Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Field Development Strategies for Bakken Shale Formation  

E-Print Network (OSTI)

July 2010 Field Development Strategies for Bakken Shale Formation SPE 139032 S.Zargari, S Bakken Formation is comprised of 3 Members: · Upper Shale Member­ Source & Seal · Middle "Siltstone" Member­ Reservoir & Migration Conduit · Lower Shale Member- Source & Seal #12;July 2010 Reservoir

Mohaghegh, Shahab

2

Bakken Shale Oil Production Trends  

E-Print Network (OSTI)

As the conventional reservoirs decrease in discovering, producing and reserving, unconventional reservoirs are more remarkable in terms of discovering, development and having more reserve. More fields have been discovered where Barnett Shale and Bakken Shale are the most recently unconventional reservoir examples. Shale reservoirs are typically considered self-sourcing and have very low permeability ranging from 10-100 nanodarcies. Over the past few decades, numerous research projects and developments have been studied, but it seems there is still some contention and misunderstanding surrounding shale reservoirs. One of the largest shale in the United State is the Bakken Shale play. This study will describe the primary geologic characteristics, field development history, reservoir properties,and especially production trends, over the Bakken Shale play. Data are available for over hundred wells from different companies. Most production data come from the Production Data Application (HDPI) database and in the format of monthly production for oil, water and gas. Additional 95 well data including daily production rate, completion, Pressure Volume Temperature (PVT), pressure data are given from companies who sponsor for this research study. This study finds that there are three Types of well production trends in the Bakken formation. Each decline curve characteristic has an important meaning to the production trend of the Bakken Shale play. In the Type I production trend, the reservoir pressure drops below bubble point pressure and gas releasingout of the solution. With the Type II production trend, oil flows linearly from the matrix into the fracture system, either natural fracture or hydraulic fracture. Reservoir pressure is higher than the bubble point pressure during the producing time and oil flows as a single phase throughout the production period of the well. A Type III production trend typically has scattering production data from wells with a different Type of trend. It is difficult to study this Type of behavior because of scattering data, which leads to erroneous interpretation for the analysis. These production Types, especially Types I and II will give a new type curve matches for shale oil wells above or below the bubble point.

Tran, Tan

2011-05-01T23:59:59.000Z

3

SPE-139032-PP Field Development Strategies for Bakken Shale Formation  

E-Print Network (OSTI)

, Trans, AIME. 1945. 12. R. N. Heistand, H. G. Humphries; Direct Determination of Organic Carbon in Oil Shale, Analytical Chemistry, Vol. 48, No. 8, July 1976, p 1193. #12;

Mohaghegh, Shahab

4

New Models Help Optimize Development of Bakken Shale Resources | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Models Help Optimize Development of Bakken Shale Resources Models Help Optimize Development of Bakken Shale Resources New Models Help Optimize Development of Bakken Shale Resources February 7, 2012 - 12:00pm Addthis Washington, DC - Exploration and field development in the largest continuous oil play in the lower 48 states, located in North Dakota and eastern Montana, will be guided by new geo-models developed with funding from the Department of Energy's (DOE) Office of Fossil Energy (FE). The three-year project to develop exploration and reservoir models for the Bakken Shale resource play was conducted by the Colorado School of Mines (CSM), through research funded by FE's Oil and Natural Gas Program. A "play" is a shale formation containing significant accumulations of natural gas or oil. The U.S. Geological Survey estimates the Bakken Shale

5

New Models Help Optimize Development of Bakken Shale Resources | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Models Help Optimize Development of Bakken Shale Resources New Models Help Optimize Development of Bakken Shale Resources New Models Help Optimize Development of Bakken Shale Resources February 7, 2012 - 12:00pm Addthis Washington, DC - Exploration and field development in the largest continuous oil play in the lower 48 states, located in North Dakota and eastern Montana, will be guided by new geo-models developed with funding from the Department of Energy's (DOE) Office of Fossil Energy (FE). The three-year project to develop exploration and reservoir models for the Bakken Shale resource play was conducted by the Colorado School of Mines (CSM), through research funded by FE's Oil and Natural Gas Program. A "play" is a shale formation containing significant accumulations of natural gas or oil. The U.S. Geological Survey estimates the Bakken Shale

6

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken?  

Gasoline and Diesel Fuel Update (EIA)

Technology-Based Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken? Through the use of technology, U.S. oil and natural gas operators are converting previously uneconomic oil and natural gas resources into proved reserves and production. The Bakken Formation of the Williston Basin is a success story of horizontal drilling, fracturing, and completion technologies. The recent, highly productive oil field discoveries within the Bakken Formation did not come from venturing out into deep uncharted waters heretofore untapped by man, nor from blazing a trail into pristine environs never open to drilling before. Instead, success came from analysis of geologic data on a decades-old producing area, identification of uptapped resources, and application of the new drilling and completion technology necessary to exploit them. In short, it came from using technology

7

The Bakken-An Unconventional Petroleum and Reservoir System  

SciTech Connect

An integrated geologic and geophysical study of the Bakken Petroleum System, in the Williston basin of North Dakota and Montana indicates that: (1) dolomite is needed for good reservoir performance in the Middle Bakken; (2) regional and local fractures play a significant role in enhancing permeability and well production, and it is important to recognize both because local fractures will dominate in on-structure locations; and (3) the organic-rich Bakken shale serves as both a source and reservoir rock. The Middle Bakken Member of the Bakken Formation is the target for horizontal drilling. The mineralogy across all the Middle Bakken lithofacies is very similar and is dominated by dolomite, calcite, and quartz. This Member is comprised of six lithofacies: (A) muddy lime wackestone, (B) bioturbated, argillaceous, calcareous, very fine-grained siltstone/sandstone, (C) planar to symmetrically ripple to undulose laminated, shaly, very fine-grained siltstone/sandstone, (D) contorted to massive fine-grained sandstone, to low angle, planar cross-laminated sandstone with thin discontinuous shale laminations, (E) finely inter-laminated, bioturbated, dolomitic mudstone and dolomitic siltstone/sandstone to calcitic, whole fossil, dolomitic lime wackestone, and (F) bioturbated, shaly, dolomitic siltstone. Lithofacies B, C, D, and E can all be reservoirs, if quartz and dolomite-rich (facies D) or dolomitized (facies B, C, E). Porosity averages 4-8%, permeability averages 0.001-0.01 mD or less. Dolomitic facies porosity is intercrystalline and tends to be greater than 6%. Permeability may reach values of 0.15 mD or greater. This appears to be a determinant of high productive wells in Elm Coulee, Parshall, and Sanish fields. Lithofacies G is organic-rich, pyritic brown/black mudstone and comprises the Bakken shales. These shales are siliceous, which increases brittleness and enhances fracture potential. Mechanical properties of the Bakken reveal that the shales have similar effective stress as the Middle Bakken suggesting that the shale will not contain induced fractures, and will contribute hydrocarbons from interconnected micro-fractures. Organic-rich shale impedance increases with a reduction in porosity and an increase in kerogen stiffness during the burial maturation process. Maturation can be directly related to impedance, and should be seismically mappable. Fractures enhance permeability and production. Regional fractures form an orthogonal set with a dominant NE-SW trend parallel to ?1, and a less prominent NW-SE trend. Many horizontal wells are drilled perpendicular to the ?1 direction to intersect these fractures. Local structures formed by basement tectonics or salt dissolution generate both hinge parallel and hinge oblique fractures that may overprint and dominate the regional fracture signature. Horizontal microfractures formed by oil expulsion in the Bakken shales, and connected and opened by hydrofracturing provide permeability pathways for oil flow into wells that have been hydro-fractured in the Middle Bakken lithofacies. Results from the lithofacies, mineral, and fracture analyses of this study were used to construct a dual porosity Petrel geo-model for a portion of the Elm Coulee Field. In this field, dolomitization enhances reservoir porosity and permeability. First year cumulative production helps locate areas of high well productivity and in deriving fracture swarm distribution. A fracture model was developed based on high productivity well distribution, and regional fracture distribution, and was combined with favorable matrix properties to build a dual porosity geo-model.

Frederick Sarg

2011-12-31T23:59:59.000Z

8

The Bakken - An Unconventional Petroleum and Reservoir System  

Science Conference Proceedings (OSTI)

An integrated geologic and geophysical study of the Bakken Petroleum System, in the Williston basin of North Dakota and Montana indicates that: (1) dolomite is needed for good reservoir performance in the Middle Bakken; (2) regional and local fractures play a significant role in enhancing permeability and well production, and it is important to recognize both because local fractures will dominate in on-structure locations; and (3) the organic-rich Bakken shale serves as both a source and reservoir rock. The Middle Bakken Member of the Bakken Formation is the target for horizontal drilling. The mineralogy across all the Middle Bakken lithofacies is very similar and is dominated by dolomite, calcite, and quartz. This Member is comprised of six lithofacies: (A) muddy lime wackestone, (B) bioturbated, argillaceous, calcareous, very fine-grained siltstone/sandstone, (C) planar to symmetrically ripple to undulose laminated, shaly, very fine-grained siltstone/sandstone, (D) contorted to massive fine-grained sandstone, to low angle, planar cross-laminated sandstone with thin discontinuous shale laminations, (E) finely inter-laminated, bioturbated, dolomitic mudstone and dolomitic siltstone/sandstone to calcitic, whole fossil, dolomitic lime wackestone, and (F) bioturbated, shaly, dolomitic siltstone. Lithofacies B, C, D, and E can all be reservoirs, if quartz and dolomite-rich (facies D) or dolomitized (facies B, C, E). Porosity averages 4-8%, permeability averages 0.001-0.01 mD or less. Dolomitic facies porosity is intercrystalline and tends to be greater than 6%. Permeability may reach values of 0.15 mD or greater. This appears to be a determinant of high productive wells in Elm Coulee, Parshall, and Sanish fields. Lithofacies G is organic-rich, pyritic brown/black mudstone and comprises the Bakken shales. These shales are siliceous, which increases brittleness and enhances fracture potential. Mechanical properties of the Bakken reveal that the shales have similar effective stress as the Middle Bakken suggesting that the shale will not contain induced fractures, and will contribute hydrocarbons from interconnected micro-fractures. Organic-rich shale impedance increases with a reduction in porosity and an increase in kerogen stiffness during the burial maturation process. Maturation can be directly related to impedance, and should be seismically mappable. Fractures enhance permeability and production. Regional fractures form an orthogonal set with a dominant NE-SW trend, and a less prominent NW-SE trend. Many horizontal 1 direction to intersect these fractures. Local structures formed by basement tectonics or salt dissolution generate both hinge parallel and hinge oblique fractures that may overprint and dominate the regional fracture signature. Horizontal microfractures formed by oil expulsion in the Bakken shales, and connected and opened by hydrofracturing provide permeability pathways for oil flow into wells that have been hydro-fractured in the Middle Bakken lithofacies. Results from the lithofacies, mineral, and fracture analyses of this study were used to construct a dual porosity Petrel geo-model for a portion of the Elm Coulee Field. In this field, dolomitization enhances reservoir porosity and permeability. First year cumulative production helps locate areas of high well productivity and in deriving fracture swarm distribution. A fracture model was developed based on high productivity well distribution, and regional fracture distribution, and was combined with favorable matrix properties to build a dual porosity geo-model.

Sarg, J.

2011-12-31T23:59:59.000Z

9

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Data Tools & Models ... Oil production growth in the Bakken shale play mirrors somewhat the growth in natural gas production ... U.S. Department of Energy USA.gov

10

Fractured shale reservoirs: Towards a realistic model  

Science Conference Proceedings (OSTI)

Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

1996-09-01T23:59:59.000Z

11

,"Shale Natural Gas New Field Discoveries "  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Shale Natural Gas New Field Discoveries ",36,"Annual",2011,"6302009" ,"Release...

12

,"Shale Natural Gas New Reservoir Discoveries in Old Fields ...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Shale Natural Gas New Reservoir Discoveries in Old Fields ",36,"Annual",2011,"6302009"...

13

Miscellaneous States Shale Gas Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Available; W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Shale Natural Gas New Field Discoveries...

14

SUBTASK 1.7 EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA PHASE II  

Science Conference Proceedings (OSTI)

Production from the Bakken and Three Forks Formations continues to trend upward as forecasts predict significant production of oil from unconventional resources nationwide. As the U.S. Geological Survey reevaluates the 3.65 billion bbl technically recoverable estimate of 2008, technological advancements continue to unlock greater unconventional oil resources, and new discoveries continue within North Dakota. It is expected that the play will continue to expand to the southwest, newly develop in the northeastern and northwestern corners of the basin in North Dakota, and fully develop in between. Although not all wells are economical, the economic success rate has been near 75% with more than 90% of wells finding oil. Currently, only about 15% of the play has been drilled, and recovery rates are less than 5%, providing a significant future of wells to be drilled and untouched hydrocarbons to be pursued through improved stimulation practices or enhanced oil recovery. This study provides the technical characterizations that are necessary to improve knowledge, provide characterization, validate generalizations, and provide insight relative to hydrocarbon recovery in the Bakken and Three Forks Formations. Oil-saturated rock charged from the Bakken shales and prospective Three Forks can be produced given appropriate stimulation treatments. Highly concentrated fracture stimulations with ceramic- and sand-based proppants appear to be providing the best success for areas outside the Parshall and Sanish Fields. Targeting of specific lithologies can influence production from both natural and induced fracture conductivity. Porosity and permeability are low, but various lithofacies units within the formation are highly saturated and, when targeted with appropriate technology, release highly economical quantities of hydrocarbons.

Darren D. Schmidt; Steven A. Smith; James A. Sorensen; Damion J. Knudsen; John A. Harju; Edward N. Steadman

2011-10-31T23:59:59.000Z

15

U.S. Shale Proved Reserves New Field Discoveries (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves New Field Discoveries (Billion Cubic Feet) U.S. Shale Proved Reserves New Field Discoveries (Billion Cubic...

16

Modeling, History Matching, Forecasting and Analysis of Shale Reservoirs Performance Using Artificial Intelligence  

E-Print Network (OSTI)

matching, forecasting and analyzing oil and gas production in shale reservoirs. In this new approach and analysis of oil and gas production from shale formations. Examples of three case studies in Lower Huron and New Albany shale formations (gas producing) and Bakken Shale (oil producing) is presented

Mohaghegh, Shahab

17

Hydraulic fracture orientation for miscible gas injection EOR in the Elm Coulee field.  

E-Print Network (OSTI)

??There is tremendous potential for shale oil reservoirs, such as the Bakken Formation, Eagle Ford and Niobrara to have a lasting impact on the U.S (more)

Xu, Tao

2013-01-01T23:59:59.000Z

18

U.S. Shale Proved Reserves New Reservoir Discoveries in Old Fields...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Shale Proved Reserves New Reservoir...

19

Examination of eastern oil shale disposal problems - the Hope Creek field study  

SciTech Connect

A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

1985-02-01T23:59:59.000Z

20

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could ...  

U.S. Energy Information Administration (EIA)

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken? Through the use of technology, U.S. oil and natural gas operators are ...

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

TOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS Shahab D. Mohaghegh1 & Grant Bromhal2  

E-Print Network (OSTI)

development in the oil and gas industry and is being used on some shale formations. BAKKEN SHALE MuchTOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS based on measure data, called Top-Down, Intelligent Reservoir Modeling for the shale formations

Mohaghegh, Shahab

22

Trip report for field visit to Fayetteville Shale gas wells.  

Science Conference Proceedings (OSTI)

This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

Veil, J. A.; Environmental Science Division

2007-09-30T23:59:59.000Z

23

,"U.S. Shale Proved Reserves New Field Discoveries (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Shale Proved Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

24

Modeling gas injection into the shale oil reservoirs in the Sanish field, North Dakota.  

E-Print Network (OSTI)

??The Bakken Formation, a late Devonian-early Mississippian relatively thin unit, is deposited in the Williston Basin, covering 200,000 square miles of the north central United (more)

Dong, Cuiyu

2013-01-01T23:59:59.000Z

25

http://www.ogj.com/articles/print/volume-111/issue-9/drilling-production/barnett-study-determines-full-field-reserves.html BARNETT SHALE MODEL-2 (Conclusion): Barnett study  

E-Print Network (OSTI)

-production/barnett-study-determines-full-field-reserves.html BARNETT SHALE MODEL-2 (Conclusion): Barnett study determines full-field reserves, production forecast John shale integrates engineering, geology, and economics into a numerical model that allows f or scenario

Patzek, Tadeusz W.

26

Subtask 1.8 - Investigation of Improved Conductivity and Proppant Applications in the Bakken Formation  

SciTech Connect

Given the importance of hydraulic fracturing and proppant performance for development of the Bakken and Three Forks Formations within the Williston Basin, a study was conducted to evaluate the key factors that may result in conductivity loss within the reservoirs. Various proppants and reservoir rock cores were exposed to several different fracturing and formation fluids at reservoir conditions. The hardness of the rock cores and the strength of the proppants were evaluated prior to and following fluid exposure. In addition, the conductivity of various proppants, as well as formation embedment and spalling, was evaluated at reservoir temperatures and pressures using actual reservoir rock cores. The results of this work suggest that certain fluids may affect both rock and proppant strength, and therefore, fluid exposure needs to be considered in the field. In addition, conductivity decreases within the Bakken Formation appear to be a function of a variety of factors, including proppant and rock strength, as well as formation embedment and spalling. The results of this study highlight the need for advanced conductivity testing, coupled with quantification of formation embedment and spalling. Given the importance of proppant performance on conductivity loss and, ultimately, oil recovery, better understanding the effects of these various factors on proppant and rock strength in the field is vital for more efficient production within unconventional oil and gas reservoirs.

Bethany Kurz; Darren Schmidt; Steven Smith Christopher Beddoe; Corey Lindeman; Blaise Mibeck

2012-07-31T23:59:59.000Z

27

Shale Gas Glossary | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Glossary Shale Gas Glossary Shale Gas Glossary Energy.gov Careers & Internships...

28

Shale gas - what happened? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale gas - what happened? Shale gas - what happened? It seems like shale gas came out of...

29

Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California  

Science Conference Proceedings (OSTI)

The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

Reid, S.A.; McIntyre, J.L. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

1996-01-01T23:59:59.000Z

30

Influence of irrigation and weathering reactions on the composition of percolates from retorted oil shale in field lysimeters  

SciTech Connect

Major cations, anions, trace elements and dissolved organic C were measured in percolate from retorted oil shale collected from irrigated lysimeters in the field at Anvil Points, Colorado, over a two year period. The investigations indicated that chemical equilibrium was not established over the monitoring period and major changes occurred in percolate composition as a function of applied water volume and water residence time in the shale. Field and laboratory studies indicated that several factors contributed to changes in the chemistry of the shale on weathering, including recarbonization of the surface horizons with atmospheric CO/sub 2/ and the activities of microorganisms in surface and subsurface horizons. However, the principal mechanism responsible for the decreases in pH and salt concentrations appeared to be the conversion of major quantities of sulfide in the retorted shale to sulfate through a thiosulfate intermediate.

Garland, T. R.; Wildung, R. E.; Harbert, H. P.

1979-04-01T23:59:59.000Z

31

Shale Gas Development Challenges: Water | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Water Shale Gas Development Challenges: Water Shale Gas...

32

Shale Gas Development Challenges: Air | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Air Shale Gas Development Challenges: Air Shale Gas...

33

Crude oil and condensate production rises at Bakken and other ...  

U.S. Energy Information Administration (EIA)

Liquids production (crude oil and condensate) is rising significantly at several shale plays in the United States as operators increasingly target the liquids-bearing ...

34

Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock  

E-Print Network (OSTI)

of a jurassic opalinum shale, switzerland. Clays and Clay96 1 INTRODUCTION Clay/shale has been considered asand Rupture of Heterogeneous Shale Samples by Using a Non-

Liu, H.H.

2012-01-01T23:59:59.000Z

35

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Joint Forum on US Shale Gas & Pacific Gas Markets Joint Forum on US Shale Gas & Pacific Gas Markets May 14, 2013 | New York, NY By Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , May 14, 2013 Domestic production of shale gas has grown dramatically over the past few years Adam Sieminski , May 14, 2013 3 0 5 10 15 20 25 30 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) shale gas production (dry) billion cubic feet per day Sources: LCI Energy Insight gross withdrawal estimates as of March 2013 and converted to dry production estimates with EIA-calculated average gross-to-dry shrinkage factors by state and/or shale play. Shale gas leads growth in total gas production through 2040 to

36

Shale Gas Development Challenges: Fracture Fluids | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Fracture Fluids Shale Gas Development Challenges: Fracture...

37

Shale Gas Development Challenges: Earthquakes | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Earthquakes Shale Gas Development Challenges: Earthquakes...

38

Shale Gas Development Challenges: Surface Impacts | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Surface Impacts Shale Gas Development Challenges: Surface...

39

A high field solid-state nuclear magnetic resonance experimental study for clay and shale swelling.  

E-Print Network (OSTI)

??The development of the shale resources faces many problems related to their complex structure and challenging conditions. Drilling and fracturing operations suffer from the swelling (more)

Alzahrani, Mohammed S.

2013-01-01T23:59:59.000Z

40

What is shale gas? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home What is shale gas? What is shale gas? What is shale gas? Energy.gov Careers & Internships Science &...

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Production analysis of Marcellus Shale.  

E-Print Network (OSTI)

??The purpose of this thesis was to analyze the production potential of Marcellus shale using actual field data. By using real field production data for (more)

Belyadi, Hossein.

2011-01-01T23:59:59.000Z

42

David E. Bakken (Summary page) School of Electrical Engineering and Computer Science,  

E-Print Network (OSTI)

, and Automation. CRC Press, 2014. 4. Panel on high-profile US. Dept. of Energy panel on "Data Management1 David E. Bakken (Summary page) School of Electrical Engineering and Computer Science, Washington (minor: Electrical Engineering), Washington State University, 1985. B.S., Mathematics, Washington State

Bakken, Dave E.

43

Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock  

Science Conference Proceedings (OSTI)

Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

2011-06-20T23:59:59.000Z

44

EPM modeling of a field-scale tritium tracer experiment in fractured, weathered shale  

Science Conference Proceedings (OSTI)

A 2D equivalent porous media (EPM) model was used to simulate transport of tritium for a field-scale tracer experiment in a fractured and highly weathered shale saprolite. The tritium plume was characterized by rapid migration of the leading edge of the plume, slower movement of the center of mass of the tritium pulse and very slow decline of concentrations in the tail of the breakthrough curves. The EPM model successfully described the shape of the plume and the breakthrough curves for a monitoring well 3.7 m downgradient of the injection well using a flow velocity of 0.01 m/day and longitudinal and transverse dispersivity values of 0.8 m. An unusually low ratio of longitudinal and transverse dispersivity was needed to fit the nearly circular shape of the plume, which is believed to be caused by the water-table slope being perpendicular to the orientation of the prominent bedding plane fractures. Simulated values for concentrations in the long tail of the breakthrough curve observed in a downgradient well were especially sensitive to the value of longitudinal dispersivity used. The best-fit simulation, based on data over a 5 year period, was extrapolated to the most recent data point and the simulated concentration was very close to the measured value. Model predictions made with a slightly different value of longitudinal dispersivity resulted in a very large errors at late time, indicating that duration of monitoring data is a critical factor in accurate prediction. The experiment and simulations show that contaminant plumes can persist for long periods of time in fractured porous materials, presumably due to diffusive exchange between the rapidly moving water in the fractures and the relatively immobile pore water in the fine-grained matrix.

McKay, L.D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geological Sciences; Stafford, P.L.; Toran, L.E. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

1997-11-01T23:59:59.000Z

45

Modern Shale Gas Development in the United States: A Primer ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home Modern Shale Gas Development in the United States: A Primer Modern Shale Gas Development in the...

46

Why is shale gas important? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home Why is shale gas important? Why is shale gas important? Why is shale gas important? Energy.gov...

47

How is shale gas produced? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home How is shale gas produced? How is shale gas produced? How is shale gas produced? Energy.gov Careers...

48

Effect of Electromagnetic Fields on the Filtration of Liquid Aluminum ...  

Science Conference Proceedings (OSTI)

... Shahin Akbarnejad, Knut Marthinsen, Jon Arne Bakken, Ragnhild Elizabeth Aune ... aluminum alloy (A356) by the support of various magnetic field strengths (up to ... The obtained results were compared with reference gravity experiments.

49

Development of Correlations for Unconfined Compression Strength and Methods of Field Preparations and Preservation of Kope Shale.  

E-Print Network (OSTI)

??In the Greater Cincinnati area, the Kope formation and in particular Kope shale is problematic for engineers and geologists because of its ever-changing strength and (more)

McFaddin, Jared Douglas

2008-01-01T23:59:59.000Z

50

WTI discount to Brent and premium to Bakken both rising in ...  

U.S. Energy Information Administration (EIA)

It is likely that concerns regarding oil transportation bottlenecks throughout the central United States and increasing production from shale ...

51

Annual Logging Symposium, June 19-23, 2010 Formation Evaluation in the Bakken Complex Using Laboratory Core Data  

E-Print Network (OSTI)

complex include the Middle Bakken dolomitic sand/siltstone and the Three Forks dolomite. The Upper basin (Energy Information Administration, 2006). The tight Mississippian age Lodgepole Limestone fine sand). Some of the samples were found to contain fractures. Fig. 8 Ternary diagram of sandstone

52

Using Flue Gas Huff 'n Puff Technology and Surfactants to Increase Oil Production from the Antelope Shale Formation of the Railroad Gap Oil Field  

Science Conference Proceedings (OSTI)

This project was designed to test cyclic injection of exhaust flue gas from compressors located in the field to stimulate production from Antelope Shale zone producers. Approximately 17,000 m{sup 3} ({+-}600 MCF) of flue gas was to be injected into each of three wells over a three-week period, followed by close monitoring of production for response. Flue gas injection on one of the wells would be supplemented with a surfactant.

McWilliams, Michael

2001-12-18T23:59:59.000Z

53

Bjorn Bakken  

NLE Websites -- All DOE Office Websites (Extended Search)

1989. His main areas of work include distributed energy systems, energy system planning, operation and control, ancillary services, frequency and power control, and power flow...

54

Measurement of the rapidity and transverse momentum distributions of Z bosons in pp collisions at  

E-Print Network (OSTI)

from Bakken shale, Bazhenov shale, and Woodford shale. Our analysis, based on spatial autocorrelation of the Bakken shale series samples, a Bazhenov shale and a Woodford shale are shown in Figure 3. The C shale. Figure 3: SAM images of Bakken shales (bk), Bazhenov shale (bz, lower left), and Woodford shale

Adolphs, Ralph

55

Solar retorting of oil shale  

DOE Green Energy (OSTI)

First, in an overview, we outline and discuss the potential applications of solar energy to the production of fuels. We show that, starting from a fossil feedstock, there are four areas in which solar energy can have a major impact in the production of fuels: in solar retorting of oil shale, in solar coal gasification, in solar steam flooding of oil fields, and in solar steam-reforming of methane. We performed a detailed technical and economic analysis of solar retorting of oil shale. The analysis shows that this solar process not only should be technically feasible but also should improve the fuel yield from the oil-shale feedstock by 10 to 40%, depending on the grade of the shale, compared to the most efficient competing (nonsolar) process. The improved oil yield should more than pay for the incremental cost associated with adding the solar collection system (field of focusing heliostats). The results from an experiment in which solar energy was used to retort oil shale show that yields of better than 110% Fischer Assay are achievable. An advanced design for a solar oil-shale retort is also presented.

Gregg, D.W.; Taylor, R.W.; Grens, J.Z.; Aiman, W.R.; Marsh, L.E.

1980-05-15T23:59:59.000Z

56

Water Withdrawals for Development of Marcellus Shale Gas in Pennsylvania  

E-Print Network (OSTI)

Water Withdrawals for Development of Marcellus Shale Gas in Pennsylvania Introduction states where other shale fields are already in full- fledged gas production. The abun- dance of water of precipita- tion. Water is a critical component of the process of removing natural gas from underground shale

Boyer, Elizabeth W.

57

Oil shale programs. Tenth quarterly report, April 1978--June 1978  

SciTech Connect

Work is being performed under three programs: diagnostic and rock mechanics support for the Laramie In Situ-Oil Shale program, advanced instrumentation and field projects for in-situ oil shale processing, and in-situ oil shale bed preparation study.

Stevens, A.L. (ed.)

1979-04-01T23:59:59.000Z

58

Red Leaf Resources and the Commercialization of Oil Shale  

E-Print Network (OSTI)

Red Leaf Resources and the Commercialization of Oil Shale #12;About Red Leaf Resources 2006 Company commercial development field activities #12;Highlights Proven, Revolutionary Oil Shale Extraction Process Technology Significant Owned Oil Shale Resource #12;· The executive management team of Red Leaf Resources

Utah, University of

59

Subject is oil shale  

SciTech Connect

The article reviews the current financial, legislative and regulatory problems of oil shale development. 2 refs.

Due, M.J.C.

1982-02-01T23:59:59.000Z

60

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA)

gas and billion barrels (Bbbl) of shale oil for each major shale formation. Risked Recoverable Gas and Oil, reported in trillion cubic feet (Tcf) of shale gas and

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Oil-shale material properties  

SciTech Connect

The mechanical properties of oil shale have been under examination at Sandia since 1975 in a program which has involved laboratory and field experimentation along with complementary analytical activities. The dependence of the fragmentation phenomenon on strain rate is important in explosive applications because strain rates realized in typical blasting events extend over a wide range. The model has been used to calculate a variety of explosive geometries in oil shale, with results compared to small- and large-scale experiments, including a small block test with 80 g of explosive and a field test with 5 kg explosive.

Kipp, M.E.

1983-01-01T23:59:59.000Z

62

General screening criteria for shale gas reservoirs and production data analysis of Barnett shale  

E-Print Network (OSTI)

Shale gas reservoirs are gaining importance in United States as conventional oil and gas resources are dwindling at a very fast pace. The purpose of this study is twofold. First aim is to help operators with simple screening criteria which can help them in making certain decisions while going after shale gas reservoirs. A guideline chart has been created with the help of available literature published so far on different shale gas basins across the US. For evaluating potential of a productive shale gas play, one has to be able to answer the following questions: 1. What are the parameters affecting the decision to drill a horizontal well or a vertical well in shale gas reservoirs? 2. Will the shale gas well flow naturally or is an artificial lift required post stimulation? 3. What are the considerations for stimulation treatment design in shale gas reservoirs? A comprehensive analysis is presented about different properties of shale gas reservoirs and how these properties can affect the completion decisions. A decision chart presents which decision best answers the above mentioned questions. Secondly, research focuses on production data analysis of Barnett Shale Gas reservoir. The purpose of this study is to better understand production mechanisms in Barnett shale. Barnett Shale core producing region is chosen for the study as it best represents behavior of Barnett Shale. A field wide moving domain analysis is performed over Wise, Denton and Tarrant County wells for understanding decline behavior of the field. It is found that in all of these three counties, Barnett shale field wells could be said to have established pressure communication within the reservoir. We have also studied the effect of thermal maturity (Ro %), thickness, horizontal well completion and vertical well completion on production of Barnett Shale wells. Thermal maturity is found to have more importance than thickness of shale. Areas with more thermal maturity and less shale thickness are performing better than areas with less thermal maturity and more shale thickness. An interactive tool is developed to access the production data according to the leases in the region and some suggestions are made regarding the selection of the sample for future studies on Barnett Shale.

Deshpande, Vaibhav Prakashrao

2008-12-01T23:59:59.000Z

63

Apparatus for distilling shale oil from oil shale  

Science Conference Proceedings (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

64

Miscellaneous States Shale Gas Proved Reserves New Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Shale Natural Gas New Reservoir Discoveries in Old Fields...

65

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network (OSTI)

temperature, type of shale and oil content of shale iscontent of the shale, and shale oil content of the rock cantemperatures. Lean and Rich Shale Oil shales vary in their

Bellman Jr., R.

2012-01-01T23:59:59.000Z

66

Studies of New Albany shale in western Kentucky. Final report  

Science Conference Proceedings (OSTI)

The New Albany (Upper Devonian) Shale in western Kentucky can be zoned by using correlative characteristics distinguishable on wire-line logs. Wells drilled through the shale which were logged by various methods provided a basis for zonation of the subsurface members and units of the Grassy Creek, Sweetland Creek, and Blocher. Structure and isopach maps and cross sections were prepared. The Hannibal Shale and Rockford Limestone were found in limited areas; isopach maps were not made for these members. Samples of cuttings from selected wells were studied in order to identify the contact of the shale with underlying and overlying rock units. A well-site examination of cuttings through the shale section was conducted, and the presence of natural gas was observed in the field. The New Albany Shale has the potential for additional commercially marketable natural gas production. Exploratory drilling is needed to evaluate the reservoir characteristics of the New Albany Shale.

Schwalb, H.R.; Norris, R.L.

1980-02-01T23:59:59.000Z

67

Oil shale commercialization study  

SciTech Connect

Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

Warner, M.M.

1981-09-01T23:59:59.000Z

68

Where is shale gas found in the United States? | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home Where is shale gas found in the United States? Where is shale gas found in the United States? Where...

69

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA)

Germany 51 254 700 ... June 2013 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources 18

70

Shale Gas Hydraulic Fracturing in the Dutch Posidonia Shale:.  

E-Print Network (OSTI)

??Recently the oil and gas industry is looking at the Posidonia shale in the Dutch subsurface for production of the unconventional shale gas. This is (more)

Janzen, M.R.

2012-01-01T23:59:59.000Z

71

Overview of LASL oil shale program  

SciTech Connect

The Los Alamos Scientific Laboratory (LASL) is involved in a broad spectrum of oil shale-related activities for the US Department of Energy (DOE), including the bed preparation design of a modified in situ retort. This aspect of oil shale research has been identified by DOE as one of the limiting technologies impeding commerical, in situ development of oil shale. The retort bed must have uniform particle size, permeability, and void distributions to allow proper retorting and optimum resource recovery. Controlled fracturing using chemical explosives and carefully designed blasting schemes are the only feasible methods to attain this distribution. This approach to the bed preparation problem is a coordinated research program of explosives characterization, dynamic rock mechanics, predictive computer modeling, and field verification tests. The program is designed to develop the predictive fracturing capability required for the optimum rubbing of the shale.

Morris, W.

1981-05-01T23:59:59.000Z

72

Center for transportation studies The NewAmerican  

E-Print Network (OSTI)

--such as shale oil and natural gas--are having a seismic impact on Upper Midwest transportation networks fracking really took off, the Bakken formation has become one of the most active shale oil fields fracturing, or fracking, techniques have transformed shale deposits from marginal sources of hydrocarbon fuel

Minnesota, University of

73

Engineering performance of Bringelly shale.  

E-Print Network (OSTI)

??SYNOPSIS This thesis is concerned with the general and fundamental engineering characterisation of a geological formation within Wianamatta group, known as Bringelly shale. Bringelly shale (more)

William, Ezzat

2007-01-01T23:59:59.000Z

74

Geochemical controls on production in the Barnett Shale, Fort Worth Basin.  

E-Print Network (OSTI)

??The Newark East field (Barnett Shale) in the Fort Worth Basin, Texas currently has the largest daily production of any gas field in Texas. Major (more)

Klentzman, Jana L.

2009-01-01T23:59:59.000Z

75

Los Alamos environmental activities/oil shale effluents  

SciTech Connect

The objectives of this research are to determine the nature, magnitude, and time dependence of the major and trace element releases as functions of the raw shale mineralogy, retorting conditions, and spent shale mineral assemblages. These experimental studies will focus on retorting variable regimes characteristic of most retorting processes. As an adjunct objective, the relation of laboratory results to those obtained from both bench-scale and pilot-scale retorts, when both have been operated under similar retorting conditions, will be defined. The goal is to develop a predictive capability for spent shale chemistry as a function of the raw material feedstock and process parameters. Key accomplishments follow: completed an overview of health, environmental effects, and potential ''show stoppers'' in oil shale development; elucidated the importance of both raw material and process in the identity and behavior of spent shale wastes (Occidental raw and spent shales from the Logan Wash site); completed a balanced factorial design experiment to investigate the influence of shale type, temperature, and atmosphere on spent shale behavior; compared the behavior of spent shales from laboratory experiments with shales generated from MIS retorting by OOSI at Logan Wash, Colorado; completed a study of the partitioning of minerals, inorganics, and organics as a function of particle size in a raw shale from Anvil Points, Colorado; evaluated the application of the Los Alamos nuclear microprobe to the characterization of trace element residences in shale materials; established the use of chemometrics as a major tool for evaluating large data bases in oil shale research and for relating field and laboratory results; conceptualized and evaluated experimentally a multistaged leaching control for abandonment of underground retorts; and coordinated activities with other DOE laboratories, industry laboratories, and universities. 13 refs., 1 fig., 2 tabs.

Peterson, E.J.

1985-01-01T23:59:59.000Z

76

The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Application of Low Field and Solid-State NMR Spectroscopy to Study the Liquid/Liquid Interface in Porous Space of Clay Minerals and Shales  

E-Print Network (OSTI)

In petroleum research understanding displacement, redistribution, and adsorption of oil and water plays an important role. To study complex multi-component systems such as liquid/liquid/mineral interactions in the porous space of clays and shales we applied low field (2 15 MHz) and high resolution (300 MHz) NMR spectroscopy. The detailed NMR analysis shows that the results from low field NMR measurements are in good correlation with the solid-state data. Consequently the process of liquid/liquid displacement can be characterised by considering the relaxation times, signal amplitudes and chemical shifts together.

Artem Borysenko; Ben Clennell; Iko Burgar; David Dewhurst; Rossen Sedev; John Ralston

2008-01-01T23:59:59.000Z

77

Hugoniots of Colorado oil shale  

SciTech Connect

Standard experimental shock wave techniques were used to obtain Hugoniots of Anvil Points oil shale as functions of richness and orientation in the pressure regime encountered in the near-field region of an explosion. The shock response was found to be sensitive to kerogen content but independent of bedding orientation relative to the direction of shock propagation. A two-component model combining the inferred dynamic parameters for the end members (kerogen and mineral matrix) is adequate to predict the Hugoniots of oil shale of any arbitrary composition. Hence, the Hugoniots, as for other material properties, can be ultimately uniquely related to the oil yield. Preliminary dynamic results from samples obtained from other sites in Colorado and Wyoming indicate that this is generally true within the accuracy required for predictive explosive rock breakage calculations. 7 figures.

Carter, W.J.

1977-01-01T23:59:59.000Z

78

Oil shale data book  

SciTech Connect

The Oil Shale Data Book has been prepared as a part of its work under DOE Management Support and Systems Engineering for the Naval Oil Shale Reserves Predevelopment Plan. The contract calls for the preparation of a Master Development Plan for the Reserves which comprise some 145,000 acres of oil shale lands in Colorado and Utah. The task of defining the development potential of the Reserves required that the resources of the Reserves be well defined, and the shale oil recovery technologies that are potentially compatible with this resource be cataloged. Additionally, processes associated with shale oil recovery like mining, materials handling, beneficiation, upgrading and spent shale disposal have also been cataloged. This book, therefore, provides a ready reference for evaluation of appropriate recovery technologies and associated processes, and should prove to be valuable for many oil shale activities. Technologies that are still in the process of development, like retorting, have been treated in greater detail than those that are commercially mature. Examples of the latter are ore crushing, certain gas clean-up systems, and pipeline transportation. Emphasis has been on documenting available design information such as, maximum module size, operation conditions, yields, utility requirements, outlet gas compositions, shale oil characteristics, etc. Cost information has also been included where available.

1979-06-01T23:59:59.000Z

79

Modeling and History Matching Hydrocarbon Production from Marcellus Shale using Data Mining and Pattern Recognition Technologies  

E-Print Network (OSTI)

for individual wells and for the entire field. Introduction Shale gas reservoirs pose a tremendous potential resource for future development, and study of these systems is proceeding apace. Shale gas reservoirs the gas in the pore space is free gas, the gas in shale is stored by compression (as free gas

Mohaghegh, Shahab

80

Process of treating oil shale  

SciTech Connect

A process of destructively distilling oil shale is described consisting in subjecting the oil shale containing aluminum to the action of heat and pressure to destructively distill it and separate the light oil constituents. Chlorine gas is simultaneously passed through the hot oil shale countercurrent to the direction of movement of the oil shale.

Egloff, G.

1927-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Refining of shale oil  

DOE Green Energy (OSTI)

The refining of shale oil is reviewed to assess the current state-of-the-art, especially as to the avaiability of technology suitable for operation on a commercial scale. Oil shale retorting processes as they affect the quality of the crude shale oil for refining, exploratory research on the character and refining of shale oil, and other published refining background leading to the present status are discussed. The initial refining of shale oil requires the removal of a large concentration of nitrogen, an added step not required for typical petroleum crude oils, and recently published estimates show that the total cost of refining will be high. Specific technoloy is reported by industry to be technically proven and available for commercial-scale refining. Although the refining will be more costly than that of petroleum, the viability of a shale oil industry will also be affected greatly by the technology and costs of producing the crude shale oil, environmental costs, and future price and tax treatment, and these are outside the scope of this study of refining.

Lanning, W.C.

1978-05-01T23:59:59.000Z

82

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

during oil shale retorting: retort water and gas condensate.commercial oil shale plant, retort water and gas condensateunique to an oil shale retort water, gas condensate, and

Fox, J.P.

2010-01-01T23:59:59.000Z

83

Challenges associated with shale gas production | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges associated with shale gas production Challenges associated with shale gas production What challenges are associated with shale gas production? More Documents &...

84

Chattanooga Shale conference  

SciTech Connect

Seven papers are included, relating to the exploitation of the uranium contained in shales. One of these papers discusses the IGT Hytort process, and was previously abstracted. Separate abstracts were prepared for the remaining six papers. (DLC)

1979-11-01T23:59:59.000Z

85

Shale oil: process choices  

SciTech Connect

The four broad categories of shale-oil processing are discussed. All of these processes share the basic function of retorting oil-shale rock at high temperature so that the kerogen material in the rocks is thermally decomposed to shale oil and gaseous products. The technologies and the organizations working on their development are: solids-to-solids heating, The Oil Shale Co. (TOSCO) and Lurgi-Rhur; gas-to-solids heating with internal gas combustion, U. S. Bureau of Mines, Development Engineering Inc. and Union Oil of California; gas-to-solid heating with external heat generation, Development Engineering, Union Oil, Petrobas, and Institute of Gas Technology; and in-situ retorting, Occidental Petroleum Corp. The TOSCO II process is considered proven and on the verge of commercialization. (BLM)

1974-05-13T23:59:59.000Z

86

Slate, Shale & Mudstone  

NLE Websites -- All DOE Office Websites (Extended Search)

100 gallons per ton. In western Colorado and eastern Utah there are mountains of oil shale. A process for extracting the oil is being developed and those colossal deposits...

87

Microporomechanical modeling of shale  

E-Print Network (OSTI)

Shale, a common type of sedimentary rock of significance to petroleum and reservoir engineering, has recently emerged as a crucial component in the design of sustainable carbon and nuclear waste storage solutions and as a ...

Ortega, J. Alberto (Jose Alberta Ortega Andrade)

2010-01-01T23:59:59.000Z

88

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network (OSTI)

products, percent: Oil Gas Spent Shale TOTAL Average tracecontent of the gases for the lean shale exceeded that for

Bellman Jr., R.

2012-01-01T23:59:59.000Z

89

January 20, 2011 Marcellus Shale 101  

E-Print Network (OSTI)

. Will oil shale be viable as well? Oil shale will not be economically viable anytime in the near future

Hardy, Christopher R.

90

Results of oil-shale investigations in northeastern Nevada  

SciTech Connect

The major focus of this oil-shale investigation has been on specific localities of oil-shale resource potential. Three main areas of oil-shale occurrence have been studied in detail: the Elko area, Pinon Range area, and Coal Mine Canyon. Geologic mapping, stratigraphic studies, and sampling to delimit the lateral extent of the oil shale deposits were in progress prior to the cooperative agreement with Nevada DOE. These surface geologic studies have been summarized in this report. The results of surface geologic studies conducted near Elko suggested that the Elko area represented the best and most accessible oil-shale deposits; therefore, the Elko area was selected as the site of a shallow exploratory drilling program. Essential to this study was the obtaining of fresh, unweathered oil-shale samples from the Elko area. The samples were obtained from the core-drilling program and tested for oil yield by Fischer assays. The oil yields determined from these samples, together with the geology have provided an improved basis for resource estimates for the oil-shale deposit at Elko. In addition to the more detailed field studies, a literature survey was conducted to develop a bibliography related to oil shale in Nevada and to use as a basis for identifying other oil-shale occurrences. The literature search was also extended to include information on petroleum source rocks that contain organic-rich shales with possible potential as additional oil-shale resources. The annotated bibliography is included in the appendix. 88 refs., 8 figs., 5 tabs.

Moore, S.W.; Madrid, H.B.; Server, G.T. Jr.

1983-01-01T23:59:59.000Z

91

Market assessment for shale oil  

DOE Green Energy (OSTI)

This study identified several key issues on the cost, timeliness, and ease with which shale oil can be introduced into the United States' refining system. The capacity of the existing refining industry to process raw shale oil is limited by the availability of surplus hydrogen for severe hydrotreating. The existing crude oil pipeline system will encounter difficulties in handling raw shale oil's high viscosity, pour point, and contaminant levels. The cost of processing raw shale oil as an alternate to petroleum crude oil is extremely variable and primarily dependent upon the percentage of shale oil run in the refinery, as well as the availability of excess hydrogen. A large fraction of any shale oil which is produced will be refined by the major oil companies who participate in the shale oil projects and who do not anticipate problems in processing the shale oil in their refineries. Shale oil produced for sale to independent refiners will initially be sold as boiler fuel. A federal shale oil storage program might be feasible to supplement the Strategic Petroleum Reserve. Based on refinery configurations, hydrogen supply, transportation systems, and crude availability, eleven refineries in Petroleum Administration for Defense Districts (PADDs) 2A and 2B have been identified as potential processors of shale oil. Based on refining technology and projected product demands to the year 2000, shale oil will be best suited to the production of diesel fuel and jet fuel. Tests of raw shale oil in boilers are needed to demonstrate nitrogen oxide emissions control.

Not Available

1979-10-01T23:59:59.000Z

92

,"U.S. Shale Proved Reserves New Reservoir Discoveries in Old...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Shale Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic...

93

Gas shales characterization and technology development and transfer. Annual technical report, October 1991-September 1992  

Science Conference Proceedings (OSTI)

The objective of the Technology Transfer work area was to compile and publish the Technology Review, Sponsor Gas Shales Workshops, and manage the Marietta College Natural Gas Supply Information Center. In the Technical and Economic Evaluations work area, the objective was to quantify the gas shale resource and determine the potential economic benefits of future shale research. The objectives of the third work area, Field Projects in the Antrim Shale were to improve gas producibility from the Antrim Shale by optimizing stimulations and production practices and to develop log-based gas content and gas in-place calculations.

Wicks, D.; Decker, D.; Reeves, S.

1992-10-01T23:59:59.000Z

94

EPA (Environmental Protection Agency) oil-shale research activities  

SciTech Connect

The paper is an overview of EPA's oil shale research activities. In spite of substantial cutbacks in the program, several new projects should not only be of interest to developers and researchers but also support future regulatory and permitting decisions by the Agency. New activities include: evaluation of the potential for using combusted Green River shale to adsorb SO2 as a primary sulfur control technology, preparation of a new Pollution Control Technical Manual on the Unishale B and C processes, and preparation of two state-of-the-art reports addressing planning and designs for retorted oil shale disposal and control of gaseous emissions from retorting. Activities that have been ongoing for some time include: investigation of leaching and hydraulic properties of retorted shales (including co-disposal of wastewater and shale), field tests of Stretford and caustic scrubbing for control of H2S in shale offgas, a compilation of available information on solid-waste characteristics for various retorting technologies, and assessment of retorted-shale as a liner for retorted shale disposal sites.

Bates, E.R.

1985-08-01T23:59:59.000Z

95

Process for oil shale retorting  

DOE Patents (OSTI)

Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

1981-10-27T23:59:59.000Z

96

Tube-wave Effects in Cross-Well Seismic Data at Stratton Field  

E-Print Network (OSTI)

of sand and shale that contains gas, as the formation hasgas/water saturated sandstone Low-velocity dry shale Figureand gas fields on the Gulf Coast. The Stratton field consists mainly of sandstones and shales

Korneev, Valeri; Parra, Jorge; Bakulin, Andrey

2005-01-01T23:59:59.000Z

97

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

situ oil shale combustion experiment con- A gas chro- Thisspent shales were waters were studied, retort water and gasof retort waters and gas condensate. Spent shale reduces the

Fox, J.P.

2013-01-01T23:59:59.000Z

98

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

surface spent shale, and grout production from treateda grout from spent shale--grout production fromraw shale, grout production from as-

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

99

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

Mineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. LivermoreEffects Lawrence of Steam on Oil Shale Retorting: Livermore

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

100

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

study of retorted oil shale," Lawrence Livermore Laboratoryb) using columns of spent shale. REFERENCES Burnham, Alankinetics between and oil-shale residual carbon. 1. co Effect

Fox, J.P.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

Mineral Reactions in Colorado Oil Shale," Lawrence Livermoreof Colorado Oil Shale: II. Livermore Laboratory Report No.Effects Lawrence of Steam on Oil Shale Retorting: Livermore

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

102

Marcellus Shale Educational Webinar Series  

E-Print Network (OSTI)

#12;Marcellus Shale Litigation and Legislation December 17, 2009 7 . Pennsylvania Oil and Gas Law1 Marcellus Shale Educational Webinar Series October 2009 - March 2010 Penn State Cooperative Extension #12;2 Marcellus Shale Webinar Series Planning Committee · Members ­ Mark Douglass, Jefferson

Boyer, Elizabeth W.

103

Shale Play Industry Transportation Challenges,  

E-Print Network (OSTI)

­ High volume commodi-es flows in and out of shale plays · Sand In....Oil in excess of 50 MMT/Yr. · Life of current Shale Oil & Gas explora-on trend ­ 2012) #12;Shale Play Oil Industry A Look at the Baaken · 2-3 Unit Trains

Minnesota, University of

104

Oil shale: Technology status report  

Science Conference Proceedings (OSTI)

This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

Not Available

1986-10-01T23:59:59.000Z

105

The Shale Gas Matt Ridley  

E-Print Network (OSTI)

The Shale Gas Shock Matt Ridley Foreword by Freeman Dyson The Global Warming Policy Foundation GWPF Professor Richard Tol Professor Deepak Lal Dr David Whitehouse Professor Harold Lewis #12;The Shale Gas ....................................................................14 Coal-bed methane and tight gas in sandstone................................15 Shale gas

Boyer, Elizabeth W.

106

MARCELLUS SHALE APRIL 2011 EDITION  

E-Print Network (OSTI)

CWIA-MS MARCELLUS SHALE APRIL 2011 EDITION Each of the following sections is a quick snapshot of labor market information for Pennsylvania's Marcellus Shale (MS) industries and related economic related to the Marcellus Shale industry. While several data sources are utilized in this document

Boyer, Elizabeth W.

107

Oil shale retort apparatus  

DOE Patents (OSTI)

A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

1990-01-01T23:59:59.000Z

108

Shale Gas Development Challenges: Water | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Shale Gas Development Challenges: Water Shale Gas Development Challenges: Water More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas...

109

Shale Gas Development Challenges: Air | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale Gas Development Challenges: Air Shale Gas Development Challenges: Air Shale Gas Development Challenges: Air More Documents & Publications Natural Gas from Shale: Questions...

110

Simulation of rock blasting with the SHALE code  

SciTech Connect

The SHALE code and its special features for simulating rock blasting are described. SHALE first simulates the detonation of the explosive and then follows the effect of the resulting shocks and stress waves on the surrounding rock. A general description is given for SHALE as a finite-difference stress-wave-propagation code, followed by a brief discussion of numerical methods, and a section on the treatment of the explosive. The constitutive model in SHALE is the BCM (Bedded Crack Model), which describes the response of the rock, including fracture. The use of SHALE is illustrated in a discussion of the basic phenomenology of crater blasting, as seen in simulations of field experiments in oil shale. Predicted peak surface velocities are found to agree with field measurements. Comparisons between predicted fracture and observed craters give insight into the relative roles played by shock waves and the high-pressure-explosive product gases. The two-dimensional version of SHALE is being documented and will be available for use by other investigators. A three-dimensional version is planned.

Adams, T.F.; Demuth, R.B.; Margolin, L.G.; Nichols, B.D.

1983-01-01T23:59:59.000Z

111

Evaluation of Devonian shale potential in West Virginia  

SciTech Connect

In West Virginia, all significant areas of current Devonian shale gas production are situated where the radioactive shale units are thicker than 200 feet. Most areas of current gas production exhibit a close correlation with the trend of the Rome trough structure, and nearly all lie within the optimum stress-ratio zone. In addition, most of the current gas-producing areas are located within the zone of optimum shale thermal maturity, and optimum shale thermal maturity nearly coincides with the optimum shale stress-ratio value (0.43) in western and southwestern West Virginia. Areas adjacent to existing gas fields, within northeastern Cabell County, northern Lincoln County, and central Wayne County, are excellent prospects for future production. Additional deeper drilling in existing gas fields within the main trend may tap potential new reservoirs in the Rhinestreet and Marcellus Shales. The area east of the Warfield anticline in central Boone, Logan, and eastern Mingo Counties also may be favorable for gas exploitation of the radioactive Huron Shale. Fractures associated with the flank of the anticline and possible reactivation of basement faults in this area should be sufficient to provide the means for production. Further drilling should also be conducted along extensions of the border fault zone of the Rome trough in the western portion of the state. However, the subsurface trend of the trough must be carefully delineated to successfully develop gas production from potential fractured reservoir systems.

Not Available

1981-01-01T23:59:59.000Z

112

Solar retorting of oil shale  

DOE Patents (OSTI)

An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

113

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

114

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

115

Solar retorting of oil shale  

DOE Green Energy (OSTI)

An apparatus and method are described for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber. In the second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

Gregg, D.W.

1981-04-28T23:59:59.000Z

116

Deep, water-free gas potential is upside to New Albany shale play  

Science Conference Proceedings (OSTI)

The New Albany shale of the Illinois basin contains major accumulations of Devonian shale gas, comparable both to the Antrim shale of the Michigan basin and the Ohio shale of the Appalachian basin. The size of the resource originally assessed at 61 tcf has recently been increased to between 323 tcf and 528 tcf. According to the 1995 US Geological Survey appraisal, New Albany shale gas represents 52% of the undiscovered oil and gas reserves of the Illinois basin, with another 45% attributed to coalbed methane. New Albany shale gas has been developed episodically for over 140 years, resulting in production from some 40 fields in western Kentucky, 20 fields in southern Indiana, and at least 1 field in southern Illinois. The paper describes two different plays identified by a GRI study and prospective areas.

Hamilton-Smith, T. [Hamilton-Smith LLC, Lexington, KY (United States)

1998-02-16T23:59:59.000Z

117

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

for the grout. SPENT SHALE Oil shale, which is a low-gradeMineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. Livermore

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

118

Present trends in Estonian-Russian work on oil shale  

SciTech Connect

The Estonian oil-shale basin lies near Leningrad. The Baltic region of Russia has always been deficient in fuel and hydroelectric power, and in the post-war years Russia has used oil shale of occupied Estonia to meet these 2 demands. Kukersite oil shale is found in thick calcareous Late Ordovician beds of marine origin which lie throughout the basin at depths varying form 0 to 300 m. Shale layers with thicknesses from 0.6 to 0.7 m and up are considered commercial. Shale beds with an aggregate thickness of 3 m are also common throughout the basin. The Russians have developed more than 10 large underground mines and several open-pit mines whose total annual output in 1966 reached 25 million metric tons. Russia's new energy-chemical and complex-utilization of oil shale processing may offer some economic advantage. These 2 fields--the chemical processing and the waste product utilization--are the areas where the Russians are doing much research, developing new methods, and adapting many petrochemical technologies to shale-chemical processes. This information and the Russian experience with the successful new solid-heat exchanger large-capacity retort should be quite useful to the U.S.A. (49 refs.)

Cieslewicz, W.J.

1967-07-01T23:59:59.000Z

119

Method of operating an oil shale kiln  

DOE Patents (OSTI)

Continuously determining the bulk density of raw and retorted oil shale, the specific gravity of the raw oil shale and the richness of the raw oil shale provides accurate means to control process variables of the retorting of oil shale, predicting oil production, determining mining strategy, and aids in controlling shale placement in the kiln for the retorting.

Reeves, Adam A. (Rifle, CO)

1978-05-23T23:59:59.000Z

120

The twentieth oil shale symposium proceedings  

Science Conference Proceedings (OSTI)

This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

Gary, J.H.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Petrographic observations suggestive of microbial mats from Rampur Shale and Bijaigarh Shale,  

E-Print Network (OSTI)

Petrographic observations suggestive of microbial mats from Rampur Shale and Bijaigarh Shale observations of two Vindhyan black shales (Rampur Shale of the Semri Group and Bijaigarh Shale of the Kaimur an attempt has been made to highlight possible microbial mat features from two black shale horizons (Rampur

Schieber, Juergen

122

Market assessment for shale oil  

SciTech Connect

This study identified several key issues on the cost, timeliness, and ease with which shale oil can be introduced into the United States' refining system. The capacity of the existing refining industry to process raw shale oil is limited by the availability of surplus hydrogen for severe hydrotreating. The existing crude oil pipeline system will encounter difficulties in handling raw shale oil's high viscosity, pour point, and contaminant levels. The cost of processing raw shale oil as an alternate to petroleum crude oil is extremely variable and primarily dependent upon the percentage of shale oil run in the refinery, as well as the availability of excess hydrogen. A large fraction of any shale oil which is produced will be refined by the major oil companies who participate in the shale oil projects and who do not anticipate problems in processing the shale oil in their refineries. Shale oil produced for sale to independent refiners will initially be sold as boiler fuel. A federal shale oil storage program might be feasible to supplement the Strategic Petroleum Reserve. Based on refinery configurations, hydrogen supply, transportation systems, and crude availability, eleven refineries in Petroleum Administration for Defense Districts (PADDs) 2A and 2B have been identified as potential processors of shale oil. Based on refining technology and projected product demands to the year 2000, shale oil will be best suited to the production of diesel fuel and jet fuel. Tests of raw shale oil in boilers are needed to demonstrate nitrogen oxide emissions control.

1979-10-01T23:59:59.000Z

123

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA) Indexed Site

Technically Recoverable Shale Oil and Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 June 2013 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources 1 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

124

CX-004679: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-004679: Categorical Exclusion Determination Enhanced Oil Recovery from the Bakken Shale Using Surfactant Imbibition Couple with Gravity...

125

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA)

proved natural gas reserves (3) 2013 EIA/ARI unproved wet shale gas technically recoverable resources (TRR) 2012 USGS conventional unproved wet natural gas TRR,

126

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Act) and numerous state and local environmental and public health laws apply to shale gas and other unconventional oil and gas development. Consequently, the fracturing...

127

AVESTAR® - Shale Gas Processing (SGP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Shale Gas Processing (SGP) Shale Gas Processing (SGP) SPG The shale gas revolution is transforming America's energy landscape and economy. The shale gas boom, including the Marcellus play in Appalachia, is driving job creation and investment in the energy sector and is also helping to revive other struggling sectors of the economy like manufacturing. Continued growth in domestic shale gas processing requires that energy companies maximize the efficiency and profitability from their operations through excellent control and drive maximum business value from all their plant assets, all while reducing negative environmental impact and improving safety. Changing demographics and rapidly evolving plant automation and control technologies also necessitate training and empowering the next-generation of shale gas process engineering and

128

Shale oil recovery process  

DOE Patents (OSTI)

A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

Zerga, Daniel P. (Concord, CA)

1980-01-01T23:59:59.000Z

129

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalJ. B. , "Simulated effects of oil-shale development on the

Mehta, P.K.

2013-01-01T23:59:59.000Z

130

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

Fox, J.P.

2010-01-01T23:59:59.000Z

131

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

132

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalSimulated effects of oil-shale development on the hydrology

Mehta, P.K.

2013-01-01T23:59:59.000Z

133

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network (OSTI)

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

Bellman Jr., R.

2012-01-01T23:59:59.000Z

134

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network (OSTI)

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Corrosion of Oil Shale Retort Component Materials," LBL-

Bellman Jr., R.

2012-01-01T23:59:59.000Z

135

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

cement from spent oil shale," Vol. 10, No. 4, p. 54S,Colorado's primary oil shale resource for vertical modifiedSimulated effects of oil-shale development on the hydrology

Mehta, P.K.

2013-01-01T23:59:59.000Z

136

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

137

Case Study: Shale Bings in Central  

E-Print Network (OSTI)

and oil shale was widespread. The extraction of oil from shales began in the 1850s and developed within the region that the oil-shale bings constitute one of the eight main habi- tats in West Lothian

138

Australian Shale Gas Assessment Project Reza Rezaee  

E-Print Network (OSTI)

Australian Shale Gas Assessment Project Reza Rezaee Unconventional Gas Research Group, Department of Petroleum Engineering, Curtin University, Australia Shale gas is becoming an important source feet (Tcf) of technically recoverable shale gas resources. Western Australia (WA) alone

139

Syncrude from eastern oil shale  

SciTech Connect

A study was made to make resource assessment, mining and process economic evaluations of oil shale in Lewis and Fleming Counties, Kentucky. Two surface retorting processes, Paraho and HYTORT, were selected and the process and economic analyses were made for a 30,000 tons/day oil shale retorting facility. This work presents the results of this eastern oil shale feasibility study. 3 refs.

Vyas, K.C.

1981-01-01T23:59:59.000Z

140

Barnett shale rising star in Fort Worth basin  

Science Conference Proceedings (OSTI)

The Mississippian-age Barnett shale of the Fort Worth basin, North Texas, has emerged as a new and active natural gas play. Natural gas production from the Barnett shale at Newark East field in Denton and Wise counties, Texas, has reached 80 MMcfd from more than 300 wells. However, very little publicly available information exists on resource potential and actual well performance. The US Geological Survey 1995 National Assessment of US Oil and Gas Resources categorized the Mississippian Barnett shale play (play number 4503) as an unconventional gas play but did not quantitatively assess this resource. This article, which expands upon a recent USGS open-file resource assessment report, provides an updated look at the Barnett shale and sets forth a new quantitative assessment for the play.

Kuuskraa, V.A.; Koperna, G. [Advanced Resources International Inc., Arlington, VA (United States); Schmoker, J.W.; Quinn, J.C. [Geological Survey, Denver, CO (United States)

1998-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

PMG Mar1006 - bakken  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Group Meeting March 10, 2006 Tier-1 Equipment Budget 7 Tier-1 Budget including overhead 0 2000 4000 6000 8000 K 1227 3160 6853 3119 5686 FY05 FY06 FY07 FY08 FY09 Jon...

142

Why is shale gas important? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Why is shale gas important? Why is shale gas important? Why is shale gas important? More Documents & Publications Natural Gas from Shale: Questions and Answers How is shale gas...

143

Microstructure Study on Barnett Shale.  

E-Print Network (OSTI)

??This thesis presents the discussion of the microstructure of the Barnett Shale as studied using the combined technology of the Focus Ion Beam (FIB) and (more)

Chen, Di

2013-01-01T23:59:59.000Z

144

Oil shale technical data handbook  

SciTech Connect

This is a reference book to provide information for the evaluation of appropriate technology for shale oil development. The oil resource is defined, and the properties of shale and the oil and gas derived from it are listed. Recovery technologies compatible with the particular resource are also described. Discussion of various aspects of shale oil development, such as mining, materials handling, beneficiation, upgrading, waste-water treatment, and spent shale disposal, are also presented. Available design information dealing with maximum module size, operating conditions, yields, utility requirements, etc. is documented. (BLM)

Nowacki, P. (ed.)

1981-01-01T23:59:59.000Z

145

Apparatus for oil shale retorting  

DOE Patents (OSTI)

A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

1986-01-01T23:59:59.000Z

146

Florida Shale Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Florida Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ... Shale Gas Production;

147

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

Shale Process Wastewater," in Analysis of Waters Associated with Alternate Fuel Production,shale during In in-situ processes, retort water its production

Fox, J.P.

2010-01-01T23:59:59.000Z

148

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

Oil Shale Process Wastewater," in Analysis of Waters Associated with Alternate Fuel Production,oil and shale during In in-situ processes, retort water its production

Fox, J.P.

2010-01-01T23:59:59.000Z

149

Natural Gas from Shale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas from Shale Natural Gas from Shale Office of Fossil Energy research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, protective...

150

West Virginia Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) West Virginia Shale Production (Billion Cubic Feet) West Virginia Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

151

Eastern States Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Eastern States Shale Production (Billion Cubic Feet) Eastern States Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

152

Montana Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Montana Shale Proved Reserves (Billion Cubic Feet) Montana Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

153

North Dakota Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) North Dakota Shale Production (Billion Cubic Feet) North Dakota Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

154

Wyoming Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Wyoming Shale Proved Reserves (Billion Cubic Feet) Wyoming Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

155

Kentucky Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Kentucky Shale Proved Reserves (Billion Cubic Feet) Kentucky Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

156

Pennsylvania Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Pennsylvania Shale Proved Reserves (Billion Cubic Feet) Pennsylvania Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

157

Michigan Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Michigan Shale Proved Reserves (Billion Cubic Feet) Michigan Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

158

Arkansas Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Arkansas Shale Proved Reserves (Billion Cubic Feet) Arkansas Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

159

Colorado Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Colorado Shale Proved Reserves (Billion Cubic Feet) Colorado Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

160

Oklahoma Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Oklahoma Shale Proved Reserves (Billion Cubic Feet) Oklahoma Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Oil shale: The environmental challenges III  

SciTech Connect

This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

Petersen, K.K.

1983-01-01T23:59:59.000Z

162

Expansion of the commercial output of Estonian oil shale mining and processing  

Science Conference Proceedings (OSTI)

Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

1996-09-01T23:59:59.000Z

163

Shale Reservoir Characterization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil & Gas » Shale Gas » Shale Reservoir Oil & Gas » Shale Gas » Shale Reservoir Characterization Shale Reservoir Characterization Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Gas-producing shales are predominantly composed of consolidated clay-sized particles with a high organic content. High subsurface pressures and temperatures convert the organic matter to oil and gas, which may migrate to conventional petroleum traps and also remains within the shale. However, the clay content severely limits gas and fluid flow within the shales. It is, therefore, necessary to understand the mineral and organic content, occurrence of natural fractures, thermal maturity, shale volumes, porosity

164

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota DE-FC26-08NT43291 – 01.2 Goal The goal of this project is to quantitatively describe and understand the Bakken Formation in the Williston Basin by collecting and analyzing a wide range of parameters, including seismic and geochemical data, that impact well productivity/oil recovery. Performer Energy & Environmental Research Center, Grand Forks, ND 58202-9018 Background The Bakken Formation is rapidly emerging as an important source of oil in the Williston Basin. The formation typically consists of three members, with the upper and lower members being shales and the middle member being dolomitic siltstone and sandstone. Total organic carbon (TOC) within the shales may be as high as 40%, with estimates of total hydrocarbon generation across the entire Bakken Formation ranging from 200 to 400 billion barrels. While the formation is productive in numerous reservoirs throughout Montana and North Dakota, with the Elm Coulee Field in Montana and the Parshall area in North Dakota being the most prolific examples of Bakken success, many Bakken wells have yielded disappointing results. While variable productivity within a play is nothing unusual to the petroleum industry, the Bakken play is noteworthy because of the wide variety of approaches and technologies that have been applied with apparently inconsistent and all too often underachieving results. This project will implement a robust, systematic, scientific, and engineering research effort to overcome these challenges and unlock the vast resource potential of the Bakken Formation in the Williston Basin.

165

Fifth symposium on oil shale  

SciTech Connect

Papers presented at symposium May 2-3, 1968 at Denver, discusses legal and economic problems facing federal policy toward oil shale deposits exploitation, processing of oil shale above surface and in situ and underground mining methods and equipment to be used.

1968-10-04T23:59:59.000Z

166

Solar retorting of oil shale  

DOE Green Energy (OSTI)

A detailed analysis of technical and economic factors solar retorting of oil shale shows that such a process should be technically feasible and, depending on the grade of the shale, should improve the fuel yield from the oil shale by 10 to 40%, compared to one of the best competing surface ay for the incremental processes. The improved oil yield should more than pay for the incremental cost associated with adding the solar collection system. An experiment is described in which solar energy is used to retort oil shale, and the experimental results show that yields of better than 110% Fischer Assay are achievable. An advanced design for a solar oil-shale retort is also discussed.

Gregg, D.W.; Grens, J.Z.; Taylor, R.W.; Aiman, W.R.

1980-04-08T23:59:59.000Z

167

Oil shale: potential environmental impacts and control technology. Environmental research brief  

SciTech Connect

The U.S. Environmental Protection Agency's Industrial Environmental Research Laboratory in Cincinnati, Ohio (IERL-Ci) has performed research related to oil shale processing and disposal since 1973. This research is in support of the Clean Air Act, The Federal Water Pollution Control Act, the Resource Conservation and Recovery Act, the Safe Drinking Water Act, and the Toxic Substances Control Act. Potential environmental impacts from oil shale development activities have been identified and potential control technologies are being evaluated through a combination of laboratory and field tests on actual oil shale waste streams. This paper discusses recent results from this program. Included are field test results on control of sulfur gases at Occidental Oil Shale's Logan Wash Site and Geokinetic's Kamp Kerogen Site, wastewater treatability studies on retort water and gas condensate at Logan Wash, and results of laboratory and field testing on raw and retorted oil shales.

Bates, E.R.; Liberick, W.W.; Burckle, J.

1984-03-01T23:59:59.000Z

168

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky.  

E-Print Network (OSTI)

a key role in making important and strategic field development decisions. Big Sandy Gas Field #12;SPE and naturally fractured gas-shale simulator developed at the National Energy Technology Laboratory (Mc Dynamic Recharge from the Matrix. Proc. DOE Natural Gas Conference. Houston: DOE. 6. Mohaghegh, S. D

Mohaghegh, Shahab

169

Oil shale, tar sands, and related materials  

SciTech Connect

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

170

Fire and explosion hazards of oil shale  

SciTech Connect

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

1989-01-01T23:59:59.000Z

171

Favorable conditions noted for Australia shale oil  

Science Conference Proceedings (OSTI)

After brief descriptions of the Rundle, Condor, and Stuart/Kerosene Creek oil shale projects in Queensland, the competitive advantages of oil shale development and the state and federal governments' attitudes towards an oil shale industry in Australia are discussed. It is concluded that Australia is the ideal country in which to start an oil shale industry.

Not Available

1986-09-01T23:59:59.000Z

172

Bureau of Land Management Oil Shale Development  

E-Print Network (OSTI)

Bureau of Land Management Oil Shale Development Unconventional Fuels Conference University of Utah May 17, 2011 #12;#12;Domestic Oil Shale Resources Primary oil shale resources in the U.S. are in the Green River Formation in Wyoming, Utah, and Colorado. 72 % of this oil shale resource is on Federal

Utah, University of

173

Production of Shale Oil  

E-Print Network (OSTI)

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan provides a blueprint for the development of a 28,000 acre holding on Clear Creek in Garfield County, Colorado on property acquired by Standard Oil of California in the late 1940's and early 1950's. The paper describes these planning activities and the principal features of a proposed $5 billion project to develop facilities for production of 100,000 barrels per day of synthetic crude from oil shale. Subjects included are resource evaluation, environmental baseline studies, plans for acquisition of permits, plans for development of required retorting and mining technology and a preliminary description of the commercial project which will ultimately emerge from these activities. General financial impact of the project and the case for additional tax incentives to encourage it will be described.

Loper, R. D.

1982-01-01T23:59:59.000Z

174

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Glossary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glossary Glossary Acquifer - A single underground geological formation, or group of formations, containing water. Antrim Shale - A shale deposit located in the northern Michigan basin that is a Devonian age rock formation lying at a relatively shallow depth of 1,000 feet. Gas has been produced from this formation for several decades primarily via vertical, rather than horizontal, wells. The Energy Information Administration (EIA) estimates the technically recoverable Antrim shale resource at 20 trillion cubic feet (tcf). Appalachian Basin - The geological formations that roughly follow the Appalachian Mountain range and contain

175

NATURAL GAS FROM SHALE: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Where is shale gas found Where is shale gas found in the United States? Shale gas is located in many parts of the United States. These deposits occur in shale "plays" - a set of discovered, undiscovered or possible natural gas accumulations that exhibit similar geological characteristics. Shale plays are located within large-scale basins or accumulations of sedimentary rocks, often hundreds of miles across, that also may contain other oil and gas resources. 1 Shale gas production is currently occurring in 16 states. 1 U.S. Government Accountability Office, Report to Congressional Requesters, "Oil and Gas: Information on Shale Resources, Development, and

176

Oil shale retorting method and apparatus  

SciTech Connect

Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

York, E.D.

1983-03-22T23:59:59.000Z

177

Oil shale combustion/retorting  

SciTech Connect

The Morgantown Energy Technology Center (METC) conducted a number of feasibility studies on the combustion and retorting of five oil shales: Celina (Tennessee), Colorado, Israeli, Moroccan, and Sunbury (Kentucky). These studies generated technical data primarily on (1) the effects of retorting conditions, (2) the combustion characteristics applicable to developing an optimum process design technology, and (3) establishing a data base applicable to oil shales worldwide. During the research program, METC applied the versatile fluidized-bed process to combustion and retorting of various low-grade oil shales. Based on METC's research findings and other published information, fluidized-bed processes were found to offer highly attractive methods to maximize the heat recovery and yield of quality oil from oil shale. The principal reasons are the fluidized-bed's capacity for (1) high in-bed heat transfer rates, (2) large solid throughput, and (3) selectivity in aromatic-hydrocarbon formation. The METC research program showed that shale-oil yields were affected by the process parameters of retorting temperature, residence time, shale particle size, fluidization gas velocity, and gas composition. (Preferred values of yields, of course, may differ among major oil shales.) 12 references, 15 figures, 8 tables.

Not Available

1983-05-01T23:59:59.000Z

178

Process and apparatus for oil shale retorting  

SciTech Connect

A process and apparatus are disclosed for the continuoua steady state retorting of ground oil shale in the absence of air. Retorting is accomplished by countercurrently contacting heated spent oil shale with fresh ground oil shale in a vessel from which air is excluded. The spent oil shale is heated by combustion of its carbonaceous residue to form a hot heat transfer medium which, when contacted with fresh oil shale in the retorting process, provides the energy for the recovery of hydrocarbons. (auth)

Frick, G.W.

1974-01-01T23:59:59.000Z

179

Evidence of Reopened Microfractures in Production Data of Hydraulically Fractured Shale Gas Wells  

E-Print Network (OSTI)

Frequently a discrepancy is found between the stimulated shale volume (SSV) estimated from production data and the SSV expected from injected water and proppant volume. One possible explanation is the presence of a fracture network, often termed fracture complexity, that may have been opened or reopened during the hydraulic fracturing operation. The main objective of this work is to investigate the role of fracture complexity in resolving the apparent SSV discrepancy and to illustrate whether the presence of reopened natural fracture network can be observed in pressure and production data of shale gas wells producing from two shale formations with different well and reservoir properties. Homogeneous, dual porosity and triple porosity models are investigated. Sensitivity runs based on typical parameters of the Barnett and the Horn River shale are performed. Then the field data from the two shales are matched. Homogeneous models for the two shale formations indicate effective infinite conductivity fractures in the Barnett well and only moderate conductivity fractures in the Horn River shale. Dual porosity models can support effectively infinite conductivity fractures in both shale formations. Dual porosity models indicate that the behavior of the Barnett and Horn River shale formations are different. Even though both shales exhibit apparent bilinear flow behavior the flow behaviors during this trend are different. Evidence of this difference comes from comparing the storativity ratio observed in each case to the storativity ratio estimated from injected fluid volumes during hydraulic fracturing. In the Barnett shale case similar storativity ratios suggest fracture complexity can account for the dual porosity behavior. In the Horn River case, the model based storativity ratio is too large to represent only fluids from hydraulic fracturing and suggests presence of existing shale formation microfractures.

Apiwathanasorn, Sippakorn

2012-08-01T23:59:59.000Z

180

90-day Interim Report on Shale Gas Production - Secretary of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interim Report on Shale Gas Production - Secretary of Energy Advisory Board 90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board The Shale Gas...

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

are unique to in-situ oil shale production, Literature fromother industries to oil shale production because these datapotential for spent shale grout production and to design a

Persoff, P.

2011-01-01T23:59:59.000Z

182

Oil Shale and Other Unconventional Fuels Activities | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on...

183

Oil Shale Research in the United States | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Shale Research in the United States Oil Shale Research in the United States Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories,...

184

Role of computer simulation in oil shale blasting  

SciTech Connect

Sophisticated computer codes were developed to simulate the processes that occur in blasting in oil shale. Three ways these codes are used in conjunction with field results are described. First, there is a code verification stage, where the code is improved through detailed comparisons. Next, there is a stage where critical phenomena in the blasting process are identified by studying areas where there are significant differences between calculations and field results. Finally, as the code is verified and the critical phenomena are explored, the code is used as a design tool. These stages are illustrated with experience from use of the new Los Alamos SHALE code and other codes. Current understanding of blasting in oil shale is reviewed, with an emphasis on areas where simulations and experimental approaches are pushed to their limits. A recommendation is made that computer simulation be done in close coordination with an active experimental program.

Adams, T.F.; Keller, C.F.

1984-01-01T23:59:59.000Z

185

The role of computer simulation in oil shale blasting  

SciTech Connect

Sophisticated computer codes have been developed to simulate the processes that occur in blasting in oil shale. The authors describe the three ways these codes are used in conjunction with field results. First, there is a code verification stage, where the code is improved through detailed comparisons. Next, there is a stage where critical phenomena in the blasting process are identified by studying areas where there are significant differences between calculations and field results. Finally, as the code is verified and the critical phenomena are explored, the code is used as a design tool. These stages are illustrated with experience from use of the new Los Alamos SHALE code and other codes. Current understanding of blasting in oil shale is reviewed, with an emphasis on areas where simulations and experimental approaches are pushed to their limits. It is concluded that computer simulation be done in close coordination with an active experimental program.

Adams, T.F.; Keller, C.F.

1984-04-01T23:59:59.000Z

186

Oil shale programs. Sixteenth quarterly report, October-December 1979  

SciTech Connect

This document is the sixteenth in a continuing series of quarterly reports, and describes the Sandia National Laboratories oil shale activities during the period between October 1, 1979 and December 31, 1979. Sandia's major responsibility to the DOE in situ oil shale program is to provide a quantitative evaluation to DOE of the various field projects being supported by DOE in the development of commercial in situ oil shale processes. This requires the deployment of instrumentation systems and analysis techniques to evaluate key procedures and operations. In order to fulfill this responsibility, it is necessary to develop new and advanced instrumentation systems and associated deployment, recording and analysis techniques that are unique to the field projects. In addition, a rock mechanics program provides material properties, material response models, and computational methods to support the design and evaluation functions. This report describes detailed activities in these project areas over the last quarter.

Stevens, A. L. [ed.

1980-06-01T23:59:59.000Z

187

Maps: Exploration, Resources, Reserves, and Production - Energy ...  

U.S. Energy Information Administration (EIA)

Granite Wash Play, Texas and Oklahoma: United States Shale Oil Maps: Bakken Shale Play, Williston Basin, North Dakota, Montana, Saskatchewan & Manitoba Updated 3/20/2011:

188

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves  

U.S. Energy Information Administration (EIA)

... between the production of oil from the layers of shale within the Bakken Formation and the extraction of oil from oil shale plays. See ...

189

Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

targeting unconventional oil resources such as extra heavy oil, oil and tar sands, oil shale, and oil in unconventional reservoirs (like the fractured Bakken Shale of North...

190

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

pore-volume study of retorted oil shale," Lawrence LivermoreReaction kinetics between and oil-shale residual carbon. 1.Reaction kinetics between and oil-shale residual carbon. 2.

Fox, J.P.

2013-01-01T23:59:59.000Z

191

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

pore-volume study of retorted oil shale," Lawrence Livermorekinetics between and oil-shale residual carbon. 1. co Effectkinetics between and oil-shale residual carbon. 2. co 2

Fox, J.P.

2013-01-01T23:59:59.000Z

192

Shale oil cracking. 1. Kinetics  

DOE Green Energy (OSTI)

Experiments were conducted to determine kinetics for thermal cracking of shale oil vapor over shale. Cracking temperatures of 504 to 610/sup 0/C and residence times of 2 to 11 seconds were used. A first-order Arrhenius rate expression and stoichiometry were obtained. Also observed were changes in the oil quality. Cracking decreased the H/C ratio, increased the nitrogen content, and decreased the pour point of the oil. Gas-phase oil cracking is contrasted to liquid-phase oil coking as a loss mechanism in oil-shale retorting.

Burnham, A.K.; Taylor, J.R.

1979-10-01T23:59:59.000Z

193

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

by the Division of Oil, Gas, and Shale Technology and theGas Environments on Mineral Reactions in Colorado Oil Shale,"

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

194

Shale Natural Gas Estimated Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Data Series: Proved Reserves as of Dec. 31 Adjustments...

195

Oil shale deposits of Thailand  

SciTech Connect

Oil-shale deposits occur in several areas of Thailand. Perhaps the most important deposit occurs at Mae Sod in Tak Province, West Thailand. Other well-known deposits are Li in Lamphum Province, Ko Kha District, Lampang Province, and Krabi in the southern peninsular region. The geological age of all these deposits is late Tertiary, as demonstrated by the presence of the fossils from the oil shale of the Mae Sod series, e.g., fish of the Ostariophysian family Cyprinidae.

Chakrabarti, A.K.

1976-06-01T23:59:59.000Z

196

Proceedings of the first thermomechanical workshop for shale  

Science Conference Proceedings (OSTI)

Chapter 2 provides a description of the three federal regulations that pertain to the development of a high-level nuclear waste repository regardless of the rock type. Chapter 3 summarizes the reference shale repository conditions selected for this workshop. A room-and-pillar configuration was considered at an extraction ratio of about 0.25. The depth was assumed to be 700 m. Chapter 4 gives a summary of several case histories that were considered to be valuable in gaining an understanding of some of the design and construction features that might be unique in creating underground openings in shale. Chapter 5 assesses the data and information needs, availability, technology for acquisition, and the research and development necessary for analytical/numerical modeling in heat transfer, fluid flow, and thermomechanics. Chapter 6 assesses data and information needs in the laboratory and considerations associated with shale rock characterization. Chapter 7 assesses the data and information needs, availability, technology for acquisition, and the research and development necessary for field/in situ testing. Chapter 8 presents the consensus of the workshop participants that there is a definite need to advance the state of knowledge concerning the thermomechanical behavior of shales and to gain experience in applying this knowledge to the design of room-and-pillar excavations. Finally, Chapter 9 provides a summary of the research and development needs in the various interacting activities of repository development, including analytical/numerical modeling, laboratory testing, and field/in situ testing. The main conclusion of the workshop was that a need exists for an aggressive program in laboratory, field, numerical modeling, and design studies to provide a thermomechanical, technological base for comparison of shale types and shale regions/areas/sites.

Not Available

1986-03-01T23:59:59.000Z

197

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

the carbon, oil, and gas from the shale are combusted; andceases t II Burner gas and shale heat shale ll>" ~Air AirFigure 2. Oil recovery Vent gas '\\Raw shale oil Recycled gas

Persoff, P.

2011-01-01T23:59:59.000Z

198

Shale Gas R&D | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale Gas R&D Shale Gas R&D Shale Gas R&D Natural gas from shales has the potential to significantly increase America's security of energy supply, reduce greenhouse gas emissions,...

199

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

recovery Vent gas '\\Raw shale oil Recycled gas compressorThis process produces shale oil, a low BTU gas, and char,Oil Shale Process" in Oil Shale and Tar Sands, J. W. Smith

Persoff, P.

2011-01-01T23:59:59.000Z

200

Enhancing permeability in oil shale and applications to tar sands  

SciTech Connect

Explosive fracturing and rubblization are used to enhance oil shale permeability. Blasting strategy and results are discussed, in particular the Geokinetics blasting. The field data desired are listed. Comments are offered on the extension of the blasting techniques to tar sands. (DLC)

Schamaun, J.T.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Combuston method of oil shale retorting  

DOE Patents (OSTI)

A gravity flow, vertical bed of crushed oil shale having a two level injection of air and a three level injection of non-oxygenous gas and an internal combustion of at least residual carbon on the retorted shale. The injection of air and gas is carefully controlled in relation to the mass flow rate of the shale to control the temperature of pyrolysis zone, producing a maximum conversion of the organic content of the shale to a liquid shale oil. The parameters of the operation provides an economical and highly efficient shale oil production.

Jones, Jr., John B. (300 Enterprise Building, Grand Junction, CO 81501); Reeves, Adam A. (P.O. Box 781, Anvil Points, Rifle, CO 81650)

1977-08-16T23:59:59.000Z

202

Production Trends of Shale Gas Wells  

E-Print Network (OSTI)

To obtain better well performance and improved production from shale gas reservoirs, it is important to understand the behavior of shale gas wells and to identify different flow regions in them over a period of time. It is also important to understand best fracture and stimulation practice to increase productivity of wells. These objectives require that accurate production analysis be performed. For accurate production analysis, it is important to analyze the production behavior of wells, and field production data should be interpreted in such a way that it will identify well parameters. This can be done by performing a detailed analysis on a number of wells over whole reservoirs. This study is an approach that will lead to identifying different flow regions in shale gas wells that include linear and bilinear flow. Important field parameters can be calculated from those observations to help improve future performance. The detailed plots of several wells in this study show some good numbers for linear and bilinear flow, and some unique observations were made. The purpose of this work is to also manage the large amount of data in such a way that they can be used with ease for future studies. A program was developed to automate the analysis and generation of different plots. The program can also be used to perform the simple calculations to calculate different parameters. The goal was to develop a friendly user interface that would facilitate reservoir analysis. Examples were shown for each flow period, i.e. linear and bilinear flow. Different plots were generated (e.g; Bob Plot (square root of time plot) and Fourth Root of Time Plot, that will help in measuring slopes and thus reservoir parameters such as fracture permeability and drainage area. Different unique cases were also observed that show a different behavior of well in one type of plot from another.

Khan, Waqar A.

2008-12-01T23:59:59.000Z

203

Mechanical properties of oil shale of importance to in-situ rubblization  

SciTech Connect

Current proposals for true in-situ processing of oil shale employ deeply buried explosive charges to produce the desired rubblization. At short times after the explosion, the dynamic behavior of the material is of interest and can be studied in shockwave experiments. At intermediate times the divergence of the flow field requires a multidimensional specification of the material behavior which appears to be best determined from triaxial test data. At late times the possible formation of tensile stresses requires knowledge of the fracture mechanics and tensile behavior of the shale. This report presents a summary of techniques and results of triaxial compression, extension and fracture toughness tests on two grades of oil shale. Results indicate that oil shale differs significantly from most rocks and suggest that models originally developed for composite materials may be appropriate for describing the mechanical behavior of oil shale.

Schuler, K.W.; Schmidt, R.A.

1977-01-01T23:59:59.000Z

204

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

Adams, D.C.

1993-04-22T23:59:59.000Z

205

Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering  

Science Conference Proceedings (OSTI)

Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are either filled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7 % while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered sample. This work highlights the impact of shale-water-O2 interactions in near-surface environments: (1) black shale weathering is important for global carbon cycles as previously buried organic matter is quickly oxidized; and (2) black shales weather more quickly than less organic- and sulfide-rich shales, leading to high porosity and mineral surface areas exposed for clay weathering. The fast rates of shale gas exploitation that are ongoing in Pennsylvania, Texas and other regions in the United States may furthermore lead to release of metals to the environment if reactions between water and black shale are accelerated by gas development activities in the subsurface just as they are by low-temperature processes in our field study.

Jin, Lixin [ORNL; Mathur, Ryan [Juniata College, Huntingdon; Rother, Gernot [ORNL; Cole, David [Ohio State University; Bazilevskaya, Ekaterina [Pennsylvania State University, University Park, PA; Williams, Jennifer [Pennsylvania State University; Carone, Alex [Pennsylvania State University, University Park, PA; Brantley, Susan L [ORNL

2013-01-01T23:59:59.000Z

206

Table 15: Shale natural gas proved reserves, reserves changes, and production, w  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

207

Weathering effects on some chemical and physical properties of retorted oil shale  

SciTech Connect

Union B retorted Utah oil shale, Paraho retorted Utah oil shale, and Paraho retorted Colorado oil shale differed in texture, pH, and salinity. Physical breakdown of Paraho retorted Colorado oil shale particles was observed at the surface of columns exposed to field conditions in eastern Utah for 9 months, but no physical weathering was observed in the other two retorted oil shale types under the same conditions. Exposure to weather resulted in pH reduction of all three retorted shales but was most pronounced in the more highly alkaline Paraho retorted Utah oil shale. The finer particle (< 2 mm) fractions tended to have lower pH values and higher electrical conductivities than the more coarse fractions, even when the latter were crushed to < 2 mm. Freezing and thawing in the laboratory were very effective in causing particle breakdown of Paraho retorted Colorado oil shale. During weathering the large particles first separated along cleavage planes, followed by disintegration of the lamina.

Richardson, S.G. (Utah State Univ., Logan); McKell, C.M.; George, M.R.; Gray, G.

1981-04-01T23:59:59.000Z

208

What is the Issue? The Marcellus Shale is a geologic shale bed that extends across much  

E-Print Network (OSTI)

What is the Issue? The Marcellus Shale is a geologic shale bed that extends across much of the Marcellus Shale. Energy companies plan to nearly double the number of drilling rigs by the end of the year, this development illustrates the attractiveness of market proximity and the quality of Marcellus Shale gas

Wang, Z. Jane

209

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network (OSTI)

Minor elements in oil shale and oil~shale products, LERCmercury to the oil shale, shale oil, and retort water. Thesemercury to spent shale, shale oil, retort water and offgas

Fox, J. P.

2012-01-01T23:59:59.000Z

210

Pennsylvania Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Shale Production (Billion Cubic Feet) Pennsylvania Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 1 65...

211

New Mexico Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) New Mexico Shale Production (Billion Cubic Feet) New Mexico Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

212

Shale gas is natural gas trapped inside  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

213

Multiphase flow analysis of oil shale retorting  

DOE Green Energy (OSTI)

Several multiphase phenomena occur during oil shale retorting. An analysis is presented of two of these processes including condensation of oil shale vapor and oscillations of pressure in oil shale blocks through cracked bedding planes. Energy conservation equations for oil shale retorting, which include the effects associated with condensation of oil, are derived on the basis of two phase flow theory. It is suggested that an effective heat capacity associated with the latent heat of condensation should be included in the modeling of simulated modified in-situ oil shale retorting. A pressure propagation equation for fast transients in oil shale cracks has been derived and examined in view of existing experimental data. For slow processes, a limiting solution for maximum pressure in oil shale rocks has been obtained. Generation of high pressures in rocks by thermal or other means may lead to rock fracture which may be taken advantage of in modified in-situ oil shale processing.

Gidaspow, D.; Lyczkowski, R.W.

1978-09-18T23:59:59.000Z

214

LLNL oil shale project review  

Science Conference Proceedings (OSTI)

Livermore's oil shale project is funded by two budget authorities, two thirds from base technology development and one third from environmental science. Our base technology development combines fundamental chemistry research with operation of pilot retorts and mathematical modeling. We've studied mechanisms for oil coking and cracking and have developed a detailed model of this chemistry. We combine the detailed chemistry and physics into oil shale process models (OSP) to study scale-up of generic second generation Hot-Recycled-Solid (HRS) retorting systems and compare with results from our 4 tonne-per-day continuous-loop HRS pilot retorting facility. Our environmental science program focuses on identification of gas, solid and liquid effluents from oil shale processes and development of abatement strategies where necessary. We've developed on-line instruments to quantitatively measure trace sulfur and nitrogen compounds released during shale pyrolysis and combustion. We've studied shale mineralogy, inorganic and organic reactions which generate and consume environmentally sensitive species. Figures, references, and tables are included with each discussion.

Cena, R.J. (ed.)

1990-04-01T23:59:59.000Z

215

Australian developments in oil shale processing  

SciTech Connect

This study gives some background on Australian oil shale deposits, briefly records some history of oil shale processing in the country and looks at the current status of the various proposals being considered to produce syncrudes from Australian oil shales. 5 refs.

Baker, G.L.

1981-01-01T23:59:59.000Z

216

Oil shale technology and evironmental aspects  

SciTech Connect

Oil shale processes are a combination of mining, retorting, and upgrading facilities. This work outlines the processing steps and some design considerations required in an oil shale facility. A brief overview of above ground and in situ retorts is presented; 6 retorts are described. The development aspects which the oil shale industry is addressing to protect the environment are presented.

Scinta, J.

1982-01-01T23:59:59.000Z

217

Burgess Shale: Cambrian Explosion in Full Bloom  

E-Print Network (OSTI)

4 Burgess Shale: Cambrian Explosion in Full Bloom James W. Hagadorn T he middle cambrian burgess shale is one of the world's best-known and best-studied fossil deposits. The story of the discovery in the Burgess Shale Formation of the Canadian Rockies, Charles Walcott discovered a remarkable "phyl- lopod

Hagadorn, Whitey

218

Oil shale technology. Final report  

SciTech Connect

This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

1995-03-01T23:59:59.000Z

219

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 XX-1 XX. CHINA SUMMARY China has abundant shale gas and shale oil potential in seven prospective basins: Sichuan, Tarim, Junggar, Songliao, the Yangtze Platform, Jianghan and Subei, Figure XX-1. Figure XX-1. China's Seven Most Prospective Shale Gas and Shale Oil Basins are the Jianghan, Junggar, Sichuan, Songliao, Subei, Tarim, and Yangtze Platform. Source: ARI, 2013. XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment

220

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

Adams, D.C.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Revegetation research on oil shale lands in the Piceance Basin  

SciTech Connect

The overall objective of this project is to study the effects of various reclamation practices on above- and belowground ecosystem development associated with disturbed oil shale lands in northwestern Colorado. Plant growth media that are being used in field test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Satisfactory stands of vegetation failed to establish on unleached retorted shale during two successive years of seeding. All seedings with soil over retorted shale were judged to be successful at the end of three growing seasons, but deep-rooted shrubs that depend upon subsoil moisture may have their growth hampered by the retorted shale substrate. Natural revegetation on areas with various degrees of disturbance shows that natural invasion and succession was slow at best. Invasion of species on disturbed topsoil plots showed that after three years introduced seed mixtures were more effective than native mixtures in occupying space and closing the community to invading species. Fertilizer appears to encourage the invasion of annual plants even after the third year following application. Long-term storage of topsoil without vegetation significantly decreases the mycorrhizal infection potential and, therefore, decreases the relative success of aboveground vegetation and subsequent succession. Ecotypic differentation related to growth and competitive ability, moisture stress tolerance, and reproductive potential have been found in five native shrub species. Germplasm sources of two grasses and two legumes, that have shown promise as revegetation species, have been collected and evaluated for the production of test seed. Fertilizer (nitrogen) when added to the soil at the time of planting may encourage competition from annual weeds to the detriment of seeded species.

Redente, E.F.; Cook, C.W.

1981-02-01T23:59:59.000Z

222

Material balance assay of Devonian gas shale  

DOE Green Energy (OSTI)

A Devonian shale retorting method, similar to the TOSCO Material Balance Assay, was developed. Oil, gas, water, and spent shale collected from the thermal decomposition of Devonian shale provide material balance closure. Elemental and other analyses were used to characterize the products and evaluate their fuel potential. The precision of each analysis was estimated by running a series of material balance assays on a composite shale sample. The elemental composition of this shale oil was shown to remain unchanged on aging. Typical material balance assays from each well where core samples were taken are presented.

Kapsch, D.M.; Frye, J.O.; Nunn, E.B.

1979-08-20T23:59:59.000Z

223

Oil-shale utilization at Morgantown, WV  

Science Conference Proceedings (OSTI)

Fully aware of the nation's need to develop high-risk and long-term research in eastern oil-shale and low-grade oil-shale utilization in general, the US DOE/METC initiated an eastern oil-shale characterization program. In less than 3 months, METC produced shale oil from a selected eastern-US oil shale with a Fischer assay of 8.0 gallons/ton. In view of the relatively low oil yield from this particular oil shale, efforts were directed to determine the process conditions which give the highest oil yield. A 2-inch-diameter electrically heated fluidized-bed retort was constructed, and Celina oil shale from Tennessee was selected to be used as a representative eastern oil shale. After more than 50 runs, the retorting data were analyzed and reviewed and the best oil-yield operating condition was determined. In addition, while conducting the oil-shale retorting experiments, a number of technical problems were identified, addressed, and overcome. Owing to the inherent high rates of heat and mass transfers inside the fluidized bed, the fluidized-bed combustor and retorting appear to be a desirable process technology for an effective and efficient means for oil-shale utilization. The fluidized-bed operation is a time-tested, process-proven, high-throughput, solid-processing operation which may contribute to the efficient utilization of oil-shale energy.

Shang, J.Y.; Notestein, J.E.; Mei, J.S.; Romanosky, R.R.; King, J.A.; Zeng, L.W.

1982-01-01T23:59:59.000Z

224

Enriching off gas from oil shale retort  

SciTech Connect

Liquid and gaseous products are recovered from oil shale in an in situ oil shale retort in which a combustion zone is advanced therethrough by a method which includes the steps of establishing a combustion zone in the oil shale in the in situ oil shale retort and introducing a gaseous feed mixture into the combustion zone in the direction the combustion zone is to be advanced through the in situ oil shale retort. The gaseous feed mixture comprises an oxygen supplying gas and water vapor and is introduced into the combustion zone at a rate sufficient to maintain the temperature in the combustion zone within a predetermined range of temperatures above the retorting temperature of the oil shale in the in situ oil shale retort and sufficient to advance the combustion zone through the in situ oil shale retort. The introduction of the gaseous feed mixture into the combustion zone generates combustion products gases which together with the portion of the gaseous feed mixture which does not take part in the combustion process, is called flue gas. The flue gas passes through the oil shale on the advancing side of the combustion zone, thereby retorting the oil shale to produce liquid and gaseous products. The liquid product and the retort off gas, which comprises gaseous product and flue gas, are withdrawn from the in situ oil shale retort at a point on the advancing side of the retorting zone. 47 claims, 1 figure.

Cha, C.Y.; Ridley, R.D.

1977-07-19T23:59:59.000Z

225

NATURAL GAS FROM SHALE: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is shale gas? is shale gas? Basically, it is natural gas - primarily methane - found in shale formations, some of which were formed 300-million-to-400-million years ago during the Devonian period of Earth's history. The shales were deposited as fine silt and clay particles at the bottom of relatively enclosed bodies of water. At roughly the same time, primitive plants were forming forests on land and the first amphibians were making an appearance. Some of the methane that formed from the organic matter buried with the sediments escaped into sandy rock layers adjacent to the shales, forming conventional accumulations of natural gas which are relatively easy to extract. But some of it remained locked in the tight, low permeability shale layers, becoming shale gas.

226

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fracture Fluids Fracture Fluids Key Points: * Shale fracture fluid, or "slickwater," is largely composed of water (99%); but a number of additives are mixed in with it to increase the effectiveness of the fracturing operation. These additives vary as a function of the well type and the preferences of the operator. * Hydraulic fracturing fluids can contain hazardous chemicals and, if mismanaged, spills could leak harmful substances into ground or surface water. However, good field practice, governed by existing regulations, "should provide an adequate level of protection" from fracturing fluid risks. 1 1 Massachusetts Institute of Technology, "MIT Study on the Future of Natural Gas," June 6, 2011, Chapter 2: Supply, page 41.

227

SHALE OIL--THE ELUSIVE ENERGY  

E-Print Network (OSTI)

An early settler in the valley of Parachute Creek in western Colorado built a log cabin, and made the fireplace and chimney out of the easily cut, locally abundant black rock. The pioneer invited a few neighbors to a house warming. As the celebration began, he lit a fire. The fireplace, chimney, and ultimately the whole cabin caught fire, and burned to the ground. The rock was oil shale. It was a sensational house warming! Oil shales are reported to have been set afire by lightning strikes. The Ute Indians of northwestern Colorado told stories of "mountains that burned. " Cowboys and ranchers of the region burned the dark rock in their fires, like coal. The flammable nature of the richer oil shales is basis for the title of a fascinating book by H. K. Savage (1967), The Rock That Burns. During oil shale enthusiasms in the early part of this century, stock promoters brought pieces of oil shale to Chicago street corners and set them afire. Clouds of smoke attracted crowds, and the promoters sold stock in oil shale companies. Nature of oil shale. Shale oil comes from oil shale, but oil shale is a misnomer. It is neither a true shale nor does it generally have any oil in it. It is better identified as organic marlstone, marl being a mixture of clay and calcium carbonate. The organic material is kerogen, derived from myriad organisms, chiefly plants. Savage (1967) notes the term "oil shale " is a promotional term: "The magic word 'oil ' would raise large sums of promotion money while organic marlstone wouldn't raise a dime." The U. S. Geological Survey (USGS) defines oil shale as "organic-rich shale that yields substantial quantities of oil by conventional methods of destructive distillation of the contained organic matter, which employ low confining pressures in a closed retort system. " (Duncan and HC#98/4-1-1

M. King; Hubbert Center; Walter Youngquist

1998-01-01T23:59:59.000Z

228

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

Adams, D.C.

1992-01-01T23:59:59.000Z

229

Shale Natural Gas New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

868 557 232 2009-2011 868 557 232 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 868 557 232 2009-2011 Alabama 0 0 2009-2010 Arkansas 0 0 0 2009-2011 California 0 2011-2011 San Joaquin Basin Onshore 0 2011-2011 Colorado 4 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 244 48 0 2009-2011 North 244 48 0 2009-2011 Michigan 0 2 0 2009-2011 Montana 0 0 0 2009-2011 New Mexico 0 0 0 2009-2011 East 0 0 0 2009-2011 West 0 0 0 2009-2011 North Dakota 6 8 2 2009-2011 Ohio 0 0 2009-2010 Oklahoma 0 54 37 2009-2011 Pennsylvania 120 49 162 2009-2011 Texas 353 396 31 2009-2011 RRC District 1 353 114 20 2009-2011 RRC District 2 Onshore 282 0 2010-2011 RRC District 3 Onshore 0 0 0 2009-2011 RRC District 4 Onshore 0 0 0 2009-2011 RRC District 5 0 0 0 2009-2011

230

Shale Natural Gas New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

868 557 232 2009-2011 868 557 232 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 868 557 232 2009-2011 Alabama 0 0 2009-2010 Arkansas 0 0 0 2009-2011 California 0 2011-2011 San Joaquin Basin Onshore 0 2011-2011 Colorado 4 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 244 48 0 2009-2011 North 244 48 0 2009-2011 Michigan 0 2 0 2009-2011 Montana 0 0 0 2009-2011 New Mexico 0 0 0 2009-2011 East 0 0 0 2009-2011 West 0 0 0 2009-2011 North Dakota 6 8 2 2009-2011 Ohio 0 0 2009-2010 Oklahoma 0 54 37 2009-2011 Pennsylvania 120 49 162 2009-2011 Texas 353 396 31 2009-2011 RRC District 1 353 114 20 2009-2011 RRC District 2 Onshore 282 0 2010-2011 RRC District 3 Onshore 0 0 0 2009-2011 RRC District 4 Onshore 0 0 0 2009-2011 RRC District 5 0 0 0 2009-2011

231

Economics of shale oil production by radio frequency heating  

DOE Green Energy (OSTI)

A conceptual facility for the production of shale oil by radio frequency(rf) heating has been designed to evaluate the economic feasibility of this technique. In the proposed procedure, the shale is processed in situ without being rubbed or explosively fractured. Metal electrodes inserted in a set of vertical drill holes are energized by a group of rf oscillators. The holes bound a block of shale that is to be retorted. The electric field is developed in such a way that heating within the block is almost uniform, and heating outside the block is very low. Retorting of the shale results in a pressure buildup of the hydrocarbon fluids. The oil and gas move horizontally (parallel to bedding planes), then down the electrode holes to a collection manifold. The facility schedule is planned so that off-peak electric power from existing generating stations can be used to operate the oscillators. Thus, the cost of power and the capital requirements for the facility are held to a minimum. Oil production costs and capital requirements indicate that the proposed procedure is economically attractive. The two principal costs are purchase of electric power and mining operations. The largest capital requirement is oscillators and associated electrical equipment.

Mallon, R.G.

1980-05-07T23:59:59.000Z

232

Focus on the Marcellus Shale By Lisa Sumi  

E-Print Network (OSTI)

Shale Gas: Focus on the Marcellus Shale By Lisa Sumi FOR THE OIL & GAS ACCOUNTABILITY PROJECT on potential oil and gas development in the Marcellus Shale formation in northeastern Pennsylvania · www.ogap.org #12;Shale Gas: Focus on the Marcellus Shale A REPORT COMPILED FOR THE OIL AND GAS

Boyer, Elizabeth W.

233

Effects of diagenesis on the Nd-isotopic composition of black shales from the 420 Ma Utica Shale Magnafacies  

E-Print Network (OSTI)

Effects of diagenesis on the Nd-isotopic composition of black shales from the 420 Ma Utica Shale Abstract The Utica black shales were deposited in the Taconic Foreland basin 420 Ma ago. The organic matter in these shales is of marine origin and the timing of deposition of these shales has been constrained

Basu, Asish R.

234

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

production of portland cement from a 1.8:1 mixture of limestone and raw oil shale.oil production and result in a new, high-risk tech- nology while modification of as-received spent shale

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

235

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

pore-volume study of retorted oil shale," Lawrence Livermore1978. York, E. D. , Amoco Oil Co. , letter to J. P. Fox,Reaction kinetics between and oil-shale residual carbon. 1.

Fox, J.P.

2013-01-01T23:59:59.000Z

236

Shale Energy Resources Alliance (SERA)  

NLE Websites -- All DOE Office Websites (Extended Search)

contActS contActS George Darakos Business Manager 412-386-7390 george.darakos@netl.doe.gov Barbara Kutchko, PhD Shallow Stray Gas, Research Team Leader 412-386-5149 barbara.kutchko@netl.doe.gov Natalie Pekney, PhD Air Emissions, Research Team Leader 412-386-5953 natalie.pekney@netl.doe.gov Paul Ziemkiewicz, PhD Water, Research Team Leader 304-293-6958 pziemkie@wvu.edu nEtL-RUA PARtnERS Carnegie Mellon University Penn State University of Pittsburgh URS Corporation Virginia Tech West Virginia University Shale Energy Resources Alliance (SERA) Mission To support the environmentally and socially sustainable development of shale resources through collaborative research and development among industry, university, and government partners on: resource characterization; drilling and

237

Shale Oil Value Enhancement Research  

Science Conference Proceedings (OSTI)

Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

James W. Bunger

2006-11-30T23:59:59.000Z

238

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 I-1 I. CANADA SUMMARY Canada has a series of large hydrocarbon basins with thick, organic-rich shales that are assessed by this resource study. Figure I-1 illustrates certain of the major shale gas and shale oil basins in Western Canada. Figure I-1. Selected Shale Gas and Oil Basins of Western Canada Source: ARI, 2012. I. Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 I-2 The full set of Canadian shale gas and shale oil basins assessed in this study include:

239

Modern Shale Gas Development in the United States: A Primer ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modern Shale Gas Development in the United States: A Primer Modern Shale Gas Development in the United States: A Primer This Primer on Modern Shale Gas Development in the United...

240

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

are unique to in-situ oil shale production, Literature fromother industries to oil shale production because these dataThe processes used in production of oil shale have not been

Persoff, P.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

E-Print Network (OSTI)

20 to 40% of the oil shale, and explosively rubblizing andCEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,

Mehta, P.K.

2012-01-01T23:59:59.000Z

242

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

E-Print Network (OSTI)

CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,CEMENTS FROM SPENT OIL SHALE P, K, Mehta Civil Engineering

Mehta, P.K.

2012-01-01T23:59:59.000Z

243

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

Controls for a Commercial Oil Shale In~try, Vol. I, An En~in Second Briefing on In-Situ Oil Shale Technology, LawrenceReactions in Colorado Oil Shale, Lawrence Report UCRL-

Persoff, P.

2011-01-01T23:59:59.000Z

244

Control Strategies for Abandoned in situ Oil Shale Retorts  

E-Print Network (OSTI)

Presented elt the TUJelfth Oil Shale Synlposittnz, Golden,for Abandoned In Situ Oil Shale Retorts P. Persoll and ]. P.Water Pollution of Spent Oil Shale Residues, EDB Lea,

Persoff, P.; Fox, J.P.

1979-01-01T23:59:59.000Z

245

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

Controls for a Commercial Oil Shale In~try, Vol. I, An En~Mathematical Hodel for In-Situ Shale Retorting," in SecondBriefing on In-Situ Oil Shale Technology, Lawrence Livermore

Persoff, P.

2011-01-01T23:59:59.000Z

246

Control Strategies for Abandoned in situ Oil Shale Retorts  

E-Print Network (OSTI)

Presented elt the TUJelfth Oil Shale Synlposittnz, Golden,for Abandoned In Situ Oil Shale Retorts P. Persoll and ]. P.Pollution of Spent Oil Shale Residues, EDB Lea, Salinity

Persoff, P.; Fox, J.P.

1979-01-01T23:59:59.000Z

247

Impacts of Marcellus Shale Development on Municipal Governments in Susquehanna  

E-Print Network (OSTI)

Impacts of Marcellus Shale Development on Municipal Governments in Susquehanna and Washington Marcellus shale gas development. The study focused on how gas development is affecting the demand (1) their already extensive shale activity; (2) their divergent geographical, cultural

Boyer, Elizabeth W.

248

INTER-MOUNTAIN BASINS SHALE BADLAND extent exaggerated for display  

E-Print Network (OSTI)

INTER-MOUNTAIN BASINS SHALE BADLAND R.Rondeau extent exaggerated for display ACHNATHERUM HYMENOIDES HERBACEOUS ALLIANCE Achnatherum hymenoides Shale Barren Herbaceous Vegetation ARTEMISIA BIGELOVII SHRUBLAND ALLIANCE Leymus salinus Shale Sparse Vegetation Overview: This widespread ecological system

249

International developments in oil shale  

SciTech Connect

An overview of oil shale research and development outside the US provides a status report on technology approaches under active consideration in Australia, Brazil, Canada, China, West Germany, Israel, Jordan, Morocco, Soviet Union, Thailand, Turkey, and Yugoslavia. The status report covers the development plans and project costs of industrial projects. The technologies under consideration include the Fushun, Galoter, Kiviter, Lurgi, and Petrosix processes. 10 references.

Uthus, D.B.

1985-08-01T23:59:59.000Z

250

Oil shale mining and the environment. [Colorado  

SciTech Connect

Experimental mining of oil shale, to date, has been conducted only in the shallow Mahogany Zone and has utilized only the room and pillar mining method. The U.S. Bureau of Mines is planning a demonstration mine in the deep, thick oil-shale deposits in Colorado. This study describes the 4 mining concepts that are planned for demonstration and the interrelationship of these concepts and the environment. The environmental aspects of oil-shale development also are discussed.

Rajaram, V.; Kauppila, T.A.; Bolmer, R.L.

1977-01-01T23:59:59.000Z

251

Instrumentation and diagnostic techniques used by Los Alamos National Laboratory in fragmentation experiments in oil shale  

SciTech Connect

Discussed are the instrumentation and diagnostic techniques used to evaluate the explosive fragmentation experiments in oil shale at the Colony and Anvil Points Mines in Colorado. These experiments were conducted to investigate some of the many parameters that control the fragmenting or rubblizing of oil shale in preparation for subsurface retorting. Framing and TV cameras were used to study the size and speed of the ejected shale fragments. Stress and accelerometer gauges provided quantitative data about the explosively induced stress field in the rock. The CORRTEX technique was used to determine the detonation velocity of the explosive and the induced fracture velocity in the oil shale. Postshot measurements included the crater dimensions and rubble size distribution. In addition preshot and postshot geological mapping was done to relate fractures and joints to crater size and shape.

Edwards, C.L.; Adams, T.F.; Dick, R.D.

1981-01-01T23:59:59.000Z

252

Oil shale up-date  

SciTech Connect

The development of large domestic oil shale resources in an environmentally acceptable manner is technically feasible. Such development is approaching economic attractiveness. It is an essential step in attacking the major national problem: increasing oil imports. Several things have been impeding oil shale development. First, until recently there has been a lack of viable technology. Second, environmental regulations are becoming increasingly restrictive. These have become so unrealistic that the bare undeveloped ground in oil shale country fails to comply. Most of this area is now classified as a nonattainment area. The third reason is economic uncertainty. This relates to price and other governmental controls which make it impossible to predict future conditions with enough confidence to justify private investments. In an effort to overcome this uncertainty, while retaining the impeding controls, all types of governmental incentives and supports are being proposed by the Administration, the Congress, and the industry. This study highlights the current status of the more prominent technologies. It suggest that the next logical step in their advancement is the construction and operation of single full-size retorts or modules.

Pforzheimer, H.

1978-09-01T23:59:59.000Z

253

TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY  

E-Print Network (OSTI)

Identified in Oil Shale and Shale Oil. list." 1. Preliminaryrisks of large scale shale oil production are sufficient tofound in oil shale and shale oil by EMIC and ETIC, has

Kland, M.J.

2010-01-01T23:59:59.000Z

254

INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER  

E-Print Network (OSTI)

Minor Elements in Oil Shale and Oil Shale Products. LERCfor Use 1n Oil Shale and Shale Oil. OSRD-32, 1945. Jeris, J.Water coproduced with shale oil and decanted from it is

Farrier, D.S.

2011-01-01T23:59:59.000Z

255

TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY  

E-Print Network (OSTI)

Chemicals Identified in Oil Shale and Shale Oil. list." 1.of Trace Contaminants in Oil Shale Retort Wa- ters", Am.Trace Contaminants in Oil Shale Retort Waters", in Oil Shale

Kland, M.J.

2010-01-01T23:59:59.000Z

256

Seismic detection of fractured Devonian shale reservoir. Annual report, July 1985-June 1986  

SciTech Connect

Interpretation of seismic data over the Cottageville gas field in West Virginia reveals the presence of numerous changes in reflection character across the top of the Lower Huron shales. Production from the Lower Huron is fracture-controlled, and some of the more-pronounced changes in amplitude and shape occur in the more-productive areas of the field. Model studies indicate that these changes are related to the development of low-impedance intervals that extend into the overlying shales of the Middle Huron. Analysis of geophysical logs indicates that these differences are not produced by lithologic variability in the shale. Hence, the observed changes in reflection character are believed to be associated with intense fracturing. Studies here suggest that the analysis of seismic data can be combined with other data to reduce the risk associated with exploration and development of Devonian shale gas resources. Final open-flow of gas and geologic structure from >4000 shale gas wells in eastern Kentucky outlines two high-flow areas. Interrelationships between geologic structure and gas flow are direct in one, but they are complex and unresolved in the other. Linear, steep flow gradients and the interrelationships of high-flow to structure confirm the importance of tectonic fracture permeability to shale productivity.

Wilson, T.H.; Shumaker, R.C.; Sims, C.S.

1986-07-01T23:59:59.000Z

257

NATURAL GAS FROM SHALE: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges are Associated with Challenges are Associated with Shale Gas Production? Developing any energy resource - whether conventional or non-conventional like shale - carries with it the possibility and risk of environmental, public health, and safety issues. Some of the challenges related to shale gas production and hydraulic fracturing include: * Increased consumption of fresh water (volume and sources); * Induced seismicity (earthquakes) from shale flowback water disposal;Chemical disclosure of fracture fluid additives; * Potential ground and surface water contamination; * Air quality impacts; * Local impacts, such as the volume of truck traffic, noise, dust and land disturbance.

258

Virginia Shale Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Natural Gas > Navigator Energy Glossary ... Download Data (XLS File) No chart available. Virginia Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3

259

Production Optimization in Shale Gas Reservoirs.  

E-Print Network (OSTI)

?? Natural gas from organic rich shales has become an important part of the supply of natural gas in the United States. Modern drilling and (more)

Knudsen, Brage Rugstad

2010-01-01T23:59:59.000Z

260

,"Miscellaneous Shale Gas Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

,"Shale Natural Gas Reserves Revision Decreases "  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Shale Natural Gas Reserves Revision Decreases ",36,"Annual",2011,"6302009" ,"Release...

262

Miscellaneous States Shale Gas Proved Reserves Acquisitions ...  

U.S. Energy Information Administration (EIA) Indexed Site

Available; W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Shale Natural Gas Reserves Acquisitions...

263

,"Shale Natural Gas Reserves Revision Increases "  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Shale Natural Gas Reserves Revision Increases ",36,"Annual",2011,"6302009" ,"Release...

264

The Black Shale Basin of West Texas.  

E-Print Network (OSTI)

??The Black Shale Basin of West Texas covers an area in excess of 21,000 square miles and includes the region from Terrell and Pecos Counties (more)

Cole, Charles Taylor, 1913-

2012-01-01T23:59:59.000Z

265

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

steam, and groundwater intrusion during oil shale retorting: retort water and gas condensate.Steam Stripping of Occi- dental petroleum Retort No. 6 Gas Condensate,

Fox, J.P.

2010-01-01T23:59:59.000Z

266

,"Wyoming Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

267

,"Pennsylvania Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

268

,"Montana Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

269

,"Colorado Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

270

,"Oklahoma Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

271

,"Arkansas Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

272

,"Michigan Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

273

,"Ohio Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

274

,"Kentucky Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

275

Water application related to oil shale listed  

SciTech Connect

A water right application filed by the Rio Blanco Oil Shale Company, Inc. is reported for surface waters and ground water in Rio Blanco County, Colorado.

1986-09-01T23:59:59.000Z

276

Method and apparatus for distilling oil shale  

SciTech Connect

In an oil shale retrort there is the combination of a plurality of interconnected hollow sections, each having a flat bottom, the bottom surfaces of the sections lying in different planes and being inclined at an angle greater than the angle of repose for powdered oil shale whereby oil shale will flow by the action of gravity alone. Means are located at the juncture of each of the sections for abruptly changing the direction of flow of the shale whereby the velocity is reduced.

White, C.O.

1929-02-26T23:59:59.000Z

277

Enriching off gas from oil shale retort  

SciTech Connect

A method whereby liquid and gaseous products are recovered from oil shale in an in situ oil shale retort is discussed. A combustion zone is advanced by establishing a combustion zone in the oil shale and introducing a gaseous feed mixture into the zone in the direction the zone is to be advanced through the oil shale retort. The gaseous feed mixture consists of an oxygen supplying gas and water vapor and is introduced into the combustion zone at a rate sufficient to maintain the temperature in the combustion zone within a predetermined range of temperatures above the retorting temperature of the oil shale in the in situ oil shale retort. The introduction of the gaseous feed mixture into the combustion zone generates combustion product gases which together with the portion of the gaseous feed mixture which does not take part in the combustion process, is called flue gas. The flue gas passes through the oil shale on the advancing side of the combustion zone, thereby retorting the oil shale to produce liquid and gaseous products. The liquid product and the retort off gas, which consists of gaseous product and flue gas, are withdrawn from the in situ oil shale retort at a point on the advancing side of the retorting zone. (47 claims) (Continuation-in-part of U.S. Appl. 492,289, f. 7/26/74)

Cha, C.Y.; Ridley, R.D.

1977-07-19T23:59:59.000Z

278

Oil shale oxidation at subretorting temperatures  

SciTech Connect

Green River oil shale was air oxidized at subretorting temperatures. Off gases consisting of nitrogen, oxygen, carbon monoxide, carbon dioxide, and water were monitored and quantitatively determined. A mathematical model of the oxidation reactions based on a shrinking core model has been developed. This model incorporates the chemical reaction of oxygen and the organic material in the oil shale as well as the diffusivity of the oxygen into the shale particle. Diffusivity appears to be rate limiting for the oxidation. Arrhenius type equations, which include a term for oil shale grade, have been derived for both the chemical reaction and the diffusivity.

Jacobson, I.A. Jr.

1980-06-01T23:59:59.000Z

279

Developments in oil shale in 1983  

SciTech Connect

Oil shale development activities continued at a somewhat restricted pace during 1983. The activities reflect the continued soft economic environment in the petroleum industry. A limited number of projects are active, and research is continuing on processes, materials handling, mining techniques, and resource evaluation. Past oil shale development papers have highlighted resources and activities in several states in the eastern and western portions of the United States. This paper highlights Australian oil shale geology and developments and Canadian oil shale geology and developments. 5 figures, 1 table.

Knutson, C.F.; Dana, G.F.; Hutton, A.C.; Macauley, G.

1984-10-01T23:59:59.000Z

280

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

showing potential for subsidence and spent shale leaching.cracking and ground subsidence, and low leaving largeto 210 m overburden), and subsidence. These problems may be

Mehta, P.K.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Shale Gas Proved Reserves - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Shale Gas Proved Reserves (Billion Cubic Feet) Period: Annual : Download Series History: Definitions, Sources & Notes 2007 2008 View History; U.S. ...

282

Challenges and strategies of shale gas development.  

E-Print Network (OSTI)

??The objective of this paper is to help new investors and project developers identify the challenges of shale gas E&P and to enlighten them of (more)

Lee, Sunje

2012-01-01T23:59:59.000Z

283

Improved Casing for Shales - Programmaster.org  

Science Conference Proceedings (OSTI)

The shale gas boom in recent years has been due to modern technology in hydraulic fracturing to create extensive artificial fractures around well bores. Proper...

284

Shale recharge and production behavior of geopressured reservoirs  

DOE Green Energy (OSTI)

The reservoir simulator MUSHRM was used to study the conditions under which significant shale recharge may be expected. The calculations presented herein show that shale recharge is a strong function of the vertical shale permeability but is not greatly influenced by the shale compressibility. Significant shale recharge will occur only if the vertical shale permeability is at least of the order of 0.01 ..mu..d.

Garg, S.K.

1980-04-01T23:59:59.000Z

285

A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES..............................1 A2. VARIABILITY IN SHALE WELL PRODUCTION PERFORMANCE ............................1  

E-Print Network (OSTI)

1 APPENDIX1 Contents A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES..............................1 A2. VARIABILITY IN SHALE WELL PRODUCTION PERFORMANCE ............................1 A3. GHG FOR FLOWBACK GAS CAPTURE IN SHALE PLAYS..9 A5. REFERENCES

286

Second eastern gas shales symposium. Preprints. Volume II  

SciTech Connect

Ten papers are included on the eastern gas shale project, characterization of the shale, and stimulation. Separate abstracts were prepared for all ten papers. (DLC)

1978-10-01T23:59:59.000Z

287

The Impact of Marcellus Shale Total Organic Carbon on Productivity.  

E-Print Network (OSTI)

??In the Appalachian basin, the Devonian organic-rich shale interval, including the Marcellus Shale, is an important target for natural gas exploration. It has been utilized (more)

Fakhouri, Eyad

2013-01-01T23:59:59.000Z

288

North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) North Dakota Natural Gas Gross Withdrawals from Shale Gas...

289

Louisiana (with State Offshore) Shale Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Louisiana (with State Offshore) Shale Production (Billion Cubic Feet) Louisiana (with State Offshore) Shale Production (Billion Cubic...

290

Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals from Shale Gas...

291

Texas (with State Offshore) Shale Proved Reserves (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Texas (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Shale Proved Reserves (Billion...

292

Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Arkansas Natural Gas Gross Withdrawals from Shale Gas...

293

Montana Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

294

Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

295

Louisiana--North Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Louisiana--North Shale Production (Billion Cubic Feet) Louisiana--North Shale Production (Billion Cubic Feet) Decade Year-0 Year-1...

296

Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

297

Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Virginia Natural Gas Gross Withdrawals from Shale Gas...

298

Louisiana--North Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Louisiana--North Shale Proved Reserves (Billion Cubic Feet) Louisiana--North Shale Proved Reserves (Billion Cubic Feet) Decade Year-0...

299

Lower 48 States Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Lower 48 States Shale Proved Reserves (Billion Cubic Feet) Lower 48 States Shale Proved Reserves (Billion Cubic Feet) Decade Year-0...

300

Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas...

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

California Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) California Natural Gas Gross Withdrawals from Shale Gas...

302

New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) New Mexico Natural Gas Gross Withdrawals from Shale Gas...

303

Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Shale Gas...

304

West Virginia Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) West Virginia Shale Proved Reserves (Billion Cubic Feet) West Virginia Shale Proved Reserves (Billion Cubic Feet) Decade Year-0...

305

West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Annual Download Data (XLS File) West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) West Virginia Natural Gas Gross Withdrawals from Shale Gas...

306

Alabama (with State Offshore) Shale Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion...

307

Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Shale Gas...

308

Secretary of Energy Advisory Board Hosts Conference Call on Shale...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Secretary of Energy Advisory Board Hosts Conference Call on Shale Gas Draft Report Secretary of Energy Advisory Board Hosts Conference Call on Shale Gas...

309

Texas (with State Offshore) Shale Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas (with State Offshore) Shale Production (Billion Cubic Feet) Texas (with State Offshore) Shale Production (Billion Cubic Feet)...

310

Natural Gas from Shale: Questions and Answers | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home Natural Gas from Shale: Questions and Answers Natural Gas from Shale: Questions and Answers Natural Gas from...

311

Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Shale Gas (Million...

312

Louisiana (with State Offshore) Shale Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Shale Proved Reserves...

313

North Dakota Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) North Dakota Shale Proved Reserves (Billion Cubic Feet) North Dakota Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

314

Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Shale Gas...

315

Secretary of Energy Advisory Board Subcommittee Releases Shale...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Secretary of Energy Advisory Board Subcommittee Releases Shale Gas Recommendations Secretary of Energy Advisory Board Subcommittee Releases Shale Gas...

316

California (with State off) Shale Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) California (with State off) Shale Production (Billion Cubic Feet) California (with State off) Shale Production (Billion Cubic Feet)...

317

Miscellaneous States Shale Gas Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Miscellaneous States Shale Gas Proved Reserves (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves (Billion Cubic...

318

New Mexico Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) New Mexico Shale Proved Reserves (Billion Cubic Feet) New Mexico Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

319

California (with State off) Shale Proved Reserves (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) California (with State off) Shale Proved Reserves (Billion Cubic Feet) California (with State off) Shale Proved Reserves (Billion...

320

Natural Contamination from the Mancos Shale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Natural Contamination from the Mancos Shale Natural Contamination from the Mancos Shale Natural Contamination from the Mancos...

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U.S. Shale Proved Reserves Acquisitions (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves Acquisitions (Billion Cubic Feet) U.S. Shale Proved Reserves Acquisitions (Billion Cubic Feet) Decade...

322

Characterization of Gas Shales by X-ray Raman Spectroscopy |...  

NLE Websites -- All DOE Office Websites (Extended Search)

137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of...

323

Oil Shale Research in the United States | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research in the United States Oil Shale Research in the United States Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public...

324

DOE - Office of Legacy Management -- Naval Oil Shale Reserves...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Shale Reserves Site - 013 FUSRAP Considered Sites Site: Naval Oil Shale Reserves Site (013 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

325

Calif--San Joaquin Basin onsh Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

onsh Shale Proved Reserves (Billion Cubic Feet) Calif--San Joaquin Basin onsh Shale Proved Reserves (Billion Cubic Feet) No Data Available For This Series - No Data Reported; --...

326

DOE's Early Investment in Shale Gas Technology Producing Results...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Early Investment in Shale Gas Technology Producing Results Today DOE's Early Investment in Shale Gas Technology Producing Results Today February 2, 2011 - 12:00pm Addthis...

327

Method for forming an in-situ oil shale retort in differing grades of oil shale  

Science Conference Proceedings (OSTI)

An in-situ oil shale retort is formed in a subterranean formation containing oil shale. The formation comprises at least one region of relatively richer oil shale and another region of relatively leaner oil shale. According to one embodiment, formation is excavated from within a retort site for forming at least one void extending horizontally across the retort site, leaving a portion of unfragmented formation including the regions of richer and leaner oil shale adjacent such a void space. A first array of vertical blast holes are drilled in the regions of richer and leaner oil shale, and a second array of blast holes are drilled at least in the region of richer oil shale. Explosive charges are placed in portions of the blast holes in the first and second arrays which extend into the richer oil shale, and separate explosive charges are placed in portions of the blast holes in the first array which extend into the leaner oil shale. This provides an array with a smaller scaled depth of burial (sdob) and closer spacing distance between explosive charges in the richer oil shale than the sdob and spacing distance of the array of explosive charges in the leaner oil shale. The explosive charges are detonated for explosively expanding the regions of richer and leaner oil shale toward the horizontal void for forming a fragmented mass of particles. Upon detonation of the explosive, greater explosive energy is provided collectively by the explosive charges in the richer oil shale, compared with the explosive energy produced by the explosive charges in the leaner oil shale, resulting in comparable fragmentation in both grades of oil shale.

Ricketts, T.E.

1984-04-24T23:59:59.000Z

328

Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III  

SciTech Connect

The primary objective of this project was to conduct advanced reservoir characterization and modeling studies in the Antelope Shale of the Bureau Vista Hills Field. Work was subdivided into two phases or budget periods. The first phase of the project focused on a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work would then be used to evaluate how the reservoir would respond to enhanced oil recovery (EOR) processes such as of CO2 flooding. The second phase of the project would be to implement and evaluate a CO2 in the Buena Vista Hills Field. A successful project would demonstrate the economic viability and widespread applicability of CO2 flooding in siliceous shale reservoirs of the San Joaquin Valley.

Perri, Pasquale R.; Cooney, John; Fong, Bill; Julander, Dale; Marasigan, Aleks; Morea, Mike; Piceno, Deborah; Stone, Bill; Emanuele, Mark; Sheffield, Jon; Wells, Jeff; Westbrook, Bill; Karnes, Karl; Pearson, Matt; Heisler, Stuart

2000-04-24T23:59:59.000Z

329

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

Science Conference Proceedings (OSTI)

The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

1992-06-01T23:59:59.000Z

330

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

Science Conference Proceedings (OSTI)

The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

1992-06-01T23:59:59.000Z

331

Fluidized bed retorting of eastern oil shale  

SciTech Connect

This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

Gaire, R.J.; Mazzella, G.

1989-03-01T23:59:59.000Z

332

Active oil shale operations: Eastern Uinta Basin  

SciTech Connect

A Utah Geological and Mineral survey Map of the Eastern Uinta Basin is presented. Isopach lines for the Mahogany oil shale are given, along with the locations of active oil shale operations and the land ownership (i.e. federal, state, or private).

Ritzma, H.R.

1980-01-01T23:59:59.000Z

333

Chemical kinetics and oil shale process design  

SciTech Connect

Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

Burnham, A.K.

1993-07-01T23:59:59.000Z

334

Assay products from Green River oil shale  

DOE Green Energy (OSTI)

Data from 66 material-balanced assays conducted at Lawrence Livermore National Laboratory, Laramie Energy Technology Center, and The Oil Shale Corporation were compiled and analyzed to determine the pyrolysis stoichiometry for Green River formation oil shales originating in and near the Mahogany zone. Shale samples came from four sites in Colorado and one in Utah, and ranged in oil content from 12 to 258 L/Mg (3 to 62 gal/ton). Average values and pairwise correlation coefficients are reported for all data (except sulfur analyses) available on the shales, e.g., elemental analyses of shales and oils, distribution of organic carbon in products, gas composition, and some ratios of elemental composition. The wide range of organic carbon contents made it possible to demonstrate the sensitivity of assay product distribution to oil shale grade. A linear correlation for shale grade as a function of weight percent organic carbon in raw shale is presented. An average stoichiometry for pyrolysis of the organic material is also calculated and compared with others available in the literature.

Singleton, M.F.; Koskinas, G.J.; Burnham, A.K.; Raley, J.H.

1982-04-12T23:59:59.000Z

335

Indirect heating pyrolysis of oil shale  

DOE Patents (OSTI)

Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat

Jones, Jr., John B. (Grand Junction, CO); Reeves, Adam A. (Grand Junction, CO)

1978-09-26T23:59:59.000Z

336

Explosively produced fracture of oil shale. Progress report, October-December 1982  

SciTech Connect

The Los Alamos National Laboratory is conducting rock fragmentation research in oil shale to develop the blasting and fluid-flow technologies required to prepare a rubble bed for a modified in situ retort. The first section of this report details the continued planning for the DOE/Sandia/Los Alamos joint rock fragmentation program, including preliminary designs for the first stemming tests and the blasting mat experiment. Section I also describes our current and planned computer modeling program for rock fracture, tracer flow, and oil shale retorting. The second section presents three papers, two on computer modeling and theory and one on oil shale field experiments. The first describes the Bedded Crack Model and its theoretical basis. The second discusses a two-dimensional numerical model of underground oil shale retorting that fully couples retorting chemistry with fluid and heat flow. This paper condenses the code documentation manual, which will be published separately with a user's guide. The third paper focuses on the empirical characterization of 200 cratering experiments conducted in Piceance Creek Basin oil shale, evaluates scaling laws as a tool to predict large-scale experiment results, and investigates the influence of geology and shale grade on rock fragmentation.

1983-07-01T23:59:59.000Z

337

Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses  

E-Print Network (OSTI)

The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability. Petroleum geologists suggest that observed steep declining rates may involve pressure-dependent permeability (PDP). This study accounts for PDP in three potential shale media: the shale matrix, the existing natural fractures, and the created hydraulic fractures. Sensitivity studies comparing expected long-term rate and pressure production behavior with and without PDP show that these two are distinct when presented as a sequence of coupled build-up rate-normalized pressure (BU-RNP) and its logarithmic derivative, making PDP a recognizable trend. Pressure and rate field data demonstrate evidence of PDP only in Horn River and Haynesville but not in Fayetteville shale. While the presence of PDP did not seem to impact the long term recovery forecast, it is possible to determine whether the observed behavior relates to change in hydraulic fracture conductivity or to change in fracture network permeability. As well, it provides insight on whether apparent fracture networks relate to an existing natural fracture network in the shale or to a fracture network induced during hydraulic fracturing.

Vera Rosales, Fabian 1986-

2012-12-01T23:59:59.000Z

338

Shale gas in the southern central area of New York State: Part II. Experience of locating and drilling four shale-gas wells in New York State  

Science Conference Proceedings (OSTI)

Four shale-gas wells have been located and drilled in the south-central area of New York State as part of this project. The four wells that were drilled are: the Rathbone well, in Steuben County, was located on the north side of a graben, in an old shale-gas field; it penetrated the Rhinestreet, Geneseo and Marcellus shales. Artificial stimulation was performed in the Rhinestreet, without marked success, and in the Marcellus; the latter formation has a calculated open flow of 110 Mcf/day and appears capable of initial production of 100 Mcf/day against a back-pressure of 500 psi. The Dansville well, in Livingston County, tested the Geneseo and Marcellus shales at shallower depth. Artificial stimulation was performed in the Marcellus. The calculated open flow is 95 Mcf/day, and the well appears capable of initial production of 70 Mcf/day against a back-pressure of 300 psi. The Erwin and N. Corning wells, both near Corning in Steuben County, were designed to test the possibility of collecting gas from a fractured conduit layer connecting to other fracture systems in the Rhinestreet shale. The N. Corning well failed; the expected conduit was found to be only slightly fractured. The Erwin well encountered a good initial show of gas at the conduit, but the gas flow was not maintained; even after artificial stimulation the production is only 10 Mcf/day. The present conclusion is that the most likely source of shale gas in south-central New York is the Marcellus shale formation. Important factors not yet established are the decline rate of Marcellus production and the potential of the Geneseo after stimulation.

Not Available

1981-04-01T23:59:59.000Z

339

Oil shale and tar sands technology: recent developments  

SciTech Connect

The detailed, descriptive information in this book is based on US patents, issued since March 1975, that deal with the technology of oil shale and tar sands. The book contains an introductory overview of the subject. Topics included are oil shale retorting, in situ processing of oil shale, shale oil refining and purification processes, in situ processing of tar sands, tar sands separation processes.

Ranney, M.W.

1979-01-01T23:59:59.000Z

340

Location and Geology Fig 1. The Macasty black shale  

E-Print Network (OSTI)

, Quebec, is organic-rich black shale and hosting oil and gas. It is equivalent to the Ithaca shaleLocation and Geology Fig 1. The Macasty black shale in the Anticosti Island in the Gulf of St. d13C for calcite disseminated in the black shale range from 2.6o to 2.8 / The values are lower

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Secure Fuels from Domestic Resources- Oil Shale and Tar Sands  

Energy.gov (U.S. Department of Energy (DOE))

Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

342

Utilization of Oil Shale Retorting Technology and Underground Overview  

Science Conference Proceedings (OSTI)

The paper analyzes the world's oil shale development and status of underground dry distillation technology and, through case studies proved the advantages of underground dry distillation technology. Global oil shale resource-rich, many countries in the ... Keywords: oil shale, ground retorting, underground dry distillation, shale oil, long slope mining

Chen Shuzhao; Guo Liwen; Xiao Cangyan; Wang Haijun

2011-02-01T23:59:59.000Z

343

Study of composite cement containing burned oil shale  

E-Print Network (OSTI)

Study of composite cement containing burned oil shale Julien Ston Supervisors : Prof. Karen properties. SCMs can be by-products from various industries or of natural origin, such as shale. Oil shale correctly, give a material with some cementitious properties known as burned oil shale (BOS). This study

Dalang, Robert C.

344

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network (OSTI)

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and Controversies Kyle J Ferrar;UNITED STATES SHALE BASINS Modern Shale Gas Development in the U.S.: A Primer, (2009) U.S. Dept of Energy Development http://www.secinfo.com/DB/SEC/2007 #12;Where to Drill? Harper, John A. (2008). The Marcellus Shale

Sibille, Etienne

345

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development  

E-Print Network (OSTI)

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Transitions: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st the Marcellus shale In addition to the specific questions identified for the case of Marcellus shale gas in New

Angenent, Lars T.

346

Differential thermal analysis of the reaction properties of raw and retorted oil shale with air  

SciTech Connect

The results of a study to determine the kinetics of combustion of oil shale and its char by using differential thermal analysis are reported. The study indicates that Colorado oil shale and its char combustion rate is the fastest while Fushun oil shale and its char combustion rate is the slowest among the six oil shales used in this work. Oil shale samples used were Fushun oil shale, Maoming oil shale, Huang county oil shale, and Colorado oil shale.

Wang, T.F.

1984-01-01T23:59:59.000Z

347

Oil shale retorting and retort water purification process  

SciTech Connect

An oil shale process is provided to retort oil shale and purify oil shale retort water. In the process, raw oil shale is retorted in an in situ underground retort or in an above ground retort to liberate shale oil, light hydrocarbon gases and oil shale retort water. The retort water is separated from the shale oil and gases in a sump or in a fractionator or quench tower followed by an API oil/water separator. After the retort water is separated from the shale oil, the retort water is steam stripped, carbon adsorbed and biologically treated, preferably by granular carbon adsorbers followed by activated sludge treatment or by activated sludge containing powdered activated carbon. The retort water can be granularly filtered before being steam stripped. The purified retort water can be used in various other oil shale processes, such as dedusting, scrubbing, spent shale moisturing, backfilling, in situ feed gas injection and pulsed combustion.

Venardos, D.G.; Grieves, C.G.

1985-01-22T23:59:59.000Z

348

2011 Brief: Brent crude oil averages over $100 per barrel in ...  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, ... With low spare production ... Amid fast-rising crude oil production from the Bakken Shale formation and Canad ...

349

Montana Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Montana Quick Facts. The Bakken shale under Montana and North Dakota, one of the largest accumulations of crude oil in the United States, is currently estimated to be ...

350

Natural Gas Year-in-Review - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

rose by 29% before declining slightly in 2013. Production also grew by 33% in the Bakken Shale in North Dakota and Montana, where operators predominantly target crude oil,...

351

North Dakota sees increases in real GDP per capita following ...  

U.S. Energy Information Administration (EIA)

In recent years, North Dakota has seen significant gains in real gross domestic product (GDP) per capita, coinciding with development of the Bakken shale play.

352

North Dakota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 8, 2010 CX-004679: Categorical Exclusion Determination Enhanced Oil Recovery from the Bakken Shale Using Surfactant Imbibition Couple with Gravity Drainage CX(s) Applied:...

353

Gasification characteristics of eastern oil shale  

DOE Green Energy (OSTI)

The Institute of Gas Technology (IGT) is evaluating the gasification characteristics of Eastern oil shales as a part of a cooperative agreement between the US Department of Energy and HYCRUDE Corporation to expand the data base on moving-bed hydroretorting of Eastern oil shales. Gasification of shale fines will improve the overall resource utilization by producing synthesis gas or hydrogen needed for the hydroretorting of oil shale and the upgrading of shale oil. Gasification characteristics of an Indiana New Albany oil shale have been determined over temperature and pressure ranges of 1600 to 1900/sup 0/F and 15 to 500 psig, respectively. Carbon conversion of over 95% was achieved within 30 minutes at gasification conditions of 1800/sup 0/F and 15 psig in a hydrogen/steam gas mixture for the Indiana New Albany oil shale. This paper presents the results of the tests conducted in a laboratory-scale batch reactor to obtain reaction rate data and in a continuous mini-bench-scale unit to obtain product yield data. 2 refs., 7 figs., 4 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1986-11-01T23:59:59.000Z

354

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

VIII. Poland EIA/ARI World Shale Gas and Shale Oil Resource Assessment VIII. Poland EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 VIII-1 VIII. POLAND (INCLUDING LITHUANIA AND KALININGRAD) SUMMARY Poland has some of Europe's most favorable infrastructure and public support for shale development. The Baltic Basin in northern Poland remains the most prospective region with a relatively simple structural setting. The Podlasie and Lublin basins also have potential but are

355

What is shale gas and why is it important?  

Reports and Publications (EIA)

Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

2012-04-11T23:59:59.000Z

356

U.S. Shale Gas and Shale Oil Plays Review of Emerging Resources:  

Gasoline and Diesel Fuel Update (EIA)

Shale Gas and Shale Oil Plays Shale Gas and Shale Oil Plays Review of Emerging Resources: July 2011 www.eia.gov U.S. Depa rtment of Energy W ashington, DC 20585 This page inTenTionally lefT blank The information presented in this overview is based on the report Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays, which was prepared by INTEK, Inc. for the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. The full report is attached. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

357

NATURAL GAS FROM SHALE: Questions and Answers Why is Shale Gas Important?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Why is Shale Gas Important? Why is Shale Gas Important? With the advance of extraction technology, shale gas production has led to a new abundance of natural gas supply in the United States over the past decade, and is expected to continue to do so for the foreseeable future. According to the Energy Information Administration (EIA), the unproved technically recoverable U.S. shale gas resource is estimated at 482 trillion cubic feet. 1 Estimated proved and unproved shale gas resources amount to a combined 542 trillion cubic feet (or 25 percent) out of a total U.S. resource of 2,203 trillion cubic feet. 2 U.S. shale gas production has increased 12-fold over the last

358

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

and INTRODUCTION Oil shale production by vertical modified1 aspects of oil shale production air, solid waste, andimpacts of oil shale production, and to develop information

,

2012-01-01T23:59:59.000Z

359

CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE  

E-Print Network (OSTI)

OF FIGURES Areal extent of oil shale deposits in the Greencommercial in~situ oil shale facility. Possible alternativefor pyrolysis of oil shale Figure 7. Establishment of

Amy, Gary L.

2013-01-01T23:59:59.000Z

360

CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE  

E-Print Network (OSTI)

from Characterization of Spent Shale s . , , . . . ,4. Preparation of Spent Shale Samples and Procedure forof Particular Types of Spent Shale References Appendix A.

Amy, Gary L.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mineral Sequestration of Carbon Dixoide in a Sandstone-Shale System  

E-Print Network (OSTI)

microfractures in geopressured shales. AAPG Bulletin 77(8),Porosimetry measurement of shale fabric and its relationshipof intra-aquifer shales and the relative effectiveness of

Xu, Tianfu; Apps, John A.; Pruess, Karsten

2004-01-01T23:59:59.000Z

362

Kerogen extraction from subterranean oil shale resources  

Science Conference Proceedings (OSTI)

The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

2010-09-07T23:59:59.000Z

363

Kerogen extraction from subterranean oil shale resources  

DOE Patents (OSTI)

The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

2009-03-10T23:59:59.000Z

364

Shale oil and shale gas resources are globally abundant - Today in ...  

U.S. Energy Information Administration (EIA)

Several nations have begun to evaluate and test the production potential of shale formations located in their countries. Poland, for example, ...

365

Method for retorting oil shale  

DOE Patents (OSTI)

The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

Shang, Jer-Yu; Lui, A.P.

1985-08-16T23:59:59.000Z

366

Devonian gas shales bibliography. Topical report  

Science Conference Proceedings (OSTI)

Reports and publications (1983 to May 1991) on Devonian shale research are listed by title. The reports cover topics such as geology, reservoirs, production, drilling technology, and gas yields.

Not Available

1991-05-01T23:59:59.000Z

367

Oil shale: a new set of uncertainties  

SciTech Connect

The discovery and delivery of North Sea oil has created an uncertain future for the British oil shale industry in spite of its lower price per barrel. While oil companies have long been interested in a secure shale oil source for chemical feedstocks, environmental concerns, mining difficulties, and inflated operating costs have counteracted the opportunity provided by the 1973 oil embargo. With the financial risks of oil shale mining and retorting too great for a single company, research efforts have shifted to a search for technologies that will be multistaged and less costly, such as in-situ mining, in-situ processing, and hydraulic fracturing. Successful testing and demonstration of these processes will determine the future commercial role of oil shales. 17 references and footnotes.

Schanz, J.J. Jr.; Perry, H.

1978-10-01T23:59:59.000Z

368

Oil shale. environmental and health issues  

SciTech Connect

Environmental and health issues include the solid-waste disposal problem; the possibility of the release of toxic and carcinogenic constituents into the environment; water requirements in a water-poor area; the potential air pollution problems; the low resource utilization of some of the processes; and the relative energy production compared with energy input. Such issues arise from the fact that it takes 1.5 tons of oil shale to make 1 bbl of oil, which, for a 1 million bbl/day industry, would require the processing of 480 million tons/yr of shale and would produce 390 million tons/yr of spent shale. The various oil shale processing technologies are briefly described.

Chappell, W.R.

1980-01-01T23:59:59.000Z

369

Kentucky Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Kentucky Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2 5 2010's 4 4...

370

Michigan Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Michigan Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 148 122 132...

371

Montana Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Montana Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 13 7 2010's 13...

372

Colorado Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Colorado Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 1 2010's 1 3...

373

Arkansas Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Arkansas Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 94 279 527 2010's...

374

Oklahoma Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Oklahoma Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 40 168 249 2010's...

375

Ohio Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) No chart available. Ohio Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

376

Wyoming Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) No chart available. Wyoming Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

377

Western States Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) No chart available. Western States Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

378

Ohio Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) No chart available. Ohio Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

379

Gas collection system for oil shale retort  

SciTech Connect

An in-situ oil shale retorting process is described in which a cavity filled with broken particles of oil shale is formed within the subsurface oil shale formation and air is forced down through the cavity to sustain combustion of the top layer of oil shale particles, the products of combustion being withdrawn at the bottom of the cavity. A plurality of exhaust pipes traverse the bottom of the cavity and extend out through the sealed entrance to the retort cavity. The pipes are supported above the floor of the cavity and have holes opening on the bottom side of the pipes through which the product gases are withdrawn from the cavity. Valves in each pipe control the flow so as to balance the flow distribution of air and exhaust gases through the retorting cavity.

Ridley, R.D.; Burton, R.S. III

1980-01-01T23:59:59.000Z

380

Insulated dipole antennas for heating oil shale  

Science Conference Proceedings (OSTI)

Insulated dipole antennas in the HF band are potentially useful in heating shale i n s i t u to extract oil. To help evaluate the efficiency of such antennas

John P. Casey; Rajeev Bansal

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Multiscale strength homogenization : application to shale nanoindentation  

E-Print Network (OSTI)

Shales are one of the most encountered materials in sedimentary basins. Because of their highly heterogeneous nature, their strength prediction for oil and gas exploitation engineering has long time been an enigma. In this ...

Gathier, Benjamin

2008-01-01T23:59:59.000Z

382

Dynamic rock fragmentation: oil shale applications  

SciTech Connect

Explosive rock fragmentation techniques used in many resource recovery operations have in the past relied heavily upon traditions of field experience for their design. As these resources, notably energy resources, become less accessible, it becomes increasingly important that fragmentation techniques be optimized and that methods be developed to effectively evaluate new or modified explosive deployment schemes. Computational procedures have significant potential in these areas, but practical applications must be preceded by a thorough understanding of the rock fracture phenomenon and the development of physically sound computational models. This paper presents some of the important features of a rock fragmentation model that was developed as part of a program directed at the preparation of subterranean beds for in situ processing of oil shale. The model, which has been implemented in a two-dimensional Lagrangian wavecode, employs a continuum damage concept to quantify the degree of fracturing and takes into account experimental observations that fracture strength and fragment dimensions depend on tensile strain rates. The basic premises of the model are considered in the paper as well as some comparisons between calculated results and observations from blasting experiments.

Boade, R. R.; Grady, D. E.; Kipp, M. E.

1980-01-01T23:59:59.000Z

383

Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.  

Science Conference Proceedings (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

Murphey, P. C.; Daitch, D.; Environmental Science Division

2009-02-11T23:59:59.000Z

384

In situ recovery of shale oil  

SciTech Connect

An in situ oil shale retort is formed in a subterranean oil shale deposit by excavating a columnar void having a vertically extending free face, drilling blasting holes adjacent to the columnar void and parallel to the free face, loading the blasting holes with explosive, and detonating the explosive in a single round to expand the shale adjacent to the columnar void toward the free face in layers severed in a sequence progressing away from the free face and to fill with fragmented oil shale the columnar void and the space in the in situ retort originally occupied by the expanded shale prior to the expansion. A room having a horizontal floor plan that coincides approximately with the horizontal cross section of the retort to be formed is excavated so as to intersect the columnar void. The blasting holes are drilled and loaded with explosive from the room. The room can lie above the columnar void, below the columnar void, or intermediate the ends of the columnar void. In one embodiment, the columnar void is cylindrical and the blasting holes are arranged in concentric rings around the columnar void. In another embodiment, the columnar void is a slot having one or more large parallel, planar vertical free faces, toward which the oil shale in the retort under construction can be explosively expanded. The blasting holes are arranged in planes parallel to these faces. The resulting retort generally has a cross section coinciding with the placement of the blasting holes and a height determined for the greater part by the vertical height of the columnar void. To form a retort having a large cross-sectional area, a plurality of columnar voids can be excavated and the shale in the retort expanded toward the respective columnar voids to form a continuous fragmented permeable mass of oil shale.

French, G.B.

1977-08-23T23:59:59.000Z

385

Devonian shale gas resource assessment, Illinois basin  

Science Conference Proceedings (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

1996-01-01T23:59:59.000Z

386

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

SciTech Connect

Low cost material is needed for grouting abandoned retorts. Experimental work has shown that a hydraulic cement can be produced from Lurgi spent shale by mixing it in a 1:1 weight ratio with limestone and heating one hour at 1000C. With 5% added gypsum, strengths up to 25.8 MPa are obtained. This cement could make an economical addition up to about 10% to spent shale grout mixes, or be used in ordinary cement applications.

Mehta, P.K.; Persoff, P.; Fox, J.P.

1980-06-01T23:59:59.000Z

387

Reverse combustion oil-shale retorting  

DOE Green Energy (OSTI)

Oil shale was retorted in a laboratory retort with the flame front and gas flow moving concurrently and countercurrently. Results indicate countercurrent flow produced a lower oil yield and a higher heating value of the retort gas than concurrent flow. Energy recovery from the oil shale was essentially the same when the retorting was done with either concurrent or countercurrent flame and gas movement. Laboratory results are compared with large scale retorts operated under similar conditions.

Jacobson, I.A. Jr.; Dockter, L.

1979-06-01T23:59:59.000Z

388

Environmental control costs for oil shale processes  

SciTech Connect

The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.

1979-10-01T23:59:59.000Z

389

Economic Impact of Reservoir Properties, Horizontal Well Length and Orientation on Production from Shale Formations: Application to New  

E-Print Network (OSTI)

Shale (Devonian-Mississippian) of southeastern Indiana, in Proceedings, 1989 Eastern Oil Shale Symposium

Mohaghegh, Shahab

390

Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales  

SciTech Connect

The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

Morea, Michael F.

1999-11-01T23:59:59.000Z

391

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network (OSTI)

measured mercury levels in shale gases and waters. The TLV'srecovery shale Spent shale gas (wet) CS~35 cs~s6 CS-57 CS-59on large areas of the shale bed if gas channeling and

Fox, J. P.

2012-01-01T23:59:59.000Z

392

USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES  

E-Print Network (OSTI)

Minor Elements in Oil Shale and Oil-Shale Products. LERC RIChemistry of Tar Sands and Oil Shale, ACS, New Orleans.Constituent Analysis of Oil Shale and Solvent-Refined Coal

Girvin, D.G.

2011-01-01T23:59:59.000Z

393

INTERCOMPARISON STUDY OF ELEMENTAL ABUNDANCES IN RAW AND SPENT OIL SHALES  

E-Print Network (OSTI)

Minor Elements ~n Oil Shale and Oil-Shale Products. LERC RI-Analytical Chemistry of Oil Shale and Tar Sands. Advan. inFischer Assay of Standard Oil-Shale Sample. Preprints, Div.

Fox, J.P.

2011-01-01T23:59:59.000Z

394

Summary of the setting, air quality problems, and meteorological activities in the oil shale region  

SciTech Connect

This document discusses air quality problems that may arise in the valleys of the Uinta mountains and the Roan Ridge in the oil shale area in western Colorado and eastern Utah. A meteorological field expedition that was undertaken in August 1980 by LASL and PNL is described. (DLC)

Barr, S.; Clements, W.E.

1981-01-01T23:59:59.000Z

395

Two-stage oil shale retorting process and disposal of spent oil shale  

SciTech Connect

Formation is excavated from an in situ oil shale retort site for forming at least one void within the retort site, leaving at least one remaining zone of unfragmented formation within the retort site adjacent such a void. The remaining zone is explosively expanded toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in an in situ oil shale retort. Oil shale in the in situ retort is retorted to produce liquid and gaseous products, leaving a mass of spent oil shale particles in the in situ retort. Oil shale particles excavated from the in situ retort site are separately retorted, such as in a surface retorting operation, producing liquid and gaseous products and spent surface retorted oil shale particles. The spent surface retorted particles are disposed of by forming an aqueous slurry of the particles, and pumping the slurry into a spent in situ retort. In one embodiment, the aqueous slurry is introduced into a hot lower portion of the spent retort where contact with hot spent oil shale particles generates steam which, in turn, is withdrawn from the spent retort in usable form. In another embodiment, water from the aqueous slurry introduced into a spent in situ retort collects at a level within the retort. The water can be recovered by drilling a drainage hole upwardly from a lower level drift into the level within the spent retort where the water collects and draining the water through the drainage hole to the lower level drift for recovery.

Tassoney, J.P.

1983-04-12T23:59:59.000Z

396

Transport in shales and the design of improved water-based shale drilling fluids  

Science Conference Proceedings (OSTI)

Transport of water and ions in shales and its impact on shale stability were studied to facilitate the improvement of water-based muds as shale drilling fluids. Transport parameters associated with flows driven by gradients in pressure and chemical potential were quantified in key laboratory and full-scale experiments. The experimental results show that the low-permeability matrices of intact, clay-rich shales can act as imperfect or leaky membranes that will sustain osmotic flow of water. Moreover, the ability of shales to act as osmotic membranes is shown to provide a powerful new means for stabilizing these rocks when exposed to water-based drilling fluids. Guidelines are presented for effective exploitation of shale membrane action and induced osmotic flows through optimized water-based drilling fluid formulation. In addition, special attention is given to induced electro-osmotic water flow in shales driven by electric potential gradients, which may provide an exciting, new, environmentally benign means for stabilizing shale formations.

Oort, E. van; Hale, A.H.; Mody, F.K.; Roy, S.

1996-09-01T23:59:59.000Z

397

Pressurized fluidized-bed hydroretorting of Eastern oil shales oil dedusting. Subtask 3.4, Electroseparation of fines from shale oil  

SciTech Connect

This Topical Report on ``Shale Oil Dedusting`` presents the results of a research program conducted by the Illinois Institute of Technology (IIT, Chicago) to determine the suitability and effectiveness of the lamella electrosettler -- a novel solid-liquid separation device -- for removing fine shale particles from shale oil via the application of an electric field. The work was conducted by IIT from November 1989 through December 1990 as a subcontractor to the Institute of Gas Technology. The overall objective of the larger program was to develop the ``Pressurized Fluidized-Bed Hydroretorting (PFH) Process for EasternOil Shales.`` The subtask undertaken by IIT was part of a larger task entitled ``Testing of Process Improvement Concepts.`` The lamella electrosettler has been shown to be an effective method for separating fine particulate (including colloidal) matter from a liquid using the application of an electric field. Using the walls of the settler as electrodes and during continuous operation, solids migrate preferentially toward one of the electrodes and become concentrated in the refuse stream. The product stream is clarified of particulates. The success of the process depends upon the physical properties of the solids and liquids being tested. A sample with a high specific conductance is not suitable for separation in the lamella electrosettler. The liquid begins to heat up under the influence of the electric field and, eventually, may short. Also, under these conditions, the particles cannot maintain a charge. The high conductivity of the shale oil samples tested rendered them unsuitable for further testing in the lamella electrosettler.

Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Gidaspow, D.; Jayaswal, U.; Wasan, D.T. [Illinois Inst. of Tech., Chicago, IL (United States)

1991-11-01T23:59:59.000Z

398

In-situ laser retorting of oil shale  

SciTech Connect

Oil shale formations were retorted in-situ and gaseous hydrocarbon products recovered by drilling two or more wells into an oil shale formation. After fracturing a region of oil shale formation by directing a high energy laser beam into one of the wells and focussing the laser beam into a region of oil shale formation from a laser optical system, compressed gas was forced into the well which supports combustion in the flame front ignited by laser beam, thereby retorting the oil shale and recovering gaseous hydrocarbon products which permeate through the fractured oil shale from one of the auxiliary wells.

Bloomfield, H.S.

1977-01-28T23:59:59.000Z

399

Method for maximizing shale oil recovery from an underground formation  

DOE Patents (OSTI)

A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

Sisemore, Clyde J. (Livermore, CA)

1980-01-01T23:59:59.000Z

400

Investigation of sorption interactions between organic and mineral phases of processed oil shale  

Science Conference Proceedings (OSTI)

Minerals and organic compounds representative of oil shale processing wastes were analyzed for potential sorption interactions. The analysis consisted of Fourier Transform Infrared spectroscopy, high performance liquid chromatography, thermogravimetric and differential scanning calorimetry, and laser Raman spectroscopy. Montmorillonite clay was used as a representative of the smectites found in raw and spent shales, and hematite was used as a representative of iron oxide found in spent shales. Benzene, 2,2,4-trimethylpentane, benzoic acid, sodium benzoate, and pyridine were used as representatives of oil shale process organic wastes. In addition, isopropylamine and dimethyl methylphosphonate, a pesticide model, were studied. A preparation methods comparison study was performed and established the validity of the solid state KBr sample preparation technique upon FTIR spectral quality. The results of this study illustrate the utility of fourier transform infrared spectroscopic analysis to establish and describe the potential for sorption interactions between inorganic and organic phases of oil shale processing wastes. Experimentation with the laser remain system shows promise for significant contributions in this field of research. 43 refs., 3 figs., 6 tabs.

Blanche, M. S.; Bowen, J. M.

1987-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT  

E-Print Network (OSTI)

or by refin- ing and using shale Oil Mass balances and oil.shale retorting produces shale oil, mobility factors wereand retort operating shale, shale oil, retorting (LETC) con-

Fox, J. P.

2011-01-01T23:59:59.000Z

402

Summary of the oil shale fragmentation program at Anvil Points Mine, Colorado  

SciTech Connect

During 1981 and 1982, an extensive oil shale fragmentation research program was conducted at the Anvil Points Mine near Rifle, Colorado. The primary goals were to investigate factors involved for adequate fragmentation of oil shale and to evaluate the feasibility of using the modified in situ retort (MIS) method for recovery of oil from oil shale. The test program included single-deck, single-borehole tests to obtain basic fragmentation data; multiple-borehole, multiple-deck explosive tests to evaluate practical aspects for developing an in situ retort; and the development of a variety of instrumentation techniques to diagnose the blasting event. This paper will present an outline of the field program, the type of instrumentation used, some typical results from the instrumentation, and a discussion of explosive engineering problems encountered over the course of the program. 4 references, 21 figures, 1 table.

Dick, R.D.; Young, C.; Fourney, W.L.

1984-01-01T23:59:59.000Z

403

Control strategies for mitigation of oil-shale-related-water quality concerns  

SciTech Connect

A comprehensive study of in situ retorting at the Logan Wash has indicated the importance of developing baseline information including raw shale characterization, the elucidation of mineralogical and chemical controls on trace element mobilities from shales subjected to in situ processing, and the research necessary to identify strategies for control of recognized environmental impacts. It is impossible to assess the magnitude of trace element releases to be expected from a commercial in situ facility once banks of retorts or the entire facility is abandoned and dewatering of the area is concluded. However, laboratory-scale studies can indeed identify the relative environmental acceptability of spent shale materials generated by in situ processing. In this research, an attempt was made to relate mineralogy and leaching behavior of field-generated materials with leachate composition and solution chemical processes. The interaction of these factors will ultimately affect the impact of in situ processing on surface and groundwater quality.

Peterson, E.J.; Wagner, P.

1981-01-01T23:59:59.000Z

404

Retorting of oil shale followed by solvent extraction of spent shale: Experiment and kinetic analysis  

Science Conference Proceedings (OSTI)

Samples of El-Lajjun oil shale were thermally decomposed in a laboratory retort system under a slow heating rate (0.07 K/s) up to a maximum temperature of 698--773 K. After decomposition, 0.02 kg of spent shale was extracted by chloroform in a Soxhlet extraction unit for 2 h to investigate the ultimate amount of shale oil that could be produced. The retorting results indicate an increase in the oil yields from 3.24% to 9.77% of oil shale feed with retorting temperature, while the extraction results show a decrease in oil yields from 8.10% to 3.32% of spent shale. The analysis of the data according to the global first-order model for isothermal and nonisothermal conditions shows kinetic parameters close to those reported in literature.

Khraisha, Y.H.

2000-05-01T23:59:59.000Z

405

Can We Accurately Model Fluid Flow in Shale?  

NLE Websites -- All DOE Office Websites (Extended Search)

Can We Accurately Model Fluid Flow Can We Accurately Model Fluid Flow in Shale? Can We Accurately Model Fluid Flow in Shale? Print Thursday, 03 January 2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to the heyday of easy-to-tap gas and liquid crude. The source of shale oil and gas is kerogen, an organic material in the shale, but until now kerogen hasn't been incorporated in mathematical models of shale gas reservoirs. Paulo Monteiro, Chris Rycroft, and Grigory Isaakovich Barenblatt, with the Computational Research Division and the Advanced Light Source, recently modeled how pressure gradients in the boundary layer between kerogen inclusions and shale matrices affect productivity and can model reservoir longevity.

406

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

Controls for a Commercial Oil Shale In~try, Vol. I, An En~in Second Briefing on In-Situ Oil Shale Technology, LawrenceHeley, Water Management ln Oil Golder Associates, Kirkland,

Persoff, P.

2011-01-01T23:59:59.000Z

407

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

408

Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(SEAB) on Shale Gas Production Posts Draft Report Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale Gas Production Posts Draft Report November 10, 2011 - 1:12pm...

409

DOE's Shale Gas and Hydraulic Fracturing Research | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Shale Gas and Hydraulic Fracturing Research DOE's Shale Gas and Hydraulic Fracturing Research April 26, 2013 - 11:05am Addthis Statement of Guido DeHoratiis Acting Deputy...

410

Projected natural gas prices depend on shale gas resource ...  

U.S. Energy Information Administration (EIA)

Because shale gas production is projected to be a large proportion of U.S. and North American gas production, changes in the cost and productivity of U.S. shale gas ...

411

Material invariant properties of shales : nanoindentation and microporoelastic analysis  

E-Print Network (OSTI)

Shales compose the major part of sedimentary rocks and cover most of hydrocarbon bearing reservoirs. Shale materials are probably one of the most complex natural composites, and their mechanical properties are still an ...

Delafargue, A. (Antoine), 1981-

2005-01-01T23:59:59.000Z

412

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

OSullivan, Francis Martin

413

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

E-Print Network (OSTI)

ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P.Cement Manufacture from Oil Shale, U.S. Patent 2,904,445,203 (1974), E. D. York, Amoco Oil Co. , letter to J, P. Fox,

Mehta, P.K.

2012-01-01T23:59:59.000Z

414

U.S. Shale Proved Reserves Revision Increases (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves Revision Increases (Billion Cubic Feet) U.S. Shale Proved Reserves Revision Increases (Billion Cubic Feet)...

415

New Mexico--East Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) New Mexico--East Shale Proved Reserves (Billion Cubic Feet) New Mexico--East Shale Proved Reserves (Billion Cubic Feet) Decade Year-0...

416

U.S. Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves (Billion Cubic Feet) U.S. Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

417

Texas--RRC District 8 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 8 Shale Production (Billion Cubic Feet) Texas--RRC District 8 Shale Production (Billion Cubic Feet) Decade Year-0...

418

New Mexico--West Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) New Mexico--West Shale Proved Reserves (Billion Cubic Feet) New Mexico--West Shale Proved Reserves (Billion Cubic Feet) Decade Year-0...

419

New Mexico--West Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) New Mexico--West Shale Production (Billion Cubic Feet) New Mexico--West Shale Production (Billion Cubic Feet) Decade Year-0 Year-1...

420

Texas--RRC District 6 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 6 Shale Production (Billion Cubic Feet) Texas--RRC District 6 Shale Production (Billion Cubic Feet) Decade Year-0...

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

New Mexico--East Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) New Mexico--East Shale Production (Billion Cubic Feet) New Mexico--East Shale Production (Billion Cubic Feet) Decade Year-0 Year-1...

422

Texas--RRC District 9 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 9 Shale Production (Billion Cubic Feet) Texas--RRC District 9 Shale Production (Billion Cubic Feet) Decade Year-0...

423

U.S. Shale Proved Reserves Revision Decreases (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves Revision Decreases (Billion Cubic Feet) U.S. Shale Proved Reserves Revision Decreases (Billion Cubic Feet)...

424

Texas--RRC District 1 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 1 Shale Production (Billion Cubic Feet) Texas--RRC District 1 Shale Production (Billion Cubic Feet) Decade Year-0...

425

U.S. Shale Proved Reserves Extensions (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves Extensions (Billion Cubic Feet) U.S. Shale Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0...

426

U.S. Shale Proved Reserves Adjustments (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves Adjustments (Billion Cubic Feet) U.S. Shale Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0...

427

U.S. Shale Proved Reserves Sales (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves Sales (Billion Cubic Feet) U.S. Shale Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1...

428

Texas--RRC District 5 Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 5 Shale Production (Billion Cubic Feet) Texas--RRC District 5 Shale Production (Billion Cubic Feet) Decade Year-0...

429

Recent trends in oil shale. I. History, nature, and reserves  

SciTech Connect

To understand the current level of oil shale development and to anticipate some of the problems that will govern the growth rate of the domestic shale oil industry, this bulletin will discuss these issues in three parts. In this MIB, the nature of oil shale is discussed and a brief history of oil shale development is presented. The worldwide and domestic oil shale resources are described, with emphasis on recent geologic exploration of the Green River formation. Part II will cover oil shale mining and fuel extraction while Part III will discuss technical problems of shale oil refining and some economic and social problems of oil shale development. An extensive bibliography is provided. (MCW)

Sladek, T.A.

1974-11-01T23:59:59.000Z

430

Can We Accurately Model Fluid Flow in Shale?  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to...

431

A study on the Jordanian oil shale resources and utilization  

Science Conference Proceedings (OSTI)

Jordan has significant oil shale deposits occurring in 26 known localities. Geological surveys indicate that the existing deposits underlie more than 60% of Jordan's territory. The resource consists of 40 to 70 billion tones of oil shale

Ahmad Sakhrieh; Mohammed Hamdan

2012-01-01T23:59:59.000Z

432

The Naval Petroleum and Oil Shale Reserves | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserves To ensure sufficient fuel for the fleet, the Government began withdrawing probable oil-bearing...

433

California--onshore Natural Gas Gross Withdrawals from Shale...  

U.S. Energy Information Administration (EIA) Indexed Site

onshore Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) California--onshore Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Decade Year-0 Year-1...

434

Texas--onshore Natural Gas Gross Withdrawals from Shale Gas ...  

U.S. Energy Information Administration (EIA) Indexed Site

from Shale Gas (Million Cubic Feet) Texas--onshore Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

435

Louisiana--onshore Natural Gas Gross Withdrawals from Shale Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

from Shale Gas (Million Cubic Feet) Louisiana--onshore Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

436

Gulf Shale Oil Upgrading Process technology  

SciTech Connect

A description of the Gulf Shale Oil Hydrotreating Process, which is designed for upgrading full range shale oil to premium quality synthetic crude, is presented. The process consists of two sections: a low severity pretreating section which stabilizes the raw oil, removes iron, arsenic, trace metals and particulates, and sulfur; and a twostage, high severity hydrotreating section which completes the upgrading. The second section hydrotreats the bulk oil to a specified nitrogen content, allowing for a quality FCC feedstock in the 650F+ (343C+) residue. The main reactor effluent is flashed with subsequent hydrotreating of the flash vapor oil to achieve a low nitrogen level in the naphtha and middle distillate. The benefit of this flash configuration is hydrogen addition selectivity which maximizes syncrude quality while minimizing overall hydrogen consumption; this selectivity relationship is detailed. Finally, the product quality of the syncrudes produced with the Gulf Shale Oil Hydrotreating Process using shale oils derived from three different retort technologies and for Western and Eastern shales are discussed.

Jones, W.; Antezana, F.J.; Cugini, A.V.; Lyzinski, D.; Miller, J.B.

1984-04-01T23:59:59.000Z

437

System for utilizing oil shale fines  

DOE Patents (OSTI)

A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

Harak, Arnold E. (Laramie, WY)

1982-01-01T23:59:59.000Z

438

Computer simulation of explosive fracture of oil shale  

SciTech Connect

The steps in assembling the computational tools needed to simulate the explosive fracture of oil shale have been described. The resulting code, with its input data, was then used to simulate three explosive field experiments. The results of the calculations are in good agreement with what actually occurred in the field. Further detailed comparisons are in progress for these experiments and the others that have been conducted. As this is done, improvements will be made in the input data and in the code physics. The development of computer codes as tools to predict rock breakage makes a variety of interesting studies possible. The properties of the explosive can be changed to see how the extent of rubbling is affected. Studies of spacing and delays for decked charges are also possible. Finally, the codes can be applied in situations, such as confined-volume blasting, at the frontiers of blasting technology. These areas are vital to the effective utilization of our oil shale resources, especially with in situ techniques. Computer simulation will play a central role in the development of new technology for energy and mineral resource recovery.

Adams, T.F.

1980-01-01T23:59:59.000Z

439

Projected natural gas prices depend on shale gas resource ...  

U.S. Energy Information Administration (EIA)

... Quarterly Coal Report Monthly Energy Review Residential Energy ... Solar Energy in Brief. What's ... to test the influence of shale gas ...

440

Process concept of retorting of Julia Creek oil shale  

SciTech Connect

A process is proposed for the above ground retorting of the Julia Creek oil shale in Queensland. The oil shale characteristics, process description, chemical reactions of the oil shale components, and the effects of variable and operating conditions on process performance are discussed. The process contains a fluidized bed combustor which performs both as a combustor of the spent shales and as a heat carrier generator for the pyrolysis step. 12 references, 5 figures, 5 tables.

Sitnai, O.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Gas withdrawal from an in situ oil shale retort  

SciTech Connect

Liquid and gaseous products are recovered from oil shale in an in situ oil shale retort containing a fragmented permeable mass of particles containing oil shale by retorting oil shale in the fragmented mass to produce gaseous and liquid products. The liquid products are withdrawn from the retort to a first level in unfragmented formation below the elevation of the bottom boundary of the retort. Gaseous products are withdrawn from the retort to a second level below the elevation of the first level.

Mills, E.A.

1979-02-20T23:59:59.000Z

442

Technology drives natural gas production growth from shale ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Rapid increases in natural gas production from shale gas formations resulted from widespread application ...

443

Colorado oil shale: the current status, October 1979  

DOE Green Energy (OSTI)

A general background to oil shale and the potential impacts of its development is given. A map containing the names and locations of current oil shale holdings is included. The history, geography, archaeology, ecology, water resources, air quality, energy resources, land use, sociology, transportation, and electric power for the state of Colorado are discussed. The Colorado Joint Review Process Stages I, II, and III-oil shale are explained. Projected shale oil production capacity to 1990 is presented. (DC)

Not Available

1979-01-01T23:59:59.000Z

444

Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA)

Shale Gas (Billion Cubic Feet) Area: ... Annual : Download Series History: ... Estimated Production : 0: 0: 0: 0: 0: 2007-2011

445

Oil shale resources of the Naval Oil Shale Reserve No. 1, Colorado  

SciTech Connect

The resource of potential oil represented by Green River Formation oil shale on Naval Oil Shale Reserve No. 1 (NOSR No. 1) in the southeast corner of Colorado's Piceance Creek Basin is evaluated in detail. NOSR No. 1 is the site of intensive long-term oil-shale development studies and is the source of innumerable oil-shale samples for all manner of testing. A brief history of these studies is presented. This oil-shale resource is defined from oil-yield assay data on 33 cores plotted as histograms and correlated into cross sections. Contour maps of thickness, richness and oil resource in place are presented for the Mahogany Zone, the rich zone in the Mahogany zone, and for 2 units beneath and 5 units above the Mahogany zone. Total oil shale resource on NOSR No. 1 is 20.4 billion barrels of which 17.4 billion barrels are particularly suitable for development by vertical modified in-place processes. A previously unknown Mahogany zone outcrop providing much additional development access is described. Now under sole control of the US Department of Energy (DOE), NOSR No. 1 offers DOE a unique site for oil shale testing and development.

Smith, J.W.; Beard, T.N.; Trudell, L.G.

1979-06-01T23:59:59.000Z

446

Water's Journey Through the Shale Gas Drilling and  

E-Print Network (OSTI)

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas in the Marcellus shale natural gas industry in the Mid-Atlantic region. Using publicly available information, we

Maranas, Costas

447

The Public Health Implications of Marcellus Shale Activities  

E-Print Network (OSTI)

INCIDENT #12;#12;#12;Implications of the Gulf Oil Spill to Marcellus Shale Activities - EnvironmentalThe Public Health Implications of Marcellus Shale Activities Bernard D. Goldstein, MD Department using Data.FracTracker.org. #12;Drilling Rig in Rural Upshur County, WV Source: WVSORO, Modern Shale Gas

Sibille, Etienne

448

Pyrolysis kinetics for western and eastern oil shale  

DOE Green Energy (OSTI)

Oil yield and kinetic results are reviewed for Western (Colorado Mahogany zone) and Eastern (Sunbury and Ohio (Cleveland member)) oil shales for conditions ranging from those encountered in in-situ processing to those in fluidized-bed retorting. The authors briefly summarize kinetic models for the pyrolysis reactions. Oil yields from Eastern shale are much more sensitive to pyrolysis conditions than Western shale.

Burnham, A.K.; Coburn, T.T.; Richardson, J.H.

1982-08-01T23:59:59.000Z

449

Noncontacting benchtop measurements of the elastic properties of shales  

E-Print Network (OSTI)

Noncontacting benchtop measurements of the elastic properties of shales Thomas E. Blum1 , Ludmila the elastic anisotropy of horizontal shale cores. Whereas conventional transducer data contained an ambigu shales were almost surely exaggerated by delamination of clay platelets and microfracturing, but provided

Boise State University

450

Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers  

E-Print Network (OSTI)

Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers by Tom Myers Abstract Hydraulic fracturing of deep shale beds to develop natural gas has caused concern regarding the potential and preferential flow through fractures--could allow the transport of contaminants from the fractured shale

451

Paleoecology of the Greater Phyllopod Bed community, Burgess Shale  

E-Print Network (OSTI)

Paleoecology of the Greater Phyllopod Bed community, Burgess Shale Jean-Bernard Caron , Donald A and composition, ecological attributes, and environmental influences for the Middle Cambrian Burgess Shale ecosystems further suggest the Burgess Shale community was probably highly dependent on immigration from

Jackson, Don

452

CONSIDERING SHALE GAS EXTRACTION IN NORTH CAROLINA: LESSONS FROM OTHER  

E-Print Network (OSTI)

257 CONSIDERING SHALE GAS EXTRACTION IN NORTH CAROLINA: LESSONS FROM OTHER STATES SARAH K. ADAIR Carolina Geological Survey (NCGS) announced the existence of shale gas underlying the Deep and Dan River and the state legislature began to consider policy changes that would be necessary to develop the shale gas

Jackson, Robert B.

453

World Shale Gas Resources: An Initial Assessment of 14 Regions  

E-Print Network (OSTI)

World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States APRIL 2011 in this overview is based on the report "World Shale Gas Resources: An Initial Assessment," which was prepared | World Shale Gas Resources: An Initial Assessment 1 Background The use of horizontal drilling

Boyer, Elizabeth W.

454

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

455

Shale Gas and the Environment: Critical Need for a  

E-Print Network (OSTI)

Shale Gas and the Environment: Critical Need for a Government­University­Industry Research Initiative P o l i c y m a k e r G u i d e #12;Shale gas production is increasing at a rapid rate initiative is needed to fill critical gaps in knowledge at the interface of shale gas development

McGaughey, Alan

456

Shale gas production: potential versus actual greenhouse gas emissions*  

E-Print Network (OSTI)

Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

457

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development  

E-Print Network (OSTI)

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st century new we focused on the case of un- conventional natural gas recovery from the Marcellus shale In addition

Walter, M.Todd

458

Evolution of Marine Invertebrates and the Burgess Shale Fossils  

E-Print Network (OSTI)

Evolution of Marine Invertebrates and the Burgess Shale Fossils Geology 331, Paleontology #12 #12;Burgess Shale Fossils · Most are soft-bodied fossils, a very rare kind of fossilization. · Of today's 32 living phyla, 15 are found in the Burgess Shale. The other 17 are microscopic or too delicate

Kammer, Thomas

459

SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale  

E-Print Network (OSTI)

SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale M. O. Eshkalak, SPE, S. D of hydrocarbons from the reservoirs, notably shale, is attributed to realizing the key fundamentals of reservoir and mineralogy is crucial in order to identify the "right" pay-zone intervals for shale gas production. Also

Mohaghegh, Shahab

460

NATURAL GAS FROM SHALE: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Representation of common equipment at a natural gas hydraulic fracturing drill pad. Representation of common equipment at a natural gas hydraulic fracturing drill pad. How is Shale Gas Produced? Shale gas formations are "unconventional" reservoirs - i.e., reservoirs of low "permeability." Permeability refers to the capacity of a porous, sediment, soil - or rock in this case - to transmit a fluid. This contrasts with a "conventional" gas reservoir produced from sands and carbonates (such as limestone). The bottom line is that in a conventional reservoir, the gas is in interconnected pore spaces, much like a kitchen sponge, that allow easier flow to a well; but in an unconventional reservoir, like shale, the reservoir must be mechanically "stimulated" to

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Oil shale retorting and combustion system  

DOE Patents (OSTI)

The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

Pitrolo, Augustine A. (Fairmont, WV); Mei, Joseph S. (Morgantown, WV); Shang, Jerry Y. (Fairfax, VA)

1983-01-01T23:59:59.000Z

462

Economic enhancement of Western shale oil upgrading  

DOE Green Energy (OSTI)

A proof-of-concept study for a novel shale oil refining process was undertaken. This project promises reduced upgrading costs, thereby making shale oil development more feasible for commercialization. The process consists of distillation of raw shale oil into a distillate and residue portion, cracking of the residue by hydropyrolysis, and selective hydrotreating of narrow boiling cuts from the total distillate. Based on models and experimental data, the end product slate is projected to be 34% naphtha, 57% middle distillate, and 10.3% atm residue + coke. Hydrogen addition is 1.3% or 800 scf/bbl. These results are considerably improved over conventional processing, which gives 14% naphtha, 41% middle distillate, and 48.2% residue + coke and hydrogen addition of 3.2% or 2000 scf/bbl. More quantitative data and preliminary economics will be obtained in the next phase of study. 13 refs., 3 figs., 6 tabs.

Bunger, J. W.; Ryu, H.; Jeong, S. Y.

1989-07-01T23:59:59.000Z

463

Oil degradation during oil shale retorting. [Effects on oil yields from powdered shale  

DOE Green Energy (OSTI)

Recent experimental data demonstrating the effects of varied thermal histories on oil yield from powdered Colorado shale are reviewed. Losses in overall yield resulting from interruption of a rapid heating schedule with an isothermal holding period are directly related to the amounts of oil that are produced during the holding period. These amounts are also correlated with the inert gas flow rates required to raise the yields to the assay value. The results show that degradation of oil outside the shale particles is the major determinant of oil yield from powdered shale. Maximum thermal degradation rates are calculated from these data and compared with pyrolysis rates for petroleum fractions.

Raley, J.H.; Braun, R.L.

1976-05-24T23:59:59.000Z

464

Prototype oil-shale leasing program. Volume I. Regional impacts of oil shale development. [Colorado, Wyoming, Utah  

SciTech Connect

This action would make available for private development up to 6 leases of public oil shale lands of not more than 5,120 acres each. Two tracts are located in each of the states of Colorado, Utah, and Wyoming. Oil shale development would produce both direct and indirect changes in the environment of the oil shale region in each of the 3 states where commercial quantities of oil shale resources exist.

1973-08-29T23:59:59.000Z

465

Experimental work on oil shale at Lawrence Livermore Laboratory and predictions of retorting characteristics of oil shale. [RISE  

SciTech Connect

An experimental program is being carried out to advance oil-shale retorting technology. This paper summarizes some results of laboratory and pilot retorting and gives the reactions of oil-shale char with gases. A computer model of the retorting process has been compared with retort experiments and has been used to predict in situ retorts under various operating conditions. Finally, the results of a retort using Negev (Israel) oil shale are compared with those using Colorado oil shale.

Rothman, A.J.; Lewis, A.E.

1977-06-21T23:59:59.000Z

466

FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR  

E-Print Network (OSTI)

viable is the recovery of shale oil from our substantialdeposits of oil shale (1). Shale oil is recovered from oilproduce~ along with the shale oil, considerable amounts of

Fish, Richard H.

2013-01-01T23:59:59.000Z

467

HTGR application for shale-oil recovery  

SciTech Connect

The High-Temperature Gas-Cooled Reactor (HTGR) utilizes a graphite-moderated core and helium as primary coolant. Developed for electric power production, the 842-MW(t) (330-MW(e)) Fort St. Vrain plant is currently operating at Platteville, Colorado. Studies have been performed that couple steam produced at 540/sup 0/C (1000/sup 0/F) and 17 MPa (2500 psia) to two oil shale processes: the Paraho indirect retorting and the Marathon direct steam retorting. The plant, consisting of two 1170-MW(t) HTGR's, would also produce electric power for other shale operations. Results show economic and environmental advantages for the coupling.

Quade, R.N.; Rao, R.

1983-04-01T23:59:59.000Z

468

HTGR application for shale oil recovery  

SciTech Connect

The High-Temperature Gas-Cooled Reactor (HTGR) utilizes a graphite-moderated core and helium as primary coolant. Developed for electric power production, the 842-MW(t) (330-MW(e)) Fort St. Vrain plant is currently operating at Platteville, Colorado. Studies have been performed that couple steam produced at 540/sup 0/C (1000/sup 0/F) and 17 MPa (2500 psia) to two oil shale processes: the Paraho indirect retorting and the Marathon direct steam retorting. The plant, consisting of two 1170-MW(t) HTGR's, would also produce electric power for other shale operations. Results show economic and environmental advantages for the coupling.

Quade, R.N.; Rao, R.

1983-04-01T23:59:59.000Z

469

Shale caprock integrity under carbon sequestration conditions  

Science Conference Proceedings (OSTI)

Carbon sequestration technology requires injection and storage of large volumes of carbon dioxide ( CO 2 ) in subsurface geological formations. Shale caprock which constitutes more than 60% of effective seals for geologic hydrocarbon bearing formations are therefore of considerable interest in underground CO 2 storage into depleted oil and gas formations. This study investigated experimentally shale caprocks geophysical and geochemical behavior when in contact with aqueous CO 2 over a long period of time. The primary concern is a potential increase in hydraulic conductivity of clay-rich rocks as a result of acidic brine-rock minerals geochemical interactions. Both

Abiola Olabode; Lauren Bentley; Mileva Radonjic

2012-01-01T23:59:59.000Z

470

Shale we look for gas?............................................................................. 1 The Marcellus shale--An old "new" gas reservoir in Pennsylvania ............ 2  

E-Print Network (OSTI)

#12;CONTENTS Shale we look for gas?............................................................................. 1 The Marcellus shale--An old "new" gas reservoir in Pennsylvania ............ 2 Meet the staff, the contour interval should be 6 inches. #12;STATE GEOLOGIST'S EDITORIAL Shale We Look For Gas? Recently, you

Boyer, Elizabeth W.

471

Methodology of organic-rich shale lithofacies identification and prediction: A case study from Marcellus Shale in the Appalachian basin  

Science Conference Proceedings (OSTI)

The success of shale gas in North America has attracted increased interest in ''unconventional'' reservoirs. Two critical factors for shale-gas reservoirs are units amenable to hydrologic fracture stimulation and sufficient natural gas content. The effectiveness ... Keywords: Lithofacies, Marcellus Shale, Mineral composition, Organic matter richness

Guochang Wang; Timothy R. Carr

2012-12-01T23:59:59.000Z

472

Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas  

E-Print Network (OSTI)

Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

Ge, Zigang

473

Assessment and control of water contamination associated with shale oil extraction and processing. Progress report, October 1, 1979-September 30, 1980  

SciTech Connect

The Los Alamos National Laboratory's research on assessment and control of water contamination associated with oil shale operations is directed toward the identification of potential water contamination problems and the evaluation of alternative control strategies for controlling contaminants released into the surface and underground water systems from oil-shale-related sources. Laboratory assessment activities have focused on the mineralogy, trace element concentrations in solids, and leaching characteristics of raw and spent shales from field operations and laboratory-generated spent shales. This report details the chemical, mineralogic, and solution behavior of major, minor, and trace elements in a variety of shale materials (spent shales from Occidental retort 3E at Logan Wash, raw shale from the Colony mine, and laboratory heat-treated shales generated from Colony mine raw shale). Control technology research activities have focused on the definition of control technology requirements based on assessment activities and the laboratory evaluation of alternative control strategies for mitigation of identified problems. Based on results obtained with Logan Wash materials, it appears that the overall impact of in situ processing on groundwater quality (leaching and aquifer bridging) may be less significant than previously believed. Most elements leached from MIS spent shales are already elevated in most groundwaters. Analysis indicates that solubility controls by major cations and anions will aid in mitigating water quality impacts. The exceptions include the trace elements vanadium, lead, and selenium. With respect to in situ retort leaching, process control and multistaged counterflow leaching are evaluated as alternative control strategies for mitigation of quality impacts. The results of these analyses are presented in this report.

Peterson, E.J.; Henicksman, A.V.; Fox, J.P.; O' Rourke, J.A.; Wagner, P.

1982-04-01T23:59:59.000Z

474

Pressurized fluidized-bed hydroretorting of Eastern oil shales oil dedusting  

SciTech Connect

This Topical Report on Shale Oil Dedusting'' presents the results of a research program conducted by the Illinois Institute of Technology (IIT, Chicago) to determine the suitability and effectiveness of the lamella electrosettler -- a novel solid-liquid separation device -- for removing fine shale particles from shale oil via the application of an electric field. The work was conducted by IIT from November 1989 through December 1990 as a subcontractor to the Institute of Gas Technology. The overall objective of the larger program was to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for EasternOil Shales.'' The subtask undertaken by IIT was part of a larger task entitled Testing of Process Improvement Concepts.'' The lamella electrosettler has been shown to be an effective method for separating fine particulate (including colloidal) matter from a liquid using the application of an electric field. Using the walls of the settler as electrodes and during continuous operation, solids migrate preferentially toward one of the electrodes and become concentrated in the refuse stream. The product stream is clarified of particulates. The success of the process depends upon the physical properties of the solids and liquids being tested. A sample with a high specific conductance is not suitable for separation in the lamella electrosettler. The liquid begins to heat up under the influence of the electric field and, eventually, may short. Also, under these conditions, the particles cannot maintain a charge. The high conductivity of the shale oil samples tested rendered them unsuitable for further testing in the lamella electrosettler.

Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Gidaspow, D.; Jayaswal, U.; Wasan, D.T. (Illinois Inst. of Tech., Chicago, IL (United States))

1991-11-01T23:59:59.000Z

475

Economic variables in production of oil from oil shale  

SciTech Connect

The oil-shale production cost estimates reported by the National Petroleum Council in Dec. 1972, as part of an overall study of the U.S. energy situation are the most recent publicly available data on oil-shale economics. Using the basic NPC costs, this study examines several important parameters affecting shale oil's economic viability. Other factors pertinent to consideration of oil shale as a domestic fuel source, such as the leasing of federal oil shale lands, water availability, and environmental restraints are reviewed.

Cameron, R.J.

1973-04-01T23:59:59.000Z

476

Thermal conversion of oil shale into recoverable hydrocarbons  

SciTech Connect

The production of hydrocarbons is accomplished by pyrolysis of oil shale with controlled removal of the resulting layer of spent oil-shale residue. A procedure is described for the in situ thermal conversion of oil shale wherein fluidized abrasive particles are employed to foster improved hydrocarbon production, in amount and kind, by a controlled partial removal of the layer of spent oil shale which results from application of flowing fluids to heat exposed surfaces of the oil shale to release hydrocarbons. (5 claims)

Slusser, M.L.; Bramhall, W.E.

1969-09-23T23:59:59.000Z

477

Why solar oil shale retorting produces more oil  

DOE Green Energy (OSTI)

A solar oil shale retorting process may produce higher oil yield than conventional processing. High oil yield is obtained for three reasons: oil carbonization inside of the shale is reduced, oil cracking outside of the shale is reduced, and oil oxidation is essentially eliminated. Unique capabilities of focused solar energy produce these advantages. An increase in yield will reduce the cost of mining and shale transportation per barrel of oil produced. These cost reductions may justify the increased processing costs that will probably be associated with solar oil shale retorting.

Aiman, W.R.

1981-05-20T23:59:59.000Z

478

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

of Control Technology for Shale Oil Wastewaters,~~ inpyrolysized to produce shale oil, gas, a solid referred towaters are co-produced with shale oil and separated from it

Fox, J.P.

2013-01-01T23:59:59.000Z

479

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

Water from Green River Oil Shale, 11 Chem. Ind. 1, 485 (Effluents from In-Situ Oil Shale Processing," in ProceedingsControl Technology for Oil Shale Retort Water," August 1978.

Fox, J.P.

2013-01-01T23:59:59.000Z

480

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

Properties of Spent Shales. Surface Area Measurements.Carbon. Effects. ~~ co 2,and Oil~Shale Partial-pressure andWater from Green River Oil Shale, 11 Chem. Ind. 1, 485 (

Fox, J.P.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fields bakken shale" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NATURAL GAS FROM SHALE: Questions and Answers It Seems Like Shale Gas Came Out  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

It Seems Like Shale Gas Came Out It Seems Like Shale Gas Came Out of Nowhere - What Happened? Knowledge of gas shale resources and even production techniques has been around a long time (see "Technological Highlights" timeline). But even as recently as a few years ago, very little of the resource was considered economical to produce. Innovative advances - especially in horizontal drilling, hydraulic fracturing and other well stimulation technologies - did much to make hundreds of trillions of cubic feet of shale gas technically recoverable where it once was not. The U.S. Department of Energy's (DOE) Office of Fossil Energy, along with industry partners, was heavily involved in the innovation chain, and helped to make some of these techniques, as well as protective

482

depleted underground oil shale for the permanent storage of carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

483

Producing Natural Gas From Shale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Producing Natural Gas From Shale Producing Natural Gas From Shale Producing Natural Gas From Shale January 26, 2012 - 12:00pm Addthis The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing nearly half of all U.S. natural gas production. | Image courtesy of the Office of Fossil Energy. The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing

484

Morphological investigations of fibrogenic action of Estonian oil shale dust  

SciTech Connect

A review of morphological investigations carried out to clarify the pathogenicity of industrial dust produced in the mining and processing of Estonian oil shale is given. Histological examination of lungs of workers in the oil shale industry taken at necropsies showed that the inhalation of oil shale dust over a long period (more than 20 years) may cause the development of occupational pneumoconiotic changes in oil shale miners. The pneumoconiotic process develops slowly and is characterized by changes typical of the interstitial form of pneumoconiotic fibrosis in the lungs. Emphysematous changes and chronic bronchitis also occur. The average chemical content of oil shale as well as of samples of oil shale dust generated during mining and sorting procedures is given. The results of experiments in white rats are presented; these studies also indicate a mild fibrogenic action of Estonian oil shale dust.

Kung, V.A.

1979-06-01T23:59:59.000Z

485

Soil stabilization using oil-shale solid waste  

Science Conference Proceedings (OSTI)

Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

1994-04-01T23:59:59.000Z

486

Microbial desulfurization of Eastern oil shale: Bioreactor studies  

SciTech Connect

The removal of sulfur from Eastern oil shale (40 microns particle size) slurries in bioreactors by mixed microbial cultures was examined. A mixed culture that is able to remove the organic sulfur from model sulfur compounds presenting coal as well as a mixed culture isolated from oil shale enrichments were evaluated. The cultures were grown in aerobic fed-batch bioreactors where the oil shale served as the source of all nutrients except organic carbon. Glucose was added as an auxiliary carbon source. Microbial growth was monitored by plate counts, the pH was checked periodically, and oil shale samples were analyzed for sulfur content. Results show a 24% reduction in the sulfur content of the oil shale after 14 days. The settling characteristics of the oil shale in the bioreactors were examined in the presence of the microbes. Also, the mixing characteristics of the oil shale in the bioreactors were examined. 10 refs., 6 figs., 5 tabs.

Maka, A.; Akin, C.; Punwani, D.V.; Lau, F.S.; Srivastava, V.J.

1989-01-01T23:59:59.000Z

487

Geokinetics In Situ Shale Oil Recovery Project. Second annual report, March, 1979  

DOE Green Energy (OSTI)

The project is being conducted at a field site located 70 miles south of Vernal, Utah. Because of the remote location of the site, and its poor accessibility over unpaved roads, a fully self-contained field camp was constructed to support the project and provide living quarters for the field crew. Eighteen in-situ retorts have been constructed, ranging in size from 330 tons to 46,000 tons. Eleven of these retorts have been burned, and a total of 5400 barrels of shale oil have been recovered. Oil shale thicknesses of 30 feet, and cross-sectional areas of 3800 square feet have been successfully blasted. The results have been encouraging, and the project will continue to scale up its size of the operation in 1979.

Lekas, M.A.

1979-03-01T23:59:59.000Z

488

Technically recoverable Devonian shale gas in Ohio  

SciTech Connect

The technically recoverable gas from Devonian shale (Lower and Middle Huron) in Ohio is estimated to range from 6.2 to 22.5 Tcf, depending on the stimulation method and pattern size selected. This estimate of recovery is based on the integration of the most recent data and research on the Devonian Age gas-bearing shales of Ohio. This includes: (1) a compilation of the latest geologic and reservoir data for the gas in-place; (2) analysis of the key productive mechanisms; and, (3) examination of alternative stimulation and production strategies for most efficiently recovering this gas. Beyond a comprehensive assembly of the data and calculation of the technically recoverable gas, the key findings of this report are as follows: a substantial volume of gas is technically recoverable, although advanced (larger scale) stimulation technology will be required to reach economically attractive gas production rates in much of the state; well spacing in certain of the areas can be reduced by half from the traditional 150 to 160 acres per well without severely impairing per-well gas recovery; and, due to the relatively high degree of permeability anisotropy in the Devonian shales, a rectangular, generally 3 by 1 well pattern leads to optimum recovery. Finally, although a consistent geological interpretation and model have been constructed for the Lower and Middle Huron intervals of the Ohio Devonian shale, this interpretation is founded on limited data currently available, along with numerous technical assumptions that need further verification. 11 references, 21 figures, 32 tables.

Kuushraa, V.A.; Wicks, D.E.; Sawyer, W.K.; Esposito, P.R.

1983-07-01T23:59:59.000Z

489

Constraints on the commercialization of oil shale  

DOE Green Energy (OSTI)

The problems and prospects for the commercialization of oil shale from surface retorting are examined. Commercialization refers to the process of private sector adoption of a technology for general use after most of the technological uncertainties have been resolved. Three categories of constraints and uncertainties can be identified: technical constraints relating to the performance characteristics of the technology; economic constraints on the ability of the technology to yield an acceptable rate of return to investors; and institutional constraints that arise from the organizational and political context in which commercialization takes place. Because surface retorting involves relatively well understood technologies, this study deals almost exclusively with economic and institutional constraints. At the present time, a government commercialization effort for oil shale surface retorting would not be likely to result in a viable industry in this century. Alternative oil shale technologies such as modified in situ processes offer prospects of lower shale oil costs, but are less well developed. Data on modified in situ processes are not abundant enough as yet to permit serious estimates of commercial-scale costs. Consequently, government decisions regarding the commercialization of modified in situ technologies should await the completion of further technical tests and an independent definitive plant design.

Merrow, E.W.

1978-09-01T23:59:59.000Z

490

Water mist injection in oil shale retorting  

DOE Patents (OSTI)

Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

1980-07-30T23:59:59.000Z

491

? Disposal concepts (enclosed): crystalline, clay/shale,  

E-Print Network (OSTI)

salt, deep borehole (Re: January, 2012 briefing) ? Thermal analysis for mined, enclosed concepts ? Finite element analysis for generic salt repository (waste package size up to 32-PWR) ? Open disposal concept development: shale unbackfilled, sedimentary backfilled, and hard-rock unsaturated (waste package sizes up to 32-PWR) ? Thermal analysis for mined, open concepts ? Cost estimation for 5 disposal concepts ? Summary and conclusions

Ernest Hardin (snl; Jim Blink; Harris Greenberg (llnl; Joe Carter (srnl; Rob Howard (ornl

2012-01-01T23:59:59.000Z

492

Segmentation of cracks in shale rock  

Science Conference Proceedings (OSTI)

In this paper the use of morphological connected filters are studied for segmenting sheet- and thread-like cracks in images of shale rock. A volume formed from a stack of 2-D X-ray images is processed using 3-D attributes. The shape-preserving property ...

Erik R. Urbach; Marina Pervukhina; Leanne Bischof

2011-07-01T23:59:59.000Z

493

Evaluation of waste disposal by shale fracturing  

SciTech Connect

The shale fracturing process is evaluated as a means for permanent disposal of radioactive intermediate level liquid waste generated at the Oak Ridge National Laboratory. The estimated capital operating and development costs of a proposed disposal facility are compared with equivalent estimated costs for alternative methods of waste fixation.

Weeren, H.O.

1976-02-01T23:59:59.000Z

494

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

is pyrolysized to produce shale oil, gas, a solid referredshale, and aqueous effluents known as retort water and gasoil shale process waters were studied: retort water and gas

Fox, J.P.

2013-01-01T23:59:59.000Z

495

Biogeochemical Signatures in Precambrian Black Shales: Window Into the Co-Evolution of Ocean Chemistry and Life on Earth  

E-Print Network (OSTI)

concentration in black shales: EXAFS evidence. Geochimica etOs and 2316Ma age for marine shale: implications forconcentration in black shales: EXAFS evidence. Geochimica et

Scott, Clinton

2009-01-01T23:59:59.000Z

496

Oil shale health and environment research  

DOE Green Energy (OSTI)

While there have been sporadic efforts to demonstrate certain shale oil extraction technologies in recent years, none of the techniques have been thoroughly analyzed to determine the extent of potential occupational health impacts and even those technologies that have been demonstrated cannot be regarded as typical of a scaled-up, fully mature industry. Industrial hygiene studies have served to identify operations within certain technologies where mitigating methods can and should be applied to protect the industrial populations. Judging from data developed by on-site sampling it is probable that, with the possible exception of MIS techniques, oil shale mining presents no unique problems that cannot be handled with state-of-the-art control procedures. The conditions that may exist in a mine where in situ retorts are being simultaneously prepared, burned and abandoned have not as yet been defined. The probability of combined exposures to spent shale dusts and fugitive emissions in the form of vapors and gases added to the potential for skin exposure to product oils and other liquid effluents raises more complex questions. It has been shown by both epidemiological evidence and experimental data gathered both in the US and in foreign industries that crude shale oil and some of its products carry a higher carcinogenic potential than most of the natural petroleums. Preliminary data suggest that this particular hazard may be almost self-eliminating if hydrotreating, in preparation for refining, is universally practiced. The determination of specific hazards should be done on a technology-specific basis since it is highly probable that the biological activity of most of the products and by-products of shale oil production is process-specific.

Holland, L.M.; Tillery, M.I.

1980-01-01T23:59:59.000Z

497

Explosively produced fracture of oil shale. Progress report, October-December 1981  

SciTech Connect

The Los Alamos National Laboratory is conducting rock fragmentation research in oil shale to develop the blasting technologies and designs required to prepare a rubble bed for a modified in situ retort. The first section of this report outlines our experimental work at the Anvil Points Mine in Colorado with the Oil Shale Consortium sponsored by six major oil companies and managed by Science Applications, Inc. It details our proposed studies in explosive characterization and describes our progress in numerical calculation techniques to predict fracture of the shale. A detailed geologic characterization of two Anvil Points experiment sites is related to previous work at Colony Mine. The second section focuses on computer modeling and theory. One paper describes our latest generation of the stress wave code SHALE, its three-dimensional potential, and the slide line package for it. The second paper details how new bedded crack model calculations demonstrate agreement between predictions and field data. The final paper discusses a general stress-rate equation that takes energy dependence into account. 13 figures.

Morris, W.A.

1982-05-01T23:59:59.000Z

498

Explosive engineering problems from fragmentation tests in oil shale at the Anvil Points Mine, Colorado  

SciTech Connect

During 1981 and 1982, an extensive oil shale fragmentation research program was conducted at the Anvil Points Mine near Rifle, Colorado. The primary goals were to investigate factors involved for adequate fragmentation of oil shale and to evaluate the feasibility of using the modified in situ retort (MIS) method for recovery of oil from oil shale. The field test program included single-deck, single-borehole experiments to obtain basic fragmentation data; multiple-deck, multiple-borehole experiments to evaluate some practical aspects for developing an in situ retort; and the development of a variety of instrumentation technique to diagnose the blast event. This paper discusses some explosive engineering problems encountered, such as electric cap performance in complex blasting patterns, explosive and stem performance in a variety of configurations from the simple to the complex, and the difficulties experienced when reversing the direction of throw of the oil shale in a subscale retort configuration. These problems need solutions before an adequate MIS retort can be created in a single-blast event and even before an experimental mini-retort can be formed. 6 references, 7 figures, 3 tables.

Dick, R.D.; Fourney, W.L.; Young, C.

1985-01-01T23:59:59.000Z

499

Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL in  

E-Print Network (OSTI)

Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL a reservoir for shale-gas and oil. We examined organic-rich black shale, known as Macasty shale, of Upper SHALE-GAS AND OIL in THE SUBSURFACE OF ANTICOSTI ISLAND, CANADA Key Words: Provenance, Anticosti Island

500

Two-level, horizontal free face mining system for in situ oil shale retorts  

Science Conference Proceedings (OSTI)

A method is described for forming an in-situ oil shale retort within a retort site in a subterranean formation containing oil shale, such an in-situ oil shale retort containing a fragmented permeable mass of formation particles containing oil shale formed within upper, lower and side boundaries of an in-situ oil shale retort site.

Cha, C.Y.; Ricketts, T.E.

1986-09-16T23:59:59.000Z