-scale testing of eastern shales has reached a level where scale-up represents the next logical step in the evolution of this technology. A major consideration in this development and an essential part of any fluidized bed reactor scale-up effort--isothermal kinetics-- has largely been ignored for eastern US shale with the exception of a recent study conducted by Richardson et al. with a Cleveland shale. The method of Richardson et al. was used previously by Wallman et al. with western shale and has been used most recently by Forgac, also with western shale. This method, adopted for the present study, entails injecting a charge of shale into a fluidized bed and monitoring the hydrocarbon products with a flame ionization detector (FID). Advantages of this procedure are that fluidized bed heat-up effects are simulated exactly and real-time kinetics are obtained due to the on-line FID. Other isothermal methods have suffered from heat-up and cool-down effects making it impossible to observe the kinetics at realistic operating temperatures. A major drawback of the FID approach, however, is that no differentiation between oil and gas is possible.

Carter, S.D.

1987-04-01T23:59:59.000Z

216

Uniform retorting of an anisotropic shale bed  

SciTech Connect

In situ oil shale retorts have typically been designed for the fracturing event to produce a rubble bed having uniform cross-sectional rubble properties. This uniform rubble bed approach strived to produce constant void fraction and particle size distribution within all regions of the rubble bed. Ideally, these isotropic rubble beds have uniform flow of oxidants, retorting and combustion products. However, edge effects during the blast event typically produce channeling at the retort walls during processing, reducing the rubble sweep and the local yield. Second generation in situ retorts are addressing uniform retorting within the rubble bed rather than the uniformity of rubble bed properties. Here, the blast design produces and anisotropic rubble bed with varying particle size distribution and void fraction normal to the direction of flow. This paper describes a laboratory experiment in which a highly-instrumented, 100 kg bed of shale with zones of differing particle size and void was retorted. Shale particle size and void were varied over the retort cross-section so that a retorting front would move at a constant velocity downward through the rubble bed. The bed was designed using data from numerous pressure drop measurements on uniform shale beds of varying shale particle size distribution and void. Retorting of the bed showed a uniform retorting front and a yield comparable with that achieved in isotropic shale beds. We present thermal data and offgas, oil and shale analyses (allowing material and energy balance closures) and compare these data to previous vertical retorting experiments on uniform and non-uniform beds of shale. This experiment verifies that uniform retorting fronts can be achieved in correctly designed anisotropic beds of shale and validates the concept of uniform retorting in order increase the oil recovery in second generation retorts. 20 refs., 17 figs., 4 tabs.

Bickel, T.C.; Cook, D.W.; Engler, B.P.

1986-01-01T23:59:59.000Z

217

Differential thermal analysis of the reaction properties of raw and retorted oil shale with air  

SciTech Connect

The results of a study to determine the kinetics of combustion of oil shale and its char by using differential thermal analysis are reported. The study indicates that Colorado oil shale and its char combustion rate is the fastest while Fushun oil shale and its char combustion rate is the slowest among the six oil shales used in this work. Oil shale samples used were Fushun oil shale, Maoming oil shale, Huang county oil shale, and Colorado oil shale.

Wang, T.F.

1984-01-01T23:59:59.000Z

218

U.S. Shale Gas and Shale Oil Plays Review of Emerging Resources:  

Gasoline and Diesel Fuel Update (EIA)

Shale Gas and Shale Oil Plays Shale Gas and Shale Oil Plays Review of Emerging Resources: July 2011 www.eia.gov U.S. Depa rtment of Energy W ashington, DC 20585 This page inTenTionally lefT blank The information presented in this overview is based on the report Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays, which was prepared by INTEK, Inc. for the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. The full report is attached. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

219

NATURAL GAS FROM SHALE: Questions and Answers Why is Shale Gas Important?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Why is Shale Gas Important? Why is Shale Gas Important? With the advance of extraction technology, shale gas production has led to a new abundance of natural gas supply in the United States over the past decade, and is expected to continue to do so for the foreseeable future. According to the Energy Information Administration (EIA), the unproved technically recoverable U.S. shale gas resource is estimated at 482 trillion cubic feet. 1 Estimated proved and unproved shale gas resources amount to a combined 542 trillion cubic feet (or 25 percent) out of a total U.S. resource of 2,203 trillion cubic feet. 2 U.S. shale gas production has increased 12-fold over the last

220

What is shale gas and why is it important?  

Reports and Publications (EIA)

Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

VIII. Poland EIA/ARI World Shale Gas and Shale Oil Resource Assessment VIII. Poland EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 VIII-1 VIII. POLAND (INCLUDING LITHUANIA AND KALININGRAD) SUMMARY Poland has some of Europe's most favorable infrastructure and public support for shale development. The Baltic Basin in northern Poland remains the most prospective region with a relatively simple structural setting. The Podlasie and Lublin basins also have potential but are

222

Kerogen extraction from subterranean oil shale resources  

DOE Patents (OSTI)

The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

2010-09-07T23:59:59.000Z

223

Net thickness of the radioactive shale facies in the Huron and Chagrin members of the Ohio shale  

SciTech Connect

The net thickness of radioactive shale is determined by first establishing a normal base line for each well based upon the gamma ray log response of shale units, such as Bedford, Chagrin, and certain units within the Olentangy, observed to be fairly consistently radioactive. Radioactive shales are then defined as those shales having a gamma ray response 20 API units or more to the right of the shale base line. The combined thickness of beds reaching the radioactive shale threshold value is reported as the net thickness of radioactive shale facies within the mapping unit.

Majchszak, F.L.; Honeycutt, M.

1980-01-01T23:59:59.000Z

224

CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE  

E-Print Network (OSTI)

OF FIGURES Areal extent of oil shale deposits in the Greencommercial in~situ oil shale facility. Possible alternativefor pyrolysis of oil shale Figure 7. Establishment of

Amy, Gary L.

2013-01-01T23:59:59.000Z

225

Method for retorting oil shale  

DOE Patents (OSTI)

The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

Shang, Jer-Yu; Lui, A.P.

1985-08-16T23:59:59.000Z

226

Oil shale mining studies and analyses of some potential unconventional uses for oil shale  

SciTech Connect

Engineering studies and literature review performed under this contract have resulted in improved understanding of oil shale mining costs, spent shale disposal costs, and potential unconventional uses for oil shale. Topics discussed include: costs of conventional mining of oil shale; a mining scenario in which a minimal-scale mine, consistent with a niche market industry, was incorporated into a mine design; a discussion on the benefits of mine opening on an accelerated schedule and quantified through discounted cash flow return on investment (DCFROI) modelling; an estimate of the costs of disposal of spent shale underground and on the surface; tabulation of potential increases in resource recovery in conjunction with underground spent shale disposal; the potential uses of oil shale as a sulfur absorbent in electric power generation; the possible use of spent shale as a soil stabilizer for road bases, quantified and evaluated for potential economic impact upon representative oil shale projects; and the feasibility of co-production of electricity and the effect of project-owned and utility-owned power generation facilities were evaluated. 24 refs., 5 figs., 19 tabs.

McCarthy, H.E.; Clayson, R.L.

1989-07-01T23:59:59.000Z

227

Miscellaneous States Shale Gas Proved Reserves Acquisitions ...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

228

Devonian shale gas resource assessment, Illinois basin  

SciTech Connect

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r{sup 2}=0.95) and gas content (r{sup 2}=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. [Discovery Group, Inc., Denver, CO (United States)

1996-12-31T23:59:59.000Z

229

Devonian shale gas resource assessment, Illinois basin  

SciTech Connect

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

1996-01-01T23:59:59.000Z

230

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

SciTech Connect

Low cost material is needed for grouting abandoned retorts. Experimental work has shown that a hydraulic cement can be produced from Lurgi spent shale by mixing it in a 1:1 weight ratio with limestone and heating one hour at 1000C. With 5% added gypsum, strengths up to 25.8 MPa are obtained. This cement could make an economical addition up to about 10% to spent shale grout mixes, or be used in ordinary cement applications.

Mehta, P.K.; Persoff, P.; Fox, J.P.

1980-06-01T23:59:59.000Z

231

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect

The freezing point of US Navy jet fuel (JP-5) has been related to the amounts of large n-alkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how the n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30, and 32 ppM in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-01-01T23:59:59.000Z

232

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect

The freezing point of U.S. Navy jet fuel (JP-5) has been related to the amounts of large nalkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how th n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30 and 32 ppm in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-02-01T23:59:59.000Z

233

Failure surface model for oil shale  

SciTech Connect

One promising means of recovering oil from oil shale is to retort the shale in situ. Currently, modified in situ technology requires the construction of extensive underground openings or retorts. The remaining media (structure left around these retorts must support the overburden and contain the retorting shale. A failure criterion for oil shale, which is presented in this paper, was developed so that regions in the retort structure where the shale may be approaching failure can be identified. This criterion, adapted from composite materials applications, is essentially a closed surface in six-dimensional stress space and makes it possible to describe the anisotropic nature of failure in layered materials. The failure surface can be defined by five parameters which are determined from five simple laboratory tests. The surface is developed for a 80 ml/kg kerogen content shale and its features are discussed in detail. The predictions of the model are found to be in agreement with the results of a large number of laboratory tests, including uniaxial and triaxial compression tests. One unique (for rocks) test series is discussed which involves the failure of thin-walled tubes under combined compression and torsion. Finally, it is shown how the model can be extended to include the variation of material properties with kerogen content and temperature.

Costin, L.S.

1981-08-01T23:59:59.000Z

234

Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.  

SciTech Connect

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

Murphey, P. C.; Daitch, D.; Environmental Science Division

2009-02-11T23:59:59.000Z

235

Raw shale dissolution as an aid in determining oil shale mineralogy  

SciTech Connect

With an accurate oil shale mineralogy, one can begin to unravel the inorganic and organic aspects of retorting and combustion chemistry. We evaluated three modern elemental analysis procedures (ICP-AES, XRF, and PIXE) with the aim of improving our knowledge of the mineral matrix. A New Albany Shale (Clegg Creek Member) specimen (NA13) and a Mahogany Zone Green River Formation oil shale from Anvil Points (AP24) were the two materials analyzed. These were oil shales that we had used in our pilot retort. We set a modest goal: determination of those materials present at greater than a 1% level with a relative accuracy of {plus_minus}10%. Various total dissolution methods and pre-treatement procedures were examined. The routine ICP-AES method that we adopted had precision and accuracy that exceeded our initial goals. Partial dissolution of carbonate minerals in acetic acid was slow but highly selective. The clay mineral content of both shales was deduced from the time dependence of dissolution in 6N HCl. An Al:K ratio of 3 indicated selective HCl solubility of the clay, illite. Our eastern oil shale from Kentucky was remarkably similar in mineral composition to high-grade-zone New Albany Shale samples from Kentucky, Indiana, and Illinois that others had subjected to careful mineral analysis. A Mahogany Zone Green River Formation oil shale from the Colony Mine had slightly different minor mineral components (relative to AP24) as shown by its gas evolution profile.

Duewer, T.I.; Foster, K.G.; Coburn, T.T.

1991-11-11T23:59:59.000Z

236

Raw shale dissolution as an aid in determining oil shale mineralogy  

SciTech Connect

With an accurate oil shale mineralogy, one can begin to unravel the inorganic and organic aspects of retorting and combustion chemistry. We evaluated three modern elemental analysis procedures (ICP-AES, XRF, and PIXE) with the aim of improving our knowledge of the mineral matrix. A New Albany Shale (Clegg Creek Member) specimen (NA13) and a Mahogany Zone Green River Formation oil shale from Anvil Points (AP24) were the two materials analyzed. These were oil shales that we had used in our pilot retort. We set a modest goal: determination of those materials present at greater than a 1% level with a relative accuracy of {plus minus}10%. Various total dissolution methods and pre-treatement procedures were examined. The routine ICP-AES method that we adopted had precision and accuracy that exceeded our initial goals. Partial dissolution of carbonate minerals in acetic acid was slow but highly selective. The clay mineral content of both shales was deduced from the time dependence of dissolution in 6N HCl. An Al:K ratio of 3 indicated selective HCl solubility of the clay, illite. Our eastern oil shale from Kentucky was remarkably similar in mineral composition to high-grade-zone New Albany Shale samples from Kentucky, Indiana, and Illinois that others had subjected to careful mineral analysis. A Mahogany Zone Green River Formation oil shale from the Colony Mine had slightly different minor mineral components (relative to AP24) as shown by its gas evolution profile.

Duewer, T.I.; Foster, K.G.; Coburn, T.T.

1991-11-11T23:59:59.000Z

237

USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES  

E-Print Network (OSTI)

Minor Elements in Oil Shale and Oil-Shale Products. LERC RIChemistry of Tar Sands and Oil Shale, ACS, New Orleans.Constituent Analysis of Oil Shale and Solvent-Refined Coal

Girvin, D.G.

2011-01-01T23:59:59.000Z

238

INTERCOMPARISON STUDY OF ELEMENTAL ABUNDANCES IN RAW AND SPENT OIL SHALES  

E-Print Network (OSTI)

Minor Elements ~n Oil Shale and Oil-Shale Products. LERC RI-Analytical Chemistry of Oil Shale and Tar Sands. Advan. inH. Meglen. The Analysis of Oil-Shale Materials for Element

Fox, J.P.

2011-01-01T23:59:59.000Z

239

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network (OSTI)

measured mercury levels in shale gases and waters. The TLV'srecovery shale Spent shale gas (wet) CS~35 cs~s6 CS-57 CS-59on large areas of the shale bed if gas channeling and

Fox, J. P.

2012-01-01T23:59:59.000Z

240

The flux of radionuclides in flowback fluid from shale gas exploitation  

Science Journals Connector (OSTI)

This study considers the flux of radioactivity in flowback fluid from shale gas development in three areas: the Carboniferous, Bowland Shale, UK; the Silurian Shale, Poland; and the Carboniferous Barnett Shale, U...

S. Almond; S. A. Clancy; R. J. Davies

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Method for maximizing shale oil recovery from an underground formation  

DOE Patents (OSTI)

A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

Sisemore, Clyde J. (Livermore, CA)

1980-01-01T23:59:59.000Z

242

Retorting of oil shale followed by solvent extraction of spent shale: Experiment and kinetic analysis  

SciTech Connect

Samples of El-Lajjun oil shale were thermally decomposed in a laboratory retort system under a slow heating rate (0.07 K/s) up to a maximum temperature of 698--773 K. After decomposition, 0.02 kg of spent shale was extracted by chloroform in a Soxhlet extraction unit for 2 h to investigate the ultimate amount of shale oil that could be produced. The retorting results indicate an increase in the oil yields from 3.24% to 9.77% of oil shale feed with retorting temperature, while the extraction results show a decrease in oil yields from 8.10% to 3.32% of spent shale. The analysis of the data according to the global first-order model for isothermal and nonisothermal conditions shows kinetic parameters close to those reported in literature.

Khraisha, Y.H.

2000-05-01T23:59:59.000Z

243

PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT  

E-Print Network (OSTI)

or by refin- ing and using shale Oil Mass balances and oil.shale retorting produces shale oil, mobility factors wereand retort operating shale, shale oil, retorting (LETC) con-

Fox, J. P.

2011-01-01T23:59:59.000Z

244

Control strategies for mitigation of oil-shale-related-water quality concerns  

SciTech Connect

A comprehensive study of in situ retorting at the Logan Wash has indicated the importance of developing baseline information including raw shale characterization, the elucidation of mineralogical and chemical controls on trace element mobilities from shales subjected to in situ processing, and the research necessary to identify strategies for control of recognized environmental impacts. It is impossible to assess the magnitude of trace element releases to be expected from a commercial in situ facility once banks of retorts or the entire facility is abandoned and dewatering of the area is concluded. However, laboratory-scale studies can indeed identify the relative environmental acceptability of spent shale materials generated by in situ processing. In this research, an attempt was made to relate mineralogy and leaching behavior of field-generated materials with leachate composition and solution chemical processes. The interaction of these factors will ultimately affect the impact of in situ processing on surface and groundwater quality.

Peterson, E.J.; Wagner, P.

1981-01-01T23:59:59.000Z

245

The nano-mechanical morphology of shale  

Science Journals Connector (OSTI)

Shale, the sealing formations in most hydrocarbon reservoirs, is made of highly compacted clay particles of sub-micrometer size, nanometric porosity and different mineralogy. In this paper, we propose and validate a technique to identify the nano-mechanical morphology of such a nanocomposite material. In particular, by means of a massive nanoindentation campaign at two different scales on a large range of shale materials, we show that the highly compacted plate- or sheet-like clay particles have a distinct nano-mechanical morphology with no privileged orientation of the particle-to-particle contact surface, as evidenced by a mechanical percolation threshold of ?0?0.5. Furthermore, the nanoindentation results provide strong evidence that the nano-mechanical elementary building block of shales is transversely isotropic in stiffness, and isotropic and frictionless in strength. These observations lead to a sphere-like mechanical morphology for visibly plate- or sheet-like clay particles. The contact forces between the sphere-like particles activate the intrinsicly anisotropic elastic properties within the clay particles and the cohesive bonds between the clay particles. The mechanical stiffness and strength properties of porous clay scale with the clay packing density toward a unique set of shale-invariant material properties. The determination of mechanical microstructure and invariant material properties are of great importance for the development of predictive microporomechanical models of the stiffness and strength properties of shale. The approach presented here also applies to other chemically and mechanically complex materials exhibiting nanogranular behavior.

Christopher Bobko; Franz-Josef Ulm

2008-01-01T23:59:59.000Z

246

System for utilizing oil shale fines  

DOE Patents (OSTI)

A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

Harak, Arnold E. (Laramie, WY)

1982-01-01T23:59:59.000Z

247

Can We Accurately Model Fluid Flow in Shale?  

NLE Websites -- All DOE Office Websites (Extended Search)

Can We Accurately Model Fluid Flow Can We Accurately Model Fluid Flow in Shale? Can We Accurately Model Fluid Flow in Shale? Print Thursday, 03 January 2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to the heyday of easy-to-tap gas and liquid crude. The source of shale oil and gas is kerogen, an organic material in the shale, but until now kerogen hasn't been incorporated in mathematical models of shale gas reservoirs. Paulo Monteiro, Chris Rycroft, and Grigory Isaakovich Barenblatt, with the Computational Research Division and the Advanced Light Source, recently modeled how pressure gradients in the boundary layer between kerogen inclusions and shale matrices affect productivity and can model reservoir longevity.

248

Stress-induced anisotropy in brine saturated shale  

Science Journals Connector (OSTI)

......multistage triaxial tests The anisotropic nature of shales mainly results from the alignment of anisotropic plate-like clay minerals, which...applied differential stress. The shale is moderately anisotropic, with both velocities and anisotropic......

C. Delle Piane; D. N. Dewhurst; A. F. Siggins; M. D. Raven

2011-02-01T23:59:59.000Z

249

Process Design and Integration of Shale Gas to Methanol  

E-Print Network (OSTI)

Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact...

Ehlinger, Victoria M.

2013-02-04T23:59:59.000Z

250

Shale Oil Production Performance from a Stimulated Reservoir Volume  

E-Print Network (OSTI)

The horizontal well with multiple transverse fractures has proven to be an effective strategy for shale gas reservoir exploitation. Some operators are successfully producing shale oil using the same strategy. Due to its higher viscosity and eventual...

Chaudhary, Anish Singh

2011-10-21T23:59:59.000Z

251

A Computational Model for Explosive Fracture of Oil Shale  

Science Journals Connector (OSTI)

Successful in-situ retorting of subsurface oil shale beds may depend on the ability to ... develop a mathematical model for dynamic fracture of oil shale that could be used as a subroutine...

D. A. Shockey; W. J. Murri; R. E. Tokheim; C. Young

1979-01-01T23:59:59.000Z

252

The Naval Petroleum and Oil Shale Reserves | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserves To ensure sufficient fuel for the fleet, the Government began withdrawing probable oil-bearing...

253

Burngrange Nos.1 and 2 (oil Shale) Mine, Midlothian  

E-Print Network (OSTI)

BURNGRANGE Nos. I AND 2 (Oil Shale) MINE, MIDLOTHIAN REPORT On the Causes of, and Circumstances attending, the Explosion and Fire which occurred on the 10th January, 1947, at the Burngrange Nos. I and 2 (Oil Shale) ...

Bryan, A. M.

1947-01-01T23:59:59.000Z

254

California--onshore Natural Gas Gross Withdrawals from Shale...  

U.S. Energy Information Administration (EIA) Indexed Site

onshore Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) California--onshore Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Decade Year-0 Year-1...

255

Shale gas development impacts on surface water quality in Pennsylvania  

Science Journals Connector (OSTI)

...accept shale gas waste) upstream...Compliance System and Integrated Compliance Information System, with the...recall that we control for pre-cipitation...model results. Waste Treatment Regulatory...wastewater treatment plants to treat shale...

Sheila M. Olmstead; Lucija A. Muehlenbachs; Jhih-Shyang Shih; Ziyan Chu; Alan J. Krupnick

2013-01-01T23:59:59.000Z

256

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

257

Multiscale, Multiphysics Network Modeling of Shale Matrix Gas Flows  

Science Journals Connector (OSTI)

We present a pore network model to determine the permeability of shale gas matrix. Contrary to the conventional reservoirs, ... morphology of the pores, the permeability in shale depends on pressure as well. In a...

Ayaz Mehmani; Maa Prodanovi?; Farzam Javadpour

2013-09-01T23:59:59.000Z

258

Borehole Stability Analysis of Horizontal Drilling in Shale Gas Reservoirs  

Science Journals Connector (OSTI)

Serious wellbore instability occurs frequently during horizontal drilling in shale gas reservoirs. The conventional forecast model of in ... not suitable for wellbore stability analysis in laminated shale gas for...

Jun-Liang Yuan; Jin-Gen Deng; Qiang Tan; Bao-Hua Yu

2013-09-01T23:59:59.000Z

259

Drilling into controversy: the educational complexity of shale gas development  

Science Journals Connector (OSTI)

Potential development of shale gas presents a complicated and controversial education problem. ... the concepts necessary for understanding the development of shale gas within the energy system as a complex, ... ...

Joseph A. Henderson; Don Duggan-Haas

2014-03-01T23:59:59.000Z

260

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

OSullivan, Francis Martin

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

1 Pore Scale Analysis of Oil Shale/Sands Pyrolysis  

E-Print Network (OSTI)

quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing

unknown authors

2009-01-01T23:59:59.000Z

262

ON OIL SHALE MINING IN THE ESTONIA DEPOSIT  

E-Print Network (OSTI)

age) cut the Estonian oil shale-kukersite deposits. Two younger groups of structures are typical fault

K. Sokman; V. Kattai; R. Vaher; Y. J. Systra

263

Process evaluation of the gasification of leningrad oil shale  

Science Journals Connector (OSTI)

The results of experiments on the thermal processing of Leningrad oil shale in a laboratory reactor under the conditions...

Yu. A. Strizhakova; N. Ch. Movsum-Zade; T. A. Avakyan; T. V. Usova

2012-07-01T23:59:59.000Z

264

NATURAL GAS FROM SHALE: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Representation of common equipment at a natural gas hydraulic fracturing drill pad. Representation of common equipment at a natural gas hydraulic fracturing drill pad. How is Shale Gas Produced? Shale gas formations are "unconventional" reservoirs - i.e., reservoirs of low "permeability." Permeability refers to the capacity of a porous, sediment, soil - or rock in this case - to transmit a fluid. This contrasts with a "conventional" gas reservoir produced from sands and carbonates (such as limestone). The bottom line is that in a conventional reservoir, the gas is in interconnected pore spaces, much like a kitchen sponge, that allow easier flow to a well; but in an unconventional reservoir, like shale, the reservoir must be mechanically "stimulated" to

265

Oil shale retorting and combustion system  

DOE Patents (OSTI)

The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

Pitrolo, Augustine A. (Fairmont, WV); Mei, Joseph S. (Morgantown, WV); Shang, Jerry Y. (Fairfax, VA)

1983-01-01T23:59:59.000Z

266

Occurrence of Multiple Fluid Phases Across a Basin, in the Same Shale Gas Formation Eagle Ford Shale Example  

E-Print Network (OSTI)

Shale gas and oil are playing a significant role in US energy independence by reversing declining production trends. Successful exploration and development of the Eagle Ford Shale Play requires reservoir characterization, recognition of fluid...

Tian, Yao

2014-04-29T23:59:59.000Z

267

THE SHALE OIL BOOM: A U.S. PHENOMENON  

E-Print Network (OSTI)

June 2013 THE SHALE OIL BOOM: A U.S. PHENOMENON LEONARDO MAUGERI The Geopolitics of Energy Project material clearly cite the full source: Leonardo Maugeri. "The Shale Oil Boom: A U.S. Phenomenon" Discussion and International Affairs. #12;June 2013 THE SHALE OIL BOOM: A U.S. PHENOMENON LEONARDO MAUGERI The Geopolitics

268

Creation and Impairment of Hydraulic Fracture Conductivity in Shale Formations  

E-Print Network (OSTI)

Multi-stage hydraulic fracturing is the key to the success of many shale gas and shale oil reservoirs. The main objectives of hydraulic fracturing in shale are to create artificial fracture networks that are conductive for oil and gas flow...

Zhang, Junjing

2014-07-10T23:59:59.000Z

269

Noncontacting benchtop measurements of the elastic properties of shales  

E-Print Network (OSTI)

Noncontacting benchtop measurements of the elastic properties of shales Thomas E. Blum1 , Ludmila the elastic anisotropy of horizontal shale cores. Whereas conventional transducer data contained an ambigu shales were almost surely exaggerated by delamination of clay platelets and microfracturing, but provided

Boise State University

270

A Century of Oil-Shale Patents (1845 to 1945)  

Science Journals Connector (OSTI)

A Century of Oil-Shale Patents (1845 to 1945) ... Oil Shale Research and Demonstration Plant Division, Bureau of Mines, Department of the Interior, Washington 25, D. C. ... THE research and development program of the Bureau of Mines relating to synthetic liquid fuels includes a project for the compilation and study of all patents concerned with the treatment of oil shale and its products. ...

SIMON KLOSKY

1946-09-10T23:59:59.000Z

271

Shale Gas and the Environment: Critical Need for a  

E-Print Network (OSTI)

Shale Gas and the Environment: Critical Need for a Government­University­Industry Research Initiative P O L I C Y M A K E R G U I D E #12;Shale gas production is increasing at a rapid rate initiative is needed to fill critical gaps in knowledge at the interface of shale gas development

McGaughey, Alan

272

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

273

Water's Journey Through the Shale Gas Drilling and  

E-Print Network (OSTI)

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas in the Marcellus shale natural gas industry in the Mid-Atlantic region. Using publicly available information, we

Lee, Dongwon

274

Change of Pore Structure of Oil Shale Particles during Combustion. 2. Pore Structure of Oil-Shale Ash  

Science Journals Connector (OSTI)

Change of Pore Structure of Oil Shale Particles during Combustion. ... 2. Pore Structure of Oil-Shale Ash ... At present, there is a growing tendency to use low cost, commercially available oil-shale ash as a building material, a chemical filling material, an adsorbent, and so forth. ...

Xiangxin Han; Xiumin Jiang; Zhigang Cui

2008-02-02T23:59:59.000Z

275

Shale we look for gas?............................................................................. 1 The Marcellus shale--An old "new" gas reservoir in Pennsylvania ............ 2  

E-Print Network (OSTI)

#12;CONTENTS Shale we look for gas?............................................................................. 1 The Marcellus shale--An old "new" gas reservoir in Pennsylvania ............ 2 Meet the staff, the contour interval should be 6 inches. #12;STATE GEOLOGIST'S EDITORIAL Shale We Look For Gas? Recently, you

Boyer, Elizabeth W.

276

FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR  

E-Print Network (OSTI)

viable is the recovery of shale oil from our substantialdeposits of oil shale (1). Shale oil is recovered from oilproduce~ along with the shale oil, considerable amounts of

Fish, Richard H.

2013-01-01T23:59:59.000Z

277

NATURAL GAS FROM SHALE: Questions and Answers It Seems Like Shale Gas Came Out  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

It Seems Like Shale Gas Came Out It Seems Like Shale Gas Came Out of Nowhere - What Happened? Knowledge of gas shale resources and even production techniques has been around a long time (see "Technological Highlights" timeline). But even as recently as a few years ago, very little of the resource was considered economical to produce. Innovative advances - especially in horizontal drilling, hydraulic fracturing and other well stimulation technologies - did much to make hundreds of trillions of cubic feet of shale gas technically recoverable where it once was not. The U.S. Department of Energy's (DOE) Office of Fossil Energy, along with industry partners, was heavily involved in the innovation chain, and helped to make some of these techniques, as well as protective

278

The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants  

Science Journals Connector (OSTI)

Abstract The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 1112 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the 238U (238U, 226Ra, 210Pb) and 232Th (232Th, 228Ra) family radionuclides as well as 40K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in the oil shale combustion products.

Taavi Vaasma; Madis Kiisk; Tnis Meriste; Alan Henry Tkaczyk

2014-01-01T23:59:59.000Z

279

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

of its contact with the oil and shale, this water can beWater from Green River Oil Shale, 11 Chem. Ind. 1, 485 (Effluents from In-Situ Oil Shale Processing," in Proceedings

Fox, J.P.

2013-01-01T23:59:59.000Z

280

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

Water from Green River Oil Shale, 11 Chem. Ind. 1, 485 (Effluents from In-Situ Oil Shale Processing," in ProceedingsControl Technology for Oil Shale Retort Water," August 1978.

Fox, J.P.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

of Control Technology for Shale Oil Wastewaters,~~ inpyrolysized to produce shale oil, gas, a solid referred towaters are co-produced with shale oil and separated from it

Fox, J.P.

2013-01-01T23:59:59.000Z

282

Technically recoverable Devonian shale gas in Ohio  

SciTech Connect

The technically recoverable gas from Devonian shale (Lower and Middle Huron) in Ohio is estimated to range from 6.2 to 22.5 Tcf, depending on the stimulation method and pattern size selected. This estimate of recovery is based on the integration of the most recent data and research on the Devonian Age gas-bearing shales of Ohio. This includes: (1) a compilation of the latest geologic and reservoir data for the gas in-place; (2) analysis of the key productive mechanisms; and, (3) examination of alternative stimulation and production strategies for most efficiently recovering this gas. Beyond a comprehensive assembly of the data and calculation of the technically recoverable gas, the key findings of this report are as follows: a substantial volume of gas is technically recoverable, although advanced (larger scale) stimulation technology will be required to reach economically attractive gas production rates in much of the state; well spacing in certain of the areas can be reduced by half from the traditional 150 to 160 acres per well without severely impairing per-well gas recovery; and, due to the relatively high degree of permeability anisotropy in the Devonian shales, a rectangular, generally 3 by 1 well pattern leads to optimum recovery. Finally, although a consistent geological interpretation and model have been constructed for the Lower and Middle Huron intervals of the Ohio Devonian shale, this interpretation is founded on limited data currently available, along with numerous technical assumptions that need further verification. 11 references, 21 figures, 32 tables.

Kuushraa, V.A.; Wicks, D.E.; Sawyer, W.K.; Esposito, P.R.

1983-07-01T23:59:59.000Z

283

Water mist injection in oil shale retorting  

DOE Patents (OSTI)

Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

1980-07-30T23:59:59.000Z

284

Boomtown blues; Oil shale and Exxon's exit  

SciTech Connect

This paper chronicles the social and cultural effects of the recent oil shale boom on the Colorado communities of Rifle, Silt, Parachute, and Grand Junction. The paper is based upon research and oral history interviews conducted throughout Colorado and in Houston and Washington, DC.

Gulliford, A. (Western New Mexico Univ., Silver City, NM (USA))

1989-01-01T23:59:59.000Z

285

Searching for life in the deep shale  

Science Journals Connector (OSTI)

...of Marcellus Shale, where fracking could affect microbes. PHOTO...various kinds of wells and aquifers, looking for clues that would...sources. While studying a fracking well in Pennsylvania's Marcellus...water from another Marcellus fracking well for microbial DNA. The...

Elizabeth Pennisi

2014-06-27T23:59:59.000Z

286

A study of ignition of oil shale and char  

SciTech Connect

The ignition characteristics of Fushun, Maoming and Jordan oil shale samples have been determined experimentally by using thermogravimetric analyzer (TGA) and CO/CO{sub 2} analyzer. Their chars have been investigated, too. Two ignition mechanisms for oil shale and shale char are suggested. One is called heterogeneous, according to which, the ignition takes place on the surface of the oil shale and/or shale char sample. Another is called homogeneous, the ignition occurring in the gas phase surrounding the particles. The ignition mechanism occurred mainly depends on the condition of the combustion, physical properties of samples and the rate of volatile release. The experimental equations of ignition for three kinds of oil shale and their char particles (Fushun, Maoming and Jordan) are given. The difference of ignition temperatures for these oil shale and their char particles are compared in terms of chemical compositions and physical properties.

Min, L.; Changshan, L. (Fushun Research Institute of Petroleum and Petrochemicals, Sinopec (CN))

1989-01-01T23:59:59.000Z

287

Heat of combustion of retorted and burnt Colorado oil shale  

SciTech Connect

Heats of combustion were measured for 12 samples of retorted and 21 samples of burnt Colorado oil shale originating from raw shales with grades that ranged from 13 to 255 cm/sup 3/ of shale oil/kg of oil shale. For the retorted shales, the authors resolve the heat of combustion into exothermic contributions from combustion of carbon residue and iron sulfides and endothermic contributions from carbonate decomposition and glass formation. Eight samples reported in the literature were included in this analysis. Variations in the first three constituents account for over 99% of the variation in the heats of combustion. For the burnt shales, account must also be taken of the partial conversion of iron sulfides to sulfates. Equations are developed for calculating the heat of combustion of retorted and burnt oil shale with a standard error of about 60 J/g. 13 refs.

Burnham, A.K.; Crawford, P.C.; Carley, J.F.

1982-07-01T23:59:59.000Z

288

Heat of combustion of retorted and burnt Colorado oil shale  

SciTech Connect

Heats of combustion were measured for 12 samples of retorted and 21 samples of burnt Colorado oil shale originating from raw shales with grades that ranged from 13 to 255 cm/sup 3/ of shale oil/kg of oil shale. For the retorted shales, the heat of combustion was resolved into exothermic contributions from combustion of carbon residue and iron sulfides and endothermic contributions from carbonate decomposition and glass formation. Eight samples reported in the literature were included in this analysis. Variations in the first three constituents account for over 99% of the variation in the heats of combustion. For the burnt shales, account must also be taken of the partial conversion of iron sulfides to sulfates. Equations are developed for calculating the heat of combustion of retorted and burnt oil shale with a standard error of about 60 J/g.

Burnham, A.K.; Carley, J.F.; Crawford, P.C.

1982-07-01T23:59:59.000Z

289

Microbial desulfurization of Eastern oil shale: Bioreactor studies  

SciTech Connect

The removal of sulfur from Eastern oil shale (40 microns particle size) slurries in bioreactors by mixed microbial cultures was examined. A mixed culture that is able to remove the organic sulfur from model sulfur compounds presenting coal as well as a mixed culture isolated from oil shale enrichments were evaluated. The cultures were grown in aerobic fed-batch bioreactors where the oil shale served as the source of all nutrients except organic carbon. Glucose was added as an auxiliary carbon source. Microbial growth was monitored by plate counts, the pH was checked periodically, and oil shale samples were analyzed for sulfur content. Results show a 24% reduction in the sulfur content of the oil shale after 14 days. The settling characteristics of the oil shale in the bioreactors were examined in the presence of the microbes. Also, the mixing characteristics of the oil shale in the bioreactors were examined. 10 refs., 6 figs., 5 tabs.

Maka, A.; Akin, C.; Punwani, D.V.; Lau, F.S.; Srivastava, V.J.

1989-01-01T23:59:59.000Z

290

Soil stabilization using oil-shale solid waste  

SciTech Connect

Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

1994-04-01T23:59:59.000Z

291

depleted underground oil shale for the permanent storage of carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

292

Producing Natural Gas From Shale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Producing Natural Gas From Shale Producing Natural Gas From Shale Producing Natural Gas From Shale January 26, 2012 - 12:00pm Addthis The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing nearly half of all U.S. natural gas production. | Image courtesy of the Office of Fossil Energy. The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing

293

Assessment and control of water contamination associated with shale oil extraction and processing. Progress report, October 1, 1979-September 30, 1980  

SciTech Connect

The Los Alamos National Laboratory's research on assessment and control of water contamination associated with oil shale operations is directed toward the identification of potential water contamination problems and the evaluation of alternative control strategies for controlling contaminants released into the surface and underground water systems from oil-shale-related sources. Laboratory assessment activities have focused on the mineralogy, trace element concentrations in solids, and leaching characteristics of raw and spent shales from field operations and laboratory-generated spent shales. This report details the chemical, mineralogic, and solution behavior of major, minor, and trace elements in a variety of shale materials (spent shales from Occidental retort 3E at Logan Wash, raw shale from the Colony mine, and laboratory heat-treated shales generated from Colony mine raw shale). Control technology research activities have focused on the definition of control technology requirements based on assessment activities and the laboratory evaluation of alternative control strategies for mitigation of identified problems. Based on results obtained with Logan Wash materials, it appears that the overall impact of in situ processing on groundwater quality (leaching and aquifer bridging) may be less significant than previously believed. Most elements leached from MIS spent shales are already elevated in most groundwaters. Analysis indicates that solubility controls by major cations and anions will aid in mitigating water quality impacts. The exceptions include the trace elements vanadium, lead, and selenium. With respect to in situ retort leaching, process control and multistaged counterflow leaching are evaluated as alternative control strategies for mitigation of quality impacts. The results of these analyses are presented in this report.

Peterson, E.J.; Henicksman, A.V.; Fox, J.P.; O'Rourke, J.A.; Wagner, P.

1982-04-01T23:59:59.000Z

294

Eastern oil shale research involving the generation of retorted and combusted oil shale solid waste, shale oil collection, and process stream sampling and characterization: Final report  

SciTech Connect

Approximately 518 tons of New Albany oil shale were obtained from the McRae quarry in Clark County, Indiana and shipped to Golden, CO. A portion of the material was processed through a TOSCO II pilot plant retort. About 273 tons of crushed raw shale, 136 tons of retorted shale, 1500 gallons of shale oil, and 10 drums of retort water were shipped to US Department of Energy, Laramie, WY. Process conditions were documented, process streams were sampled and subjected to chemical analysis, and material balance calculations were made. 6 refs., 12 figs., 14 tabs.

Not Available

1989-02-01T23:59:59.000Z

295

Oil shale ash-layer thickness and char combustion kinetics  

SciTech Connect

A Hot-Recycled-Solids (HRS) oil shale retort is being studied at Lawrence Livermore National Laboratory. In the HRS process, raw shale is heated by mixing it with burnt retorted shale. Retorted shale is oil shale which has been heated in an oxygen deficient atmosphere to pyrolyze organic carbon, as kerogen into oil, gas, and a nonvolatile carbon rich residue, char. In the HRS retort process, the char in the spent shale is subsequently exposed to an oxygen environment. Some of the char, starting on the outer surface of the shale particle, is burned, liberating heat. In the HRS retort, the endothermic pyrolysis step is supported by heat from the exothermic char combustion step. The rate of char combustion is controlled by three resistances; the resistance of oxygen mass transfer through the gas film surrounding the solid particle, resistance to mass transfer through a ash layer which forms on the outside of the solid particles as the char is oxidized and the resistance due to the intrinsic chemical reaction rate of char and oxygen. In order to estimate the rate of combustion of the char in a typical oil shale particle, each of these resistances must be accurately estimated. We begin by modeling the influence of ash layer thickness on the over all combustion rate of oil shale char. We then present our experimental measurements of the ash layer thickness of oil shale which has been processed in the HRS retort.

Aldis, D.F.; Singleton, M.F.; Watkins, B.E.; Thorsness, C.B.; Cena, R.J.

1992-04-15T23:59:59.000Z

296

Component-Type Analysis of Shale Oil by Liquid and Thin-Layer Chromatography  

Science Journals Connector (OSTI)

......shale oil produced from New Brunswick oil shale in a pilot scale retort is initially...shale oil produced from New Brunswick oil shale in a pilot scale retort is initially...study was produced from New Brunswick oil shale by the New Brunswick Research & Produc......

B.J. Fuhr; L.R. Holloway; C. Reichert; S.K. Barua

1988-02-01T23:59:59.000Z

297

Concentration of oil shale by froth flotation. Monthly technical letter report, May 1-31, 1983  

SciTech Connect

Highlights of findings during May 1983, are briefly summarized. Batches of shale were ground in a 14-inch ball mill. Froth flotation of the ground shales were carried out using pine oil as a frother. Shale used was a high grade eastern shale (New Albany shale). (DMC)

Krishnan, G.

1983-10-14T23:59:59.000Z

298

Two-level, horizontal free face mining system for in situ oil shale retorts  

SciTech Connect

A method is described for forming an in-situ oil shale retort within a retort site in a subterranean formation containing oil shale, such an in-situ oil shale retort containing a fragmented permeable mass of formation particles containing oil shale formed within upper, lower and side boundaries of an in-situ oil shale retort site.

Cha, C.Y.; Ricketts, T.E.

1986-09-16T23:59:59.000Z

299

Water management practices used by Fayetteville shale gas producers.  

SciTech Connect

Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

Veil, J. A. (Environmental Science Division)

2011-06-03T23:59:59.000Z

300

Study of gas production potential of New Albany Shale (group) in the Illinois basin  

SciTech Connect

The New Albany Shale (Devonian and Mississippian) is recognized as both a source rock and gas-producing reservoir in the Illinois basin. The first gas discovery was made in 1885, and was followed by the development of several small fields in Harrison County, Indiana, and Meade County, Kentucky. Recently, exploration for and production of New Albany gas has been encouraged by the IRS Section 29 tax credit. To identify technology gaps that have restricted the development of gas production form the shale gas resource in the basin, the Illinois Basin Consortium (IBC), composed of the Illinois, Indiana, and Kentucky geological surveys, is conducting a cooperative research project with the Gas Research Institute (GRI). An earlier study of the geological and geochemical aspects of the New Albany was conducted during 1976-1978 as part of the Eastern Gas Shales Project (EGSP) sponsored by the Department of Energy (DOE). The current IBC/GRI study is designed to update and reinterpret EGSP data and incorporate new data obtained since 1978. During the project, relationships between gas production and basement structures are being emphasized by constructing cross sections and maps showing thickness, structure, basement features, and thermal maturity. The results of the project will be published in a comprehensive final report in 1992. The information will provide a sound geological basis for ongoing shale-gas research, exploration, and development in the basin.

Hasenmueller, N.R.; Boberg, W.S.; Comer, J.; Smidchens, Z. (Indiana Geological Survey, Bloomington (United States)); Frankie, W.T.; Lumm, D.K. (Illinois State Geological Survey, Champaign (United States)); Hamilton-Smith, T.; Walker, J.D. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A feasibility study of oil shale fired pulse combustors with applications to oil shale retorting  

SciTech Connect

The results of the experimental investigation performed to determine the feasibility of using pulverized Colorado oil shale to fuel a bench scale pulse combustor reveal that oil shale cannot sustain pulsations when used alone as fuel. Trace amounts of propane mixed with the oil shale enabled the pulsations, however. Up to 80% of the organic material in the oil shale was consumed when it was mixed with propane in the combustor. Beyond the feasibility objectives, the operating conditions of the combustor fuel with propane and mixtures of oil shale and propane were characterized with respect to pulsation amplitude and frequency and the internal combustor wall temperature over fuel lean and fuel rich stoichiometries. Maximum pressure excursions of 12.5 kPa were experienced in the combustor. Pulsation frequencies ranged from 50 to nearly 80 Hz. Cycle resolved laser Doppler anemometry velocities were measured at the tail pipe exit plane. Injecting inert mineral matter (limestone) into the pulse combustor while using propane fuel had only a slight effect on the pulsation frequency for the feed rates tested.

Morris, G.J.; Johnson, E.K.; Zhang, G.Q.; Roach, R.A.

1992-07-01T23:59:59.000Z

302

Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy Advisory Board Subcommittee (SEAB) on Shale Gas of Energy Advisory Board Subcommittee (SEAB) on Shale Gas Production Posts Draft Report Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale Gas Production Posts Draft Report November 10, 2011 - 1:12pm Addthis WASHINGTON, D.C. - The Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale Gas Production released its second and final ninety-day report reviewing the progress that has been made in implementing the twenty recommendations in its initial report of August 18, 2011. The Subcommittee was tasked with producing a report on the immediate steps that can be taken to improve the safety and environmental performance of shale gas development. The Subcommittee believes that these recommendations, if implemented, would help to assure that the nation's considerable shale

303

Utilization of Estonian oil shale at power plants  

SciTech Connect

Estonian oil shale belongs to the carbonate class and is characterized as a solid fuel with very high mineral matter content (60--70% in dry mass), moderate moisture content (9--12%) and low heating value (LHV 8--10 MJ/kg). Estonian oil shale deposits lie in layers interlacing mineral stratas. The main constituent in mineral stratas is limestone. Organic matter is joined with sandy-clay minerals in shale layers. Estonian oil shale at power plants with total capacity of 3060 MW{sub e} is utilized in pulverized form. Oil shale utilization as fuel, with high calcium oxide and alkali metal content, at power plants is connected with intensive fouling, high temperature corrosion and wear of steam boiler`s heat transfer surfaces. Utilization of Estonian oil shale is also associated with ash residue use in national economy and as absorbent for flue gas desulfurization system.

Ots, A. [Tallin Technical Univ. (Estonia). Thermal Engineering Department

1996-12-31T23:59:59.000Z

304

Plan for addressing issues relating to oil shale plant siting  

SciTech Connect

The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

1987-09-01T23:59:59.000Z

305

Deformation of shale: mechanical properties and indicators of mechanisms  

E-Print Network (OSTI)

Basins, shales of Devonian age are commonly considered reservoir rocks I' or natural gas [Woodward, 1958; Lockett, 1968; Long, 1979; Gonzales and Johnson, 1985], Economic gas production from the Devonian shales of these basins is associated..., 1967; Chang et al. , 1979; Smith and Cheatham, 1980; Jordan and Nuesch, 1989; Nuesch, 1991]. Shales deform by fracture and friction-controlled slip at low mean stresses (& 200 MPa), while semi-brittle cataclasis and kinking are observed at high...

Ibanez, William Dayan

2012-06-07T23:59:59.000Z

306

Western oil shale conversion using the ROPE copyright process  

SciTech Connect

Western Research Institute (WRI) is continuing to develop the Recycle Oil Pyrolysis and Extraction (ROPE) process to recover liquid hydrocarbon products from oil shale, tar sand, and other solid hydrocarbonaceous materials. The process consists of three major steps: (1) pyrolyzing the hydrocarbonaceous material at a low temperature (T {le} 400{degrees}C) with recycled product oil, (2) completing the pyrolysis of the residue at a higher temperature (T > 400{degrees}C) in the absence of product oil, and (3) combusting the solid residue and pyrolysis gas in an inclined fluidized-bed reactor to produce process heat. Many conventional processes, such as the Paraho and Union processes, do not use oil shale fines (particles smaller than 1.27 cm in diameter). The amount of shale discarded as fines from these processes can be as high as 20% of the total oil shale mined. Research conducted to date suggests that the ROPE process can significantly improve the overall oil recovery from western oil shale by processing the oil shale fines typically discarded by conventional processes. Also, if the oil shale fines are co-processed with shale oil used as the heavy recycle oil, a better quality oil will be produced that can be blended with the original shale oil to make an overall produce that is more acceptable to the refineries and easier to pipeline. Results from tests conducted in a 2-inch process development unit (PDU) and a 6-inch bench-scale unit (BSU) with western oil shale demonstrated a maximum oil yield at temperatures between 700 and 750{degrees}F (371 and 399{degrees}C). Test results also suggest that the ROPE process has a strong potential for recovering oil from oil shale fines, upgrading shale oil, and separating high-nitrogen-content oil for use as an asphalt additive. 6 refs., 10 figs., 11 tabs.

Cha, C.Y.; Fahy, L.J.; Grimes, R.W.

1989-12-01T23:59:59.000Z

307

Research and information needs for management of oil shale development  

SciTech Connect

This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

Not Available

1983-05-01T23:59:59.000Z

308

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Impacts Surface Impacts (non-water) Key Points: * There are many local economic and energy benefits from shale gas development; there is also an inherent risk of increased traffic or other habitat disturbances that could affect residents, agriculture, farming, fishing and hunting. 1 * Shale gas development can lead to socio-economic impacts and can increase demands on local infrastructure, traffic, labor force, education, medical and other services. 2 Federal and state laws are designed to mitigate the impact of these challenges. * The rapid expansion of shale gas development and hydraulic fracturing has increased attention on potential effects on human health, the environment and local wildlife habitat. Vegetation and soils are disturbed where gas wells require new roads, clearing and leveling.

309

WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY  

E-Print Network (OSTI)

Stabilization of Spent Oil Shales, EPA-600/'7-'78- 021, Feb.Impact Analysis for an Oil Shale Complex at Parachute Creek,from a Simulated In-Situ Oil Shale Retort, Proceedings of

Fox, J. P.

2011-01-01T23:59:59.000Z

310

TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY  

E-Print Network (OSTI)

of Trace Contaminants in Oil Shale Retort Wa- ters", Am.LBL-10850. b. and , "Trace Contaminants in Oil Shale RetortWaters", in Oil Shale Research: Characteriza- tion Studies,

Kland, M.J.

2010-01-01T23:59:59.000Z

311

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

from In-Situ Retorting of Oil Shale," Energy and Environmentintimate contact ~lith the oil and shale, Retort waters area Control Technology for Oil Shale Retort Water J. P. Fox,

,

2012-01-01T23:59:59.000Z

312

Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network (OSTI)

. These challenges have impeded efficient economic development of shale resources. New fundamental insights and tools are needed to improve the state of shale gas development. Few attempts have been made to model the compositional behavior of fluids in shale gas...

Freeman, Craig Matthew

2013-11-25T23:59:59.000Z

313

Impedance of black shale from Mnsterland 1 borehole: an anomalously good conductor?  

Science Journals Connector (OSTI)

......Electrical conductivity of Colorado oil shale to 900C, Fuel, 62, 966-972...electrical conductivity measurements on oil shale (Duba 1983) and carbonaceous chondrite...Electrical conductivity of Colorado oil shale to 900 C, Fuel, 62,966-972......

Al Duba; E. Huengest; G. Nover; G. Will; H. Jdicke

1988-09-01T23:59:59.000Z

314

Using oil shale ash waste as a modifier for asphalt binders  

Science Journals Connector (OSTI)

Oil shale rocks represent one of the most available ... Jordan land contains about 50 billion tons of oil shale, which makes Jordan the third in the ... world of the reserve of this material. Oil shale ash is a b...

Khalid Ghuzlan; Ghazi Al-Khateeb

2013-10-01T23:59:59.000Z

315

Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics  

E-Print Network (OSTI)

enggeo.2013.05.021. CNX/GTI (2008). New Albany ShaleRVSP, New Albany Shale Gas Project, RVSP Seismic Projectisopach maps of the New Albany Shale, Illinois Basin. Figure

Dobson, Patrick

2014-01-01T23:59:59.000Z

316

ANAEROBIC FERMENTATION OF SIMULATED IN-SITU OIL SHALE RETORT WATER  

E-Print Network (OSTI)

Water from Green River Oil Shale, Chemistry and Industry,for an In-Situ Produced Oil-Shale Processin g Water, LERCOf Simulated In-Situ Oil Shale Retort Water B.A. Ossio, J.P.

Ossio, E.A.

2011-01-01T23:59:59.000Z

317

WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY  

E-Print Network (OSTI)

from a Simulated In-Situ Oil Shale Retort, Proceedingsof the 11th Oil Shale Symposium, 1978. J. W.MB_terial in Green River Oil Shale, U.S. Bur. lvlines Rept.

Fox, J. P.

2011-01-01T23:59:59.000Z

318

A Strategy for the Abandonment of Modified In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

Effects of steam on oil shale ing: a preliminary laboratoryInstitute to Rio Blanco Oil Shale Project, May 1977. 1~OF MODIFIED IN-SITU OIL SHALE RETORTS J. P. Fox and P.

Fox, J.P.; Persoff, P.; Moody, M.M.; Sisemore, C.J.

1978-01-01T23:59:59.000Z

319

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network (OSTI)

Presented at the 13th Oil Shale Symposium, Golden, CO, April~1ETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS Richard H.compounds in the seven oil shale process waters. These

Fish, Richard H.

2013-01-01T23:59:59.000Z

320

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

from In-Situ Retorting of Oil Shale," Energy and EnvironmentTrace Contaminants in Oil Shale Retort Water M. J. Kland, A.Organic Arsenic Compounds 1n Oil Shale Process Waters R. H.

,

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network (OSTI)

from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,V. E . 1977; Mercury in Oil Shale from the Mahogany Zone

Fox, J. P.

2012-01-01T23:59:59.000Z

322

A Strategy for the Abandonment of Modified In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

Effects of steam on oil shale ing: a preliminary laboratoryInstitute to Rio Blanco Oil Shale Project, May 1977. 1~Cement, pozzolan and oil shale chemistry The chemistry of

Fox, J.P.; Persoff, P.; Moody, M.M.; Sisemore, C.J.

1978-01-01T23:59:59.000Z

323

ANAEROBIC FERMENTATION OF SIMULATED IN-SITU OIL SHALE RETORT WATER  

E-Print Network (OSTI)

Water co produced with shale oil and decanted from it isWater from Green River Oil Shale, Chemistry and Industry,for an In-Situ Produced Oil-Shale Processin g Water, LERC

Ossio, E.A.

2011-01-01T23:59:59.000Z

324

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

each of retort water and shale oil, about 10 1 000 standardfrom In-Situ Retorting of Oil Shale," Energy and Environmentanic species present in shale oils process waters, gases,

,

2012-01-01T23:59:59.000Z

325

WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY  

E-Print Network (OSTI)

4, 19'70, p. 89. 24. C-b Shale Oil Venture: Hydrology, MinePiles Solid wastes from the shale-oil recovery process alsofrom a Simulated In-Situ Oil Shale Retort, Proceedings of

Fox, J. P.

2011-01-01T23:59:59.000Z

326

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

oil, water, spent shale, and gas. These data were enteredtoxic trace elements in oil shale gases and is using thisin the raw oil shale and input gases that is accounted for

,

2012-01-01T23:59:59.000Z

327

Natural catalytic activity in a marine shale for generating natural gas  

Science Journals Connector (OSTI)

...natural catalytic activity in marine shales. Gas is generated at ambient temperatures...differences are in degree. Mowry shale generates gas compositions that are quite different...probably a major source of natural gas. Mowry shale generates gas at thermodynamic...

2010-01-01T23:59:59.000Z

328

WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY  

E-Print Network (OSTI)

may occur spent shale and the recycle gas. For of componentsmg per 100 of spent shale for inert gas runs; from 1.0 to .4material from spent shale produced inert gas runs, 011d

Fox, J. P.

2011-01-01T23:59:59.000Z

329

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

from In-Situ Retorting of Oil Shale," Energy and EnvironmentStudies Trace Contaminants in Oil Shale Retort Water M. J.Organic Arsenic Compounds 1n Oil Shale Process Waters R. H.

,

2012-01-01T23:59:59.000Z

330

Induction log analysis of thinly laminated sand/shale formation  

SciTech Connect

The author examines induction log responses to a thinly laminated sand/shale sequence in a deviated borehole for arbitrary deviation (or dip) angle and sand/shale composition. He found that the induction log responses in a thinly laminated sand/shale sequence are the same as they would be if the tool is placed in a homogeneous but anisotropic formation with the horizontal and vertical conductivities given respectively by the parallel and the series conductivities of the sequence. Conversely, a thinly laminated sand/shale sequence can be identified as an anisotropic formation by induction logs. He discusses three methods to identify an anisotropic formation using induction-type logs alone.

Hagiwara, T. [Shell Development Co., Houston, TX (United States)

1995-06-01T23:59:59.000Z

331

Secretary of Energy Advisory Board Subcommittee Releases Shale...  

Office of Environmental Management (EM)

environmental management of shale gas, which has rapidly grown to nearly 30 percent of natural gas production in the United States. Increased transparency and a focus on best...

332

Shale-gas extraction faces growing public and regulatory challenges  

Science Journals Connector (OSTI)

Two federal agencies are scrutinizing the shale-gas industry and its use of fracking but gas producers insist that state regulators provide sufficient environmental oversight.

David Kramer

2011-01-01T23:59:59.000Z

333

WESTERN GREAT PLAINS CLIFF, OUTCROP AND SHALE BARREN ECOLOGICAL SYSTEM  

E-Print Network (OSTI)

WESTERN GREAT PLAINS CLIFF, OUTCROP AND SHALE BARREN ECOLOGICAL SYSTEM ECOLOGICAL INTEGRITY ASSESSMENT Draft of June 29, 2007 Prepared by: Karin Decker Colorado Natural Heritage Program Colorado State

334

Determination of stress levels for dynamic fracture of oil shale  

Science Journals Connector (OSTI)

The dynamic tensile-stress amplitudes necessary to cause complete spall in unconfined oil-shale samples were experimentally determined in the laboratory...

Michael P. Felix

1977-10-01T23:59:59.000Z

335

Drugs and oil flow through the Eagle Ford Shale.  

E-Print Network (OSTI)

??This report is a work of original reporting which investigates the proliferation of drug use and drug trafficking in the Eagle Ford Shale, a region (more)

Marks, Michael Perry

2014-01-01T23:59:59.000Z

336

Experimental study of mechanisms of improving oil recovery in Shale.  

E-Print Network (OSTI)

??ABSTRACT Extensive laboratory work was done to investigate some of the important mechanisms of improving oil recovery in Shale formations. The objective of this research (more)

Onyenwere, Emmanuel

2012-01-01T23:59:59.000Z

337

Strategic Significance of Americas Oil Shale Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

of Deputy Assistant Secretary for Petroleum Reserves Office of Naval Petroleum and Oil Shale Reserves U.S. Department of Energy Washington, D.C. March 2004 Strategic...

338

Attrition and abrasion models for oil shale process modeling  

SciTech Connect

As oil shale is processed, fine particles, much smaller than the original shale are created. This process is called attrition or more accurately abrasion. In this paper, models of abrasion are presented for oil shale being processed in several unit operations. Two of these unit operations, a fluidized bed and a lift pipe are used in the Lawrence Livermore National Laboratory Hot-Recycle-Solid (HRS) process being developed for the above ground processing of oil shale. In two reports, studies were conducted on the attrition of oil shale in unit operations which are used in the HRS process. Carley reported results for attrition in a lift pipe for oil shale which had been pre-processed either by retorting or by retorting then burning. The second paper, by Taylor and Beavers, reported results for a fluidized bed processing of oil shale. Taylor and Beavers studied raw, retorted, and shale which had been retorted and then burned. In this paper, empirical models are derived, from the experimental studies conducted on oil shale for the process occurring in the HRS process. The derived models are presented along with comparisons with experimental results.

Aldis, D.F.

1991-10-25T23:59:59.000Z

339

Unconventional oil market assessment: ex situ oil shale.  

E-Print Network (OSTI)

??This thesis focused on exploring the economic limitations for the development of western oil shale. The analysis was developed by scaling a known process and (more)

Castro-Dominguez, Bernardo

2010-01-01T23:59:59.000Z

340

Oil shale pyrolysis: benchscale experimental studies and modeling.  

E-Print Network (OSTI)

??Oil shale is a complex material that is composed of organic matter, mineral matrix and trace amount of bound and/or unbound water. The endothermic decomposition (more)

Tiwari, Pankaj

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mixed Integer Model Predictive Control of Multiple Shale Gas Wells.  

E-Print Network (OSTI)

?? Horizontal wells with multistage hydraulic fracturing are today the most important drilling technology for shale gas extraction. Considered unprofitable before, the production has now (more)

Nordsveen, Espen T

2012-01-01T23:59:59.000Z

342

Analysis of the potential impacts of shale gas development.  

E-Print Network (OSTI)

??The objective of this thesis is to analyze the considerations regarding the environmental impacts of shale gas development by a rational, objective, fact-based assessment. Flowback (more)

Yi, Hyukjoong

2013-01-01T23:59:59.000Z

343

,"Louisiana Shale Gas Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

344

Shale Gas Environmental Aspects, Technical Parameters and Explorations in TIMER.  

E-Print Network (OSTI)

??Over the last ten years the shale gas industry in North America has flourished. The ensuing economic success has inspired other countries to start investigating (more)

Deijns, J.

2014-01-01T23:59:59.000Z

345

,"Alaska (with Total Offshore) Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

346

,"Texas--State Offshore Shale Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2010 ,"Release Date:","124...

347

,"Alabama (with State Offshore) Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2010 ,"Release Date:","124...

348

,"Louisiana (with State Offshore) Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

349

,"Texas (with State Offshore) Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

350

Evaluation of Devonian shale potential in New York  

SciTech Connect

This report is a brief overview of preliminary geologic interpretations developed from the Eastern Gas Shales Project (EGSP) and related data concerning the deposition of the black shale facies and generation of natural gas in the Devonian shale sequence. The intent is to suggest areas of potential shale gas accumulation that would be of interest to the producer as either a primary target or a dual completion possibility. In New York, historical stratigraphic as well as current EGSP work has established the Devonian clastic facies as the type section for eastern North America. The initial documented shale-gas well was drilled in 1821 near Fredonia, New York. Since then, numerous shale-gas wells and/or deeper wells with gas shows in the shale section have been reported in western and central New York. The EGSP has focused on documenting and more closely defining organic-rich, black shale facies to project potential favorable trends. The purpose of this report is to inform the general public and interested oil and gas operators about EGSP results as they pertain to the Devonian gas shales of the Appalachian basin in New York. Geologic data and interpretations are summarized, and areas where the accumulation of gas may be large enough to justify commercial production are outlined. Because the data presented in this report are generalized and not suitable for evaluation of specific sites for exploration, the reader should consult the various reports cited for more detail and discussion of the data, concepts, and interpretations presented.

Not Available

1981-01-01T23:59:59.000Z

351

,"Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2012,"6302007"...

352

,"West Virginia Shale Gas Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2012,"6302007"...

353

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

SciTech Connect

A process for making hydraulic cements from spent oil shale is described in this paper. Inexpensive cement is needed to grout abandoned in-situ retorts of spent shale for subsidence control, mitigation of leaching, and strengthening the retorted mass in order to recover oil from adjacent pillars of raw shale. A hydraulic cement was produced by heating a 1:1 mixture of Lurgi spent shale and CaCO{sub 3} at 1000 C for one hour. This cement would be less expensive than ordinary portland cement and is expected to fulfill the above requirements.

Mehta, P.K.; Persoff, P.

1980-04-01T23:59:59.000Z

354

Journal of Sedimentary Research, 2014, v. 84, 837838 DOI: http://dx.doi.org/10.2110/jsr.2014.73  

E-Print Network (OSTI)

of bitumen (this is, after all, an oil-producing shale) while the slide is cured on a hot plate, can also­LOWER MISSISSIPPIAN UPPER SHALE MEMBER OF THE BAKKEN FORMATION, WILLISTON BASIN, NORTH DAKOTA, U made on cores of the Bakken Shale and presents a methodology to examine and describe these cores

Polly, David

355

Diagenesis of sandstones from the Douglas Creek member of the Green River Formation (Eocene) at Red Wash field, Uintay County, Utah  

E-Print Network (OSTI)

, sandstone and some limestone and dolomite beds. The Garden Creek Member at Red Wash Field is about 550 ft (168 m) thick. The Parachute Creek Member, overlying the Garden Creek, is largely oil shale, gray shale, and limestone and dolomite beds..., sandstone and some limestone and dolomite beds. The Garden Creek Member at Red Wash Field is about 550 ft (168 m) thick. The Parachute Creek Member, overlying the Garden Creek, is largely oil shale, gray shale, and limestone and dolomite beds...

Ray, Earl Scott

2012-06-07T23:59:59.000Z

356

Sustainable Development of the Shale Gas Supply Chain and the Optimal Drilling Strategy for Nonconventional Wells  

Science Journals Connector (OSTI)

Abstract We present a long-term MINLP planning model for the development of shale gas fields. A key decision is the drilling/fracturing strategy yielding the freshwater consumption profile, which is critical in waterscarce regions with high cumulative demand for water. Results show that the model can help companies to reduce freshwater consumption by optimally planning drilling operations, at the expense of small reductions in the net present value of the projects.

Diego C. Cafaro; Ignacio E. Grossmann

2014-01-01T23:59:59.000Z

357

Economic viability of shale gas production in the Marcellus Shale; indicated by production rates, costs and current natural gas prices.  

E-Print Network (OSTI)

?? The U.S. natural gas industry has changed because of the recent ability to produce natural gas from unconventional shale deposits. One of the largest (more)

Duman, Ryan J.

2012-01-01T23:59:59.000Z

358

The shale gas potential of Tournaisian, Visean, and Namurian black shales in North Germany: baseline parameters in a geological context  

Science Journals Connector (OSTI)

Carboniferous black mudrocks with known petroleum potential occur throughout Northern Germany. However, despite numerous boreholes exploring for conventional hydrocarbons, the potential for shale gas resources re...

Dorit I. Kerschke; Hans-Martin Schulz

2013-12-01T23:59:59.000Z

359

Study of the combustion mechanism of oil shale semicoke in a thermogravimetric analyzer  

Science Journals Connector (OSTI)

Oil shale semicoke, formed in retort furnaces, is ... solid waste. For the industrial application of oil shale semicoke in combustion, this present work focused...

X. X. Han; X. M. Jiang; Z. G. Cui

2008-05-01T23:59:59.000Z

360

SciTech Connect: Documentation of INL's In Situ Oil Shale Retorting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model Citation Details In-Document Search Title: Documentation of INL's In Situ Oil Shale Retorting...

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Shale gas rock characterization and 3D submicron pore network reconstruction .  

E-Print Network (OSTI)

??"Determining shale gas petrophysical properties is the cornerstone to any reservoir-management practice. Hitherto, conventional core analyses are inadequate to attain the petrophysical properties of shale (more)

Elgmati, Malek, 1982-

2011-01-01T23:59:59.000Z

362

The technology of the New South Wales torbanite : including an introduction on oil shale.  

E-Print Network (OSTI)

??Although the nature of the products of thermal decomposition of oil shale has attracted the attention of both scientist and industrialist, oil shale possibly ranks (more)

Cane, Reginald Frank

1946-01-01T23:59:59.000Z

363

Effects of low temperature preheating on the pyrolysis products from blocks of oil shale.  

E-Print Network (OSTI)

??Oil shale is a sedimentary rock composed of inorganic and organic fractions. The inorganic minerals contained in oil shale include: dolomite, calcite, quartz, i1 lite, (more)

Alston, David W.

1905-01-01T23:59:59.000Z

364

Evaluation of EOR Potential by Gas and Water Flooding in Shale Oil Reservoirs.  

E-Print Network (OSTI)

??The demand for oil and natural gas will continue to increase for the foreseeable future; unconventional resources such as tight oil, shale gas, shale oil (more)

Chen, Ke

2013-01-01T23:59:59.000Z

365

Conceptual study of thermal stimulation in shale gas formations  

Science Journals Connector (OSTI)

Abstract Shale gas formations have become a major source of energy in recent years. Developments in hydraulic fracturing technology have made these reservoirs more accessible and productive. Apart from other dissimilarities from conventional gas reservoirs, one major difference is that a considerable amount of gas produced from these shale gas formations comes from desorption. Up to 85% of the total gas within shale can be found as an adsorbed phase on clay and kerogen, so how much adsorbed gas can be produced will have significant impact on ultimate gas recovery. The Langmuir isotherm has been widely used in industry to describe the pressure dependence of adsorbed gas. However, temperature dependent adsorption behavior and its major implications for evaluating thermal stimulation as a recovery method for shale reservoirs have not been thoroughly explored. Therefore, in order to design and analyze the thermal treatment of shale gas formations successfully, it is crucial to understand the effects of fracture heating on the shale gas adsorption and desorption phenomenon, and how can we exploit such effects to enhance shale gas recovery from hydraulically fractured reservoirs. Even though numerous research efforts have been focused on thermal recovery of shale oil, its possible application to shale gas has not been investigated. In this research, we propose a method to evaluate desorbed gas as a function of pressure and temperature in shale formations, by regression of a Bi-Langmuir model on Langmuir isotherm data. We have developed a fully coupled unconventional reservoir simulator, which is capable of capturing real gas flow in the shale matrix and in the hydraulic fracture by accounting for the effects of gas desorption and diffusion, as well as the temperature diffusion process within the matrix. This simulator enables us to investigate the effects of fracture heating on the shale gas desorption phenomenon on the global well performance and recovery. The results of this study show, for the first time in a rigorous way, that by increasing the temperature within the fracture, shale gas recovery can be improved. We have rationalized and quantified relations between the adsorption/desorption fundamental phenomena and stimulation temperature, fracture spacing, reservoir permeability and bottom hole pressure. The thermal properties of shale formations only have limited impacts on long term production. The results of this study can provide a guidance to develop a strategy to design thermal treatment in hydraulically fractured shale formations and propose the degree of thermal stimulation temperature required in a fracture to promote an economically viable return on production.

HanYi Wang; Omobola Ajao; Michael J. Economides

2014-01-01T23:59:59.000Z

366

Trace elements in oil shale. Progress report, 1979-1980  

SciTech Connect

The purpose of this research program is to understand the potential impact of an oil shale industry on environmental levels of trace contaminants in the region. The program involves a comprehensive study of the sources, release mechanisms, transport, fate, and effects of toxic trace chemicals, principally the trace elements, in an oil shale industry. The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements by shale and oil production and use. The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. Leachate studies show that significant amounts of B, F, and Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements are not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. Many of the so-called standard methods for analyzing trace elements in oil shale-related materials are inadequate. A sampling manual is being written for the environmental scientist and practicing engineer. A new combination of methods is developed for separating the minerals in oil shale into different density fractions. Microbial investigations have tentatively identified the existence of thiobacilli in oil shale materials such as leachates. (DC)

Chappell, W R

1980-01-01T23:59:59.000Z

367

Southwest Engineers participates in North Dakota fracking project  

Science Journals Connector (OSTI)

Southwest Engineers Inc is working with Earthwater Resources Inc on a major project in the Bakken Shale oil and gas zone in North Dakota, USA.

2013-01-01T23:59:59.000Z

368

Project Management Plan - Small Producers Program  

NLE Websites -- All DOE Office Websites (Extended Search)

RPSEA Final Report 09123.11.Final Enhanced Oil Recovery from the Bakken Shale using Surfactant Imbibition Coupled with Gravity Drainage 09123-09 Dongmei Wang Petroleum Engineering...

369

General screening criteria for shale gas reservoirs and production data analysis of Barnett shale  

E-Print Network (OSTI)

Shale gas reservoirs are gaining importance in United States as conventional oil and gas resources are dwindling at a very fast pace. The purpose of this study is twofold. First aim is to help operators with simple screening criteria which can help...

Deshpande, Vaibhav Prakashrao

2009-05-15T23:59:59.000Z

370

Retorting Oil Shale by a Self-Heating Route  

Science Journals Connector (OSTI)

Retorting is a frequently used method for producing shale oil from oil shale. During retorting, heat is usually supplied to the retort by heat-carrier gas of high temperature, such as 700 C, until retorting ends. In this work, a low-energy-input ...

Hongfan Guo; Siyuan Peng; Jiadong Lin; Jiang Chang; Shan Lei; Tianbo Fan; Yunyi Liu

2013-04-09T23:59:59.000Z

371

Adsorption of copper and zinc by oil shale  

Science Journals Connector (OSTI)

?Oil shale is able to remove appreciable amounts of...2+ and Zn2+. The results showed that oil shale could be used for the adsorption of...2+ and Zn2+ with higher affinity toward Zn2+ ions. Addition of sodium sal...

S. Al-Asheh; Fawzi Banat

2001-03-01T23:59:59.000Z

372

Beneficiation and hydroretorting of low grade oil shale  

SciTech Connect

A new approach to oil recovery from low grade oil shales has been developed jointly by the Mineral Resources Institute (MRI) of The University of Alabama and the HYCRUDE Corporation. The approach is based on the HYTORT process, which utilized hydrogen gas during the retorting process to enhance oil yields from many types of oil shales. The performance of the HYTORT process is further improved by combining it with MRI's froth flotation process. Taking advantage of differences in the surface properties of the kerogen and the inorganic mineral constituents of the oil shales, the MRI process can reject up to three quarters by weight of relatively kerogen-free inorganic fractions of the oil shale before HYTORT processing. The HYTORT and MRI processes are discussed. Results of tests by each process on oil shales of low to moderate inherent kerogen content are presented. Also discussed are the results of the combined processes on an Indiana New Albany oil shale. By combining the two processes, the raw shale which yielded 12 gallons of oil per ton by Fischer Assay was upgraded by flotation to a product yielding 27 gallons of Fischer Assay oil per ton. HYTORT processing of the beneficiated product recovered 54 gallons of oil per ton, an improvement in oil yield by a factor of 4.5 over the raw shale Fischer Assay.

Tippin, R.B.; Hanna, J.; Janka, J.C.; Rex, R.C. Jr.

1985-02-01T23:59:59.000Z

373

Devonian-Mississippian oil shale resources of Kentucky: a summary  

SciTech Connect

Assessment of the oil shale resources in Kentucky has continued with 75 NX cores available where the oil shale crops out or is overlain by relatively thin cover in the area from Estill County westward to Bullitt County. In this 14 county area, the total black shale section thins across the crest of the Cincinnati arch and changes stratigraphically from that characteristic of the Ohio Shale in Estill County to that of the New Albany Shale in Bullitt County. Despite this stratigraphic transition the two high-carbon zones (greater than 8.0% carbon) can be traced across the arch. As the traverse is followed from the east, the intervening low-carbon zones thin such that at the crest of the arch, there are areas where the entire section of black shale contains more than 8% carbon. Then upon leaving the crest the two high-carbon zones separate again with one remaining at the very top of the section and one in the lower part. In the 14 county area, there are approximately 3.8 x 10/sup 5/ acres of oil shale outcrop and approximately 7.8 x 10/sup 5/ acres underlain by oil shale at relatively shallow depths.

Barron, L.S.; Robl, T.L.; Kung, J.; Obley, J.

1985-02-01T23:59:59.000Z

374

Reactive gases evolved during pyrolysis of Devonian oil shale  

SciTech Connect

Computer modeling of oil shale pyrolysis is an important part of the Lawrence Livermore National Laboratory (LLNL) Oil Shale Program. Models containing detailed chemistry have been derived from an investigation of Colorado oil shale. We are currently attempting to use models to treat more completely reactions of nitrogen and sulfur compounds in the retort to better understand emissions. Batch retorting work on Devonian oil shale is proving particularly useful for this study of nitrogen/sulfur chemistry. Improved analytical methods have been developed to quantitatively determine reactive volatiles at the parts-per-million level. For example, the triple quadrupole mass spectrometer (TQMS) is used in the chemical ionization (CI) mode to provide real-time analytical data on ammonia evolution as the shale is pyrolyzed. A heated transfer line and inlet ensure rapid and complete introduction of ammonia to the instrument by preventing water condensation. Ammonia and water release data suitable for calculating kinetic parameters have been obtained from a New Albany Shale sample. An MS/MS technique with the TQMS in the electron ionization (EI) mode allows hydrogen sulfide, carbonyl sulfide, and certain trace organic sulfur compounds to be monitored during oil shale pyrolysis. Sensitivity and selectivity for these compounds have been increased by applying artificial intelligence techniques to tuning of the spectrometer. Gas evolution profiles (100 to 900/sup 0/C) are reported for hydrogen sulfide, water, ammonia, and trace sulfur species formed during pyrolysis of Devonian oil shale. Implications for retorting chemistry are discussed. 18 refs., 11 figs., 3 tabs.

Coburn, T.T.; Crawford, R.W.; Gregg, H.R.; Oh, M.S.

1986-11-01T23:59:59.000Z

375

Physical and mechanical properties of bituminous mixtures containing oil shales  

SciTech Connect

Rutting of bituminous surfaces on the Jordanian highways is a recurring problem. Highway authorities are exploring the use of extracted shale oil and oil shale fillers, which are abundant in Jordan. The main objectives of this research are to investigate the rheological properties of shale oil binders (conventional binder with various percentages of shale oil), in comparison with a conventional binder, and to investigate the ability of mixes to resist deformation. The latter is done by considering three wearing course mixes containing three different samples of oil shale fillers--which contained three different oil percentages--together with a standard mixture containing limestone filler. The Marshall design method and the immersion wheel tracking machine were adopted. It was concluded that the shale oil binders displayed inconsistent physical properties and therefore should be treated before being used. The oil shale fillers have provided mixes with higher ability to resist deformation than the standard mix, as measured by the Marshall quotients and the wheel tracking machine. The higher the percentages of oil in the oil shale fillers, the lower the ability of the mixes to resist deformation.

Katamine, N.M.

2000-04-01T23:59:59.000Z

376

History and some potentials of oil shale cement  

SciTech Connect

The utilization of oil shale as a cement component is discussed. It was investigated in America and Europe during World War I. Additional development occurred in Western Europe, Russia, and China during the 1920s and 1930s. World War II provided further development incentives and a relatively mature technology was in place in Germany, Russia, and China prior to 1980. The utilization of oil shale in cement has taken a number of different paths. One approach has been to utilize the energy in the oil shale as the principal source for the cement plant and to use the combusted shale as a minor constituent of the plant's cement product. A second approach has been to use the combusted shale as a class C or cementitious fly-ash component in portland cement concrete. Other approaches utilizing eastern oil shale have been to use the combusted oil shale with additives as a specialty cement, or to cocombust the oil shale with coal and utilize the sulfur-rich combustion product.

Knutson, C.F.; Smith, R.P.; Russell, B.F. (Idaho National Engineering Lab., Idaho Falls, ID (USA))

1989-01-01T23:59:59.000Z

377

Removal of nitrogen and sulfur from oil-shale  

SciTech Connect

This patent describes a process for enhancing the removal of nitrogen and sulfur from oil-shale. The process consists of: (a) contacting the oil-shale with a sufficient amount of an aqueous base solution comprised of at least a stoichiometric amount of one or more alkali metal or alkaline-earth metal hydroxides based on the total amount of nitrogen and sulfur present in the oil-shale. Also necessary is an amount sufficient to form a two-phase liquid, solid system, a temperature from about 50/sup 0/C to about 350/sup 0/C., and pressures sufficient to maintain the solution in liquid form; (b) separating the effluents from the treated oil-shale, wherein the resulting liquid effluent contains nitrogen moieties and sulfur moieties from the oil-shale and any resulting gaseous effluent contains nitrogen moieties from the oil-shale, and (c) converting organic material of the treated oil-shale to shale-oil at a temperature from about 450/sup 0/C to about 550/sup 0/C.

Olmstead, W.N.

1986-01-28T23:59:59.000Z

378

Risks and Risk Governance in Unconventional Shale Gas Development  

Science Journals Connector (OSTI)

The air pollutants associated with shale gas development include greenhouse gases (primarily methane), ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulate matter from flaring, compressors, and engines. ... Kiviat, E.Risks to biodiversity from hydraulic fracturing for natural gas in the Marcellus and Utica shales Annu. ...

Mitchell J. Small; Paul C. Stern; Elizabeth Bomberg; Susan M. Christopherson; Bernard D. Goldstein; Andrei L. Israel; Robert B. Jackson; Alan Krupnick; Meagan S. Mauter; Jennifer Nash; D. Warner North; Sheila M. Olmstead; Aseem Prakash; Barry Rabe; Nathan Richardson; Susan Tierney; Thomas Webler; Gabrielle Wong-Parodi; Barbara Zielinska

2014-07-01T23:59:59.000Z

379

Emerging Shale Gas Revolution in China  

Science Journals Connector (OSTI)

? Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast BT9 5PX, U.K. ... The US therefore has a world lead in fracking techniques and also research on the potential adverse environmental consequences of this technology. ... China is now embarking upon substantial development of shale gas extraction but the question of major public concern is whether or not the Chinese government will try to learn from the US experience not only to benefit from the new engineering techniques but also to minimize the negative impacts of this technology on environmental and human health. ...

Yunhua Chang; Xuejun Liu; Peter Christie

2012-11-02T23:59:59.000Z

380

Interagency Collaboration to Address Environmental Impacts of Shale Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interagency Collaboration to Address Environmental Impacts of Shale Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling April 23, 2013 - 12:06pm Addthis Dr. John Howard (right), Director of NIOSH and Dr. Anthony Cugini (left), Director of NETL announced the establishment of a research partnership to evaluate the environmental impacts of shale gas drilling. Dr. John Howard (right), Director of NIOSH and Dr. Anthony Cugini (left), Director of NETL announced the establishment of a research partnership to evaluate the environmental impacts of shale gas drilling. Washington, DC - A memorandum of understanding to perform collaborative research related to airborne emissions and air quality at natural gas drilling sites has been signed by the Office of Fossil Energy's National

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remote Gas Well Monitoring Technology Applied to Marcellus Shale Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site February 10, 2012 - 12:00pm Addthis Washington, DC - A technology to remotely monitor conditions at energy-rich Marcellus Shale gas wells to help insure compliance with environmental requirements has been developed through a research partnership funded by the U.S. Department of Energy (DOE). NETL-RUA researcher Dr. Michael McCawley hasdeveloped a technology to remotely monitor theenvironment around energy-rich Marcellus Shale gas wells. Photo courtesy of West Virginia University.The technology - which involves three wireless monitoring modules to measure volatile organic compounds, dust, light and sound - is currently being tested at a Marcellus

382

Secretary of Energy Advisory Board Subcommittee Releases Shale Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subcommittee Releases Shale Gas Subcommittee Releases Shale Gas Recommendations Secretary of Energy Advisory Board Subcommittee Releases Shale Gas Recommendations August 11, 2011 - 8:54am Addthis WASHINGTON, D.C. - A diverse group of advisors to Energy Secretary Steven Chu today released a series of consensus-based recommendations calling for increased measurement, public disclosure and a commitment to continuous improvement in the development and environmental management of shale gas, which has rapidly grown to nearly 30 percent of natural gas production in the United States. Increased transparency and a focus on best practices "benefits all parties in shale gas production: regulators will have more complete and accurate information, industry will achieve more efficient operations and

383

Oil shale retorting with steam and produced gas  

SciTech Connect

This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

Merrill, L.S. Jr.; Wheaton, L.D.

1991-08-20T23:59:59.000Z

384

Expectations for Oil Shale Production (released in AEO2009)  

Reports and Publications (EIA)

Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

2009-01-01T23:59:59.000Z

385

Oil shale as an energy source in Israel  

SciTech Connect

Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

Fainberg, V.; Hetsroni, G. [Technion-Israel Inst. of Tech., Haifa (Israel)

1996-01-01T23:59:59.000Z

386

Beginning of an oil shale industry in Australia  

SciTech Connect

This paper discusses how preparations are being made for the construction and operation of a semi commercial plant to process Australian oil shale. This plant is primarily designed to demonstrate the technical feasibility of processing these shales at low cost. Nevertheless it is expected to generate modest profits even at this demonstration level. This will be the first step in a three staged development of one of the major Australian oil shale deposits which may ultimately provide nearly 10% of Australia's anticipated oil requirements by the end of the century. In turn this development should provide the basis for a full scale oil shale industry in Australia based upon the advantageously disposed oil shale deposits there. New sources of oil are becoming critical since Australian production is declining rapidly while consumption is accelerating.

Wright, B. (Southern Pacific Petroleum NL, 143 Macquarie Street, Sydney (AU))

1989-01-01T23:59:59.000Z

387

Interagency Collaboration to Address Environmental Impacts of Shale Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interagency Collaboration to Address Environmental Impacts of Shale Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling April 23, 2013 - 12:06pm Addthis Dr. John Howard (right), Director of NIOSH and Dr. Anthony Cugini (left), Director of NETL announced the establishment of a research partnership to evaluate the environmental impacts of shale gas drilling. Dr. John Howard (right), Director of NIOSH and Dr. Anthony Cugini (left), Director of NETL announced the establishment of a research partnership to evaluate the environmental impacts of shale gas drilling. Washington, DC - A memorandum of understanding to perform collaborative research related to airborne emissions and air quality at natural gas drilling sites has been signed by the Office of Fossil Energy's National

388

Analysis of transient temperature distribution in oil shale due to heat source propagating in retort  

Science Journals Connector (OSTI)

The initial?boundary?value problem for the transient temperature fields in oil shale which is heated by a propagating combustionflame in an i n s i t u retort chimney is formulated and solved analytically. The heat source of the flame is represented by a Gaussian distribution which models the average statistical variations in radial and axial flame extensions and is assumed to build up to maximum strength in accordance with a temporal relaxation process. The transient temperature fields in the oil shale surrounding the retort are calculated and discussed with respect to their spatial variations and dependence on the flamerelaxation time. The theoretical temperature distributions are shown to be consistent with those observed experimentally. The high?temperature core extends less than a retort radius into the surrounding shale bed. This result has implications for (i) the i n s i t u retort design and (ii) the environmental impact of i n s i t u retorts. It appears that the spacing between neighboring retorts can be reduced and that the thermal effects of retorts on the environment are less severe than previously anticipated.

H. E. Wilhelm; J. B. DuBow; S. H. Hong

1978-01-01T23:59:59.000Z

389

A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparative Study of the A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin DOE/NETL-2011/1478 Cover. Top left: The Barnett Shale exposed on the Llano uplift near San Saba, Texas. Top right: The Marcellus Shale exposed in the Valley and Ridge Province near Keyser, West Virginia. Photographs by Kathy R. Bruner, U.S. Department of Energy (USDOE), National Energy Technology Laboratory (NETL). Bottom: Horizontal Marcellus Shale well in Greene County, Pennsylvania producing gas at 10 million cubic feet per day at about 3,000 pounds per square inch. Photograph by Tom Mroz, USDOE, NETL, February 2010. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms,

390

Ion chromatographic analysis of oil shale leachates  

SciTech Connect

In the present work an investigation of the use of ion chromatography to determine environmentally significant anions present in oil shale leachates was undertaken. Nadkarni et al. have used ion chromatography to separate and quantify halogen, sulfur and nitrogen species in oil shales after combustion in a Parr bomb. Potts and Potas used ion chromatography to monitor inorganic ions in cooling tower wastewater from coal gasification. Wallace and coworkers have used ion chromatography to determine anions encountered in retort wastewaters. The ions of interest in this work were the ions of sulfur oxides including sulfite (SO{sub 3}{sup 2{minus}}), sulfate (SO{sub 4}{sup 2{minus}}), thiosulfate (S{sub 2}O{sub 3}{sup 2{minus}}), dithionite (S{sub 2}O{sub 4}{sup 2{minus}}), dithionate (S{sub 2}O{sub 6}{sup 2{minus}}), peroxyodisulfate (S{sub 2}O{sub 8}{sup 2{minus}}), and tetrathionate (S{sub 4}O{sub 6}{sup 2{minus}}), and thiocyanate (SCN{sup {minus}}), sulfide (S{sup 2{minus}}) hydrosulfide (HS{sup {minus}}), cyanide (CN{sup {minus}}), thiocyanate (SCN{sup {minus}}), and cyanate (OCN{sup {minus}}). A literature search was completed and a leaching procedure developed. 15 refs., 6 figs., 1 tab.

Butler, N.L.

1990-10-01T23:59:59.000Z

391

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995  

SciTech Connect

A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

NONE

1995-12-31T23:59:59.000Z

392

Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics  

E-Print Network (OSTI)

shales. THE DEVELOPMENT OF CORRELATIONS TO ASSESS FORMATION PROPERTIES AND CONDITIONS Treatment of Anisotropic

Dobson, Patrick

2014-01-01T23:59:59.000Z

393

Rock-Fluid Chemistry Impacts on Shale Hydraulic Fracture and Microfracture Growth  

E-Print Network (OSTI)

fracturing fluids, to achieve improved fracture performance and higher recovery of natural gas from shale reservoirs....

Aderibigbe, Aderonke

2012-07-16T23:59:59.000Z

394

Study on the pyrolysis of Moroccan oil shale with poly (ethylene terephthalate)  

Science Journals Connector (OSTI)

Investigations into the pyrolytic behaviours of oil shale, poly (ethylene terephthalate) (PET) and...

A. Aboulkas; K. El Harfi; A. El Bouadili

2010-04-01T23:59:59.000Z

395

EXPERIMENT AND NEURAL NETWORK MODEL OF PRIMARY FRAGMENTATION OF OIL SHALE IN FLUIDIZED BED  

E-Print Network (OSTI)

that the fluidized bed temperature is an important factor of primary fragmentation of oil shale, and

Zhigang Cui; Xiangxin Han; Xiumin Jiang; Jianguo Liu

396

Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater  

E-Print Network (OSTI)

Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater Reyad; available online 29 October 2003 Abstract A by-product fly ash from oil shale processing was converted shale; Ash; Zeolite; Cadmium and lead removal 1. Introduction Oil shale exists in Jordan with large

Shawabkeh, Reyad A.

397

Fire and explosion hazards of oil shale. Report of Investigations/1989  

SciTech Connect

This publication presents the results of investigations into the fire and explosion hazards of oil-shale rocks and dust. Three areas were examined: the explosibility and ignitability of oil-shale dust clouds, the fire hazards of oil-shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles.

Not Available

1989-01-01T23:59:59.000Z

398

Perform research in process development for hydroretorting of Eastern oil shales: Volume 2, Expansion of the Moving-Bed Hydroretorting Data Base for Eastern oil shales  

SciTech Connect

An extensive data base was developed for six Eastern oil shales: Alabama Chattanooga, Indiana New Albany, Kentucky Sunbury, Michigan Antrim, Ohio Cleveland, and Tennessee Chattanooga shales. The data base included the hydroretorting characteristics of the six shales, as well as the retorting characteristics in the presence of synthesis gas and ionized gas. Shale gasification was also successfully demonstrated. Shale fines (20%) can produce enough hydrogen for the hydroretorting of the remaining 80% of the shale. The amount of fines tolerable in a moving bed was also determined. 16 refs., 59 figs., 43 tabs.

Not Available

1989-11-01T23:59:59.000Z

399

The Importance of Geochemical Parameters and Shale Composition on Rock Mechanical Properties of Gas Shale Reservoirs: a Case Study From the Kockatea Shale and Carynginia Formation From the Perth Basin, Western Australia  

Science Journals Connector (OSTI)

Evaluation of the gas shale mechanical properties is very important screening criteria ... for hydraulic fracturing and as a result in gas shale sweet spot mapping. Youngs modulus and ... mechanical properties t...

Mohammad Mahdi Labani; Reza Rezaee

2014-06-01T23:59:59.000Z

400

Fluidized-bed gasification of an eastern oil shale  

SciTech Connect

The current conceptual HYTORT process design for the hydroretorting of oil shales employs moving-bed retorts that utilize shale particles larger than 3 mm. Work at the Institute of Gas Technology (IGT) is in progress to investigate the potential of high-temperature (1100 to 1300 K) fluidized-bed gasification of shale fines (<3 mm size) using steam and oxygen as a technique for more complete utilization of the resource. Synthesis gas produced from fines gasification can be used for making some of the hydrogen needed in the HYTORT process. After completing laboratory-scale batch and continuous gasification tests with several Eastern oil shales, two tests with Indiana New Albany shale were conducted in a 0.2 m diameter fluidized-bed gasification process development unit (PDU). A conceptual gasifier design for 95% carbon conversion was completed. Gasification of 20% of the mined shale can produce the hydrogen required by the HYTORT reactor to retort 80% of the remaining shale. 12 refs., 1 fig., 5 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Status of LLNL Hot-Recycled-Solid oil shale retort  

SciTech Connect

We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Baldwin, D.E.; Cena, R.J.

1993-12-31T23:59:59.000Z

402

North American Shale Gas | OSTI, US Dept of Energy, Office of Scientific  

Office of Scientific and Technical Information (OSTI)

North American Shale Gas North American Shale Gas Shale Gas Research in DOE Databases Energy Citations Database DOE Information Bridge Science.gov WorldWideScience.org More information DOE's Early Investment in Shale Gas Technology Producing Results Today (NETL) What is Shale Gas and why is it important? (EIA) Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays (EIA) Shale Gas: Applying Technology to Solve America's Energy Challenges (NETL brochure) Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale Gas Production Posts Draft Report North American Shale Gas Source: U.S. Energy Information Administration based on data from various published studies. Visit the Science Showcase homepage. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services

403

Oil shale quarterly report, August--December 1990  

SciTech Connect

This paper contains four status reports on the following oil shale research projects: (1) Lawrence Livermore National Laboratory 4-tonne-per-day pilot plant; (2) chemistry and kinetics of New Albany shale flash pyrolysis under Hot-Recycled-Solid (HRS) conditions; (3) modeling of shale oil cracking and coking in the HRS process; and (4) modeling and analysis of particle slip and drag in a lift pipe of the retort for the HRS process. Each project report has been indexed separately for inclusion on the data base. (CK)

Cena, R.

1991-02-15T23:59:59.000Z

404

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-01-01T23:59:59.000Z

405

Organic geochemistry of Mississippian shales (Bowland Shale Formation) in central Britain: Implications for depositional environment, source rock and gas shale potential  

Science Journals Connector (OSTI)

Abstract Marine Carboniferous shales are proven hydrocarbon source rocks in central Britain. In this contribution the depositional environment and shale gas/liquid potential of the lower Namurian part of the Bowland Shale Formation is studied using 77 thermally immature samples from the Duffield borehole. The Bowland Shale Formation comprises mudstone and turibidite lithofacies reflecting a pronounced sea level controlled cyclicity. The total organic carbon (TOC) content of the mudstones lithofacies (including marine bands) and of fine-grained rocks within the turibidite lithofacies varies between 1.3 and 9.1%. Hydrogen index (HI) values imply the presence of kerogen type III-II. According to biomarker ratios and bulk geochemical parameters, marine bands (maximum flooding surfaces, mfs) were deposited in deep water with slightly enhanced, normal, or slightly reduced salinity. Mudstones of the highstand systems tract (HST) were deposited in environments with normal to reduced salinity, whereas photic zone anoxia favoured the preservation of marine organic matter during deposition of the mfs and the HST. The supply of landplant debris increased during the HST. Turbidites and their non-calcareous mudstone equivalents represent lowstand systems tracts deposited in low salinity environments. Terrestrial organic matter dominates in turbiditic sediments, marine organisms prevail in time-equivalent mudstones. Mudstone beneath marine bands represents transgressive systems tracts when normal marine conditions and photic zone anoxia were re-established. The mudstone lithofacies exhibits a very good to excellent potential to generate conventional mixed oil and gas. TOC content of fine-grained rocks in the turbidite lithofacies depends on the amount of detrital minerals supplied from the south. Moreover, their organic matter is gas-prone. High TOC contents and large thicknesses of the mudstone lithofacies show that the Bowland Shale Formation holds a significant shale gas/liquid potential in areas with appropriate maturity. A relatively low average HI and high clay contents may have negative effects on the shale gas potential.

D. Gross; R.F. Sachsenhofer; A. Bechtel; L. Pytlak; B. Rupprecht; E. Wegerer

2015-01-01T23:59:59.000Z

406

Pyrolysis of shale oil residual fractions  

SciTech Connect

The freezing point of JP-5, the Navy jet fuel, has been related to the n-alkane content, specifically n-hexadecane. In general, jet fuels from shale oil have the highest n-alkanes. The formation of n-alkanes in the jet fuel distillation range can be explained if large n-alkanes are present in the crude oil source. Quantities of large n-alkanes are insufficient, however, to explain the amounts found - up to 37% n-alkanes in the jet fuel range. Other possible precursors to small straight chain molecules are substituted cyclic compounds. Attack in the side chain obviously afford a path to an n-alkane. Aromatic hydrocarbons, esters, acids, amines, and ethers also have the potential to form n-alkanes if an unbranched alkyl chain is present in the molecule. Investigations showed that the best yield of the JP-5 cut comes at different times for the various fractions, but a time in the 60 to 120 min range would appear to be the optimum time for good yield at 450/sup 0/C. The longer time would be preferred with respect to lower potential n-alkane yield. None of the fractions gave n-alkane yields approaching the 37% amount found in the Shale-I JP-5. A temperature different than the 450/sup 0/C used here might affect the conversion percentage. Further the combined saturate, aromatic, and polar fractions may interact under pyrolysis conditions to give higher potential n-alkane yields than the fractions stressed independently.

Hazlett, R.N.; Beal, E.; Vetter, T.; Sonntag, R.; Moniz, W.

1980-01-01T23:59:59.000Z

407

OCCURRENCE OF BIOGENIC STERANES AND PENTACYCLIC TRITERPANES IN AN EOCENE SHALE (52 MILLION YEARS) AND IN AN EARLY PRECAMBRIAN SHALE (2.7 BILLION YEARS): A PRELIMINARY REPORT  

Science Journals Connector (OSTI)

...ancient shales and oils, and more specifically in carbonaceous chondrites. Earlier we reported preliminary studies on the oil shale from the Green River Formation (Eocene age, about 52 X 106 years) at Rifle, Colorado.' 2 These results, which paralleled...

A. L. Burlingame; Pat Haug; Theodore Belsky; Melvin Calvin

1965-01-01T23:59:59.000Z

408

Shale Gas Development in the Susquehanna River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Water Resource Challenges Water Resource Challenges From Energy Production Major Types of Power Generation in SRB - Total 15,300 Megawatts - 37.5% 4.0% 12.0% 15.5% 31.0% Nuclear Coal Natural Gas Hydroelectric Other Marcellus Shale Gas Development in the Susquehanna River Basin The Basin: * 27,510-square-mile watershed * Comprises 43 percent of the Chesapeake Bay watershed * 4.2 million population * 60 percent forested * 32,000+ miles of waterways The Susquehanna River: * 444 miles, largest tributary to the Chesapeake Bay * Supplies 18 million gallons a minute to the Bay Susquehanna River Basin Geographic Location of Marcellus Shale within Susq. River Basin 72% of Basin (20,000 Sq. Miles) Underlain by Marcellus Shale Approximate Amount of Natural Gas in Marcellus Shale * U.S. currently produces approx. 30 trillion

409

File:EIA-shale-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

shale-gas.pdf shale-gas.pdf Jump to: navigation, search File File history File usage Shale Gas Plays, Lower 48 States Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 377 KB, MIME type: application/pdf) Description Shale Gas Plays, Lower 48 States Sources Energy Information Administration Related Technologies Natural Gas Creation Date 2010-03-10 Extent National Countries United States UN Region Northern America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:38, 20 December 2010 Thumbnail for version as of 18:38, 20 December 2010 1,650 × 1,275 (377 KB) MapBot (Talk | contribs) Automated bot upload You cannot overwrite this file. Edit this file using an external application (See the setup

410

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

411

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

412

NETL: Shale Gas and Other Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Resources Natural Gas Resources Natural Gas Resources Shale Gas | Environmental | Other Natural Gas Related Resources | Completed NG Projects Project Number Project Name Primary Performer 10122-47 Predicting higher-than-average permeability zones in tight-gas sands, Piceance basin: An integrated structural and stratigraphic analysis Colorado School of Mines 10122-43 Diagnosis of Multi-Stage Fracturing in Horizontal Well by Downhole Temperature Measurement for Unconventional Oil and Gas Wells Texas A&M University 10122-42 A Geomechanical Analysis of Gas Shale Fracturing and Its Containment Texas A&M University 09122-02 Characterizing Stimulation Domains, for Improved Well Completions in Gas Shales Higgs-Palmer Technologies 09122-04 Marcellus Gas Shale Project Gas Technology Institute (GTI)

413

Outlook for U.S. shale oil and gas  

Gasoline and Diesel Fuel Update (EIA)

shale oil and gas shale oil and gas IAEE/AEA Meeting January 4, 2014 | Philadelphia, PA By Adam Sieminski, EIA Administrator Key insights on drilling productivity and production trends Adam Sieminski, IAEE/AEA January 4, 2014 2 * The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources * Six tight oil and shale gas plays taken together account for nearly 90% of domestic oil production growth and virtually all domestic natural gas production growth over the last 2 years * Higher drilling efficiency and new well productivity, rather than an increase in the rig count, have been the main drivers of recent production growth * Steep legacy production decline rates are being offset by growing

414

STUDY COMMISSIONED BY WEST LOTHIAN COUNCIL OIL-SHALE BINGS  

E-Print Network (OSTI)

#12;STUDY COMMISSIONED BY WEST LOTHIAN COUNCIL OIL-SHALE BINGS Dr Barbra Harvie School of Geo.....................................................................................................3 The birth of the oil industry ...........................................................................................................................3 The impact of oil on society

415

Elastic constants and velocity surfaces of indurated anisotropic shales  

Science Journals Connector (OSTI)

The velocities of two Devonian-Mississippian shales have been measured to confining pressures of 200 MPa in a laboratory study of anisotropy and wave propagation. Both samples were found to be transversely iso...

Joel E. Johnston; Nikolas I. Christensen

1994-09-01T23:59:59.000Z

416

Assessment of Eagle Ford Shale Oil and Gas Resources  

E-Print Network (OSTI)

, and to assess Eagle Ford shale oil and gas reserves, contingent resources, and prospective resources. I first developed a Bayesian methodology to generate probabilistic decline curves using Markov Chain Monte Carlo (MCMC) that can quantify the reserves...

Gong, Xinglai

2013-07-30T23:59:59.000Z

417

DOE's Early Investment in Shale Gas Technology Producing Results Today  

Energy.gov (U.S. Department of Energy (DOE))

A $92 million research investment in the 1970s by the U.S. Department of Energy is today being credited with technological contributions that have stimulated development of domestic natural gas from shales.

418

Modern Shale Gas Development in the United States: A Primer  

Energy.gov (U.S. Department of Energy (DOE))

This Primer on Modern Shale Gas Development in the United States was commissioned through the Ground Water Protection Council (GWPC). It is an effort to provide sound technical information on and...

419

Thermal Effects by Firing Oil Shale Fuel in CFB Boilers  

Science Journals Connector (OSTI)

It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mine...

D. Neshumayev; A. Ots; T. Parve; T Pihu

2010-01-01T23:59:59.000Z

420

Oil Shale: A Huge Resource of Low-Grade Fuel  

Science Journals Connector (OSTI)

...barrel of oil. With coal, only about 0...the technology for coal liquefaction were...shale would require mining, transporting...same condition as Appalachia. There is no doubt...cornered for surface coal mining. One would think...

William D. Metz

1974-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Multistep pyrolysis kinetics of North Korean oil shale  

Science Journals Connector (OSTI)

In this paper, multistep pyrolysis kinetics of North Korean oil shale was investigated by thermogravimetric analysis. All the...?1...from room temperature to 873K under nitrogen atmosphere. The main oil-producin...

Wei Wang; Shuyuan Li; Changtao Yue; Yue Ma

2014-10-01T23:59:59.000Z

422

Operating Parameters in the Column Flotation of Alabama Oil Shale  

Science Journals Connector (OSTI)

A factionally designed experiment performed in a one meter column flotation cell identified the important factors affecting the flotation of eastern oil shales. These initial tests were performed in a...

C. W. Schultz; John B. Bates

1990-01-01T23:59:59.000Z

423

Implications of the U.S. Shale Revolution  

NLE Websites -- All DOE Office Websites (Extended Search)

Implications of the U.S. Shale Revolution For US-Canada Energy Summit October 17, 2014 | Chicago, IL By Adam Sieminski, Administrator U.S. Energy Information Administration 0 5 10...

424

The U.S. Natural Gas and Shale Production Outlook  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas and Shale Production Outlook for North American Gas Forum September 29, 2014 by Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas...

425

Methods of Managing Water in Oil Shale Development - Energy Innovation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods of Managing Water in Oil Shale Development Colorado School of Mines Contact CSM About This Technology Technology Marketing SummaryThis invention is a system and method of...

426

West Lothian Biodiversity Action Plan: Oil Shale Bings  

E-Print Network (OSTI)

This report establishes the importance of the West Lothian oil-shale bings at both a national (UK) and local (West Lothian) scale, for their contribution to local biodiversity, their historical importance, their education ...

Harvie, Barbra

2005-01-01T23:59:59.000Z

427

Oil shale and coal in intermontane basins of Thailand  

SciTech Connect

The Mae Tip intermontane basin contains Cenozoic oil shales in beds up to 1 m (3.3 ft) thick interbedded with coal and mudstone. The oil shales contain lamosite-type alginite, and give a maximum oil yield of 122 L/MT (29.3 gal/ton). The beds are laterally continuous for at least 1.5 km (1.0 mi), but pass into mudstones toward the basin margin. The oil shales originated when peat swamps close to a steep basin margin were flooded by shallow lakes, allowing algae to replace rooted vegetation. This distinctive oil shale-coal assemblage is known from many small intermontane basins in Thailand, where locally high geothermal gradients suggest potential for hydrocarbons.

Gibling, M.R.; Srisuk, S.; Ukakimaphan, Y.

1985-05-01T23:59:59.000Z

428

Comparison of Emperical Decline Curve Analysis for Shale Wells  

E-Print Network (OSTI)

This study compares four recently developed decline curve methods and the traditional Arps or Fetkovich approach. The four methods which are empirically formulated for shale and tight gas wells are: 1. Power Law Exponential Decline (PLE). 2...

Kanfar, Mohammed Sami

2013-07-13T23:59:59.000Z

429

Impact of Shale Gas Development on Regional Water Quality  

Science Journals Connector (OSTI)

...hydraulically fractured shale aquifers . Ground Water 50 , 826...Areas Underlain by the Glacial Aquifer System, Northern United States...Hydraulic fracturing, or "fracking," a technology being used...reviews what is known about fracking and makes suggestions for improving...

R. D. Vidic; S. L. Brantley; J. M. Vandenbossche; D. Yoxtheimer; J. D. Abad

2013-05-17T23:59:59.000Z

430

Miscellaneous States Shale Gas Production (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Miscellaneous States Shale Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2...

431

Miscellaneous States Shale Gas Proved Reserves Revision Decreases...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

432

Miscellaneous States Shale Gas Proved Reserves Sales (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

433

Miscellaneous States Shale Gas Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

434

Fact-based communication: the Shale Gas Information Platform SHIP  

Science Journals Connector (OSTI)

In response to an increasingly expressed need for factual information, a science-based information web portal, the Shale Gas Information Platform SHIP, was developed. At the core of the project i...

Andreas Hbner; Brian Horsfield; Ingo Kapp

2013-12-01T23:59:59.000Z

435

Miscellaneous States Shale Gas Proved Reserves Revision Increases...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

436

Miscellaneous States Shale Gas Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

437

Impact of Shale Gas Development on Regional Water Quality  

Science Journals Connector (OSTI)

...human health and environmental impacts associated with the release...inadequately treated wastewater to the environment (66). In addition, spills...assess potential water quality impacts in the northeast (78, 79...shale gas extraction (54). Impacts from casing leakage, well...

R. D. Vidic; S. L. Brantley; J. M. Vandenbossche; D. Yoxtheimer; J. D. Abad

2013-05-17T23:59:59.000Z

438

Economic analysis of shale gas wells in the United States  

E-Print Network (OSTI)

Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

Hammond, Christopher D. (Christopher Daniel)

2013-01-01T23:59:59.000Z

439

SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale  

E-Print Network (OSTI)

by the author(s). The material does not necessarily reflect any position of the Society of Petroleum Engineers of hydrocarbons from the reservoirs, notably shale, is attributed to realizing the key fundamentals of reservoir

Mohaghegh, Shahab

440

Evaluation of Devonian shale potential in Eastern Kentucky/Tennessee  

SciTech Connect

To evaluate the potential of the Devonian shale as a source of natural gas, the US Department of Energy (DOE) has undertaken the Eastern Gas Shales Project (EGSP). The EGSP is designed not only to identify the resource, but also to test improved methods of inducing permeability to facilitate gas drainage, collection, and production. The ultimate goal of this project is to increase the production of gas from the eastern shales through advanced exploration and exploitation techniques. The purpose of this report is to inform the general public and interested oil and gas operators about EGSP results as they pertain to the Devonian gas shales of the Appalachian basin in eastern Kentucky and Tennessee. Geologic data and interpretations are summarized, and areas where the accumulation of gas may be large enough to justify commercial production are outlined.

Not Available

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Shale gas development impacts on surface water quality in Pennsylvania  

Science Journals Connector (OSTI)

...fractured shale aquifers . Ground Water 50 ( 6 ): 826 828...2011) Investigation of Ground Water Contamination near Pavillion...poses a threat to surface waters. Front Ecol Environ...Acid mine drainage remediation options: A review...

Sheila M. Olmstead; Lucija A. Muehlenbachs; Jhih-Shyang Shih; Ziyan Chu; Alan J. Krupnick

2013-01-01T23:59:59.000Z

442

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

E-Print Network (OSTI)

C, large quantities of akermanite, CazMgSiz07, were formed.to be converted to akermanite ( which is not cementitious)shale, the formation of akermanite (the non-cementitious

Mehta, P.K.

2012-01-01T23:59:59.000Z

443

Raman/FTIR spectroscopy of oil shale retort gases  

SciTech Connect

A Raman facility was assembled in order to aid in the evaluation of the feasibility of using Raman or FTIR spectroscopy for analyzing gas mixtures of interest in oil shale. Applications considered in oil shale research included both retort monitoring and laboratory kinetic studies. Both techniques gave limits of detection between 10 and 1000 ppM for ten representative pertinent gases. Both techniques are inferior as a general analytical technique for oil shale gas analysis in comparison with mass spectroscopy, which had detection limits between 1 and 50 ppM for the same gases. The conclusion of the feasibility study was to recommend that mass spectroscopic techniques be used for analyzing gases of interest to oil shale.

Richardson, J H; Monaco, S B; Sanborn, R H; Hirschfeld, T B; Taylor, J R

1982-08-01T23:59:59.000Z

444

DOE Gas Hydrate R&D: Shale Gas Dj Vu?  

Energy.gov (U.S. Department of Energy (DOE))

More than 30 years ago, DOE looked into the future and saw the potentially large benefit of developing promising but difficult-to-extract unconventional natural gas resources, particularly those from shale formations. As a result, it began sponsoring research and development (R&D), partnering with industry and academia, and, among other things, invested about $137 million in the Eastern Gas Shale Program between 1978 and 1992.

445

Cyclone oil shale retorting concept. [Use it all retorting process  

SciTech Connect

A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

Harak, A.E.; Little, W.E.; Faulders, C.R.

1984-04-01T23:59:59.000Z

446

A method for calculating economic critical depth of shale gas resources in China via break-even analysis  

Science Journals Connector (OSTI)

Abstract Target depth is a key measure of the commercial viability of a shale gas prospect. Although much research has been conducted in the shale gas techno-economic appraisal field, no reports are available on the economic critical depth (ECD) of shale gas resources. The present work aims at establishing a model for calculating the ECD using the break-even analysisthe reverse of calculating the net present value (NPV)such that the break-even ECD occurs at zero NPV. The ECD is sensitive to production uncertainty, depending on the initial production (IP) rate and the production decline rate. Examples indicate that these have a marked effect on ECD based on current technology, gas price and exploitation policy, with the IP rate having the more pronounced effect. When the IP rate varies between 2.5 and 5.5נ104m3/day based on the fitted production decline trend from a pilot area in China, the corresponding ECD varies from 898m to 3997m. The ECD is thus able to rule out non-commercial shale gas prospects quickly.

Liangyu Xia; Dongkun Luo

2014-01-01T23:59:59.000Z

447

Life-cycle analysis of shale gas and natural gas.  

SciTech Connect

The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

2012-01-27T23:59:59.000Z

448

Thermal decomposition of Colorado and Kentucky reference oil shales  

SciTech Connect

Isothermal pyrolysis studies have been conducted on a Green River Formation oil shale from Colorado and a New Albany oil shale from Kentucky. The conversion of kerogen to bitumen, oil, gas, and residue products was obtained for different isothermal reaction times in the temperature range of 375/degree/C to 440/degree/C (707/degree/ to 824/degree/F) using a heated sand bath reactor system. Particular attention was paid to the formation of the bitumen intermediate during decomposition of the two shales. The maximum amount of extractable bitumen in the New Albany shale was 14% or less of the original kerogen at any given temperature, indicating that direct conversion of kerogen to oil, gas, and residue products is a major pathway of conversion of this shale during pyrolysis. In contrast, a significant fraction of the Colorado oil shale kerogen was converted to the intermediate bitumen during pyrolysis. The bitumen data imply that the formation of soluble intermediates may depend on original kerogen structure and may be necessary for producing high yields by pyrolysis. 24 refs., 14 figs., 8 tabs.

Miknis, F.P.; Turner, T.F.; Ennen, L.W.; Chong, S.L.; Glaser, R.

1988-06-01T23:59:59.000Z

449

Technology experience and economics of oil shale mining in Estonia  

SciTech Connect

The exhaustion of fuel-energy resources became an evident problem of the European continent in the 1960s. Careful utilization of their own reserves of coal, oil, and gas (Germany, France, Spain) and assigned shares of imports of these resources make up the strategy of economic development of the European countries. The expansion of oil shale utilization is the most topical problem. The experience of mining oil shale deposits in Estonia and Russia, in terms of the practice and the economic results, is reviewed in this article. The room-and-pillar method of underground mining and the open-cut technology of clearing the ground ensure the fertility of a soil. The economics of underground and open pit oil shale mines is analyzed in terms of natural, organizational, and technical factors. These analyses are used in the planning and management of oil shale mining enterprises. The perspectives of the oil shale mining industry of Estonia and the economic expediency of multiproduction are examined. Recommendations and guidelines for future industrial utilization of oil shale are given in the summary.

Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

1995-11-01T23:59:59.000Z

450

Shale Natural Gas New Reservoir Discoveries in Old Fields  

Gasoline and Diesel Fuel Update (EIA)

1,613 1,149 699 2009-2011 1,613 1,149 699 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 1,613 1,149 699 2009-2011 Alabama 0 0 2009-2010 Arkansas 0 0 0 2009-2011 California 0 2011-2011 San Joaquin Basin Onshore 0 2011-2011 Colorado 0 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 1,377 172 140 2009-2011 North 1,377 172 140 2009-2011 Michigan 0 0 0 2009-2011 Montana 0 0 1 2009-2011 New Mexico 0 0 0 2009-2011 East 0 0 0 2009-2011 West 0 0 0 2009-2011 North Dakota 1 1 2 2009-2011 Ohio 0 0 2009-2010 Oklahoma 162 0 0 2009-2011 Pennsylvania 0 871 319 2009-2011 Texas 65 36 93 2009-2011 RRC District 1 0 14 0 2009-2011 RRC District 2 Onshore 2 81 2010-2011 RRC District 3 Onshore 0 0 0 2009-2011 RRC District 4 Onshore 30 0 12 2009-2011 RRC District 5

451

Understanding the reservoir important to successful stimulation  

SciTech Connect

In anisotropic Bakken shale reservoirs, fracture treatments serve to extend the well bore radius past a disturbed zone and vertically connect discrete intervals. Natural fractures in the near-well bore area strongly control the well deliverability rate. The Bakken is one of the few shale formations in the world with commercial oil production. This article covers the Bakken reservoir properties that influence production and stimulation treatments. The concluding part will discuss the design and effectiveness of the treatments.

Cramer, D.D. (BJ Services Co., Denver, CO (US))

1991-04-22T23:59:59.000Z

452

Slow Radio-Frequency Processing of Large Oil Shale Volumes to Produce Petroleum-Like Shale Oil  

SciTech Connect

A process is proposed to convert oil shale by radio frequency heating over a period of months to years to create a product similar to natural petroleum. Electrodes would be placed in drill holes, either vertical or horizontal, and a radio frequency chosen so that the penetration depth of the radio waves is of the order of tens to hundreds of meters. A combination of excess volume production and overburden compaction drives the oil and gas from the shale into the drill holes, where it is pumped to the surface. Electrical energy for the process could be provided initially by excess regional capacity, especially off-peak power, which would generate {approx}3 x 10{sup 5} bbl/day of synthetic crude oil, depending on shale grade. The electricity cost, using conservative efficiency assumptions, is $4.70 to $6.30/bbl, depending on grade and heating rate. At steady state, co-produced gas can generate more than half the electric power needed for the process, with the fraction depending on oil shale grade. This would increase production to 7.3 x 10{sup 5} bbl/day for 104 l/Mg shale and 1.6 x 10{sup 6} bbl/day for 146 l/Mg shale using a combination of off-peak power and power from co-produced gas.

Burnham, A K

2003-08-20T23:59:59.000Z

453

Minerals and potentially hazardous trace elements in marine oil shale: new insights from the Shengli River North surface mine, northern Tibet, China  

Science Journals Connector (OSTI)

The Shengli RiverChangshe Mountain oil shale zone, including the Changliang MountainShengli River oil shale, the Shengli River North oil shale, and the Changshe Mountain oil shale, represents potentially the la...

Xiugen Fu; Jian Wang; Fuwen Tan; Xinglei Feng

2014-08-01T23:59:59.000Z

454

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Air Key Points: * Air quality risks from shale oil and gas development are generally the result of: (1) dust and engine exhaust from increased truck traffic; (2) emissions from diesel-powered pumps used to power equipment; (3) intentional flaring or venting of gas for operational reasons; and, (4) unintentional emissions of pollutants from faulty equipment or impoundments. 1 * Natural gas is efficient and clean compared to other fossil fuels, emitting less nitrogen oxide and sulfur dioxide than coal and oil, no mercury and very few particulates. However, the drilling

455

PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT  

E-Print Network (OSTI)

retorted and wet with oil, and shale sections 18 through 24V. , 1979, Analysis of oil shale of products and effluents:In- Situ Retorting of Oil Shale in a Controlled- State

Fox, J. P.

2011-01-01T23:59:59.000Z

456

PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT  

E-Print Network (OSTI)

V. , 1979, Analysis of oil shale of products and effluents:In- Situ Retorting of Oil Shale in a Controlled- Stateactivation: Archaeometry, oil-shale analysis v. 11, p.

Fox, J. P.

2011-01-01T23:59:59.000Z

457

PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT  

E-Print Network (OSTI)

elements. Over 25% of the raw shale gas five groups productsthe oil, in the raw oil shale gas, consequence of retortinggood product raw oil shale and input gases that is accounted

Fox, J. P.

2011-01-01T23:59:59.000Z

458

Fast Marching Method with Multiphase Flow and Compositional Effects  

E-Print Network (OSTI)

. ........................................................................................................... 96 Fig. 3.6 Modified VLE flash procedure with oil-gas capillary pressure. ................... 99 Fig. 3.7 Capillary pressures of the (a) Bakken oil shale sample and (b) Shale gas sample...

Fujita, Yusuke

2014-08-06T23:59:59.000Z

459

field  

National Nuclear Security Administration (NNSA)

9%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

field field-type-text field-field-page-name">

460

Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale  

Science Journals Connector (OSTI)

The comprehensive utilization of oil shale is a new promising technology achieving high utilization-factors for both oil shales chemical and energy potentials, and avoiding serious environmental impacts. For this technology, it is an urgent issue how to obtain shale oil with a high yield and as well as treat shale char efficiently and economically. In this present work, retorting experiments of three type I oil shales were performed using an aluminum retort, and the effect of retorting temperature, residence time, particle size and heating rate on the yield of shale oil was studied at low retorting temperatures ranging from 400C to 520C, respectively, at which shale char obtained has good combustion properties. The experimental data show that an increase in the retorting temperature, the residence time and the heating time has positive significant effect on improving the yield of shale oil, and a middle particle size is helpful for increasing the oil yield as well. The grey system method was applied to evaluate the effect of retorting factors on the yield of shale oil, showing that the retorting temperature is the most marked factor influencing the yield of shale oil.

X.X. Han; X.M. Jiang; Z.G. Cui

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Strengthening the applicability of self-heating retorting process to oil shale via co-retorting  

Science Journals Connector (OSTI)

Abstract Recently a facile low-energy-input retorting route but without marked loss in the shale-oil yield is developed, which is achieved by a self-heating effect, that is, spontaneously increasing retorting temperature in the absence of external heat provision (Guo et al., 2013, 2014). In this work, the applicability of self-heating retorting (SHR) process to three Chinese oil shales from different places (i.e., Longkou, Huadian and Fushun) is studied. Of these three oil shales, Fushun oil shale is associated with coal and was previously abandoned during coal mining due to its not high kerogen or oil content. The results show that its hard for Fushun oil shale to obtain satisfying self-heating effect, while Longkou or Huadian oil shale with higher kerogen or oil content shows satisfactory SHR. However, by adding suitable amounts of Longkou or Huadian oil shale into Fushun oil shale, a satisfying self-heating effect can be obtained as well. Thus, the relatively low-grade Fushun oil shale can also be well utilized to produce shale oil via this facile SHR route. Moreover, to utilize Fushun oil shale with a greener SHR process, the process can be performed by co-retorting Fushun oil shale with pine needles, a kind of renewable biomass. This finding also provides a new starting point for exploring plentiful biomass resources to utilize low-grade oil shale to produce oil in the future work.

Hongfan Guo; Yindong Yang; Kuikui Wang; Yansong Pei; Qicheng Wu; Yunyi Liu

2015-01-01T23:59:59.000Z

462

Western states enhanced oil shale recovery program: Shale oil production facilities conceptual design studies report  

SciTech Connect

This report analyzes the economics of producing syncrude from oil shale combining underground and surface processing using Occidental's Modified-In-Situ (MIS) technology and Lawrence Livermore National Laboratory's (LLNL) Hot Recycled Solids (HRS) retort. These retorts form the basic technology employed for oil extraction from oil shale in this study. Results are presented for both Commercial and Pre-commercial programs. Also analyzed are Pre-commercialization cost of Demonstration and Pilot programs which will confirm the HRS and MIS concepts and their mechanical designs. These programs will provide experience with the circulating Fluidized Bed Combustor (CFBC), the MIS retort, the HRS retort and establish environmental control parameters. Four cases are considered: commercial size plant, demonstration size plant, demonstration size plant minimum CFBC, and a pilot size plant. Budget cost estimates and schedules are determined. Process flow schemes and basic heat and material balances are determined for the HRS system. Results consist of summaries of major equipment sizes, capital cost estimates, operating cost estimates and economic analyses. 35 figs., 35 tabs.

Not Available

1989-08-01T23:59:59.000Z

463

Investigations of Occidental Oil Shale, Inc. , retort 3E spent shales  

SciTech Connect

The mineralogy, trace element concentrations in the solids, and leaching characteristics of spent shales from retort 3E cores were studied. This is the first comprehensive study of in situ generated materials. Although there were unique aspects to the operations of retort 3E that are not representative of a commercial operation, the study of in situ generated materials has provided insights into the chemical, mineralogic, and solution reactions that occur during and subsequent to underground retorting. Characterization of the solid materials has verified that in situ processing occurs in a thermodynamic and kinetic regime not previously encountered for surface retorting. Carbonate decomposition and silication reactions that form high-temperature products, such as akermanite-gehlenite and diopside-augite solid solutions, have been identified by x-ray diffraction. Observations resulting from solids characterization are substantiated by leachate chemistry, which, although compatible with leachates generated from surface retorted materials, are different in extent (composition and concentration). Comparison of leachates generated from in situ materials with Multi-Media Environmental Goals/Minimum Acute Toxicity Effluent values indicates that the major and trace elements deserving further investigation are potassium, lithium, fluoride, vanadium, boron, molybdenum, nickel, and arsenic. Several trace elements, including fluoride, vanadium, boron, and arsenic, show increased mobilities from spent shales containing akermanite-gehlenite solid solutions as the major mineral phase. This report details the chemical, mineralogic, and solution behavior of major, minor, and trace elements in these minerals.

Peterson, E.J.; Henicksman, A.; Wagner, P.

1981-06-01T23:59:59.000Z

464

An Application of Sequence Stratigraphy in Modelling Oil Yield Distribution: The Stuart Oil Shale Deposit, Queensland, Australia.  

E-Print Network (OSTI)

??The Stuart Oil Shale Deposit is a major oil shale resource located near Gladstone on the central Queensland coast. It contains an estimated 3.0 billion (more)

Pope, Graham John

2005-01-01T23:59:59.000Z

465

NETL: News Release - DOE's Early Investment in Shale Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2011 2, 2011 DOE's Early Investment in Shale Gas Technology Producing Results Today Washington, DC - A $92 million research investment in the 1970s by the U.S. Department of Energy (DOE) is today being credited with technological contributions that have stimulated development of domestic natural gas from shales. The result: more U.S. jobs, increased energy security, and higher revenues for states and the Federal Government. Spurred by the technological advancements resulting from this investment, U.S. shale gas production continues to grow, amounting to more than 8 billion cubic feet per day, or about 14 percent of the total volume of dry natural gas produced in the United States. DOE's Energy Information Administration (EIA) projects that the shale gas share of U.S. natural gas production will reach 45 percent by 2035. The EIA also projects that 827 trillion cubic feet of natural gas is now recoverable from U.S. shales using currently available technology-an increase of nearly 500 trillion cubic feet over earlier estimates.

466

A study on the Jordanian oil shale resources and utilization  

Science Journals Connector (OSTI)

Jordan has significant oil shale deposits occurring in 26 known localities. Geological surveys indicate that the existing deposits underlie more than 60% of Jordan's territory. The resource consists of 40 to 70 billion tones of oil shale which may be equivalent to more than 5 million tones of shale oil. Since the 1960s Jordan has been investigating economical and environmental methods for utilizing oil shale. Due to its high organic content is considered a suitable source of energy. This paper introduces a circulating fluidized bed combustor that simulates the behavior of full scale municipal oil shale combustors. The inside diameter of the combustor is 500 mm the height is 3000 mm. The design of the CFB is presented. The main parameters which affect the combustion process are elucidated in the paper. The size of the laboratory scale fluidized bed reactor is 3 kW which corresponds to a fuel-feeding rate of approximately 1.5 kg/h.

Ahmad Sakhrieh; Mohammed Hamdan

2012-01-01T23:59:59.000Z

467

Gasification characteristics and kinetics for an Eastern oil shale  

SciTech Connect

Gasification reactivity of an Eastern oil shale was studied in a three-year research project under a cooperative agreement between the Department of Energy, Morgantown Energy Technology Center, and HYCRUDE Corp. to expand the data base on the hydroretorting of Eastern oil shales. Gasification tests were conducted with the Indiana New Albany oil shale during the first year of the program. A total of six Eastern oil shales are planned to be tested during the program. A laboratory thermobalance and a 2-inch diameter fluidized bed were used to conduct gasification tests with Indiana New Albany oil shale. Temperature and pressure ranges used were 1600 to 1900/sup 0/F and 15 to 500 psig, respectively. Fifteen thermobalance tests were made in hydrogen/steam and synthesis gas/steam mixtures. Six fluidized-bed tests were made in the same synthesis gas/steam mixture. Carbon conversions as high as 95% were achieved. Thermobalance test results and a kinetic description of weight loss during hydrogen/steam gasification are presented. 14 refs., 6 figs., 4 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1987-01-01T23:59:59.000Z

468

The Impact of Heterogeneity on the Anisotropic Strength of an Outcrop Shale  

Science Journals Connector (OSTI)

Properly accounting for the mechanical anisotropy of shales can be critical for successful drilling of high inclination wells, because shales are known to be weak along bedding ... parameters in such cases, a suf...

Erling Fjr; Olav-Magnar Nes

2014-09-01T23:59:59.000Z

469

Assessment of the Mexican Eagle Ford Shale Oil and Gas Resources  

E-Print Network (OSTI)

-rich zone. Accurate estimation of the resource size and future production, as well as the uncertainties associated with them, is critical for the decision-making process of developing shale oil and gas resources. The complexity of the shale reservoirs...

Morales Velasco, Carlos Armando

2013-08-02T23:59:59.000Z

470

Pressure Transient Analysis and Production Analysis for New Albany Shale Gas Wells  

E-Print Network (OSTI)

Shale gas has become increasingly important to United States energy supply. During recent decades, the mechanisms of shale gas storage and transport were gradually recognized. Gas desorption was also realized and quantitatively described. Models...

Song, Bo

2010-10-12T23:59:59.000Z

471

Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses  

E-Print Network (OSTI)

The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

Vera Rosales, Fabian 1986-

2012-12-11T23:59:59.000Z

472

Supercritical fluid extraction of Chinese Maoming oil shale with water and toluene  

Science Journals Connector (OSTI)

Chinese Maoming (Guangdong Province) oil shale was subjected to supercritical fluid extraction with ... water, although the weight losses of the oil shale with toluene and water were almost the...n-alkanes were a...

T Funazukuri; N Wakao

1987-04-01T23:59:59.000Z

473

Reaction mechanism and kinetics of pressurized pyrolysis of Chinese oil shale in the presence of water  

Science Journals Connector (OSTI)

A study of reaction mechanisms and chemical kinetics of pressurized pyrolysis of Chinese Liushuhe oil shale in the presence of water were conducted ... thermal degradation. It was found that the oil shale was fir...

Chaohe Fang; Shuyuan Li; Guili Ma; Hongyan Wang; Zhilong Huang

2012-12-01T23:59:59.000Z

474

Lawrence Livermore National Laboratory oil shale project. Quarterly report, April-June 1982  

SciTech Connect

The effect of the proportion of oxidized shale to raw shale, on the heat of combustion of retort product was studied in a fluidized sand bed at 500/sup 0/C. Results show a significant increase in the heat of combustion, produced by the activity of the oxidized shale. The functionality of organic sulfur in various oil shale types is being investigated. An oil shale pyrolyzer for aboveground retorting is being studied in an engineering facility. Thermochemical and experimental equations were developed for the heat of combustion of raw shale. A heat balance was calculated for 24.6 gal/ton Colorado oil shale. The rapid-pyrolysis data was analyzed to determine the best kinetic scheme for retort modeling. Incipient fluidization velocity measurements were made for various crushed oil shale mixtures of different particle sizes. 10 figures, 1 table. (DLC)

Carley, J.F. (ed.)

1982-09-14T23:59:59.000Z

475

Microbial Communities in Oil Shales, Biodegraded and Heavy Oil Reservoirs, and Bitumen Deposits  

Science Journals Connector (OSTI)

Subsurface hydrocarbon and oil shale deposits, once thought sterile, are being re-evaluated as habitats for ancient and contemporary microbial activity. Although oil shales have not been rigorously examined mi...

J. Foght

2010-01-01T23:59:59.000Z

476

Trace element mineral transformations associated with hydration and recarbonation of retorted oil shale  

Science Journals Connector (OSTI)

A laboratory study was conducted to evaluate the influence of hydration and recarbonation on the solidphase distribution of trace elements in retorted oil shale. The oil shale samples were retorted by the Paraho ...

M. E. Essington

477

Separation of oil shale phenols by capillary zone electrophoresis and micellar electrokinetic chromatography  

Science Journals Connector (OSTI)

The relatively high oxygen content and specific structure of the organic matter of Estonian oil shale leads to the phenomenon that its thermal ... is the case with other fuels. These oil shale phenols are also qu...

A. Ebber

2001-01-01T23:59:59.000Z

478

Kinetics and Equilibrium Sorption Studies of 4-Nitrophenol on pyrolyzed and activated oil shale residue  

Science Journals Connector (OSTI)

Sorption of the organic pollutant 4-nitrophenol (4-NP) by pyrolyzed and activated Jordanian oil-shale was studied. Pyrolyzed oil shale was prepared using a fluidized bed reactor ... activation was carried out by ...

Sameer Al-Asheh; Fawzi Banat; Asmahan Masad

2004-06-01T23:59:59.000Z

479

The Influence of Vertical Location on Hydraulic Fracture Conductivity in the Fayetteville Shale  

E-Print Network (OSTI)

Hydraulic fracturing is the primary stimulation method within low permeability reservoirs, in particular shale reservoirs. Hydraulic fracturing provides a means for making shale reservoirs commercially viable by inducing and propping fracture...

Briggs, Kathryn

2014-05-05T23:59:59.000Z

480

SciTech Connect: Water Usage for In-Situ Oil Shale Retorting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Citation Details In-Document Search Title: Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics...

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES  

E-Print Network (OSTI)

W. A. Robb, and T. J. Spedding. Minor Elements in Oil Shaleand Oil-Shale Products. LERC RI 77-1, 1977. Bertine, K. K.From A Simulated In-Situ Oil Shale Retort. In: Procedings of

Girvin, D.G.

2011-01-01T23:59:59.000Z

482

E-Print Network 3.0 - afforested oil-shale mining Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

oil-shale mining Search Powered by Explorit Topic List Advanced Search Sample search results for: afforested oil-shale mining Page: << < 1 2 3 4 5 > >> 1 The chemistry of minerals...

483

INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER  

E-Print Network (OSTI)

W. A. Robb, and T. J. Spedding. Minor Elements in Oil Shaleand Oil Shale Products. LERC Rept. of Invest. 77-1, 1977.Significant to In Situ Oil Shale Processing. Quart. Colo.

Farrier, D.S.

2011-01-01T23:59:59.000Z

484

Complex conductivity tensor of anisotropic hydrocarbon-1 bearing shales and mudrocks2  

E-Print Network (OSTI)

to describe seismic and electromagnetic (EM) measurements in these anisotropic54 materials.55 Oil-shale to release their hydrocarbons. Hence, oil shales and58 mudrocks are typically water-wet, single- or dual

Torres-Verdín, Carlos

485

DISTRIBUTION OF NATURALLY OCCURRING RADIONUCLIDES (U, Th) IN TIMAHDIT'S BLACK SHALE (MOROCCO)  

E-Print Network (OSTI)

focused on the use of Moroccan's black oil shales as the raw materials for production of a new type, 1991). These adsorbents were produced from oil shale, which is abundant in Morocco. The choice

Paris-Sud XI, Université de

486

Statistical nano-chemo-mechanical assessment of shale by wave dispersive spectroscopy and nanoindentation  

E-Print Network (OSTI)

Shale is a common type of sedimentary rock formed by clay particles and silt inclusions, and, in some cases, organic matter. Typically, shale formations serve as geological caps for hydrocarbon reservoirs. More recently, ...

Deirieh, Amer (Amer Mohammad)

2011-01-01T23:59:59.000Z

487

The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs  

E-Print Network (OSTI)

Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase...

Kamenov, Anton

2013-04-11T23:59:59.000Z

488

Pressure Transient Analysis for Multi-stage Fractured Horizontal Wells in Shale Gas Reservoirs  

Science Journals Connector (OSTI)

This article presents the PTA on the multi-stage fractured horizontal well in shale gas reservoirs incorporating desorption and diffusive flow in ... considering the mechanisms of desorption and diffusion in shale

Jingjing Guo; Liehui Zhang; Haitao Wang; Guoqing Feng

2012-07-01T23:59:59.000Z

489

Methane adsorption comparison of different thermal maturity kerogens in shale gas system  

Science Journals Connector (OSTI)

To determine the effect of thermal maturity on the methane sorption in shale gas system, two different thermal maturity kerogens of type II isolated from Barnett shale of Fort Worth Basin were used to...

Haiyan Hu

2014-12-01T23:59:59.000Z

490

Enhancing Shale Gas Recovery by High-Temperature Supercritical CO2 Flooding  

Science Journals Connector (OSTI)

We examine a new technology for shale gas recovery: high-temperature supercritical carbon dioxide flooding ... of supercritical carbon dioxide, the characteristics of shale gas reservoirs, the adsorption/desorpti...

Feiying Ma; Yongqing Wang; Lin Wang

2013-09-01T23:59:59.000Z

491

Life cycle greenhouse gas footprint of shale gas: a probabilistic approach  

Science Journals Connector (OSTI)

With the increase in natural gas (NG) production in recent years, primarily from shale gas, some sources, including the US Environmental ... the data from the Montney and Horn River shale gas basins in the Northe...

Anjuman Shahriar; Rehan Sadiq

2014-12-01T23:59:59.000Z

492

A Further Investigation of Local Nonparametric Estimation Techniques in Shale Gas Resource Assessment  

Science Journals Connector (OSTI)

Local nonparametric prediction models are used to develop drill site selection strategies for the Devonian Antrim Shale (Michigan Basin) and the Mississippian Barnett Shale (Fort Worth Basin). The presentation il...

Emil D. Attanasi; Timothy C. Coburn; Philip A. Freeman

2014-01-01T23:59:59.000Z

493

Shale Gas Formations and Their Potential for Carbon Storage: Opportunities and Outlook  

Science Journals Connector (OSTI)

Shale gas resources are proving to be globally abundant...2...(carbon dioxide) to mitigate the climate impacts of global carbon emissions from power and industrial sectors. This paper reviews global shale gas res...

Roozbeh Khosrokhavar; Steve Griffiths; Karl-Heinz Wolf

2014-09-01T23:59:59.000Z

494

The possibilities of using shale gas in the Russian and European power industries  

Science Journals Connector (OSTI)

Recent years have witnessed wide interest of the society in the problem of shale gas with its being discussed at different levels, ... to political ones. The data on the shale gas resources worldwide and in indiv...

A. O. Morozova; V. V. Klimenko

2014-04-01T23:59:59.000Z

495

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation 10.1073/pnas.1309334111...of unconventional natural gas, particularly shale gas...best-performing coal-fired generation under certain...

Garvin A. Heath; Patrick ODonoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

496

Generic Argillite/Shale Disposal Reference Case  

SciTech Connect

Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jov Colon et al. (2014).

Zheng, Liange; Jov& #233; Colon, Carlos; Bianchi, Marco; Birkholzer, Jens

2014-08-08T23:59:59.000Z

497

E-Print Network 3.0 - akinbo shale eastern Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

the Uinta Basin, Utah. The vertical scale is in thousands of barrels of in-place shale oil... ......

498

The Identification of Organic Compounds in Oil Shale Retort Water by GC and GC-MS  

Science Journals Connector (OSTI)

A separation scheme is presented for the analysis of oil shale retort water by gas chromatography (GC)...

D. H. Stuermer; D. J. Ng; C. J. Morris

1982-01-01T23:59:59.000Z

499

Cancer Patterns in the Oil Shale Area of the Estonian S.S.R.  

E-Print Network (OSTI)

the Kohtla-Jarve district (oil shale area) there was an excess of stomach and lung cancer. High rates

Maret Purde; Mati Rahu

500

Secure Fuels from Domestic Resources The Continuing Evolution of Americas Oil Shale and Tar  

E-Print Network (OSTI)

domestic oil shale and tar sands industries since the first release and to include profiles of additional

Sands Industries