Offset-free control of constrained linear discrete-time systems subject to persistent
Cambridge, University of
Offset-free control of constrained linear discrete-time systems subject to persistent unmeasured-free control of constrained linear discrete-time systems subject to persistent unmeasured disturbances Gabriele Technical report CUED/F-INFENG/TR.466 September 10, 2003 #12;#12;Offset-free control of constrained linear
Cambridge, University of
Offset-free control of constrained linear discrete-time systems subject to persistent unmeasured, this objective is obtained by designing a dynamic, linear, time-invariant, offset-free controller, and an appropriate domain of attraction for this linear controller is defined. Following this, the linear
Joint Carrier Frequency Offset and Fast Time-varying Channel Estimation for
Paris-Sud XI, UniversitÃ© de
environment. An L-path channel model with known path delays is considered to jointly estimate the multi1 Joint Carrier Frequency Offset and Fast Time-varying Channel Estimation for MIMO-OFDM Systems, a novel pilot-aided iterative algorithm is developed for MIMO-OFDM systems operating in fast time- varying
CRLB for Blind Timing Offset Estimation of a Two-Channel
Levy, Bernard C.
CRLB for Blind Timing Offset Estimation of a Two-Channel Time-Interleaved A/D Converter Steve Huang Engineering University of California at Davis #12;1 Outline Motivation Blind Calibration Method Large signals or blindly. Blind methods do not lower ADC throughput and can adjust to changes online. Asilomar
Pinard, M.A. [Univ. of Florida, Gainesville, FL (United States)
1995-09-01T23:59:59.000Z
Selective timber harvesting operations, if uncontrolled, can severely degrade a forest. Although techniques for reducing logging damage are well-known and inexpensive to apply, incentives to adopt these techniques are generally lacking. Power companies and other emitters of {open_quotes}greenhouse{close_quotes} gases soon may be forced to reduce or otherwise offset their net emissions; one offset option is to fund programs aimed at reducing logging damage. To investigate the consequences of reductions in logging damage for ecosystem carbon storage, I constructed a model to simulate changes in biomass and carbon pools following logging of primary dipterocarp forests in southeast Asia. I adapted a physiologically-driven, tree-based model of natural forest gap dynamics (FORMIX) to simulate forest recovery following logging. Input variables included stand structure, volume extracted, stand damage (% stems), and soil disturbance (% area compacted). Output variables included total biomass, tree density, and total carbon storage over time. Assumptions of the model included the following: (1) areas with soil disturbances have elevated probabilities of vine colonization and reduced rates of tree establishment, (2) areas with broken canopy but no soil disturbance are colonized initially by pioneer tree species and 20 yr later by persistent forest species, (3) damaged trees have reduced growth and increased mortality rates. Simulation results for two logging techniques, conventional and reduced-impact logging, are compared with data from field studies conducted within a pilot carbon offset project in Sabah, Malaysia.
Alpay, S. Pamir
Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple InxGa1-xN(InGaN)/GaN multilayers on the In composition and misfit strain. The results indicate that for non-polar m-plane configurations with ½1210InGaN//½1210GaN and ½0001InGaN//½0001GaN epitaxial
Noncommutative Time in Quantum Field Theory
Tapio Salminen; Anca Tureanu
2011-07-19T23:59:59.000Z
We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-K\\"all\\'{e}n equation) and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of light-like noncommutativity.
Offset-free Receding Horizon Control of Constrained Linear Systems subject to
Cambridge, University of
Offset-free Receding Horizon Control of Constrained Linear Systems subject to Time/F-INFENG/TR.468 November 4, 2003 #12;Offset-free Receding Horizon Control of Constrained Linear Systems subject and offset-free control of con- strained, linear time-invariant systems in the presence of time
Agricultural Mitigation and Offsets: Policy Issues, Progress
Agricultural Mitigation and Offsets: Policy Issues, Progress Purdue Climate Change Research Center, 2010 #12;Agricultural Mitigation and Offsets: Policy Issues, Progress Presentation Overview: Global Climate Change...and Agriculture Policy Landscape: US and International Agricultural Offsets and Policy
Explaining the Price of Voluntary Carbon Offsets
Conte, Marc N.; Kotchen, Matthew
2009-01-01T23:59:59.000Z
Energy and Sustainable Development, Stanford Univer- sity. Figure 1: Histogram of carbon offset prices (
Space-Time Noncommutative Field Theories And Unitarity
Jaume Gomis; Thomas Mehen
2000-08-01T23:59:59.000Z
We study the perturbative unitarity of noncommutative scalar field theories. Field theories with space-time noncommutativity do not have a unitary S-matrix. Field theories with only space noncommutativity are perturbatively unitary. This can be understood from string theory, since space noncommutative field theories describe a low energy limit of string theory in a background magnetic field. On the other hand, there is no regime in which space-time noncommutative field theory is an appropriate description of string theory. Whenever space-time noncommutative field theory becomes relevant massive open string states cannot be neglected.
Continuous Time Finite State Mean Field Games
Gomes, Diogo A., E-mail: dgomes@math.ist.utl.pt [Instituto Superior Tecnico, Center for Mathematical Analysis, Geometry, and Dynamical Systems, Departamento de Matematica (Portugal); Mohr, Joana, E-mail: joana.mohr@ufrgs.br; Souza, Rafael Rigao, E-mail: rafars@mat.ufrgs.br [UFRGS, Instituto de Matematica (Brazil)
2013-08-01T23:59:59.000Z
In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N{yields}{infinity} of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games.
Reservoir offset models for Radiocarbon calibration
Nicholls, Geoff
Reservoir offset models for Radiocarbon calibration Martin Jones Department of Anthropology mdj offset is to enable the application of calibration data (Âµ(), e.g. Stuiver et al. 1998) developed for one are not independent. However, the standard procedure for incorporating offset error into calibrated distributions
Space-Time Galerkin Projection of Electro-Magnetic Fields
Wang, Zifu; Hofmann, Heath
2015-01-01T23:59:59.000Z
Spatial Galerkin projection transfers fields between different meshes. In the area of finite element analysis of electromagnetic fields, it provides great convenience for remeshing, multi-physics, domain decomposition methods, etc. In this paper, a space-time Galerkin projection is developed in order to transfer fields between different spatial and temporal discretization bases.
Evaluating transport coefficients in real time thermal field theory
S. Mallik; Sourav Sarkar
2012-11-12T23:59:59.000Z
Transport coefficients in a hadronic gas have been calculated earlier in the imaginary time formulation of thermal field theory. The steps involved are to relate the defining retarded correlation function to the corresponding time-ordered one and to evaluate the latter in the conventional perturbation expansion. Here we carry out both the steps in the real time formulation.
Linear electric field time-of-flight ion mass spectrometer
Funsten, Herbert O. (Los Alamos, NM); Feldman, William C. (Los Alamos, NM)
2008-06-10T23:59:59.000Z
A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.
Time evolution of negative binomial optical field in diffusion channel
Liu Tang-Kun; Wu Pan-Pan; Shan Chuan-Jia; Liu Ji-Bing; Fan Hong-Yi
2015-04-17T23:59:59.000Z
We find time evolution law of negative binomial optical field in diffusion channel. We reveal that by adjusting the diffusion parameter, photon number can controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition.
Offset-free Receding Horizon Control of Constrained Linear Gabriele Pannocchia1 Eric C. Kerrigan2
Cambridge, University of
Offset-free Receding Horizon Control of Constrained Linear Systems Gabriele Pannocchia1 Eric C stability and offset-free control of constrained linear systems in the presence of time-varying setpoints-free controller and computing an appropriate domain of attraction for this controller. The linear (unconstrained
Multi-time wave functions for quantum field theory
Petrat, Sören, E-mail: petrat@math.lmu.de [Mathematisches Institut, Ludwig-Maximilians-Universität, Theresienstr. 39, 80333 München (Germany); Tumulka, Roderich, E-mail: tumulka@math.rutgers.edu [Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States)
2014-06-15T23:59:59.000Z
Multi-time wave functions such as ?(t{sub 1},x{sub 1},…,t{sub N},x{sub N}) have one time variable t{sub j} for each particle. This type of wave function arises as a relativistic generalization of the wave function ?(t,x{sub 1},…,x{sub N}) of non-relativistic quantum mechanics. We show here how a quantum field theory can be formulated in terms of multi-time wave functions. We mainly consider a particular quantum field theory that features particle creation and annihilation. Starting from the particle–position representation of state vectors in Fock space, we introduce multi-time wave functions with a variable number of time variables, set up multi-time evolution equations, and show that they are consistent. Moreover, we discuss the relation of the multi-time wave function to two other representations, the Tomonaga–Schwinger representation and the Heisenberg picture in terms of operator-valued fields on space–time. In a certain sense and under natural assumptions, we find that all three representations are equivalent; yet, we point out that the multi-time formulation has several technical and conceptual advantages. -- Highlights: •Multi-time wave functions are manifestly Lorentz-covariant objects. •We develop consistent multi-time equations with interaction for quantum field theory. •We discuss in detail a particular model with particle creation and annihilation. •We show how multi-time wave functions are related to the Tomonaga–Schwinger approach. •We show that they have a simple representation in terms of operator valued fields.
Remarks on Time-Space Noncommutative Field Theories
L. Alvarez-Gaume; J. L. F. Barbon; R. Zwicky
2001-03-09T23:59:59.000Z
We propose a physical interpretation of the perturbative breakdown of unitarity in time-like noncommutative field theories in terms of production of tachyonic particles. These particles may be viewed as a remnant of a continuous spectrum of undecoupled closed-string modes. In this way, we give a unified view of the string-theoretical and the field-theoretical no-go arguments against time-like noncommutative theories. We also perform a quantitative study of various locality and causality properties of noncommutative field theories at the quantum level.
Topological Field Theory of Time-Reversal Invariant Insulators
Xiao-Liang Qi; Taylor Hughes; Shou-Cheng Zhang
2008-02-24T23:59:59.000Z
We show that the fundamental time reversal invariant (TRI) insulator exists in 4+1 dimensions, where the effective field theory is described by the 4+1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2+1 dimensions. The TRI quantum spin Hall insulator in 2+1 dimensions and the topological insulator in 3+1 dimension can be obtained as descendants from the fundamental TRI insulator in 4+1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the $Z_2$ topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant $\\alpha=e^2/\\hbar c$. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.
Topological Field Theory of Time-Reversal Invariant Insulators
Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19T23:59:59.000Z
We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.
FIELD-BASED TECHNOLOGY EDUCATION: JUST IN TIME TECHNOLOGY TRAINING
Larkin, Teresa L.
FIELD-BASED TECHNOLOGY EDUCATION: JUST IN TIME TECHNOLOGY TRAINING Sarah Irvine Belson1 and Teresa, Audio Technology, and Physics, American University, 4400 Massachusetts Ave. NW, Washington, DC 20016, tlarkin@american.edu Abstract -- This paper outlines the current status of technology integration
CARBON OFFSETTING IN A TOURSIM CONTEXT: WHISTLER BC
CARBON OFFSETTING IN A TOURSIM CONTEXT: WHISTLER BC by Katie von Gaza Bachelor of Environmental: Carbon offsetting in a Tourism Context: Whistler, BC. Project No.: 471 Examining Committee: Chair 2.2 Carbon Offsetting
Entropy of Quantum Fields in de Sitter Space-time
M. V. Takook
2014-08-15T23:59:59.000Z
The quantum states or Hilbert spaces for the quantum field theory in de Sitter space-time are studied on ambient space formalism. In this formalism, the quantum states are only depended $(1)$ on the topological character of the de Sitter space-time, {\\it i.e.} $\\R \\times S^3$, and $(2)$ on the homogeneous spaces which are used for construction of the unitary irreducible representation of de Sitter group. A compact homogeneous space is chosen in this paper. The unique feature of this homogeneous space is that its total number of quantum states, ${\\cal N}$, is finite although the Hilbert space has infinite dimensions. It is shown that ${\\cal N}$ is a continuous function of the Hubble constant $H$ and the eigenvalue of the Casimir operators of de Sitter group. The entropy of the quantum fields on this Hilbert space have been calculated which is finite and invariant for all inertial observers on the de Sitter hyperboloid.
Financing Residential Energy Efficiency with Carbon Offsets Transcript...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets Transcript This document contains the transcript for the...
Quantum Space-Time and Noncommutative Gauge Field Theories
Sami Saxell
2009-09-17T23:59:59.000Z
The three original publications in this thesis encompass various aspects in the still developing area of noncommutative quantum field theory, ranging from fundamental concepts to model building. One of the key features of noncommutative space-time is the apparent loss of Lorentz invariance that has been addressed in different ways in the literature. One recently developed approach is to eliminate the Lorentz violating effects by integrating over the parameter of noncommutativity. Fundamental properties of such theories are investigated in this thesis. Another issue addressed is model building, which is difficult in the noncommutative setting due to severe restrictions on the possible gauge symmetries imposed by the noncommutativity of the space-time. Possible ways to relieve these restrictions are investigated and applied and a noncommutative version of the Minimal Supersymmetric Standard Model is presented. While putting the results obtained in the three original publications into their proper context, the introductory part of this thesis aims to provide an overview of the present situation in the field.
Carbon offsets, the CDM, and sustainable development
for research on post-2012 climate policy at the British Tyndall Centre for Climate Change, and chairsChapter 11 Carbon offsets, the CDM, and sustainable development Diana M. Liverman Diana M. Liverman of the ESSP. Her research has focused on the human dimensions of global environmental change, especially
Continuous space-time symmetries in a lattice field theory
H. B. Thacker
1998-09-18T23:59:59.000Z
For purposes of regularization as well as numerical simulation, the discretization of Lorentz invariant continuum field theories on a space-time lattice is often convenient. In general, this discretization destroys the rotational or Lorentz-frame independence of the theory, which is only recovered in the continuum limit. The Baxter 8-vertex model may be interpreted as a particular discretization of a self-interacting massive Dirac fermion theory in two dimensions (the massive Thirring model). Here it is shown that, in the 8-vertex/massive Thirring model, the Lorentz frame independence of the theory remains undisturbed on the lattice. The only effect of the discretization is to compactify the manifold of Lorentz frames. The relationship between this lattice Lorentz symmetry and the Yang-Baxter relations is discussed.
Light deflection and time delay in the solar gravitational field
Richter, G.W.
1983-01-01T23:59:59.000Z
The second nonvanishing order of contribution to light deflection and time delay in the solar gravitational field is studied for a realistic solar model and for a wide range of metric theories of gravity. It is shown that the second-order effects arise at order (GM/c/sup 2/R)/sup 2/ identical to epsilon/sup 4/. To calculate these effects, every component of the solar metric must be known to order epsilon/sup 4/. The parametrized post-Newtonian (PPN) metric provides most of those components. However, some extension of the PPN metric is required. This extension leads to the parametrized post-linear (PPL) metric, which is used in all calculations. To study light deflection to order epsilon/sup 4/ requires that the orbits of scattered photons be known to that order. These orbits are solved for, first in the equatorial plane and then in general, and are used to determine the deflection as measured by an observer at rest with respect to the sun. In the equatorial plane there is only a radial component to this deflection. In general, there is another component orthogonal to the radial plane, but knowledge of this component is not necessary to determine the total deflection to order epsilon/sup 4/. The total second-order deflection can be as large as 300..mu.. arcsec (for deflection by Jupiter). Measurements of some second-order terms are within the astrometric capabilities of experiments proposed for the 1990's. The time delay in the round-trip travel time of a radar beam reflected from a planet is due to the variable coordinate speed of the light signal and to the bending of the beam path. The delay is calculated to order epsilon/sup 4/. It is shown that the beam-bending gives a second-order contribution as large as the present-day uncertainties in time delay experiments with the Viking spacecraft.
Visualization of time-dependent seismic vector fields with glyphs
McQuinn, Emmett
2010-01-01T23:59:59.000Z
tensor fields in geomechanics. Visualization Conference,single timestep of a geomechanics simulation. Glyph geometry
Random Offset Curves and Surfaces with Controllable Noise (Extended Abstract)
Lee, In-Kwon
similar complex patterns often being able to be defined with the gradient noise functions. PORN is defined by replacing a static offset distance in a general offset with a gradient noise function. For example, PORN
Divergence and Lifecycle Offsets in Product Families with Commonality
de Weck, Olivier L.
Divergence and Lifecycle Offsets in Product Families with Commonality Ryan Boas,1 * Bruce G Massachusetts Institute of Technology, Cambridge, MA 02139DIVERGENCE AND LIFECYCLE OFFSETS IN PRODUCT FAMILIES benefits across individual products. We predict that lifecycle offsets exacerbate divergence. We propose
Developments in deep brain stimulation using time dependent magnetic fields
Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.
2012-03-07T23:59:59.000Z
The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.
Semiconductor heterojunction band offsets and charge neutrality
Lee, Chomsik
1989-01-01T23:59:59.000Z
= 33&Pb = 3 3&PAB = 35 1 . aI M 0 A 0. ? 1 2. 0. Energy(eV) 1 2. 0 0. ? 1 0. Energy(eV) 1 2. Figure 4. 4. Local density of states, parameters for this case are s, = ? 7, s?= 1, s, = l&sp 7~Pa = 4~A = 4)DAB ? .35. -12. 0. Energy(eV) 0... Signature of APS Member Roland E. Allen Department of Physics'- Texas A&M University ' College Station, TX 77843 s p ~ CX3 SEMICONDUCTOR HETEROJUNCTION BAND OFFSETS AND CHARGE NEUTRALITY A Thesis by CHOMSIK LEE Submitted to the Oflice of Graduate...
A late time acceleration of the universe with two scalar fields : many possibilities
Narayan Banerjee; Sudipta Das
2006-05-19T23:59:59.000Z
In the present work, an attempt has been made to explain the recent cosmic acceleration with two mutually interacting scalar fields, one being the Brans-Dicke scalar field and the other a quintessence scalar field. Conditions have been derived for which the quintessence scalar field has an early oscillation and it grows during a later time to govern the dynamics of the universe.
Path integral for space-time noncommutative field theory
Fujikawa, Kazuo [Institute of Quantum Science, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan)
2004-10-15T23:59:59.000Z
The path integral for space-time noncommutative theory is formulated by means of Schwinger's action principle, which is based on the equations of motion and a suitable ansatz of asymptotic conditions. The resulting path integral has essentially the same physical basis as the Yang-Feldman formulation. It is first shown that higher derivative theories are neatly dealt with by the path integral formulation, and the underlying canonical structure is recovered by the Bjorken-Johnson-Low (BJL) prescription from correlation functions defined by the path integral. A simple theory which is nonlocal in time is then analyzed for an illustration of the complications related to quantization, unitarity, and positive energy conditions. From the viewpoint of the BJL prescription, the naive quantization in the interaction picture is justified for space-time noncommutative theory but not for the simple theory nonlocal in time. We finally show that the perturbative unitarity and the positive energy condition, in the sense that only the positive energy flows in the positive time direction for any fixed time slice in space-time, are not simultaneously satisfied for space-time noncommutative theory by the known methods of quantization.
Joint Identification of Stepper Motor Parameters and of Initial Encoder Offset
Paris-Sud XI, UniversitÃ© de
procedure to identify at the same time the electrical parameters of a permanent magnet stepper motor (PMSM is present. The standard DQ model of PMSM's assumes that the permanent magnet is lined up with a winding when, offset calibration, sliding modes. 1. INTRODUCTION Permanent Magnet Stepper Motors (PMSM's) are widely
Second Quantized Scalar QED in Homogeneous Time-Dependent Electromagnetic Fields
Sang Pyo Kim
2014-09-04T23:59:59.000Z
We formulate the second quantization of a charged scalar field in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian is an infinite system of decoupled, time-dependent oscillators for electric fields, but it is another infinite system of coupled, time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator with the given momentum plays the role of the time-dependent annihilation and the creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally, the quantum state and the pair production are discussed when a time-dependent electric field is present in parallel to the magnetic field.
1 18 June 2009 Thermal excitation of large charge offsets
Paris-Sud XI, Université de
1 18 June 2009 Thermal excitation of large charge offsets in a single-Cooper-pair transistor L.R.Simkins
Carbon Offsets for Forestry and Bioenergy: Researching Opportunities...
Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural...
Seismic Amplitude Versus Offset (AVO) Character of Geopressured Transition Zones
-stack amplitude versus offset behavior of seismic reflections from the eal. Acoustic synthetic seismograms based. Local conductivity logs and regional drilling mud weight compilations estab ish the presence
Dependence of Brownian and Néel relaxation times on magnetic field strength
Deissler, Robert J., E-mail: rjd42@case.edu; Wu, Yong; Martens, Michael A. [Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States)] [Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States)
2014-01-15T23:59:59.000Z
Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the applied magnetic field. Conclusions: A simple treatment of Néel relaxation using the common zero-field relaxation time overestimates the relaxation time of the magnetization in situations relevant for MPI and MPS. For sinusoidally driven (or ramped) systems, whether or not a particular relaxation mechanism dominates or is even relevant depends on the magnetic field strength, the frequency (or ramp time), and the phase of the magnetization relative to the applied magnetic field.
Influence of Time-Varying External Magnetic Fields on Trapped Fields in Bulk Superconductors
Zou, Jin; Ainslie, Mark D.; Hu, Di; Cardwell, David A.
2014-12-12T23:59:59.000Z
Large, single-grain bulk high-temperature superconductors (HTS) can trap magnetic fields over 17 T below 30 K and up to 3 T at 77 K, and have significant potential to replace permanent magnets, the fields from which are limited to significantly less...
Linear electronic field time-of-flight ion mass spectrometers
Funsten, Herbert O. (Los Alamos, NM)
2010-08-24T23:59:59.000Z
Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.
Report of the Offset Drilling Workshop Ocean Drilling Program
Report of the Offset Drilling Workshop held at Ocean Drilling Program Texas A&M University College Need for an Engineering Leg 35 Realistic Strategies for Offset Drilling 37 Appendix 1 Workshop (Leg 153) 21 Figure 4 "Rig Floor Perception" of Generic Boreholes Drilled During Leg 153 22 Figure 5
How Much Energy Have Real Fields Time and Space in Multifractal Universe?
L. Ya. Kobelev
2000-11-16T23:59:59.000Z
On the base of multifractal theory of time and space (see \\cite{kob1}-\\cite{kob16}) in this paper shown presence in every space and time volumes of real space and time fields a huge supply of energy . In the multifractal Universe every space volume or time interval possesses by huge amount of energy($\\sim10^{60}cm^{3}$) and we discuss the problem is it possible this new for mankind sorts of energy to extract. Contents: 1. Introduction 2. What are Energy Densities of Real Space and Time Fields in Multifractal Universe? 3. How Much Energy Space and Time Continually Lose?
Time delay in strong-field photoionization of a hydrogen atom
Ivanov, I. A. [Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia)
2011-02-15T23:59:59.000Z
We study time delay for the process of photoionization of a hydrogen atom in a strong electromagnetic field. We compute this quantity by solving the time-dependent Schroedinger equation. We show that even a moderately strong field can have quite a considerable effect on the time delay. Analysis of the wave-packet motion performed by means of the Gabor transform shows that a simple semiclassical model can explain this phenomenon.
Wick rotation for quantum field theories on degenerate Moyal space(-time)
Grosse, Harald; Lechner, Gandalf [Department of Physics, University of Vienna, 1090 Vienna (Austria)] [Department of Physics, University of Vienna, 1090 Vienna (Austria); Ludwig, Thomas [Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig (Germany) [Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig (Germany); Institute for Theoretical Physics, University of Leipzig, 04009 Leipzig (Germany); Verch, Rainer [Institute for Theoretical Physics, University of Leipzig, 04009 Leipzig (Germany)] [Institute for Theoretical Physics, University of Leipzig, 04009 Leipzig (Germany)
2013-02-15T23:59:59.000Z
In this paper the connection between quantum field theories on flat noncommutative space(-times) in Euclidean and Lorentzian signature is studied for the case that time is still commutative. By making use of the algebraic framework of quantum field theory and an analytic continuation of the symmetry groups which are compatible with the structure of Moyal space, a general correspondence between field theories on Euclidean space satisfying a time zero condition and quantum field theories on Moyal Minkowski space is presented ('Wick rotation'). It is then shown that field theories transferred to Moyal space(-time) by Rieffel deformation and warped convolution fit into this framework, and that the processes of Wick rotation and deformation commute.
SPECTRAL DECOMPOSITION APPLIED TO TIME-LAPSE SEISMIC INTERPRETATION AT RULISON FIELD,
SPECTRAL DECOMPOSITION APPLIED TO TIME-LAPSE SEISMIC INTERPRETATION AT RULISON FIELD, GARFIELD focuses on the application of this technique to time-lapse seismic interpretation using nine-component 4D-lapse interpretation through a cross equalization process. I analyzed two time-lapse pairs of seismic surveys: 2003
Notes on Gauss law applied for time varying electric field in vacuum
Zhakatayev, Altay
2015-01-01T23:59:59.000Z
Gauss's law in integral form states that closed surface integral of electric field is proportional to net charge present within the volume bounded by this closed surface. Gauss's law in differential form states that divergence of electric field is proportional to charge's volume density. From Gauss's law it is concluded that in vacuum, where no electric charges are present, divergence of electric field and closed surface integral of electric field are zero. In this paper we make an attempt to theoretically prove that for time-varying electric fields Gauss's law is not valid. In other words, for time-varying electric field even in vacuum divergence of electric field and closed surface integral of electric field are non-zero. We do this by considering simple sinusoidal motion of the charge and then by calculating closed surface integral at specific time of time-varying electric field due to charge motion. Results show that for charges at still and at motion with constant velocity Gauss's law is valid. However f...
Azimuthal Offset-Dependent Attributes (AVO And FVO) Applied To Fracture Detection
Shen, Feng
1999-01-01T23:59:59.000Z
Using the amplitude versus offset (AVO) and the frequency versus offset (FVO) information, the diagnostic ability of P-wave seismic data in fracture detection is investigated. The offset-dependent attributes (AVO and FVO) ...
N. Seiberg; L. Susskind; N. Toumbas
2000-05-04T23:59:59.000Z
Searching for space/time noncommutativity we reconsider open strings in a constant background electric field. The main difference between this situation and its magnetic counterpart is that here there is a critical electric field beyond which the theory does not make sense. We show that this critical field prevents us from finding a limit in which the theory becomes a field theory on a noncommutative spacetime. However, an appropriate limit toward the critical field leads to a novel noncritical string theory on a noncommutative spacetime.
Plio-Pleistocene time-averaged field in southern Patagonia recorded in lava flows
Singer, Bradley S.
Plio-Pleistocene time-averaged field in southern Patagonia recorded in lava flows V. Mejia and N. D of 53 lava flows from southern Patagonia (latitudes 49.5Â°Â52.1Â°S) that include the Pali-Aike volcanic, 7 figures, 3 tables. Keywords: paleomagnetic secular variation; Patagonia; Pali-Aike Volcanic Field
On the kinetic equation approach to pair production by time-dependent electric field
A. M. Fedotov; E. G. Gelfer; K. Yu. Korolev; S. A. Smolyansky
2010-08-12T23:59:59.000Z
We investigate the quantum kinetic approach to pair production from vacuum by time-dependent electric field. Equivalence between this approach and the more familiar S-matrix approach is explicitly established for both scalar and fermion cases. For the particular case of a constant electric field exact solution for kinetic equations is provided and the accuracy of low-density approximation is estimated.
Time-dependent variational approach to molecules in strong laser fields
Gross, E.K.U.
. Owing to their ultra-short duration, femtosecond pulses allow for the direct observation of chemicalTime-dependent variational approach to molecules in strong laser fields Thomas Kreibich a , Robert in strong laser fields using an ansatz for the wavefunction that explicitly incorporates the electron
Dark Energy and Tachyon Field in Bianchi Type-V Space-time
J. Sadeghi; H. Farahani
2014-04-15T23:59:59.000Z
In this paper, we consider Bianchi type-V space-time and study a cosmological model of dark energy based on Tachyon scalar field. We assumed three different kinds of matter without possibility of interaction with scalar dark energy. Assuming power law Hubble parameter in terms of scale factor we obtain evolution of scalar field, scalar potential and equation of state parameter.
Kendall, R.P.; Campbell, K.
1997-08-01T23:59:59.000Z
This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project effort was directed toward preliminary geostatistical analysis of the Carpenteria Offshore Field as a precursor to the step of integrating time-dependent data into a geostatistical model of the Field.
Quantum Field Theory on Noncommutative Space-Times and the Persistence of Ultraviolet Divergences
M. Chaichian; A. Demichev; P. Presnajder
1999-04-13T23:59:59.000Z
We study properties of a scalar quantum field theory on two-dimensional noncommutative space-times. Contrary to the common belief that noncommutativity of space-time would be a key to remove the ultraviolet divergences, we show that field theories on a noncommutative plane with the most natural Heisenberg-like commutation relations among coordinates or even on a noncommutative quantum plane with $E_q(2)$-symmetry have ultraviolet divergences, while the theory on a noncommutative cylinder is ultraviolet finite. Thus, ultraviolet behaviour of a field theory on noncommutative spaces is sensitive to the topology of the space-time, namely to its compactness. We present general arguments for the case of higher space-time dimensions and as well discuss the symmetry transformations of physical states on noncommutative space-times.
29 April 2010 The What, Why, and How of Offsets
Examples of Offset Projects Biomass and Waste mgt Small Scale Hydropower Animal Waste Biodigestors Landfill Methane Agricultural Biodigestors #12;© Det Norske Veritas AS. All rights reserved. Thursday, 29 April
Missouri: EERE Funds Help Offset City Electricity Expenses |...
produce between 90,000 and 100,000 kilowatt-hours (kWh) annually. This renewable energy production will offset 10% of the facility's total electricity usage (just over 12,000...
Countries Commit to White Roofs, Potentially Offsetting the Emissions...
Broader source: Energy.gov (indexed) [DOE]
the road for 11 years. This is also equivalent to offsetting the annual emissions of 700 medium sized coal-fired power plants, operating 6,000 hours per year.5 I am happy to...
McCarl, Bruce A.
support for allocating resources to alter the market mix of carbon sequestration and direct emission carbon sequestration practices also influence the environment by for example reducing erosion1 Sequestration Offsets versus Direct Emission Reductions: Consideration of Environmental
The development of the time dependence of the nuclear EMP electric field
Eng, C
2009-10-30T23:59:59.000Z
The nuclear electromagnetic pulse (EMP) electric field calculated with the legacy code CHAP is compared with the field given by an integral solution of Maxwell's equations, also known as the Jefimenko equation, to aid our current understanding on the factors that affect the time dependence of the EMP. For a fair comparison the CHAP current density is used as a source in the Jefimenko equation. At first, the comparison is simplified by neglecting the conduction current and replacing the standard atmosphere with a constant density air slab. The simplicity of the resultant current density aids in determining the factors that affect the rise, peak and tail of the EMP electric field versus time. The three dimensional nature of the radiating source, i.e. sources off the line-of-sight, and the time dependence of the derivative of the current density with respect to time are found to play significant roles in shaping the EMP electric field time dependence. These results are found to hold even when the conduction current and the standard atmosphere are properly accounted for. Comparison of the CHAP electric field with the Jefimenko electric field offers a direct validation of the high-frequency/outgoing wave approximation.
Unitarity bounds and RG flows in time dependent quantum field theory
Xi Dong; Bart Horn; Eva Silverstein; Gonzalo Torroba
2012-03-08T23:59:59.000Z
We generalize unitarity bounds on operator dimensions in conformal field theory to field theories with spacetime dependent couplings. Below the energy scale of spacetime variation of the couplings, their evolution can strongly affect the physics, effectively shifting the infrared operator scaling and unitarity bounds determined from correlation functions in the theory. We analyze this explicitly for large-$N$ double-trace flows, and connect these to UV complete field theories. One motivating class of examples comes from our previous work on FRW holography, where this effect explains the range of flavors allowed in the dual, time dependent, field theory.
Unitarity Bounds and RG Flows in Time Dependent Quantum Field Theory
Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC
2012-04-05T23:59:59.000Z
We generalize unitarity bounds on operator dimensions in conformal field theory to field theories with spacetime dependent couplings. Below the energy scale of spacetime variation of the couplings, their evolution can strongly affect the physics, effectively shifting the infrared operator scaling and unitarity bounds determined from correlation functions in the theory. We analyze this explicitly for large-N double-trace flows, and connect these to UV complete field theories. One motivating class of examples comes from our previous work on FRW holography, where this effect explains the range of flavors allowed in the dual, time dependent, field theory.
Attoclock time and exit momentum in strong-field tunnel ionization
Teeny, Nicolas; Bauke, Heiko; Keitel, Christoph H
2015-01-01T23:59:59.000Z
Tunnel ionization belongs to the fundamental processes of atomic physics. The so-called two-step model, which describes the ionization as instantaneous tunneling at electric field maximum and classical motion afterwards, is commonly employed to describe tunnel ionization in adiabatic regimes. In this contribution, we first show by solving numerically the time-dependent Schr\\"odinger equation in one dimension that there is a time delay between the electric field maximum and the maximum of the ionization rate. This delay is identified as the response time needed by the wavefunction to react to the field maximum. Furthermore, there is a difference between the quantum momentum and the classical momentum from the two-step model after interaction with the driving electric field. Combining both results, we conclude that the electron has an effective initial momentum at the tunneling exit. Our results imply that the two-step model needs modification. The electron's initial momentum has to be incorporated, when tunnel...
Lifshitz field theories, Snyder noncomutative space-time and momentum dependent metric
Romero, Juan M
2015-01-01T23:59:59.000Z
In this work, we propose three different modified relativistic particles. In the first case, we propose a particle with metrics depending on the momenta and we show that the quantum version of these systems includes different field theories, as anisotropic field theories. As a second case we propose a particle that implies a modified symplectic structure and we show that the quantum version of this system gives different noncommutative space-times, for example the Snyder space-time. In the third case, we combine both structures before mentioned, namely noncommutative space-times and momentum dependent metrics. In this last case, we show that anisotropic field theories can be seen as a limit of no commutative field theory.
Reconstruction of nonstationary sound fields based on time domain plane wave superposition method
Boyer, Edmond
Reconstruction of nonstationary sound fields based on time domain plane wave superposition method X.-Z. Zhanga , J.-H. Thomasb , C.-X. Bia and J.-C. Pascalb a Institute of Sound and Vibration Research, Hefei of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France 1811 #12;A time-domain plane wave
Photon emission in a constant magnetic field in 2+1 dimensional space-time
J. T. S. Amaral; S. I. Zlatev
2005-11-01T23:59:59.000Z
We calculate by the proper-time method the amplitude of the two-photon emission by a charged fermion in a constant magnetic field in (2+1)-dimensional space-time. The relevant dynamics reduces to that of a supesymmetric quantum-mechanical system with one bosonic and one fermionic degrees of freedom.
P-WAVE TIME-LAPSE SEISMIC DATA INTERPRETATION AT RULISON FIELD, PICEANCE BASIN, COLORADO
P-WAVE TIME-LAPSE SEISMIC DATA INTERPRETATION AT RULISON FIELD, PICEANCE BASIN, COLORADO by Donald-lapse seismic surveys, shot by the Reservoir Characterization Project in the fall of 2003 and 2004, at Rulison seismic can monitor tight gas reservoirs, to a limited extent, over a short period of time. Repeat surveys
AN UPGRADE OF MAGNET-FIELD-DRIVEN TIMING SYSTEMS AT THE AGS.
TIAN, Y.; OERTER, B.
2005-10-10T23:59:59.000Z
An upgrade of the main magnet-field-driven timing systems at Brookhaven National Laboratory's Alternating Gradient Synchrotron (AGS) and Booster accelerators will be described in this paper. A novel approach using content addressable memory (CAM) is applied to overcome a weakness in the previous systems, which required a reproducible dwell field for proper operation. Upgraded from a multibus-based system to a VME-based system, the new timing system also proves easier to maintain and to diagnose. Details of the system architecture, as well as its application in other timing systems will be discussed.
Fred Cooper; Gouranga C. Nayak
2006-12-29T23:59:59.000Z
We study the Schwinger mechanism for the pair production of fermions in the presence of an arbitrary time-dependent background electric field E(t) by directly evaluating the path integral. We obtain an exact non-perturbative result for the probability of fermion-antifermion pair production per unit time per unit volume per unit transverse momentum (of the fermion or antifermion) from the arbitrary time dependent electric field E(t) via Schwinger mechanism. We find that the exact non-perturbative result is independent of all the time derivatives d^nE(t)/dt^n, where n=1,2,....\\infty. This result has the same functional dependence on E as the Schwinger's constant electric field E result with the replacement: E -> E(t).
Quasi-real-time analysis of dynamic near field scattering data using a graphics processing unit
Giovanni Cerchiari; Fabrizio Croccolo; Frédéric Cardinaux; Frank Scheffold
2012-09-15T23:59:59.000Z
We present an implementation of the analysis of dynamic near field scattering (NFS) data using a graphics processing unit (GPU). We introduce an optimized data management scheme thereby limiting the number of operations required. Overall, we reduce the processing time from hours to minutes, for typical experimental conditions. Previously the limiting step in such experiments, the processing time is now comparable to the data acquisition time. Our approach is applicable to various dynamic NFS methods, including shadowgraph, Schlieren and differential dynamic microscopy.
Real-Time Magnetic Field Pitch Angle Estimation with a Motional Stark Effect Diagnostic Using Kalman Filtering
Studies of time dependence of fields in TEVATRON superconducting dipole magnets
Hanft, R.W.; Brown, B.C.; Herrup, D.A.; Lamm, M.J.; McInturff, A.D.; Syphers, M.J.
1988-08-22T23:59:59.000Z
The time variation in the magnetic field of a model Tevatron dipole magnet at constant excitation current has been studied. Variations in symmetry allowed harmonic components over long time ranges show a log t behavior indicative of ''flux creep.'' Both short time range and long time range behavior depend in a detailed way on the excitation history. Similar effects are seen in the remnant fields present in full-scale Tevatron dipoles following current ramping. Both magnitudes and time dependences are observed to depend on details for the ramps, such as ramp rate, flattop duration, and number of ramps. In a few magnets, variations are also seen in symmetry unallowed harmonics. 9 refs., 10 figs.
Landau levels of scalar QED in time-dependent magnetic fields
Kim, Sang Pyo, E-mail: sangkim@kunsan.ac.kr
2014-05-15T23:59:59.000Z
The Landau levels of scalar QED undergo continuous transitions under a homogeneous, time-dependent magnetic field. We analytically formulate the Klein–Gordon equation for a charged spinless scalar as a Cauchy initial value problem in the two-component first order formalism and then put forth a measure that classifies the quantum motions into the adiabatic change, the nonadiabatic change, and the sudden change. We find the exact quantum motion and calculate the pair-production rate when the magnetic field suddenly changes as a step function. -- Highlights: •We study the Landau levels of scalar QED in time-dependent magnetic fields. •Instantaneous Landau levels make continuous transitions but keep parity. •The Klein–Gordon equation is expressed in the two-component first order formalism. •A measure is advanced that characterizes the quantum motions into three categories. •A suddenly changing magnetic field produces pairs of charged scalars from vacuum.
Quantum field theory in spaces with closed time-like curves
Boulware, D.G.
1992-12-31T23:59:59.000Z
Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27{pi}. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.
Quantum field theory in spaces with closed time-like curves. [Gott space
Boulware, D.G.
1992-01-01T23:59:59.000Z
Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27[pi]. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.
On the Vlasov equation for Schwinger pair production in a time-dependent electric field
Adolfo Huet; Sang Pyo Kim; Christian Schubert
2015-01-26T23:59:59.000Z
Schwinger pair creation in a purely time-dependent electric field can be described through a quantum Vlasov equation describing the time evolution of the single-particle momentum distribution function. This equation exists in two versions, both of which can be derived by a Bogoliubov transformation, but whose equivalence is not obvious. For the spinless case, we show here that the difference between these two evolution equations corresponds to the one between the "in-out" and "in-in" formalisms. We give a simple relation between the asymptotic distribution functions generated by the two Vlasov equations. As examples we discuss the Sauter and single-soliton field cases.
Sergey V. Yakovlev
2011-12-21T23:59:59.000Z
Were investigated anisotropic metric of higher dimensional space-time with only cosmological term and scalar field. Showed, that presence of scalar field is equivalent to anisotropic metric in the multy dimensional space-time and proposed idea of dimensions generation by scalar field. Were solved Einstein's equations for higher dimensional space-time of Kazner's type and derived expressions for density of energy for scalar field, which generate additional dimensions, and proposed the procedure of renormalization of the metric.
Precision timing of PSR J1012+5307 and strong-field GR tests
Kosmas Lazaridis; Norbert Wex; Axel Jessner; Michael Kramer; J. Anton Zensus; Ben W. Stappers; Gemma H. Janssen; Mark B. Purver; Andrew G. Lyne; Christine A. Jordan; Gregory Desvignes; Ismael Cognard; Gilles Theureau
2010-01-26T23:59:59.000Z
We report on the high precision timing analysis of the pulsar-white dwarf binary PSR J1012+5307. Using 15 years of multi-telescope data from the European Pulsar Timing Array (EPTA) network, a significant measurement of the variation of the orbital period is obtained. Using this ideal strong-field gravity laboratory we derive theory independent limits for both the dipole radiation and the variation of the gravitational constant.
Imaginary time correlations and the phaseless auxiliary field quantum Monte Carlo
Motta, M.; Galli, D. E.; Vitali, E. [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)] [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Moroni, S. [IOM-CNR DEMOCRITOS National Simulation Center and SISSA, via Bonomea 265, 34136 Trieste (Italy)] [IOM-CNR DEMOCRITOS National Simulation Center and SISSA, via Bonomea 265, 34136 Trieste (Italy)
2014-01-14T23:59:59.000Z
The phaseless Auxiliary Field Quantum Monte Carlo (AFQMC) method provides a well established approximation scheme for accurate calculations of ground state energies of many-fermions systems. Here we address the possibility of calculating imaginary time correlation functions with the phaseless AFQMC. We give a detailed description of the technique and test the quality of the results for static properties and imaginary time correlation functions against exact values for small systems.
Localisation of beam offset jitter sources at ATF2
Pfingstner, J; Patecki, M; Schulte, D; Tomás, R
2014-01-01T23:59:59.000Z
For the commissioning and operation of modern particle accelerators, automated error detection and diagnostics methods are becoming increasingly important. In this paper, we present two such methods, which are capable of localising sources of beam offset jitter with a combination of correlation studies and so called degree of freedom plots. The methods were applied to the ATF2 beam line at KEK, where one of the major goals is the reduction of the beam offset jitter. Results of this localisation are shown in this paper. A big advantage of the presented method is its high robustness especially to varying optics parameters. Therefore, we believe that the developed beam offset jitter localisation methods can be easily applied to other accelerators.
Results from field tests of the one-dimensional Time-Encoded Imaging System.
Marleau, Peter; Brennan, James S.; Brubaker, Erik
2014-09-01T23:59:59.000Z
A series of field experiments were undertaken to evaluate the performance of the one dimensional time encoded imaging system. The significant detection of a Cf252 fission radiation source was demonstrated at a stand-off of 100 meters. Extrapolations to different quantities of plutonium equivalent at different distances are made. Hardware modifications to the system for follow on work are suggested.
REAL-TIME DUAL-MICROPHONE SPEECH ENHANCEMENT USING FIELD PROGRAMMABLE GATE ARRAYS
Sheikholeslami, Ali
REAL-TIME DUAL-MICROPHONE SPEECH ENHANCEMENT USING FIELD PROGRAMMABLE GATE ARRAYS David Halupka@eecg}.toronto.edu ABSTRACT This paper discusses an implementation of a dual- microphone phase-based speech enhancement or irrelevant conversations, are present has fueled research interest in the areas of speech enhancement
Near-field Mapping System to Scan in Time Domain the Magnetic Emissions of Integrated Circuits
Paris-Sud XI, Université de
low amplitude and need to be amplified. This is achieved, as shown figure 1, by a low noise 63db of instructions. Application of this measurement system is given to an industrial chip designed with a 180nm CMOS a low cost near-field mapping system. This system scans automatically and dynamically, in the time
Field Test to Demonstrate Real-Time In-Situ Detection of Volatile Organic Compounds
Ho, Cliff
1 Field Test to Demonstrate Real-Time In-Situ Detection of Volatile Organic Compounds Hazmat Spill Center, Nevada Test Site September 19-25, 2001 Clifford K. Ho Sandia National Laboratories Albuquerque-filled 55- gallon drum at the Hazmat Spill Center at the Nevada Test Site. Background and Objectives Tens
Attoclock time and exit momentum in strong-field tunnel ionization
Nicolas Teeny; Enderalp Yakaboylu; Heiko Bauke; Christoph H. Keitel
2015-02-20T23:59:59.000Z
Tunnel ionization belongs to the fundamental processes of atomic physics. The so-called two-step model, which describes the ionization as instantaneous tunneling at electric field maximum and classical motion afterwards, is commonly employed to describe tunnel ionization in adiabatic regimes. In this contribution, we first show by solving numerically the time-dependent Schr\\"odinger equation in one dimension that there is a time delay between the electric field maximum and the maximum of the ionization rate. This delay is identified as the response time needed by the wavefunction to react to the field maximum. Furthermore, there is a difference between the quantum momentum and the classical momentum from the two-step model after interaction with the driving electric field. Combining both results, we conclude that the electron has an effective initial momentum at the tunneling exit. Our results imply that the two-step model needs modification. The electron's initial momentum has to be incorporated, when tunneling times shall be determined in attoclock experiments.
Synthetic gauge fields and Weyl point in Time-Reversal Invariant Acoustic Systems
Xiao, Meng; He, Wen-Yu; Zhang, Z Q; Chan, C T
2015-01-01T23:59:59.000Z
Inspired by the discovery of quantum hall effect and topological insulator, topological properties of classical waves start to draw worldwide attention. Topological non-trivial bands characterized by non-zero Chern numbers are realized with external magnetic field induced time reversal symmetry breaking or dynamic modulation. Due to the absence of Faraday-like effect, the breaking of time reversal symmetry in an acoustic system is commonly realized with moving background fluids, and hence drastically increases the engineering complexity. Here we show that we can realize effective inversion symmetry breaking and effective gauge field in a reduced two-dimensional system by structurally engineering interlayer couplings, achieving an acoustic analog of the topological Haldane model. We then find and demonstrate unidirectional backscattering immune edge states. We show that the synthetic gauge field is closely related to the Weyl points in the three-dimensional band structure.
Space-Time Models based on Random Fields with Local Interactions
Dionissios T. Hristopulos; Ivi C. Tsantili
2015-03-06T23:59:59.000Z
The analysis of space-time data from complex, real-life phenomena requires the use of flexible and physically motivated covariance functions. In most cases, it is not possible to explicitly solve the equations of motion for the fields or the respective covariance functions. In the statistical literature, covariance functions are often based on mathematical constructions. We propose deriving space-time covariance functions by solving "effective equations of motion", which can be used as statistical representations of systems with diffusive behavior. In particular, we propose using the linear response theory to formulate space-time covariance functions based on an equilibrium effective Hamiltonian. The effective space-time dynamics are then generated by a stochastic perturbation around the equilibrium point of the classical field Hamiltonian leading to an associated Langevin equation. We employ a Hamiltonian which extends the classical Gaussian field theory by including a curvature term and leads to a diffusive Langevin equation. Finally, we derive new forms of space-time covariance functions.
Vacuum pair production of charged scalar bosons in time-dependent electric fields
Zi-Liang Li; Ding Lu; Bai-Song Xie
2013-12-10T23:59:59.000Z
Based on the quantum mechanical scattering model, the dynamical assist effect and the multiple-slit interference effect in electron-positron pair production from vacuum are generalized to vacuum pair production of charged scalar bosons. For the former effect some combinations of a strong but slowly varying electric field and a weak but rapidly varying one with different time delay are studied. Results indicate that the oscillation intensity of momentum spectrum and the number density of created bosons reduce with increasing of the time delay. Obviously, they achieve the maximum if the time delay equals zero. For the latter effect, it is shown that this effect does not exist for equal-sign $N$-pulse electric field in contrast to its existence for alternating-sign $N$-pulse. An approximate solution of boson momentum spectrum is got and it is agreeable well with the exact numerical one in alternating-sign $N$-pulse electric field, especially for $2$-pulse field and for small longitudinal momentum. The difference of vacuum pair production between bosons and fermions are also compared for their longitudinal momentum spectra.
Propagation of Test Particles and Scalar Fields on a Class of Wormhole Space-Times
Peter Taylor
2014-08-18T23:59:59.000Z
In this paper, we consider the problem of test particles and test scalar fields propagating on the background of a class of wormhole space-times. For test particles, we solve for arbitrary causal geodesics in terms of integrals which are solved numerically. These integrals are parametrized by the radius and shape of the wormhole throat as well as the initial conditions of the geodesic trajectory. In terms of these parameters, we compute the conditions for the geodesic to traverse the wormhole, to be reflected by the wormhole's potential or to be captured on an unstable bound orbit at the wormhole's throat. These causal geodesics are visualized by embedding plots in Euclidean space in cylindrical coordinates. For test scalar fields, we compute transmission coefficients and quasi-normal modes for arbitrary coupling of the field to the background geometry in the WKB approximation. We show that there always exists an unstable mode whenever the coupling constant is greater than 1/2. This analysis is interesting since recent computations of self-interactions of a static scalar field in wormhole space-times reveal some anomalous dependence on the coupling constant, principally, the existence of an infinite discrete set of poles. We show that this pathological behavior of the self-field is an artifact of computing the interaction for values of the coupling constant that do not lie in the domain of stability.
Strong Field of Binary Systems And Its Effects On Pulsar Arrival Times
M. I. Wanas; N. S. Awadalla; W. S. El Hanafy
2012-10-05T23:59:59.000Z
In the present work, the exact solution of Einstein's field equations which has been given by Curzon in 1924 representing the field of a static binary system is reviewed. An adapted version of this solution is obtained to describe a dynamical binaries in a rotating coordinate system. It is shown that this version of the solution is time-dependent. It reduces to the later one in the static case if the rotation goes to zero. The original Curzon solution shows that there are two singularities at the two masses, while in the modified version the singularities become on the world-line of the two masses. The solution shows no additional coordinate singularities. The killing vector field of the axial symmetry is obtained in the modified version. In addition, the rotation admits a further rotational symmetry, so a rotation killing vector field is also obtained and discussed. The equations of motion for a test particle in the field of a binary system are formulated and solved. Such equations have been used to study the gravitational time delay of arrival (Shapiro delay) of signals from binary pulsar systems resulted from our suggested modifications containing additional terms. These terms are interpreted as higher order corrections to the masses. In particular we investigate the gravito-magnetic effect due to orbital angular motion of the double pulsars. We give numerical estimates of this type of the time delay in the case of the double-pulsar system PSR J0737-3039 A/B. We draw a model curve for the gravito-magnetic time delay during one orbital revolution. We suggest that this type of delay will have a larger contribution during the last phase of the system evolution.
Proceedings of the Axial Offset Anomaly (AOA) Science Workshop
None
2003-06-01T23:59:59.000Z
This report presents proceedings of the Axial Offset Anomaly (AOA) Science Workshop, held February 10-11 in Palo Alto, California. Twenty-two papers were presented on various aspects of AOA by utilities, EPRI Robust Fuel Program contractors, staff from EPRI and universities, international researchers, and equipment vendors.
POTENTIAL MEXICAN OFFSETS TO Business Council for Sustainable Development Mexico
California at Davis, University of
POTENTIAL MEXICAN OFFSETS TO CALIFORNIA Business Council for Sustainable Development Mexico Companies ALFA Altos Hornos de Mexico Bachoco CEMEX Cuprum DeAcero FEMSA GCC Grupo Bimbo Grupo Syngenta Acciona Energía 2 #12;Basic Facts on the California Mexico Relationship 3 · Major trade partner
The COSI Tool -Carbon Offsets with SD Impacts (COSI)
The COSI Tool - Carbon Offsets with SD Impacts (COSI) Fifth Meeting of the Development Dividend of Presentation Â· The rationale for a COSI Tool Â· Cooperative framework and status of progress Â· Methodological and procedural issues #12;The COSI Tool: Why? Â· Recap of outcomes of the 4th DDTFM in October, 2006: Â· Applying
JOINT CHANNEL AND FREQUENCY OFFSET ESTIMATION FOR OFDM SYSTEMS
Arslan, HÃ¼seyin
. of Electrical Eng., University of South Florida and Raytheon Company 4202 E. Fowler Avenue, ENB-118, Tampa, FL 1501 72th Street North, Saint Petersburg, FL yucek@eng.usf.edu mohamed k nezami@raytheon.com ABSTRACT is transmitted and This work is supported by Raytheon Company. frequency offset is estimated by finding the phase
Late-Time Dynamics of Scalar Fields on Rotating Black Hole Backgrounds
William Krivan
1999-07-08T23:59:59.000Z
Motivated by results of recent analytic studies, we present a numerical investigation of the late-time dynamics of scalar test fields on Kerr backgrounds. We pay particular attention to the issue of mixing of different multipoles and their fall-off behavior at late times. Confining ourselves to the special case of axisymmetric modes with equatorial symmetry, we show that, in agreement with the results of previous work, the late-time behavior is dominated by the lowest allowed l-multipole. However the numerical results imply that, in general, the late-time fall-off of the dominating multipole is different from that in the Schwarzschild case, and seems to be incompatible with a result of a recently published analytic study.
Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin, E-mail: panxiaoyin@nbu.edu.cn [Department of Physics, Ningbo University, Ningbo 315211 (China)] [Department of Physics, Ningbo University, Ningbo 315211 (China); Sahni, Viraht [Department of Physics, Brooklyn College and The Graduate School of the City University of New York, New York, New York 10016 (United States)] [Department of Physics, Brooklyn College and The Graduate School of the City University of New York, New York, New York 10016 (United States)
2014-01-14T23:59:59.000Z
We derive via the interaction “representation” the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field—the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement – the uniform electron gas – the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.
Marunovic, Anja [Department of Physics, FER, University of Zagreb, Unska 3, HR-10 000 Zagreb (Croatia); Prokopec, Tomislav [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)
2011-05-15T23:59:59.000Z
We calculate the one-loop graviton vacuum polarization induced by a massless, nonminimally coupled scalar field on Minkowski background. We make use of the Schwinger-Keldysh formalism, which allows us to study time dependent phenomena. As an application we compute the leading quantum correction to the Newtonian potential of a point particle. The novel aspect of the calculation is the use of the Schwinger-Keldysh formalism, within which we calculate the time transients induced by switching on the graviton-scalar coupling.
Mei Xiaochun
2008-04-19T23:59:59.000Z
Based on Document (1), by considering the retarded interaction of radiation fields, the third order transition probabilities of stimulated radiations and absorptions of light are calculated. The revised formulas of nonlinear polarizations are provided. The results show that that the general processes of non-linear optics violate time reversal symmetry. The phenomena of non-linear optics violating time reversal symmetry just as sum frequency, double frequency, different frequencies, double stable states, self-focusing and self-defocusing, echo phenomena, as well as optical self-transparence and self absorptions and so on are analyzed.
Landau levels for discrete-time quantum walks in artificial magnetic fields
Pablo Arnault; Fabrice Debbasch
2014-12-14T23:59:59.000Z
A new family of 2D discrete-time quantum walks (DTQWs) is presented and shown to coincide, in the continuous limit, with the Dirac dynamics of a spin 1/2 fermion coupled to a constant and homogeneous magnetic field. Landau levels are constructed, not only in the continuous limit, but also for the DTQWs i.e. for finite non-vanishing values of the time- and position-steps. All results are supported by numerical simulations. The possibility of quantum simulation of condensed matter systems by DTQWs is also discussed.
Burial diagenesis and timing of reservoir development, North Haynesville Field, Louisiana
Hull, Harris Benjamin
1982-01-01T23:59:59.000Z
of MASTER OF SCIENCE December 1982 Major Subject: Geology BURIAL DIAGENESIS AND TIMING OF RESERVOIR DEVELOPMENT, NORTH HAYNESVILLE FIELD, LOUISIANA A Thesis by HARRIS BENJAMIN HULL Approved as to style and content by: syne M. Ahr (Chairman...'s encouragement and support also was greatly appreciated. TABLE OF CONTFNTS Page INTRODUCTION Reg'onal Geology Present Status Methods SMACKOVER ROCK PROPERTIES 13 Composition Sedimentary Structures Microfacies 13 28 29 DEPOSITIONAL ENVIRONMENTS 38...
Kossow, Marcel [I. Institut fuer Theoretische Physik, Universitaet Hamburg, Jungiusstrasse 9, D - 20355 Hamburg (Germany)
2008-03-15T23:59:59.000Z
An energy correction is calculated in the time-independent perturbation setup using a regularized ultraviolet finite Hamiltonian on the noncommutative Minkowski space. The correction to the energy is invariant under rotation and translation but is not Lorentz covariant, and this leads to a distortion of the dispersion relation. In the limit where the noncommutativity vanishes, the common quantum field theory on the commutative Minkowski space is reobtained. The calculations are restricted to the regularized cubic interaction.
Hossein Ghaffarnejad
2015-04-29T23:59:59.000Z
Aim of the paper is to obtain 2d analogue of the backreaction equation which will be useful to study final state of quantum perturbed spherically symmetric curved space times. Thus we take Einstein-massless-scalar $\\psi$ tensor gravity model described on class of spherically symmetric curved space times. We rewrite the action functional in 2d analogue in terms of dimensionless dilaton-matter field $(\\chi=\\Phi\\psi)$ where dilaton field $\\Phi$ is conformal factor of 2-sphere. Then we seek renormalized expectation value of quantum dilaton-matter field stress tensor operator by applying Hadamard rennormalization prescription. Singularity of the Green function is assumed to be has logarithmic form. Covariantly conservation condition on the renormalized quantum dilaton-matter stress tensor demands to input a variable cosmological parameter $\\lambda(x)$. Energy conditions (weak, strong and null) is studied on the obtained renormalized stress tensor leading to dynamical equations for $\\lambda(x), \\Phi$ and quantum vacuum state $W_0(x)=_{ren}.$ In weak quantum field limits our obtained trace anomaly corresponds to one which obtained from zeta function regularization method. Setting null-like apparent horizon equation $\
TASI Lectures on Holographic Space-Time, SUSY and Gravitational Effective Field Theory
Tom Banks
2010-09-23T23:59:59.000Z
I argue that the conventional field theoretic notion of vacuum state is not valid in quantum gravity. The arguments use gravitational effective field theory, as well as results from string theory, particularly the AdS/CFT correspondence. Different solutions of the same low energy gravitational field equations correspond to different quantum systems, rather than different states in the same system. I then introduce {\\it holographic space-time} a quasi-local quantum mechanical construction based on the holographic principle. I argue that models of quantum gravity in asymptotically flat space-time will be exactly super-Poincare invariant, because the natural variables of holographic space-time for such a system, are the degrees of freedom of massless superparticles. The formalism leads to a non-singular quantum Big Bang cosmology, in which the asymptotic future is required to be a de Sitter space, with cosmological constant (c.c.) determined by cosmological initial conditions. It is also approximately SUSic in the future, with the gravitino mass $K \\Lambda^{1/4}$.
Thermonuclear Supernovae: Probing Magnetic Fields by Late-Time IR Line Profiles
Penney, R
2014-01-01T23:59:59.000Z
We study the imprint of magnetic fields B on late-time IR line profiles and light curves of Type Ia Supernovae. As a benchmark, we use the explosion of a Chandrasekhar mass M_{Ch White Dwarf (WD) and, specifically, a delayed detonation model. We assume WDs with initial magnetic surface fields between 1 and 1E9G. We discuss large-scale dipole and small-scale magnetic fields. We find that the [Fe II] line at 1.644 mu can be used to analyze the overall chemical and density structure of the exploding WD up to day 200 without considering B. Subsequently, positron transport and magnetic field effects become important. By day 500, the profile becomes sensitive to the morphology of B and directional dependent for dipole fields. Small or no directional dependence of the spectra is found for small-scale B. After about 200 days, persistent broad-line, flat-topped or stumpy profiles require high density burning which is the signature of a WD close to M_Ch. Narrow peaked profiles are a signature of chemical mixing or sub-...
Lifetime, turnover time, and fast magnetic field regeneration in random flows
Tanner, S. E. M. [School of Mathematical Sciences, Dublin City University, Dublin 9 (Ireland)
2007-10-15T23:59:59.000Z
The fast dynamo is thought to be relevant in the regeneration of magnetic fields in astrophysics where the value of the magnetic Reynolds number (Rm) is immense. The fast dynamo picture is one in which chaotic flows provide a mechanism for the stretching of magnetic field lines. Furthermore, a cascade of energy down to small scales results in intermittent regions of a small-scale, intense magnetic field. Given this scenario it is natural to invoke the use of kinematic random flows in order to understand field regeneration mechanisms better. Here a family of random flows is used to study the effects that L, the lifetime of the cell, and {tau}, the turnover time of the cell, may have on magnetic field regeneration. Defining the parameter {gamma}=L/{tau}, it has been varied according to {gamma}>1, {gamma}<1, {gamma}{approx}O(1). In the kinematic regime, dynamo growth rates and Lyapunov exponents are examined at varying values of Rm. The possibility of fast dynamo action is considered. In the nonlinear regime, magnetic and kinetic energies are examined. Results indicate that there does appear to be a relationship between {gamma} and dynamo efficiency. In particular, the most efficient dynamos seem to operate at lower values of {gamma}.
A Non-Riemannian Metric on Space-Time Emergent From Scalar Quantum Field Theory
Kar, Arnab
2012-01-01T23:59:59.000Z
We show that the standard deviation \\sigma(x,x') = \\sqrt{} of a scalar quantum field theory is a metric (i.e., a symmetric positive function satisfying the triangle inequality) on space-time (with imaginary time). It is very different from the Euclidean metric |x-x'|: for four dimensional free scalar field theory, \\sigma(x,x') \\to \\frac{\\sigma_{4}}{a^{2}} -\\frac{\\sigma_{4}'}{|x-x'|^{2}} + \\mathrm{O}(|x-x'|^{-3}), as |x-x'|\\to\\infty. According to \\sigma, space-time has a finite diameter \\frac{\\sigma_{4}}{a^{2}} which is not universal (i.e., depends on the UV cut-off a and the regularization method used). The Lipschitz equivalence class of the metric is independent of the cut-off. \\sigma(x,x') is not the length of the geodesic in any Riemannian metric, as it does not have the intermediate point property: for a pair (x,x') there is in general no point x" such that \\sigma(x,x')=\\sigma(x,x")+\\sigma(x",x'). Nevertheless, it is possible to embed space-time in a higher dimensional space of negative curvature so that ...
Early Time Dynamics of Gluon Fields in High Energy Nuclear Collisions
Chen, G; Kapusta, J I; Li, Y
2015-01-01T23:59:59.000Z
Nuclei colliding at very high energy create a strong, quasi-classical gluon field during the initial phase of their interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions for the initial chromo-electric and chromo-magnetic fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for energy density and energy flow as well as for longitudinal and transverse pressure of this system. For example, we find that the ratio of longitudinal to transverse pressure very early in the system behaves as $p_L/p_T = -[1-\\frac{3}{2a}(Q\\tau)^2]/[1-\\frac{1}{a}(Q\\tau)^2]+\\mathcal{O}(Q\\tau)^4$ where $\\tau$ is the longitudinal proper time, $Q$ is related to the saturation scales $Q_s$ of the two nuclei, and $a = \\ln (Q^2/\\hat{m}^2)$ with $\\hat m$ a scale to be defined later. Our results are generally applicable if $\\tau \\less...
First principles investigation of scaling trends of zirconium silicate interface band offsets
Dutton, Robert W.
First principles investigation of scaling trends of zirconium silicate interface band offsets out to investigate the scaling trends of band offsets at model silicon/zirconium silicate interfaces. Owing to the d character of zirconium silicate conduction bands, the band gap and band offset are shown
Tensor Hierarchy and Generalized Cartan Calculus in SL(3)$\\times$SL(2) Exceptional Field Theory
Hohm, Olaf
2015-01-01T23:59:59.000Z
We construct exceptional field theory for the duality group SL(3)$\\times$SL(2). The theory is defined on a space with 8 `external' coordinates and 6 `internal' coordinates in the $(3,2)$ fundamental representation, leading to a 14-dimensional generalized spacetime. The bosonic theory is uniquely determined by gauge invariance under generalized external and internal diffeomorphisms. The latter invariance can be made manifest by introducing higher form gauge fields and a so-called tensor hierarchy, which we systematically develop to much higher degree than in previous studies. To this end we introduce a novel Cartan-like tensor calculus based on a covariant nil-potent differential, generalizing the exterior derivative of conventional differential geometry. The theory encodes the full $D=11$ or type IIB supergravity, respectively.
Tensor Hierarchy and Generalized Cartan Calculus in SL(3)$\\times$SL(2) Exceptional Field Theory
Olaf Hohm; Yi-Nan Wang
2015-01-30T23:59:59.000Z
We construct exceptional field theory for the duality group SL(3)$\\times$SL(2). The theory is defined on a space with 8 `external' coordinates and 6 `internal' coordinates in the $(3,2)$ fundamental representation, leading to a 14-dimensional generalized spacetime. The bosonic theory is uniquely determined by gauge invariance under generalized external and internal diffeomorphisms. The latter invariance can be made manifest by introducing higher form gauge fields and a so-called tensor hierarchy, which we systematically develop to much higher degree than in previous studies. To this end we introduce a novel Cartan-like tensor calculus based on a covariant nil-potent differential, generalizing the exterior derivative of conventional differential geometry. The theory encodes the full $D=11$ or type IIB supergravity, respectively.
Borgogno, D. [Dipartimento di Energetica, Politecnico di Torino, Torino (Italy); Grasso, D. [Dipartimento di Energetica, Politecnico di Torino, Torino (Italy); CNR Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Dipartimento di Energetica, Politecnico di Torino, Torino (Italy); Pegoraro, F. [Physics Department, Pisa University, Pisa, CNISM (Italy); Schep, T. J. [Physics Department, Eindhoven University of Technology, Eindhoven (Netherlands)
2011-10-15T23:59:59.000Z
The transitional phase from local to global chaos in the magnetic field of a reconnecting current layer is investigated. Regions where the magnetic field is stochastic exist next to regions where the field is more regular. In regions between stochastic layers and between a stochastic layer and an island structure, the field of the finite time Lyapunov exponent (FTLE) shows a structure with ridges. These ridges, which are special gradient lines that are transverse to the direction of minimum curvature of this field, are approximate Lagrangian coherent structures (LCS) that act as barriers for the transport of field lines.
Time-Resolved Imaging and Manipulation of H{sub 2} Fragmentation in Intense Laser Fields
Ergler, Th.; Rudenko, A.; Feuerstein, B.; Zrost, K.; Schroeter, C.D.; Moshammer, R.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg (Germany)
2005-08-26T23:59:59.000Z
We report on the experimental realization of time-resolved coincident Coulomb explosion imaging of H{sub 2} fragmentation in 10{sup 14} W/cm{sup 2} laser fields. Combining a high-resolution 'reaction microscope' and a fs pump-probe setup, we map the motion of wave packets dissociating via one- or two-photon channels, respectively, and observe a new region of enhanced ionization. The long-term interferometric stability of our system allows us to extend pump-probe experiments into the region of overlapping pulses, which offers new possibilities for the manipulation of ultrafast molecular fragmentation dynamics.
Tretiak, Sergei [Los Alamos National Laboratory
2008-01-01T23:59:59.000Z
Four different numerical algorithms suitable for a linear scaling implementation of time-dependent Hartree-Fock and Kohn-Sham self-consistent field theories are examined. We compare the performance of modified Lanczos, Arooldi, Davidson, and Rayleigh quotient iterative procedures to solve the random-phase approximation (RPA) (non-Hermitian) and Tamm-Dancoff approximation (TDA) (Hermitian) eigenvalue equations in the molecular orbital-free framework. Semiempirical Hamiltonian models are used to numerically benchmark algorithms for the computation of excited states of realistic molecular systems (conjugated polymers and carbon nanotubes). Convergence behavior and stability are tested with respect to a numerical noise imposed to simulate linear scaling conditions. The results single out the most suitable procedures for linear scaling large-scale time-dependent perturbation theory calculations of electronic excitations.
The SAMI Galaxy Survey: Unveiling the nature of kinematically offset active galactic nuclei
Allen, J T; Scott, N; Fogarty, L M R; Ho, I -T; Medling, A M; Leslie, S K; Bland-Hawthorn, J; Bryant, J J; Croom, S M; Goodwin, M; Green, A W; Konstantopoulos, I S; Lawrence, J S; Owers, M S; Richards, S N; Sharp, R
2015-01-01T23:59:59.000Z
We have observed two kinematically offset active galactic nuclei (AGN), whose ionised gas is at a different line-of-sight velocity to their host galaxies, with the SAMI integral field spectrograph (IFS). One of the galaxies shows gas kinematics very different to the stellar kinematics, indicating a recent merger or accretion event. We demonstrate that the star formation associated with this event was triggered within the last 100 Myr. The other galaxy shows simple disc rotation in both gas and stellar kinematics, aligned with each other, but in the central region has signatures of an outflow driven by the AGN. Other than the outflow, neither galaxy shows any discontinuity in the ionised gas kinematics at the galaxy's centre. We conclude that in these two cases there is no direct evidence of the AGN being in a supermassive black hole binary system. Our study demonstrates that selecting kinematically offset AGN from single-fibre spectroscopy provides, by definition, samples of kinematically peculiar objects, bu...
Reconstructing the Profile of Time-Varying Magnetic Fields With Quantum Sensors
Easwar Magesan; Alexandre Cooper; Honam Yum; Paola Cappellaro
2013-05-28T23:59:59.000Z
Quantum systems have shown great promise for precision metrology thanks to advances in their control. This has allowed not only the sensitive estimation of external parameters but also the reconstruction of their temporal profile. In particular, quantum control techniques and orthogonal function theory have been applied to the reconstruction of the complete profiles of time-varying magnetic fields. Here, we provide a detailed theoretical analysis of the reconstruction method based on the Walsh functions, highlighting the relationship between the orthonormal Walsh basis, sensitivity of field reconstructions, data compression techniques, and dynamical decoupling theory. Specifically, we show how properties of the Walsh basis and a detailed sensitivity analysis of the reconstruction protocol provide a method to characterize the error between the reconstructed and true fields. In addition, we prove various results about the negligibility function on binary sequences which lead to data compression techniques in the Walsh basis and a more resource-efficient reconstruction protocol. The negligibility proves a fruitful concept to unify the information content of Walsh functions and their dynamical decoupling power, which makes the reconstruction method robust against noise.
Change in Hamiltonian General Relativity from the Lack of a Time-like Killing Vector Field
J. Brian Pitts
2014-06-07T23:59:59.000Z
In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. Attention to the gauge generator G of Rosenfeld, Anderson, Bergmann, Castellani et al., a specially tuned sum of first-class constraints, facilitates seeing that a solitary first-class constraint in fact generates not a gauge transformation, but a bad physical change in electromagnetism (changing E) or GR. The change spoils the Lagrangian constraints in terms of the physically relevant velocities rather than auxiliary canonical momenta. While Maudlin has defended change in GR much as G. E. Moore resisted skepticism, there remains a need to exhibit the technical flaws in the argument. Insistence on Hamiltonian-Lagrangian equivalence, a theme emphasized by Mukunda, Castellani, Sugano, Pons, Salisbury, Shepley and Sundermeyer among others, holds the key. Taking objective change to be ineliminable time dependence, there is change in vacuum GR just in case there is no time-like vector field satisfying Killing's equation. Throwing away the spatial dependence of GR for convenience, one finds that the time evolution from Hamilton's equations is real change just when there is no time-like Killing vector. Hence change is real and local even in the Hamiltonian formalism. The considerations here resolve the Earman-Maudlin standoff: the Hamiltonian formalism is helpful, and, suitably reformed, it does not have absurd consequences for change. Hence the classical problem of time is resolved, apart from the issue of observables, for which the solution is outlined. The quantum problem of time, however, is not automatically resolved due to issues of quantum constraint imposition.
Sterling, Alphonse C.; Moore, Ronald L. [Space Science Office, VP62, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Harra, Louise K., E-mail: alphonse.sterling@nasa.gov, E-mail: ron.moore@nasa.gov, E-mail: lkh@mssl.ucl.ac.uk [UCL-Mullard Space Science Laboratory, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom)
2011-12-10T23:59:59.000Z
Two GOES sub-C-class precursor eruptions occurred within {approx}10 hr prior to and from the same active region as the 2006 December 13 X4.3-class flare. Each eruption generated a coronal mass ejection (CME) with center laterally far offset ({approx}> 45 Degree-Sign ) from the co-produced bright flare. Explaining such CME-to-flare lateral offsets in terms of the standard model for solar eruptions has been controversial. Using Hinode/X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS) data, and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and Michelson Doppler Imager (MDI) data, we find or infer the following. (1) The first precursor was a 'magnetic-arch-blowout' event, where an initial standard-model eruption of the active region's core field blew out a lobe on one side of the active region's field. (2) The second precursor began similarly, but the core-field eruption stalled in the side-lobe field, with the side-lobe field erupting {approx}1 hr later to make the CME either by finally being blown out or by destabilizing and undergoing a standard-model eruption. (3) The third eruption, the X-flare event, blew out side lobes on both sides of the active region and clearly displayed characteristics of the standard model. (4) The two precursors were offset due in part to the CME originating from a side-lobe coronal arcade that was offset from the active region's core. The main eruption (and to some extent probably the precursor eruptions) was offset primarily because it pushed against the field of the large sunspot as it escaped outward. (5) All three CMEs were plausibly produced by a suitable version of the standard model.
Transmission line relay mis-operation detection based on time-synchronized field data
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Esmaeilian, Ahad; Popovic, Tomo; Kezunovic, Mladen
2015-08-01T23:59:59.000Z
In this paper, a real-time tool to detect transmission line relay mis-operation is implemented. The tool uses time-synchronized measurements obtained from both ends of the line during disturbances. The proposed fault analysis tool comes into the picture only after the protective device has operated and tripped the line. The proposed methodology is able not only to detect, classify, and locate transmission line faults, but also to accurately confirm whether the line was tripped due to a mis-operation of protective relays. The analysis report includes either detailed description of the fault type and location or detection of relay mis-operation. As such,more »it can be a source of very useful information to support the system restoration. The focus of the paper is on the implementation requirements that allow practical application of the methodology, which is illustrated using the field data obtained the real power system. Testing and validation is done using the field data recorded by digital fault recorders and protective relays. The test data included several hundreds of event records corresponding to both relay mis-operations and actual faults. The discussion of results addresses various challenges encountered during the implementation and validation of the presented methodology.« less
Fast evaluation of far-field signals for time-domain wave propagation
Scott E. Field; Stephen R. Lau
2014-09-20T23:59:59.000Z
Time-domain simulation of wave phenomena on a finite computational domain often requires a fictitious outer boundary. An important practical issue is the specification of appropriate boundary conditions on this boundary, often conditions of complete transparency. Attention to this issue has been paid elsewhere, and here we consider a different, although related, issue: far-field signal recovery. Namely, from smooth data recorded on the outer boundary we wish to recover the far-field signal which would reach arbitrarily large distances. These signals encode information about interior scatterers and often correspond to actual measurements. This article expresses far-field signal recovery in terms of time-domain convolutions, each between a solution multipole moment recorded at the boundary and a sum-of-exponentials kernel. Each exponential corresponds to a pole term in the Laplace transform of the kernel, a finite sum of simple poles. Greengard, Hagstrom, and Jiang have derived the large-$\\ell$ (spherical-harmonic index) asymptotic expansion for the pole residues, and their analysis shows that, when expressed in terms of the exact sum-of-exponentials, large-$\\ell$ signal recovery is plagued by cancellation errors. Nevertheless, through an alternative integral representation of the kernel and its subsequent approximation by a {\\em smaller} number of exponential terms (kernel compression), we are able to alleviate these errors and achieve accurate signal recovery. We empirically examine scaling relations between the parameters which determine a compressed kernel, and perform numerical tests of signal "teleportation" from one radial value $r_1$ to another $r_2$, including the case $r_2=\\infty$. We conclude with a brief discussion on application to other hyperbolic equations posed on non-flat geometries where waves undergo backscatter.
THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES
Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, CA 94305 (United States)] [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, CA 94305 (United States)
2013-01-10T23:59:59.000Z
We present a new algorithm for identifying dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure; as such, it is named ROCKSTAR (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement). Our method is massively parallel (up to 10{sup 5} CPUs) and runs on the largest current simulations (>10{sup 10} particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). A previous paper has shown ROCKSTAR to have excellent recovery of halo properties; we expand on these comparisons with more tests and higher-resolution simulations. We show a significant improvement in substructure recovery compared to several other halo finders and discuss the theoretical and practical limits of simulations in this regard. Finally, we present results that demonstrate conclusively that dark matter halo cores are not at rest relative to the halo bulk or substructure average velocities and have coherent velocity offsets across a wide range of halo masses and redshifts. For massive clusters, these offsets can be up to 350 km s{sup -1} at z = 0 and even higher at high redshifts. Our implementation is publicly available at http://code.google.com/p/rockstar.
Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants
Lockwood, G.J.; Normann, R.A.; Williams, C.V.
1999-02-22T23:59:59.000Z
Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windows{trademark}-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide-thallium activated crystal coupled to a photomultiplier tube (PMT). The output of the PMT goes to a multichannel analyzer (MCA).The MCA data is transmitted to the surface via a signal conditioning and transmitter board similar to that used with the GMT. The EMWD system is described and the results of the GRS field tests and field demonstration are presented.
Band offsets at heterojunctions and the charge neutrality condition
Taferner, Waltraud Teresa
1990-01-01T23:59:59.000Z
P InSb ZnSe Znte Gap indirect indirect indirect indirect direct indirect direct direct direct direct direct direct E4 (eV) O'K 0. 76 1. 13 2. 30 1. 88 1. 55 2. 35 0. 78 0. 43 1. 41 0. 23 2. 68 2. 56 If the atoms of a...&' ?r&rl c!?? &'nt h&: R . F. . X I 1 e n t C. 'k&r&ic &?f l'nn&rr&it&ee) l. H. B. r&ss (:& I e m h e r! R. R. L?cchese (lvlpmhe& ) etta. g R. AIT&&J?' &t t (Ifead of Department) May 1990 ABSTRACT Band OfFsets at Heterojunctions...
Electron-Positron Pair Production in Space- or Time-Dependent Electric Fields
Hagen Kleinert; Remo Ruffini; She-Sheng Xue
2008-07-06T23:59:59.000Z
Treating the production of electron and positron pairs by a strong electric field from the vacuum as a quantum tunneling process we derive, in semiclassical approximation, a general expression for the pair production rate in a $z$-dependent electric field $E(z)$ pointing in the $z$-direction. We also allow for a smoothly varying magnetic field parallel to $E(z)$. The result is applied to a confined field $E(z)\
Effect of the electric field on the creation of fermions in de-Sitter space-time
Haouat, S
2015-01-01T23:59:59.000Z
The effect of the electric field on the creation of spin 1/2 particles from vacuum in the (1+1) dimensional de-Sitter space-time is studied. The Dirac equation with a constant electric field is solved by introducing an unitary transformation. Then the canonical method based on Bogoliubov transformation is applied to calculate the pair creation probability and the density of created particles both for positive or negative wave vector. By doing summation over all allowed states, the number of created particles per unit of time per unit of length and the imaginary part of the Schwinger effective action are expressed in closed forms. It is shown that the electric field leads to a significant enhancement of the particle creation. The weak expansion case and the limit H=0, where dS space reduces to the flat Minkowski space-time, are discussed.
Sujan Sengupta
1998-01-29T23:59:59.000Z
The ohmic decay of magnetic fields confined within the crust of neutron stars is considered by incorporating both the effect of neutron star cooling and the effect of space-time curvature produced by the intense gravitational field of the star. For this purpose a stationary and static gravitational field has been considered with the standard as well as the accelerated cooling models of neutron stars. It is shown that general relativistic effect reduces the magnetic field decay rate substantially. At the late stage of evolution when the field decay is mainly determined by the impurity-electron scattering, the effect of space-time curvature suppresses the role of the impurity content significantly and reduces the decay rate by more than an order of magnitude. Even with a high impurity content the decay rate is too low to be of observational interest if the accelerated cooling model along with the effect of space-time curvature is taken into account. It is, therefore, pointed out that if a decrease in the magnetic field strength by more than two orders of magnitude from its initial value is detected by observation then the existence of quark in the core of the neutron star would possibly be ruled out.
Economic Trade-Offs between Carbon Offset and Timber Opportunities in British Columbia's Central on the implications of timber harvest and carbon offset projects in British Columbia. I would also like to thank Research Project Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Resource
An enhanced model for calculating delay as a function of offset
Jain, Shweta
1996-01-01T23:59:59.000Z
This thesis presents the enhancements made to an existing model for calculating delay as a function of offset between the traffic signals of a link. The delay-difference-of offset technique is a signal control concept used for strategic optimization...
Lee, KyeoReh; Park, Jung-Hoon; Park, Ji-Ho; Park, YongKeun
2015-01-01T23:59:59.000Z
Rewinding the arrow of time via phase conjugation is an intriguing phenomena made possible by the wave property of light. To exploit this phenomenon, many diverse research fields have pursed the realization of an ideal phase conjugation mirror, but the ideal phase conjugation mirror - an optical system that requires a single-input and a single-output beam, like natural conventional mirrors - has never been demonstrated. Here, we demonstrate the realization of a one-wave optical time-reversal mirror using a spatial light modulator and a single-mode reflector. Our method is simple, alignment free, and fast while allowing unlimited power throughput in the time reversed wave, which have not been simultaneously demonstrated before. Using our method, we demonstrate high throughput time-reversal full-field light delivery through highly scattering biological tissue and multimode fibers, even for quantum dot fluorescence.
Study of two-dimensional transient cavity fields using the finite-difference time-domain technique
Crisp, J.L.
1988-06-01T23:59:59.000Z
This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.
Initial Simulation Results of Storm-Time Ring Current in a Self-Consistent Magnetic Field Model
Lyons, Larry
, and electrons. The ring current is greatly intensified during geomagnetic storms, and produces large measurement of the magnetic disturbances from all magnetospheric currents on the surface of the EarthInitial Simulation Results of Storm-Time Ring Current in a Self-Consistent Magnetic Field Model S
A charged particle in a homogeneous magnetic field accelerated by a time periodic Aharonov-Bohm flux
T. Kalvoda; P. Stovicek
2011-07-14T23:59:59.000Z
We consider a nonrelativistic quantum charged particle moving on a plane under the influence of a uniform magnetic field and driven by a periodically time-dependent Aharonov-Bohm flux. We observe an acceleration effect in the case when the Aharonov-Bohm flux depends on time as a sinusoidal function whose frequency is in resonance with the cyclotron frequency. In particular, the energy of the particle increases linearly for large times. An explicit formula for the acceleration rate is derived with the aid of the quantum averaging method, and then it is checked against a numerical solution with a very good agreement.
ZnO/Sn:In2O3 and ZnO/CdTe band offsets for extremely thin absorber...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ZnOSn:In2O3 and ZnOCdTe band offsets for extremely thin absorber photovoltaics . ZnOSn:In2O3 and ZnOCdTe band offsets for extremely thin absorber photovoltaics . Abstract: Band...
Kim, Jieun, S.M. Massachusetts Institute of Technology
2010-01-01T23:59:59.000Z
Carbon offset is one type of flexibility mechanism in greenhouse gas emission trading schemes that helps nations meet their emission commitments at lower costs. Carbon offsets take advantage of lower abatement cost ...
Technische Universiteit Delft
Offset voltage of Schottky-collector silicon-on-glass vertical PNP's G. Lorito, L. K. Nanver and N and investigated with respect to the influence of the collector design on the offset voltage. With Schottky collector contacts the offset voltage can be made both very low (
Carbon Offsets as a Cost Containment Instrument: A Case Study of Reducing Emissions from and Policy Program #12;2 #12;3 Carbon Offsets as a Cost Containment Instrument: A Case Study of Reducing in Technology and Policy Abstract Carbon offset is one type of flexibility mechanism in greenhouse gas emission
Fermion production by a dependent of time electric field in de Sitter universe
Cosmin Crucean
2013-07-03T23:59:59.000Z
Fermion production by the electric field of a charge on de Sitter expanding universe is analyzed. The amplitude and probability of pair production are computed. We obtain from our calculations that the modulus of the momentum is no longer conserved and that there are probabilities for production processes where the helicity is no longer conserved. The rate of pair production in an electric field is found to be important in the early universe when the expansion factor was large comparatively with the particle mass.
A Parallel Coiled-Coil Tetramer with Offset Helices
Liu,J.; Deng, Y.; Zheng, Q.; Cheng, C.; Kallenbach, N.; Lu, M.
2006-01-01T23:59:59.000Z
Specific helix-helix interactions are fundamental in assembling the native state of proteins and in protein-protein interfaces. Coiled coils afford a unique model system for elucidating principles of molecular recognition between {alpha} helices. The coiled-coil fold is specified by a characteristic seven amino acid repeat containing hydrophobic residues at the first (a) and fourth (d) positions. Nonpolar side chains spaced three and four residues apart are referred to as the 3-4 hydrophobic repeat. The presence of apolar amino acids at the e or g positions (corresponding to a 3-3-1 hydrophobic repeat) can provide new possibilities for close-packing of {alpha}-helices that includes examples such as the lac repressor tetramerization domain. Here we demonstrate that an unprecedented coiled-coil interface results from replacement of three charged residues at the e positions in the dimeric GCN4 leucine zipper by nonpolar valine side chains. Equilibrium circular dichroism and analytical ultracentrifugation studies indicate that the valine-containing mutant forms a discrete {alpha}-helical tetramer with a significantly higher stability than the parent leucine-zipper molecule. The 1.35 {angstrom} resolution crystal structure of the tetramer reveals a parallel four-stranded coiled coil with a three-residue interhelical offset. The local packing geometry of the three hydrophobic positions in the tetramer conformation is completely different from that seen in classical tetrameric structures yet bears resemblance to that in three-stranded coiled coils. These studies demonstrate that distinct van der Waals interactions beyond the a and d side chains can generate a diverse set of helix-helix interfaces and three-dimensional supercoil structures.
ASHRAE Transactions: Symposia 617 The field validation of a short time step temperature
Ghajar, Afshin J.
consumption, based on predicted and measured heat pump entering fluid temperatures,is compared and discussed heat exchanger borehole (Yavuzturk et al. 1999), a comparison of model predictions to actual field data response factor model is presented using actual operational data from an elementary school building
Green, Mike; Green, M.A.; Strauss, B.P.
2007-08-27T23:59:59.000Z
By various theorems one can relate the capital cost of superconducting magnets to the magnetic energy stored within that magnet. This is particularly true for magnet where the cost is dominated by the structure needed to carry the magnetic forces. One can also relate the cost of the magnet to the product of the magnetic induction and the field volume. The relationship used to estimate the cost the magnet is a function of the type of magnet it is. This paper updates the cost functions given in two papers that were published in the early 1990 s. The costs (escalated to 2007 dollars) of large numbers of LTS magnets are plotted against stored energy and magnetic field time field volume. Escalated costs for magnets built since the early 1990 s are added to the plots.
Tanimura, Yusuke; Scamps, Guillaume
2015-01-01T23:59:59.000Z
Given a set of collective variables, a method is proposed to obtain the associated conjugated collective momenta and masses starting from a microscopic time-dependent mean-field theory. The construction of pairs of conjugated variables is the first step to bridge microscopic and macroscopic approaches. The method is versatile and can be applied to study a large class of nuclear processes. An illustration is given here with the fission of $^{258}$Fm. Using the quadrupole moment and eventually higher-order multipole moments, the associated collective masses are estimated along the microscopic mean-field evolution. When more than one collective variable are considered, it is shown that the off-diagonal matrix elements of the inertia play a crucial role. Using the information on the quadrupole moment and associated momentum, the collective evolution is studied. It is shown that dynamical effects beyond the adiabatic limit are important. Nuclei formed after fission tend to stick together for longer time leading to...
Gouranga C. Nayak
2011-05-23T23:59:59.000Z
We study the Schwinger mechanism in QCD in the presence of an arbitrary time-dependent chromo-electric background field $E^a(t)$ with arbitrary color index $a$=1,2,...8 in SU(3). We obtain an exact result for the non-perturbative quark (antiquark) production from an arbitrary $E^a(t)$ by directly evaluating the path integral. We find that the exact result is independent of all the time derivatives $\\frac{d^nE^a(t)}{dt^n}$ where $n=1,2,...\\infty$. This result has the same functional dependence on two Casimir invariants $[E^a(t)E^a(t)]$ and $[d_{abc}E^a(t)E^b(t)E^c(t)]^2$ as the constant chromo-electric field $E^a$ result with the replacement: $E^a \\rightarrow E^a(t)$. This result relies crucially on the validity of the shift conjecture, which has not yet been established.
Gouranga C Nayak
2009-10-02T23:59:59.000Z
We study non-perturbative gluon pair production from arbitrary time dependent chromo-electric field E^a(t) with arbitrary color index a =1,2,...8 via Schwinger mechanism in arbitrary covariant background gauge \\alpha. We show that the probability of non-perturbative gluon pair production per unit time per unit volume per unit transverse momentum \\frac{dW}{d^4xd^2p_T} is independent of gauge fixing parameter \\alpha. Hence the result obtained in the Fynman-'t Hooft gauge, \\alpha=1, is the correct gauge invariant and gauge parameter \\alpha independent result.
Helium in chirped laser fields as a time-asymmetric atomic switch
Kaprálová-Ž?ánská, Petra Ruth, E-mail: kapralova@jh-inst.cas.cz [Department of Radiation and Chemical Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic); J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8 (Czech Republic); Moiseyev, Nimrod, E-mail: nimrod@tx.technion.ac.il [Schulich Faculty of Chemistry and Faculty of Physics, Technion – Israel Institute of Technology, Haifa 32000 (Israel)
2014-07-07T23:59:59.000Z
Tuning the laser parameters exceptional points in the spectrum of the dressed laser helium atom are obtained. The weak linearly polarized laser couples the ground state and the doubly excited P-states of helium. We show here that for specific chirped laser pulses that encircle an exceptional point one can get the time-asymmetric phenomenon, where for a negative chirped laser pulse the ground state is transformed into the doubly excited auto-ionization state, while for a positive chirped laser pulse the resonance state is not populated and the neutral helium atoms remains in the ground state as the laser pulse is turned off. Moreover, we show that the results are very sensitive to the closed contour we choose. This time-asymmetric state exchange phenomenon can be considered as a time-asymmetric atomic switch. The optimal time-asymmetric switch is obtained when the closed loop that encircles the exceptional point is large, while for the smallest loops, the time-asymmetric phenomenon does not take place. A systematic way for studying the effect of the chosen closed contour that encircles the exceptional point on the time-asymmetric phenomenon is proposed.
Real-Time Data Processing and Magnetic Field Pitch Angle Estimation of the JET Motional Stark Effect Diagnostic based on Kalman Filtering
EECBG Success Story: Small Town Using Wind Power to Offset Electricity...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Wind Power to Offset Electricity Costs September 8, 2010 - 10:26am Addthis Carmen, Oklahoma, is not your average small town. It was the first recipient of an Energy Efficiency...
Hossein Ghaffarnejad
2015-03-10T23:59:59.000Z
Aim of the paper is to obtain 2d analogue of the backreaction equation which will be useful to study final state of quantum perturbed spherically symmetric curved space times. Thus we take Einstein-massless-scalar $\\psi$ tensor gravity model described on class of spherically symmetric curved space times. We rewrite the action functional in 2d analogue in terms of dimensionless dilaton-matter field $(\\chi=\\Phi\\psi)$ where dilaton field $\\Phi$ is conformal factor of 2-sphere. Then we seek renormalized expectation value of quantum dilaton-matter field stress tensor operator by applying Hadamard rennormalization prescription. Singularity of the Green function is assumed to be has logarithmic form. Covariantly conservation condition on the renormalized quantum dilaton-matter stress tensor demands to input a variable cosmological parameter $\\lambda(x)$. Energy conditions (weak, strong and null) is studied on the obtained renormalized stress tensor leading to dynamical equations for $\\lambda(x), \\Phi$ and quantum vacuum state $W_0(x)=_{ren}.$ In weak quantum field limits our obtained trace anomaly corresponds to one which obtained from zeta regularization. Setting null-like apparent horizon equation $\
Wu, Yue-Liang
2015-01-01T23:59:59.000Z
Treating the gravitational force on the same footing as the electroweak and strong forces, we present a quantum field theory (QFT) of gravity based on spinnic and scaling gauge symmetries. The so-called Gravifield sided on both locally flat non-coordinate space-time and globally flat Minkowski space-time is an essential ingredient for gauging global spinnic and scaling symmetries. The locally flat Gravifield space-time spanned by the Gravifield is associated with a non-commutative geometry characterized by a gauge-type field strength of Gravifield. A gauge invariant and coordinate independent action for the quantum gravity is built in the Gravifield basis, we derive equations of motion for all quantum fields with including the gravitational effect and obtain basic conservation laws for all symmetries. The equation of motion for Gravifield tensor is deduced in connection directly with the energy-momentum tensor. When the spinnic and scaling gauge symmetries are broken down to a background structure that posses...
Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation
Brihaye, Yves [Physique-Mathematique, Universite de Mons-Hainaut, 7000 Mons (Belgium); Hartmann, Betti [School of Engineering and Science, Jacobs University Bremen, 28759 Bremen (Germany)
2011-10-15T23:59:59.000Z
We study the stability of static, hyperbolic Gauss-Bonnet black holes in (4+1)-dimensional anti-de Sitter (AdS) space-time against the formation of scalar hair. Close to extremality the black holes possess a near-horizon topology of AdS{sub 2}xH{sup 3} such that within a certain range of the scalar field mass one would expect that they become unstable to the condensation of an uncharged scalar field. We confirm this numerically and observe that there exists a family of hairy black hole solutions labeled by the number of nodes of the scalar field function. We construct explicit examples of solutions with a scalar field that possesses zero nodes, one node, and two nodes, respectively, and show that the solutions with nodes persist in the limit of Einstein gravity, i.e. for vanishing Gauss-Bonnet coupling. We observe that the interval of the mass for which scalar field condensation appears decreases with increasing Gauss-Bonnet coupling and/or with increasing node number.
Persistence of transition state structure in chemical reactions driven by fields oscillating in time
Galen T. Craven; Thomas Bartsch; Rigoberto Hernandez
2014-04-29T23:59:59.000Z
Chemical reactions subjected to time-varying external forces cannot generally be described through a fixed bottleneck near the transition state barrier or dividing surface. A naive dividing surface attached to the instantaneous, but moving, barrier top also fails to be recrossing-free. We construct a moving dividing surface in phase space over a transition state trajectory. This surface is recrossing-free for both Hamiltonian and dissipative dynamics. This is confirmed even for strongly anharmonic barriers using simulation. The power of transition state theory is thereby applicable to chemical reactions and other activated processes even when the bottlenecks are time-dependent and move across space.
Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer
Jimenez, Jose-Luis
as a powerful tool to characterize aerosols. A number of laser ablation instruments have been developed and trigger a laser ablation time-of-flight mass spectrometer, which determines the composition of the sized surface rather than by ablation lasers.8-10 At present, the most commonly used instrument of this type
Koch, Othmar
calculations of electronic structure. When a large number of states is involved, such a description be- comes The multiconfiguration time-dependent Hartree-Fock approach for the description of correlated few-electron dynamics ionization and electron spectra for the ground and first excited ionic channels are calculated for one
Supplementary Material for The Shape-Time Random Field for Semantic Video Labeling
Massachusetts at Amherst, University of
]. We first describe the inference and learn- ing procedures for the temporal SCRF and STRF models in Section 3. 1. Temporal SCRF 1.1. Inference For the first frame (time t = 1), the SCRF is used for inference, since it does not depend on previous frames. Af- terward, inference in the temporal SCRF
Optical force on a discrete invisibility cloak in time-dependent fields
Chaumet, Patrick C.; Zolla, Frederic; Nicolet, Andre; Belkebir, Kamal [Institut Fresnel, CNRS, Aix-Marseille Universite, Campus de St-Jerome 13013 Marseille (France); Rahmani, Adel [Department of Mathematical Sciences, University of Technology, Sydney, Broadway NSW 2007 (Australia)
2011-09-15T23:59:59.000Z
We study, in time domain, the exchange of momentum between an electromagnetic pulse and a three-dimensional, discrete, spherical invisibility cloak. We find that a discrete cloak, initially at rest, would experience an electromagnetic force due to the pulse but would acquire zero net momentum and net displacement. On the other hand, we find that while the cloak may manage to conceal an object and shroud it from the electromagnetic forces associated with the pulse, the cloak itself can experience optomechanical stress on a scale much larger than the object would in the absence of the cloak. We also consider the effects of material dispersion and losses on the electromagnetic forces experienced by the cloak and show that they lead to a transfer of momentum from the pulse to the cloak.
Tureanu, Anca [High Energy Physics Division, Department of Physical Sciences, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FIN-00014 Helsinki (Finland)
2006-09-15T23:59:59.000Z
In the framework of quantum field theory on noncommutative space-time with the symmetry group O(1,1)xSO(2), we prove that the Jost-Lehmann-Dyson representation, based on the causality condition taken in connection with this symmetry, leads to the mere impossibility of drawing any conclusion on the analyticity of the 2{yields}2-scattering amplitude in cos {theta}, {theta} being the scattering angle. Discussions on the possible ways of obtaining high-energy bounds analogous to the Froissart-Martin bound on the total cross section are also presented.
Krause, Pascal; Schlegel, H. Bernhard [Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489 (United States)
2014-11-07T23:59:59.000Z
The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.
A FEMTOSECOND-LEVEL FIBER-OPTICS TIMING DISTRIBUTION SYSTEM USING FREQUENCY-OFFSET INTERFEROMETRY
Staples, J.W.
2008-01-01T23:59:59.000Z
sideband suppressed-carrier (DSSC) calibrate sig- nal isstabilized by injection of a DSSC calibrate signal. Figure 5signal. The FPGA generates a DSSC signal and injects it as
Timing of structural growth at Northwest Stevens field as evidenced by Stevens channel geometries
Berkman, T.A. (ARCO Oil and Gas Co., Bakersfield, CA (United States))
1991-02-01T23:59:59.000Z
Stacked upper Miocene Stevens sandstone bodies at Northwest Stevens (Tule Elk) are the product of two coalescing turbidite channels which reflect the influence of growing structure during deposition. One channel can be traced from the south through ARCO's 555 zone unit, the 26R and 2B pools at Elk Hills, and into Northwest Stevens. The 800-ft-thick T' turbidite sands from this channel form offlapping geometries and structural/stratigraphic traps due to deposition across the rising northwest-plunging nose of the Northwest Stevens anticline. They are medium- to coarse-grained with abundant mudstone interbeds and are interpreted to represent a depositional channel fill which grades laterally to less permeable finer grained overbank deposits along the east side of Northwest Stevens. The second coeval channel can be traced from McKittrick through Asphalto and the 24Z pool at Elk Hills into Northwest Stevens, where it forms a 1,700-ft-thick sequence of 80 to 500-ft-thick sand packages at the 7R pool. Sand-shale ratios in these pebbly sandstones are nearly 9 to 1 with abundant conglomeratic interbeds. These channel sands display blocky electric log signatures, have lenticular geometries at the top of the sequence and offlapping geometries at the base, and document deposition in a structural low adjacent to the rising Northwest Stevens structure. The upper Miocene correlation point (UMPC) is sanded out at the 7R pool, indicating that turbidite sand deposition there persisted into lower Reef Ridge time. Well correlations indicate only minor erosive deposition and amalgamation; thus, the sand bodies at Northwest Stevens are additive to the section.
Eugene V. Stefanovich
2015-02-16T23:59:59.000Z
This book is an attempt to build a consistent relativistic quantum theory of interacting particles. In the first part of the book "Quantum electrodynamics" we follow rather traditional approach to particle physics. Our discussion proceeds systematically from the principle of relativity and postulates of quantum measurements to the renormalization in quantum electrodynamics. In the second part of the book "Quantum theory of particles" this traditional approach is reexamined. We find that formulas of special relativity should be modified to take into account particle interactions. We also suggest reinterpreting quantum field theory in the language of physical "dressed" particles. This formulation eliminates the need for renormalization and opens up a new way for studying dynamical and bound state properties of quantum interacting systems. The developed theory is applied to realistic physical objects and processes including the energy spectrum of the hydrogen atom, the decay law of moving unstable particles, and the electric field of relativistic electron beams. These results force us to take a fresh look at some core issues of modern particle theories, in particular, the Minkowski space-time unification, the role of quantum fields and renormalization as well as the alleged impossibility of action-at-a-distance. A new perspective on these issues is suggested. It can help to solve the old problem of theoretical physics -- a consistent unification of relativity and quantum mechanics.
Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Kane, R.D. (InterCorr International); Meidinger, B. (Rocky Mountain Oilfield Testing Center)
2005-01-01T23:59:59.000Z
A field study was conducted to evaluate the use of automated, multi-technique electrochemical corrosion-rate monitoring devices and probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. It involved measurement of real-time corrosion signals from operating pipelines. Results and interpretation were reported from four different field test locations. Standard flush-mount and custom flange probes were used in four different environments at a gas-gathering site and one environment but two different probe orientations at a natural gas site. These sites were selected to represent normal and upset conditions common in gas transmission pipelines. The environments consisted of two different levels of humidified natural gas, liquid hydrocarbon, and water from natural gas. Probe locations included the 6 and 12 o?clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. The probe data was monitored using completely remote solar powered systems that provided real-time data transmission via wireless back to a pipeline control station. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).
Yusuke Tanimura; Denis Lacroix; Guillaume Scamps
2015-05-21T23:59:59.000Z
Given a set of collective variables, a method is proposed to obtain the associated conjugated collective momenta and masses starting from a microscopic time-dependent mean-field theory. The construction of pairs of conjugated variables is the first step to bridge microscopic and macroscopic approaches. The method is versatile and can be applied to study a large class of nuclear processes. An illustration is given here with the fission of $^{258}$Fm. Using the quadrupole moment and eventually higher-order multipole moments, the associated collective masses are estimated along the microscopic mean-field evolution. When more than one collective variable are considered, it is shown that the off-diagonal matrix elements of the inertia play a crucial role. Using the information on the quadrupole moment and associated momentum, the collective evolution is studied. It is shown that dynamical effects beyond the adiabatic limit are important. Nuclei formed after fission tend to stick together for longer time leading to a dynamical scission point at larger distance between nuclei compared to the one anticipated from the adiabatic energy landscape. The effective nucleus-nucleus potential felt by the emitted nuclei is finally extracted.
Ling, Junpu; He, Juntao, E-mail: hejuntao12@163.com; Zhang, Jiande; Jiang, Tao; Hu, Yi [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)
2014-09-15T23:59:59.000Z
An improved foilless Ku-band transit-time oscillator with low guiding magnetic field is proposed and investigated in this paper. With a non-uniform buncher and a coaxial TM{sub 02} mode dual-resonant reflector, this improved device can output gigawatt level Ku-band microwave with relatively compact radial dimensions. Besides the above virtue, this novel reflector also has the merits of high TEM reflectance, being more suitable for pre-modulating the electron beam and enhancing the conversion efficiency. Moreover, in order to further increase the conversion efficiency and lower the power saturation time, a depth-tunable coaxial collector and a resonant cavity located before the extractor are employed in our device. Main structure parameters of the device are optimized by particle in cell simulations. The typical simulation result is that, with a 380?kV, 8.2?kA beam guided by a magnetic field of about 0.6?T, 1.15?GW microwave pulse at 14.25?GHz is generated, yielding a conversion efficiency of about 37%.
Chaudhuri, Shyamoli
2014-01-01T23:59:59.000Z
We derive the Euclidean time formulation for the equilibrium canonical ensemble of the type IIA and type IIB superstrings, and the spin(32)$/{\\rm Z}_2$ heterotic string. We compactify on $R^8 \\times T^2$, and twist by the Neveu-Schwarz sector antisymmetric 2-form $B$-field potential, spontaneously breaking supersymmetry at low temperatures, while preserving the tachyon free low-energy gravitational field theory limit. We verify that the super partners of the massless dilaton-graviton multiplet obtain a mass which is linear in the temperature. In addition, we show that the free energy for the superstring canonical ensemble at weak coupling is always strongly convergent in the ultraviolet, high-temperature, regime dominated by the highest mass level number states. We derive the precise form of the exponential suppression as a linear power of the mass level, which erases the exponential Hagedorn growth of the degeneracies as the square root of mass level number. Finally, we close a gap in previous research givin...
RodrÃguez, Rodolfo
AN EDDY CURRENT PROBLEM IN TERMS OF A TIME-PRIMITIVE OF THE ELECTRIC FIELD WITH NON-LOCAL SOURCE Abstract. The aim of this paper is to analyze a formulation of the eddy current problem in terms of a time and phrases: Eddy current problems, time-dependent electromagnetic problems, input current intensities
Hamad, I Abou; Wipf, D O; Rikvold, P A
2010-01-01T23:59:59.000Z
We have recently proposed a new method for charging Li-ion batteries based on large-scale molecular dynamics studies (I. Abou Hamad et al, Phys. Chem. Chem. Phys., 12, 2740 (2010)). Applying an additional oscillating electric field in the direction perpendicular to the graphite sheets of the anode showed an exponential decrease in charging time with increasing amplitude of the applied oscillating field. Here we present new results exploring the effect on the charging time of changing the orientation of the oscillating field. Results for oscillating fields in three orthogonal directions are compared.
Shyamoli Chaudhuri
2014-12-11T23:59:59.000Z
We derive the Euclidean time formulation for the equilibrium canonical ensemble of the type IIA and type IIB superstrings, and the spin(32)$/{\\rm Z}_2$ heterotic string. We compactify on $R^8 \\times T^2$, and twist by the Neveu-Schwarz sector antisymmetric 2-form $B$-field potential, spontaneously breaking supersymmetry at low temperatures, while preserving the tachyon free low-energy gravitational field theory limit. We verify that the super partners of the massless dilaton-graviton multiplet obtain a mass which is linear in the temperature. In addition, we show that the free energy for the superstring canonical ensemble at weak coupling is always strongly convergent in the ultraviolet, high-temperature, regime dominated by the highest mass level number states. We derive the precise form of the exponential suppression as a linear power of the mass level, which erases the exponential Hagedorn growth of the degeneracies as the square root of mass level number. Finally, we close a gap in previous research giving an unambiguous derivation of the normalization of the one-loop vacuum energy density of the spin(32)$/Z_2$ perturbative heterotic string theory. Invoking the O(32) type IB--heterotic strong-weak duality, we match the normalization of the one loop vacuum energy densities of the $T$-dual O(32) type IA open and closed string with that of the Spin(32)$/Z_2$ heterotic string on $R^9 \\times S^1$, for values of the compactification radius, $R_{\\rm [O(32)]}, ~ R_{\\rm IB}$ $>>$ $ \\alpha^{\\prime 1/2}$, with $R_{\\rm IA} $ $winding spectrum is a simple model for finite temperature pure QCD, transitioning above the critical duality phase transformation temperature to the deconfined ensemble of thermally excited IB gluons.
Temperature dependent band offsets in PbSe/PbEuSe quantum well heterostructures
Simma, M.; Bauer, G.; Springholz, G. [Institut fuer Halbleiter und Festkoerperphysik, Johannes Kepler Universitaet, A-4040 Linz (Austria)
2012-10-22T23:59:59.000Z
The band offsets of PbSe/Pb{sub 1-x}Eu{sub x}Se multi-quantum wells grown by molecular beam epitaxy are determined as a function of temperature and europium content using temperature-modulated differential transmission spectroscopy. The confined quantum well states in the valence and conduction bands are analyzed using a k{center_dot}p model with envelope function approximation. From the fit of the experimental data, the normalized conduction band offset is determined as 0.45{+-}0.15 of the band gap difference, independently of Eu content up to 14% and temperature from 20 to 300 K.
Barrash, Warren
A field comparison of Fresnel zone and ray-based GPR attenuation-difference tomography for time the medium. These sensitivities occupy the first Fresnel zone, account for the finite frequency nature
Ho, Tak-San; Wang, Kwanghsi; Chu, Shih-I
1986-03-01T23:59:59.000Z
A Floquet-Liouville supermatrix (FLSM) approach is presented for nonperturbative treatment of the time development of the density-matrix operator of atoms and molecules exposed to intense polychromatic fields. By extending ...
Challacombe, Matt [Los Alamos National Laboratory
2009-01-01T23:59:59.000Z
An algorithm for solution of the Time-Dependent Self-Consistent-Field (TD-SCF) equations is developed, based on dual solution channels for non-linear optimization of the Tsiper functional [J.Phys.B, 34 L401 (2001)]. This formulation poses the TD-SCF problem as two Rayleigh quotients, coupled weakly through biorthogonality. Convergence rates for the Random Phase Approximation (RPA) are found to be equivalent to the Tamm-Dancoff approximation (TDA). Moreover, the variational nature of the quotient is robust to approximation errors, allowing linear scaling solution to the bulk limit of the RPA matrix-eigenvalue and exchange operator problem for molecular wires with extended conjugation, including polyphenylene vinylene and the (4,3) nanotube.
Clara Vernay; Laurence Ramos; Christian Ligoure
2014-12-12T23:59:59.000Z
The collision of a liquid drop against a small target results in the formation of a thin liquid sheet that extends radially until it reaches a maximum diameter. The subsequent retraction is due to the air-liquid surface tension. We have used a time- and space-resolved technique to measure the thickness field of this class of liquid sheet, based on the grey level measurement of the image of a dyed liquid sheet recorded using a fast camera. This method enables a precise measurement of the thickness in the range $(10-450) \\, \\mathrm{\\mu m}$, with a temporal resolution equal to that of the camera. We have measured the evolution with time since impact, $t$, and radial position, $r$, of the thickness, $h(r,t)$, for various drop volumes and impact velocities. Two asymptotic regimes for the expansion of the sheet are evidenced. The scalings of the thickness with $t$ and $r$ measured in the two regimes are those that were predicted in \\citet{Rozhkov2004} fort the short-time regime and \\citet{Villermaux2011} for the long time regime, but never experimentally measured before. Interestingly, our experimental data also evidence the existence of a maximum of the film thickness $h_{\\rm{max}}(r)$ at a radial position $r_{\\rm{h_{max}}}(t)$ corresponding to the crossover of these two asymptotic regimes. The maximum moves with a constant velocity of the order of the drop impact velocity, as expected theoretically. Thanks to our visualization technique, we also evidence an azimuthal thickness modulation of the liquid sheets.
Learning Grasp Affordances with Variable Tool Point Offsets Thomas J. Palmer and Andrew H. Fagg
Fagg, Andrew H.
Learning Grasp Affordances with Variable Tool Point Offsets Thomas J. Palmer and Andrew H. Fagg.D. student and University of Oklahoma Foun- dation Fellow, University of Oklahoma, Norman, OK 73019, USA, University of Oklahoma, Norman, OK 73019, USA fagg@cs.ou.edu In this paper, we examine the grasp affordance
The Role of Offsets in Meeting Duke University's Commitment to `Climate
Zhou, Pei
................................................................................................................................................21 4. Greenhouse Gas Markets: the State of Play this Report This report examines the potential role of carbon offsets in meeting Duke University`s and other from within North Carolina, the international and national market context, and the potential
Band offsets at zincblende-wurtzite GaAs nanowire sidewall surfaces P. Capiod,1
Dunin-Borkowski, Rafal E.
Band offsets at zincblende-wurtzite GaAs nanowire sidewall surfaces P. Capiod,1 T. Xu,1,2 J. P. Nys of zincblende (ZB)-wurtzite (WZ) GaAs nanowires are investigated by scanning tunneling spectroscopy and density inclusions consisting of zinc-blende (ZB) and wurtzite (WZ) segments form during the growth of NWs and where
CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING
CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING in strategies for climate protection. 1. Introduction Carbon sequestration has been highlighted recently concentration of carbon dioxide (CO2) in the atmo- sphere include sequestering carbon (C) in soils
Commonality in Complex Product Families: Implications of Divergence and Lifecycle Offsets
de Weck, Olivier L.
Commonality in Complex Product Families: Implications of Divergence and Lifecycle Offsets by Ryan C Committee #12;2 #12;3 Commonality in Complex Product Families: Implications of Divergence and Lifecycle product family planning and lifecycle management, and ultimately, to improving corporate profitability
Reducing axial offset and improving stability in PWRs by using uraniumethorium fuel
Demazière, Christophe
Reducing axial offset and improving stability in PWRs by using uraniumethorium fuel Cheuk Wah Lau a that a new type uraniumethorium (UeTh) based fuel assembly could be used to achieve a more homogenous radial that a core containing UeTh fuel assemblies also reduces the AO and improves the core stability
Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine
Tullis, Stephen
Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine Andrzej J. Fiedler ABSTRACT A high solidity, small scale, 2.5m diameter by 3m high Vertical Axis Wind Turbine (VAWT in an open-air wind tunnel facility to investigate the effects of preset toe-in and toe-out turbine blade
Khare, H. S.; Burris, D. L. [126 Spencer Laboratory, Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716 (United States)
2013-05-15T23:59:59.000Z
One of the major challenges in understanding and controlling friction is the difficulty in bridging the length and time scales of macroscale contacts and those of the single asperity interactions they comprise. While the atomic force microscope (AFM) offers a unique ability to probe tribological surfaces in a wear-free single-asperity contact, instrument calibration challenges have limited the usefulness of this technique for quantitative nanotribological studies. A number of lateral force calibration techniques have been proposed and used, but none has gained universal acceptance due to practical considerations, configuration limitations, or sensitivities to unknowable error sources. This paper describes a simple extension of the classic wedge method of AFM lateral force calibration which: (1) allows simultaneous calibration and measurement on any substrate, thus eliminating prior tip damage and confounding effects of instrument setup adjustments; (2) is insensitive to adhesion, PSD cross-talk, transducer/piezo-tube axis misalignment, and shear-center offset; (3) is applicable to integrated tips and colloidal probes; and (4) is generally applicable to any reciprocating friction coefficient measurement. The method was applied to AFM measurements of polished carbon (99.999% graphite) and single crystal MoS{sub 2} to demonstrate the technique. Carbon and single crystal MoS{sub 2} had friction coefficients of {mu}= 0.20 {+-} 0.04 and {mu}= 0.006 {+-} 0.001, respectively, against an integrated Si probe. Against a glass colloidal sphere, MoS{sub 2} had a friction coefficient of {mu}= 0.005 {+-} 0.001. Generally, the measurement uncertainties ranged from 10%-20% and were driven by the effect of actual frictional variation on the calibration rather than calibration error itself (i.e., due to misalignment, tip-offset, or probe radius).
, and it is on those time scales of interest to water managers that decadal climate prediction is being appliedThe rapidly evolving field of decadal climate prediction, using initialized climate models to produce time-evolving predictions of regional climate, is producing new results for predictions
2001-01-01T23:59:59.000Z
Real-Time Laser-Based Non-Intrusive Detection System forof a laser-based non-intrusive detection system for real-Real-Time Laser-Based Non-Intrusive Detection System for
Cheng, Harry H.; Shaw, Ben; Palen, Joe; Wang, Zhaoqing; Chen, Bo
2002-01-01T23:59:59.000Z
Real-Time Laser-Based Non-Intrusive Detection System forJoe Palen, "A Laser-Based Non-Intrusive Detection System forReal-Time Laser-Based Non-Intrusive Detection System for
Demidov, V. I.; Koepke, M. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Raitses, Y. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2010-10-15T23:59:59.000Z
By restricting the electron-collection area of a cold Langmuir probe compared to the ion-collection area, the probe floating potential can become equal to the space potential, and thus conveniently monitored, rather than to a value shifted from the space potential by an electron-temperature-dependent offset, i.e., the case with an equal-collection-area probe. This design goal is achieved by combining an ambient magnetic field in the plasma with baffles, or shields, on the probe, resulting in species-selective magnetic insulation of the probe collection area. This permits the elimination of electron current to the probe by further adjustment of magnetic insulation which results in an ion-temperature-dependent offset when the probe is electrically floating. Subtracting the floating potential of two magnetically insulated baffled probes, each with a different degree of magnetic insulation, enables the electron or ion temperature to be measured in real time.
Rossi, D. M., E-mail: rossi@nscl.msu.edu; Davis, M.; Ringle, R.; Rodriguez, J. A.; Ryder, C. A.; Schwarz, S.; Sumithrarachchi, C.; Zhao, S. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Minamisono, K., E-mail: minamiso@nscl.msu.edu; Barquest, B. R.; Bollen, G.; Hughes, M.; Strum, R.; Tarazona, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Cooper, K.; Hammerton, K.; Mantica, P. F.; Morrissey, D. J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 (United States)
2014-09-15T23:59:59.000Z
A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive {sup 37}K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 ?s bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10{sup 5} in resonant photon detection measurements. The hyperfine structure of {sup 37}K and its isotope shift relative to the stable {sup 39}K were determined using 5 × 10{sup 4} s{sup ?1} {sup 37}K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A({sup 2}S{sub 1/2}) = 120.3(1.4) MHz, A({sup 2}P{sub 1/2}) = 15.2(1.1) MHz, and A({sup 2}P{sub 3/2}) = 1.4(8) MHz, and the isotope shift ??{sup 39,} {sup 37} = ?264(3) MHz are consistent with the previously determined values, where available.
Miyagi, Haruhide; Bojer Madsen, Lars [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark)] [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark)
2014-04-28T23:59:59.000Z
The time-dependent restricted-active-space self-consistent-field singles (TD-RASSCF-S) method is presented for investigating TD many-electron dynamics in atoms and molecules. Adopting the SCF notion from the muticonfigurational TD Hartree-Fock (MCTDHF) method and the RAS scheme (single-orbital excitation concept) from the TD configuration-interaction singles (TDCIS) method, the TD-RASSCF-S method can be regarded as a hybrid of them. We prove that, for closed-shell N{sub e}-electron systems, the TD-RASSCF-S wave function can be fully converged using only N{sub e}/2 + 1 ? M ? N{sub e} spatial orbitals. Importantly, based on the TD variational principle, the converged TD-RASSCF-S wave function with M = N{sub e} is more accurate than the TDCIS wave function. The accuracy of the TD-RASSCF-S approach over the TDCIS is illustrated by the calculation of high-order harmonic generation spectra for one-dimensional models of atomic helium, beryllium, and carbon in an intense laser pulse. The electronic dynamics during the process is investigated by analyzing the behavior of electron density and orbitals. The TD-RASSCF-S method is accurate, numerically tractable, and applicable for large systems beyond the capability of the MCTDHF method.
Using Measurements of Fill Factor at High Irradiance to Deduce Heterobarrier Band Offsets: Preprint
Olson, J. M.; Steiner, M. A.; Kanevce, A.
2011-07-01T23:59:59.000Z
Using a 2D device simulation tool, we examine the high irradiance behavior of a single junction, GaAs concentrator cell as a function of the doping in the back surface confinement layer. The confinement layer is designed to be a barrier for both holes and electrons in the base of the solar cell. For a p-type base we show that the FF of the cell at high concentrations is a strong function of both the magnitude of the valence band offset and the doping level in the barrier. In short, for a given valence band offset (VBO), there is a critical barrier doping, below which the FF drops rapidly with lower doping. This behavior is confirmed experimentally for a GaInP/GaAs double heterostructure solar cell where the critical doping concentration (at 500 suns) in the back surface confinement layer is ~1e18 cm-3 for a VBO of 300 meV.
Moon, Un-Ku
-converted signal in the form of a DC offset. Coupling of the LO to the LNA and RF port of the mixer cause static conversion mixer incorporating adaptive offset cancellation. The basic circuit structure is that of a Gilbert cell mixer. Offsets are cancelled by dynamically varying the bias on the loads, which are designed
Emittance growth due to beam-beam effects with a static offset in collision in the LHC
Pieloni, T; Qiang, J
2010-01-01T23:59:59.000Z
Under nominal operational conditions, the LHC bunches experience small unavoidable offset at the collision points caused by long range beam-beam interactions. Although the geometrical loss of luminosity is small, one may have to consider an increase of the beam transverse emittance, leading to a deterioration of the experimental conditions. In this work we evaluate and understand the dynamics of beam-beam interactions with static offsets at the collision point. A study of the emittance growth as a function of the offset amplitude in collisions is presented. Moreover, we address the effects coming from the beam parameters such as the initial transverse beam size, bunch intensity and tune.
Influence of GaAs surface termination on GaSb/GaAs quantum dot structure and band offsets
Zech, E. S.; Chang, A. S.; Martin, A. J.; Canniff, J. C.; Millunchick, J. M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Lin, Y. H. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)
2013-08-19T23:59:59.000Z
We have investigated the influence of GaAs surface termination on the nanoscale structure and band offsets of GaSb/GaAs quantum dots (QDs) grown by molecular-beam epitaxy. Transmission electron microscopy reveals both coherent and semi-coherent clusters, as well as misfit dislocations, independent of surface termination. Cross-sectional scanning tunneling microscopy and spectroscopy reveal clustered GaSb QDs with type I band offsets at the GaSb/GaAs interfaces. We discuss the relative influences of strain and QD clustering on the band offsets at GaSb/GaAs interfaces.
Alex Kaivarainen
2006-07-14T23:59:59.000Z
New concept of Bivacuum is introduced, as a dynamic matrix of the Universe, composed from sub-quantum particles and antiparticles, forming vortical structures. These structures are presented by continuum of dipoles, each dipole containing a pair of correlated torus and antitorus: V(+) and V(-) of the opposite energy/mass, spin, charge and magnetic moments, compensating each other. The rest mass and charge of sub-elementary fermions or antifermions is a result of Bivacuum dipoles opposite symmetry shifts. Their fusion to triplets follows by elementary particles and antiparticles origination. The [corpuscle (C) - wave (W)] duality is a result of correlated beats between the 'actual' and 'complementary' states of sub-elementary fermions of triplets. It is shown, that Principle of least action, the 2d and 3d laws of thermodynamics can be a consequences of forced combinational resonance between positive and negative virtual pressure waves (VPW+/-) of Bivacuum and [C-W] pulsation of elementary particles. The quantum entanglement, mediated by virtual microtubules, composed from Bivacuum dipoles, connecting remote particles, is a result of such Bivacuum-matter interaction. The pace of time for any closed system is determined by pace of kinetic energy change of this system. The proposed mechanism of overunity devices can be provided by the electrons acceleration, induced by their resonant interaction with high frequency positive and negative VPW+/- in pull-in range conditions. The latter can be excited by pulsing currents and fields. The mechanism of overheating and cold fusion in electrolytic cells without violation of energy conservation is proposed also.
Wysin, Gary
styrofoam ball? a. It has a negative net charge b. It has zero net charge. c. It has positive net charge. d at finite x where the electric field is zero. c) (8) Determine the magnitude of the net electric field. Its net charge changes when then rods are placed near it. 2. (6) An excess charge of -88 pC is placed
Brandt, Riley E.
The development of cuprous oxide (Cu [subscript 2]O) photovoltaics (PVs) is limited by low device open-circuit voltages. A strong contributing factor to this underperformance is the conduction-band offset between Cu ...
Paris-Sud XI, Université de
CAMI-AFT: A SCIENTIFIC FIELD EXPERIMENT TO CALIBRATE REAL-TIME MONITORING SYSTEMS DEDICATED the source energy to the sensor energy. KEYWORDS: Microseismic monitoring, Post-mining risks. RESUME : les TO THE MANAGEMENT OF POST-MINING RISKS CONTRUCCI Isabelle1 , KLEIN Emmanuelle1 , BIGARRE Pascal1 , LIZEUR Armand1
Rotating black hole in asymptotic de Sitter space: Perturbation of the space-time with spin fields
Khanal, U.
1983-09-15T23:59:59.000Z
The Newman-Penrose formalism is used to work with gravitational, electromagnetic, and Dirac field perturbations of the Kerr--de Sitter space. It is shown that the resulting equations are separable, and the radial parts (for the massless fields) combine into a master equation resembling that of Teukolsky. This master equation includes the Teukolsky equation and the equation arising from the de Sitter--Schwarzschild universe, and can be reduced to these cases under appropriate limiting conditions. Finally, the radial parts of the electromagnetic and neutrino fields are transformed to the form of the one-dimensional barrier-penetration equation.
Smith, David E.
Tracking of the Mars Global Surveyor spacecraft has been used to measure changes in the long-wavelength gravity field of Mars and to estimate the seasonal mass of carbon dioxide that is deposited in the polar regions each ...
Time-resolved observation of discrete and continuous MHD dynamo in the reversed-field pinch edge
Ji, H.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.
1994-01-06T23:59:59.000Z
We report the first experimental verification of the MHD dynamo in the RFP. A burst of magnetohydrodynamic (MHD) dynamo electric field is observed during the sawtooth crash, followed by an increase in the local parallel current in the MST RFP edge. By measuring each term, the parallel MHD mean-field Ohm`s law is observed to hold within experimental error bars both between and during sawtooth crashes.
Eckhard Strobel; She-Sheng Xue
2014-07-18T23:59:59.000Z
We present an analytic calculation of the semiclassical electron-positron pair creation rate by time-dependent electrical fields. We use two methods, first the imaginary time method in the WKB-approximation and second the world-line instanton approach. The analytic tools for both methods are generalized to time-dependent electric fields with more than one component. For the WKB method an expansion of the momentum spectrum of produced pairs around the canonical momentum $\\vec{P}=0$ is presented which simplifies the computation of the pair creation rate. We argue that the world-line instanton method of [Dunne et al., Phys. Rev. D73, 065028 (2006)] implicitly performs this expansion of the momentum spectrum around $\\vec{P}=0$. Accordingly the generalization to more than one component is shown to agree with the WKB result obtained via this expansion. However the expansion is only a good approximation for the cases where the momentum spectrum is peaked around $\\vec{P}=0$. Thus the expanded WKB result and the world-line instanton method of [Dunne et al., Phys. Rev. D73, 065028 (2006)] as well as the generalized method presented here are only applicable in these cases. We study the two component case of a rotating electric field and find a new analytic closed form for the momentum spectrum using the generalized WKB method. The momentum spectrum for this field is not peaked around $\\vec{P}=0$.
Tachyonic field interacting with Scalar (Phantom) Field
Surajit Chattopadhyay; Ujjal Debnath
2009-01-29T23:59:59.000Z
In this letter, we have considered the universe is filled with the mixture of tachyonic field and scalar or phantom field. If the tachyonic field interacts with scalar or phantom field, the interaction term decays with time and the energy for scalar field is transferred to tachyonic field or the energy for phantom field is transferred to tachyonic field. The tachyonic field and scalar field potentials always decrease, but phantom field potential always increases.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2April 2013we have solar panels but notOffset
Kazuhiro Yamamoto; Gen Nakamura
2011-03-09T23:59:59.000Z
First-order quantum correction to the Larmor radiation is investigated on the basis of the scalar QED on a homogeneous background of time-dependent electric field, which is a generalization of a recent work by Higuchi and Walker so as to be extended for an accelerated charged particle in a relativistic motion. We obtain a simple approximate formula for the quantum correction in the limit of the relativistic motion when the direction of the particle motion is parallel to that of the electric field.
Ringermacher, H I
2015-01-01T23:59:59.000Z
We have observed damped longitudinal cosmological-scale oscillations in a unique model-independent plot of scale factor against lookback time for Type Ia supernovae data. We found several first-derivative relative maxima/minima spanning the range of reported transition-redshifts. These extrema comprise 2 full cycles with a period of approximately 0.15 Hubble times (H0=68 km/s/Mpc). This period corresponds to a fundamental frequency of approximately 7 cycles over the Hubble time. Transition-z values quoted in the literature generally fall near these minima and may explain the reported wide spread up to the predicted LCDM value of approximately z = 0.77. We also observe second and third harmonics of the fundamental. The scale factor data is analyzed several different ways including smoothing, Fourier transform and autocorrelation. We propose a cosmological scalar field harmonic oscillator model for the observation. On this time scale, for a quantum scalar field, the scalar field mass is extraordinarily small at...
Rai-Dastidar, T K; Dastidar, Krishna Rai
1999-01-01T23:59:59.000Z
It has been demonstrated in a recent paper (Mod.Phys.Lett. A13, 1265 (1998); hep-th/9902020) that the existence of a non-thermodynamic arrow of time at the atomic level is a fundamental requirement for conservation of energy in matter-radiation interaction. Since the universe consists of two things only --- energy and massive matter --- we argue that as a consequence of this earlier result, particles and antiparticles must necessarily move in opposite directions in time. Our result further indicates that the CPT theorem can be extended to cover non-local gauge fields.
McDonald, Kirk
than the retarded forms of the Coulomb and the BiotSavart laws. Of course, it was Maxwell who first of the Coulomb and BiotSavart laws as their leading terms, but their relation to radiation is not as manifest greater emphasis to the radiation fields. This article presents a derivation of the various expressions
C. J. Schrijver; M. L. DeRosa; T. Metcalf; G. Barnes; B. Lites; T. Tarbell; J. McTiernan; G. Valori; T. Wiegelmann; M. S. Wheatland; T. Amari; G. Aulanier; P. Demoulin; M. Fuhrmann; K. Kusano; S. Regnier; J. K. Thalmann
2007-11-30T23:59:59.000Z
Solar flares and coronal mass ejections are associated with rapid changes in field connectivity and powered by the partial dissipation of electrical currents in the solar atmosphere. A critical unanswered question is whether the currents involved are induced by the motion of pre-existing atmospheric magnetic flux subject to surface plasma flows, or whether these currents are associated with the emergence of flux from within the solar convective zone. We address this problem by applying state-of-the-art nonlinear force-free field (NLFFF) modeling to the highest resolution and quality vector-magnetographic data observed by the recently launched Hinode satellite on NOAA Active Region 10930 around the time of a powerful X3.4 flare. We compute 14 NLFFF models with 4 different codes and a variety of boundary conditions. We find that the model fields differ markedly in geometry, energy content, and force-freeness. We discuss the relative merits of these models in a general critique of present abilities to model the coronal magnetic field based on surface vector field measurements. For our application in particular, we find a fair agreement of the best-fit model field with the observed coronal configuration, and argue (1) that strong electrical currents emerge together with magnetic flux preceding the flare, (2) that these currents are carried in an ensemble of thin strands, (3) that the global pattern of these currents and of field lines are compatible with a large-scale twisted flux rope topology, and (4) that the ~10^32 erg change in energy associated with the coronal electrical currents suffices to power the flare and its associated coronal mass ejection.
Heterojunction band offsets and dipole formation at BaTiO{sub 3}/SrTiO{sub 3} interfaces
Balaz, Snjezana [Department of Physics and Astronomy, Youngstown State University, One University Plaza, Youngstown, Ohio 44555 (United States)] [Department of Physics and Astronomy, Youngstown State University, One University Plaza, Youngstown, Ohio 44555 (United States); Zeng, Zhaoquan [Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Neil Ave., Columbus, Ohio 43210 (United States)] [Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Neil Ave., Columbus, Ohio 43210 (United States); Brillson, Leonard J. [Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Neil Ave., Columbus, Ohio 43210 (United States) [Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Neil Ave., Columbus, Ohio 43210 (United States); Department of Physics, The Ohio State University, 191 West Woodruff, Columbus, Ohio 43210 (United States)
2013-11-14T23:59:59.000Z
We used a complement of photoemission and cathodoluminescence techniques to measure formation of the BaTiO{sub 3} (BTO) on SrTiO{sub 3} (STO) heterojunction band offset grown monolayer by monolayer by molecular beam epitaxy. X-ray photoemission spectroscopy (XPS) provided core level and valence band edge energies to monitor the valence band offset in-situ as the first few crystalline BTO monolayers formed on the STO substrate. Ultraviolet photoemission spectroscopy (UPS) measured Fermi level positions within the band gap, work functions, and ionization potentials of the growing BTO film. Depth-resolved cathodoluminescence spectroscopy measured energies and densities of interface states at the buried heterojunction. Kraut-based XPS heterojunction band offsets provided evidence for STO/BTO heterojunction linearity, i.e., commutativity and transitivity. In contrast, UPS and XPS revealed a large dipole associated either with local charge transfer or strain-induced polarization within the BTO epilayer.
Bernadett, Lauren
2013-01-01T23:59:59.000Z
offset credits for installing “a biogas control system thatemissions by installing biogas control systems (BCS), whichin exchange for installing biogas control systems (BCS), a
Ling, Junpu; Zhang, Jiande; He, Juntao, E-mail: hejuntao12@163.com; Wang, Lei; Deng, Bingfang [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)
2014-08-15T23:59:59.000Z
Based on the theoretical analysis of the intense relativistic electron beam propagation in the coaxial drift-tube, a focusing electrode and a coaxial reflector is proposed to lessen the demand of the coaxial Ku-band foilless transit-time oscillator (TTO) for the guiding magnetic field. Moreover, a Ku-band TTO with the focusing electrode and the coaxial reflector is designed and studied by particle in cell simulation. When the diode voltage is 390 kV, the beam current 7.8 kA, and the guiding magnetic field is only 0.3 T, the device can output 820 MW microwave pulse at 14.25 GHz by means of the simulation. However, for the device without them, the output power is only 320 MW. The primary experiments are also carried out. When the guiding magnetic field is 0.3 T, the output power of the device with the focusing electrode and the coaxial reflector is double that of the one without them. The simulation and experimental results prove that the focusing electrode and the coaxial reflector are effective on reducing the guiding magnetic field of the device.
Rucci, A.; Vasco, D.W.; Novali, F.
2010-04-01T23:59:59.000Z
Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a producing reservoir. Based upon these changes we estimate diffusive travel times associated with the transient flow due to production, and then, as the solution of a linear inverse problem, the effective permeability of the reservoir. An advantage an approach based upon travel times, as opposed to one based upon the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that the fluid production only results in pore volume decreases within the reservoir. We apply the formulation to satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba field in Algeria. The peak displacement after three years of gas production is approximately 0.5 cm, overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 irregularly-spaced images of range change, we calculate the diffusive travel times associated with the startup of a gas production well. The inequality constraints are incorporated into the estimates of model parameter resolution and covariance, improving the resolution by roughly 30 to 40%.
Coelho, R.; Alves, D. [Associacao Euratom/IST, Centro de Fusao Nuclear, 1049-001 Lisboa (Portugal)
2008-03-12T23:59:59.000Z
The real-time amplitude estimation of selective harmonics from an Avalanche Photo Diode (APD) signal of a Motion Stark Effect diagnostic is addressed using a Kalman filter. The proposed technique is shown to be much more robust and provide less noisy estimates than a lock-in amplifier scheme. In addition, the negative impact of Edge Localised Modes (ELMs) is minimized, reducing significantly the biasing in the amplitude estimation and ultimately allowing for the pitch angle estimation in the vicinity of the ELM. The inherent biasing in the amplitude estimation due to the 50Hz modulation in the NBI power grid is also easily circumvented with such a technique, rendering dispensable any further filtering of the data.
Coelho, R.; Alves, D. [Instituto de Plasmas e Fusao Nuclear, Associacao Euratom/IST, 1049-001 Lisboa (Portugal); Hawkes, N.; Brix, M. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Collaboration: JET EFDA Contributors
2009-06-15T23:59:59.000Z
A novel technique for the real-time measurement of the magnetic field pitch angle in JET discharges using the motional Stark effect diagnostic is presented. Kalman filtering techniques are adopted to estimate the amplitude of the avalanche photodiode signals' harmonics that are relevant for the pitch angle calculation. The proposed technique {l_brace}for extended technical details of the generic algorithm see [R. Coelho and D. Alves, IEEE Trans. Plasma Sci. 37, 164 (2009)]{r_brace} is shown to be much more robust and provides less noisy estimates than an equivalent lock-in amplifier scheme, in particular when dealing with edge localized modes.
Single-band and Dual-band Beam Switching Systems and Offset-fed Beam Scanning Reflectarray
Lee, Jungkyu
2012-07-16T23:59:59.000Z
for multi-band applications. A modified Butler matrix is used to reduce a size and a sidelobe level. The bandwidth of the microstrip antenna is inherently small. A broadband circularly polarized microstrip antenna with dual-offset feedlines is introduced...
Dynamic and Static Characteristics of a Rocker-Pivot, Tilting-Pad Bearing with 50% and 60% Offsets.
Kulhanek, Chris David
2012-02-14T23:59:59.000Z
Static performance and rotordynamic coefficients are provided for a rocker-pivot, tilting-pad journal bearing with 50 and 60 percent offset pads in a load-between-pad configuration. The bearing uses leading-edge-groove lubrication and has...
Feenstra, Randall
1 Band Offsets of InGaP/GaAs Heterojunctions by Scanning Tunneling Spectroscopy Y. Dong and R. M Abstract Scanning tunneling microscopy and spectroscopy are used to study InGaP/GaAs heterojunctions computation of the tunnel current. Curve fitting of theory to experiment is performed. Using an InGaP band gap
Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution, and demonstrate a method of using crosswell seismic profiling for identification of trapped oil, bypassed reservoir compartments, and location of fluid fronts in carbonate reefs. The method of crosswell seismic
Martin, V. [Pulsar Team-Project, INRIA Sophia Antipolis, Sophia Antipolis F-06902 (France); Dunand, G.; Moncada, V. [Sophia Conseil Company, Sophia Antipolis F-06560 (France); Jouve, M.; Travere, J.-M. [CEA, IRFM, Saint-Paul-Lez-Durance F-13108 (France)
2010-10-15T23:59:59.000Z
During operation of present fusion devices, the plasma facing components (PFCs) are exposed to high heat fluxes. Understanding and preventing overheating of these components during long pulse discharges is a crucial safety issue for future devices like ITER. Infrared digital cameras interfaced with complex optical systems have become a routine diagnostic to measure surface temperatures in many magnetic fusion devices. Due to the complexity of the observed scenes and the large amount of data produced, the use of high computational performance hardware for real-time image processing is then mandatory to avoid PFC damages. At Tore Supra, we have recently made a major upgrade of our real-time infrared image acquisition and processing board by the use of a new field programmable gate array (FPGA) optimized for image processing. This paper describes the new possibilities offered by this board in terms of image calibration and image interpretation (abnormal thermal events detection) compared to the previous system.
Javier Ortensi; Abderrafi M Ougouag
2009-07-01T23:59:59.000Z
The Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic coated particles. It follows that the correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. We present a fuel conduction model for obtaining better estimates of the temperature feedback during moderate and fast transients. The fuel model has been incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes as a single TRISO particle within each calculation cell. The heat generation rate is scaled down from the neutronic solution and a Dirichlet boundary condition is imposed as the bulk graphite temperature from the thermal-hydraulic solution. This simplified approach yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume, but with much less computational effort. We provide an analysis of the hypothetical total control ejection event in the PBMR-400 design that clearly depicts the improvement in the predictions of the fuel temperature.
Randy O. Laine; Douglas N. C. Lin; Shawfeng Dong
2008-04-07T23:59:59.000Z
The unanticipated discovery of the first close-in planet around 51 Peg has rekindled the notion that shortly after their formation outside the snow line, some planets may have migrated to the proximity of their host stars because of their tidal interaction with their nascent disks. If these planets indeed migrated to their present-day location, their survival would require a halting mechanism in the proximity of their host stars. Most T Tauri stars have strong magnetic fields which can clear out a cavity in the innermost regions of their circumstellar disks and impose magnetic induction on the nearby young planets. Here we consider the possibility that a magnetic coupling between young stars and planets could quench the planet's orbital evolution. After a brief discussion of the complexity of the full problem, we focus our discussion on evaluating the permeation and ohmic dissipation of the time dependent component of the stellar magnetic field in the planet's interior. Adopting a model first introduced by C. G. Campbell for interacting binary stars, we determine the modulation of the planetary response to the tilted magnetic field of a non-synchronously spinning star. We first compute the conductivity in the young planets, which indicates that the stellar field can penetrate well into the planet's envelope in a synodic period. For various orbital configurations, we show that the energy dissipation rate inside the planet is sufficient to induce short-period planets to inflate. This process results in mass loss via Roche lobe overflow and in the halting of the planet's orbital migration.
Louie, S.G.
1987-12-01T23:59:59.000Z
The first-principles theory for calculating surface-state energies and semiconductor band offsets is described. Within a quasiparticle interpretation of excitation spectra, the approach provides well-founded energies which can be compared directly with sepctroscopy measurements. Results for the As-capped Si(111) and Ge(111) surfaces and for the GaAs-AlAs(001) heterojunction are discussed and compared with experiment. 14 refs., 3 figs.
.1063/1.4789855] The toxicity of Cd and the scarcity of Te, In, and Ga used in CdTe and Cu(In,Ga)S2 (CIGS) thin-film solar cellsEnhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfideS is a promising earth-abundant material for photovoltaic applications. Heterojuction solar cells were made
Conduction-Band-Offset Rule Governing J-V Distortion in CdS/CI(G)S Solar Cells
Sites, James R.
Conduction-Band-Offset Rule Governing J-V Distortion in CdS/CI(G)S Solar Cells A. Kanevce, MV at the n/p interface of a solar cell can lead to significant distortion of the current-voltage (J-V) curve-layer [TCO/CdS/CI(G)S] approximation for the solar cell. The parameters that influence the barrier height
Band offset between cubic GaN and AlN from intra- and interband spectroscopy of superlattices
Mietze, C.; Lischka, K.; As, D. J. [University of Paderborn, Faculty of Science, Department of Physics, Warburger Strasse 100 D-33098 Paderborn (Germany); DeCuir, E. A. Jr.; Manasreh, M. O. [Department of Electrical Engineering, University of Arkansas, 3217 Bell Engineering Center, Fayetteville, Arkansas 72701 (United States)
2010-11-01T23:59:59.000Z
By the analysis of intra- and intersubband transitions in GaN/AlN superlattices the band offset is determined experimentally. Superlattice structures with different period lengths were fabricated by plasma-assisted molecular beam epitaxy 3C-SiC substrates. The structural properties were studied by high resolution X-ray diffraction, revealing a high structural perfection of the superlattice region with several peaks in the X-ray spectra. Infrared absorbance spectroscopy revealed clear intrasubband transitions in the spectral region of 1.55 {mu}m measured at room temperature. Clear intersubband transitions were observed by photoluminescence at room temperature. These transition energies were compared to calculated energies using a 1D Poisson Schroedinger solver. For the calculations standard parameters for cubic GaN and AlN were used, while the band offset between GaN and AlN was varied. Optimal agreement between experimental and theoretical data was obtained for a band offset {Delta}E{sub C}:{Delta} E{sub V} of 55:45.
Sub-Nyquist Field Trial Using Time Frequency Packed DP-QPSK Super-Channel Within Fixed ITU-T Grid
Potì, L; Berrettini, G; Fresi, F; Foggi, T; Secondini, M; Giorgi, L; Cavaliere, F; Hackett, S; Petronio, A; Nibbs, P; Forgan, R; Leong, A; Masciulli, R; Pfander, C
2015-01-01T23:59:59.000Z
Sub-Nyquist time frequency packing technique was demonstrated for the first time in a super channel field trial transmission over long-haul distances. The technique allows a limited spectral occupancy even with low order modulation formats. The transmission was successfully performed on a deployed Australian link between Sydney and Melbourne which included 995 km of uncompensated SMF with coexistent traffic. 40 and 100 Gb/s co-propagating channels were transmitted together with the super-channel in a 50 GHz ITU-T grid without additional penalty. The super-channel consisted of eight sub-channels with low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness and reduced complexity with respect to higher order formats. At the receiver side, coherent detection was used together with iterative maximum-a-posteriori (MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully transmitted between Sydney and Melbourne within four 50GHz WSS channels (200 GHz). A maximum potential...
Criticality and axial offset searches based on the integrated neutron balance approach
Dall'Osso, A. [AREVA NP Tour AREVA, 92084 Paris La Defense Cedex (France); Van Geemert, R. [AREVA GmbH, Paul Gossenstrasse 100, D-91058 Erlangen (Germany)
2013-07-01T23:59:59.000Z
Criticality and axial offset (AO) searches are key features in the simulation of plant operation procedures. Typically, the dedicated algorithms consist of either a Newton method or a secant method that features the successive computation of difference quotients to be used as derivatives. Within this context, computational robustness and efficiency are of paramount importance. This applies in particular to when the variations imposed during the search are spatially heterogeneous, such as in the case of tuning control rod positions for achieving target AO. In order to optimize this kind of search capability in AREVA NP's reactor code ARTEMIS in accordance with this design principle, a generalized approach has been implemented that harmonizes very well numerically with the overall multi-physics iterative solution process. As embedded in the latter, the new neutronic integral re-balancing approach is defined through periodic whole-core space-energy integrations of the principal terms in the core-integrated process-rate balance terms (i.e. neutron absorption, production and leakage). This procedure yields sequences of single zero-dimensional equations from which the chosen tuning parameters can be solved directly in dependence of the imposed (and systematically fixed) values for the response quantities k{sub eff} and/or AO. The converged result of the iteration sequence of successively obtained search parameter values is final in terms of being fully consistent with the entire set of multi-physics equations while enabling the accurate fulfillment of the target response value. The k etc and AO searches can be pursued simultaneously. Judging from the results of pursued verifications, the neutronic integral re-balancing approach fulfils the above-mentioned expectations convincingly. Specific verification examples are presented, such as the determination of the insertion depth of a critical control bank, a double search on target criticality and target AO by adjusting the boron concentration and the position of a control bank, and a critical power search during reactor cycle stretch out. (authors)
Wysin, Gary
General Physics II Exam 1 - Chs. 16,17,18 - Electric Fields, Potential, Current Feb. 8, 2010 Name. These charges produce an electric field in the surrounding region. a) (6) Find the x & y components of the electric field E at point A. b) (6) Find the magnitude and direction of the electric field at point A. c
Bernadett, Lauren
2013-01-01T23:59:59.000Z
pdf; Section 3: Emissions Trading/Offset Credits – A Market1, 2013. 19 Under the Emissions Trading Program , L EGAL Pand-ab-32s- emissions-trading-program/. Additionally,
Broader source: Energy.gov [DOE]
Fining Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis presentation at the April 2013 peer review meeting held in Denver, Colorado.
Goddard III, William A.
Predicted roles of defects on band offsets and energetics at CIGS (Cu(In,Ga)Se2/CdS) solar cell (2014) Predicted roles of defects on band offsets and energetics at CIGS (Cu(In,Ga)Se2/CdS) solar cell of CIGS (Cu(In,Ga)Se2) based solar cells (20.8% efficiency) makes them promising candidate photovoltaic
Magnetic Fields and the Triaxiality of Molecular Cloud Cores
Shantanu Basu
2000-08-16T23:59:59.000Z
We make the hypothesis that molecular cloud fragments are triaxial bodies with a large scale magnetic field oriented along the short axis. While consistent with theoretical expectations, this idea is supported by magnetic field strength data, which show strong evidence for flattening along the direction of the mean magnetic field. It is also consistent with early submillimeter polarization data, which show that the projected direction of the magnetic field is often slightly misaligned with the projected minor axis of a molecular cloud core, i.e., the offset angle $\\Psi$ is nonzero. We calculate distributions of $\\Psi$ for various triaxial bodies, when viewed from a random set of viewing angles. The highest viewing probability always corresponds to $\\Psi=0^{\\circ}$, but there is a finite probability of viewing all nonzero $\\Psi$, including even $\\Psi =90^{\\circ}$; the average offset typically falls in the range $10^{\\circ}-30^{\\circ}$ for triaxial bodies most likely to satisfy observational and theoretical constraints.
Parkhurst, James M. [Developing Technologies, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester (United Kingdom); Price, Gareth J., E-mail: gareth.price@christie.nhs.uk [Developing Technologies, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester (United Kingdom); Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Sharrock, Phil J. [Developing Technologies, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester (United Kingdom); Jackson, Andrew S.N. [Clinical Oncology, Southampton University Hospitals Foundation Trust, Southampton (United Kingdom); Stratford, Julie [Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester (United Kingdom); Moore, Christopher J. [Developing Technologies, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester (United Kingdom); Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom)
2013-12-01T23:59:59.000Z
Purpose: We present the results of a clinical feasibility study, performed in 10 healthy volunteers undergoing a simulated treatment over 3 sessions, to investigate the use of a wide-field visual feedback technique intended to help patients control their pose while reducing motion during radiation therapy treatment. Methods and Materials: An optical surface sensor is used to capture wide-area measurements of a subject's body surface with visualizations of these data displayed back to them in real time. In this study we hypothesize that this active feedback mechanism will enable patients to control their motion and help them maintain their setup pose and position. A capability hierarchy of 3 different level-of-detail abstractions of the measured surface data is systematically compared. Results: Use of the device enabled volunteers to increase their conformance to a reference surface, as measured by decreased variability across their body surfaces. The use of visual feedback also enabled volunteers to reduce their respiratory motion amplitude to 1.7 ± 0.6 mm compared with 2.7 ± 1.4 mm without visual feedback. Conclusions: The use of live feedback of their optically measured body surfaces enabled a set of volunteers to better manage their pose and motion when compared with free breathing. The method is suitable to be taken forward to patient studies.
Kihm, IconKenneth David
Mixture Concentration Fields (Water+Ethanol) Iltai Kim and Kenneth D. Kihm Department of Mechanical (water+ethanol) concentration fields with surface plasmon resonance (SPR) reflectance technique based the refractive index and mixture concentration fields. The presented results show that ethanol penetrates
Band offsets of TiZnSnO/Si heterojunction determined by x-ray photoelectron spectroscopy
Sun, R. J.; Jiang, Q. J.; Yan, W. C.; Feng, L. S.; Lu, B.; Ye, Z. Z. [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Li, X. F. [Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072 (China); Li, X. D. [Xinyi PV Products (Anhui) Holdings LTD, Xinyi PV Glass Industrial Zone, No. 2 Xinyi Road, ETDZ, Wuhu 241009 (China); Lu, J. G., E-mail: lujianguo@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072 (China)
2014-09-28T23:59:59.000Z
X-ray photoelectron spectroscopy (XPS) was utilized to measure the valence band offset (?E{sub V}) of the TiZnSnO (TZTO)/Si heterojunction. TZTO films were deposited on Si (100) substrates using magnetron sputtering at room temperature. By using the Zn 2p{sub 3/2} and Sn 3d{sub 5/2} energy levels as references, the value of ?E{sub V} was calculated to be 2.69 ± 0.1 eV. Combining with the experimental optical energy band gap of 3.98 eV for TZTO extracted from the UV-vis transmittance spectrum, the conduction band offset (?E{sub C}) was deduced to be 0.17 ± 0.1 eV at the interface. Hence, the energy band alignment of the heterojunction was determined accurately, showing a type-I form. This will be beneficial for the design and application of TZTO/Si hybrid devices.
Said Abdel-Khalik
2005-07-02T23:59:59.000Z
Axial offset anomaly (AOA) in pressurized water reactors refers to the presence of a significantly larger measured negative axial offset deviation than predicted by core design calculations. The neutron flux depression in the upper half of high-power rods experiencing significant subcooled boiling is believed to be caused by the concentration of boron species within the crud layer formed on the cladding surface. Recent investigations of the root-cause mechanism for AOA [1,2] suggest that boron build-up on the fuel is caused by precipitation of lithium metaborate (LiBO2) within the crud in regions of subcooled boiling. Indirect evidence in support of this hypothesis was inferred from operating experience at Callaway, where lithium return and hide-out were, respectively, observed following power reductions and power increases when AOA was present. However, direct evidence of lithium metaborate precipitation within the crud has, heretofore, not been shown because of its retrograde solubility. To this end, this investigation has been undertaken in order to directly verify or refute the proposed root-cause mechanism of AOA, and examine the effectiveness of possible mitigating actions to limit its impact in high power PWR cores.
2001-01-01T23:59:59.000Z
Real-Time Laser-Based Non-Intrusive Detection System forReal-Time Laser-Based Non-Intrusive Detection System foroptics. The laser-based non-intrusive detection system uses
Chu, Shih-I; Tong, Xiao-Min
2001-06-12T23:59:59.000Z
We present a detailed study of the multiphoton ionization and high-order harmonic generation (HHG) processes of rare-gas atoms (He, Ne, and Ar) in intense pulsed laser fields by means of a self-interaction-free time-dependent density...
Rufenach, C.L.; Schaper, J. (NOAA Space Environmental Lab., Boulder, CO (United States)); McPherron, R.L. (Univ. of California, Los Angeles (United States))
1992-01-01T23:59:59.000Z
Vector magnetic fields at geosynchronous orbit were measured during 1980-1984 using the operational GOES 2, GOES 5, and GOES 6 spacecraft magnetometers. The authors corrected these spacecraft measurements for offsets due to spacecraft state and then used these field estimates to create a data base with 1-min resolution. Hourly quiet field values were calculated for these years from this data base using the ground-based geomagnetic index criteria AE < 120 nT and {vert bar}Dst{vert bar} < 20 nT. These quiet field components, rotated into dipole HVD coordinates, were approximated by the first two coefficients of a two-dimensional Fourier series in time of day and season. The quiet geosynchronous field components, to first order, are given by mean values of about 90 nT, {minus}60 nT, and 5 nT; and sinusoidal diurnal amplitudes of about 21 nT, 5 nT, and 5 nT, respectively, for H, V, and D where the spacecraft magnetometer was located near the geomagnetic meridian. The second harmonic diurnal amplitudes and the first and second harmonic seasonal amplitudes are typically of the order of a few nanoteslas or less except for the D component, which exhibits a larger seasonal variation. Furthermore, a one-dimensional Fourier series in time of day was used to study the quiet field dependence on solar wind dynamic pressure, P{sub d}, by indexing the measurements into five pressure ranges during 1980. These quiet H measurements, including the pressure dependence, are compared with a first-order field model superimposed with a tail current, resulting in magnetospheric currents (magnetopause and tail) in agreement with previous model values.
Tong, Xiao-Min; Chu, Shih-I
2000-02-01T23:59:59.000Z
We present a general time-dependent approach for efficient and accurate treatment of high-resolution spectrocopy and quantum dynamics. The procedure is applied to an ab initio time-dependent study of three-dimensional ...
Sari, Ilkay
2009-06-02T23:59:59.000Z
Every individual node in a network has its own clock. The clock consists of hardware and software parts. The hardware part includes an oscillator and a counter. The counter is incremented in accordance with the zero-crossings or the edges of the periodic... in time-synchronization protocols is a rather simple process, one node tells the other one its time in a controlled manner just like saying \\it?s ten past flve according to my clock". There are two main methods to exchange time-stamps. The flrst method...
Blind Timing and Carrier Synchronization in Decode and Forward Cooperative Systems
Durrani, Salman
Blind Timing and Carrier Synchronization in Decode and Forward Cooperative Systems Ali A. Nasir for blind channel, timing and carrier offset estimation in a DF cooperative system with one source, M relays and one destination equipped with N antennas. In particular, we exploit blind source separation
LF411LowOffsetLowDriftJFETInputOperationalAmplifier February 1995
Wedeward, Kevin
10 k0 02% RLe10k VOe20 Vp-p BWe20 Hzb20 kHz Y Low 1 f noise corner 50 Hz Y Fast settling time to 0 01
Introduction Classical Field Theory
Baer, Christian
Introduction Classical Field Theory Locally Covariant Quantum Field Theory Renormalization Time evolution Conclusions and outlook Locality and Algebraic Structures in Field Theory Klaus Fredenhagen IIÂ¨utsch and Pedro Lauridsen Ribeiro) Klaus Fredenhagen Locality and Algebraic Structures in Field Theory #12
Bellur Ramaswamy, Ravi S.; Tortorelli, Daniel A. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green Street, Urbana, IL 61801 (United States); Fried, Eliot [Department of Mechanical and Aerospace Engineering, Washington University, Campus Box 1185, St. Louis, MO 63130-4899 (United States); Jiao Xiangmin [Computational Science and Engineering Division, College of Computing, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta, GA 30332 (United States)
2008-02-15T23:59:59.000Z
Advances in the understanding of martensitic transformations (diffusionless, solid-solid phase transformations) have been instrumental to the recent discovery of new low hysteresis alloys. However, some key fundamental issues must be better understood to design still better alloys. Restricting attention to antiplane shear, we use finite element analysis to model the shape-memory alloy microstructure within the Abeyaratne-Knowles continuum thermomechanical framework and use an interface kinetic relation of the kind proposed by Rosakis and Tsai. Geometric singularities and topological changes associated with microstructural evolution pose significant numerical challenges. We address such challenges with a recently developed front-tracking scheme called the face-offsetting method (FOM) to explicitly model phase interfaces. Initial results demonstrate the effectiveness of FOM in resolving needle-like twinned microstructures.
Wysin, Gary
the best answer. Questions about charges. 1. (2) T F Good conductors are materials that have a lot of free energy a. decreases. b. increases. c. does not change. Questions about electric fields. 9. (2) T F- leased from rest at point A and accelerates to point B by moving through the equipotentials shown
Wysin, Gary
Physics II Exam 2 - Chs. 18A,19,20 - Electric Current, Magnetic Field Feb. 23, 2009 Name Rec. Instr-hours, the quantity 850 amp-hours must be a. power. b. energy. c. current. d. charge. b) (4) Give 850 amp-hours in SI
Yousef Ghazi-Tabatabai
2012-11-19T23:59:59.000Z
While Quantum Gravity remains elusive and Quantum Field Theory retains the interpretational difficulties of Quantum Mechanics, we have introduced an alternate approach to the unification of particles, fields, space and time, suggesting that the concept of matter as space without time provides a framework which unifies matter with spacetime and in which we anticipate the development of complete theories (ideally a single unified theory) describing observed 'particles, charges, fields and forces' solely with the geometry of our matter-space-time universe.
Comerford, Julia M; Barrows, R Scott; Greene, Jenny E; Zakamska, Nadia L; Madejski, Greg M; Cooper, Michael C
2015-01-01T23:59:59.000Z
Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically-selected dual AGN candidates at z < 0.34, where we use the X-rays to identify AGNs. We also present HST/WFC3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation of 2.2 kpc, where the two stellar bulges have coincident [O III] and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations < 10 kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, a...
Optimal Real-time Dispatch for Integrated Energy Systems
Firestone, Ryan Michael
2007-01-01T23:59:59.000Z
DG abs. cooling offset purchase electric supply (kW) DG abs.DG abs. cooling offset purchase electric supply (kW) DG abs.DG abs. cooling offset purchase electric supply (kW) DG abs.
Sub-20-Attosecond Timing Jitter Mode-Locked Fiber Lasers
Kim, Hyoji; Song, Youjian; Yang, Heewon; Shin, Junho; Kim, Chur; Jung, Kwangyun; Wang, Chingyue; Kim, Jungwon
2014-01-01T23:59:59.000Z
We demonstrate 14.3-attosecond timing jitter [integrated from 10 kHz to 94 MHz offset frequency] optical pulse trains from 188-MHz repetition-rate mode-locked Yb-fiber lasers. In order to minimize the timing jitter, we shorten the non-gain fiber length to shorten the pulsewidth and reduce excessive higher-order nonlinearity and nonlinear chirp in the fiber laser. The measured jitter spectrum is limited by the amplified spontaneous emission limited quantum noise in the 100 kHz - 1 MHz offset frequency range, while it was limited by the relative intensity noise-converted jitter in the lower offset frequency range. This intrinsically low timing jitter enables sub-100-attosecond synchronization between the two mode-locked Yb-fiber lasers over the full Nyquist frequency with a modest 10-kHz locking bandwidth. The demonstrated performance is the lowest timing jitter measured from any free-running mode-locked fiber lasers, comparable to the performance of the lowest-jitter Ti:sapphire solid-state lasers.
Washington Taylor
2006-06-28T23:59:59.000Z
This elementary introduction to string field theory highlights the features and the limitations of this approach to quantum gravity as it is currently understood. String field theory is a formulation of string theory as a field theory in space-time with an infinite number of massive fields. Although existing constructions of string field theory require expanding around a fixed choice of space-time background, the theory is in principle background-independent, in the sense that different backgrounds can be realized as different field configurations in the theory. String field theory is the only string formalism developed so far which, in principle, has the potential to systematically address questions involving multiple asymptotically distinct string backgrounds. Thus, although it is not yet well defined as a quantum theory, string field theory may eventually be helpful for understanding questions related to cosmology in string theory.
Li Lin; Qiu Jijun; Weng Binbin; Yuan Zijian; Shi Zhisheng [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Li Xiaomin; Gan Xiaoyan [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Sellers, Ian R. [Deparment of Physics, University of Oklahoma, Norman, Oklahoma 73019 (United States)
2012-12-24T23:59:59.000Z
A heterojunction of PbSe/ZnO has been grown by molecular beam epitaxy. X-ray photoelectron spectroscopy was used to directly measure the valence-band offset (VBO) of the heterojunction. The VBO, {Delta}E{sub V}, was determined as 2.51 {+-} 0.05 eV using the Pb 4p{sup 3/2} and Zn 2p{sup 3/2} core levels as a reference. The conduction-band offset, {Delta}E{sub C}, was, therefore, determined to be 0.59 {+-} 0.05 eV based on the above {Delta}E{sub V} value. This analysis indicates that the PbSe/ZnO heterojunction forms a type I (Straddling Gap) heterostructure.
HE0241-0155 - Evidence for a large scale homogeneous field in a highly magnetic white dwarf
Dieter Reimers; Stefan Jordan; Norbert Christlieb
2003-11-04T23:59:59.000Z
In the course of the Hamburg/ESO survey we have discovered a white dwarf whose spectrum exhibits many similarities with the prototype of magnetic white dwarfs Grw+70$^{\\circ}$8247. In particular several stationary line components indicative for magnetic fields between about 150 and 400 MG are found in both objects. However, the features between 5000 and 5500 \\AA in the spectrum of HE0241-0155 cannot be explained by stationary line components and demand a relatively homogeneous magnetic field with clustering around 200 MG. For this reason a pure dipole model failed to reproduce this spectral region.An offset-dipole configuration led to some improvement in the fit but a good agreement was only possible for a geometry -- described by an expansion into spherical harmonics -- where most of the surface is covered with magnetic field strengths strongly clustered around 200 MG. This may indicate the presence of a large magnetic spot whose presence could be tested with time resolved spectro-polarimetry.
Sahin, Cenk
2012-08-31T23:59:59.000Z
-state machine (FSM). The state of the CPE denoted by Sn is uniquely determined by the state vector sn = [Pn?L, ?n?L+1, ?n?L+2, . . . , ?n?1] where Pn?L is the phase state index from an alphabet of p values, Pn?L ? {0, 1, 2, . . . , p? 1}. The value of the state... Sn captures the entire memory in the modulator due to all past symbols. From Figure 2.2 it can be seen that the phase state index is given by Pn?L = (n?L? i=0 ?i ) mod p (2.11) 9 s(t;?)MM CPE D DD ?p ... Pn-L ?n-L+1 ?n-1 ?n Figure 2.2: Rimoldi...
Ernest A. Mancini; Joe Benson; David Hilton; David Cate; Lewis Brown
2006-05-29T23:59:59.000Z
The principal research efforts for Phase II of the project were drilling an infill well strategically located in Section 13, T. 10 N., R. 2 W., of the Womack Hill Field, Choctaw and Clarke Counties, Alabama, and obtaining fresh core from the upper Smackover reservoir to test the feasibility of implementing an immobilized enzyme technology project in this field. The Turner Land and Timber Company 13-10 No. 1 well was successfully drilled and tested at a daily rate of 132 barrels of oil in Section 13. The well has produced 27,720 barrels of oil, and is currently producing at a rate of 60 barrels of oil per day. The 13-10 well confirmed the presence of 175,000 barrels of attic (undrained) oil in Section 13. As predicted from reservoir characterization, modeling and simulation, the top of the Smackover reservoir in the 13-10 well is structurally high to the tops of the Smackover in offsetting wells, and the 13-10 well has significantly more net pay than the offsetting wells. The drilling and testing of the 13-10 well showed that the eastern part of the field continues to have a strong water drive and that there is no need to implement a pressure maintenance program in this part of the Womack Hill Field at this time. The success achieved in drilling and testing the 13-10 infill well demonstrates the benefits of building a geologic model to target areas in mature fields that have the potential to contain undrained oil, thus increasing the productivity and profitability of these fields. Microbial cultures that grew at 90 C and converted ethanol to acid were recovered from fresh cuttings from the Smackover carbonate reservoir in an analogous field to the Womack Hill Field in southwest Alabama; however, no viable microorganisms were found in the Smackover cores recovered from the drilling of the 13-10 well in Womack Hill Field. Further evaluation is, therefore, required prior to implementing an immobilized enzyme technology project in the Womack Hill Field.
Noncommutative Two Time Physics
W. Chagas-Filho
2006-05-10T23:59:59.000Z
We present a classical formalism describing two-time physics with Abelian canonical gauge field backgrounds. The formalism can be used as a starting point for the construction of an interacting quantized two-time physics theory in a noncommutative soace-time.
Campiglia, Andres D. [UCF; Hernandez, Florencio E. [UCF
2014-08-28T23:59:59.000Z
The detrimental effects on human health caused by long-term exposure to trace contamination of toxic metals have been documented in numerous epidemiological and toxicological studies. The fact that metals are non-biodegradable and accumulate in the food chain poses a severe threat to the environment and human health. Their monitoring in drinking water, aquatic ecosystems, food and biological fluids samples is then essential for global sustainability. While research efforts employing established methodology continue to advance conceptual/computational models of contaminant behavior, the increasing awareness and public concern with environmental and occupational exposure to toxic metals calls for sensing devices capable to handle on-site elemental analysis in short analysis time. Field analysis with potable methodology prevents unnecessary scrutiny of un-contaminated samples via laboratory-bound methods, reduces analysis cost and expedites turnaround time for decision making and remediation purposes. Of particular toxicological interest are mercury and its species. Mercury is recognized as a major environmental pollution issue. The field-portable sensor developed in this project provides a unique and valuable tool for the on-site, real-time determination of inorganic mercury in surface waters. The ability to perform on-site analysis of mercury should prove useful in remote locations with difficult accessibility. It should facilitate data collection from statistically meaningful population sizes for a better understanding of the dose-effect role and the water-soil-plant-animal-human transfer mechanisms. The acquired knowledge should benefit the development of efficient environmental remediation processes, which is extremely relevant for a globally sustainable environment.
A Tile/Scenario Algorithm for Real-Time 3D Environments Vaibhav Govil and Ronald R. Mourant
properties: 1) offsets in X and Z from the tile's entry point to the tile's exit point, and 2) the angle between its entry point and exit point. We call this angle the tile's exit angle (EA). At load time, using is placed at X = 0, Z = 0 with zero rotation, since the entry road of all tiles was designed to point down
Shekhar, Ravi
2009-05-15T23:59:59.000Z
and amplitude variation with offset (AVO) results for our example model predicts that CO2 is easier to detect than brine in the fractured reservoirs. The effects of geochemical processes on seismics are simulated by time-lapse modeling for t = 1000 years. My...
Covariant Hamiltonian Field Theory
Jürgen Struckmeier; Andreas Redelbach
2012-05-22T23:59:59.000Z
A consistent, local coordinate formulation of covariant Hamiltonian field theory is presented. Whereas the covariant canonical field equations are equivalent to the Euler-Lagrange field equations, the covariant canonical transformation theory offers more general means for defining mappings that preserve the form of the field equations than the usual Lagrangian description. It is proved that Poisson brackets, Lagrange brackets, and canonical 2-forms exist that are invariant under canonical transformations of the fields. The technique to derive transformation rules for the fields from generating functions is demonstrated by means of various examples. In particular, it is shown that the infinitesimal canonical transformation furnishes the most general form of Noether's theorem. We furthermore specify the generating function of an infinitesimal space-time step that conforms to the field equations.
Time-resolved x-ray scattering instrumentation
Borso, C.S.
1985-11-21T23:59:59.000Z
An apparatus and method for increased speed and efficiency of data compilation and analysis in real time is presented in this disclosure. Data is sensed and grouped in combinations in accordance with predetermined logic. The combinations are grouped so that a simplified reduced signal results, such as pairwise summing of data values having offsetting algebraic signs, thereby reducing the magnitude of the net pair sum. Bit storage requirements are reduced and speed of data compilation and analysis is increased by manipulation of shorter bit length data values, making real time evaluation possible.
fieldmuseum.org/schools THE FIELD MUSEUM
Patterson, Bruce D.
fieldmuseum.org/schools THE FIELD MUSEUM #12;The Field Museum | Field Trip Planning Guide for Educators 2 Welcome to The Field Museum! The Field Museum is an exciting place to explore and learn time. Taking a field trip to the Museum o ers students and teachers an opportunity to interact
Mitigated-force carriage for high magnetic field environments
Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L
2014-05-20T23:59:59.000Z
A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.
Duan, T. L.; Ang, D. S. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)] [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Pan, J. S. [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)] [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)
2013-05-20T23:59:59.000Z
The interface region between Ga-face n-type GaN and Al{sub 2}O{sub 3} dielectric (achieved via atomic-layer deposition or ALD) is investigated by X-ray photoelectron spectroscopy (XPS). An increase in the Ga-O to Ga-N bond intensity ratio following Al{sub 2}O{sub 3} deposition implies that the growth of an interfacial gallium sub-oxide (GaO{sub x}) layer occurred during the ALD process. This finding may be ascribed to GaN oxidation, which may still happen following the reduction of a thin native GaO{sub x} by trimethylaluminum (TMA) in the initial TMA-only cycles. The valence band offset between GaN and Al{sub 2}O{sub 3}, obtained using both core-level and valence band spectra, is found to vary with the thickness of the deposited Al{sub 2}O{sub 3}. This observation may be explained by an upward energy band bending at the GaN surface (due to the spontaneous polarization induced negative bound charge on the Ga-face GaN) and the intrinsic limitation of the XPS method for band offset determination.
Exposure guidelines for magnetic fields
Miller, G.
1987-12-01T23:59:59.000Z
The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.
Léger, Emmanuel; Coquet, Yves
2013-01-01T23:59:59.000Z
In this study we show how to use GPR data acquired along the infiltration of water inside a single ring infiltrometer to inverse the saturated hydraulic conductivity. We used Hydrus-1D to simulate the water infiltration. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity, knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the 1D time convolution between reflectivity and GPR signal at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relation ship to invert the saturated hydraulic conductivity for constant and fallin...
Irreducibility of the set of field operators in Noncommutative Quantum Field Theory
M. N. Mnatsakanova; Yu. S. Vernov
2012-09-02T23:59:59.000Z
Irreducibility of the set of quantum field operators has been proved in noncommutative quantum field theory in the general case when time does not commute with spatial variables.
Song, Changsheng; Wang, Jiqing, E-mail: jqwang@ee.ecnu.edu.cn; Lin, Weixian; Mao, Huibing; Zhao, Qiang; Yang, Pingxiong [Key Laboratory of Polarized Materials and Devices, East china Normal University, shanghai 200241 (China); Xing, Huaizhong [Department of Applied Physics, Donghua University, Shanghai 201620 (China)
2014-09-07T23:59:59.000Z
Using first principles calculation based on density-functional theory, we investigated p-type electronic structures and the doping mechanism in wurtzite (WZ) and zinc-blende (ZB) GaAs/InAs-core-shell nanowires (NWs) along the [0001] and [111] directions, respectively. Comparing the doping in WZ and ZB core-shell NWs, we found it is easier and more stable to realize dopant in WZ NWs. Due to the type I band-offset, p-type doping in the GaAs-core of GaAs{sub core}/InAs{sub shell} for both WZ and ZB NWs makes that the valence band-edge electrons in the InAs-shell can spontaneously transfer to the impurity states, forming one-dimensional hole gas. In particular, this process accompanies with a reverse transition in WZ core-shell nanowire due to the existence of antibonding and bonding states.
Determination of Band Offsets between the High-k Dielectric LaAlO3 Film and
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application to ARM MeasurementsDeterminationthe
P. F. Gonzalez-Diaz
1994-03-18T23:59:59.000Z
We study the dynamics of multiwormhole configurations within the framework of the Euclidean Polyakov approach to string theory, incorporating a modification to the Hamiltonian which makes it impossible to interpret the Coleman Alpha parameters of the effective interactions as a quantum field on superspace, reducible to an infinite tower of fields on space-time. We obtain a Planckian probability measure for the Alphas that allows $\\frac{1}{2}\\alpha^{2}$ to be interpreted as the energy of the quanta of a radiation field on superspace whose values may still fix the coupling constants.
Caticha, Ariel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States)
2011-03-14T23:59:59.000Z
The formulation of quantum mechanics within the framework of entropic dynamics includes several new elements. In this paper we concentrate on one of them: the implications for the theory of time. Entropic time is introduced as a book-keeping device to keep track of the accumulation of changes. One new feature is that, unlike other concepts of time appearing in the so-called fundamental laws of physics, entropic time incorporates a natural distinction between past and future.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,Conservation BillingFieldField
Field practice internship final report
Foster, T.
1994-05-01T23:59:59.000Z
This field practice internship final report gives an overview of the field practice, which was completed at the Oak Ridge Y-12 Plant, Martin Marietta Energy Systems, Inc., Environmental Management Department, Oak Ridge, Tennessee. The field practice focused on the completion of the Superfund Amendments and Reauthorization Act (SARA) Title III, Emergency Planning and Community Right-to-Know Act Section 312, Tier II Report. The field practice internship was conducted on a full-time basis between December 13, 1993 through February 18, 1994. Sheila Poligone, Emergency Planning and Community Right-to-Know Act (EPCRA) Coordinator served as the field practice preceptor.
M. Heller; W. Sasin
1997-11-17T23:59:59.000Z
In the groupoid approach to noncommutative quantization of gravity, gravitational field is quantized in terms of a C*-algebra A of complex valued funcions on a groupoid G (with convolution as multiplication). In the noncommutative quantum gravitational regime the concepts of space and time are meaningless. We study the "emergence of time" in the transition process from the noncommutative regime to the standard space-time geometry. Precise conditions are specified under which modular groups of the von Neumann algebra generated by A can be defined. These groups are interpreted as a state depending time flow. If the above conditions are further refined one obtains a state independent time flow. We show that quantum gravitational dynamics can be expressed in terms of modular groups.
Parent, Laure; Seco, Joao; Evans, Phil M.; Fielding, Andrew; Dance, David R. [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT (United Kingdom); School of Physical and Chemical Sciences, Queensland University of Technology, Q337 Gardens Point Campus, Brisbane, Queensland 4001 (Australia); Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ (United Kingdom)
2006-12-15T23:59:59.000Z
This study focused on predicting the electronic portal imaging device (EPID) image of intensity modulated radiation treatment (IMRT) fields in the absence of attenuation material in the beam with Monte Carlo methods. As IMRT treatments consist of a series of segments of various sizes that are not always delivered on the central axis, large spectral variations may be observed between the segments. The effect of these spectral variations on the EPID response was studied with fields of various sizes and off-axis positions. A detailed description of the EPID was implemented in a Monte Carlo model. The EPID model was validated by comparing the EPID output factors for field sizes between 1x1 and 26x26 cm{sup 2} at the isocenter. The Monte Carlo simulations agreed with the measurements to within 1.5%. The Monte Carlo model succeeded in predicting the EPID response at the center of the fields of various sizes and offsets to within 1% of the measurements. Large variations (up to 29%) of the EPID response were observed between the various offsets. The EPID response increased with field size and with field offset for most cases. The Monte Carlo model was then used to predict the image of a simple test IMRT field delivered on the beam axis and with an offset. A variation of EPID response up to 28% was found between the on- and off-axis delivery. Finally, two clinical IMRT fields were simulated and compared to the measurements. For all IMRT fields, simulations and measurements agreed within 3%--0.2 cm for 98% of the pixels. The spectral variations were quantified by extracting from the spectra at the center of the fields the total photon yield (Y{sub total}), the photon yield below 1 MeV (Y{sub low}), and the percentage of photons below 1 MeV (P{sub low}). For the studied cases, a correlation was shown between the EPID response variation and Y{sub total}, Y{sub low}, and P{sub low}.
Kwak, Seung Ki
2012-01-01T23:59:59.000Z
The existence of momentum and winding modes of closed string on a torus leads to a natural idea that the field theoretical approach of string theory should involve winding type coordinates as well as the usual space-time ...
Field ionization from carbon nanofibers
Adeoti, Bosun J
2008-01-01T23:59:59.000Z
The Micro Gas Analyzer project aims to develop power-efficient, high resolution, high sensitivity, portable and real-time gas sensors. We developed a field ionizer array based on gated CNTs. Arrays of CNTs are used because ...
Irreducibility of the set of field operators in NC QFT
Mnatsakanova, M. N., E-mail: mnatsak@theory.sinp.msu.ru [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Vernov, Yu. S. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)] [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)
2013-10-15T23:59:59.000Z
Irreducibility of the set of quantum field operators has been proved in noncommutative quantum field theory in the general case when time does not commute with spatial variables.
Noncommutative Quantum Field Theories
H. O. Girotti
2003-03-19T23:59:59.000Z
We start by reviewing the formulation of noncommutative quantum mechanics as a constrained system. Then, we address to the problem of field theories defined on a noncommutative space-time manifold. The Moyal product is introduced and the appearance of the UV/IR mechanism is exemplified. The emphasis is on finding and analyzing noncommutative quantum field theories which are renormalizable and free of nonintegrable infrared singularities. In this last connection we give a detailed discussion of the quantization of the noncommutative Wess-Zumino model as well as of its low energy behavior.
Kinsy, Michel A.
This paper details the design and application of a new ultra-high speed real-time simulation for Hardware-in-the-Loop (HiL) testing and design of high-power power electronics systems. Our real-time hardware emulation for ...
Smooth Field Theories and Homotopy Field Theories
Wilder, Alan Cameron
2011-01-01T23:59:59.000Z
1 . . . . . . . . 4 Categories of Field Theories 4.1 Functorto super symmetric field theories. CRM Proceedings and0-dimensional super symmetric field theories. preprint 2008.
Carrera, Juan J.; Chu, Shih-I; Tong, Xiao-Min
2005-06-21T23:59:59.000Z
We present an ab initio nonpertubative investigation of the mechanisms responsible for the production of very-high-order harmonic generation (HHG) from Ar atoms and Ar+ ions by means of the self-interaction-free time-dependent density...
Chu, Shih-I; Telnov, Dmitry A.
2009-04-03T23:59:59.000Z
We present a time-dependent density-functional-theory approach for the ab initio study of the effect of correlated multielectron responses on the multiphoton ionization (MPI) of diatomic molecules N2, O2, and F2 in intense ...
The WSRT wide-field HI survey: I. The background galaxy sample
Robert Braun; David Thilker; Rene Walterbos
2003-05-21T23:59:59.000Z
We have used the Westerbork array to carry out an unbiased wide-field survey for HI emission features, achieving an RMS sensitivity of about 18 mJy/Beam at a velocity resolution of 17 km/s over 1800 deg^2 and between -1000 < V_Hel<+6500 km/s. The primary data consists of auto-correlation spectra with an effective angular resolution of 49' FWHM. We detect 155 external galaxies in excess of 8 sigma in integrated HI flux density. Plausible optical associations are found within a 30' search radius for all but one of our HI detections in DSS images, although several are not previously cataloged or do not have published red-shift determinations. Twenty-three of our objects are detected in HI for the first time. We classify almost half of our detections as ``confused'', since one or more companions is cataloged within a radius of 30' and a velocity interval of 400 km/s. We identify a handful of instances of significant positional offsets exceeding 10 kpc of unconfused optical galaxies with the associated HI centroid, possibly indicative of severe tidal distortions or uncataloged gas-rich companions. A possible trend is found for an excess of detected HI flux in unconfused galaxies within our large survey beam relative to that detected previously in smaller telescope beams, both as function of increasing distance and increasing gas mass. This may be an indication for a diffuse gaseous component on 100 kpc scales in the environment of massive galaxies or a population of uncataloged low mass companions. We use our galaxy sample to estimate the HI mass function from our survey volume. Good agreement is found with the HIPASS BGC results, but only after explicit correction for galaxy density variations with distance.
Analysis of amplitude versus offset
Du, Xiaotao
1990-01-01T23:59:59.000Z
). Waves generated at a plane interface by an incident P-wave or S-wave. Reflection coefFicients versus angle of incidence for the gas sa, nd/shale model. P-P reflection coefFicients. SV-SV reflection coefiicients. P-P reflection coefficients of shale/gas... sand model. Curves from top to bottom correspond to oi ? 0. 4, 0. 3, 0. 2, 0. 1. SV-SV reflection coefflcients of shale/gas sand model. Curves froin bottoiu to top at normal incidence correspond to &r, = 0. 4, 0. 3, 0. 2, 0. 1. Error surface iii...
Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))
1990-01-01T23:59:59.000Z
The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.
Entomology 489 Field Entomology Field Project Guide
Behmer, Spencer T.
with information, people, materials). Field Projects (your project should...) FEntomology 489 Â Field Entomology Field Project Guide A small-group field project is required for ENTO 489 Â Field Entomology. This guide provides general information about the field-project
Quantum Field and Cosmic Field-Finite Geometrical Field Theory of Matter Motion Part Three
Jianhua Xiao
2005-12-20T23:59:59.000Z
This research establishes an operational measurement way to express the quantum field theory in a geometrical form. In four-dimensional spacetime continuum, the orthogonal rotation is defined. It forms two sets of equations: one set is geometrical equations, another set is the motion equations. The Lorentz transformation can be directly derived from the geometrical equations, and the proper time of general relativity is well expressed by time displacement field. By the motion equations, the typical time displacement field of matter motion is discussed. The research shows that the quantum field theory can be established based on the concept of orthogonal rotation. On this sense, the quantum matter motion in physics is viewed as the orthogonal rotation of spacetime continuum. In this paper, it shows that there are three typical quantum solutions. One is particle-like solution, one is generation-type solution, and one is pure wave type solution. For each typical solution, the force fields are different. Many features of quantum field can be well explained by this theoretic form. Finally, the general matter motion is discussed, the main conclusions are: (1). Geometrically, cosmic vacuum field can be described by the curvature spacetime; (2). The spatial deformation of planet is related with a planet electromagnetic field; (3). For electric charge less matter, the volume of matter will be expanding infinitely; (4).For strong electric charge matter, it shows that the volume of matter will be contracting infinitely.
Near-field single molecule spectroscopy
Xie, X.S.; Dunn, R.C.
1995-02-01T23:59:59.000Z
The high spatial resolution and sensitivity of near-field fluorescence microscopy allows one to study spectroscopic and dynamical properties of individual molecules at room temperature. Time-resolved experiments which probe the dynamical behavior of single molecules are discussed. Ground rules for applying near-field spectroscopy and the effect of the aluminum coated near-field probe on spectroscopic measurements are presented.
Wies, Thomas
2005-11-03T23:59:59.000Z
We introduce field constraint analysis, a new technique for verifying data structure invariants. A field constraint for a field is a formula specifying a set of objects to which the field can point. Field constraints ...
Quantum Electric Field Fluctuations and Potential Scattering
Huang, Haiyun
2015-01-01T23:59:59.000Z
Some physical effects of time averaged quantum electric field fluctuations are discussed. The one loop radiative correction to potential scattering are approximately derived from simple arguments which invoke vacuum electric field fluctuations. For both above barrier scattering and quantum tunneling, this effect increases the transmission probability. It is argued that the shape of the potential determines a sampling function for the time averaging of the quantum electric field operator. We also suggest that there is a nonperturbative enhancement of the transmission probability which can be inferred from the probability distribution for time averaged electric field fluctuations.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis ofwas publishedThree scientistsDepartmentTime Off
Mathematical quantization of Hamiltonian field theories
A. V. Stoyanovsky
2015-02-04T23:59:59.000Z
We define the renormalized evolution operator of the Schr\\"odinger equation in the infinite dimensional Weyl-Moyal algebra during a time interval for a wide class of Hamiltonians depending on time. This leads to a mathematical definition of quantum field theory $S$-matrix and Green functions. We show that for renormalizable field theories, our theory yields the renormalized perturbation series of perturbative quantum field theory. All the results are based on the Feynman graph series technique.
Reversed field pinch current drive with oscillating helical fields
Farengo, Ricardo; Clemente, Roberto Antonio [Centro Atomico Bariloche e Instituto Balseiro, S.C. de Bariloche (8400), RN (Argentina); Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil)
2006-04-15T23:59:59.000Z
The use of oscillating helical magnetic fields to produce and sustain the toroidal and poloidal currents in a reversed field pinch (RFP) is investigated. A simple physical model that assumes fixed ions, massless electrons, and uniform density and resistivity is employed. Thermal effects are neglected in Ohm's law and helical coordinates are introduced to reduce the number of coupled nonlinear equations that must be advanced in time. The results show that it is possible to produce RFP-like magnetic field profiles with pinch parameters close to the experimental values. The efficiencies obtained for moderate resistivity, and the observed scaling, indicate that this could be a very attractive method for high temperature plasmas.
Osad'ko, I. S., E-mail: osadko@isan.troitsk.ru [Institute for spectroscopy RAS, Troitsk, 142190 Moscow (Russian Federation)
2014-10-28T23:59:59.000Z
It has been recently found [Gh. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, and V. I. Klimov, Nature (London) 479, 203 (2011)] that semiconductor core/shell nanocrystals (NCs) with blinking photoluminescence (PL) can be of “A” or “B” type. NCs of A-type exhibit correlation between the intensity of PL and the life time. In NCs of B-type such correlation is absent. Simple model based on combination of the charging model and the two-level system model is proposed for describing emissive properties of NCs of both types. The model invokes fluctuations of emission ability ?{sub em} of NC to explain the emissive properties of NCs of B-type. Our combined model is also in agreement with anticorrelation between the duration ?{sub off} of off intervals and PL life time t{sub off} in off intervals found recently for NCs of A-type in the experiment [A. A. Cordones, T. J. Bixby, and S. R. Leone, Nano Lett. 11, 3366 (2011)].
Graphene field emission devices
Kumar, S., E-mail: shishirk@gmail.com; Raghavan, S. [Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru (India); Duesberg, G. S. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and School of Chemistry, Trinity College Dublin, Dublin, D2 (Ireland); Pratap, R. [Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru (India); Department of Mechanical Engineering, Indian Institute of Science, Bengaluru (India)
2014-09-08T23:59:59.000Z
Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ?10?nA ?m{sup ?1} at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.
Smooth Field Theories and Homotopy Field Theories
Wilder, Alan Cameron
2011-01-01T23:59:59.000Z
CHAPTER 3. FIELD THEORIES Definition 3.2.1. A smooth fielda ’top down’ definition of field theories. Taking as ourin the following. Definition A field theory is a symmetric
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGene Controls FloweringJavaGenepool Time
Are Cluster Magnetic Fields Primordial ?
Robi Banerjee; Karsten Jedamzik
2004-09-07T23:59:59.000Z
We present results of a detailed and fully non-linear numerical and analytical investigation of magnetic field evolution from the very earliest cosmic epochs to the present. We find that, under reasonable assumptions concerning the efficiency of a putative magnetogenesis era during cosmic phase transitions, surprisingly strong magnetic fields 10^{-13} - 10^{-11} Gauss, on comparatively small scales 100 pc - 10 kpc may survive to the present. Building on prior work on the evolution of magnetic fields during the course of gravitational collapse of a cluster, which indicates that pre-collapse fields of 4\\times 10^{-12} Gauss extant on small scales may suffice to produce clusters with acceptable Faraday rotation measures, we question the widely hold view that cluster magnetic fields may not be entirely of primordial origin.
Negative Energies and Field Theory
Gerald E. Marsh
2008-11-20T23:59:59.000Z
The assumption that the vacuum is the minimum energy state, invariant under unitary transformations, is fundamental to quantum field theory. However, the assertion that the conservation of charge implies that the equal time commutator of the charge density and its time derivative vanish for two spatially separated points is inconsistent with the requirement that the vacuum be the lowest energy state. Yet, for quantum field theory to be gauge invariant, this commutator must vanish. This essay explores how this conundrum is resolved in quantum electrodynamics.
Jones, R.E.; Jirik, L.A.; Hower, T.L.
1993-07-01T23:59:59.000Z
An investigation of reservoir management strategies for optimization of ultimate hydrocarbon recovery and net present value from an overpressured, high yield gas condensate reservoir with water influx is reported. This field evaluation was based on a reservoir simulation. Volumetric and performance-derived original gas-in-place estimates did not agree: the performance-derived values were significantly lower than those predicted from volumetric analysis. Predicted field gas recovery was improved significantly by methods which accelerated gas withdrawals. Recovery was also influenced by well location. Accelerated withdrawals from wells near the aquifer tended to reduce sweep by cusping and coning water. This offset any benefits of increased gas rates.
Thermo--hydrodynamics As a Field Theory
Jacek Jezierski; Jerzy Kijowski
2011-12-26T23:59:59.000Z
The field theoretical description of thermo-hydrodynamics is given. It is based on the duality between the physical space--time and the "material space-time" which we construct here. The material space appearing in a natural way in the canonical formulation of the hydrodynamics is completed with a material time playing role of the field potential for temperature. Both Lagrangian and Hamiltonian formulations, the canonical structure, Poisson bracket, N\\"other theorem and conservation laws are discussed.
Magnetic Field Safety Magnetic Field Safety
McQuade, D. Tyler
Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic
Mark, J. Abraham Hudson, E-mail: a.john.peter@gmail.com; Peter, A. John, E-mail: a.john.peter@gmail.com [Dept. of Physics, SSM Institute of Engineering and Technology, Dindigul-624002 (India)
2014-04-24T23:59:59.000Z
Third order susceptibility of third order harmonic generation is investigated in a Zn{sub 0.1}Mg{sub 0.9}Se/Zn{sub 0.8}Mg{sub 0.2}Se/Zn{sub 0.1}Mg{sub 0.9}Se quantum well in the presence of magnetic field strength. The confinement potential is considered as the addition of energy offsets of the conduction band (or valence band) and the strain-induced potential in our calculations. The material dependent effective mass is followed throughout the computation because it has a high influence on the electron energy levels in low dimensional semiconductor systems.
Eddy-current-induced multipole field calculations.
Sereno, N. S.; Kim, S. H.
2003-10-15T23:59:59.000Z
Time-varying magnetic fields of magnets in booster accelerators induce substantial eddy currents in the vacuum chambers. The eddy currents in turn act to produce various multipole fields that act on the beam. These fields must be taken into account when doing a lattice design. In the APS booster, the relatively long dipole magnets (3 meters) are linearly ramped to accelerate the injected 325 MeV beam to 7 GeV. Substantial dipole and sextupole fields are generated in the elliptical vacuum chamber from the induced eddy currents. In this note, formulas for the induced dipole and sextupole fields are derived for elliptical and rectangular vacuum chambers for a time-varying dipole field. A discussion is given on how to generalize this derivation method to include eddy-current-induced multipole fields from higher multipole magnets (quadrupole, sextupole, etc.). Finally, transient effects are considered.
Pseudo-Z symmetric space-times
Mantica, Carlo Alberto, E-mail: carloalberto.mantica@libero.it [Physics Department, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Suh, Young Jin, E-mail: yjsuh@knu.ac.kr [Department of Mathematics, Kyungpook National University, Taegu 702-701 (Korea, Republic of)
2014-04-15T23:59:59.000Z
In this paper, we investigate Pseudo-Z symmetric space-time manifolds. First, we deal with elementary properties showing that the associated form A{sub k} is closed: in the case the Ricci tensor results to be Weyl compatible. This notion was recently introduced by one of the present authors. The consequences of the Weyl compatibility on the magnetic part of the Weyl tensor are pointed out. This determines the Petrov types of such space times. Finally, we investigate some interesting properties of (PZS){sub 4} space-time; in particular, we take into consideration perfect fluid and scalar field space-time, and interesting properties are pointed out, including the Petrov classification. In the case of scalar field space-time, it is shown that the scalar field satisfies a generalized eikonal equation. Further, it is shown that the integral curves of the gradient field are geodesics. A classical method to find a general integral is presented.
An overview of craniospinal axis fields and field matching
Scott, Robin L., E-mail: robinscott631@gmail.com
2013-01-01T23:59:59.000Z
Many methods are implemented for craniospinal axis (CSA) radiation treatment (RT). This paper’s goal is to define correctly matched CSA RT fields. Overlap or a space between matched RT fields can create variances of dose and the possibility of negative side effects or disease recurrence, respectively. An accurate CSA RT match procedure is created with localization markers, immobilization devices, equations, feathered matches, safety gap, and portal imaging. A CS match angle is predetermined to optimize patient position before immobilization device fabrication. Various central axis (CA) placements within the brain and spine fields that effect gantry, table, and collimator rotation are described. An overview of the methods used to create CSA RT fields and matches is presented for optimal CSA RT implementation. In addition, to the author’s knowledge, this is the first time that a prone CSA RT with anesthesia has been described.
Quantum Field Theory Mark Srednicki
Akhmedov, Azer
The Spin-Statistics Theorem (3) 45 5 The LSZ Reduction Formula (3) 49 6 Path Integrals in Quantum Mechanics Quantization of Spinor Fields II (38) 246 40 Parity, Time Reversal, and Charge Conjugation (23, 39) 254 #12, 59) 369 #12;6 63 The Vertex Function in Spinor Electrodynamics (62) 378 64 The Magnetic Moment
Linear electric field mass spectrometry
McComas, D.J.; Nordholt, J.E.
1992-12-01T23:59:59.000Z
A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.
Thermalization in External Magnetic Field
Ali-Akbari, Mohammad
2012-01-01T23:59:59.000Z
In the AdS/CFT framework meson thermalization in the presence of a constant external magnetic field in a strongly coupled gauge theory has been studied. In the gravitational description the thermalization of mesons corresponds to the horizon formation on the flavour D7-brane which is embedded in the AdS_5 x S^5 background in the probe limit. The apparent horizon forms due to the time-dependent change in the baryon number chemical potential, the injection of baryons in the gauge theory. We will numerically show that the thermalization happens even faster in the presence of the magnetic field on the probe brane. We observe that this reduction in the thermalization time sustains up to a specific value of the magnetic field.
Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.
1992-03-01T23:59:59.000Z
The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year`s report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.
Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.
1992-03-01T23:59:59.000Z
The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year's report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.
Quantum Gravity, the Origin of Time and Time's Arrow
J. W. Moffat
1992-09-02T23:59:59.000Z
The local Lorentz and diffeomorphism symmetries of Einstein's gravitational theory are spontaneously broken by a Higgs mechanism by invoking a phase transition in the early Universe, at a critical temperature $T_c$ below which the symmetry is restored. The spontaneous breakdown of the vacuum state generates an external time and the wave function of the Universe satisfies a time dependent Schrodinger equation, which reduces to the Wheeler-deWitt equation in the classical regime for $T T_c$ and matter is created fractions of seconds after the big bang, generating the matter in the Universe. The time direction of the vacuum expectation value of the scalar Higgs field generates a time asymmetry, which defines the cosmological arrow of time and the direction of increasing entropy as the Lorentz symmetry is restored at low temperatures.
The Speed of Light as a Dilaton Field
Walter Wyss
1997-12-09T23:59:59.000Z
Through dimensional analysis, eliminating the physical time, we identify the speed of light as a dilaton field. This leads to a restmass zero, spin zero gauge field which we call the speedon field. The complete Lagrangian for gravitational, electromagnetic and speedon field interactions with a charged scalar field, representing matter, is given. We then find solutions for the gravitational-electromagnetic-speedon field equations. This then gives an expression for the speed of light.
Relation between photospheric flow fields and the magnetic field distribution on the solar surface
Simon, G.W.; Title, A.M.; Topka, K.P.; Tarbell, T.D.; Shine, R.A.
1988-04-01T23:59:59.000Z
Using the technique of local correlation tracking on a 28 minute time sequence of white-light images of solar granulation, the horizontal flow field on the solar surface is measured. The time series was obtained by the Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 (Space Shuttle flight 51-F) and is free from atmospheric blurring and distortion. The SOUP flow fields have been compared with carefully aligned magnetograms taken over a nine hour period at the Big Bear Solar Observatory before, during, and after the SOUP images. The flow field and the magnetic field agree in considerable detail: vectors which define the flow of the white-light intensity pattern (granulation) point toward magnetic field regions, magnetic fields surround flow cells, and magnetic features move along the flow arrows. The projected locations of free particles (corks) in the measured flow field congregate at the same locations where the magnetic field is observed. 31 references.
Boltzmann Equation for Relativistic Neutral Scalar Field in Non-equilibrium Thermo Field Dynamics
Yuichi Mizutani; Tomohiro Inagaki
2011-03-18T23:59:59.000Z
A relativistic neutral scalar field is investigated on the basis of the Schwinger-Dyson equation in the non-equilibrium thermo field dynamics. A time evolution equation for a distribution function is obtained from a diagonalization condition for the Schwinger-Dyson equation. An explicit expression of the time evolution equation is calculated in the $\\lambda\\phi^4$ interaction model at the 2-loop level. The Boltzmann equation is derived for the relativistic scalar field. We set a simple initial condition and numerically solve the Boltzmann equation and show the time evolution of the distribution function and the relaxation time.
Real-time crystallization in fluorinated parylene probed by conductivity spectra
Khazaka, R., E-mail: rabih.khazaka@laplace.univ-tlse.fr; Diaham, S. [Université de Toulouse, UPS, INPT, Laboratoire LAPLACE, 118 route de Narbonne, F-31062 Toulouse (France); Locatelli, M. L. [Université de Toulouse, UPS, INPT, Laboratoire LAPLACE, 118 route de Narbonne, F-31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Tenailleau, C. [Université de Toulouse, UPS, Laboratoire CIRIMAT/LCMIE, 118 route de Narbonne - Bât. 2R1, F-31062 Toulouse cedex 9 (France); Kumar, R. [Speciality Coating Systems, Inc. (SCS), Cookson Electronics, 7645 Woodland Drive, Indianapolis, Indiana 46278 (United States)
2014-03-17T23:59:59.000Z
Dielectric relaxation spectroscopy experiments were performed at high temperature on fluorinated parylene films during the occurrence of the isothermal crystalline phase transition. For this polymer, since the difference between the glass transition temperature (T{sub g}) and the phase transition temperature (T{sub c}) is very strong (T{sub c}???4T{sub g}), segmental and dipolar relaxation usually used to probe the crystallization are not shown in the experiment frequency window (10{sup ?1} to 10{sup 6}?Hz) during the crystallization. The charge diffusion becomes the only electrical marker that allows probing the phase transition. During the transition phase, a continuous decrease of about two orders of magnitude is observed in the conductivity values below an offset frequency (f{sub c}) with a tendency to stabilization after 600?min. Below the offset frequency, the decrease of the normalized conductivity to the initial value as function of time is frequency independent. The same behavior is also observed for the f{sub c} values that decrease from 160?Hz to about 20?Hz. Above the offset frequency, the electronic hopping mechanism is also affected by the phase transition and the power law exponent (n) of the AC conductivity shows a variation from 0.7 to 0.95 during the first 600?min that tend to stabilize thereafter. Accordingly, three parameters (n, f{sub c}, and AC conductivity values for frequencies below f{sub c}) extracted from the AC conductivity spectra in different frequency windows seem suitable to probe the crystalline phase transition.
Motional Spin Relaxation in Large Electric Fields
Riccardo Schmid; B. Plaster; B. W. Filippone
2008-07-02T23:59:59.000Z
We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}$He atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}$He samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}$He atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}$He atoms at temperatures below $600,\\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, while the $^{3}$He relaxation times may be important for the \\emph{nEDM} experiment.
Space-time Curvature of Classical Electromagnetism
R. W. M. Woodside
2004-10-08T23:59:59.000Z
The space-time curvature carried by electromagnetic fields is discovered and a new unification of geometry and electromagnetism is found. Curvature is invariant under charge reversal symmetry. Electromagnetic field equations are examined with De Rham co homology theory. Radiative electromagnetic fields must be exact and co exact to preclude unobserved massless topological charges. Weyl's conformal tensor, here called ``the gravitational field'', is decomposed into a divergence-free non-local piece with support everywhere and a local piece with the same support as the matter. By tuning a local gravitational field to a Maxwell field the electromagnetic field's local gravitational field is discovered. This gravitational field carries the electromagnetic field's polarization or phase information, unlike Maxwell's stress-energy tensor. The unification assumes Einstein's equations and derives Maxwell's equations from curvature assumptions. Gravity forbids magnetic monopoles! This unification is stronger than the Einstein-Maxwell equations alone, as those equations must produce the electromagnetic field's local gravitational field and not just any conformal tensor. Charged black holes are examples. Curvature of radiative null electromagnetic fields is characterized.
Kemner, Ken
Eddy-Current-Induced Multipole Field Calculations September 29, 2003 1 Eddy-Current-Induced Multipole Field Calculations Nicholas S. Sereno, Suk H. Kim 1.0 Abstract Time-varying magnetic fields-current-induced multipole fields from higher multipole magnets (quadrupole, sextupole, etc.). Finally, transient effects
ccsd00001476, NEGATIVE ENERGIES AND TIME REVERSAL
kinetic energy, so-called phantom #12;elds, have recently been proposed [1] [2] [3] as new sources leadingccsdÂ00001476, version 6 Â 31 Mar 2005 NEGATIVE ENERGIES AND TIME REVERSAL IN QUANTUM FIELD THEORY The theoretical and phenomenological status of negative energies is reviewed in Quantum Field Theory leading
Differences in Impact Factor Across Fields and Over Time
Althouse, Benjamin M.; West, Jevin D.; Bergstrom, Ted C; Bergstrom, Carl T.
2008-01-01T23:59:59.000Z
Science (23) Agriculture (56) Anthropology (62) Material Engineering ( 107) Economics (159) Fluid Mechanics (107) Probability And Statistics (
Haag's theorem in noncommutative quantum field theory
Antipin, K. V. [Moscow State University, Faculty of Physics (Russian Federation)] [Moscow State University, Faculty of Physics (Russian Federation); Mnatsakanova, M. N., E-mail: mnatsak@theory.sinp.msu.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Vernov, Yu. S. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)] [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)
2013-08-15T23:59:59.000Z
Haag's theorem was extended to the general case of noncommutative quantum field theory when time does not commute with spatial variables. It was proven that if S matrix is equal to unity in one of two theories related by unitary transformation, then the corresponding one in the other theory is equal to unity as well. In fact, this result is valid in any SO(1, 1)-invariant quantum field theory, an important example of which is noncommutative quantum field theory.
Haag's Theorem in Noncommutative Quantum Field Theory
K. V. Antipin; M. N. Mnatsakanova; Yu. S. Vernov
2012-02-05T23:59:59.000Z
Haag's theorem was extended to noncommutative quantum field theory in a general case when time does not commute with spatial variables. It was proven that if S-matrix is equal to unity in one of two theories related by unitary transformation, then the corresponding one in another theory is equal to unity as well. In fact this result is valid in any SO(1,1) invariant quantum field theory, of which an important example is noncommutative quantum field theory.
Chiral effective field theory and nuclear forces
R. Machleidt; D. R. Entem
2011-05-15T23:59:59.000Z
We review how nuclear forces emerge from low-energy QCD via chiral effective field theory. The presentation is accessible to the non-specialist. At the same time, we also provide considerable detailed information (mostly in appendices) for the benefit of researchers who wish to start working in this field.
Renormalization and quantum field theory
R. E. Borcherds
2011-03-09T23:59:59.000Z
The aim of this paper is to describe how to use regularization and renormalization to construct a perturbative quantum field theory from a Lagrangian. We first define renormalizations and Feynman measures, and show that although there need not exist a canonical Feynman measure, there is a canonical orbit of Feynman measures under renormalization. We then construct a perturbative quantum field theory from a Lagrangian and a Feynman measure, and show that it satisfies perturbative analogues of the Wightman axioms, extended to allow time-ordered composite operators over curved spacetimes.
Quantum Field Theory & Gravity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Quantum Field Theory & Gravity Quantum Field Theory & Gravity Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664...
Motional Spin Relaxation in Large Electric Fields
Schmid, Riccardo; Filippone, B W
2008-01-01T23:59:59.000Z
We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}\\mathrm{He}$ atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}\\mathrm{He}$ samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}\\mathrm{He}$ atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}\\mathrm{He}$ atoms at temperatures below $600 \\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, ...
Electric Field Quench, Equilibration and Universal Behavior
Ali-Akbari, M; Sepangi, H R
2015-01-01T23:59:59.000Z
We study electric field quench in N=2 strongly coupled gauge theory, using the AdS/CFT correspondence. To do so, we consider the aforementioned system which is subjected to a time-dependent electric field indicating an out of equilibrium system. Defining the equilibration time t_{eq}, at which the system relaxes to its final equilibrium state after injecting the energy, we find that the rescaled equilibriation time k^{-1}t_{eq} decreases as the transition time k increases. Therefore, we expect that for sufficiently large transition time, k ->infinity, the relaxation of the system to its final equilibrium can be an adiabatic process. On the other hand, we observe a universal behavior for the fast quenches, k electric field. Our calculations generalized to systems in various dimensions also confirm universalization process which seems to be a typical feature of all strongly coupled gauge theories th...
Electric Field Quench, Equilibration and Universal Behavior
M. Ali-Akbari; S. Amiri-Sharifi; H. R. Sepangi
2015-04-14T23:59:59.000Z
We study electric field quench in N=2 strongly coupled gauge theory, using the AdS/CFT correspondence. To do so, we consider the aforementioned system which is subjected to a time-dependent electric field indicating an out of equilibrium system. Defining the equilibration time t_{eq}, at which the system relaxes to its final equilibrium state after injecting the energy, we find that the rescaled equilibriation time k^{-1}t_{eq} decreases as the transition time k increases. Therefore, we expect that for sufficiently large transition time, k ->infinity, the relaxation of the system to its final equilibrium can be an adiabatic process. On the other hand, we observe a universal behavior for the fast quenches, k electric field. Our calculations generalized to systems in various dimensions also confirm universalization process which seems to be a typical feature of all strongly coupled gauge theories that admit a gravitational dual.
Exterior Differential Systems for Field Theories
Frank B. Estabrook
2015-02-24T23:59:59.000Z
Exterior Differential Systems (EDS) and Cartan forms, set in the state space of field variables taken together with four space-time variables, are formulated for classical gauge theories of Maxwell and SU(2) Yang-Mills fields minimally coupled to Dirac spinor multiplets. Cartan character tables are calculated, showing whether the EDS, and so the Euler-Lagrange partial differential equations, is well-posed. The first theory, with 22 dimensional state space (10 Maxwell field and potential components and 8 components of a Dirac field), anticipates QED. In the second, non-Abelian, case (30 Yang-Mills field components and 16 Dirac), only if three additional "ghost" fields are included (15 more scalar variables) is a well-posed EDS found. This classical formulation anticipates the need for introduction of Fadeev-Popov ghost fields in the quantum standard model.
The Time Evolution of Aerosol Size Distribution Over the Mexico...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Size Distribution Over the Mexico City Plateau. The Time Evolution of Aerosol Size Distribution Over the Mexico City Plateau. Abstract: As part of the MILAGRO field campaign, the...
Real-time Vehicle Reidentification System for Freeway Performance Measurements
Jeng, Shin-Ting
2007-01-01T23:59:59.000Z
Tok, A. (2005). “Anonymous Vehicle Tracking for Real-timeField Investigation of Advanced Vehicle Reidentificationvariance, land changing, and vehicle heterogeneity. In:
Noncommutative field theory from twisted Fock space
Bu, Jong-Geon; Kim, Hyeong-Chan; Lee, Youngone; Vac, Chang Hyon; Yee, Jae Hyung [Department of Physics, Yonsei University, Seoul (Korea, Republic of)
2006-06-15T23:59:59.000Z
We construct a quantum field theory in noncommutative space time by twisting the algebra of quantum operators (especially, creation and annihilation operators) of the corresponding quantum field theory in commutative space time. The twisted Fock space and S-matrix consistent with this algebra have been constructed. The resultant S-matrix is consistent with that of Filk [Tomas Filk, Phys. Lett. B 376, 53 (1996).]. We find from this formulation that the spin-statistics relation is not violated in the canonical noncommutative field theories.
Temporal Velocity Variations beneath the Coso Geothermal Field...
Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...
Discovery of magnetic fields in CPNs
S. Jordan; K. Werner; S. J. O'Toole
2004-10-21T23:59:59.000Z
For the first time we have directly detected magnetic fields in central stars of planetary nebulae by means of spectro-polarimetry with FORS1 at the VLT. In all four objects of our sample we found kilogauss magnetic fields, in NGC 1360 and LSS1362 with very high significance, while in Abell36 and EGB5 the existence of a magnetic field is probable but with less certainty. This discovery supports the hypothesis that the non-spherical symmetry of most planetary nebulae is caused by magnetic fields in AGB stars. Our high discovery rate demands mechanisms to prevent full conservation of magnetic flux during the transition to white dwarfs.
Sensor for detecting changes in magnetic fields
Praeg, W.F.
1980-02-26T23:59:59.000Z
A sensor is described for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device that comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.
Sensor for detecting changes in magnetic fields
Praeg, Walter F. (Palos Park, IL)
1981-01-01T23:59:59.000Z
A sensor for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.
Non-Equilibrium Thermo Field Dynamics for Relativistic Complex Scalar and Dirac Fields
Yuichi Mizutani; Tomohiro Inagaki
2012-05-02T23:59:59.000Z
Relativistic quantum field theories for complex scalar and Dirac fields are investigated in non-equilibrium thermo field dynamics. The thermal vacuum is defined by the Bogoliubov transformed creation and annihilation operators. Two independent Bogoliubov parameters are introduced for a charged field. Its difference naturally induces the chemical potential. Time-dependent thermal Bogoliubov transformation generates the thermal counter terms. We fix the terms by the self-consistency renormalization condition. Evaluating the thermal self-energy under the self-consistency renormalization condition, we derive the quantum Boltzmann equations for the relativistic fields.
Noncommutative field gas driven inflation
Luciano Barosi; Francisco A. Brito; Amilcar R. Queiroz
2008-03-14T23:59:59.000Z
We investigate early time inflationary scenarios in an Universe filled with a dilute noncommutative bosonic gas at high temperature. A noncommutative bosonic gas is a gas composed of bosonic scalar field with noncommutative field space on a commutative spacetime. Such noncommutative field theories was recently introduced as a generalization of quantum mechanics on a noncommutative spacetime. As key features of these theories are Lorentz invariance violation and CPT violation. In the present study we use a noncommutative bosonic field theory that besides the noncommutative parameter $\\theta$ shows up a further parameter $\\sigma$. This parameter $\\sigma$ controls the range of the noncommutativity and acts as a regulator for the theory. Both parameters play a key role in the modified dispersion relations of the noncommutative bosonic field, leading to possible striking consequences for phenomenology. In this work we obtain an equation of state $p=\\omega(\\sigma,\\theta;\\beta)\\rho$ for the noncommutative bosonic gas relating pressure $p$ and energy density $\\rho$, in the limit of high temperature. We analyse possible behaviours for this gas parameters $\\sigma$, $\\theta$ and $\\beta$, so that $-1\\leq\\omega<-1/3$, which is the region where the Universe enters an accelerated phase.
Noncommutative field gas driven inflation
Barosi, Luciano; Brito, Francisco A [Departamento de Fisica, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraiba (Brazil); Queiroz, Amilcar R, E-mail: lbarosi@ufcg.edu.br, E-mail: fabrito@df.ufcg.edu.br, E-mail: amilcarq@gmail.com [Centro Internacional de Fisica da Materia Condensada, Universidade de Brasilia, Caixa Postal 04667, Brasilia, DF (Brazil)
2008-04-15T23:59:59.000Z
We investigate early time inflationary scenarios in a Universe filled with a dilute noncommutative bosonic gas at high temperature. A noncommutative bosonic gas is a gas composed of a bosonic scalar field with noncommutative field space on a commutative spacetime. Such noncommutative field theories were recently introduced as a generalization of quantum mechanics on a noncommutative spacetime. Key features of these theories are Lorentz invariance violation and CPT violation. In the present study we use a noncommutative bosonic field theory that, besides the noncommutative parameter {theta}, shows up a further parameter {sigma}. This parameter {sigma} controls the range of the noncommutativity and acts as a regulator for the theory. Both parameters play a key role in the modified dispersion relations of the noncommutative bosonic field, leading to possible striking consequences for phenomenology. In this work we obtain an equation of state p = {omega}({sigma},{theta};{beta}){rho} for the noncommutative bosonic gas relating pressure p and energy density {rho}, in the limit of high temperature. We analyse possible behaviours for these gas parameters {sigma}, {theta} and {beta}, so that -1{<=}{omega}<-1/3, which is the region where the Universe enters an accelerated phase.
Bell's Jump Process in Discrete Time
Jonathan Barrett; Matthew Leifer; Roderich Tumulka
2005-09-27T23:59:59.000Z
The jump process introduced by J. S. Bell in 1986, for defining a quantum field theory without observers, presupposes that space is discrete whereas time is continuous. In this letter, our interest is to find an analogous process in discrete time. We argue that a genuine analog does not exist, but provide examples of processes in discrete time that could be used as a replacement.
Is Torsion a Fundamental Physical Field?
Orchidea Maria Lecian; Simone Mercuri; Giovanni Montani
2007-02-05T23:59:59.000Z
The local Lorentz group is introduced in flat space-time, where the resulting Dirac and Yang-Mills equations are found, and then generalized to curved space-time: if matter is neglected, the Lorentz connection is identified with the contortion field, while, if matter is taken into account, both the Lorentz connection and the spinor axial current are illustrated to contribute to the torsion of space-time.
Determination of Electric-Field, Magnetic-Field, and Electric...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Electric-Field, Magnetic-Field, and Electric-Current Distributions of Infrared Optical Antennas: A Near-Field Determination of Electric-Field, Magnetic-Field, and Electric-Current...
U.S. Energy Information Administration (EIA) Indexed Site
OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a...
Kaiser, David I.
Particle cosmology is among the hottest of hot topics in physics today. The field investigates the smallest units of matter and their role in determining the shape and fate of the entire universe. In recent years the field ...
Hull, Chris
The zero modes of closed strings on a torus — the torus coordinates plus dual coordinates conjugate to winding number — parameterize a doubled torus. In closed string field theory, the string field depends on all zero-modes ...
Covariant Noncommutative Field Theory
Estrada-Jimenez, S. [Licenciaturas en Fisica y en Matematicas, Facultad de Ingenieria, Universidad Autonoma de Chiapas Calle 4a Ote. Nte. 1428, Tuxtla Gutierrez, Chiapas (Mexico); Garcia-Compean, H. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico D.F., Mexico and Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Via del Conocimiento 201, Parque de Investigacion e Innovacion Tecnologica (PIIT) Autopista nueva al Aeropuerto km 9.5, Lote 1, Manzana 29, cp. 66600 Apodaca Nuevo Leon (Mexico); Obregon, O. [Instituto de Fisica de la Universidad de Guanajuato P.O. Box E-143, 37150 Leon Gto. (Mexico); Ramirez, C. [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)
2008-07-02T23:59:59.000Z
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.
Facilities Management Field Services
Hickman, Mark
Facilities Management Field Services FieldStationsAnnualReport2006 #12;Cover Photo by Dr Mark Jermy coast #12; Introduction A very wet Steve Weaver emerges from the river. Ah, field work! The Government broadband, at least there is now an alternative to the telephone line. Electrical power spikes (and outages
An interacting scalar field and the recent cosmic acceleration
Sudipta Das; Narayan Banerjee
2006-05-19T23:59:59.000Z
In this paper it is shown that the Brans - Dicke scalar field itself can serve the purpose of providing an early deceleration and a late time acceleration of the universe without any need of quintessence field if one considers an interaction, i.e, transfer of energy between the dark matter and the Brans - Dicke scalar field.
Renormalisation of Noncommutative Quantum Field Harald Grosse1
Wulkenhaar, Raimar
Renormalisation of Noncommutative Quantum Field Theory Harald Grosse1 and Raimar Wulkenhaar2 1 recall some models for noncommutative space-time and discuss quantum field theories on these deformed. Keywords: noncommutative geometry; quantum field theory; renormalisation AMS Subject Classification: 81T15
Infinitely many inequivalent field theories from one Lagrangian
Carl M. Bender; Daniel W. Hook; Nick E. Mavromatos; Sarben Sarkar
2014-08-11T23:59:59.000Z
Logarithmic time-like Liouville quantum field theory has a generalized PT invariance, where T is the time-reversal operator and P stands for an S-duality reflection of the Liouville field $\\phi$. In Euclidean space the Lagrangian of such a theory, $L=\\frac{1}{2}(\
Scalar fields and dynamical torsion in Kaluza-Klein theories
Volovich, I.V.; Katanaev, M.O.
1986-07-01T23:59:59.000Z
It is shown that the generalization of Kaluza-Klein theories to take into account dynamical torsion makes it possible to obtain after reduction to four-dimensional space-time not only gauge fields interacting with the metric but also scalar fields with Lagrangian of Yang-Mills -Higgs type. It is shown that in four-dimensional space-time with Minkowski metric torsion is manifested as a universal pseudovector field irrespective of the Kaluza-Klein theories. Chiral interaction of fermions can be interpreted as interaction with a torsion field. The connection between torsion and anomalies is discussed. Torsion in three-dimensional space-time is also considered.
Magnetic helicity generation from the cosmic axion field
Campanelli, L.; Giannotti, M. [Dipartimento di Fisica, Universita di Ferrara, I-44100 Ferrara (Italy); INFN-Sezione di Ferrara, I-44100 Ferrara (Italy)
2005-12-15T23:59:59.000Z
The coupling between a primordial magnetic field and the cosmic axion field generates a helical component of the magnetic field around the time in which the axion starts to oscillate. If the energy density of the seed magnetic field is comparable to the energy density of the universe at that time, then the resulting magnetic helicity is about vertical bar H{sub B} vertical bar {approx_equal}(10{sup -20}G){sup 2} kpc and remains constant after its generation. As a corollary, we find that the standard properties of the oscillating axion remain unchanged even in the presence of very strong magnetic fields.
Magnetic Helicity Generation from the Cosmic Axion Field
L. Campanelli; M. Giannotti
2005-12-12T23:59:59.000Z
The coupling between a primordial magnetic field and the cosmic axion field generates a helical component of the magnetic field around the time in which the axion starts to oscillate. If the energy density of the seed magnetic field is comparable to the energy density of the universe at that time, then the resulting magnetic helicity is about |H_B| \\simeq (10^{-20} G)^2 kpc and remains constant after its generation. As a corollary, we find that the standard properties of the oscillating axion remain unchanged even in the presence of very strong magnetic fields.
Four-dimensional deformed special relativity from group field theories
Girelli, Florian [SISSA, Via Beirut 2-4, 34014 Trieste, Italy and INFN, Sezione di Trieste (Italy); School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia); Livine, Etera R. [Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d'Italie, 69007 Lyon (France); Oriti, Daniele [Perimeter Institute for Theoretical Physics, 31 Caroline St, Waterloo, Ontario N2L 2Y5 (Canada); Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, Utrecht 3584 TD (Netherlands); Albert Einstein Institute, Am Muehlenberg 4, Golm (Germany)
2010-01-15T23:59:59.000Z
We derive a scalar field theory of the deformed special relativity type, living on noncommutative {kappa}-Minkowski space-time and with a {kappa}-deformed Poincare symmetry, from the SO(4,1) group field theory defining the transition amplitudes for topological BF theory in 4 space-time dimensions. This is done at a nonperturbative level of the spin foam formalism working directly with the group field theory (GFT). We show that matter fields emerge from the fundamental model as perturbations around a specific phase of the GFT, corresponding to a solution of the fundamental equations of motion, and that the noncommutative field theory governs their effective dynamics.
Electric field divertor plasma pump
Schaffer, M.J.
1994-10-04T23:59:59.000Z
An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.
Electric field divertor plasma pump
Schaffer, Michael J. (San Diego, CA)
1994-01-01T23:59:59.000Z
An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.
Localized Axion Photon States in a Strong Magnetic Field
E. I. Guendelman
2008-01-04T23:59:59.000Z
We consider the axion field and electromagnetic waves with rapid time dependence, coupled to a strong time independent, asymptotically approaching a constant at infinity "mean" magnetic field, which takes into account the back reaction from the axion field and electromagnetic waves with rapid time dependence in a time averaged way. The direction of the self consistent mean field is orthogonal to the common direction of propagation of the axion and electromagnetic waves with rapid time dependence and parallel to the polarization of these electromagnetic waves. Then, there is an effective U(1) symmetry mixing axions and photons. Using the natural complex variables that this U(1) symmetry suggests we find localized planar soliton solutions. These solutions appear to be stable since they produce a different magnetic flux than the state with only a constant magnetic field, which we take as our "ground state". The solitons also have non trivial U(1) charge defined before, different from the uncharged vacuum.
Noncommutative scalar fields from symplectic deformation
Daoud, M. [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy); Hamama, A. [High Energy Laboratory, Faculty of Sciences, University Mohamed V, P.O. Box 1014, Rabat (Morocco)
2008-02-15T23:59:59.000Z
This paper is concerned with the quantum theory of noncommutative scalar fields in two dimensional space-time. It is shown that the noncommutativity originates from the the deformation of symplectic structures. The quantization is performed and the modes expansions of the fields, in the presence of an electromagnetic background, are derived. The Hamiltonian of the theory is given and the degeneracies lifting, induced by the deformation, is also discussed.
A general perspective on time observables
Bryan W. Roberts
2014-04-19T23:59:59.000Z
I propose a general geometric framework in which to discuss the existence of time observables. This frameworks allows one to describe a local sense in which time observables always exist, and a global sense in which they can sometimes exist subject to a restriction on the vector fields that they generate. Pauli's prohibition on quantum time observables is derived as a corollary to this result. I will then discuss how time observables can be regained in modest extensions of quantum theory beyond its standard formulation.
Yuichi Mizutani; Tomohiro Inagaki; Yusuke Nakamura; Yoshiya Yamanaka
2011-09-05T23:59:59.000Z
A relativistic neutral scalar field is investigated in non-equilibrium thermo field dynamics. The canonical quantization is applied to the fields out of equilibrium. Because the thermal Bogoliubov transformation becomes time-dependent, the equations of motion for the ordinary unperturbed creation and annihilation operators are modified. This forces us to introduce a thermal counter term in the interaction Hamiltonian which generates additional radiative corrections. Imposing the self-consistency renormalization condition on the total radiative corrections, we obtain the quantum Boltzmann equation for the relativistic scalar field.
Forces in electromagnetic field and gravitational field
Zihua Weng
2011-03-31T23:59:59.000Z
The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in the interplanetary space between the sun and the earth.
?-Decay in Ultra-Intense Laser Fields
Serban Misicu; Margarit Rizea
2013-07-05T23:59:59.000Z
We investigate the \\alpha-decay of a spherical nucleus under the influence of an ultra-intense laser field for the case when the radius vector joining the center-of-masses of the \\alpha-particle and the daughter is aligned with the direction of the external field. The time-independent part of the \\alpha-daughter interaction is taken from elastic scattering compilations whereas the time-varying part describes the interaction between the decaying system with the laser field. The time-dependent Schr\\"odinger equation is solved numerically by appealing to a modified scheme of the Crank-Nicolson type where an additional first-order time derivative appears compared to the field-free case. The tunneling probability of the \\alpha-cluster, and derived quantities (decay rate, total flux) is determined for various laser intensities and frequencies for either continous waves or few-cycle pulses of envelope function F(t)=1. We show that in the latter case pulse sequences containing an odd number of half-cycles determine an enhancement of the tunneling probability compared to the field-free case and the continuous wave case. The present study is carried out taking as example the alpha decaying nucleus $^{106}$Te.
Bulk from Bi-locals in Thermo Field CFT
Jevicki, Antal
2015-01-01T23:59:59.000Z
We study the Large $N$ dynamics of the $O(N)$ field theory in the Thermo field approach. Concentrating on the singlet bi-local space within the systematic $1/N$ framework of collective field theory we discuss the emergent bulk space-time and construct the associated (Higher spin) fields. We note the presence of `evanescent' modes in this construction and also the mixing of spins at finite temperature.
Bulk from Bi-locals in Thermo Field CFT
Antal Jevicki; Junggi Yoon
2015-03-29T23:59:59.000Z
We study the Large $N$ dynamics of the $O(N)$ field theory in the Thermo field approach. Concentrating on the singlet bi-local space within the systematic $1/N$ framework of collective field theory we discuss the emergent bulk space-time and construct the associated (Higher spin) fields. We note the presence of `evanescent' modes in this construction and also the mixing of spins at finite temperature.
Time evolution of cascade decay
Daniel Boyanovsky; Louis Lello
2014-06-25T23:59:59.000Z
We study non-perturbatively the time evolution of cascade decay for generic fields $\\pi \\rightarrow \\phi_1\\phi_2\\rightarrow \\phi_2\\chi_1\\chi_2$ and obtain the time dependence of amplitudes and populations for the resonant and final states. We analyze in detail the different time scales and the manifestation of unitary time evolution in the dynamics of production and decay of resonant intermediate and final states. The probability of occupation (population) "flows" as a function of time from the initial to the final states. When the decay width of the parent particle $\\Gamma_\\pi$ is much larger than that of the intermediate resonant state $\\Gamma_{\\phi_1}$ there is a "bottleneck" in the flow, the population of resonant states builds up to a maximum at $t^* = \\ln[\\Gamma_\\pi/\\Gamma_{\\phi_1}]/(\\Gamma_\\pi-\\Gamma_{\\phi_1})$ nearly saturating unitarity and decays to the final state on the longer time scale $1/\\Gamma_{\\phi_1}$. As a consequence of the wide separation of time scales in this case the cascade decay can be interpreted as evolving sequentially $\\pi \\rightarrow \\phi_1\\phi_2; ~ \\phi_1\\phi_2\\rightarrow \\phi_2\\chi_1\\chi_2$. In the opposite limit the population of resonances ($\\phi_1$) does not build up substantially and the cascade decay proceeds almost directly from the initial parent to the final state without resulting in a large amplitude of the resonant state. An alternative but equivalent non-perturbative method useful in cosmology is presented. Possible phenomenological implications for heavy sterile neutrinos as resonant states and consequences of quantum entanglement and correlations in the final state are discussed.
Casimir Effect of Scalar Massive Field
Sonia Mobassem
2014-06-03T23:59:59.000Z
The energy momentum tensor is used to introduce the Casimir force of the massive scalar field acting on a nonpenetrating surface. This expression can be used to evaluate the vacuum force by employing the appropriate field operators. To simplify our formalism we also relates the vacuum force expression to the imaginary part of the Green function via the fluctuation dissipation theorem and Kubo formula. This allows one to evaluate the vacuum force without resorting to the process of field quantization. These two approaches are used to calculate the attractive force between two nonpenetrating plates. Special attention is paid to the generalization of the formalism to D + 1 space-time dimensions.
Three approaches to classical thermal field theory
Gozzi, E., E-mail: gozzi@ts.infn.it [Department of Physics, University of Trieste, Strada Costiera 11, Miramare - Grignano, 34151 Trieste (Italy); INFN, Sezione di Trieste (Italy); Penco, R., E-mail: rpenco@syr.edu [Department of Physics, Syracuse University, Syracuse, NY 13244-1130 (United States)
2011-04-15T23:59:59.000Z
Research Highlights: > Classical thermal field theory admits three equivalent path integral formulations. > Classical Feynman rules can be derived for all three formulations. > Quantum Feynman rules reduce to classical ones at high temperatures. > Classical Feynman rules become much simpler when superfields are introduced. - Abstract: In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the closed-time path (CTP) formalism, the thermofield dynamics (TFD) and the Matsubara approach.
Neutron Interferometry constrains dark energy chameleon fields
H. Lemmel; Ph. Brax; A. N. Ivanov; T. Jenke; G. Pignol; M. Pitschmann; T. Potocar; M. Wellenzohn; M. Zawisky; H. Abele
2015-02-20T23:59:59.000Z
We present phase shift measurements for neutron matter waves in vacuum and in low pressure Helium using a method originally developed for neutron scattering length measurements in neutron interferometry. We search for phase shifts associated with a coupling to scalar fields. We set stringent limits for a scalar chameleon field, a prominent quintessence dark energy candidate. We find that the coupling constant $\\beta$ is less than 1.9 $\\times10^7$~for $n=1$ at 95\\% confidence level, where $n$ is an input parameter of the self--interaction of the chameleon field $\\varphi$ inversely proportional to $\\varphi^n$.
Neutron Interferometry constrains dark energy chameleon fields
Lemmel, H; Ivanov, A N; Jenke, T; Pignol, G; Pitschmann, M; Potocar, T; Wellenzohn, M; Zawisky, M; Abele, H
2015-01-01T23:59:59.000Z
We present phase shift measurements for neutron matter waves in vacuum and in low pressure Helium using a method originally developed for neutron scattering length measurements in neutron interferometry. We search for phase shifts associated with a coupling to scalar fields. We set stringent limits for a scalar chameleon field, a prominent quintessence dark energy candidate. We find that the coupling constant $\\beta$ is less than 1.9 $\\times10^7$~for $n=1$ at 95\\% confidence level, where $n$ is an input parameter of the self--interaction of the chameleon field $\\varphi$ inversely proportional to $\\varphi^n$.
Plasma heating in a variable magnetic field
Kichigin, G. N., E-mail: king@iszf.irk.ru [Russian Academy of Sciences, Institute of Solar-Terrestrial Physics (Russian Federation)
2013-05-15T23:59:59.000Z
The problem of particle acceleration in a periodically variable magnetic field that either takes a zero value or passes through zero is considered. It is shown that, each time the field [0]passes through zero, the particle energy increases abruptly. This process can be regarded as heating in the course of which plasma particles acquire significant energy within one field period. This mechanism of plasma heating takes place in the absence of collisions between plasma particles and is analogous to the mechanism of magnetic pumping in collisional plasma considered by Alfven.
Hyperon bulk viscosity in strong magnetic fields
Monika Sinha; Debades Bandyopadhyay
2009-06-06T23:59:59.000Z
We study the bulk viscosity of neutron star matter including $\\Lambda$ hyperons in the presence of quantizing magnetic fields. Relaxation time and bulk viscosity due to both the non-leptonic weak process involving $\\Lambda$ hyperons and direct Urca processes are calculated here. In the presence of a strong magnetic field of $10^{17}$ G, the hyperon bulk viscosity coefficient is reduced whereas bulk viscosity coefficients due to direct Urca processes are enhanced compared with their field free cases when many Landau levels are populated by protons, electrons and muons.
Vector field theories in cosmology
A. Tartaglia; N. Radicella
2007-08-05T23:59:59.000Z
Recently proposed theories based on the cosmic presence of a vectorial field are compared and contrasted. In particular the so called Einstein aether theory is discussed in parallel with a recent proposal of a strained space-time theory (Cosmic Defect theory). We show that the latter fits reasonably well the cosmic observed data with only one, or at most two, adjustable parameters, whilst other vector theories use much more. The Newtonian limits are also compared. Finally we show that the CD theory may be considered as a special case of the aether theories, corresponding to a more compact and consistent paradigm.
Field emission electron source
Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)
2000-01-01T23:59:59.000Z
A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.
Heel effect adaptive flat field correction of digital x-ray detectors
Yu, Yongjian [X-ray Products, Varian Medical Systems Inc., Liverpool, New York 13088 (United States)] [X-ray Products, Varian Medical Systems Inc., Liverpool, New York 13088 (United States); Wang, Jue [Department of Mathematics, Union College, Schenectady, New York 12308 (United States)] [Department of Mathematics, Union College, Schenectady, New York 12308 (United States)
2013-08-15T23:59:59.000Z
Purpose: Anode heel effect renders large-scale background nonuniformities in digital radiographs. Conventional offset/gain calibration is performed at mono source-to-image distance (SID), and disregards the SID-dependent characteristic of heel effect. It results in a residual nonuniform background in the corrected radiographs when the SID settings for calibration and correction differ. In this work, the authors develop a robust and efficient computational method for digital x-ray detector gain correction adapted to SID-variant heel effect, without resorting to physical filters, phantoms, complicated heel effect models, or multiple-SID calibration and interpolation.Methods: The authors present the Duo-SID projection correction method. In our approach, conventional offset/gain calibrations are performed only twice, at the minimum and maximum SIDs of the system in typical clinical use. A fast iterative separation algorithm is devised to extract the detector gain and basis heel patterns from the min/max SID calibrations. The resultant detector gain is independent of SID, while the basis heel patterns are parameterized by the min- and max-SID. The heel pattern at any SID is obtained from the min-SID basis heel pattern via projection imaging principles. The system gain desired at a specific acquisition SID is then constructed using the projected heel pattern and detector gain map.Results: The method was evaluated for flat field and anatomical phantom image corrections. It demonstrated promising improvements over interpolation and conventional gain calibration/correction methods, lowering their correction errors by approximately 70% and 80%, respectively. The separation algorithm was able to extract the detector gain and heel patterns with less than 2% error, and the Duo-SID corrected images showed perceptually appealing uniform background across the detector.Conclusions: The Duo-SID correction method has substantially improved on conventional offset/gain corrections for digital x-ray imaging in an SID-variant environment. The technique is relatively simple, and can be easily incorporated into multiple-point gain calibration/correction techniques. It offers a potentially valuable tool for preprocessing digital x-ray images to boost image quality of mammography, chest and cardiac radiography, as well as automated computer aided diagnostic radiology.
Theory of electromagnetic fields
Wolski, Andrzej
2011-01-01T23:59:59.000Z
We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Lane, Michael
Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.
Field emission chemical sensor
Panitz, J.A.
1983-11-22T23:59:59.000Z
A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.
Lane, Michael
2013-06-28T23:59:59.000Z
Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.
Constructive Quantum Field Theory
Giovanni Gallavotti
2005-10-04T23:59:59.000Z
A review of the renormalization group approach to the proof of non perturbative ultraviolet stability in scalar field theories in dimension d=2,3.
H. C. Potter
2008-12-16T23:59:59.000Z
Gauge transformations are potential transformations that leave only specific Maxwell fields invariant. To reveal more, I develop Lorenz field equations with full Maxwell form for nongauge, sans gauge function, transformations yielding mixed, superposed retarded and outgoing, potentials. The form invariant Lorenz condition is then a charge conservation equivalent. This allows me to define three transformation classes that screen for Lorenz relevance. The nongauge Lorentz conditions add polarization fields which support emergent, light-like rays that convey energy on charge conserving phase points. These localized rays escape discovery in modern Maxwell fields where the polarizations are suppressed by gauge transformations.
TIME-RESOLVED VIBRATIONAL SPECTROSCOPY
Andrei Tokmakoff, MIT (Conference Chair) [Conference Chair; Paul Champion, Northeastern University; Edwin J. Heilweil, NIST; Keith A. Nelson, MIT; Larry Ziegler, Boston University
2009-05-14T23:59:59.000Z
This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOEÃ¢Â?Â?s Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all five of DOEÃ¢Â?Â?s grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.
221B Lecture Notes Quantum Field Theory III (Radiation Field)
Murayama, Hitoshi
221B Lecture Notes Quantum Field Theory III (Radiation Field) 1 Quantization of Radiation Field was quantized: photons. Now that we have gone through quantization of a classical field (Schr¨odinger field so far), we can proceed to quantize the Maxwell field. The basic idea is pretty much the same, except
221B Lecture Notes Quantum Field Theory IV (Radiation Field)
Murayama, Hitoshi
221B Lecture Notes Quantum Field Theory IV (Radiation Field) 1 Quantization of Radiation Field was quantized: photons. Now that we have gone through quantization of a classical field (Schr¨odinger field so far), we can proceed to quantize the Maxwell field. The basic idea is pretty much the same, except
Encoding field theories into gravities
Aoki, Sinya; Onogi, Tetsuya
2015-01-01T23:59:59.000Z
We propose a method, which encodes the information of a $d$ dimensional quantum field theory into a $d+1$ dimensional gravity in the $1/N$ expansion. We first construct a $d+1$ dimensional field theory from the $d$ dimensional one via the gradient flow equation, whose flow time $t$ represents the energy scale of the system such that $t\\rightarrow 0$ corresponds to the ultra-violet (UV) while $t\\rightarrow\\infty$ to the infra-red (IR). We then define the induced metric from $d+1$ dimensional field operators. We show that the metric defined in this way becomes classical in the large $N$ limit, in a sense that quantum fluctuations of the metric are suppressed as $1/N$ due to the large $N$ factorization property. As a concrete example, we apply our method to the O(N) non-linear $\\sigma$ model in two dimensions. We calculate the induced metric in three dimensions, which is shown to describe De Sitter (dS) or Anti De Sitter (AdS) space in the massless limit, where the mass is dynamically generated in the O(N) non-l...
Lightweight Time Modeling in Timed Creol
Bjørk, Joakim; Owe, Olaf; Schlatte, Rudolf; 10.4204/EPTCS.36.4
2010-01-01T23:59:59.000Z
Creol is an object-oriented modeling language in which inherently concurrent objects exchange asynchronous method calls. The operational semantics of Creol is written in an actor-based style, formulated in rewriting logic. The operational semantics yields a language interpreter in the Maude system, which can be used to analyze models. Recently, Creol has been applied to the modeling of systems with radio communication, such as sensor systems. With radio communication, messages expire and, if sent simultaneously, they may collide in the air. In order to capture these and other properties of distributed systems, we extended Creol's operational semantics with a notion of time. We exploit the framework of a language interpreter to use a lightweight notion of time, in contrast to that needed for a general purpose specification language. This paper presents a timed extension of Creol, including the semantics and the implementation strategy, and discusses its properties using an extended example. The approach can be...
Homebuyer Solar Option and Solar Offset Program
Broader source: Energy.gov [DOE]
Senate Bill 1 of 2006, which established the statewide California Solar Initiative, also required the California Energy Commission (CEC) to implement regulations that require sellers of production...
Insights from Agricultural GHG Offset studies
McCarl, Bruce A.
Ron Sands PNNL Maryland Man Keun Kim PNNL Maryland Francisco de Lachesnaye EPA Heng-Chi Lee Waterloo
Discounts, Fungibility and Agricultural GHG Offset projects
McCarl, Bruce A.
in MMT of Carbon Equivalents Soil Carbon Sequestration Discount for Saturating Sinks No Sink Discounting of Carbon Equivalents Carbon Sequestration from Trees Discount for Saturating Sinks No Sink Discounting 0.S. Agricultural and Forest Carbon Sequestration," 2003. #12;FungibilityFungibility A number of concepts have
Experience with Offset Collisions in the LHC
Papotti, G; Calaga, R; Follin, F; Giachino, R; Herr, W; Miyamoto, R; Pieloni, T; Schaumann, M
2011-01-01T23:59:59.000Z
To keep the luminosity under control, some experiments require the adjustment of the luminosity during a fill, socalled luminosity levelling. One option is the separate the beams transversely and adjust the separation to the desired collision rate. The results from controlled experiments are reported and interpreted. The feasibility of this method for ultimate luminosities is discussed.
Shape Smoothing using Double Offsets Frederic Chazal
Thibert, Boris
. Assuming the solid to be made of a hard material (like steel) one embed it in a bloc of wax. Then one uses a ball of given radius to remove as #12;much wax as possible to obtain the solid on the middle of the fig it with wax and remove (from the inside!) as much wax as possible with a ball. Taking again the complement
Explaining the Price of Voluntary Carbon Offsets
Conte, Marc N.; Kotchen, Matthew
2009-01-01T23:59:59.000Z
on fuel efficiency, hydropower, fuel substitution, solarbiomass methane, wind, hydropower, solar, and other. 8 OECDtypes of biomass methane, hydropower, so- lar, and wind. All
Sandbag Carbon Offset Map | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:EnergysourceRamon, California:Sand
Financing Residential Energy Efficiency with Carbon Offsets
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 MeetingEA # 1440Energy Upgrades forFinancing
Continuous time-of-flight ion mass spectrometer
Funsten, Herbert O.; Feldman, William C.
2004-10-19T23:59:59.000Z
A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.
Oldham, D.W.; Smosna, R.A. [West Virginia Univ., Morgantown, WV (United States)
1996-06-01T23:59:59.000Z
Subsurface analysis of Permian salt and related strata in the shallow Niobrara gas area on the eastern flank of the Denver basin reveals that the location of faulted anticlines which produce gas from porous chalk is related to the occurrence of six Nippewalla Group (Leonardian) salt zones. Salt distribution is controlled by the configuration of evaporate basins during the Leonardian, truncation at a sub-Jurassic unconformity (which has completely removed Guadalupian salts), and post-Jurassic subsurface dissolution. Significant dissolution took place in response to Laramide orogeny and subsequent eastward regional groundwater flow within the Lyons (Cedar Hills) Sandstone aquifer. Initially, dissolution occurred along a regional facies change from sandstone to salt. Solution collapse allowed for cross-formational flow and removal of younger salts. Shallow Niobrara gas fields are situated above salt outliers or along regionally updip salt edges. No significant Niobrara production exists in areas where salt is absent. Structural relief across fields is related to Leonardian thickness variations, rather than subsalt offset. Seismic data reveal abrupt Leonardian thinning at the regionally updip limit of Eckley field, which has produced over 33 BCFG. Thickness of residual salt may be important in controlling the amount of gas trapped within the Niobrara. Where thick salts are preserved, structural relief is greater, the gas-water transition zone is thicker, and gas saturation is higher at the crests of faulted anticlines.
Measuring Oscillatory Velocity Fields Due to Swimming Algae
Guasto, Jeffrey S; Gollub, J P
2010-01-01T23:59:59.000Z
In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.
Magnetic Field Measurement System
Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar [Advanced Design Consulting USA, 126 Ridge Road, P.O. Box 187, Lansing, NY 14882 (United States); Dunn, Jonathan Hunter [MAX-lab, SE-221 00 Lund (Sweden)
2007-01-19T23:59:59.000Z
A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.
Quantum Operation Time Reversal
Crooks, Gavin E.
2008-03-25T23:59:59.000Z
The dynamics of an open quantum system can be described by a quantum operation: A linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes toward equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.
Strongest non-destructive magnetic field: world record set at 100-tesla level
- 1 - Strongest non-destructive magnetic field: world record set at 100-tesla level March 22, 2012), the scientists achieved a whopping 100.75 tesla--a magnetic field nearly 100 times more powerful than a junkyard and insulators. The 100-tesla level is roughly equivalent to 2 million times Earth's magnetic field. #12;- 2
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
FIELD EQUIPMENT INVENTORY Trucks * Five vacpressure trucks, 60-90 bbl, up to 5 bpm at 5,000 lb. * Waterfi re truck, 110 bbl * Two dump trucks: 5-yard and 12-yard * Belly dump...
Manager, Carlsbad Field Office
Broader source: Energy.gov [DOE]
The U.S. Department of Energy (DOE), Office of Environmental Management (EM), Carlsbad Field Office (CBFO) is seeking a highly experienced and motivated executive-minded individual to fill its...
viii Contents. Three Field Theory. 87—89. 90—95. 96—97. 98—107. 108—114. 115—121. De?nition and examples of ?eld structure 67. Vector spaces, bases ...
Nonlinear Spinor Fields in Bianchi type-$VI_0$ spacetime
Bijan Saha
2015-04-15T23:59:59.000Z
Within the scope of Bianchi type-$VI_0$ space time we study the role of spinor field on the evolution of the Universe. It is found that the presence of nontrivial non-diagonal components of energy-momentum tensor of the spinor field plays vital role on the evolution of the Universe. As a result of their mutual influence the invariants constructed from the bilinear forms of the spinor field become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This result shows that the spinor field is highly sensitive to the gravitational one.
Primordial magnetic field amplification from turbulent reheating
Calzetta, Esteban [Departamento de Física, FCEyN-UBA and IFIBA-CONICET, Cdad. Universitaria, Buenos Aires (Argentina); Kandus, Alejandra, E-mail: calzetta@df.uba.ar, E-mail: kandus@uesc.br [LATO - DCET - UESC. Rodovia Ilhéus-Itabuna, km 16 s/n, CEP: 45662-900, Salobrinho, Ilhéus-BA (Brazil)
2010-08-01T23:59:59.000Z
We analyze the possibility of primordial magnetic field amplification by a stochastic large scale kinematic dynamo during reheating. We consider a charged scalar field minimally coupled to gravity. During inflation this field is assumed to be in its vacuum state. At the transition to reheating the state of the field changes to a many particle/anti-particle state. We characterize that state as a fluid flow of zero mean velocity but with a stochastic velocity field. We compute the scale-dependent Reynolds number Re(k), and the characteristic times for decay of turbulence, t{sub d} and pair annihilation t{sub a}, finding t{sub a} << t{sub d}. We calculate the rms value of the kinetic helicity of the flow over a scale L and show that it does not vanish. We use this result to estimate the amplification factor of a seed field from the stochastic kinematic dynamo equations. Although this effect is weak, it shows that the evolution of the cosmic magnetic field from reheating to galaxy formation may well be more complex than as dictated by simple flux freezing.
HTP over Function Fields HTP over Function Fields
Shlapentokh, Alexandra
HTP over Function Fields HTP over Function Fields Alexandra Shlapentokh East Carolina University AMS-ASL-MAA Panel on Hilberts Tenth Problem San Francisco January 14, 2010 #12;HTP over Function's known about HTP over Function Fields. Field Results for Characteristic 0 Field Results for Positive
Quasi light fields: extending the light field to coherent radiation
Wornell, Gregory W.
Quasi light fields: extending the light field to coherent radiation Anthony Accardi1,2 and Gregory light field, and for coherent radiation using electromagnetic field theory. We present a model of coherent image formation that strikes a balance between the utility of the light field
System Design of a Wide Bandwidth Continuous-Time Sigma-Delta Modulator
Periasamy, Vijayaramalingam
2010-07-14T23:59:59.000Z
.................................................................... 39 4.3.2 Offset voltage.......................................................................... 39 4.4 Clock jitter ......................................................................................... 41 4.4.1 Modeling jitter... with peaking ................................................................. 37 23 Monte-Carlo simulations for offset voltage of comparators ...................... 40 24 Effect of clock jitter on different feedback DAC pulses...
Coherent hybrid electromagnetic field imaging
Cooke, Bradly J. (Jemez Springs, NM); Guenther, David C. (Los Alamos, NM)
2008-08-26T23:59:59.000Z
An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.
Relaxation times calculated from angular deflections
E. Athanassoula; Ch. L. Vozikis; J. C. Lambert
2001-08-21T23:59:59.000Z
In this paper we measure the two-body relaxation time from the angular deflection of test particles launched in a rigid configuration of field particles. We find that centrally concentrated configurations have relaxation times that can be shorter than those of the corresponding homogeneous distributions by an order of magnitude or more. For homogeneous distributions we confirm that the relaxation time is proportional to the number of particles. On the other hand centrally concentrated configurations have a much shallower dependence, particularly for small values of the softening. The relaxation time increases with the inter-particle velocities and with softening. The latter dependence is not very strong, of the order of a factor of two when the softening is increased by an order of magnitude. Finally we show that relaxation times are the same on GRAPE-3 and GRAPE-4, dedicated computer boards with limited and high precision respectively.
Gravitational Field of the Early Universe: I.Non-linear Scalar Field as the Source
S. V. Chervon
1997-06-10T23:59:59.000Z
In this review article we consider three most important sources of the gravitational field of the Early Universe: self-interacting scalar field, chiral field and gauge field. The correspondence between all of them are pointed out. More attention is payed to nonlinear scalar field source of gravity. The progress in finding the exact solutions in inflationary universe is reviewed. The basic idea of `fine turning of the potential' method is discussed and computational background is presented in details. A set of new exact solutions for standard inflationary model and conformally-flat space-times are obtained. Special attention payed to relations between `fine turning of the potential' and Barrow's approaches. As the example of a synthesis of both methods new exact solution is obtained.
Numerical calculations of ultrasonic fields I: transducer near fields
Johnson, J.A.
1982-03-01T23:59:59.000Z
A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two-dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two-dimensional plane strain or two-dimensional axial symmetries can be solved. Free, fixed, or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. This paper gives a brief description of the method and shows the results of the calculation of the near fields of circular flat and focused transducers. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens reconstruction technique off-axis.
Numerical calculations of ultrasonic fields I: transducer near fields
Johnson, J.A.
1982-04-01T23:59:59.000Z
A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two dimensional plane strain or two dimensional axial symmetries can be solved. Free, fixed or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. A brief description of the method is given and the results of the calculation of the near fields of circular flat and focused transducers are shown. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens' reconstruction technique off axis.
Grossmann, Ignacio E.
the fields and FPSOs, well drilling schedule and production rates of these three components in each time, and which and how many wells are to be drilled in those fields and in what order, which field instances involving 10 fields, 3 FPSOs, 84 wells and 20 years planning horizon are reported, as well
White, Lynn
2000-06-27T23:59:59.000Z
, you expect unused time to come around again, so that when the same opportunities appear you will be wiser about how to use it. Consider how your cultural background af_fects the w ay you plan and manage time. W *Both cited in Bauer, J. It?s Time.... Effective time management means decid- ing which activity should be done from all the possibilities available, and then doing it. It is a matter of setting priorities. Deciding which jobs are most important and working on those may be better than doing less...
Intrinsic Time Quantum Geometrodynamics
Eyo Eyo Ita III; Chopin Soo; Hoi-Lai Yu
2015-02-06T23:59:59.000Z
Quantum Geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl Curvature Hypothesis, and thermodynamic and gravitational `arrows of time' point in the same direction. Ricci scalar potential corresponding to Einstein's General Relativity emerges as a zero-point energy contribution. A new set of fundamental commutation relations without Planck's constant emerges from the unification of Gravitation and Quantum Mechanics.
Intrinsic Time Quantum Geometrodynamics
Ita, Eyo Eyo; Yu, Hoi-Lai
2015-01-01T23:59:59.000Z
Quantum Geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl Curvature Hypothesis, and thermodynamic and gravitational `arrows of time' point in the same direction. Ricci scalar potential corresponding to Einstein's General Relativity emerges as a zero-point energy contribution. A new set of fundamental canonical commutation relations without Planck's constant emerges from the unification of Gravitation and Quantum Mechanics.
Decoupled Sampling for Real-Time Graphics Pipelines
Ragan-Kelley, Jonathan
2010-03-29T23:59:59.000Z
We propose decoupled sampling, an approach that decouples shading from visibility sampling in order to enable motion blur and depth-of-field at reduced cost. More generally, it enables extensions of modern real-time graphics ...
A space-time processing and spectral analysis methodology
Finlay, Christopher
and interpretation of time-longitude plots, frequency-wavenumber power spectra, and of Radon transform methods and very long period field components is described and justified. Finally use of these tools to investigate
Developing Improved Travel Time Reliability Measures For Real-time
Bertini, Robert L.
reliability Use for prioritizing improvements Outline #12; 95th Percentile Travel Time Travel Time Index: mean travel time divided by free flow travel time Buffer Index: difference between 95th percentile travel time and mean travel time, divided by mean travel time Planning Time Index: 95th percentile
High-frequency electric field measurement using a toroidal antenna
Lee, Ki Ha (Lafayette, CA)
2002-01-01T23:59:59.000Z
A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.
Video-rate terahertz electric-field vector imaging
Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu; Tachizaki, Takehiro; Yasumatsu, Naoya; Watanabe, Shinichi, E-mail: watanabe@phys.keio.ac.jp [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan)
2014-10-13T23:59:59.000Z
We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a ?110?-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to be useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.
Bianchi type-I models with conformally invariant scalar field
Accioly, A.J.; Vaidya, A.N.; Som, M.M.
1983-05-15T23:59:59.000Z
The solutions of the Einstein equations with the trace-free energy-momentum tensor of conformally invariant scalar field as source are obtained in a spatially homogeneous anisotropic space-time. Some interesting features of the solutions are discussed.
Hamilton-Jacobi theory in k-cosymplectic field theories
M. de León; S. Vilariño
2013-04-11T23:59:59.000Z
In this paper we extend the geometric formalism of the Hamilton-Jacobi theory for time dependent Mechanics to the case of classical field theories in the k-cosymplectic framework.
Field Mapping At San Francisco Volcanic Field Area (Warpinski...
Field Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration...
Roweis, Sam
SCIA 2003 Tutorial: Hidden Markov Models Sam Roweis, University of Toronto June 29, 2003 Probabilistic Generative Models for Time Series #15; Stochastic models for time-series: y 1 ; y 2 ; : : : ; y #15; Add noise to make the system stochastic: p(y t jy t 1 ;y t 2 ; : : : ;y t k ) #15; Markov models
S. Davood Sadatian
2014-05-08T23:59:59.000Z
In this article, we discuss probability of inhomogeneous time in high or low energy scale of physics. Consequently, the possibility was investigated of using theories such as varying speed of light (VSL) and fractal mathematics to build a framework within which answers can be found to some of standard cosmological problems and physics theories on the basis of time non-homogeneity.
A. Boyarsky; P Gora
2007-05-07T23:59:59.000Z
We present a definition of time measurement based on high energy photons and the fundamental length scale, and show that, for macroscopic time, it is in accord with the Lorentz transformation of special relativity. To do this we define observer in a different way than in special relativity.
Twists of quantum groups and noncommutative field theory
P. P. Kulish
2006-06-07T23:59:59.000Z
The role of quantum universal enveloping algebras of symmetries in constructing a noncommutative geometry of space-time and corresponding field theory is discussed. It is shown that in the framework of the twist theory of quantum groups, the noncommutative (super) space-time defined by coordinates with Heisenberg commutation relations, is (super) Poincar\\'e invariant, as well as the corresponding field theory. Noncommutative parameters of global transformations are introduced.
STATISTICAL MECHANICS AND FIELD THEORY
Samuel, S.A.
2010-01-01T23:59:59.000Z
York. K. Bardakci, Field Theory for Solitons, II, BerkeleyFart I Applications of Field Theory Methods to StatisticalStatistical Mechanics to Field Theory Chapter IV The Grand
OPTIMAL DEVELOPMENT PLANNING OF OFFSHORE OIL AND GAS FIELD
Grossmann, Ignacio E.
, well drilling schedule and production profiles of oil, water and gas in each time period. The model can and how many wells are to be drilled in those fields and in what order, which field to be connected, limitation on the number of wells that can be drilled each year due to availability of the drilling rigs
Running of scalar spectral index in multi-field inflation
Jinn-Ouk Gong
2015-05-20T23:59:59.000Z
We compute the running of the scalar spectral index in general multi-field slow-roll inflation. By incorporating explicit momentum dependence at the moment of horizon crossing, we can find the running straightforwardly. At the same time, we can distinguish the contributions from the quasi de Sitter background and the super-horizon evolution of the field fluctuations.
The quantum field theory interpretation of quantum mechanics
Alberto C. de la Torre
2015-03-02T23:59:59.000Z
It is shown that adopting the \\emph{Quantum Field} ---extended entity in space-time build by dynamic appearance propagation and annihilation of virtual particles--- as the primary ontology the astonishing features of quantum mechanics can be rendered intuitive. This interpretation of quantum mechanics follows from the formalism of the most successful theory in physics: quantum field theory.
Fresnel approximations for acoustic fields of rectangularly symmetric sources
Mast, T. Douglas
Fresnel approximations for acoustic fields of rectangularly symmetric sources T. Douglas Masta for determining the acoustic fields of rectangularly symmetric, baffled, time-harmonic sources under the Fresnel. The expressions presented are generalized to three different Fresnel approximations that correspond, respectively
Noncommutative field theories: The noncommutative Chern-Simons model
Gomes, M.; Silva, A. J. da [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo (Brazil)
2006-11-03T23:59:59.000Z
We present some results on the ultraviolet/infrared mixing for canonical field theory in three and four space-time dimensions. Special emphasis is given to the analysis of theories containing the Chern-Simons field and it is argued that for supersymmetric models the effect of the mixing is in general mild leading to consistent theories as far as renormalization is concerned.
Field Demonstration of Automated Demand Response for Both Winter and
) is a demand-side management strategy to reduce electricity use during times of high peak electric loads;1 Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings of a series of field test of automated demand response systems in large buildings in the Pacific Northwest
Washington Taylor
2000-04-19T23:59:59.000Z
This note focuses on the coupling of a type IIA D2-brane to a background B field. It is shown that the D0-brane charge arising from the integral over the D2-brane of the pullback of the B field is cancelled by bulk contributions, for a compact D2-brane wrapping a homotopically trivial cycle in space-time. In M-theory this cancellation is a straightforward consequence of momentum conservation. This result resolves a puzzle recently posed by Bachas, Douglas and Schweigert related to the quantization of R-R charges on stable spherical D2-branes on the group manifold SU(2).
Schwinger functions in noncommutative quantum field theory
Dorothea Bahns
2009-08-31T23:59:59.000Z
It is shown that the $n$-point functions of scalar massive free fields on the noncommutative Minkowski space are distributions which are boundary values of analytic functions. Contrary to what one might expect, this construction does not provide a connection to the popular traditional Euclidean approach to noncommutative field theory (unless the time variable is assumed to commute). Instead, one finds Schwinger functions with twistings involving only momenta that are on the mass-shell. This explains why renormalization in the traditional Euclidean noncommutative framework crudely differs from renormalization in the Minkowskian regime.
Sampayan, Stephen E. (Manteca, CA)
1998-01-01T23:59:59.000Z
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.
Sampayan, S.E.
1998-03-03T23:59:59.000Z
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.
Kristan Jensen
2014-12-24T23:59:59.000Z
We initiate a systematic study of `t Hooft anomalies in Galilean field theories, focusing on two questions therein. In the first, we consider the non-relativistic theories obtained from a discrete light-cone quantization (DLCQ) of a relativistic theory with flavor or gravitational anomalies. We find that these anomalies survive the DLCQ, becoming mixed flavor/boost or gravitational/boost anomalies. We also classify the pure Weyl anomalies of Schr\\"odinger theories, which are Galilean conformal field theories (CFTs) with $z=2$. There are no pure Weyl anomalies in even spacetime dimension, and the lowest-derivative anomalies in odd dimension are in one-to-one correspondence with those of a relativistic CFT in one dimension higher. These results classify many of the anomalies that arise in the field theories dual to string theory on Schr\\"odinger spacetimes.
Pulse homodyne field disturbance sensor
McEwan, T.E.
1997-10-28T23:59:59.000Z
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two. 12 figs.
Pulse homodyne field disturbance sensor
McEwan, Thomas E. (Livermore, CA)
1997-01-01T23:59:59.000Z
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two.
Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Coates, J.D.; Chisholm, J.L.
1993-05-01T23:59:59.000Z
A multi-well microbially enhanced oil recovery field pilot has been performed in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Growth experiments were used to select a nutrient system compatible with the reservoir that encouraged growth of a group of indigenous nitrate-using bacteria and inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient materials were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons (75.0 tonnes) of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor additional production wells in the field. The tracer tests and changes in production behavior indicate the additional production wells monitored during the field trial were also affected. Eighty two and one half barrels (13.1 m[sup 3]) of tertiary oil have been recovered. Microbial activity has increased CO[sub 2] content as indicated by increased alkalinity. A temporary rise in sulfide concentration was experienced. These indicate an active microbial community was generated in the field by the nutrient injection. Pilot area interwell pressure interference test results showed that significant permeability reduction occurred. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform which indicates a successful preferential plugging enhanced oil recovery project.
Chisholm, J.L.
1992-01-01T23:59:59.000Z
Studies were performed enhanced oil recovery field pilot was performed in Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Studies were performed to determine a nutrient system to encourage growth of a group of indigenous nitrate-using bacteria an inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient material were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor an additional production well in the field. The tracer tests and changes in production behavior indicated the additional production well monitored during the field trial was also affected. Eighty two and one half barrels of tertiary oil was recovered. Microbial activity increased CO[sub 2] content as indicated by increased alkalinity. A temporary rise in sulphide concentration was experienced. These observations indicate that an active microbial community was generated in the field by the nutrient injection. The three production wells monitored in the pilot area demonstrated significant permeability reduction indicated by interwell pressure interference tests. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform (15 md maximum difference between post-treatment permeability values) indicating that preferential plugging had occurred.
Knapp, R.M.; McInerney, M.J.; Menzie, D.E.
1991-12-06T23:59:59.000Z
The objective of this project is to perform a microbial enhanced oil recovery field pilot test in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. During this quarter an additional tracer study was performed in the field to determine pre-treatment flow paths and the first nutrients were injected. 2 figs.
The polarization field for pulsed Raman transitions
Shore, B.W.; Sacks, R.; Karr, T.
1987-05-15T23:59:59.000Z
This memo discusses the induced polarization field that occurs in the presence of Raman processes, and the propagation equations that result from this field. First the paper summarizes the relationship between the macroscopic polarization field and the microscopic dipole-moment expectation value. It summarizes expressions for the induced dipole moment that result from the adiabatic elimination of non-resonant molecular transitions, to produce an effective two-photon (Raman) Hamiltonian. Then it shows that the polarization field has a similar mode expansion to the electric field. Using this result the equations for pulse propagation of the electric field are described. These equations involve a generalized gain matrix and mode velocity, as well as a refractive index, each of which depends upon position and time. Finally the paper summarizes these results and exhibits succinctly the pulse propagation equations in the plane-wave slowly-varying envelope approximation. The equations presented here must be supplemented with excitation equations (or by steady-state results) for the molecules. The material presented here is a portion of a more extensive treatment of propagation to be presented separately.
Background field method and nonrelativistic QED matching
Jong-Wan Lee; Brian C. Tiburzi
2014-11-15T23:59:59.000Z
We discuss the resolution of an inconsistency between lattice background field methods and nonrelativistic QED matching conditions. In particular, we show that lack of on-shell conditions in lattice QCD with time-dependent background fields generally requires that certain operators related by equations of motion should be retained in an effective field theory to correctly describe the behavior of Green's functions. The coefficients of such operators in a nonrelativistic hadronic theory are determined by performing a robust nonrelativistic expansion of QED for relativistic scalar and spin-half hadrons including nonminimal electromagnetic couplings. Provided that nonrelativistic QED is augmented with equation-of-motion operators, we find that the background field method can be reconciled with the nonrelativistic QED matching conditions without any inconsistency. We further investigate whether nonrelativistic QED can be employed in the analysis of lattice QCD correlation function in background fields, but we are confronted with difficulties. Instead, we argue that the most desirable approach is a hybrid one which relies on a relativistic hadronic theory with operators chosen based on their relevance in the nonrelativistic limit. Using this hybrid framework, we obtain practically useful forms of correlation functions for scalar and spin-half hadrons in uniform electric and magnetic fields.
Environment Induced Time Arrow
Janos Polonyi
2012-06-25T23:59:59.000Z
The spread of the time arrows from the environment to an observed subsystem is followed within a harmonic model. A similarity is pointed out between irreversibility and a phase with spontaneously broken symmetry. The causal structure of interaction might be lost in the irreversible case, as well. The Closed Time Path formalism is developed for classical systems and shown to handle the time arrow problem in a clear and flexible manner. The quantum case is considered, as well, and the common origin of irreversibility and decoherence is pointed out.
An observational test of magnetospheric field models at geosynchronous orbit
Thomsen, M.F.; Weiss, L.A.; McComas, D.J.; Moldwin, M.B.; Reeves, G.D.
1994-07-01T23:59:59.000Z
The configuration of the geomagnetic field is an indicator of the response of the magnetosphere to the solar wind input. A number of empirical magnetospheric field models are currently in use which estimate the magnetic field direction and magnitude at any point within the magnetosphere under a variety of conditions. Here, the global nature of the Tsyganenko 89 [Tsyganenko, 1989] magnetospheric magnetic field model is tested by comparison of the model-predicted field orientations with the field orientations derived simultaneously at two different locations in geosynchronous orbit from the axis of symmetry of the plasma electron distribution function (30 eV--40 keV). The results for the particular time interval studied are inconclusive because the Tsyganenko 89 model does not describe the field at one of the satellites well enough, but the procedure itself appears promising.
Experimental quantum field theory
Bell, J S
1977-01-01T23:59:59.000Z
Presented here, is, in the opinion of the author, the essential minimum of quantum field theory that should be known to cultivated experimental particle physicists. The word experimental describes not only the audience aimed at but also the level of mathematical rigour aspired to. (0 refs).
Oregon, University of
MILLER THEATRE COMPLEX Beall Concert Outdoor Program Barn MRI Bean East Bean West Riverfront Fields Mc Military Science Moss Street Children's Center Knight Law Museum of Natural and Cultural History Bean East Innovation Center Rainier Romania Warehouse Chilled Water Plant Alder PeaceHealth University District
Oregon, University of
Outdoor Program Barn MRI Bean East Bean West Riverfront Fields McClure Morton Sheldon Stafford Young Law Museum of Natural and Cultural History Bean East Campus Graduate Village Ford Alumni Center Chilled Water Plant Alder PeaceHealth University District Northwest Christian University Pioneer Cemetery
Andrei Linde
2015-04-02T23:59:59.000Z
I describe a simple class of $\\alpha$-attractors, generalizing the single-field GL model of inflation in supergravity. The new class of models is defined for $0<\\alpha \\lesssim 1$, providing a good match to the present cosmological data. I also present a generalized version of these models which can describe not only inflation but also dark energy and supersymmetry breaking.
Algebraic Quantum Field Theory
Hans Halvorson; Michael Mueger
2006-02-14T23:59:59.000Z
Algebraic quantum field theory provides a general, mathematically precise description of the structure of quantum field theories, and then draws out consequences of this structure by means of various mathematical tools -- the theory of operator algebras, category theory, etc.. Given the rigor and generality of AQFT, it is a particularly apt tool for studying the foundations of QFT. This paper is a survey of AQFT, with an orientation towards foundational topics. In addition to covering the basics of the theory, we discuss issues related to nonlocality, the particle concept, the field concept, and inequivalent representations. We also provide a detailed account of the analysis of superselection rules by S. Doplicher, R. Haag, and J. E. Roberts (DHR); and we give an alternative proof of Doplicher and Roberts' reconstruction of fields and gauge group from the category of physical representations of the observable algebra. The latter is based on unpublished ideas due to Roberts and the abstract duality theorem for symmetric tensor *-categories, a self-contained proof of which is given in the appendix.
On the nature of cosmological time
Magain, Pierre
2015-01-01T23:59:59.000Z
Time is a parameter playing a central role in our most fundamental modeling of natural laws. Relativity theory shows that the comparison of times measured by different clocks depends on their relative motions and on the strength of the gravitational field in which they are embedded. In standard cosmology, the time parameter is the one measured by fundamental clocks, i.e. clocks at rest with respect to the expanding space. This proper time is assumed to flow at a constant rate throughout the whole history of the Universe. We make the alternative hypothesis that the rate at which cosmological time flows depends on the dynamical state of the Universe. In thermodynamics, the arrow of time is strongly related to the second law, which states that the entropy of an isolated system will always increase with time or, at best, stay constant. Hence, we assume that time measured by fundamental clocks is proportional to the entropy of the region of the Universe that is causally connected to them. Under that simple assumpt...
Field/source duality in topological field theories
David Delphenich
2007-02-13T23:59:59.000Z
The relationship between the sources of physical fields and the fields themselves is investigated with regard to the coupling of topological information between them. A class of field theories that we call topological field theories is defined such that both the field and its source represent de Rham cocycles in varying dimensions over complementary subspaces and the coupling of one to the other is by way of an isomorphism of the those cohomology spaces, which we refer to as field/source duality. The deeper basis for such an isomorphism is investigated and the process is described for various elementary physical examples of topological field theories.
Magnetic fields in Neutron Stars
Viganò, Daniele; Miralles, Juan A; Rea, Nanda
2015-01-01T23:59:59.000Z
Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.
McInnis, Martha Jane
1982-01-01T23:59:59.000Z
Physical manifestations of time occur in natural forms of all sizes. Architectural form serves as shelter while providing a built envelope of human life, simultaneously influencing and influenced by energetic activities ...
Center for Human Reliability Studies
2007-05-01T23:59:59.000Z
The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user
Center for Human Reliability Studies
2007-05-01T23:59:59.000Z
The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user.
Unification of Gravitation, Gauge Field and Dark Energy
Xin-Bing Huang
2005-08-26T23:59:59.000Z
This paper is composed of two correlated topics: 1. unification of gravitation with gauge fields; 2. the coupling between the daor field and other fields and the origin of dark energy. After introducing the concept of ``daor field" and discussing the daor geometry, we indicate that the complex daor field has two kinds of symmetry transformations. Hence the gravitation and SU(1,3) gauge field are unified under the framework of the complex connection. We propose a first-order nonlinear coupling equation of the daor field, which includes the coupling between the daor field and SU(1,3) gauge field and the coupling between the daor field and the curvature, and from which Einstein's gravitational equation can be deduced. The cosmological observations imply that dark energy cannot be zero, and which will dominate the doom of our Universe. The real part of the daor field self-coupling equation can be regarded as Einstein's equation endowed with the cosmological constant. It shows that dark energy originates from the self-coupling of the space-time curvature, and the energy-momentum tensor is proportional to the square of coupling constant \\lambda. The dark energy density given by our scenario is in agreement with astronomical observations. Furthermore, the Newtonian gravitational constant G and the coupling constant \\epsilon of gauge field satisfy G= \\lambda^{2}\\epsilon^{2}.
BASHIR et al.: GAIT REPRESENTATION USING FLOW FIELDS 1 Gait Representation Using Flow Fields
Gong, Shaogang
the human body configuration (e.g. 2D/3D skeletons) and the model parameters estimated over time encode approaches such as Gait Energy Image (GEI) and Motion Silhouettes Image (MSI) capture only the motion inten unchanged freely in print or electronic forms. #12;2 BASHIR et al.: GAIT REPRESENTATION USING FLOW FIELDS
Quantum Field Theory in de Sitter Universe: Ambient Space Formalism
Mohammad Vahid Takook
2014-09-03T23:59:59.000Z
Quantum field theory in the $4$-dimensional de Sitter space-time is constructed on a unique Bunch-Davies vacuum state in the ambient space formalism in a rigorous mathematical framework. This work is based on the group representation theory and the analyticity of the complexified pseudo-Riemannian manifolds. The unitary irreducible representations of de Sitter group and their corresponding Hilbert spaces are reformulated in the ambient space formalism. Defining the creation and annihilation operators, quantum field operators and their corresponding analytic two-point functions for various spin fields ($s=0,\\frac{1}{2},1,\\frac{3}{2}, 2$) have been constructed. The various spin massless fields can be constructed in terms of the massless conformally coupled scalar field in this formalism. Then the quantum massless minimally coupled scalar field operator, for the first time, is also constructed on Bunch-Davies vacuum state which preserve the analyticity. We show that the massless fields with $s\\leq 2$ can only propagate in de Sitter ambient space formalism. The massless gauge invariant field equations with $s=1, \\frac{3}{2}, 2$ are studied by using the gauge principle. The conformal quantum spin-$2$ field, based on the gauge gravity model, is studied. The gauge spin-$\\frac{3}{2}$ fields satisfy the Grassmannian algebra, and hence, naturally provoke one to couple them with the gauge spin-$2$ field and the super-algebra is automatically appeared. We conclude that the gravitational field may be constructed by three parts, namely, the de Sitter background, the gauge spin-$2$ field and the gauge spin-$\\frac{3}{2}$ field.
Exterior Differential Systems for Field Theories
Estabrook, Frank B
2014-01-01T23:59:59.000Z
Cartan forms and Exterior Differential Systems, set in the state space of field and potential variables taken together with four space-time variables, are formulated for Maxwell, SU(2), SU(3) and SU(4) classical gauge theories minimally coupled to Dirac spinor multiplets. Their Cartan character tables are calculated, showing the EDS, and so the Euler-Lagrange partial differential equations, of the first of these to be well posed. That theory anticipates QED. In the other cases, only if the Dirac fields' conserved currents are suppressed as sources for the Yang-Mills fields is a well posed EDS found. PACS numbers: 02.30.Xx 02.40.Hw 03.50.De 03.50.-z
Transgression field theory for interacting topological insulators
Aç?k, Özgür
2013-01-01T23:59:59.000Z
We consider effective topological field theories of quantum Hall systems and time-reversal invariant topological insulators that are Chern-Simons and BF field theories. The edge states of these systems are related to the gauge invariance of the effective actions. For the edge states at the interface of two topological insulators, transgression field theory is proposed as a gauge invariant effective action. Transgression actions of Chern-Simons theories for (2+1)D and (4+1)D and BF theories for (3+1)D are constructed. By using transgression actions, the edge states are written in terms of the bulk connections of effective Chern-Simons and BF theories.
Electric field induced spin-polarized current
Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng
2006-05-02T23:59:59.000Z
A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.
Massless Dirac Fermions in Electromagnetic Field
Ahmed Jellal; Abderrahim El Mouhafid; Mohammed Daoud
2012-02-12T23:59:59.000Z
We study the relations between massless Dirac fermions in an electromagnetic field and atoms in quantum optics. After getting the solutions of the energy spectrum, we show that it is possible to reproduce the 2D Dirac Hamiltonian, with all its quantum relativistic effects, in a controllable system as a single trapped ion through the Jaynes--Cummings and anti-Jaynes--Cummings models. Also we show that under certain conditions the evolution of the Dirac Hamiltonian provides us with Rashba spin-orbit and linear Dresselhaus couplings. Considering the multimode multiphoton Jaynes-Cummings model interacting with N modes of electromagnetic field prepared in general pure quantum states, we analyze the Rabi oscillation. Evaluating time evolution of the Dirac position operator, we determine the Zitterbewegung frequency and the corresponding oscillating term as function of the electromagnetic field.
Schwinger Pair Production in Pulsed Electric Fields
Sang Pyo Kim; Hyung Won Lee; Remo Ruffini
2012-07-22T23:59:59.000Z
We numerically investigate the temporal behavior and the structure of longitudinal momentum spectrum and the field polarity effect on pair production in pulsed electric fields in scalar quantum electrodynamics (QED). Using the evolution operator expressed in terms of the particle and antiparticle operators, we find the exact quantum states under the influence of electric pulses and measure the number of pairs of the Minkowski particle and antiparticle. The number of pairs, depending on the configuration of electric pulses, exhibits rich structures in the longitudinal momentum spectrum and undergoes diverse dynamical behaviors at the onset of the interaction but always either converges to a momentum-dependent constant or oscillates around a momentum-dependent time average after the completion of fields.
Viscosity, Black Holes, and Quantum Field Theory
D. T. Son; A. O. Starinets
2007-07-11T23:59:59.000Z
We review recent progress in applying the AdS/CFT correspondence to finite-temperature field theory. In particular, we show how the hydrodynamic behavior of field theory is reflected in the low-momentum limit of correlation functions computed through a real-time AdS/CFT prescription, which we formulate. We also show how the hydrodynamic modes in field theory correspond to the low-lying quasinormal modes of the AdS black p-brane metric. We provide a proof of the universality of the viscosity/entropy ratio within a class of theories with gravity duals and formulate a viscosity bound conjecture. Possible implications for real systems are mentioned.
Generalised hyperbolicity in singular space-times
C J S Clarke
1997-04-25T23:59:59.000Z
A new concept analogous to global hyperbolicity is introduced, based on test fields. It is shown that the space-times termed here ``curve integrable'' are globally hyperbolic in this new sense, and a plausibility argument is given suggesting that the result applies to shell crossing singularities. If the assumptions behind this last argument are valid, this provides an alternative route to the assertion that such singularities do not violate cosmic censorship.
Probing strong-field gravity and black holes with gravitational waves
Hughes, Scott A.
Gravitational wave observations will be excellent tools for making precise measurements of processes that occur in very strong- field regions of space time. Extreme mass
Energy Stable Schemes for Cahn-Hilliard phase-field model of two ...
2010-08-14T23:59:59.000Z
Aug 25, 2010 ... Several efficient and energy stable time discretization schemes for the coupled nonlinear Cahn-Hilliard phase-field system for both the matched ...
Decoupled energy stable schemes for phase-field models of two ...
2014-11-11T23:59:59.000Z
decoupled, unconditionally energy stable schemes for Cahn-Hilliard phase-field models of two-phase incompressible flows. At each time step, these schemes ...
HOFSTRA UNIVERSITY FIELD TRIP GUIDEBOOK
Merguerian, Charles
HOFSTRA UNIVERSITY FIELD TRIP GUIDEBOOK GEOLOGY 143A Â Field Geology of Northern Arizona 27 March University Geology 143A Northern Arizona Field Course, 27 March Â 03 April 2010 Field Trip Guidebook by: Prof. Charles Merguerian 2010 Arizona Â a Macro View Physically, he was not what you would call an imposing
Cook, Billy Charles
1968-01-01T23:59:59.000Z
resi- due deposits are found around a number of these domes, indicating that at one time there were accumulations of oil. The cause of the volatile material escaping and leaving these "fossil oil fields" has not been definitely established... showing the location of Mallalieu field and other nearby oil fields . 14 Structure ma. p of Mallalieu field Mallalieu field electric log correlation secrion. Legend for grain size and lithology logs. 40 49 Quartz grain size, electric log...
TIME-PERIODIC SOUND WAVE PROPAGATION COMPRESSIBLE EULER EQUATIONS
A PARADIGM FOR TIME-PERIODIC SOUND WAVE PROPAGATION IN THE COMPRESSIBLE EULER EQUATIONS BLAKE consistent with time-periodic sound wave propagation in the 3 Ã? 3 nonlinear compressible Euler equations description of shock-free waves that propagate through an oscillating entropy field without breaking or dis
None
2013-12-31T23:59:59.000Z
This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report
Transient magnetic field and temperature modeling in large magnet applications
Gurol, H.; Hardy, G.E.; Peck, S.D.; Leung, E. (General Dynamics Corp., San Diego, CA (USA). Space Systems Div.)
1989-07-01T23:59:59.000Z
This paper discusses a coupled magnetic/thermal model developed to study heat and magnetic field diffusion in conducting materials subject to time-varying external fields. There are numerous applications, both military and commercial. These include: energy storage devices, pulsed power transformers, and electromagnetic launchers. The time scales of interest may range from a magnetic field pulse of a microsecond in an electromagnetic launcher, to hundreds of seconds in an energy storage magnet. The problem can be dominated by either the magnetic field or heat diffusion, depending on the temperature and the material properties of the conductor. In general, heat diffuses much more rapidly in high electrical conductivity materials of cryogenic temperatures. The magnetic field takes longer to diffuse, since screening currents can be rapidly set up which shield the interior of the material from further magnetic field penetration. Conversely, in high resistivity materials, the magnetic field diffuses much more rapidly. A coupled two-dimensional thermal/magnetic model has been developed. The results of this model, showing the time and spatial variation of the magnetic field and temperature, are discussed for the projectile of an electromagnetic launcher.
Kalirai, Jason S.; Anderson, Jay; Dotter, Aaron, E-mail: jkalirai@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others
2012-01-15T23:59:59.000Z
In Hubble Space Telescope (HST) Cycle 17, we imaged the well-known globular star cluster 47 Tucanae for 121 orbits using the Wide Field Channel of the Advanced Camera for Surveys (ACS) and both the UV/visible (UVIS) and IR channels of the newly installed Wide Field Camera 3 (WFC3) instrument (GO-11677, PI: H. Richer). This unique data set was obtained to address many scientific questions that demand a very deep, panchromatic, and panoramic view of the cluster's stellar populations. In total, the program obtained over 0.75 Ms of imaging exposure time with the three HST cameras, over a time span of 9 months in 2010. The primary ACS field was imaged in the two broadband filters F606W and F814W, at 13 orientations, for all 121 orbits. The parallel WFC3 imaging provides a panchromatic (0.4-1.7 {mu}m) and contiguous imaging swath over a 250 Degree-Sign azimuthal range at impact radii of 6.5-17.9 pc in 47 Tuc. This imaging totals over 60 arcmin{sup 2} in area and utilizes the F390W and F606W broadband filters on WFC3/UVIS and the F110W and F160W broadband filters on WFC3/IR. In this paper, we describe the observational design of the new survey and one of the methods used to analyze all of the imaging data. This analysis combines over 700 full-frame images taken with the three HST cameras into a handful of ultra-deep, well-sampled combined images in each of the six filters. We discuss in detail the methods used to calculate accurate transformations that provide optimal alignment of the input images, the methods used to perform sky background offsets in the input stack and the flagging of deviant pixels, and the balance reached between the input-pixel drop size onto an output supersampled pixel grid. Careful photometric, morphological, and astrometric measurements are performed on the stacks using iterative PSF-fitting techniques, and reveal unprecedented color-magnitude diagrams of the cluster extending to >30th magnitude in the optical, 29th magnitude in the UV, and 27th magnitude in the IR. The data set provides a characterization of the complete stellar populations of 47 Tuc, extending from the faintest hydrogen-burning dwarfs through the main-sequence and giant branches down to very cool white dwarf remnants in the cluster. The imaging also provides the deepest probe of the stellar populations of the background Small Magellanic Cloud galaxy, resolving low-mass main-sequence dwarfs with M {approx}< 0.2 M{sub Sun }.
Non-commutative Field Theory with Twistor-like Coordinates
Tomasz R. Taylor
2007-09-16T23:59:59.000Z
We consider quantum field theory in four-dimensional Minkowski spacetime, with the position coordinates represented by twistors instead of the usual world-vectors. Upon imposing canonical commutation relations between twistors and dual twistors, quantum theory of fields described by non-holomorphic functions of twistor variables becomes manifestly non-commutative, with Lorentz symmetry broken by a time-like vector. We discuss the free field propagation and its impact on the short- and long-distance behavior of physical amplitudes in perturbation theory. In the ultraviolet limit, quantum field theories in twistor space are generically less divergent than their commutative counterparts. Furthermore, there is no infrared--ultraviolet mixing problem.
Electron Dynamics in Nanostructures in Strong Laser Fields
Kling, Matthias
2014-09-11T23:59:59.000Z
The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.
The force exerting on cosmic bodies in a quaternionc field
V. Majernik
2003-09-03T23:59:59.000Z
The expression of a time-dependent cosmological constant $\\lambda \\propto 1/t^2$ is interpreted as the energy density of a special type of the quaternionic field. The Lorenz-like force acting on the moving body in the presence of this quaternionic field is determined. The astronomical and terrestrial effects of this field are presented, and the ways how it can be observably detected is discussed. Finally, a new mechanism of the particle creation and an alternative cosmological scenario in the presence of the cosmic quatertionic field is suggested.
Cosmic Acceleration and Anisotropic models with Magnetic field
S. K. Tripathy; K. L. Mahanta
2014-12-10T23:59:59.000Z
Plane symmetric cosmological models are investigated with or without any dark energy components in the field equations. Keeping an eye on the recent observational constraints concerning the accelerating phase of expansion of the universe, the role of magnetic field is assessed. In the absence of dark energy components, magnetic field can favour an accelerating model even if we take a linear relationship between the directional Hubble parameters. In presence of dark energy components in the form of a time varying cosmological constant, the influence of magnetic field is found to be limited.
Toward an axiomatic formulation of noncommutative quantum field theory
Chaichian, M.; Tureanu, A. [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland); Mnatsakanova, M. N. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119992 Vorobyevy Gory, Moscow (Russian Federation); Nishijima, K. [Department of Physics, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Vernov, Yu. S. [Institute for Nuclear Research, Russian Academy of Sciences, 60th October Anniversary prospect 7a, 117312 Moscow (Russian Federation)
2011-03-15T23:59:59.000Z
We propose new Wightman functions as vacuum expectation values of products of field operators in the noncommutative space-time. These Wightman functions involve the *-product among the fields, compatible with the twisted Poincare symmetry of the noncommutative quantum field theory (NC QFT). In the case of only space-space noncommutativity ({theta}{sub 0i}= 0), we prove the CPT theorem using the noncommutative form of the Wightman functions. We also show that the spin-statistics theorem, demonstrated for the simplest case of a scalar field, holds in NC QFT within this formalism.
Electric Field Quench in AdS/CFT
Koji Hashimoto; Shunichiro Kinoshita; Keiju Murata; Takashi Oka
2014-07-03T23:59:59.000Z
An electric field quench, a suddenly applied electric field, can induce nontrivial dynamics in confining systems which may lead to thermalization as well as a deconfinement transition. In order to analyze this nonequilibrium transitions,we use the AdS/CFT correspondence for $\\mathcal{N}=2$ supersymmetric QCD that has a confining meson sector. We find that the electric field quench causes the deconfinement transition even when the magnitude of the applied electric field is smaller than the critical value for the static case (which is the QCD Schwinger limit for quark-antiquark pair creation). The time dependence is crucial for this phenomenon, and the gravity dual explains it as an oscillation of a D-brane in the bulk AdS spacetime. Interestingly, the deconfinement time takes only discrete values as a function of the magnitude of the electric field. We advocate that the new deconfinement phenomenon is analogous to the exciton Mott transition.
Unbalanced field RF electron gun
Hofler, Alicia
2013-11-12T23:59:59.000Z
A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.
Knapp, R.M.; McInerney, M.J.; Menzie, D.E.
1991-01-01T23:59:59.000Z
The objective of this project is to perform a microbially enhanced oil recovery field pilot test in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. 1 fig., 2 tabs.
Polymer Parametrised Field Theory
Alok Laddha; Madhavan Varadarajan
2008-05-02T23:59:59.000Z
Free scalar field theory on 2 dimensional flat spacetime, cast in diffeomorphism invariant guise by treating the inertial coordinates of the spacetime as dynamical variables, is quantized using LQG type `polymer' representations for the matter field and the inertial variables. The quantum constraints are solved via group averaging techniques and, analogous to the case of spatial geometry in LQG, the smooth (flat) spacetime geometry is replaced by a discrete quantum structure. An overcomplete set of Dirac observables, consisting of (a) (exponentials of) the standard free scalar field creation- annihilation modes and (b) canonical transformations corresponding to conformal isometries, are represented as operators on the physical Hilbert space. None of these constructions suffer from any of the `triangulation' dependent choices which arise in treatments of LQG. In contrast to the standard Fock quantization, the non- Fock nature of the representation ensures that the algebra of conformal isometries as well as that of spacetime diffeomorphisms are represented in an anomaly free manner. Semiclassical states can be analysed at the gauge invariant level. It is shown that `physical weaves' necessarily underly such states and that such states display semiclassicality with respect to, at most, a countable subset of the (uncountably large) set of observables of type (a). The model thus offers a fertile testing ground for proposed definitions of quantum dynamics as well as semiclassical states in LQG.
Noncommutative Dipole Field Theories
K. Dasgupta; M. M. Sheikh-Jabbari
2002-02-05T23:59:59.000Z
Assigning an intrinsic constant dipole moment to any field, we present a new kind of associative star product, the dipole star product, which was first introduced in [hep-th/0008030]. We develop the mathematics necessary to study the corresponding noncommutative dipole field theories. These theories are sensible non-local field theories with no IR/UV mixing. In addition we discuss that the Lorentz symmetry in these theories is ``softly'' broken and in some particular cases the CP (and even CPT) violation in these theories may become observable. We show that a non-trivial dipole extension of N=4, D=4 gauge theories can only be obtained if we break the SU(4) R (and hence super)-symmetry. Such noncommutative dipole extensions, which in the maximal supersymmetric cases are N=2 gauge theories with matter, can be embedded in string theory as the theories on D3-branes probing a smooth Taub-NUT space with three form fluxes turned on or alternatively by probing a space with R-symmetry twists. We show the equivalences between the two approaches and also discuss the M-theory realization.
Some methods and models for analyzing time-series gene expression data
Jammalamadaka, Arvind K. (Arvind Kumar), 1981-
2009-01-01T23:59:59.000Z
Experiments in a variety of fields generate data in the form of a time-series. Such time-series profiles, collected sometimes for tens of thousands of experiments, are a challenge to analyze and explore. In this work, ...
Bayesian Estimation of a Continuous-Time Model for Discretely-Observed Panel Data
Boulton, Aaron Jacob
2014-08-31T23:59:59.000Z
Continuous-time models are used in many areas of science. However, in psychology and related fields, continuous-time models are often difficult to apply because only a small number of repeated observations are typically ...
SINGLE SILVER NANOPARTICLES AS REAL-TIME OPTICAL SENSORS WITH ZEPTOMOLE SENSITIVITY
Shull, Kenneth R.
SINGLE SILVER NANOPARTICLES AS REAL-TIME OPTICAL SENSORS WITH ZEPTOMOLE SENSITIVITY Adam D. Mc-time sensor technologies. (A) A dark-field optical image of Ag nanoparticles immobilized on a glass substrate
Generalized Gravitational Entropy of Interacting Scalar Field and Maxwell Field
Wung-Hong Huang
2014-11-11T23:59:59.000Z
The generalized gravitational entropy proposed by Lewkowycz and Maldacena in recent is extended to the interacting real scalar field and Maxwell field system. Using the BTZ geometry we first investigate the case of free real scalar field and then show a possible way to calculate the entropy of the interacting scalar field. Next, we investigate the Maxwell field system. We exactly solve the wave equation and calculate the analytic value of the generalized gravitational entropy. We also use the Einstein equation to find the effect of backreaction of the Maxwell field on the area of horizon. The associated modified area law is consistent with the generalized gravitational entropy.
Gravitational collapse of charged scalar fields
Jose M. Torres; Miguel Alcubierre
2014-07-29T23:59:59.000Z
In order to study the gravitational collapse of charged matter we analyze the simple model of an self-gravitating massless scalar field coupled to the electromagnetic field in spherical symmetry. The evolution equations for the Maxwell-Klein-Gordon sector are derived in the 3+1 formalism, and coupled to gravity by means of the stress-energy tensor of these fields. To solve consistently the full system we employ a generalized Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation of General Relativity that is adapted to spherical symmetry. We consider two sets of initial data that represent a time symmetric spherical thick shell of charged scalar field, and differ by the fact that one set has zero global electrical charge while the other has non-zero global charge. For compact enough initial shells we find that the configuration doesn't disperse and approaches a final state corresponding to a sub-extremal Reissner-N\\"ordstrom black hole with $|Q|
WIDE-FIELD ASTRONOMICAL MULTISCALE CAMERAS
Marks, Daniel L.; Brady, David J., E-mail: dbrady@ee.duke.edu [Department of Electrical and Computer Engineering and Fitzpatrick Institute for Photonics, Box 90291, Duke University, Durham, NC 27708 (United States)
2013-05-15T23:59:59.000Z
In order to produce sufficiently low aberrations with a large aperture, telescopes have a limited field of view. Because of this narrow field, large areas of the sky at a given time are unobserved. We propose several telescopes based on monocentric reflective, catadioptric, and refractive objectives that may be scaled to wide fields of view and achieve 1.''1 resolution, which in most locations is the practical seeing limit of the atmosphere. The reflective and Schmidt catadioptric objectives have relatively simple configurations and enable large fields to be captured at the expense of the obscuration of the mirror by secondary optics, a defect that may be managed by image plane design. The refractive telescope design does not have an obscuration but the objective has substantial bulk. The refractive design is a 38 gigapixel camera which consists of a single monocentric objective and 4272 microcameras. Monocentric multiscale telescopes, with their wide fields of view, may observe phenomena that might otherwise be unnoticed, such as supernovae, glint from orbital space debris, and near-earth objects.
Extended Coherence Time with Atom-Number Squeezed Sources
Wei Li; Ari K. Tuchman; Hui-Chun Chien; Mark A. Kasevich
2006-09-02T23:59:59.000Z
Coherence properties of Bose-Einstein condensates offer the potential for improved interferometric phase contrast. However, decoherence effects due to the mean-field interaction shorten the coherence time, thus limiting potential sensitivity. In this work, we demonstrate increased coherence times with number squeezed states in an optical lattice using the decay of Bloch oscillations to probe the coherence time. We extend coherence times by a factor of 2 over those expected with coherent state BEC interferometry. We observe quantitative agreement with theory both for the degree of initial number squeezing as well as for prolonged coherence times.
Time-dependent analysis of a fiber-optic passive-loop resonator
Crosignani, B.; Yariv, A.; Di Porto, P.
1986-04-01T23:59:59.000Z
A time-dependent analysis of an all-single-mode fiber-optic resonator is presented in which the input field is allowed to exhibit an arbitrary dependence on time. In particular, the transmissivity of the resonator is evaluated for an input field possessing an arbitrary temporal coherence, which allows one to consider the role of the source coherence time as compared with the fiber time delay.
Marleau, Peter; Brubaker, Erik
2014-11-01T23:59:59.000Z
This report provides a short overview of the DNN R&D funded project, Time-Encoded Imagers. The project began in FY11 and concluded in FY14. The Project Description below provides the overall motivation and objectives for the project as well as a summary of programmatic direction. It is followed by a short description of each task and the resulting deliverables.