Powered by Deep Web Technologies
Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

TYPES OF FIELD TESTING  

NLE Websites -- All DOE Office Websites (Extended Search)

TYPES OF FIELD TESTING Convincing proof of energy savings and performance in a specific building and occupant context If direct proof of savings is desired, the only feasible...

2

Analysis Driven Field Testing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ANALYSIS DRIVEN FIELD TESTING ANALYSIS DRIVEN FIELD TESTING Greg Barker, MEP Paul Norton, NERD C.E. Hancock, MEP Building America Residential Energy Efficiency Stakeholder Meeting Austin, TX March 2, 2012 MODELING DRIVEN FIELD TESTING Greg Barker, MEP Paul Norton, NERD C.E. Hancock, MEP Building America Residential Energy Efficiency Stakeholder Meeting Austin, TX March 2, 2012 MODELING DRIVEN MEASUREMENTS Greg Barker, MEP Paul Norton, NERD C.E. Hancock, MEP Building America Residential Energy Efficiency Stakeholder Meeting Austin, TX March 2, 2012 Building America Residential Energy Efficiency Stakeholder Meeting Austin, TX March 2, 2012 "Modeling without measuring lacks credibility. Measuring without modeling lacks generality." Ed Hancock

3

Analysis and Design of a Test Apparatus for Resolving Near-Field Effects Associated With Using a Coarse Sun Sensor as Part of a 6-DOF Solution  

E-Print Network (OSTI)

Though the Aerospace industry is moving towards small satellites and smaller sensor technologies, sensors used for close-proximity operations are generally cost (and often size and power) prohibitive for University-class satellites. Given the need for low-cost, low-mass solutions for close-proximity relative navigation sensors, this research analyzed the expected errors due to near-field effects using a coarse sun sensor as part of a 6-degree-of-freedom (6-dof) solution. To characterize these near-field effects, a test bed (Characterization Test Apparatus or CTA) was proposed, its design presented, and the design stage uncertainty analysis of the CTA performed. A candidate coarse sun sensor (NorthStarTM) was chosen for testing, and a mathematical model of the sensor’s functionality was derived. Using a Gaussian Least Squares Differential Correction (GLSDC) algorithm, the model parameters were estimated and a comparison between simulated NorthStarTM measurements and model estimates was performed. Results indicate the CTA is capable of resolving the near-field errors. Additionally, this research found no apparent show stoppers for using coarse sun sensors for 6-dof solutions.

Stancliffe, Devin Aldin

2010-08-01T23:59:59.000Z

4

Japanese refrigerators field testing  

SciTech Connect

Residential refrigerators consume the equivalent of 1700 megawatts (MW) of baseload power in the Bonneville Power Administration (BPA) service area. Japanese manufacturers have designed refrigerator units that appear more energy efficient than some currently available American models. This report summarizes preliminary findings from field testing of 12 refrigerators of Japanese manufacture to evaluate annual kilowatt hour (kWh) use during actual operation. The units have also undergone laboratory testing sponsored by BPA at ETL Testing Laboratories, Inc. in Cortland, New York. A final report of the project -- due at the end of 1989 -- will correlate in detail the results of field and laboratory tests in comparison to performance ratings determined by the manufacturer.

Lou, A.T.

1989-03-01T23:59:59.000Z

5

Japanese Refrigerators Field Testing.  

SciTech Connect

Residential refrigerators consume the equivalent of 1700 megawatts (MW) of baseload power in the Bonneville Power Administration (BPA) service area. Japanese manufacturers have designed refrigerator units that appear more energy efficient than some currently available American models. This report summarizes preliminary findings from field testing of 12 refrigerators of Japanese manufacture to evaluate annual kilowatt hour (kWh) use during actual operation. The units have also undergone laboratory testing sponsored by BPA at ETL Testing Laboratories, Inc. in Cortland, New York. A final report of the project -- due at the end of 1989 -- will correlate in detail the results of field and laboratory tests in comparison to performance ratings determined by the manufacturer.

Lou, Albert T.

1989-03-01T23:59:59.000Z

6

Production Hydraulic Packer Field Test  

Science Conference Proceedings (OSTI)

In October 1999, the Rocky Mountain Oilfield Testing Center and Halliburton Energy Services cooperated on a field test of Halliburton's new Production Hydraulic Packer technology on Well 46-TPX-10 at Naval Petroleum Reserve No. 3 near Casper, WY. Performance of the packer was evaluated in set and unset operations. The packer's ability to seal the annulus between the casing and tubing was hydraulically tested and the results were recorded.

Schneller, Tricia; Salas, Jose

2000-06-30T23:59:59.000Z

7

AGA-12, Part 2 Performance Test Results | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGA-12, Part 2 Performance Test Results AGA-12, Part 2 Performance Test Results The Pacific Northwest National Laboratory (PNNL) was tasked to evaluate the performance of devices...

8

Reservoir description through pulse testing in a mature field  

SciTech Connect

Pulse testing was used in the Fortescue field to clarify reservoir geometries and fluid communication pathways. The high communication levels demonstrated in the test data required a nonstandard analysis of the pressure responses. In addition, proper attention to test planning, data acquisition, and data processing allowed valuable insights into reservoir limits. Most of the structural implications derived from the pulse tests have been supported subsequently by a recent 3D seismic survey of the area. The results and insights gained from these tests are being incorporated into a full-field simulation model of the Fortescue field, which is an integral part of a continuing depletion field study.

Braisted, D.M.; Spengler, R.M. (Esso Australia Ltd., Sydney (Australia)); Youie, R.A.

1993-06-01T23:59:59.000Z

9

AGA 12, Part 2 Performance Test Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGA 12, Part 2 Performance Test Plan AGA 12, Part 2 Performance Test Plan Under the guidance and sponsorship of DOE's Office of Electricity Delivery and Energy Reliability, Pacific...

10

Measuring Residential Ventilation System Airflows: Part 2 - Field...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification Title Measuring Residential Ventilation System...

11

Uncertainties in field-line tracing in the magnetosphere. Part I: the axisymmetric part of the internal geomagnetic field  

E-Print Network (OSTI)

of the internal geomagnetic field D. M. Willis1;3, J. Robin Singh1;2 , Jacqueline Comer1;2 1 Rutherford Appleton in the specification of the geomagnetic field of internal origin. Because of the complexity in computing the axisymmetric part of the internal geomagnetic field. An exact analytic equation exists for the magnetic field

Paris-Sud XI, Université de

12

Part 3, Chapter 5: Test Methods  

Science Conference Proceedings (OSTI)

... to the standard system configuration, by providing dummy loads or associated ... for Performance Criteria and Test Methods for Plug-in, Portable ...

13

NREL: Wind Research - Field Test Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Sites Field Test Sites Aerial view of the National Wind Technology Center with the Flatiron Mountains in the background NREL's NWTC has numerous test pads available to industry partners for testing wind turbines that range in size from a few hundred kilowatts to several megawatts. PIX 17711. Manufacturers can take advantage of NREL's numerous test pads and the technical expertise of its staff to field test prototypes of small and large wind turbines. Many of the small wind turbines tested at the NWTC are participants in NREL's Small Wind Turbine Independent Test Program. Small and mid-sized turbines field tested at the NWTC include those manufactured by Atlantic Orient Corporation, Bergey Windpower, Southwest Wind Power, Northern Power Systems, Endurance Wind Power Inc., Gaia-Wind Ltd.,

14

Square Butte HVDC modulation system field tests  

SciTech Connect

The authors describe field tests conducted at the Square Butte dc system to validate transfer functions of the digital model for dc current and voltage modulation control design. The field tests and digital model results confirm a dominant interarea mode of oscillation of 0.8 hz. Field tests also established spurious responses in rectifier and inverter frequency measurements which appear to be attributable to transducer distortion.

Grund, C.E. (General Electric Co., Schenectady, NY (USA)); Hauer, J.F. (BPA, Portland, OR (US)); Crane, L.P.; Carlson, D.L. (Minnesota Power and Light Co., Duluth, MN (USA)); Wright, S.E. (EPRI, Palo Alto, CA (US))

1990-01-01T23:59:59.000Z

15

Environmental Energy Technologies Division Thermal Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Field Tests Joseph H. Klems, LBNL DOE PEER Review San Francisco, CA April 20, 1999 Environmental Energy Technologies Division Current Work l Skylight Thermal Performance *...

16

Engine Oil Aeration Test FIELD SERVICE SIMULATED  

E-Print Network (OSTI)

Engine Oil Aeration Test OBJECTIVE FIELD SERVICE SIMULATED SPECIFICATIONS The objective of this test is to determine the effectiveness of engine lubricating oils at minimizing air entrainment oil. TEST FIXTURE The test engine is a 1994 International Truck 7.3 liter V-8, four- stroke

Chapman, Clark R.

17

Field Test Best Practices (FTBP) Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Best Practices (FTBP) Update: Field Test Best Practices (FTBP) Update: It's here! And we need you! Lieko Earle Dane Christensen Bethany Sparn Building America Stakeholder Meeting 2012-03-02 NATIONAL RENEWABLE ENERGY LABORATORY Identified Field Testing Needs 2 * Difficult to find good general guidelines * Difficult to find examples of good field test plans * Difficult to find information on instrumentation options * No easily-accessible central repository for best practices knowledge * Field tests were taking longer and costing more $$ than initially estimated * We keep reinventing the wheel * Start from scratch each time we write a data-logger program? * Repeat each other's mistakes? NATIONAL RENEWABLE ENERGY LABORATORY What is the FTBP Resource?

18

IN SITU FIELD TESTING OF PROCESSES  

Science Conference Proceedings (OSTI)

The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses provide data useful for refining and confirming the understanding of flow, drift seepage, and transport processes in the UZ. The UZ testing activities included measurement of permeability distribution, quantification of the seepage of water into the drifts, evaluation of fracture-matrix interaction, study of flow along faults, testing of flow and transport between drifts, characterization of hydrologic heterogeneity along drifts, estimation of drying effects on the rock surrounding the drifts due to ventilation, monitoring of moisture conditions in open and sealed drifts, and determination of the degree of minimum construction water migration below drift. These field tests were conducted in two underground drifts at Yucca Mountain, the Exploratory Studies Facility (ESF) drift, and the cross-drift for Enhanced Characterization of the Repository Block (ECRB), as described in Section 1.2. Samples collected in boreholes and underground drifts have been used for additional hydrochemical and isotopic analyses for additional understanding of the UZ setting. The UZ transport tests conducted at the nearby Busted Butte site (see Figure 1-4) are also described in this scientific analysis report.

J.S.Y. YANG

2004-11-08T23:59:59.000Z

19

Retrieving Storm Electric Fields from Aircraft Field Mill Data. Part II: Applications  

Science Conference Proceedings (OSTI)

The Lagrange multiplier theory developed in Part I of this study is applied to complete a relative calibration of a Citation aircraft that is instrumented with six field mill sensors. When side constraints related to average fields are used, the ...

W. J. Koshak; D. M. Mach; H. J. Christian; M. F. Stewart; M. G. Bateman

2006-10-01T23:59:59.000Z

20

The Skin-Layer Ocean Heat Flux Instrument (SOHFI). Part II: Field Measurements of Surface Heat Flux and Solar Irradiance  

Science Conference Proceedings (OSTI)

The Skin-Layer Ocean Heat Flux Instrument (SOHFI) described by Sromovsky et al. (Part I, this issue) was field-tested in a combination of freshwater and ocean deployments. Solar irradiance monitoring and field calibration techniques were ...

L. A. Sromovsky; J. R. Anderson; F. A. Best; J. P. Boyle; C. A. Sisko; V. E. Suomi

1999-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Resampling Hypothesis Tests for Autocorrelated Fields  

Science Conference Proceedings (OSTI)

Presently employed hypothesis tests for multivariate geophysical data (e.g., climatic fields) require the assumption that either the data are serially uncorrelated, or spatially uncorrelated, or both. Good methods have been developed to deal with ...

D. S. Wilks

1997-01-01T23:59:59.000Z

22

SchlumbergerRES/Field-Test-Plan.PPT/18/06/00/1 Field Test Plan Michigan  

E-Print Network (OSTI)

1 La ©SchlumbergerRES/Field-Test-Plan.PPT/18/06/00/1 Field Test Plan Michigan QLand, QBorehole, R Camp, Well --- Oil/Gas PL Permit Zone - CONFIDENTIAL - #12;8 La ©SchlumbergerRES/Field-Test-Plan.PPT/18/VSP compiled by Andreas Laake, SLB Project Coordinator Status :October 26, 2000 #12;2 La ©SchlumbergerRES/Field

23

Trip Report-Produced-Water Field Testing  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

Sullivan, Enid J. [Los Alamos National Laboratory

2012-05-25T23:59:59.000Z

24

Flow reference method testing and analysis: Field test plan, Texas Utilities Decordova Steam Electric Station  

SciTech Connect

This report describes the experimental design and test plan for the first of three field tests that the US Environmental Protection Agency (EPA) conducted in 1997 as part of a major study to evaluate potential improvements to Method 2, EPA`s test method for measuring flue gas volumetric flow in stacks. The experimental design involved four test teams taking concurrent in-stack measurements with velocity sensing probes. Seven types of probes were included in the study. Three test matrices were used to gather data for inter-probe and inter-team comparisons and to assess the impact of velocity decline near the stack wall on volumetric flow measurements.

Lieberman, E.; Werner, A.S.

1997-05-30T23:59:59.000Z

25

Error analysis in wind turbine field testing  

DOE Green Energy (OSTI)

In wind turbine field testing, one of the most important issues is understanding and accounting for data errors. Extended dynamic testing of wind turbines requires a thorough uncertainty analysis and a regimen of quality assurance steps in order to preserve accuracy. Test objectives need to be identified to determine the accuracy requirements of any data measurement, collection, and analysis process. Frequently, the uncertainty analysis reveals that the major sources of error can be allowed for with careful calibration and signal drift tracking procedures. This paper offers a basis for the discussion and development of a repeatable and accurate process to track errors and account for them in data processing.

McNiff, B [McNiff Light Industries, Carlisle, MA (United States); Simms, D [National Renewable Energy Lab., Golden, CO (United States)

1994-08-01T23:59:59.000Z

26

Uncertainties in field-line tracing in the magnetosphere. Part II: the complete internal geomagnetic field  

E-Print Network (OSTI)

geomagnetic field D. M. Willis1, *, J. Robin Singh 1,2 , K. S. C. Freeman1 1 Rutherford Appleton Laboratory coefficients that define the axisymmetric part of the internal geomagnetic field (i.e. g0 n 6 g0 n). Numerical geomagnetic field (i.e. gm n 6 gm n and hm n 6 hm n ). An algorithm is formulated that greatly reduces

Paris-Sud XI, Université de

27

Building America System Performance Test Practices: Part 1 -- Photovoltaic Systems  

DOE Green Energy (OSTI)

The report outlines the short-term field testing used by Building America staff and includes a report on the results of an example test of a PV system with battery storage on a home in Tucson, Arizona. This report is not intended as a general recommended test procedure for wide distribution. It is intended to document current practices in Building America to inform program stakeholders and stimulate further discussion. Building America staff intend to apply this procedure until relevant standards for testing PV modules are completed.

Barker, G.; Norton, P.

2003-05-01T23:59:59.000Z

28

NETL: News Release - Carbon Sequestration Field Test Begins in...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 , 2007 Carbon Sequestration Field Test Begins in Illinois Basin Field Test Pairs Geologic Sequestration and Enhanced Oil Recovery WASHINGTON, DC - The Midwest Geological...

29

HVAC Water Heater Field Tests Research Project | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Water Heater Field Tests Research Project HVAC Water Heater Field Tests Research Project The U.S. Department of Energy is currently conducting research into heating,...

30

Field Testing of Automated Demand Response for Integration of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products Title Field Testing of Automated...

31

Field testing plan for unsaturated zone monitoring and field studies  

Science Conference Proceedings (OSTI)

The University of Arizona, in cooperation with the Bureau of Economic Geology at The University of Texas at Austin, and Stephens and Associates in Albuquerque, New Mexico has developed a field testing plan for evaluating subsurface monitoring systems. The U.S. Nuclear Regulatory Commission has requested development of these testing plans for low-level radioactive waste disposal sites (LLW) and for monitoring at decommissioned facilities designated under the {open_quotes}Site Decommissioning Management Plan{close_quotes} (SDMP). The tests are conducted on a 50 m by 50 m plot on the University of Arizona`s Maricopa Agricultural Center. Within the 50 m by 50 m plot one finds: (1) an instrumented buried trench, (2) monitoring islands similar to those proposed for the Ward Valley, California LLW Facility, (3) deep borehole monitoring sites, (4) gaseous transport monitoring, and (5) locations for testing non-invasive geophysical measurement techniques. The various subplot areas are instrumented with commercially available instruments such as neutron probes, time domain reflectometry probes, tensiometers, psychrometers, heat dissipation sensors, thermocouples, solution samplers, and cross-hole geophysics electrodes. Measurement depths vary from ground surface to 15 m. The data from the controlled flow and transport experiments, conducted over the plot, will be used to develop an integrated approach to long-term monitoring of the vadose zone at waste disposal sites. The data will also be used to test field-scale flow and transport models. This report describes in detail the design of the experiment and the methodology proposed for evaluating the data.

Young, M.H.; Wierenga, P.J.; Warrick, A.W. [and others

1996-10-01T23:59:59.000Z

32

Field Verification of Distributed Renewable Generation, Volume 1: Renewable Energy Field Test Concepts  

Science Conference Proceedings (OSTI)

This report describes field verification of distributed renewable generation and focuses on renewable energy field test concepts.

2003-03-25T23:59:59.000Z

33

3X-100 blade field test.  

DOE Green Energy (OSTI)

In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.

Zayas, Jose R.; Johnson, Wesley D.

2008-03-01T23:59:59.000Z

34

FIELD TEST OF THE FLAME QUALITY INDICATOR  

Science Conference Proceedings (OSTI)

The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion chambers, and poor fuel pump cut-off. Service organizations can use these early indications to reduce problems and service costs. There were also some ''call-for-service'' indications for which problems were not identified. The test program also showed that monitoring of the flame can provide information on burner run times and this can be used to estimate current oversize factors and to determine actual fuel usage, enabling more efficient fuel delivery procedures.

Andrew M. Rudin; Thomas Butcher; Henry Troost

2003-02-04T23:59:59.000Z

35

Evaluation of a Decoupling-Based Fault Detection and Diagnostic Technique - Part I: Field Emulation Evaluation  

E-Print Network (OSTI)

Existing methods addressing automated fault detection and diagnosis (FDD) for vapor compression air conditioning system have good performance for faults that occur individually, but they have difficulty in handling multiple-simultaneous faults. The decoupling-based (DB) FDD method explicitly addresses diagnostics for multiple-simultaneous faults for the first time. This paper is the first part of a two-part evaluation of the DB FDD technique whose intent is to validate the DB FDD performance and demonstrate its applications. The first part focuses on sensitivity and robustness evaluation through controlled field emulation testing. Sensitivity tests with artificially introduced faults show that individual faults can be identified before they cause a 5% of degradation in cooling capacity, EER and sensible heat ratio. Robustness tests for forty-one multiple-simultaneous-fault combinations demonstrate that no wrong diagnosis occurs with only two false alarms and two sensitivity losses for a liquid-line restriction. The second part, accompanying the first one, focuses on field applications in California.

Li, H.; Braun, J.

2006-01-01T23:59:59.000Z

36

Cooperative field test program for wind systems  

DOE Green Energy (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

37

NETL: News Release - DOE Announces Further Field Testing of Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Announces Further Field Testing of Advanced Mercury Control Technologies DOE Announces Further Field Testing of Advanced Mercury Control Technologies Six Projects Selected in Round 2 to Address Future Power Plant Mercury Reduction Initiatives PITTSBURGH, PA - With an eye on future federal regulations aimed at reducing mercury emissions, the U.S. Department of Energy has selected six additional projects as part of a DOE research program to advance the technical readiness of mercury control options for the Nation's fleet of coal-fired power plants. The six projects in this second round of awards build on last year's selection of eight projects, and will verify technology performance, evaluate costs, and assess balance-of-plant impacts. The projects will field test advanced, post-combustion technologies involving all coal types at utilities using pulverized coal or cyclone-boiler configurations, and focus on technologies capable of removing mercury from flue gas containing higher concentrations of elemental mercury. The technologies include sorbent injection, wet flue gas desulfurization systems enhancement, and combustion optimization.

38

Building Technologies Office: Field Test Best Practices Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Best Field Test Best Practices Website to someone by E-mail Share Building Technologies Office: Field Test Best Practices Website on Facebook Tweet about Building Technologies Office: Field Test Best Practices Website on Twitter Bookmark Building Technologies Office: Field Test Best Practices Website on Google Bookmark Building Technologies Office: Field Test Best Practices Website on Delicious Rank Building Technologies Office: Field Test Best Practices Website on Digg Find More places to share Building Technologies Office: Field Test Best Practices Website on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center

39

Strategic Petroleum Reserve (SPR) oil storage cavern sulphur mines 2-4-5 certification tests and analysis. Part I: 1981 testing. Part II: 1982 testing  

Science Conference Proceedings (OSTI)

Well leak tests and a cavern pressure were conducted in June through December 1981, and are described in Part I. The tests did not indicate conclusively that there was no leakage from the cavern, but the data indicate that cavern structural failure during oil storage is unlikely. The test results indicated that retesting and well workover were desirable prior to making a decision on the cavern use. Well leak tests were conducted in March through May 1982, and are described in Part II. The tests indicated that there was no significant leakage from wells 2 and 4 but that the leakage from wells 2A and 5 exceeded the DOE criterion. Because of the proximity of cavern 2-4-5 to the edge of the salt, this cavern should be considered for only one fill/withdrawal cycle prior to extensive reevaluation. 57 figures, 17 tables.

Beasley, R.R.

1982-12-01T23:59:59.000Z

40

Field Testing of Environmentally Friendly Drilling System  

SciTech Connect

The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

David Burnett

2009-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building Technologies Office: HVAC and Water Heater Field Tests Research  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC and Water Heater HVAC and Water Heater Field Tests Research Project to someone by E-mail Share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Facebook Tweet about Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Twitter Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Google Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Delicious Rank Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Digg Find More places to share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research

42

NETL: News Release - Small-Scale Carbon Sequestration Field Test...  

NLE Websites -- All DOE Office Websites (Extended Search)

hole would be ideal to develop a robust logging, coring, and testing program. Formation Stimulation-As part of the project design process, project developers should request the...

43

Field Test Best Practices Website | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » Field Test Best Residential Buildings » Building America » Field Test Best Practices Website Field Test Best Practices Website Photo of a man standing in front of a door performing a blower door test. The Field Test Best Practices website is a start-to-finish best practice guide for building science researchers engaged in field evaluations of energy efficiency measures. Developed by the National Renewable Energy Laboratory (NREL), this site is a collaborative effort to improve the quality of research methods that aim to improve energy efficiency of homes. On this website, find detailed guidance on: Defining the research objectives Planning for and conducting a field test Choosing, testing, and installing components Selecting equipment and knowing when and how to use it.

44

Statistical Considerations for Climate Experiments. Part I: Scalar Tests  

Science Conference Proceedings (OSTI)

Statistical tests used in model intercomparisons or model/climate comparisons may be either “scalar” or “multivariate” tests. The former are employed when testing a hypothesis about a single variable observed at a single location, or through a ...

F. W. Zwiers; H. J. Thiébaux

1987-04-01T23:59:59.000Z

45

Small Scale Field Test Demonstrating CO2 sequestration in Arbuckle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Field Test Demonstrating CO 2 sequestration in Arbuckle Saline Aquifer and by CO 2 -EOR at Wellington field, Sumner County, Kansas -- W. Lynn Watney and Jason Rush Kansas...

46

Controller Field Tests on the NREL CART2 Turbine  

DOE Green Energy (OSTI)

This document presents the results of the field tests carried out on the CART2 turbine at NREL to validate individual pitch control and active tower damping.

Bossanyi, E.; Wright, A.; Fleming, P.

2010-12-01T23:59:59.000Z

47

Interwell pressure testing for field pilots  

SciTech Connect

Procedures are described, and results are compared with core analyses, for a number of transient pressure experiments that were carried out between wells in a small chemical flood pilot. Tests include: a standard pulse test, a simultaneous pressure buildup and falloff of wells in a five-spot pattern, a reverse pulse test, in which response from a producer was measured at a nearby injector during injection, and production drawdown tests from normally shut-in observation wells during polymer injection and during subsequent waterflood in a nearby injector. Flowing these observation wells provided an effective way to measure in-situ mobilities of injected fluids. For pulse tests, a simplified method for design and interpretation of single pulses is derived from basic equations. Dimensionless functions, representing directional permeability and geometrical mean permeability, are shown to be functions of a single dimensionless time lag of the maximum pressure response. For large dimensionless time lags, the ratio of dimensionless permeabilities approaches the value ..pi..e and simple geometric relationships may be used to predict either compressibility or formation thickness.

Stegemeier, G.L.

1982-09-01T23:59:59.000Z

48

Geothermal field tests: heat exchanger evaluation  

DOE Green Energy (OSTI)

Results of the heat exchanger tests conducted on a scale model of a heat exchanger that has been designed and fabricated for the Geothermal Test Facility show that this exchanger will lose 60% of its heat transfer capability and fall below design requirements after 92 hours of operation. When the test exchanger was clean and operating as close as possible to design conditions, its overall heat transfer coefficient was 426 BTU/hr-ft/sup 2/ - /sup 0/f. when calculating in the fouling factor of .0035 this gave a design coefficient of 171 BTU/hr-ft/sup 2/ - /sup 0/f which was reached after less than four days of steady state operation. Thermal shocking of the test heat exchanger once each hour while the exchanger was operating at design conditions had no effect on scale removal or heat transfer. Results of tube cleaning showed that chemical treatment with 30% hydrochloric acid followed by a high pressure water jet (6000 psig), was effective in removing scale from tubes contacted with geothermal brine. After cleaning, the tubes were examined and some pitting was observed throughout the length of one tube.

Felsinger, D.E.

1973-07-06T23:59:59.000Z

49

Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests  

SciTech Connect

The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

Wright, A. D.; Fingersh, L. J.

2008-03-01T23:59:59.000Z

50

DOE/RMOTC/05.98001 Hydro-Balanced Stuffing Box Field Test Field Test Project Report  

NLE Websites -- All DOE Office Websites (Extended Search)

RMOTC/05.98001 RMOTC/05.98001 Hydro-Balanced Stuffing Box Field Test Field Test Project Report Date Published: May 28, 1999 Leo A. Giangiacomo, P.E. Rocky Mountain Oilfield Testing Center 907 N. Poplar, Suite 150 Casper, WY 82601 Distribution A. Approved for public release; Further dissemination unlimited. (Unclassified Unlimited) DOE/RMOTC/05.98001 Hydro-Balanced Stuffing Box Field Test Test Project Report Test Project Report Test Project Report Test Project Report Date Published: May 28, 1999 Leo A. Giangiacomo, P.E. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY ROCKY MOUNTAIN OILFIELD TESTING CENTER 907 N. Poplar, Suite 150 Casper, WY 82601 Work Performed Under RMOTC ERIP Funding Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

51

Construction, Field Testing, and Engineering Benefit Analysis  

E-Print Network (OSTI)

This project provides techniques to improve hot-mix asphalt (HMA) overlays specifically through the use of special additives and innovative surfacing technologies with aggregates that are locally available in Illinois. The ultimate goal is to improve pavement performance through optimized materials while also controlling cost by efficiently using local materials. Therefore, the proposed new mixes use locally available aggregates when possible. The project also considered the use of alternative aggregates such as steel slag to increase the friction quality of the HMA and therefore improve pavement performance. To evaluate the newly developed wearing course mixtures and evaluate their performance under actual traffic loading, test pavements were

High Friction; Surface Layer; Imad L. Al-qadi; Songsu Son; Thomas Zehr; Imad L. Al-qadi; Songsu Son; Thomas Zehr

2013-01-01T23:59:59.000Z

52

Test Functions Space in Noncommutative Quantum Field Theory  

E-Print Network (OSTI)

It is proven that the $\\star$-product of field operators implies that the space of test functions in the Wightman approach to noncommutative quantum field theory is one of the Gel'fand-Shilov spaces $S^{\\beta}$ with $\\beta test functions smears the noncommutative Wightman functions, which are in this case generalized distributions, sometimes called hyperfunctions. The existence and determination of the class of the test function spaces in NC QFT is important for any rigorous treatment in the Wightman approach.

M. Chaichian; M. Mnatsakanova; A. Tureanu; Yu. Vernov

2007-06-12T23:59:59.000Z

53

Status of micellar-polymer field tests: another view  

SciTech Connect

Questions are raised concerning the validity of the data and correlations and on choice of field data in correlations described in Petrol. Eng. Nov. 1979 concerning micellar-polymer field tests. The questions concern the use of incomplete field test results, selection of certain field tests and use of correlations obtained from data in 2 cases not presented consistently. This work develops different micellar-polymer field test graphs and conclusions with regard to the amount of surfactant used, correlation of mobility buffer slug size with oil recovery, effect of salinity of the reservoir, and effect of well spacing. The analysis offered indicates that use of micellar-polymer flooding as a means to provide additional energy shows potential, but determining factors for economic success will be reservoir selection and thorough process design. 13 references.

Holm, L.W.

1980-04-01T23:59:59.000Z

54

Vadose zone transport field study: Detailed test plan for simulated leak tests  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from these uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to: identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.

AL Ward; GW Gee

2000-06-23T23:59:59.000Z

55

DOE Approves Field Test for Promising Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Approves Field Test for Promising Carbon Capture Technology Approves Field Test for Promising Carbon Capture Technology DOE Approves Field Test for Promising Carbon Capture Technology November 20, 2012 - 12:00pm Addthis Washington, DC - A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide (CO2) from a pulverized coal plant has been successfully demonstrated and received Department of Energy (DOE) approval to advance to a larger-scale field test. In an $18.75 million project funded by the American Recovery and Reinvestment Act of 2009, Membrane Technology and Research Inc. (MTR) and its partners tested the Polaris™ membrane system, which uses a CO2-selective polymeric membrane (micro-porous films which act as semi-permeable barriers to separate two different mediums) material and

56

Ocean Thermal Energy Converstion (OTEC) test facilities study program. Final report. Volume II. Part B  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC test program which may include land and floating test facilities. Volume II--Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part B provides an annotated test list and describes component tests and system tests.

None

1977-01-17T23:59:59.000Z

57

Laboratory testing of the Sonnenschein charger, Part number DTL 12040  

SciTech Connect

This report describes the results of testing the Sonnenschein DTL 12040 battery charger in the Idaho National Engineering Laboratory (INEL) battery laboratory. The purpose of this testing was to evaluate the suitability of this charger for charging electric vehicle battery packs made up of Sonnenschein sealed lead acid batteries or possibly other similar batteries. This evaluation consists primarily of identifying the charge algorithm used and evaluating the resulting charge behavior. Other characteristics of the charger that could be significant are also noted. 5 figs., 2 tabs.

Hardin, J.E.; Martin, M.E.

1990-09-01T23:59:59.000Z

58

Advanced Utility Mercury-Sorbent Field-Testing Program  

Science Conference Proceedings (OSTI)

This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was purchased used and all of the equipment has nearly reached the end of its useful service.

Ronald Landreth

2007-12-31T23:59:59.000Z

59

Accelerated Stress Testing, Qualification Testing, HAST, Field Experience - What Do They All Mean? (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the need for a set of tests for modules that would predict their long term-field performance.

Wohlgemuth, J.

2013-05-01T23:59:59.000Z

60

Retrieving Storm Electric Fields from Aircraft Field Mill Data. Part I: Theory  

Science Conference Proceedings (OSTI)

It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes ...

W. J. Koshak

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Small-Scale Carbon Sequestration Field Test Yields Significant Lessons  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small-Scale Carbon Sequestration Field Test Yields Significant Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned May 20, 2009 - 1:00pm Addthis Washington, DC - The Midwest Regional Carbon Sequestration Partnership, one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon capture and storage technologies, has completed a preliminary geologic characterization and sequestration field test at FirstEnergy's R. E. Burger Plant near Shadyside, Ohio. The project provided significant geologic understanding and "lessons learned" from a region of the Appalachian Basin with few existing deep well penetrations for geologic characterization. The initial targets for the geologic storage of carbon dioxide (CO2) at the

62

The field test was conducted in the Prairie  

NLE Websites -- All DOE Office Websites (Extended Search)

field test was conducted in the Prairie Pothole Region - an area field test was conducted in the Prairie Pothole Region - an area that stretches from central Iowa into Northern Alberta, Canada, and contains thousands of shallow wetlands formed by retreating glaciers approximately 10,000 years ago. Terrestrial carbon capture and storage (CCS) involves plant removal of CO 2 from the atmosphere using photosynthesis and storing the greenhouse gas (GHG) in biomass

63

Transient Response to Localized Episodic Heating in the Tropics. Part II: Far-Field Behavior  

Science Conference Proceedings (OSTI)

In Part I of this investigation, we described the stochastic, near-field behavior of disturbances excited by randomly evolving tropical heating. In the present paper, we examine how these disturbances are modified as they propagate through the ...

Rolando R. Garcia; Murry L. Salby

1987-01-01T23:59:59.000Z

64

Faith in the algorithm, part 1: beyond the turing test  

Science Conference Proceedings (OSTI)

Since the Turing test was first proposed by Alan Turing in 1950, the goal of artificial intelligence has been predicated on the ability for computers to imitate human intelligence. However, the majority of uses for the computer can be said to fall outside the domain of human abilities and it is exactly outside of this domain where computers have demonstrated their greatest contribution. Another definition for artificial intelligence is one that is not predicated on human mimicry, but instead, on human amplification, where the algorithms that are best at accomplishing this are deemed the most intelligent. This article surveys various systems that augment human and social intelligence.

Rodriguez, Marko A [Los Alamos National Laboratory; Pepe, Alberto [UCLA

2009-01-01T23:59:59.000Z

65

Hanna, Wyoming underground coal gasification data base. Volume 2. The Hanna I field test  

SciTech Connect

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Based on the recommendations of A.D. Little, Inc. in a 1971 report prepared for the US Bureau of Mines, the Hanna I test represented the first field test in reestablishing a field program by the US Bureau of Mines. The test was directed toward comparing results from a thick subbitiminous coal seam with those obtained during the field test series conducted at Gorgas, AL, in the 1940's and 1950's. Hanna I was conducted from March 1973 through February 1974. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facility description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 9 refs., 10 figs., 4 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01T23:59:59.000Z

66

NETL: Carbon Storage - Small-Scale Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Small-Scale Field Tests Small-Scale Field Tests Carbon Storage Small-Scale Field Tests The U.S. Department of Energy (DOE) is supporting a number of small-scale field tests (injection of less than 500,000 million metric tons of CO2 per year) to explore various geologic CO2 storage opportunities within the United States and portions of Canada. DOE's small-scale field test efforts are designed to demonstrate that regional reservoirs have the capability to store thousands of years of CO2 emissions and provide the basis for larger volume, commercial-scale CO2 tests. The field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The data gathered during these small-scale tests provides valuable information regarding specific formations that have historically not been evaluated for the purpose of CO2 storage. The Carbon Storage Program strategy includes an established set of field test objectives applicable to the small-scale projects:

67

FINAL STATUS OF GENERAL ENGINEERING LABORATORY AIR FLOW AND DUST TEST PROGRAM. PART I. PART II  

SciTech Connect

A full scale 15 deg sector of the P122 reactor configuration was constructed. The model was complete with respect to all internal cooling air passages, and reflectors, thermal shielding, and island reflector. The contract was terminated before any test data could be obtained. Investigation of the effect of atmospheric dust on performance of reactor systems using wire screen matrix fuel elements is reported. The interim conclusion is that dust would not limit aircraft performance or life. Work proposed but not completed is outlined. Appendices contain previously unpublished reports. (auth)

Venneman, W.F.; Lawrence, R.L.; Ryan, P.T.

1961-05-25T23:59:59.000Z

68

DOE Field Operations Program EV and HEV Testing  

SciTech Connect

The United States Department of Energy’s (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

Francfort, James Edward; Slezak, L. A.

2001-10-01T23:59:59.000Z

69

Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume II. Part A  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC Test Program which may include land and floating test facilities. The document, Volume II - Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part A contains definitions, baseline revisions, test plans, and energy utilization sections.

Not Available

1977-01-17T23:59:59.000Z

70

Field test plan: Buried waste technologies, Fiscal Year 1995  

SciTech Connect

The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management.

Heard, R.E.; Hyde, R.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Engleman, V.S.; Evans, J.D.; Jackson, T.W. [Science Applications International Corp., San Diego, CA (United States)

1995-06-01T23:59:59.000Z

71

TEST REACTORS MEETING FOR INDUSTRY, IDAHO FALLS, IDAHO, MAY 13-15, 1959. PART I. CONSTRUCTION AND OPERATION OF TEST REACTORS. PART II. UTILIZATION OF TEST REACTORS  

SciTech Connect

Twelve papers on construction and operation of test reactors and nine papers on the utilization of test reactors are presented.(W.D.M.)

1959-10-31T23:59:59.000Z

72

Seasonal variations of grounding parameters by field tests  

SciTech Connect

The past fifteen years have seen considerable research in the area of substation grounding design, analysis and testing. These research include the revision of the IEEE Std.-80, the development of PC based computer programs, the in depth analysis of grounding parameters and the development of new field testing methods and devices. In spite of these advances, several questions were often asked, primarily due to safety concerns. The questions were related to the seasonal variation of critical grounding parameters such as the soil and gravel resistivities and their influence on the body current in an accidental circuit. There was also a need to study the total behavior of a substation ground grid with respect to different weather conditions by performing field tests. In response to the above needs, a comprehensive field test program was developed and implemented. The field test consisted of flowing approximately 150 amperes through the Texas Valley ground grid from a remote substation. The parameters investigated in this project were the grid impedance, the grid potential rise (GPR) , the fault current distribution, the touch/step voltages, the body current on different gravel beds and the soil/gravel resistivities. The measurements were performed in the rainy, winter and summer weather conditions during 1989--1990. The field test results, overall, indicate that the rainy weather is the worst condition for the substation safety because of the substantial reduction in the protective characteristics of the gravel. Among the gravel types, the washed gravel has much superior protective characteristics compared to the crusher run type of gravel. A comparison of SGSYS computed grounding parameters with measured results indicates that the grid resistance and GPR compare well but the computed touch voltage and body current are substantially higher than the measured values.

Patel, S.G. (Georgia Power Co., Forest Park, GA (United States). Research Center)

1992-07-01T23:59:59.000Z

73

Capacity degradation of field-tested silica gel samples  

DOE Green Energy (OSTI)

Researchers at the Solar Energy Research Institute (SERI) have begun preliminary studies to quantify the effect of contamination of silica gel used in dehumidification processes of desiccant cooling systems. Sorption capacity degradation of field tested samples was measured, and the source of degradation was quantified using surface analysis experimental methods.

Penney, T.R.; Pesaran, A.A.; Thomas, T.M.

1985-06-01T23:59:59.000Z

74

FIELD OBSERVATIONS OF GAS-CONDENSATE WELL TESTING  

E-Print Network (OSTI)

, a commercial simulator was used to perform phase- equilibrium and property calculations based on the PengFIELD OBSERVATIONS OF GAS- CONDENSATE WELL TESTING A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY-point pressure is impacted severely due to condensate banking around the wellbore. Condensate banking also

75

Gas characterization system 241-AN-105 field acceptance test procedure  

DOE Green Energy (OSTI)

This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AN-105. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

Schneider, T.C.

1996-03-01T23:59:59.000Z

76

Gas characterization system 241-AW-101 field acceptance test procedure  

DOE Green Energy (OSTI)

This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AW-101. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

Schneider, T.C.

1996-03-01T23:59:59.000Z

77

Spatially Variable Advection Correction of Radar Data. Part II: Test Results  

Science Conference Proceedings (OSTI)

The spatially variable advection-correction/analysis procedure introduced in Part I is tested using analytical reflectivity blobs embedded in a solid-body vortex, and Terminal Doppler Weather Radar (TDWR) and Weather Surveillance Radar-1988 ...

Alan Shapiro; Katherine M. Willingham; Corey K. Potvin

2010-11-01T23:59:59.000Z

78

Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume II. Part C  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC Test Program which may include land and floating test facilities. Volume II--Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part C describes test facility support, data acquisition and control system design, cost data, energy self-sufficiency, and test facility applications.

None

1977-01-17T23:59:59.000Z

79

SOLERAS - Solar Cooling Engineering Field Test Project: Honeywell Technology Strategy Center. Final report, Volume 2. Engineering field test  

Science Conference Proceedings (OSTI)

The SOLERAS solar cooling system at Arizona Public Service Company in Phoenix, Arizona, was subjected to engineering field testing for a period of 18 months. Although some problems arose, which is typical with a new engineering model, the system generally ran well. This document describes the work completed in all three phases of this program, which included the preliminary analysis and detailed design of the solar cooling system, installation, testing, and data analysis.

Not Available

1982-01-01T23:59:59.000Z

80

Prototype Engineered Barrier System Field Test (PEBSFT); Final report  

SciTech Connect

This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity and attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT.

Ramirez, A.L. [ed.; Buscheck, T.; Carlson, R.; Daily, W.; Lee, K.; Lin, Wunan; Mao, Nai-hsien; Ueng, Tzou-Shin; Wang, H.; Watwood, D.

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wind tunnel test of 1/30 scale heliostat field array model. Test report  

DOE Green Energy (OSTI)

From 9 January through 20 January 1978, Honeywell conducted a wind tunnel test on a 1/30 scale partial heliostat field. The heliostats were per Honeywell's design developed under the 10 megawatt central receiver pilot electrical power plant subsystem research experiment contract. Likewise, the scaled section of the field geometry duplicated the proposed circular layout. Testing was conducted at the Georgia Institute of Technology's 9 foot subsonic tunnel. The objective of the test was to ascertain from a qualitative standpoint the field effects upon wind loading within a heliostat field. To accomplish this, numerous pressure tap measurements at different heights and at different field positions were taken with varying wind speeds, fence designs, and heliostat gimbal orientations. The Department of Energy specified boundary layer profile was also scaled by 1/30 in order to simulate the total wind effects as accurately as possible taking into account the potentially severe scaling or Reynolds number effects at a 1/30 scale. After initial model set-up within the tunnel and scaled boundary layer generated, 91 separate runs were accomplished. The results do demonstrate the high sensitivity of wind loading upon the collector field due to the actual heliostat orientation and fence geometry. Vertical pressure gradients within the model field and flow reentry angles provide a good qualitative feel as to the full scale environment that might be expected and point to the need for specific additional testing to further explore potentially dangerous conditions.

Brown, G. L.

1978-02-22T23:59:59.000Z

82

A Single Universal Force Field Can Uniquely Orient Non-Symmetric Parts  

E-Print Network (OSTI)

of Washington, Seattle, WA 98195-2500, karl@ee.washington.edu ¤ Department of Computer Science, Dartmouth College, Hanover, NH 03755-3510, brd@cs.dartmouth.edu ¥ Department of Computer Science, Rice University grippers, conveyor belts, or vibratory bowl feeders, these devices generate force fields in which the parts

Richardson, David

83

Field Testing: Independent, Accredited Testing and Validation for the Wind Industry (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the field testing capabilities at the National Wind Technology Center (NWTC). NREL's specialized facilities and personnel at the NWTC provide the U.S. wind industry with scientific and engineering support that has proven critical to the development of wind energy for U.S. energy needs. The NWTC's specialized field-testing capabilities have evolved over 30 years of continuous support by the U.S. Department of Energy Wind and Hydropower Technologies Program and long standing industry partnerships. The NWTC provides wind industry manufacturers, developers, and operators with turbine and component testing all in one convenient location. Although industry utilizes sophisticated modeling tools to design and optimize turbine configurations, there are always limitations in modeling capabilities, and testing is a necessity to ensure performance and reliability. Designs require validation and testing is the only way to determine if there are flaws. Prototype testing is especially important in capturing manufacturing flaws that might require fleet-wide retrofits. The NWTC works with its industry partners to verify the performance and reliability of wind turbines that range in size from 400 Watts to 3 megawatts. Engineers conduct tests on components and full-scale turbines in laboratory environments and in the field. Test data produced from these tests can be used to validate turbine design codes and simulations that further advance turbine designs.

Not Available

2011-11-01T23:59:59.000Z

84

High-temperature turbine technology program hot-gas path development test. Part II. Testing  

SciTech Connect

This topical report of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) Phase II program presents the results of testing full-scale water-cooled first-stage and second-stage turbine nozzles at design temperature and pressure to verify that the designs are adequate for operation in a full-scale turbine environment. Low-cycle fatigue life of the nozzles was demonstrated by subjecting cascade assemblies to several hundred simulated startup/shutdown turbine cycles. This testing was accomplished in the Hot-Gas Path Development Test Stand (HGPDTS), which is capable of evaluating full-scale combustion and turbine nozzle components. A three-throat cascade of the first-stage turbine nozzle was successfully tested at a nozzle inlet gas temperature of 2630/sup 0/F and a nozzle inlet pressure of 11.3 atmospheres. In addition to steady-state operation at the design firing temperature, the nozzle cascade was exposed to a simulated startup/shutdown turbine cycle by varying the firing temperature. A total of 42 h at the design point and 617 thermal cycles were accumulated during the test periods. First-stage nozzle test results show that measured metal and coolant temperatures correspond well to the predicted design values. This nozzle design has been shown to be fully satisfactory for the application (2600/sup 0/F), with growth capability to 3000/sup 0/F firing temperature. A post-test metallurgical examination of sectioned portions of the tested nozzles shows a totally bonded structure, confirming the test results and attesting to the successful performance of water-cooled composite nozzle hardware.

Horner, M.W.

1982-03-01T23:59:59.000Z

85

Evaluation of a Decoupling-Based Fault Detection and Diagnostic Technique - Part II: Field Evaluation and Application  

E-Print Network (OSTI)

Existing methods addressing automated fault detection and diagnosis (FDD) for vapor compression air conditioning system have good performance for faults that occur individually, but they have difficulty in handling multiple-simultaneous faults. The decoupling-based (DB) FDD method explicitly addresses diagnostics for multiple-simultaneous faults for the first time. This paper is the second part of a two-part evaluation of the decoupling-based (DB) fault detection and diagnosis (FDD) technique whose intent is to validate the DB FDD performance and demonstrate its applications. The first part focuses on sensitivity and robustness evaluation through controlled field emulation testing. In this paper, the technique is applied to a number of field sites in California. Detailed results are given for a single site and summary results are given for the other sites. In sum, about 70% of the investigated systems are impacted by faults and about 40% have more than one fault. Service is justified for about 40% of the units. Most of the diagnosed faults are verified through field visits.

Li, H.; Braun, J.

2006-01-01T23:59:59.000Z

86

Nevada National Security Site Nuclear Testing Artifacts Become Part of U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada National Security Site Nuclear Testing Artifacts Become Part Nevada National Security Site Nuclear Testing Artifacts Become Part of U.S. Cultural Archive Nevada National Security Site Nuclear Testing Artifacts Become Part of U.S. Cultural Archive April 1, 2012 - 12:00pm Addthis Stanchions are among the remnants of Smoky Tower. Stanchions are among the remnants of Smoky Tower. LAS VEGAS, NV - The Nevada National Security Site's (NNSS) historic Smoky site may soon join a long list of former nuclear testing locations eligible for inclusion in the National Register of Historic Places. The Desert Research Institute (DRI) is currently working alongside the Nevada Site Office (NSO) to determine the eligibility of Smoky and a number of other EM sites slated for cleanup and closure. "In the last year, we've conducted assessments at over 30 EM sites,"

87

Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study  

DOE Green Energy (OSTI)

As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.

Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.

2011-01-01T23:59:59.000Z

88

Field test of cosurfactant-enhanced alkaline flooding  

Science Conference Proceedings (OSTI)

To demonstrate that cosurfactant-enhanced alkaline flooding is viable in recovering waterflood residual oil from sandstone reservoirs in the near-offshore Gulf of Mexico, a series of tests is being conducted in the White Caste field, Louisiana. The strategy adopted was to pilot the technology in three stages: (1) a flood without polymer to prove features of the process unrelated to achieving mobility control, (2) a test of process polymer injectivity in the same reservoir, and (3) a full process demonstration in a shallower sand. The first phase of the pilot is described in this paper; pilot design, slug formulation, and operations are summarized and key responses are documented and interpreted. Ref. 2 describes the polymer injectivity test. The final pilot stage has not been initiated yet.

Falls, A.H.; Thigpen, D.R.; Nelson, R.C.; Ciaston, J.W.; Lawson, J.B.; Good, P.A.; Ueber, R.C.; Shahin, G.T.

1994-08-01T23:59:59.000Z

89

Pretest Caluculations of Temperature Changes for Field Thermal Conductivity Tests  

Science Conference Proceedings (OSTI)

A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transport properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J {center_dot} m{sup -3} {center_dot} K{sup -1}), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result.

N.S. Brodsky

2002-07-17T23:59:59.000Z

90

Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site  

DOE Green Energy (OSTI)

Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

Murphy, R.W.; Domingo, N.

1982-05-01T23:59:59.000Z

91

Field investigation at the Faultless Site Central Nevada Test Area  

DOE Green Energy (OSTI)

An evaluation of groundwater monitoring at non-Nevada Test Site underground nuclear test sites raised questions about the potential for radionuclide migration from the Faultless event and how to best monitor for such migration. With its long standing interest in the Faultless area and background in Nevada hydrogeology, the Desert Research Institute conducted a field investigation in FY92 to address the following issues: The status of chimney infilling (which determines the potential for migration); the best level(s) from which to collect samples from the nearby monitoring wells, HTH-1 and HTH-2; the status of hydraulic heads in the monitoring well area following records of sustained elevated post-shot heads. The field investigation was conducted from July 27 to 31 and August 4 to 7, 1992. Temperature and electrical conductivity logging were performed in HTH-1, HTH-2, and UC-1-P-2SR. Water samples were collected from HTH-1 and HTH-2. Lawrence Livermore National Laboratory (LLNL) also collected samples during the July trip, including samples from UC-1-P-2SR. This report presents the data gathered during these field excursions and some preliminary conclusions. Full interpretation of the data in light of the issues listed above is planned for FY93.

Chapman, J.B.; Mihevc, T.M.; Lyles, B.

1992-11-01T23:59:59.000Z

92

FIELD INVESTIGATION AT THE FAULTLESS SITE CENTRAL NEVADA TEST  

NLE Websites -- All DOE Office Websites (Extended Search)

FIELD FIELD INVESTIGATION AT THE FAULTLESS SITE CENTRAL NEVADA TEST AREA DOEINV/10845--T3 DE93 005915 by JennyB. Chapman, Thdd M. Mihevc and Brad Lyles Water Resources Center Desert Research Institute DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring

93

Surface Meteorological Observations in Severe Thunderstorms. Part II: Field Experiments with TOTO  

Science Conference Proceedings (OSTI)

The TOTO (Totable Tornado Observatory) device was field tested in the Southern Plains by a severe-storm intercept team from the University of Oklahoma from late May through early June 1981. The results from two intercept missions and a gust-front ...

Howard B. Bluestein

1983-05-01T23:59:59.000Z

94

Operation and design of selected industrial process heat field tests  

DOE Green Energy (OSTI)

The DOE program of solar industrial process heat field tests has shown solar energy to be compatible with numerous industrial needs. Both the operational projects and the detailed designs of systems that are not yet operational have resulted in valuable insights into design and hardware practice. Typical of these insights are the experiences discussed for the four projects reviewed. Future solar IPH systems should benefit greatly not only from the availability of present information, but also from the wealth of operating experience from projects due to start up in 1981.

Kearney, D. W.

1981-02-01T23:59:59.000Z

95

System Identification of Alfred Zampa Memorial Bridge Using Dynamic Field Test Data  

E-Print Network (OSTI)

Bridge Using Dynamic Field Test Data by Xianfei He 1 , Babak80. A set of dynamic field tests were conducted on the AZMBto traffic. These tests provided a unique opportunity to

He, Xianfei; Moaveni, Babak; Conte, Joel P; Elgamal, Ahmed; Masri, Sami F.

2009-01-01T23:59:59.000Z

96

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results  

Science Conference Proceedings (OSTI)

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

Gary M. Blythe

2006-03-01T23:59:59.000Z

97

Towards an empirical method of efficiency testing of system parts: A methodological study  

Science Conference Proceedings (OSTI)

Current usability evaluation methods are essentially holistic in nature. However, engineers that apply a component-based software engineering approach might also be interested in understanding the usability of individual parts of an interactive system. ... Keywords: Efficiency, Empirical method, HCI methodology, Log file analysis, Usability evaluation method, Usability testing

Willem-Paul Brinkman; Reinder Haakma; Don G. Bouwhuis

2007-05-01T23:59:59.000Z

98

Enhancing Building Operations Through Automated Diagnostics: Field Test Results  

E-Print Network (OSTI)

The Whole Building Diagnostician (WBD) is a modular diagnostic software system that provides detection and diagnosis of problems with the operation of heating, ventilation, and air-conditioning (HVAC) systems and major energy end-uses. It has been extensively field tested and demonstrated in buildings over the past several years. WBD found problems with many air-handling units at all sites. The problems ranged from a simple set point deviation to improper implementation of controls. The results from these demonstrations, along with the feedback from building operators and managers on the use of diagnostic tools, are presented in the paper. Experience from field tests indicates that providing diagnostic tools to building operators can increase their awareness of equipment faults, but it will not by itself solve the problems of inefficient operations. Changes in operation and maintenance practices and behavior are needed. We discuss how these new technologies might be delivered and used more effectively to better manage facilities, improving their condition and increasing their energy efficiency.

Katipamula, S.; Brambley, M. R.; Bauman, N.; Pratt, R. G.

2003-01-01T23:59:59.000Z

99

Field Testing of Nano-PCM Enhanced Building Envelope Components  

SciTech Connect

The U.S. Department of Energy s (DOE) Building Technologies Program s goal of developing high-performance, energy efficient buildings will require more cost-effective, durable, energy efficient building envelopes. Forty-eight percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field-testing of prototype envelope components is an important step in estimating their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility at Charleston, SC. The first test wall was divided into four sections, which were separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCM-enhanced wallboards: one was a three-layer structure, in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheets-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side, which served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. Further, numerical modeling of the walls containing the nano-PCM wallboards were performed to determine their actual impact on wall-generated heating and cooling loads. The models were first validated using field data, and then used to perform annual simulations using Typical Meteorological Year (TMY) weather data. This article presents the measured performance and numerical analysis to evaluate the energy-saving potential of the nano-PCM-enhanced building components.

Biswas, Kaushik [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL

2013-08-01T23:59:59.000Z

100

Cooperative field test program for wind systems. Final report  

DOE Green Energy (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS  

DOE Green Energy (OSTI)

Western Research Institute (WRI) has developed a new commercial product ready for technology transfer, the Diesel Dog{reg_sign} Portable Soil Test Kit, for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to the technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated as ASTM Method D 5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In June 2001, the Diesel Dog technology won an American Chemical Society Regional Industrial Innovations Award. To gain field experience with the new technology, Diesel Dog kits have been used for a variety of site evaluation and cleanup activities. Information gained from these activities has led to improvements in hardware configurations and additional insight into correlating Diesel Dog results with results from laboratory methods. The Wyoming Department of Environmental Quality (DEQ) used Diesel Dog Soil Test Kits to guide cleanups at a variety of sites throughout the state. ENSR, of Acton, Massachusetts, used a Diesel Dog Portable Soil Test Kit to evaluate sites in the Virgin Islands and Georgia. ChemTrack and the U.S. Army Corps of Engineers successfully used a test kit to guide excavation at an abandoned FAA fuel-contaminated site near Fairbanks, Alaska. Barenco, Inc. is using a Diesel Dog Portable Soil Test Kit for site evaluations in Canada. A small spill of diesel fuel was cleaned up in Laramie, Wyoming using a Diesel Dog Soil Test Kit.

Susan S. Sorini; John F. Schabron; Joseph F. Rovani, Jr.

2002-09-30T23:59:59.000Z

102

Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests  

Science Conference Proceedings (OSTI)

This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptual models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.

Ward, Anderson L.; Gee, Glendon W.

2000-06-23T23:59:59.000Z

103

Documentation of the Irvine Integrated Corridor Freeway Ramp Metering and Arterial Adaptive Control Field Operational Test  

E-Print Network (OSTI)

Integrated Ramp Metering/Adaptive Signal Control FieldIntegrated Ramp Metering/Adaptive Signal Control FieldTest Plan," Integrated Ramp Metering/Adaptive Signal Control

McNally, M. G.; Moore, II, James E.; MacCarley, C. Arthur

2001-01-01T23:59:59.000Z

104

Lithium bromide absorption chiller passes gas conditioning field test  

Science Conference Proceedings (OSTI)

A lithium bromide absorption chiller has been successfully used to provide refrigeration for field conditioning of natural gas. The intent of the study was to identify a process that could provide a moderate level of refrigeration necessary to meet the quality restrictions required by natural-gas transmission companies, minimize the initial investment risk, and reduce operating expenses. The technology in the test proved comparatively less expensive to operate than a propane refrigeration plant. Volatile product prices and changes in natural-gas transmission requirements have created the need for an alternative to conventional methods of natural-gas processing. The paper describes the problems with the accumulation of condensed liquids in pipelines, gas conditioning, the lithium bromide absorption cycle, economics, performance, and operating and maintenance costs.

Lane, M.J.; Huey, M.A. [Nicol and Associates, Richardson, TX (United States)

1995-07-31T23:59:59.000Z

105

Field Operations Program - U.S. Postal Service - Fountain Valley Electric Carrier Route Vehicle Testing  

Science Conference Proceedings (OSTI)

The United States Postal Service (USPS) has ordered 500 light-duty electric carrier route vehicles (ECRV) mostly for their delivery carriers to use in several California locations. The 500 ECRVs have been defined as a demonstration fleet to support a decision of potentially ordering 5,500 additional ECRVs. Several different test methods are being used by the USPS to evaluate the 500-vehicle deployment. One of these test methods is the ECRV Customer Acceptance Test Program at Fountain Valley, California. Two newly manufactured ECRVs were delivered to the Fountain Valley Post Office and eighteen mail carriers primarily drove the ECRVs on ''park and loop'' mail delivery routes for a period of 2 days each. This ECRV testing consisted of 36 route tests, 18 tests per vehicle. The 18 mail carriers testing the ECRVs were surveyed for the opinions on the performance of the ECRVs. The U.S. Department of Energy, through its Field Operations Program, is supporting the USPS's ECRV testing activities both financially and with technical expertise. As part of this support, Field Operations Program personnel at the Idaho National Engineering and Environmental Laboratory have compiled this report based on the data generated by the USPS and its testing contractor (Ryerson, Master and Associates, Inc.) During the 36 route tests, the two test vehicles were driven a total of 474 miles, averaging 13 mile per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of-Charge (SOC) data was collected for only 28 of the route tests. During these 28 tests, the ECRVs were driven a total of 447 miles. The SOC used during the 28 tests averaged a 41% decrease and the average distance driven was 16 miles. This suggests that a 16-mile route uses almost half of the ECRV's battery energy. The 18 carriers also rated 12 ECRV traits that included the physical design of the ECRVs as well as their performance. Based on a scale of 1 being the lowest and 5 being highest, or best, the overall average score for the ECRV was 4.3. The report also included individual comments from the ECRV drivers.

Francfort, J.E.

2002-01-21T23:59:59.000Z

106

Field Operations Program - US Postal Service Fountain Valley Electric Carrier Route Vehicle Testing  

SciTech Connect

The United States Postal Service (USPS) has ordered 500 light-duty electric carrier route vehicles (ECRV) mostly for their delivery carriers to use in several California locations. The 500 ECRVs have been defined as a demonstration fleet to support a decision of potentially ordering 5,500 additional ECRVs. Several different test methods are being used by the USPS to evaluate the 500-vehicle deployment. One of these test methods is the ECRV Customer Acceptance Test Program at Fountain Valley, California. Two newly manufactured ECRVs were delivered to the Fountain Valey Post Office and eighteen mail carriers primarily drove the ECRVs on "park and loop" mail delivery routes for a period of 2 days each. This ECRV testing consisted of 36 route tests, 18 tests per vehicle. The 18 mail carriers testing the ECRVs were surveyed for the opinions on the performance of the ECRVs. The U.S. Department of Energy, through its Field Operations Program, is supporting the USPS's ECRV testing activities both financially and with technical expertise. As part of this support, Field Operations Program personnel at the Idaho National Engineering and Environmental Laboratory have compiled this report based on the data generated by the USPS and its testing contractor (Ryerson, Master and Associates, Inc.) During the 36 route tests, the two test vehicles were driven a total of 474 miles, averaging 13 mile per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of-Charge (SOC) data was collected for only 28 of the route tests. During these 28 tests, the ECRVs were driven a total of 447 miles. The SOC used during the 28 tests averaged a 41% decrease and the average distance driven was 16 miles. This suggests that a 16-mile route uses almost half of the ECRV's battery energy. The 18 carriers also rated 12 ECRV traits that included the physical design of the ECRVs as well as their performance. Based on a scale of 1 being the lowest and 5 being highest, or best, the overall average score for the ECRV was 4.3. The report also included individual comments from the ECRV drivers.

Francfort, James Edward

2002-01-01T23:59:59.000Z

107

FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS  

SciTech Connect

Western Research Institute (WRI) is commercializing Diesel Dog Portable Soil Test Kits for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to the technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated ASTM Method D-5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In FY 99, twenty-five preproduction kits were successfully constructed in cooperation with CF Electronics, Inc., of Laramie, Wyoming. The kit components work well and the kits are fully operational. In the calendar year 2000, kits were provided to the following entities who agreed to participate as FY 99 and FY 00 JSR (Jointly Sponsored Research) cosponsors and use the kits as opportunities arose for field site work: Wyoming Department of Environmental Quality (DEQ) (3 units), F.E. Warren Air Force Base, Gradient Corporation, The Johnson Company (2 units), IT Corporation (2 units), TRC Environmental Corporation, Stone Environmental, ENSR, Action Environmental, Laco Associates, Barenco, Brown and Caldwell, Dames and Moore Lebron LLP, Phillips Petroleum, GeoSyntek, and the State of New Mexico. By early 2001, ten kits had been returned to WRI following the six-month evaluation period. On return, the components of all ten kits were fully functional. The kits were upgraded with circuit modifications, new polyethylene foam inserts, and updated instruction manuals.

Unknown

2001-05-31T23:59:59.000Z

108

Field testing advanced geothermal turbodrill (AGT). Phase 1 final report  

DOE Green Energy (OSTI)

Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

Maurer, W.C.; Cohen, J.H.

1999-06-01T23:59:59.000Z

109

NREL Gearbox Reliability Collaborative: Comparing In-Field Gearbox Response to Different Dynamometer Test Conditions: Preprint  

DOE Green Energy (OSTI)

This paper presents the results of NREL's Gearbox Reliability Collaborative comparison of dynamometer tests conducted on a 750-kW gearbox to field testing.

LaCava, W.; van Dam, J.; Wallen, R.; McNiff, B.

2011-08-01T23:59:59.000Z

110

Dynamical response of the "GGG" rotor to test the Equivalence Principle: theory, simulation and experiment. Part I: the normal modes  

E-Print Network (OSTI)

Recent theoretical work suggests that violation of the Equivalence Principle might be revealed in a measurement of the fractional differential acceleration $\\eta$ between two test bodies -of different composition, falling in the gravitational field of a source mass- if the measurement is made to the level of $\\eta\\simeq 10^{-13}$ or better. This being within the reach of ground based experiments, gives them a new impetus. However, while slowly rotating torsion balances in ground laboratories are close to reaching this level, only an experiment performed in low orbit around the Earth is likely to provide a much better accuracy. We report on the progress made with the "Galileo Galilei on the Ground" (GGG) experiment, which aims to compete with torsion balances using an instrument design also capable of being converted into a much higher sensitivity space test. In the present and following paper (Part I and Part II), we demonstrate that the dynamical response of the GGG differential accelerometer set into supercritical rotation -in particular its normal modes (Part I) and rejection of common mode effects (Part II)- can be predicted by means of a simple but effective model that embodies all the relevant physics. Analytical solutions are obtained under special limits, which provide the theoretical understanding. A simulation environment is set up, obtaining quantitative agreement with the available experimental data on the frequencies of the normal modes, and on the whirling behavior. This is a needed and reliable tool for controlling and separating perturbative effects from the expected signal, as well as for planning the optimization of the apparatus.

G. L. Comandi; M. L. Chiofalo; R. Toncelli; D. Bramanti; E. Polacco; A. M. Nobili

2006-01-18T23:59:59.000Z

111

Advanced Rooftop Control (ARC) Retrofit: Field-Test Results  

Science Conference Proceedings (OSTI)

The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

2013-07-31T23:59:59.000Z

112

A Field-Coherence Technique for Meteorological Field-Program Design for Air Quality Studies. Part II: Evaluation in the San Joaquin Valley  

Science Conference Proceedings (OSTI)

In Part I of this paper, a field-coherence technique (FCT) was developed to provide objective guidance for cost-effective siting of meteorological observations on the mesoscale for air quality applications. The FCT is evaluated here in Part II ...

Saffet Tanrikulu; David R. Stauffer; Nelson L. Seaman; Andrew J. Ranzieri

2000-03-01T23:59:59.000Z

113

Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test  

Science Conference Proceedings (OSTI)

In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified form of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.

Booker, Kayje; Han, Tae Won; Granderson, Jessica; Jones, Jennifer; Lsk, Kathleen; Yang, Nina; Gadgil, Ashok

2011-06-01T23:59:59.000Z

114

Ball Rust Test(ASTM D 6557) FIELD SERVICE SIMULATED  

E-Print Network (OSTI)

-controlled shaker table. A syringe pump is used to inject acid into the test oil. In addition, a compressed air the Sequence IID (ASTM D 5844) gaso- line engine test, and evaluates the ability of an oil to prevent with regard to rusting. TEST PARAMETERS Tests are run for 18 hours with the test oil environment controlled

Chapman, Clark R.

115

A Technique for Analyzing Optimal Relationships among Multiple Sets of Data Fields. Part H: A Reliability Case Study  

Science Conference Proceedings (OSTI)

In Part I a multiple-set canonical correlation analysis (MCCA) was proposed to generalize the conventional two-set canonical correlation analysis. The MCCA seeks the optimal correlation among more than two data fields through a diagonalization of ...

Jeng-Ming Chen; C-P. Chang

1994-11-01T23:59:59.000Z

116

Measurements of OH and HO2 concentrations during the MCMA-2006 field campaign – Part 2: Model comparison and radical budget  

E-Print Network (OSTI)

Measurements of hydroxyl (OH) and hydroperoxy (HO2) radicals were made during the Mexico City Metropolitan Area (MCMA) field campaign as part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) ...

Dusanter, S.

117

NREL: Performance and Reliability R&D - Field Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

testing-Long-term testing of PV arrays to evaluate degradation rates. Contact Dirk Jordan. Real-Time Meteorological and Irradiance Monitoring (RMIS)-Monitoring and recording of...

118

An Experimental Evaluation of HVAC-Grade Carbon-Dioxide Sensors: Part 2, Performance Test Results  

Science Conference Proceedings (OSTI)

This is the second paper in a four-part series reporting on the test and evaluation of typical carbon-dioxide sensors used in building HVAC applications. Fifteen models of NDIR HVAC-grade CO2 sensors were tested and evaluated to determine the accuracy, linearity, repeatability, and hysteresis of each sensor. This paper describes the performance of the sensors and provides a comparison with the manufacturers specifications. The sensors were tested at 40% relative humidity, 73oF (22.8oC) temperature, 14.70 psia (101.35 kPa) pressure, and at five different CO2 concentrations (400 ppm, 750 ppm, 1100 ppm, 1450 ppm, and 1800 ppm). The test results showed a wide variation in sensor performance among the various manufacturers and in some cases a wide variation among sensors of the same model. In all, 45 sensors were evaluated: three from each of the 15 models. Among the 15 models tested, eight models have a single-lamp, single-wavelength configuration, four models have a dual-lamp, single-wavelength configuration, and three models have a single-lamp, dual-wavelength configuration.

Shrestha, Som S [ORNL; Maxwell, Dr. Gregory [Iowa State University

2010-01-01T23:59:59.000Z

119

Superconducting magnet development capability of the LLNL (Lawrence Livermore National Laboratory) High Field Test Facility  

SciTech Connect

This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility.

Miller, J.R.; Shen, S.; Summers, L.T.

1990-02-01T23:59:59.000Z

120

Smart Infrared Inspection System Field Operational Test Final Report  

SciTech Connect

The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thermal regime of the NW shelf of the Gulf of Mexico. Part A: Thermal and pressure fields  

E-Print Network (OSTI)

Thermal regime of the NW shelf of the Gulf of Mexico. Part A: Thermal and pressure fields LAURENT HUSSON 1,2 , PIERRE HENRY 1 and XAVIER LE PICHON1 Keywords. ­ Gulf of Mexico, Geotherm, Pressure. Abstract. ­ The thermal field of the Gulf of Mexico (GoM) is analyzed from a comprehensive temperature

Husson, Laurent

122

Automated Critical Peak Pricing Field Tests: Program Description and Results  

E-Print Network (OSTI)

Usage: The total effective energy charge for usage duringUsage: The total effective energy charge for usage duringtotal effective TOU energy rates through offsetting summer on-peak and part-peak rate credits for usage

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

2006-01-01T23:59:59.000Z

123

BOBCAT Personal Radiation Detector Field Test and Evaluation Campaign  

SciTech Connect

Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as “Pagers.” This test, “Bobcat,” was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS.

Chris Hodge

2008-03-01T23:59:59.000Z

124

Design concepts for a pulse power test facility to simulate EMP surges. Part II. Slow pulses  

SciTech Connect

The work described in this report was sponsored by the Division of Electric Energy Systems (EES) of the US Department of Energy (DOE) through a subcontract with the Power Systems Technology Program at the Oak Ridge National Laboratory (ORNL). The work deals with the effect of high altitude nuclear bursts on electric power systems. In addition to fast voltage transients, slow, quasi-dc currents are also induced into extended power systems with grounded neutral connections. Similar phenomena at lower magnitude are generated by solar induced electromagnetic pulses (EMP). These have caused power outages, related to solar storms, at northern latitudes. The applicable utility experience is reviewed in order to formulate an optimum approach to future testing. From a wide variety of options two pulser designs were selected as most practical, a transformer-rectifier power supply, and a lead acid battery pulser. both can be mounted on a trailer as required for field testing on utility systems. The battery system results in the least cost. Testing on power systems requires that the dc pulser pass high values of alternating current, resulting from neutral imbalance or from potential fault currents. Batteries have a high ability to pass alternating currents. Most other pulser options must be protected by an ac bypass in the form of an expensive capacitor bank. 8D truck batteries can meet the original specification of 1 kA test current. Improved batteries for higher discharge currents are available.

Dethlefsen, R.

1985-10-01T23:59:59.000Z

125

Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project  

SciTech Connect

This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

1993-05-01T23:59:59.000Z

126

Validating surge test standards by field experience: High ...  

Science Conference Proceedings (OSTI)

... review of the statistics of the occurrence of fuse blowing, the use of ... the current in the varis- tor resulting from the three high-energy tests discussed ...

2013-05-17T23:59:59.000Z

127

Development and field testing of the high-temperature borehole televiewer  

DOE Green Energy (OSTI)

The High-Temperature Borehole Televiewer is a downhole instrument which provides acoustic pictures of the borehole walls that are suitable for casing inspection and fracture detection in geothermal wells. The Geothermal Drilling Organization has funded the development of a commercial tool survivable to temperatures up to 275{degree}C and pressures of 5000 psi. A real-time display on an IBM-compatible PC was included as part of the developmental effort. This paper describes the three principal components are: the mechanical section, the electronics, and the computer software and hardware. Each of these three components are described with special attention to important design changes most pertinent to a high temperature environment. The results of two field tests of the televiewer system are also described. 7 refs., 4 figs.

Duda, L.E.; Uhl, J.E.; Wemple, R.P.

1990-01-01T23:59:59.000Z

128

Fourth Novatek Hammer Field Test Department of Energy Well PM-2-31  

NLE Websites -- All DOE Office Websites (Extended Search)

Novatek Hammer Field Test Novatek Hammer Field Test Department of Energy Well PM-2-31 Garfield County, Colorado September, 1995 Report Prepared for Mud Hammer Development Project Partners Mobil Oil Novatek Brian Tarr, MEPTEC Drilling MOBIL EXPLORATION AND PRODUCTION TECHNICAL CENTER Dallas, Texas September 1995 Fourth Novatek Hammer Field Test Department of Energy Well PM-2-31 September 1995 Contents Page EXECUTIVE SUMMARY 3 CONCLUSIONS 4 RECOMMENDATIONS5 5 Field Test Procedure and Results 6 APPENDIX 1 - Well Data 10 APPENDIX 2 - ∆P Calculations APPENDIX 3 - Novatek hammer drawings and photo.'s Fourth Novatek Hammer Field Test Department of Energy Well PM-2-31 September 1995 EXECUTIVE SUMMARY Objectives The primary objective of the fourth field test was to establish if the threshold level of power required to increase rock bit

129

Assistance in MSD Research and Development: Part 1, Small scale research, development and testing: Final report  

SciTech Connect

The development and testing of a simple mechanical stemming aid is described. The aid comprises a solid unit placed in the stemming above the explosive column and is designed to improve blasting efficiency and reduce drilling and blasting costs. It is designed to work with back filled drill cuttings or any other suitable stemming material. To date it has consisted of the testing of the aid in small diameter (1.5 and 1.625 inch) holes in Jefferson City Dolomite for both bench and crater blasting configurations. Full scale field trials are being conducted nearby in similar rock in an aggregate quarry. The data acquisition equipment used in Phase 1 included both a Spin Physics SP2000 high speed video motion analysis system and acoustic and seismic monitoring units. Measurements for each test included peak air over pressure, ground surface ppv, stemming displacement and velocity and face movement and extent. The results illustrate that the concept is sound and that its successful application to production blasting at full scale will be a function of manufacturing cost, the development of suitable insertion techniques for large diameter boreholes and the selection of a suitable low cost material for the aid. 17 refs., 20 figs.

Worsey, P.N.; Canon, C.

1988-03-01T23:59:59.000Z

130

ANOLE Portable Radiation Detection System Field Test and Evaluation Campaign  

SciTech Connect

Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named “Anole,” it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign.

Chris A. Hodge

2007-07-12T23:59:59.000Z

131

Radiation Isotope Identification Device (RIIDs) Field Test and Evaluation Campaign  

SciTech Connect

Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign.

Christopher Hodge, Raymond Keegan

2007-08-01T23:59:59.000Z

132

Deep Frying: Chemistry, Nutrition and Practical ApplicationsChapter 17 Designing Field Frying Tests  

Science Conference Proceedings (OSTI)

Deep Frying: Chemistry, Nutrition and Practical Applications Chapter 17 Designing Field Frying Tests Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press ...

133

RDI Development: Wisdom Way Solar Village, Greenfield, Massachusetts Field Test Report  

DOE Green Energy (OSTI)

NREL, Mountain Energy Partnership, and the Consortium of Advanced Residential Buildings conducted field tests on a house in Wisdom Way Solar Village to verify energy efficiency.

Fang, X.; Hancock, E.

2009-05-01T23:59:59.000Z

134

Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system  

SciTech Connect

A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

Moreno, J.B.

1983-07-01T23:59:59.000Z

135

Field tests of a circuit breaker synchronous control  

Science Conference Proceedings (OSTI)

A circuit breaker synchronous control interface which controls the point-on-wave at which shunt reactor circuit breakers open or close has been developed and tested on Hydro-Quebec`s 735-kV power system. It takes into account the influence of outdoor temperature on the breaker closing and opening times. It is also equipped with a reignition and a high-inrush-current detection system. Opening tests at different preset arcing times were conducted and the arcing time range where there are no re-ignitions in air-blast breakers was established. The tests showed that the interface is a valuable device for the elimination of re-ignitions associated with the interruption of small inductive currents. Closing tests have shown that the interface is also useful for the limitation of high inrush currents by selecting an appropriate point-on-wave for circuit breaker closing.

Rajotte, R.J.; Charpentier, C.; Breault, S.; Le, H.H.; Huynh, H. [Hydro-Quebec, Montreal, Quebec (Canada); Desmarais, J. [Snemo Ltd., Brossard, Quebec (Canada)

1995-07-01T23:59:59.000Z

136

Disconnect Switch: laboratory testing and analysis of field aged samples  

Science Conference Proceedings (OSTI)

The work reported in this technical update is part of an ongoing Electric Power Research Institute (EPRI) effort to improve the balance of station equipment life management; this report presents results of investigations of issues, typical problems, and utility maintenance needs concerning substation high-voltage disconnect and grounding switches.This project phase included a needs assessment and research roadmap development to identify and address maintenance and other life ...

2012-12-14T23:59:59.000Z

137

A Field-Coherence Technique for Meteorological Field-Program Design for Air Quality Studies. Part I: Description and Interpretation  

Science Conference Proceedings (OSTI)

This paper describes a new methodology developed to provide objective guidance for cost-effective siting of meteorological observations on the mesoscale for air quality applications. This field-coherence technique (FCT) is based on a statistical ...

David R. Stauffer; Nelson L. Seaman; Glenn K. Hunter; S. Mark Leidner; Annette Lario-Gibbs; Saffet Tanrikulu

2000-03-01T23:59:59.000Z

138

Built-In Self-Test of Field Programmable Analog Arrays based on Transient Response Analysis  

Science Conference Proceedings (OSTI)

In this work a strategy for testing analog networks, known as Transient Response Analysis Method, is applied to test the Configurable Analog Blocks (CABs) of Field Programmable Analog Arrays (FPAAs). In this method the Circuit Under Test (CUT) is programmed ... Keywords: Analog built-in self-test, FPAA, Transient response analysis

T. R. Balen; J. V. Calvano; M. S. Lubaszewski; M. Renovell

2007-12-01T23:59:59.000Z

139

Hydraulic fracturing and propping tests at Yakedake field in Japan  

DOE Green Energy (OSTI)

Hydraulic fracturing experiments have been conducted at Yakedake field in Gifu prefecture, Japan. From the data obtained during the fracturing operation, the open-hole section permeability was estimated of the wellbore, the minimum pressure required to propagate the fracture, the impedances before and after the propping, and the earth stress normal to the fracture plane. The final fracture plane was also mapped with the microseismic events.

Yamaguchi, Tsutomu; Seo, Kunio; Suga, Shoto; Itoh, Toshinobu; Kuriyagawa, Michio

1984-01-01T23:59:59.000Z

140

Wind Tunnel and Field Test of Three 2D Sonic Anemometers  

E-Print Network (OSTI)

Wind Tunnel and Field Test of Three 2D Sonic Anemometers Wiel Wauben R&D Information and Observation Technology, KNMI September 17, 2007 #12;#12;Wind Tunnel and Field Test of Three 2D Sonic.....................................................................................................1 2. Wind sensors

Stoffelen, Ad

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CX-100 and TX-100 blade field tests.  

SciTech Connect

In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

2005-12-01T23:59:59.000Z

142

Advanced Hydropower Turbine System Design for Field Testing  

Science Conference Proceedings (OSTI)

The Alden/Concepts NREC hydroturbine was initially developed under the U.S. Department of Energy's (DOE) Advanced Hydropower Turbine Systems Program. This design work was intended to develop a new runner that would substantially reduce fish mortality at hydroelectric projects, while developing power at efficiencies similar to competing hydroturbine designs. A pilot-scale test facility was constructed to quantify the effects of the conceptual turbine design on passing fish and to verify the hydraulic char...

2009-07-31T23:59:59.000Z

143

DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Demonstrates Viability of Simultaneous CO2 Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs June 28, 2010 - 1:00pm Addthis Washington, DC - A field test conducted by a U.S. Department of Energy (DOE) team of regional partners has demonstrated that using carbon dioxide (CO2) in an enhanced oil recovery method dubbed "huff-and-puff" can help assess the carbon sequestration potential of geologic formations while tapping America's valuable oil resources. The Plains CO2 Reduction (PCOR) Partnership, one of seven in DOE's Regional Carbon Sequestration Partnership program, collaborated with Eagle Operating Inc. to complete the test in the Northwest McGregor Oil Field in Williams

144

DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Finds Potential for Permanent Storage of Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams November 4, 2010 - 1:00pm Addthis Washington, DC - A field test sponsored by the U.S. Department of Energy (DOE) has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented. This finding supports national efforts to address climate change through long-term storage of CO2 in underground geologic reservoirs. Lowering the core barrel at the PCOR Partnership lignite site.The PCOR Partnership, one of seven partnerships in DOE's Regional Carbon Sequestration Partnership Program, collaborated with Eagle Operating Inc. (Kenmare, N.D.) to complete the field test in Burke County, N.D. In March

145

Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field  

DOE Green Energy (OSTI)

During Phases 2 and 3 of the Lake City GRED II project two slim holes were cored to depths of 1728 and 4727 ft. Injection and production tests with temperature and pressure logging were performed on the OH-1 and LCSH-5 core holes. OH-1 was permanently modified by cementing an NQ tubing string in place below a depth of 947 ft. The LCSH-1a hole was drilled in Quaternary blue clay to a depth of 1727 ft and reached a temperature of 193 oF at a depth of 1649 ft. This hole failed to find evidence of a shallow geothermal system east of the Mud Volcano but the conductive temperature profile indicates temperatures near 325 oF could be present below depth of 4000 ft. The LCSH-5 hole was drilled to a depth of 4727 ft and encountered a significant shallow permeability between depths of 1443 and 1923 ft and below 3955 ft. LCSH-5 drilled impermeable Quaternary fanglomerate to a depth of 1270 ft. Below 1270 ft the rocks consist primarily of Tertiary sedimentary rocks. The most significant formation deep in LCSH-5 appears to be a series of poikoilitic mafic lava flows below a depth of 4244 ft that host the major deep permeable fracture encountered. The maximum static temperature deep in LCSH-5 is 323 oF and the maximum flowing temperature is 329 oF. This hole extended the known length of the geothermal system by ¾ of a mile toward the north and is located over ½ mile north of the northernmost hot spring. The OH-1 hole was briefly flow tested prior to cementing the NQ rods in place. This flow test confirmed the zone at 947 ft is the dominant permeability in the hole. The waters produced during testing of OH-1 and LCSH-5 are generally intermediate in character between the deep geothermal water produced by the Phipps #2 well and the thermal springs. Geothermometers applied to deeper fluids tend to predict higher subsurface temperatures with the maximum being 382 oF from the Phipps #2 well. The Lake City geothermal system can be viewed as having shallow (elevation > 4000 ft and temperatures of 270 to 310 oF), intermediate (elevation 2800 to 3700 ft and temperatures 270 to 320 oF ) and deep (elevations < 1000 ft and temperatures 323 to 337 oF) components. In the south part of the field, near Phipps #2 the shallow and deep components are present. In the central part of the field, near OH-1 the shallow and intermediate components are present and presumably the deep component is also present. In the north part of the field, the intermediate and deep components are present. Most or all of the fractures in the core have dips between 45 degrees and vertical and no strong stratigraphic control on the resource has yet been demonstrated. Conceptually, the Lake City geothermal resource seems to be located along the north-south trending range front in a relatively wide zone of fractured rock. The individual fractures do not seem to be associated with any readily identifiable fault. In fact, no major hydraulically conductive faults were identified by the core drilling.

Dick Benoit; David Blackwell; Joe Moore; Colin Goranson

2005-10-27T23:59:59.000Z

146

Exploration 3-D Seismic Field Test/Native Tribes Initiative  

SciTech Connect

To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

1999-04-27T23:59:59.000Z

147

Hyperboloidal evolution of test fields in three spatial dimensions  

E-Print Network (OSTI)

We present the numerical implementation of a clean solution to the outer boundary and radiation extraction problems within the 3+1 formalism for hyperbolic partial differential equations on a given background. Our approach is based on compactification at null infinity in hyperboloidal scri fixing coordinates. We report numerical tests for the particular example of a scalar wave equation on Minkowski and Schwarzschild backgrounds. We address issues related to the implementation of the hyperboloidal approach for the Einstein equations, such as nonlinear source functions, matching, and evaluation of formally singular terms at null infinity.

Zenginoglu, Anil

2010-01-01T23:59:59.000Z

148

Hyperboloidal evolution of test fields in three spatial dimensions  

E-Print Network (OSTI)

We present the numerical implementation of a clean solution to the outer boundary and radiation extraction problems within the 3+1 formalism for hyperbolic partial differential equations on a given background. Our approach is based on compactification at null infinity in hyperboloidal scri fixing coordinates. We report numerical tests for the particular example of a scalar wave equation on Minkowski and Schwarzschild backgrounds. We address issues related to the implementation of the hyperboloidal approach for the Einstein equations, such as nonlinear source functions, matching, and evaluation of formally singular terms at null infinity.

Anil Zenginoglu; Lawrence E. Kidder

2010-04-06T23:59:59.000Z

149

Efficient Depth of Field Rasterization Using a Tile Test Based on Half-Space Culling  

Science Conference Proceedings (OSTI)

For depth of field (DOF) rasterization, it is often desired to have an efficient tile versus triangle test, which can conservatively compute which samples on the lens that need to execute the sample-in-triangle test. We present a novel test for this, ... Keywords: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Visible line/surface algorithms, culling, depth of field, rasterization

Tomas Akenine-Möller; Robert Toth; Jacob Munkberg; Jon Hasselgren

2012-02-01T23:59:59.000Z

150

Field Test to Demonstrate Real-Time In-Situ Detection of Volatile Organic Compounds  

E-Print Network (OSTI)

1 Field Test to Demonstrate Real-Time In-Situ Detection of Volatile Organic Compounds Hazmat Spill Center, Nevada Test Site September 19-25, 2001 Clifford K. Ho Sandia National Laboratories Albuquerque-filled 55- gallon drum at the Hazmat Spill Center at the Nevada Test Site. Background and Objectives Tens

Ho, Cliff

151

Field tests of a novel inverter for photovoltaic power conditioning  

SciTech Connect

The Dickerson inverter synthesizes a sinewave current from a photovoltaic array that is segmented into a number of subarrays. These subarrays are switched among the ac phases so that the current from a given subarray is continuous, and each phase is connected at all times to one or more subarrays. The control scheme assures a near-unity power factor current with real-time phase adjustment to power-system disturbances. A prototype inverter was operated into a three-phase power system, with the dc supplied by a photovoltaic array at Sandia National Laboratories. The results of these tests under normal, abnormal and fault conditions are reported. Inversion efficiencies up to 99% were achieved with 0.97 power factor. A simple filter reduced current harmonics from 18% to 5%. The performance for the inverter was projected for a 480-V, three-phase system at the 50-kVA level. An analysis of filtering costs indicates that harmonic reduction to 5% can be achieved at under $0.003 per watt for typical central-station applications. The intended power range for these inverters is 50--250 kVA. The cost to produce the inverter at the 50-kVA level in quantities of 1000 units is estimated to be $0.05 per watt, which is less than the projected cost of other 50-kVA inverters. 22 figs., 9 tabs.

Dickerson, A.; Bower, W.; Schalles, F.

1989-05-01T23:59:59.000Z

152

Plume Dispersion in the Convective Boundary Layer. Part II: Analyses of CONDORS Field Experiment Data  

Science Conference Proceedings (OSTI)

Extensive analyses are performed on data from the CONDORS (convective diffusion observed with remote sensors) field experiment, described in detail by Ebeerhard et al. Convective scaling is used to facilitate comparisons with laboratory and ...

G. A. Briggs

1993-08-01T23:59:59.000Z

153

A Technique for Analyzing Optimal Relationships among Multiple Sets of Data Fields. Part 1: The Method  

Science Conference Proceedings (OSTI)

A multiple-set canonical correlation analysis (MCCA), which can be used to study atmospheric motions by analyzing the relationships among more than two sets of data fields, is proposed. By using the product or squared product of correlation ...

Jeng-Ming Chen; C-P. Chang; Patrick A. Harr

1994-11-01T23:59:59.000Z

154

Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing  

DOE Green Energy (OSTI)

How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

Butterfield, C.P.; Musial, W.P.; Simms, D.A.

1992-10-01T23:59:59.000Z

155

Run 888 - 28 October 1977, Rings 1 and 2 - GeV, Orbit distortion due to sextupole fields with the low-beta insertion - part 2  

E-Print Network (OSTI)

Run 888 - 28 October 1977, Rings 1 and 2 - GeV, Orbit distortion due to sextupole fields with the low-beta insertion - part 2

Brand, K

1978-01-01T23:59:59.000Z

156

First-of-a-Kind Sequestration Field Test Begins in West Virginia |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-of-a-Kind Sequestration Field Test Begins in West Virginia First-of-a-Kind Sequestration Field Test Begins in West Virginia First-of-a-Kind Sequestration Field Test Begins in West Virginia September 8, 2009 - 1:00pm Addthis Washington, DC - Injection of carbon dioxide (CO2) began today in a first-of-a-kind field trial of enhanced coalbed methane recovery with simultaneous CO2 sequestration in an unmineable coal seam. The ultimate goal of the U.S. Department of Energy-sponsored project is to help mitigate climate change by providing an effective and economic means to permanently store CO2 in unmineable coal seams. CONSOL Energy Inc., West Virginia University, and the National Energy Technology Laboratory (NETL) are collaborating in the $13 million field trial, located in Marshall County, W.Va. The site was chosen because of its

157

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test November 12, 2009 - 12:00pm Addthis Washington, DC - A U.S. Department of Energy (DOE) team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind. Carbon capture and storage (CCS) is seen as a key technology for reducing greenhouse gas emissions and helping to mitigate climate change. The injection, which is expected to last 6-8 months, is an integral step in DOE's Regional Carbon Sequestration Partnership program. The Midwest Geological Sequestration Consortium (MGSC) is conducting the field test to

158

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results  

SciTech Connect

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

Gary Blythe

2007-05-01T23:59:59.000Z

159

Atmospheric Local Energetics and Energy Interactions between Mean and Eddy Fields. Part I: Theory  

Science Conference Proceedings (OSTI)

A new diagnostic scheme for the atmospheric local energetics is proposed. In contrast to conventional schemes, this scheme correctly represents the local features of the Lorenz energy cycle for time-mean and transient-eddy fields. The key point is ...

Shigenori Murakami

2011-04-01T23:59:59.000Z

160

Field test and assessment of thermal energy storage for residential heating  

SciTech Connect

Thermal energy storage (TES) heating units can be connected to the utility grid to accept electricity only during utility off-peak periods and yet provide round-the-clock comfort heating. Their use by an increasingly larger part of the electric-heat market could provide economic and oil-saving benefits. A field test was carried out over two full heating seasons in Vermont and Maine at 45 TES sites and 30 control sites heated by electric baseboard heaters. The TES users were billed under applicable time-of-day (TOD) rates. All sites were instrumented, and measurements of inside and outside temperatures and electrical energy consumption for heating were made and recorded every 15 min. Analysis of the data has led to the following findings and conclusions: Overall technical performance of the TES units was good under extreme weather conditions. Annualized energy use was the same for the TES and the control households. Proper sizing of the storage systems is much more important for storage heaters than for nonstorage heaters. TES users were satisfied with performance. Electric-heat bills were much lower for TES users. Occupancy effects were large and caused wide variations in energy consumption on days that had the same number of heating degree-days. The individual building heat loss determined experimentally from an analysis of the actual energy consumption per heating degreeday was 30% to 50% smaller than that determined by a walkthrough energy audit.

Hersh, H.

1983-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Preliminary operational results of the low-temperature solar industrial process heat field tests  

DOE Green Energy (OSTI)

Six solar industrial process heat field tests have been in operation for a year or more - three are hot water systems and three are hot air systems. All are low-temperature projects (process heat at temperatures below 212/sup 0/F). Performance results gathered by each contractor's data acquisition system are presented and project costs and problems encountered are summarized. Flat-plate, evacuated-tube, and line-focus collectors are all represented in the program, with collector array areas ranging from 2500 to 21,000 ft/sup 2/. Collector array efficiencies ranged from 12% to 36% with net system efficiencies from 8% to 33%. Low efficiencies are attributable in some cases to high thermal losses and, for the two projects using air collectors, are due in part to high parasitic power consumption. Problems have included industrial effluents on collectors, glazing and absorber surface failures, excessive thermal losses, freezing and overheating, control problems, and data acquisition system failure. With design and data acquisition costs excluded costs of the projects ranged from $25/ft/sup 2/ to $87/ft/sup 2/ and $499/(MBtu/yr) to $1537/(MBtu/yr).

Kutscher, C.F.; Davenport, R.L.

1980-06-01T23:59:59.000Z

162

Coastal zone wind energy. Part II: Validation of the coastal zone wind power potential. A summary of the field experiment  

DOE Green Energy (OSTI)

Procedures have been developed to determine the wind power potential of the coastal region from Maine to Texas. The procedures are based upon a climatological analysis and a mesoscale numerical model. The results of this procedure are encouraging but need to be tested. In January to February 1980 a field measurement program was carried out over the Delmarva Peninsula centered on Wallops Island and extending into the Atlantic Ocean and Chesapeake Bay to provide an observational basis on which to test our wind assessment methods. The field experiment is described. Listings of the measurements made by aircraft, tethered balloon, rawinsonde kites, tower mounted anemometry and surface thermometry are given together with sample results. The analysis of these data and the comparison between them and the model predicted fields are presented.

Garstang, M.; Pielke, R.A.; Snow, J.W.

1980-06-01T23:59:59.000Z

163

The Ocean–Land–Atmosphere Model (OLAM). Part II: Formulation and Tests of the Nonhydrostatic Dynamic Core  

Science Conference Proceedings (OSTI)

The dynamic core of the Ocean–Land–Atmosphere Model (OLAM), which is a new global model that is partly based on the Regional Atmospheric Modeling System (RAMS), is described and tested. OLAM adopts many features of its predecessor, but its ...

Robert L. Walko; Roni Avissar

2008-11-01T23:59:59.000Z

164

Usability evaluation for mobile device: a comparison of laboratory and field tests  

Science Conference Proceedings (OSTI)

Usability testing of mobile devices is an emerging area of research in the field of Human-Computer Interaction. Guidelines had been established as to how usability tests should be conducted. However, there are limitations to the effectiveness of conventional ... Keywords: dynamics environment, mobile devices, usability

Henry Been-Lirn Duh; Gerald C. B. Tan; Vivian Hsueh-hua Chen

2006-09-01T23:59:59.000Z

165

Silica control and materials tests at the Salton Sea geothermal field  

DOE Green Energy (OSTI)

The Lawrence Livermore Laboratory maintains and operates a test facility near Niland, California, in the Imperial Valley for field studies on SSGF brine chemistry, scale and solids control, materials, and injection. Recent work in silica control and materials testing is reviewed.

Quong, R.; Harrar, J.E.; McCright, R.D.; Locke, R.D.; Lorensen, L.E.; Tardiff, G.E.

1979-06-07T23:59:59.000Z

166

1974 geothermal field tests at the Niland Reservoir in the Imperial Valley of California  

DOE Green Energy (OSTI)

The phases of the 1974 geothermal field tests at the Niland Reservoir in the Imperial Valley of California are documented. The following tests are included: separator, steam scrubber, steam turbine, heat exchanger, packed heat exchanger, corrosion, chemical cleaning, and control and instrumentation. (MHR)

Not Available

1974-01-01T23:59:59.000Z

167

Performance of Charcoal Cookstoves for Haiti, Part 2: Results from the Controlled Cooking Test  

Science Conference Proceedings (OSTI)

Five charcoal cookstoves were tested using a Controlled Cooking Test (CCT) developed from cooking practices in Haiti. Cookstoves were tested for total burn time, specific fuel consumption, and emissions of carbon monoxide (CO), carbon dioxide (CO{sub 2}), and the ratio of carbon monoxide to carbon dioxide (CO/CO{sub 2}). These results are presented in this report along with LBNL testers’ observations regarding the usability of the stoves.

Lask, Kathleen; Jones, Jennifer; Booker, Kayje; Ceballos, Cristina; Yang, Nina; Gadgil, Ashok

2011-11-30T23:59:59.000Z

168

Performance and Electrical Characterization Tests on a Microturbine Commercial Prototype - Part II  

Science Conference Proceedings (OSTI)

EPRI is testing various commercial microturbine generators (MTGs) to verify performance claims, identify any critical technology issues, and assess viability of units for utility applications. This report provides test results on two commercial prototype microturbine generators. The units were identical except that the first unit could only operate in the grid-parallel mode whereas the second unit had the capability to operate in both the grid-parallel and grid-independent modes. The tests continue earli...

2000-12-11T23:59:59.000Z

169

Numerical Investigation of Spectral Evolution of Wind Waves. Part II: Dissipation Term and Evolution Tests  

Science Conference Proceedings (OSTI)

Numerical simulations of the wind-wave spectrum evolution are conducted by means of new observation-based wind-input and wave dissipation functions obtained in the Lake George field experiment. This experiment allowed simultaneous measurements of ...

Alexander V. Babanin; Kakha N. Tsagareli; I. R. Young; David J. Walker

2010-04-01T23:59:59.000Z

170

Hanna, Wyoming underground coal gasification data base. Volume 4. Hanna II, Phases II and III field test research report  

SciTech Connect

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phases II and III, were conducted during the winter of 1975 and the summer of 1976. The two phases refer to linking and gasification operations conducted between two adjacent well pairs as shown in Figure 1 with Phase II denoting operations between Wells 5 and 6 and Phase III operations between Wells 7 and 8. All of the other wells shown were instrumentation wells. Wells 7 and 8 were linked in November and December 1975. This report covers: (1) specific site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 16 refs., 21 figs., 17 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01T23:59:59.000Z

171

Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing  

SciTech Connect

In Phase 1 of this project, a variety of developmental and commercial tubing alloys and claddings was exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy are being exposed for 4,000, 12,000, and 16,000 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after approximately 4,400 hours of exposure.

Blough, J.L. [Foster Wheeler Development Corp., Livingston, NJ (United States)

1996-08-01T23:59:59.000Z

172

Field Testing of Low-Cost Bio-Based Phase Change Material  

SciTech Connect

A test wall built with phase change material (PCM)-enhanced loose-fill cavity insulation was monitored for a period of about a year in the warm-humid climate of Charleston, South Carolina. The test wall was divided into various sections, one of which contained only loose-fill insulation and served as a control for comparing and evaluating the wall sections with the PCM-enhanced insulation. This report summarizes the findings of the field test.

Biswas, Kaushik [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL

2013-03-01T23:59:59.000Z

173

Radar Data Assimilation with WRF 4D-Var. Part I: System Development and Preliminary Testing  

Science Conference Proceedings (OSTI)

The major goal of this two-part study is to assimilate radar data into the high-resolution Advanced Research Weather Research and Forecasting Model (ARW-WRF) for the improvement of short-term quantitative precipitation forecasting (QPF) using a ...

Hongli Wang; Juanzhen Sun; Xin Zhang; Xiang-Yu Huang; Thomas Auligné

2013-07-01T23:59:59.000Z

174

Numerical Modeling of Hailstorms and Hailstone Growth. Part I: Preliminary Model Verification and Sensitivity Tests  

Science Conference Proceedings (OSTI)

This paper is the first in a three part series describing numerical simulations of hailstorms and hailstone growth using a two-dimensional, time-dependent cloud model. In this model. cloud water, cloud ice and rain are treated via standard ...

R. D. Farley; H. D. Orville

1986-12-01T23:59:59.000Z

175

An Experimental Evaluation of HVAC-Grade Carbon-Dioxide Sensors: Part 3, Humidity, Temperature, and Pressure Sensitivity Test Results  

Science Conference Proceedings (OSTI)

This is the third paper in a four-part series reporting on the test and evaluation of typical carbon-dioxide sensors used in building HVAC applications. Fifteen models of NDIR HVAC-grade CO2 sensors were tested and evaluated to determine the humidity, temperature, and pressure sensitivity of the sensors. This paper reports the performance of the sensors at various relative humidity, temperature, and pressure levels common to building HVAC applications and provides a comparison with manufacturer specifications. Among the 15 models tested, eight models have a single-lamp, single-wavelength configuration, four models have a dual-lamp, single-wavelength configuration, and three models have a single-lamp, dual-wavelength configuration. The sensors were tested in a chamber specifically fabricated for this research. A description of the apparatus and the method of test are described in Part 1 (Shrestha and Maxwell 2009). The test result showed a wide variation in humidity, temperature, and pressure sensitivity of CO2 sensors among manufacturers. In some cases, significant variations in sensor performance exist between sensors of the same model. Even the natural variation in relative humidity could significantly vary readings of some CO2 sensor readings. The effects of temperature and pressure variation on NDIR CO2 sensors are unavoidable without an algorithm to compensate for the changes. For the range of temperature and pressure variation in an air-conditioned space, the effect of pressure variation is more significant compared to the effect of temperature variation.

Shrestha, Som S [ORNL; Maxwell, Dr. Gregory [Iowa State University

2010-01-01T23:59:59.000Z

176

Partnering with Utilities Part 1: Successful Partnerships and Lessons from the Field  

NLE Websites -- All DOE Office Websites (Extended Search)

1: 1: Successful Partnerships and Lessons from the Field Jennifer Clymer, ICF International Philip LaMay, Allegheny County, PA Christian Williss, Denver, CO Sharon Procopio, Denver, CO September 22, 2011 2 | TAP Webinar eere.energy.gov What is TAP? DOE's Technical Assistance Program (TAP) supports the Energy Efficiency and Conservation Block Grant Program (EECBG) and the State Energy Program (SEP) by providing state, local, and tribal officials the tools and resources needed to implement successful and sustainable clean energy programs. 3 | TAP Webinar eere.energy.gov * The Department of Energy's (DOE) Technical Assistance Program (TAP) is transitioning to a new era of assistance to state and local governments with a reduced set of resources beginning the week of September 30, 2011.

177

Development of simple quantitative test for lack of field emission orthodoxy  

E-Print Network (OSTI)

This paper describes a simple quantitative test applicable to current-voltage data for cold field electron emission (CFE). It can decide whether individual reported field-enhancement-factor (FEF) values are spuriously large. The paper defines an "orthodox emission situation" by a set of ideal experimental, physical and mathematical conditions, and shows how (in these conditions) operating values of scaled barrier field (f) can be extracted from Fowler-Nordheim (FN) and Millikan-Lauritsen (ML) plots. By analyzing historical CFE experiments, which are expected to nearly satisfy the orthodoxy conditions, "apparently reasonable" and "clearly unreasonable" experimental ranges for f are found. These provide a test for lack of orthodoxy. For illustration, this test is applied to 17 post-1975 CFE data sets, mainly for carbon and semiconductor nanostructures. Some extracted f-value ranges are apparently reasonable (including many carbon results), some are clearly unreasonable. It is shown that this test applies to any field-emission diode geometry and any form of FN or ML plot. It is proved mathematically that, if the extracted f-value range is "unreasonably high", then FEF-values extracted by the usual literature method are spuriously large. Probably, all new field-emitter materials should be tested in this way. Appropriate data-analysis theory needs developing for non-orthodox emitters.

Richard G. Forbes

2012-09-28T23:59:59.000Z

178

NETL: News Release - Field Testing Underway of Remote Sensor Gas Leak  

NLE Websites -- All DOE Office Websites (Extended Search)

September 16, 2004 September 16, 2004 Field Testing Underway of Remote Sensor Gas Leak Detection Systems CASPER, WY-An extensive field test that will document and demonstrate how effective technologies are in remotely detecting natural gas leaks is being held September 13-17, as the Department of Energy simulates natural gas leaks along a predetermined course at DOE's Rocky Mountain Oilfield Testing Center (RMOTC). Low-flying aircraft, satellites and special ground vehicles carrying advanced leak detection sensors will participate as representatives of the gas industry and potential technology manufacturers observe the technologies in a real-world environment and evaluate their readiness for commercialization. The test plan was devised with strong input from an industry advisory board and test participants to compare the effectiveness of several gas-leak detection devices from ground, air and satellite based platforms.

179

Numerical Forecasting of Radiation Fog. Part I: Numerical Model and Sensitivity Tests  

Science Conference Proceedings (OSTI)

To improve the forecast of dense radiative fogs, a method has been developed using a one-dimensional model of the nocturnal boundary layer forced by the mesoscale fields provided by a 3D limited-area operational model. The 1D model involves a ...

Thierry Bergot; Daniel Guedalia

1994-06-01T23:59:59.000Z

180

Columbia University flow instability experimental program: Volume 2. Single tube uniformly heated tests -- Part 2: Uncertainty analysis and data  

Science Conference Proceedings (OSTI)

In June 1988, Savannah River Laboratory requested that the Heat Transfer Research Facility modify the flow excursion program, which had been in progress since November 1987, to include testing of single tubes in vertical down-flow over a range of length to diameter (L/D) ratios of 100 to 500. The impetus for the request was the desire to obtain experimental data as quickly as possible for code development work. In July 1988, HTRF submitted a proposal to SRL indicating that by modifying a facility already under construction the data could be obtained within three to four months. In January 1990, HTFR issued report CU-HTRF-T4, part 1. This report contained the technical discussion of the results from the single tube uniformly heated tests. The present report is part 2 of CU-HTRF-T4 which contains further discussion of the uncertainty analysis and the complete set of data.

Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results  

SciTech Connect

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

Gary Blythe; MariJon Owens

2007-12-01T23:59:59.000Z

182

Special ESP configurations designed to test and produce Yemen oil field. [Electric-Submersible Pump  

SciTech Connect

Innovative electric-submersible-pump (ESP) configurations were used in the exploration phase of a Yemen oil field discovered by Canadian Occidental Petroleum Ltd. Because of subnormal reservoir pressure, CanOxy developed the field with ESPs and had to install surface components that could operate at the high, 130 F., ambient temperatures common in Yemen. The field is in a remote area that has seen very little development. The reservoirs produce a medium-to-heavy crude with a low gas/oil ratio, typically less than 20 scf/bbl. Problems faced in evaluating the field included drilling through unconsolidated sands with high flow capacity and subnormal reservoir pressure. CanOxy had to develop the technology to test the wells during the exploration phase, and intends to use new, or at least uncommon technology, for producing the wells. The paper describes testing the wells, the electric generators and variable speed drives, and the use of these pumps on production wells.

Wilkie, D.I. (Canadian Occidental Petroleum Ltd., Calgary, Alberta (Canada))

1993-09-27T23:59:59.000Z

183

High-Voltage Broadband-Over-Powerline (HV-BPL) Field Test Report | Open  

Open Energy Info (EERE)

High-Voltage Broadband-Over-Powerline (HV-BPL) Field Test Report High-Voltage Broadband-Over-Powerline (HV-BPL) Field Test Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: High-Voltage Broadband-Over-Powerline (HV-BPL) Field Test Report Focus Area: Crosscutting Topics: Policy Impacts Website: www.netl.doe.gov/smartgrid/referenceshelf/reports/HV-BPL_Final_Report. Equivalent URI: cleanenergysolutions.org/content/high-voltage-broadband-over-powerline Language: English Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance This reports details findings from a pilot High Voltage Broadband over Power Line (HV-BPL) program, an effort to develop a disruptive technology

184

Results of a Field Test Using R-407C in Split System Heat Pumps  

E-Print Network (OSTI)

This paper discusses the results of a field test to determine implications of an R-407C replacement of R-22. A change of refrigerants precipitates other changes in materials, component selection, and processing. In addition, thermodynamic properties are different. Consequently, the effects on durability, thermal performance, humidity control, servicing, and manufacturability were questioned. The field test addressed many of these questions. Anticipated changes in manufacturing processes were implemented on the production line. Contractors were educated on the differences in the refrigerant. Data were obtained by refrigerant, lubricant, and component tear down analysis. Experiential information was derived from feed back of contractors and home owners, as well as multiple site visits. Generally, the field test has demonstrated that by following a few basic rules, the industry can anticipate use of R-407C with satisfactory results. However, the surprising appearance of a contaminate precipitant indicates the need for more investigation into long term effects.

Boyd, A.

1996-01-01T23:59:59.000Z

185

Direct-field acoustic testing of a flight system : logistics, challenges, and results.  

DOE Green Energy (OSTI)

Before a spacecraft can be considered for launch, it must first survive environmental testing that simulates the launch environment. Typically, these simulations include vibration testing performed using an electro-dynamic shaker. For some spacecraft however, acoustic excitation may provide a more severe loading environment than base shaker excitation. Because this was the case for a Sandia Flight System, it was necessary to perform an acoustic test prior to launch in order to verify survival due to an acoustic environment. Typically, acoustic tests are performed in acoustic chambers, but because of scheduling, transportation, and cleanliness concerns, this was not possible. Instead, the test was performed as a direct field acoustic test (DFAT). This type of test consists of surrounding a test article with a wall of speakers and controlling the acoustic input using control microphones placed around the test item, with a closed-loop control system. Obtaining the desired acoustic input environment - proto-flight random noise input with an overall sound pressure level (OASPL) of 146.7 dB-with this technique presented a challenge due to several factors. An acoustic profile with this high OASPL had not knowingly been obtained using the DFAT technique prior to this test. In addition, the test was performed in a high-bay, where floor space and existing equipment constrained the speaker circle diameter. And finally, the Flight System had to be tested without contamination of the unit, which required a contamination bag enclosure of the test unit. This paper describes in detail the logistics, challenges, and results encountered while performing a high-OASPL, direct-field acoustic test on a contamination-sensitive Flight System in a high-bay environment.

Stasiunas, Eric Carl; Gurule, David Joseph; Babuska, Vit; Skousen, Troy J.

2010-10-01T23:59:59.000Z

186

Liquid metal cooled solar central receiver feasibility study and heliostat field analysis. Final report, Part II  

DOE Green Energy (OSTI)

Four studies are presented, the first two of which are based on a specific design for a water/steam commercial 100 MW/sub e/ Solar Tower System. The first of these uses the RCELL computer program, which provides a cellwise method for the economic optimization of central receiver systems, to compare performance for several latitudes, field slopes, tower heights, heliostat costs, land costs, and input figures of merit. Using the systems design studies for the 100 MW/sub e/ unit, the second study performs a detailed net energy analysis on capital energy required to build the thermal collection component, including 6 hours of storage. Also determined is the Energy Amplification Factor, which measures the number of times the energy incorporated in the plant can be replicated during its lifetime. The third study provides a means for calculating the sun's position as a function of time. The fundamental reference frames for observing celestial objects are defined, and basic notions of orbits and time reckoning are explained. Series solutions for the equation of time and for the equation of the center are given. Phenomena affecting the sun's position and the errors which result when their effects are disregarded are summarized. A computer program to accurately locate the sun was written. The effects that two different sun tracker programs have on insolation prediction are compared. The fourth study describes and models the sodium heat engine, a continuous isothermal expansion engine for sodium vapor. The heart of the machine is beta''-alumina, a refractory material remarkable for its high conductivity of sodium ions. (LEW)

Not Available

1978-05-01T23:59:59.000Z

187

Visualizing microbial pollution in Santa Monica Bay with Geographic Information Systems (GIS) and through field-testing a rapid, robust, field-portable water detection sensing system  

E-Print Network (OSTI)

hic Information Systems (GIS) and Through Field - testing aEngineering, UCLA Introduction: GIS and rapid detection:water quality characterizi ng GIS is a powerful mapping tool

2009-01-01T23:59:59.000Z

188

Field test of a downhole-activated centralizer to reduce casing drag  

Science Conference Proceedings (OSTI)

A good cementation is based on an adequate centralization. Conventional bow-type centralizers create a drag force, which is not acceptable under certain conditions. The downhole-activated centralizer (DAC{trademark}) was developed for use in highly inclined wells and whenever restrictions in the wellbore like close tolerance wellheads have to be passed. It can be released by external hydraulic pressure, by temperature or by a chemical reaction. The first downhole-activated centralizers with pressure released locking mechanism were field tested in two wells offshore Italy. These field tests proved the function and the effectiveness of the downhole-activated centralizers under operational conditions.

Kinzel, H. [Weatherford Oil Tool GmbH, Langenhagen (Germany); Calderoni, A. [Agip SpA, Milan (Italy)

1995-06-01T23:59:59.000Z

189

Gas Gun Impact Testing of PZT 95/5, Part 1: Unpoled State  

SciTech Connect

In the present study, 10 impact tests were conducted on unpoled PZT 95/5, with 9% porosity and 2 at% Nb doping. These tests were instrumented to obtain time-resolved loading, unloading and span signatures. As well, PVDF gauges allowed shock timing to be established explicitly. The ferroelectric/antiferroelectric phases transition was manifested as a ramp to 0.4 GPa. The onset of crushup produced the most visible signature: a clear wave separation at 2.2 GPa followed by a highly dispersive wave. The end states also reflected crushup, and are consistent with earlier data and with related poled experiments. A span strength value of 0.17 GPa was measured for a shock stress of 0.5 GPa, this decreased to a very small value (no visible pullback signature) for a shock strength of 1.85 GPa.

FURNISH,MICHAEL D.; SETCHELL,ROBERT E.; CHHABILDAS,LALIT C.; MONTGOMERY,STEPHEN T.

2000-01-01T23:59:59.000Z

190

Batteries for stationary standby and cycling applications :Part 5: maintenance and testing standards.  

Science Conference Proceedings (OSTI)

The existing IEEE stationary battery maintenance and testing standards fall into two basic categories: those associated with grid-tied standby applications and those associated with stand-alone photovoltaic cycling applications. These applications differ in several significant ways, which in turn influence their associated standards. A review of the factors influencing the maintenance and testing of stationary battery systems provides the reasons for the differences between these standards and some of the hazards of using a standard inappropriate to the application. This review also provides a background on why these standards will need to be supplemented in the future to support emerging requirements of other applications, such as grid-tied cycling and photovoltaic hybrid applications.

Chamberlin, Jay L.

2003-01-01T23:59:59.000Z

191

Batteries for stationary standby and cycling applications. Part 5, Maintenance and testing standards.  

Science Conference Proceedings (OSTI)

The existing IEEE stationary battery maintenance and testing standards fall into two basic categories: those associated with grid-tied standby applications and those associated with stand-alone photovoltaic cycling applications. These applications differ in several significant ways, which in turn influence their associated standards. A review of the factors influencing the maintenance and testing of stationary battery systems provides the reasons for the differences between these standards and some of the hazards of using a standard inappropriate to the application. This review also provides a background on why these standards will need to be supplemented in the future to support emerging requirements of other applications, such as grid-tied cycling and photovoltaic hybrid applications.

Chamberlin, Jay L.

2003-06-01T23:59:59.000Z

192

Field Test Evaluation of Conservation Retrofits of Low-Income, Single-Family Buildings in Wisconsin: Audit Field Test Implementation and Results  

SciTech Connect

This report describes the field test of a retrofit audit. The field test was performed during the winter of 1985-86 in four South Central Wisconsin counties. The purpose of the field test was to measure the energy savings and cost effectiveness of the audit-directed retrofit program for optimizing the programs benefit-to-cost ratio. The audit-directed retrofit program is described briefly in this report and in more detail by another report in this series (ORNL/CON-228/P3). The purpose of this report is to describe the methods and results of the field test. Average energy savings of the 20 retrofitted houses are likely (0.90 probability) to lie between 152 and 262 therms/year/house. The most likely value of the average savings is 207 therms/year/house. These savings are significantly (p < .05) smaller than the audit-predicted savings (286 therms/year/house). Measured savings of individual houses were significantly different than predicted savings for half of the houses. Each house received at least one retrofit. Thirteen of the 20 retrofitted houses received a new condensing furnace or blown-in wall insulation; all but two of the houses received one or more minor retrofits. The seven houses which received condensing furnaces saved, on average, about as much as predicted, but three of the seven houses had significantly more or less savings than predicted. The six houses which received wall insulation saved, on average, about half as much as predicted. The remaining houses which received only minor retrofits saved, on average, less than predicted, but the difference was not significant. Actual retrofit costs were close to expected costs. Overall measured energy savings averaged 15 therms/year per hundred retrofit dollars invested. Houses which received wall insulation or a condensing furnace did slightly better, and the houses which received only minor retrofits did poorly. When estimated program costs were included, average savings dropped to about 13 therms/year/per hundred dollars. The uncertainty associated with the energy savings means that these comparisons of savings and costs also have large uncertainties.

McCold, L.N.

1988-01-01T23:59:59.000Z

193

Field test of ultra-low head hydropower package based on marine thrusters. Final report  

DOE Green Energy (OSTI)

The project includes the design, fabrication, assembly, installation, and field test of the first full-scale operating hydropower package (turbine, transmission, and generator) based on a design which incorporates a marine-thruster as the hydraulic prime mover. Included here are: the project overview; engineering design; ultra-low head hydropower package fabrication; component procurement, cost control, and scheduling; thruster hydraulic section installation; site modeling and resulting recommended modifications; testing; and baseline environmental conditions at Stone Drop. (MHR)

Not Available

1983-12-01T23:59:59.000Z

194

Silica Deposition in Field and Laboratory Thermal Tests of Yucca Mountain Tuff  

SciTech Connect

A field thermal test was conducted by the Yucca Mountain Site Characterization Project to observe changes in the Topopah Spring Tuff middle nonlithophysal zone geohydrologic system due to thermal loading. A laboratory-scale crushed-tuff hydrothermal column test was used to investigate the tuff as a potential construction material within a nuclear-waste repository. Results of similar column tests have been cited as indications that silica deposition would plug the rock fractures above a repository and create unfavorable drainage conditions. Data from field and laboratory tests are used here to predict the magnitude of fracture sealing. For the crushed-tuff column test, a one-meter-high column was packed with crushed tuff to a porosity of about 50%. Water filling the lowermost 10 cm of the column was boiled and the vapor condensed at the top of the column, percolating down to the boiling zone. After 100 days, intergranular pore space in the saturated portion of the column was almost filled with amorphous silica. The Drift Scale Test at Yucca Mountain is a heating test in the unsaturated zone. It consists of a four-year heating phase, now complete, followed by a four-year cooling phase. Heaters in a 60-m-long drift and in the adjacent rock have heated the drift walls to 200 C. As the rock was heated, fluids naturally present in the rock migrated away from the heat sources. A boiling zone now separates an inner dry-out zone from an outer condensation zone. A heat-pipe region exists in the outer margin of the boiling zone above the heated drift. Amorphous silica coatings up to a few micrometers thick were deposited in this region. Deposits were observed in less than 10% of the fractures in the heat pipe region. Drift-scale test results yield a silica deposition rate of about 250 {micro}m/1000 years in 10% of the fractures in the heat-pipe region. We did not calculate deposition rates from our column test, but a rate of 9.1 mm/1000 years in all fractures of the heat-pipe region is predicted by Sun and Rimstidt (2002) from the results of a similar test. We believe the rate based on field-test observations is a better prediction because the field test more closely resembles the expected environment in a repository. Rates based on column-test results may be reasonable for local zones of preferred fluid flow.

S.S. Levy; S.J. Chipera; M.G. Snow

2002-08-30T23:59:59.000Z

195

Assembly and Field Testing of a Ground-Based Presence-of-Cloud Detector  

Science Conference Proceedings (OSTI)

A presence-of-cloud (POC) detector has been developed for use in remote locations. The principal components of the POC detector are a moisture-sensitive resistance grid, a heater, a fan, and housing with rain shielding. Field testing at a ...

D. O. Krovetz; M. A. Reiter; J. T. Sigmon; F. S. Gilliam

1988-08-01T23:59:59.000Z

196

Laboratory and Modeling Evaluations in Support of Field Testing for Desiccation at the Hanford Site  

SciTech Connect

The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau includes testing of the desiccation technology as a potential technology to be used in conjunction with surface infiltration control to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. Laboratory and modeling efforts were conducted to investigate technical uncertainties related to the desiccation process and its impact on contaminant transport. This information is intended to support planning, operation, and interpretation of a field test for desiccation in the Hanford Central Plateau.

Truex, Michael J.; Oostrom, Martinus; Freedman, Vicky L.; Strickland, Christopher E.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Ward, Anderson L.

2011-02-23T23:59:59.000Z

197

NETL: News Release - First-of-a-Kind Sequestration Field Test Begins in  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2009 8, 2009 First-of-a-Kind Sequestration Field Test Begins in West Virginia DOE-Sponsored Test to Evaluate Carbon Storage in Unmineable Coal Seams Washington, D.C. - Injection of carbon dioxide (CO2) began today in a first-of-a-kind field trial of enhanced coalbed methane recovery with simultaneous CO2 sequestration in an unmineable coal seam. The ultimate goal of the U.S. Department of Energy-sponsored project is to help mitigate climate change by providing an effective and economic means to permanently store CO2 in unmineable coal seams. CONSOL Energy Inc., West Virginia University, and the National Energy Technology Laboratory (NETL) are collaborating in the $13 million field trial, located in Marshall County, W.Va. The site was chosen because of its accessibility, availability, and typical northern Appalachian topography and geology. The project is funded by DOE's Office of Fossil Energy and managed by NETL.

198

A Test Of The Transiel Method On The Travale Geothermal Field | Open Energy  

Open Energy Info (EERE)

Of The Transiel Method On The Travale Geothermal Field Of The Transiel Method On The Travale Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Test Of The Transiel Method On The Travale Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: An original electromagnetic method has been applied to geothermal prospecting on the Travale test site. The results show good correlations between observed polarization anomalies and productive zones. It is believed that these anomalies are related to reduction phenomena that occurred in the overburden (such as pyrite formation) caused by thermochemical exchanges between the reservoir and the overburden above those zones where the reservoir permeability is highest. Author(s): A. Duprat, M. Roudot, S. Spitz Published: Geothermics, 1985

199

The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles  

DOE Green Energy (OSTI)

Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. (Minnesota Geological Survey, St. Paul, MN (United States))

1991-06-01T23:59:59.000Z

200

Williston basin. Milestone test renews interest in Red Wing Creek field's meteor crater  

SciTech Connect

New drilling in the vicinity of Red Wing Creek field in McKenzie County, North Dakota has renewed interest in an area that has intrigued geologists for a number of years. Red Wing Creek was discovered in 1972 by True Oil Co. and has demonstrated better per-acre oil recovery than any other oil field in the Williston Basin. Fully developed several years ago, the field produces from what has been described as the central peak of an astrobleme, within a meteor crater. The current test by Milestone Petroleum Inc. is permitted to 14,200 ft and is being drilled on the rim of the crater, in SW SW 35-148n-101w, approx. a mile south of Red Wing production. The primary objective is the Ordovician Red River; but plans call for drilling deeper, through the Winnipeg, to below the Mississippian sediments that produce at Red Wing Creek field. At least 3 unsuccessful Red River tests have been drilled in or near the field in earlier years, but not in the area where Milestone is drilling. Production at Red Wing has come from porosity zones in a Mississippian oil column that measured 2600 ft in the original well; the better wells are in the heart of the field, on a rebound cone in the center of the crater.

Rountree, R.

1983-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

On Intermediate Models for Barotropic Continental Shelf and Slope Flow Fields. Part II: Comparison of Numerical Model Solutions in Doubly Periodic Domains  

Science Conference Proceedings (OSTI)

As part of a program to improve understanding of the dynamics of the complicated, vigorous eddy and jet flow fields recently observed over the continental shelf and slope, we investigate the potential of intermediate models for use in both ...

J. A. Barth; J. S. Allen; P. A. Newberger

1990-07-01T23:59:59.000Z

202

Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing  

SciTech Connect

This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected models were generally found to be below thresholds for Federally regulated elements; • All CFLs and LED lamps and most incandescent lamps exceeded California thresholds for Copper; • Most CFL samples exceeded California thresholds for Antimony and Nickel, and half of the LED samples exceeded California thresholds for Zinc; • The greatest contributors were the screw bases, drivers, ballasts, and wires or filaments; • Overall concentrations in LED lamps were comparable to cell phones and other types of electronic devices, and were generally attributable to components other than the internal LED light sources; • Although the life-cycle environmental impact of the LED lamps is favorable when compared to CFLs and incandescent lamps, recycling will likely gain importance as consumer adoption increases. This study was exploratory in nature and was not intended to provide a definitive indication of regulatory compliance for any specific lamp model or technology. Further study would be needed to more broadly characterize the various light source technologies; to more accurately and precisely characterize a specific model; or to determine whether product redesign would be appropriate.

Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.

2013-03-01T23:59:59.000Z

203

Summer 2012 Testing and Analysis of the Chemical Mixture Methodology -- Part I  

Science Conference Proceedings (OSTI)

This report presents the key findings made by the Chemical Mixture Methodology (CMM) project team during the first stage of their summer 2012 testing and analysis of the CMM. The study focused on answering the following questions: o What is the percentage of the chemicals in the CMM Rev 27 database associated with each Health Code Number (HCN)? How does this result influence the relative importance of acute HCNs and chronic HCNs in the CMM data set? o What is the benefit of using the HCN-based approach? Which Modes of Action and Target Organ Effects tend to be important in determining the HCN-based Hazard Index (HI) for a chemical mixture? o What are some of the potential issues associated with the current HCN-based approach? What are the opportunities for improving the performance and/or technical defensibility of the HCN-based approach? How would those improvements increase the benefit of using the HCN-based approach? o What is the Target Organ System Effect approach and how can it be used to improve upon the current HCN-based approach? How does the benefits users would derive from using the Target Organ System Approach compare to the benefits available from the current HCN-based approach?

Glantz, Clifford S.; Yu, Xiao-Ying; Coggin, Rebekah L.; Ponder, Lashaundra A.; Booth, Alexander E.; Petrocchi, Achille J.; Horn, Sarah M.; Yao, Juan

2012-07-01T23:59:59.000Z

204

Evolving Einstein's Field Equations with Matter: The ``Hydro without Hydro'' Test  

E-Print Network (OSTI)

We include matter sources in Einstein's field equations and show that our recently proposed 3+1 evolution scheme can stably evolve strong-field solutions. We insert in our code known matter solutions, namely the Oppenheimer-Volkoff solution for a static star and the Oppenheimer-Snyder solution for homogeneous dust sphere collapse to a black hole, and evolve the gravitational field equations. We find that we can evolve stably static, strong-field stars for arbitrarily long times and can follow dust sphere collapse accurately well past black hole formation. These tests are useful diagnostics for fully self-consistent, stable hydrodynamical simulations in 3+1 general relativity. Moreover, they suggest a successive approximation scheme for determining gravitational waveforms from strong-field sources dominated by longitudinal fields, like binary neutron stars: approximate quasi-equilibrium models can serve as sources for the transverse field equations, which can be evolved without having to re-solve the hydrodynamical equations (``hydro without hydro'').

Thomas W. Baumgarte; Scott A. Hughes; Stuart L. Shapiro

1999-02-09T23:59:59.000Z

205

Data Center Energy Benchmarking: Part 3 - Case Study on an ITEquipment-testing Center (No. 20)  

SciTech Connect

The data center in this study had a total floor area of 3,024 square feet (ft{sup 2}) with one-foot raised-floors. It was a rack lab with 147 racks, and was located in a 96,000 ft{sup 2} multi-story office building in San Jose, California. Since the data center was used only for testing equipment, it was not configured as a critical facility in terms of electrical and cooling supply. It did not have a dedicated chiller system but was served by the main building chiller plant and make-up air system. Additionally it was served by only a single electrical supply with no provision for backup power in the event of a power outage. The Data Center operated on a 24 hour per day, year-round cycle, and users had full-hour access to the data center facility. The study found that data center computer load accounted for 15% of the overall building electrical load, while the total power consumption attributable to the data center including allocated cooling load and lighting was 22% of the total facility load. The density of installed computer loads (rack load) in the data center was 61 W/ft{sup 2}. Power consumption density for all data center allocated load (including cooling and lighting) was 88 W/ft{sup 2}, approximately eight times the average overall power density in rest of the building (non-data center portion). The building and its data center cooling system was provided with various energy optimizing systems that included the following: (1) Varying chilled water flow rate through variable speed drives on the primary pumps. (2) No energy losses due to nonexistence of UPS or standby generators. (3) Minimized under-floor obstruction that affects the delivery efficiency of supply air. (4) Elimination of dehumidification/humidification within the CRAH units. For the data center, 70% of the overall electric power was the rack critical loads, 14% of the power was consumed by chillers, 12% by CRAH units, 2% by lighting system, and about 2% of the power was consumed by chilled water pumps. General recommendations for improving overall data center energy efficiency include improving the lighting control, airflow optimization, control of mechanical systems serving the data center in actual operation.. This includes chilled water system, airflow management and control in the data center. Additional specific recommendations or considerations to improve energy efficiency are provided in this report.

Xu, Tengfang; Greenberg, Steve

2007-07-01T23:59:59.000Z

206

Data Center Energy Benchmarking: Part 4 - Case Study on aComputer-testing Center (No. 21)  

SciTech Connect

The data center in this study had a total floor area of 8,580 square feet (ft{sup 2}) with one-foot raised-floors. It was a rack lab with 440 racks, and was located in a 208,240 ft{sup 2} multi-story office building in San Jose, California. Since the data center was used only for testing equipment, it was not configured as a critical facility in terms of electrical and cooling supply. It did not have a dedicated chiller system but served by the main building chiller plant and make-up air system. Additionally, it was served by a single electrical supply with no provision for backup power. The data center operated on a 24 hour per day, year-round cycle, and users had all hour full access to the data center facility. The study found that data center computer load accounted for 23% of the overall building electrical load, while the total power consumption attributable to the data center including allocated cooling load and lighting was 30% of the total facility load. The density of installed computer loads (rack load) in the data center was 63 W/ft{sup 2}. Power consumption density for all data center allocated load (including cooling and lighting) was 84 W/ft{sup 2}, approximately 12 times the average overall power density in rest of the building (non-data center portion). For the data center, 75% of the overall electric power was the rack critical loads, 11% of the power was consumed by chillers, 9% by CRAH units, 1% by lighting system, and about 4% of the power was consumed by pumps. The ratio of HVAC to IT power demand in the data center in this study was approximately 0.32. General recommendations for improving overall data center energy efficiency include improving the lighting control, airflow optimization, and control of mechanical systems serving the data center in actual operation. This includes chilled water system, airflow management and control in data centers. Additional specific recommendations or considerations to improve energy efficiency are provided in this report.

Xu, Tengfang; Greenberg, Steve

2007-08-01T23:59:59.000Z

207

Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures  

E-Print Network (OSTI)

Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures Elodie Salmon a , Adri C.T. van Duin b , François Lorant Brown coal using the ReaxFF reactive force field. We find that these reactive MD simulations

Goddard III, William A.

208

Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and laboratory reports, Part 2 of 2  

DOE Green Energy (OSTI)

Volume II (part 2 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the field and laboratory reports, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Ltd., Toronto, Ontario (Canada)

1996-04-01T23:59:59.000Z

209

Closed-loop flow test Miravalles Geothermal Field well log results  

DOE Green Energy (OSTI)

The Instituto Costarricense de Electricidad (ICE) conducted a closed-loop flow test in the Miravalles Geothermal Field. The closed-loop test was started in May and ran through August of 1990. The effluent from the production well PG-11 was carried by a pipeline through a monitor station to the injection well PG-2. Before starting the long-term flow test in May, cold-water injection experiments were performed in each well to determine the pressure and temperature response. A series of downhole measurements were made in each well to obtain background information. The downhole measurements were repeated in August just before terminating the flow test to evaluate the results.

Dennis, B.; Eden, G.; Lawton, R.

1992-01-01T23:59:59.000Z

210

SOLERAS Program: engineering field test of a solar cooling system. Phase I and II  

Science Conference Proceedings (OSTI)

The rationale for selecting the engineering field test site and the building cooling requirements are described. Descriptions of the Phase I activities are presented and descriptions of the overall cooling system and its major subsystems and components are provided. The preliminary design analyses conducted to select collector/storage, chiller module and thermal distribution components; operating features and estimated system performance are included. Economic analyses and the results obtained are described including an assessment of the commercialization potential for the solar cooling system. Phase II activities are presented and detailed design, construction and installation features of the solar system at the test site are described. Testing documentation is provided by the checkout and acceptance tests and their results are described.

Not Available

1982-06-01T23:59:59.000Z

211

A test of Einstein's theory of gravitation: Velocity distribution of low-energy particles in a spherically symmetric gravitational field  

E-Print Network (OSTI)

We propose a new test of Einstein's theory of gravitation. It concerns the velocity distribution of low-energy particles in a spherically symmetric gravitational field.

Jian-Miin Liu

2002-06-17T23:59:59.000Z

212

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2  

SciTech Connect

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

Pawloski, G A

2012-01-30T23:59:59.000Z

213

L&E: Participate in a field test for high-efficiency troffer lighting. |  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting & Electrical » Participate Lighting & Electrical » Participate in a field test for high efficiency troffer lighting Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Participate in a field test for high-efficiency troffer lighting 50% of all commercial fluorescent lighting fixtures are recessed troffers in 1'x4', 2'x2' and 2'x4' configurations, in operation for more than 10 hours a day on average and collectively consuming more than 87 TWh of electricity annually. The Lighting & Electrical team supported the market introduction of high-efficiency troffers by developing a specification that allows for

214

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Field TesTing oF AcTivATed cArbon Field TesTing oF AcTivATed cArbon injecTion opTions For Mercury conTrol AT TXu's big brown sTATion Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. Lignite coal is unique because of its highly variable ash content (rich in alkali and alkaline-earth elements), high moisture levels, low chlorine content, and high calcium content. Unique to Texas lignite coals are relatively high iron and selenium concentrations. When combusting Texas lignite coals, up to 80 percent of the mercury in the flue gas is present as elemental mercury, which is not readily captured by downstream pollution control devices. To better understand the factors that influence mercury control at units firing

215

Notes from DOE/EPRI Meeting on Phase II Mercury Field Test Needs  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes DOE/EPRI meeting on Phase II Mercury Field Test Needs Washington DC June 5, 2002 Attendees (phone/e-mail at end of notes) AEP - Gary Spitznogle EPRI - Stu Dalton DOE - Scott Renninger EPRI - George Offen DOE - Tom Feeley GRE - Mark Strohfus Duke - Tim Shawver Southern - Larry Monroe EPA - Jim Kilgroe TVA - Tom Burnett TXU - David Lamb DOE and EPRI jointly convened this meeting to obtain feedback from deeply involved industry members on the needs, scope, schedule, etc. for a second phase of full-scale, longer-term field tests of mercury controls on power plants. The program objectives would be to determine performance and costs of the major near-term control approaches with the hope of using this information both to inform the regulatory (MACT) and legislative (Clear Skies Initiative, CSI) processes as well as industry selections of

216

Laboratory and field testing of an aerosol-based duct-sealing technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory and field testing of an aerosol-based duct-sealing technology Laboratory and field testing of an aerosol-based duct-sealing technology for large commercial buildings. Title Laboratory and field testing of an aerosol-based duct-sealing technology for large commercial buildings. Publication Type Journal Article LBNL Report Number LBNL-44220 Year of Publication 2002 Authors Carrié, François Rémi, Ronnen M. Levinson, Tengfang T. Xu, Darryl J. Dickerhoff, William J. Fisk, Jennifer A. McWilliams, Mark P. Modera, and Duo Wang Journal ASHRAE Transactions Start Page Chapter Date Published January 2002 Abstract Laboratory and field experiments were performed to evaluate the feasibility of sealing leaks in commercial duct systems with an aerosol sealant. The method involves blowing an aerosol through the duct system to seal the leaks from the inside, the principle being that the aerosol particles deposit in the cracks as they try to escape under pressure. It was shown that the seals created with the current sealant material can withstand pressures far in excess of what is found in commercial-building duct systems. We also performed two field experiments in two large-commercial buildings. The ASHRAE leakage classes of the systems were reduced from 653 down to 103, and from 40 down to 3. Methods and devices specifically devised for this application proved to be very efficient at (a) increasing the sealing rate and (b) attaining state-of-the-art duct leakage classes. Additional research is needed to improve the aerosol injection and delivery processes.

217

Field Testing of Location Tracking Technologies for Radiation Management: Interim Report  

Science Conference Proceedings (OSTI)

The nuclear power industry is challenged with monitoring an ever-increasing load of work activities and workers, while cost effective measures have greatly reduced the number of staff able to perform job coverage. The adoption of location tracking technologies may assist plant staff in maintaining safe operation of nuclear power plants. Performing field tests of the available equipment will help the industry understand the set up requirements and limitations of coverage. This interim report provides info...

2011-12-20T23:59:59.000Z

218

Field pilot tests for tertiary recovery using butane and propane injection  

SciTech Connect

This work describes a pilot project for tertiary recovery of liquid hydrocarbons through LPG injection in water-out sections of the Bolivar reservoir in La Pena Field, Santa Cruz, Boliva. The promising results obtained in the initial field miscibility tests, as well as the results from a mathematical model built to stimulate and evaluate the tertiary recovery project, directed subsequent work into a cyclic scheme for enhanced recovery. This scheme is explained and injection production data is presented. Field facilities built to handle both the injected LPG and the produced oil-LPG mixture are described. The oil/LPG ratio and the LPG recovered/injected fraction are the main factors measured in this to make further considerations for a full scale project.

Pacheco, E.F.; Garcia, A.I.

1981-01-01T23:59:59.000Z

219

Field-based tests of geochemical modeling codes using New Zealand hydrothermal systems  

DOE Green Energy (OSTI)

Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions.

Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

1994-06-01T23:59:59.000Z

220

Field Testing of a Wet FGD Additive for Enhanced Mercury Control  

SciTech Connect

This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved management and reporting. The other four tasks involved field testing on FGD systems, either at pilot or full scale. These four tasks included: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and the full-scale test using high-sulfur coal was completed in 2006; only the TMT-15 additive was tested in these efforts. The Task 5 full-scale additive tests conducted at Southern Company's Plant Yates Unit 1 were completed in 2007, and both the TMT-15 and Nalco 8034 additives were tested.

Gary Blythe; MariJon Owens

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NETL: News Release - DOE-Funded Acoustic Monitor Passes Key Field Test  

NLE Websites -- All DOE Office Websites (Extended Search)

March 7, 2005 March 7, 2005 DOE-Funded Acoustic Monitor Passes Key Field Test Detection System Can Help Locate Pipeline Leaks, Damage MORGANTOWN, WV - A new, lightweight device that uses natural gas itself to detect leaks in natural gas pipelines has been successfully tested on a transmission main owned and operated by Dominion Transmission Inc., in Morgantown, W.Va. The test was conducted by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) and West Virginia University, which has worked with NETL for the past 2 years to advance the detection system. The device is one of a suite of technologies being developed by the Energy Department's Office of Fossil Energy to effectively and efficiently monitor the 1.3 million miles of transmission and distribution pipelines which crisscross the United States

222

The Great Observatories Origins Deep Survey. VLT/FORS2 Spectroscopy in the GOODS-South Field: Part III  

E-Print Network (OSTI)

Aims. We present the full data set of the spectroscopic campaign of the ESO/GOODS program in the GOODS-South field, obtained with the FORS2 spectrograph at the ESO/VLT. Method. Objects were selected as candidates for VLT/FORS2 observations primarily based on the expectation that the detection and measurement of their spectral features would benefit from the high throughput and spectral resolution of FORS2. The reliability of the redshift estimates is assessed using the redshift-magnitude and color-redshift diagrams, and comparing the results with public data. Results. Including the third part of the spectroscopic campaign (12 masks) to the previous work (26 masks, Vanzella et al. 2005, 2006), 1715 spectra of 1225 individual targets have been analyzed. The actual spectroscopic catalog provides 887 redshift determinations. The typical redshift uncertainty is estimated to be sigma(z) ~ 0.001. Galaxies have been selected adopting different color criteria and using photometric redshifts. The resulting redshift distribution typically spans two domains: from z=0.5 to 2 and z=3.5 to 6.3. The reduced spectra and the derived redshifts are released to the community through the ESO web page http://www.eso.org/science/goods/

E. Vanzella; S. Cristiani; M. Dickinson; M. Giavalisco; H. Kuntschner; J. Haase; M. Nonino; P. Rosati; C. Cesarsky; H. C. Ferguson; R. A. E. Fosbury; A. Grazian; L. A. Moustakas; A. Rettura; P. Popesso; A. Renzini; D. Stern; the GOODS Team

2007-11-06T23:59:59.000Z

223

Field test of Six-Phase Soil Heating and evaluation of engineering design code  

SciTech Connect

A field test was conducted to evaluate the performance of Six-Phase Soil Heating to enhance the removal of contaminants. The purpose of the test was to determine the scale-up characteristics of the Six-Phase Soil Heating technology and to evaluate a computer process simulator developed for the technology. The test heated a 20-ft diameter cylinder of uncontaminated soil to a 10-ft depth. Six-phase ac power was applied at a rate of 30--35 kW using a power system built from surplus electrical components. The test ran unattended, using a computer-based system to record data, alert staff of any excursions in operating conditions via telephone, and provide automatic shut-off of power depending on the type of excursion. The test data included in situ soil temperatures, voltage profiles, and moisture profiles (using a neutron-probetechnique). After 50 days of heating, soil in the center of the array at the 6-ft depth reached 80[degrees]C. Soil temperatures between the two electrodes at this depth reached approximately 75[degrees]C. Data from this test were compared with those predicted by a computer process simulator. The computer process simulator is a modified version of the TOUGH2 code, a thermal porous media code that can be used to determine the movement of air and moisture in soils. The code was modified to include electrical resistive heating and configured such that an application could be run quickly on a workstation (approximately 5 min for 1 day of field operation). Temperature and soil resistance data predicted from the process simulations matched actual data fairly closely. A series of parametric studies was performed to assess the affect of simulation assumptions on predicted parameters.

Bergsman, T.M.; Roberts, J.S.; Lessor, D.L.; Heath, W.O.

1993-02-01T23:59:59.000Z

224

Field test of Six-Phase Soil Heating and evaluation of engineering design code  

SciTech Connect

A field test was conducted to evaluate the performance of Six-Phase Soil Heating to enhance the removal of contaminants. The purpose of the test was to determine the scale-up characteristics of the Six-Phase Soil Heating technology and to evaluate a computer process simulator developed for the technology. The test heated a 20-ft diameter cylinder of uncontaminated soil to a 10-ft depth. Six-phase ac power was applied at a rate of 30--35 kW using a power system built from surplus electrical components. The test ran unattended, using a computer-based system to record data, alert staff of any excursions in operating conditions via telephone, and provide automatic shut-off of power depending on the type of excursion. The test data included in situ soil temperatures, voltage profiles, and moisture profiles (using a neutron-probetechnique). After 50 days of heating, soil in the center of the array at the 6-ft depth reached 80{degrees}C. Soil temperatures between the two electrodes at this depth reached approximately 75{degrees}C. Data from this test were compared with those predicted by a computer process simulator. The computer process simulator is a modified version of the TOUGH2 code, a thermal porous media code that can be used to determine the movement of air and moisture in soils. The code was modified to include electrical resistive heating and configured such that an application could be run quickly on a workstation (approximately 5 min for 1 day of field operation). Temperature and soil resistance data predicted from the process simulations matched actual data fairly closely. A series of parametric studies was performed to assess the affect of simulation assumptions on predicted parameters.

Bergsman, T.M.; Roberts, J.S.; Lessor, D.L.; Heath, W.O.

1993-02-01T23:59:59.000Z

225

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

Science Conference Proceedings (OSTI)

The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

2009-01-07T23:59:59.000Z

226

Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report  

SciTech Connect

The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair of field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.

Aglan, H.

2005-08-04T23:59:59.000Z

227

A Class of Single- and Dual-Frequency Algorithms for Rain-Rate Profiling from a Spaceborne Radar. Part II: Tests from Airborne Radar Measurements  

Science Conference Proceedings (OSTI)

In Part I, four single-frequency (SF) algorithms and a dual-frequency (DF) algorithm for range profiling of the rain rate from a spaceborne radar were described and tested from numerical simulations. In Part II, performances of these algorithms ...

Paul Amayenc; Jean Philippe Diguet; Mongi Marzoug; Taoufik Tani

1996-02-01T23:59:59.000Z

228

Development of analytical and numerical models for the assessment and interpretation of hydrogeological field tests  

Science Conference Proceedings (OSTI)

Mathematical models of the flow and tracer tests in fractured aquifers are being developed for the further study of radioactive wastes migration in round water at the Lake Area, which is associated with one of the waste disposal site in Russia. The choice of testing methods, tracer types (chemical or thermal) and the appropriate models are determined by the nature of the ongoing ground-water pollution processes and the hydrogeological features of the site under consideration. Special importance is attached to the increased density of wastes as well as to the possible redistribution of solutes both in the liquid phase and in the absorbed state (largely, on fracture surfaces). This allows for studying physical-and-chemical (hydrogeochemical) interaction parameters which are hard to obtain (considering a fractured structure of the rock mass) in laboratory. Moreover, a theoretical substantiation is being given to the field methods of studying the properties of a fractured stratum aimed at the further construction of the drainage system or the subsurface flow barrier (cutoff wall), as well as the monitoring system that will evaluate the reliability of these ground-water protection measures. The proposed mathematical models are based on a tight combination of analytical and numerical methods, the former being preferred in solving the principal (2D axisymmetrical) class of the problems. The choice of appropriate problems is based on the close feedback with subsequent field tests in the Lake Area. 63 refs.

Mironenko, V.A.; Rumynin, V.G.; Konosavsky, P.K. [St. Petersburg Mining Inst. (Russian Federation); Pozdniakov, S.P.; Shestakov, V.M. [Moscow State Univ. (Russian Federation); Roshal, A.A. [Geosoft-Eastlink, Moscow (Russian Federation)

1994-07-01T23:59:59.000Z

229

Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data  

SciTech Connect

The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

Cena, R. J.; Thorsness, C. B.

1981-08-21T23:59:59.000Z

230

Rapid field testing of low-emittance coated glazings for product verification  

Science Conference Proceedings (OSTI)

This paper analyzes prospects for developing a test device suitable for field verification of the types of low-emittance (low-e) coatings present on high-performance window products. Test devices are currently available that can simply detect the presence of low-e coatings and that can measure other important characteristics of high-performance windows, such as the thickness of glazing layers or the gap in dual glazings. However, no devices have yet been developed that can measure gas concentrations or distinguish among types of coatings. This paper presents two optical methods for verification of low-e coatings. The first method uses a portable, fiber-optic spectrometer to characterize spectral reflectances from 650 to 1,100 nm for selected surfaces within an insulated glazing unit (IGU). The second method uses an infrared-light-emitting diode and a phototransistor to evaluate the aggregate normal reflectance of an IGU at 940 nm. Both methods measure reflectance in the near (solar) infrared spectrum and are useful for distinguishing between regular and spectrally selective low-e coatings. The infrared-diode/phototransistor method appears promising for use in a low-cost, hand-held field test device.

Griffith, Brent; Kohler, Christian; Goudey, Howdy; Turler, Daniel; Arasteh, Dariush

1998-02-01T23:59:59.000Z

231

Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system  

SciTech Connect

As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

Marshall, B.W.

1983-05-01T23:59:59.000Z

232

ANL/APS/TB-32 Test of Horizontal Field Measurements Using Two-Axis Hall  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Test of Horizontal Field Measurements Using Two-Axis Hall Probes at the APS Magnetic Measurement Facility I. Vasserman Advanced Photon Source Argonne National Laboratory Argonne, IL 60439 1. Introduction The free-electron laser (FEL) project at the Advanced Photon Source (APS) will use a 400-MeV particle beam from the APS linac with RMS beam transverse size of 100 µm and requires very high performance of the insertion devices in order to achieve high intensity radiation. Averaged over period, the trajectory must deviate from the ideal on-axis trajectory by not more than 10% of the RMS beam size. Meaning that the second field integral should be straight within ±1300 G-cm 2 over the length of the device for both horizontal and vertical directions for the 400-MeV particle

233

Field tests of probes for detecting internal corrosion of natural gas transmission pipelines  

Science Conference Proceedings (OSTI)

A field study was conducted to evaluate the use of electrochemical corrosion rate (ECR) probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. Results and interpretation will be reported from four different field tests. Flange and flush-mount probes were used in four different environments at a gas-gathering site and one environment but two different orientations at a natural gas plant. These sites were selected to represent normal and upset conditions in a gas transmission pipeline. The environments consisted of 2 different levels of humidified natural gas/organic/water mixtures removed from natural gas, and the environments at the 6 and 12 o'clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S. (Intercorr International Inc.); Kane, Russell D. (Intercorr International Inc.); Meidinger, Brian (RMOTC-DOE)

2005-01-01T23:59:59.000Z

234

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

Science Conference Proceedings (OSTI)

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

235

Model test on underground coal gasification (UCG) with low-pressure fire seepage push-through. Part I: Test conditions and air fire seepage  

Science Conference Proceedings (OSTI)

The technology of a pushing-through gallery with oxygen-enriched fire-seepage combustion was studied during shaft-free UCG in this article, and the main experiment parameters were probed. The test results were analyzed in depth. The patterns of variation and development were pointed out for the fire source moving speed, temperature field, leakage rate, the expanding diameter for the gasification gallery, and blasting pressure. Test results showed that, with the increase in the wind-blasting volume, the moving velocity for the fire source speeded up, and the average temperature for the gallery continuously rose. Under the condition of oxygen-enriched air blasting, when O{sub 2} contents stood at 90%, the moving speed for the fire source was 4-5 times that of air blasting. In the push-through process, the average leakage rate for the blasting was 82.23%, with the average discharge volume of 3.43 m{sup 3}/h and average gallery diameter of 7.87 cm. With the proceeding of firepower seepage, the extent of dropping for the leakage rate increased rapidly, and the drop rate for the blasting pressure gradually heightened.

Yang, L.H. [China University of Mining & Technology, Xuzhou (China)

2008-07-01T23:59:59.000Z

236

Automated Critical Peak Pricing Field Tests: 2006 Program Description and Results APPENDICES  

NLE Websites -- All DOE Office Websites (Extended Search)

Automated Critical Peak Pricing Field Tests: 2006 Program Description and Results APPENDICES Mary Ann Piette David Watson Naoya Motegi Sila Kiliccote Lawrence Berkeley National Laboratory MS90R3111 1 Cyclotron Road Berkeley, California 94720 August 30, 2007 This work described in this report was coordinated by the Demand Response Research Center and funded by the California Energy Commission, Public Interest Energy Research Program, under Work for Others Contract No. 150-99-003, Am #1 and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. LBNL Report Number 62218 2 Table of Contents List of Tables ......................................................................................................................................3

237

On-site fuel cell field test support program. Annual report Jul 81-Jun 82  

SciTech Connect

United continued this past year to assist the utilities and the Gas Research Institute in the review and selection of sites for data monitoring. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation continued to show that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

Staniunas, J.W.; Merten, G.P.

1982-09-01T23:59:59.000Z

238

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

Brayton Point Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of the impacts of future mercury regulations to Brayton Point Unit 1, including performance, estimated cost, and operation data. This unit has variable (29-75%) native mercury removal, thus it was important to understand the impacts of process variables and activated carbon on mercury capture. The team responsible for executing this program included: (1) Plant and PG&E National Energy Group corporate personnel; (2) Electric Power Research Institute (EPRI); (3) United States Department of Energy National Energy Technology Laboratory (DOE/NETL); (4) ADA-ES, Inc.; (5) NORIT Americas, Inc.; (6) Apogee Scientific, Inc.; (7) TRC Environmental Corporation; (8) URS Corporation; (9) Quinapoxet Solutions; (10) Energy and Environmental Strategies (EES); and (11) Reaction Engineering International (REI). The technical support of all of these entities came together to make this program achieve its goals. Overall, the objectives of this field test program were to determine the impact of activated carbon injection on mercury control and balance-of-plant processes on Brayton Point Unit 1. Brayton Point Unit 1 is a 250-MW unit that fires a low-sulfur eastern bituminous coal. Particulate control is achieved by two electrostatic precipitators (ESPs) in series. The full-scale tests were conducted on one-half of the flue gas stream (nominally 125 MW). Mercury control sorbents were injected in between the two ESPs. The residence time from the injection grid to the second ESP was approximately 0.5 seconds. In preparation for the full-scale tests, 12 different sorbents were evaluated in a slipstream of flue gas via a packed-bed field test apparatus for mercury adsorption. Results from these tests were used to determine the five carbon-based sorbents that were tested at full-scale. Conditions of interest that were varied included SO{sub 3} conditioning on/off, injection concentrations, and distribution spray patterns. The original test plan called for parametric testing of NORIT FGD carbon at 1, 3, and 10 lbs/MMacf. These injection concentrations were estimated based on results from the Pleasant Prairie tests that showed no additional mercury removal when injection concentrations were increased above 10 lbs/MMacf. The Brayton Point parametric test data indicated that higher injection concentrations would achieve higher removal efficiencies and should be tested. The test plan was altered to include testing at 20 lbs/MMacf. The first test at this higher rate showed very high removal across the second ESP (>80%). Unlike the ''ceiling'' phenomenon witnessed at Pleasant Prairie, increasing sorbent injection concentration resulted in further capture of vapor-phase mercury. The final phase of field-testing was a 10-day period of continuous injection of NORIT FGD carbon. During the first five days, the injection concentration was held at 10 lbs/MMacf, followed by nominally five days of testing at an injection concentration of 20 lbs/MMacf. The mercury removal, as measured by the semi-continuous emission monitors (S-CEM), varied between 78% and 95% during the 10 lbs/MMacf period and increased to >97% when the injection concentration was increased to 20 lbs/MMacf. During the long-term testing period, mercury measurements following EPA's draft Ontario Hydro method were conducted by TRC Environmental Corporation at both 10 and 20 lbs/MMacf test conditions. The Ontario Hydro data showed that the particulate mercury removal was similar between the two conditions of 10 or 20 lbs/MMacf and removal efficiencies were greater than 99%. Elemental mercury was not detected in any samples, so no conclusions as to its removal can be drawn. Removal of oxidized mercury, on the other hand, increased from 68% to 93% with the higher injection concentration. These removal rates agreed well with the S-CEM results.

Michael D. Durham

2005-03-17T23:59:59.000Z

239

Impact of residential photovoltaics on electric utilities: some evidence from field test and simulation  

SciTech Connect

The adoption of residential photovoltaics will affect the load profile of electric utilities, the adequacy and reliability of their capacity, and their consumption of fuels. Impacts are examined by a comparison of the actual load profile facing a Texas utility with solar outputs from both TRNSYS simulations and a test array in Fort Worth. Array output is scaled up parametrically to represent different levels of solar penetration. The reductions in peak load and loss-of-load probability indicate that the adoption of 5 kW arrays by 50% of the residences reduces capacity requirements by only 4%. The value of utility savings will exceed the cost of the PV systems before 1990. The field test results are more favorable than the simulation.

Katzman, M.T.

1981-01-01T23:59:59.000Z

240

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ARM - Field Campaign - NASA Coordinated Airborne CO2 Lidar Flight Test  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsNASA Coordinated Airborne CO2 Lidar Flight Test Campaign govCampaignsNASA Coordinated Airborne CO2 Lidar Flight Test Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : NASA Coordinated Airborne CO2 Lidar Flight Test Campaign 2009.07.27 - 2009.08.07 Lead Scientist : Edward Browell For data sets, see below. Description This airborne field test campaign was designed to obtain a coordinated set of remote CO2 Laser Absorption Spectrometer (LAS) measurements using the NASA Langley/ITT 1.57-micron Continuous-Wave (CW) LAS operating from the NASA Langley UC-12 aircraft; the NASA Goddard 1.57-micron pulsed LAS operating from the NASA Glenn Lear-25 aircraft; and the NASA Jet Propulsion Laboratory 2.0-micron CW-coherent LAS operating from a contracted Twin Otter aircraft. These remote LAS CO2 column measurements were compared with

242

Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report  

DOE Green Energy (OSTI)

This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.

J. Francfort (INEEL); J. Argueta; M. Wehrey (Southern California Edison); D. Karner; L. Tyree (Electric Transportation Applications)

1999-07-01T23:59:59.000Z

243

Marine Stratocumulus Cloud Fields off the Coast of Southern California Observed Using LANDSAT Imagery. Part II: Textural Analysis  

Science Conference Proceedings (OSTI)

Statistical measures of the spatial distributions of gray levels (cloud reflectivities) are determined for LANDSAT Multispectral Scanner digital data. Textural properties for twelve stratocumulus cloud fields, seven cumulus fields, and two cirrus ...

R. M. Welch; S. K. Sengupta; K. S. Kuo

1988-04-01T23:59:59.000Z

244

An Evaluation of Microphysics Fields from Mesoscale Model Simulations of Tropical Cyclones. Part I: Comparisons with Observations  

Science Conference Proceedings (OSTI)

This study presents a framework for comparing hydrometeor and vertical velocity fields from mesoscale model simulations of tropical cyclones with observations of these fields from a variety of platforms. The framework is based on the Yuter and ...

Robert F. Rogers; Michael L. Black; Shuyi S. Chen; Robert A. Black

2007-06-01T23:59:59.000Z

245

Field test results of the physical solvent N-Formyl morpholine for gas treating applications  

Science Conference Proceedings (OSTI)

The Institute of Gas Technology (IGT) is developing gas processing technology that will reduce gas processing costs for current production and allow subquality gas to be economically produced that would have been otherwise, not produced. The experimental program has primarily focused on the evaluation of N-Formyl Morpholine (NFM) as a physical solvent for the cost-effective upgrading of subquality natural gas to pipeline quality. The selection of NFM for this program was based on previous work conducted by IGT in the selective removal of hydrogen sulfide, and carbon dioxide from coal gasifier effluents. That work showed that the use of NFM resulted in a significant cost advantage over 107 other solvents for that application. The project approach for the development of NFM process has been divided into following main categories: obtain vapor-liquid equilibrium, physical properties and additional published literature data; obtain mass-transfer coefficients using 2 inch absorber/stripper apparatus and calculate equation of state parameters and binary interaction parameters using VLE data; develop a gas processing model using Aspen Plus simulation program and evaluate economic advantages of the NFM process compared to commercial physical solvent; and design a pilot plant skid mounted field test unit and conduct field test experiments.

Palla, N.; Lee, A.L.

1997-12-31T23:59:59.000Z

246

Field testing the Raman gas composition sensor for gas turbine operation  

Science Conference Proceedings (OSTI)

A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 ?m ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

2012-01-01T23:59:59.000Z

247

Summary of seasonal thermal energy storage field test projects in the United States  

DOE Green Energy (OSTI)

Seasonal thermal energy storage (STES) involves storage of available heat or chill for distribution at a later time to meet thermal loads. STES can reduce energy consumption, peak energy demand, and emissions of carbon dioxide to the atmosphere over conventional systems. It is estimated that full-scale application of STES would provide 2% to 4% of total energy needs in the United States. One STES technology, aquifer thermal energy storage (ATES), has been determined to be the most cost-effective option in the United States when site conditions enable its use. ATES has been analyzed in the laboratory and investigated in the field in the United States since the program was established at Pacific Northwest Laboratory (PNL) in 1979. Two field test facilities (FTFs), one for heating ATES at the University of Minnesota and the other for cooling ATES at the University of Alabama, have been primary testing grounds for US ATES research. Computer models have been developed to analyze the complex thermal and fluid dynamics. Extensive monitoring of FTFs has provided verification of and refinements to the computer models. The areas of geochemistry and microbiology have been explored as they apply to the aquifer environment. In general, the two FTFs have been successful in demonstrating the steps needed to make an ATES system operational.

Johnson, B.K.

1989-07-01T23:59:59.000Z

248

Thermal Energy Storage Evaluation Program: 1986 annual report. [Economic planning, technical assessment, field tests  

DOE Green Energy (OSTI)

The Thermal Energy Storage Evaluation Program activities were initiated to provide economic planning, technical assessment and field testing support for the thermal energy storage program, as well as management of the overall program for the DOE. Economic planning included two assessment studies. In technical assessment, issues that might affect an assessment were outlined for the development of a standard methodology to conduct assessments; work is underway to establish ''market-based'' cost and performance goals for cool storage technologies in residential applications; planning has begun for investigation of benefits in incorporating aquifer thermal energy storage with heat pumps; and plans are being formulated to evaluate the potential benefit of using aquifer thermal energy storage to augment power plant cooling. Field testing to develop technologies for the recovery and reuse of industrial waste heat began with the instrumentation design for the ceramic/salt matrix in an operating brick-making plant. Work in advanced studies by Lawrence Berkeley Laboratory continued on thermochemical conversion and storage using small particles as the heat exchanger catalyst. In SO/sub 3/ dissociation experiments at 645/sup 0/C using light and dark conditions, results clearly demonstrated the benefit in directly radiantly heating the catalyst to accomplish the endothermic step of a thermochemical storage reaction.

Drost, M.K.; Bates, J.M.; Brown, D.R.; Weijo, R.O.

1987-07-01T23:59:59.000Z

249

Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part II: Imperfect Model Experiments  

Science Conference Proceedings (OSTI)

In Part I of this two-part work, the feasibility of using an ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation through various observing system simulation experiments was demonstrated assuming a perfect forecast ...

Zhiyong Meng; Fuqing Zhang

2007-04-01T23:59:59.000Z

250

Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and Laboratory Reports, Part 1 of 2  

DOE Green Energy (OSTI)

Volume II (part 1 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the documentation and raw data, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Ltd., Toronto, Ontario (Canada)

1996-04-01T23:59:59.000Z

251

Description, field test and data analysis of a controlled-source EM system (EM-60). [Leach Hot Springs, Grass Valley  

DOE Green Energy (OSTI)

The three sections describe the transmitter, the receiver, and data interpretations and indicate the advances made toward the development of a large moment electromagnetic (EM) system employing a magnetic dipole source. A brief description is given of the EM-60 transmitter, its general design, and the consideration involved in the selection of a practical coil size and weight for routine field operations. A programmable, multichannel, multi-frequency, phase-sensitive receiver is described. A field test of the EM-60, the data analysis and interpretation procedures, and a comparison between the survey results and the results obtained using other electrical techniques are presented. The Leach Hot Springs area in Grass Valley, Pershing County, Nevada, was chosen for the first field site at which the entire system would be tested. The field tests showed the system capable of obtaining well-defined sounding curves (amplitude and phase of magnetic fields) from 1 kHz down to 0.1 Hz. (MHR)

Morrison, H.F.; Goldstein, N.E.; Hoversten, M.; Oppliger, G.; Riveros, C.

1978-10-01T23:59:59.000Z

252

DTE Energy Technologies With Detroit Edison Co. and Kinectrics Inc.: Distributed Resources Aggregation Modeling and Field Configuration Testing  

Science Conference Proceedings (OSTI)

Summarizes the work of DTE Energy Technologies, Detroit Edison, and Kinectrics, under contract to DOE's Distribution and Interconnection R&D, to develop distributed resources aggregation modeling and field configuration testing.

Not Available

2003-10-01T23:59:59.000Z

253

Studies of strong-field gravity : testing the black hole hypothesis and investigating spin-curvature coupling  

E-Print Network (OSTI)

Observations of gravitational systems agree well with the predictions of general relativity (GR); however, to date we have only tested gravity in the weak-field limit. In the next few years, observational advances may make ...

Vigeland, Sarah Jane

2012-01-01T23:59:59.000Z

254

Small Scale Field Test Demonstrating CO2 sequestration in Arbuckle Saline Aquifer and by CO2-EOR at Wellington field, Sumner County, Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Field Test Demonstrating CO Scale Field Test Demonstrating CO 2 sequestration in Arbuckle Saline Aquifer and by CO 2 -EOR at Wellington field, Sumner County, Kansas -- W. Lynn Watney and Jason Rush Kansas Geological Survey Lawrence, KS 66047 Regional Carbon Sequestration Partnerships Annual Review Meeting October 15-17, 2011 Pittsburgh, PA Funding Opportunity Number: DE-FOA-0000441 Contract #FE0006821 $11,484,499 DOE $3.236 million cost share KANSAS STATE UNIVERSITY 12/2/2011 1 Outline * Background * The Participants * The Plan * Leveraging Current Research at Wellington Field * Inject, Monitor, Verification, and Accounting of CO 2 2 ORGANIZATION CHART Kansas Geological Survey Name Project Job Title Primary Responsibility Lynn Watney Project Leader, Joint Principal Investigator

255

V2X communication in Europe - From research projects towards standardization and field testing of vehicle communication technology  

Science Conference Proceedings (OSTI)

Following the success story of passive and autonomous active safety systems, cooperative Intelligent Transportation Systems based on vehicular communication are the next important step to the vision of accident-free driving. In recent years, various ... Keywords: Cooperative systems, Field operational test (FOT), Intelligent Transportation Systems (ITS), Safe intelligent mobility - test field Germany (simTD), Vehicle-to-infrastructure (V2I), Vehicle-to-vehicle (V2V)

Christian Weií

2011-10-01T23:59:59.000Z

256

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

257

Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

i Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results Mary Ann Piette David Watson Naoya Motegi Sila Kiliccote Lawrence Berkeley National Laboratory MS90R3111 1 Cyclotron Road Berkeley, California 94720 June 19, 2007 LBNL Report Number 62218 ii Acknowledgements The work described in this report was funded by the Emerging Technologies Program at Pacific Gas and Electric Company. Additional funding was provided by the Demand Response Research Center which is funded by the California Energy Commission (Energy Commission), Public Interest Energy Research (PIER) Program, under Work for Others Contract No.500-03-026, Am #1 and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are grateful for the extensive

258

DOE/NETL's Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase II Plans for Full-Scale Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing Air Quality III September 12, 2002 Arlington, Va Scott Renninger, Project Manager for Mercury Control Technology Enviromental Projects Division Presentation Outline * Hg Program goals & objectives * Focus on Future Hg control R&D * Q&As President Bush's Clear Skies Initiative Current Mid-Term 2008-2010 2018 SO 2 11 million tons 4.5 million tons 3 million tons NOx 5 million tons 2.1 million tons 1.7 million tons Mercury 48 tons 26 tons 15 tons Annual U.S. Power Plant Emissions Mercury Control * Developing technologies ready for commercial demonstration: - By 2005, reduce emissions 50-70% - By 2010, reduce emissions by 90% - Cost 25-50% less than current estimates 2000 Year 48 Tons $2 - 5 Billion @ 90% Removal w/Activated

259

Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

2013-01-01T23:59:59.000Z

260

A field-scale test of in situ chemical oxidation through recirculation  

Science Conference Proceedings (OSTI)

In situ chemical oxidation is a developing class of remediation technologies in which organic contaminants are degraded in place by powerful oxidants. Successful implementation of this technology requires an effective means for dispersing the oxidant to contaminated regions in the subsurface. An oxidant delivery technique has been developed wherein the treatment solution is made by adding an oxidant to extracted groundwater. The oxidant-laden groundwater is then injected and recirculated into a contaminated aquifer through multiple horizontal and/or vertical wells. This technique, referred to as in situ chemical oxidation through recirculation (ISCOR), can be applied to saturated and hydraulically conductive formations and used with relatively stable oxidants such as potassium permanganate (KMnO{sub 4}). A field-scale test of ISCOR was conducted at a site (Portsmouth Gaseous Diffusion Plant) where groundwater in a 5-ft thick silty gravel aquifer is contaminated with trichloroethylene (TCE) at levels that indicate the presence of residual dense non-aqueous phase liquids (DNAPLs). The field test was implemented using a pair of parallel horizontal wells with 200-ft screened sections. For approximately one month, groundwater was extracted from one horizontal well, dosed with crystalline KMnO{sub 4}, and re-injected into the other horizontal well 90 ft away. Post-treatment characterization showed that ISCOR was effective at removing TCE in the saturated region. Lateral and vertical heterogeneities within the treatment zone impacted the uniform delivery of the oxidant solution. However, TCE was not detected in groundwater samples collected from monitoring wells and soil samples from borings in locations where the oxidant had permeated.

West, O.R.; Cline, S.R.; Holden, W.L.; Gardner, F.G.; Schlosser, B.M. [Oak Ridge National Lab., TN (United States); Siegrist, R.L. [Colorado School of Mines, Golden, CO (United States); Houk, T.C. [Bechtel-Jacobs, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests  

Science Conference Proceedings (OSTI)

This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

2010-08-31T23:59:59.000Z

262

Field drilling tests on improved geothermal unsealed roller-cone bits. Final report  

DOE Green Energy (OSTI)

The development and field testing of a 222 mm (8-3/4 inch) unsealed, insert type, medium hard formation, high-temperature bit are described. Increased performance was gained by substituting improved materials in critical bit components. These materials were selected on bases of their high temperature properties, machinability and heat treatment response. Program objectives required that both machining and heat treating could be accomplished with existing rock bit production equipment. Six of the experimental bits were subjected to air drilling at 240/sup 0/C (460/sup 0/F) in Franciscan graywacke at the Geysers (California). Performances compared directly to conventional bits indicate that in-gage drilling time was increased by 70%. All bits at the Geysers are subjected to reaming out-of-gage hole prior to drilling. Under these conditions the experimental bits showed a 30% increase in usable hole drilled, compared with the conventional bits. The materials selected improved roller wear by 200%, friction per wear by 150%, and lug wear by 150%. These tests indicate a potential well cost savings of 4 to 8%. Savings of 12% are considered possible with drilling procedures optimized for the experimental bits.

Hendrickson, R.R.; Jones, A.H.; Winzenried, R.W.; Maish, A.B.

1980-05-01T23:59:59.000Z

263

First field test of NAPL detection with high resolution borehole seismic imaging  

Science Conference Proceedings (OSTI)

The purpose of this field test is to evaluate the detectability of NAPLs by high resolution tomographic borehole seismic imaging. The site is a former Department of Energy (DOE) manufacturing facility in Pinellas County, Florida. Cross-hole seismic and radar measurements were made in a shallow aquifer contaminated with non-aqueous phase liquids (NAPLs). Cone penetration test (CPT) and induction logging were performed for lithology and conductivity, respectively. The main challenge is to distinguish fluid phase heterogeneities from anomalies arising from geologic structure. Our approach is to compare measurements between locations of known contamination with a nearby uncontaminated location of similar lithology where differences in signal transmission may be attributed to fluid phase changes. The CPT data show similar lithologic structure at the locations both within and outside the NAPL-contaminated area. Zones of low seismic amplitude at about 7 m depth appear more extensive in the NAPL-contaminated area. These zones may be the result of fluid phase heterogeneities (NAPL or gas), or they may be due to the lithology, i.e. attenuating nature of the layer itself, or the transition between two distinct layers. The presence of lithologic contrasts, specifically from higher permeability sands to lower permeability silts and clays, also indicate potential locations of NAPL, as they could be flow barriers to downward NAPL migration.

Geller, Jil T.; Peterson, John E.; Williams, Kenneth H.; Ajo-Franklin, Jonathan B.; Majer, Ernest L.

2002-05-01T23:59:59.000Z

264

Field test corrosion experiences when co-firing straw and coal: 10 year status within Elsam  

SciTech Connect

In Denmark, straw is utilised for the generation of energy and district heating in power plants. Combustion of straw gives rise to high contents of potassium chloride and some sulphur dioxide in the flue gas. These compounds can lead to deposits with high content of potassium chloride and potassium sulphate on superheater tubes resulting in increased corrosion rates. From field experimental results this paper show, that by co-firing straw with coal, corrosion rates can be brought down to an acceptable level. This paper firstly deals with the results from a demonstration program co-firing coal and straw at the 150 MW pulverized coal fired boiler Studstrup unit 1. Two exposure series lasting 3000 hours each were performed for co-firing 10 and 20% of straw (% energy basis) with coal. Using built in test tubes in the hot end of the actual superheaters and air/water cooled corrosion probes, the corrosion during these experiments was monitored. Various ferritic and austenitic materials were investigated at steam temperatures ranging from 520 to 580{degree}C and flue gas temperatures ranging from 925 to 1100{degree}C. The results obtained in the demonstration program led to the rebuilding of the 350 MW pulverized coal fired boiler, Studstrup unit 4, into a co-firing boiler with straw in 2002. During the rebuilding, test tube sections of X20CrMoV12 1 and TP347H FG were built into the superheater and the reheater loops. The temperature ranges during these exposures was for the steam from 470 to 575{degree}C and for the flue gas from 1025 to 1300{degree}C. All these test tubes have been removed during the last three years at one year intervals for corrosion studies. The corrosion studies performed on all investigated tubes included measurements of the corrosion attack, light optical microscopy and scanning electron microscopy of the corrosion products.

Frandsen, R.B.; Montgomery, M.; Larsen, O.H. [Elsam Engineering, Kolding (Denmark)

2007-07-01T23:59:59.000Z

265

Properties of the Wind Field within the Oklahoma City Park Avenue Street Canyon. Part I: Mean Flow and Turbulence Statistics  

Science Conference Proceedings (OSTI)

Velocity data were obtained from sonic anemometer measurements within an east–west-running street canyon located in the urban core of Oklahoma City, Oklahoma, during the Joint Urban 2003 field campaign. These data were used to explore the ...

M. A. Nelson; E. R. Pardyjak; J. C. Klewicki; S. U. Pol; M. J. Brown

2007-12-01T23:59:59.000Z

266

Marine Stratocumulus Cloud Fields off the Coast of Southern California Observed Using LANDSAT Imagery. Part I: Structural Characteristics  

Science Conference Proceedings (OSTI)

The structural characteristics of stratocumulus cloud fields off the coast of southern California are investigated using LANDSAT Multispectral Scanner (MSS) imagery. Twelve scenes in this area are examined along with three other stratocumulus ...

R. M. Welch; K. S. Kuo; B. A. Wielicki; S. K. Sengupta; L. Parker

1988-04-01T23:59:59.000Z

267

Effect of Sea Breeze on Air Pollution in the Greater Athens Area. Part I: Numerical Simulations and Field Observations  

Science Conference Proceedings (OSTI)

Numerical simulations compared with field measurements are used to explain the effect of sea breezes on photochemical smog episodes in Athens during the Mediterranean Campaign of Photochemical Tracers on 12–14 September 1994. The numerical ...

Alain Clappier; Alberto Martilli; Paola Grossi; Philippe Thunis; Francesco Pasi; Bernd C. Krueger; Bertrand Calpini; Giovanni Graziani; Hubert van den Bergh

2000-04-01T23:59:59.000Z

268

AERMOD: A Dispersion Model for Industrial Source Applications. Part II: Model Performance against 17 Field Study Databases  

Science Conference Proceedings (OSTI)

The performance of the American Meteorological Society (AMS) and U.S. Environmental Protection Agency (EPA) Regulatory Model (AERMOD) Improvement Committee’s applied air dispersion model against 17 field study databases is described. AERMOD is a ...

Steven G. Perry; Alan J. Cimorelli; Robert J. Paine; Roger W. Brode; Jeffrey C. Weil; Akula Venkatram; Robert B. Wilson; Russell F. Lee; Warren D. Peters

2005-05-01T23:59:59.000Z

269

On Intermediate Models for Barotropic Continental Shelf and Slope Flow Fields. Part I: Formulation and Comparison of Exact Solutions  

Science Conference Proceedings (OSTI)

Motivated by the general objective of pursuing oceanographic process and data assimilation studies of the complex, nonlinear eddy and jet current fields observed over the continental shelf and slope off the west coast of the United States, we ...

J. S. Allen; J. A. Barth; P. A. Newberger

1990-07-01T23:59:59.000Z

270

A Composite Life Cycle of Nonsquall Mesoscale Convective Systems over the Tropical Ocean. Part I: Kinematic Fields  

Science Conference Proceedings (OSTI)

The wind fields associated with cloud clusters observed during the Global Atmospheric Research Program's Atlantic Tropical Experiment (GATE) are investigated. A compositing procedure is devised to isolate the cluster circulations. Satellite-...

Edward I. Tollerud; Steven K. Esbensen

1985-04-01T23:59:59.000Z

271

A Title 40 Code of Federal Regulations Part 191 Evaluation of Buried Transuranic Waste at the Nevada Test Site  

SciTech Connect

In 1986, 21 m{sup 3} of transuranic (TRU) waste was inadvertently buried in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site (NTS). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is considered five options for management of the buried TRU waste. One option is to leave the waste in-place if the disposal can meet the requirements of Title 40 Code of Federal Regulations (CFR) Part 191, 'Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes'. This paper describes analyses that assess the likelihood that TRU waste in shallow land burial can meet the 40 CFR 191 standards for a geologic repository. The simulated probability of the cumulative release exceeding 1 and 10 times the 40 CFR 191.13 containment requirements is estimated to be 0.009 and less than 0.0001, respectively. The cumulative release is most sensitive to the number of groundwater withdrawal wells drilled through the disposal trench. The mean total effective dose equivalent for a member of the public is estimated to reach a maximum of 0.014 milliSievert (mSv) at 10,000 years, or approximately 10 percent of the 0.15 mSv 40 CFR 191.15 individual protection requirement. The dose is predominantly from inhalation of short-lived Rn-222 progeny in air produced by low-level waste disposed in the same trench. The transuranic radionuclide released in greatest amounts, Pu-239, contributes only 0.4 percent of the dose. The member of public dose is most sensitive to the U-234 inventory and the radon emanation coefficient. Reasonable assurance of compliance with the Subpart C groundwater protection standard is provided by site characterization data and hydrologic processes modeling which support a conclusion of no groundwater pathway within 10,000 years. Limited quantities of transuranic waste in a shallow land burial trench at the NTS can meet the requirements of 40 CFR 191.

G. J. Shott, V. Yucel, L. Desotell

2008-04-01T23:59:59.000Z

272

A Title 40 Code of Federal Regulations Part 191 Evaluation of Buried Transuranic Waste at the Nevada Test Site  

SciTech Connect

In 1986, 21 m{sup 3} of transuranic (TRU) waste was inadvertently buried in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site (NTS). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is considered five options for management of the buried TRU waste. One option is to leave the waste in-place if the disposal can meet the requirements of Title 40 Code of Federal Regulations (CFR) Part 191, 'Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes'. This paper describes analyses that assess the likelihood that TRU waste in shallow land burial can meet the 40 CFR 191 standards for a geologic repository. The simulated probability of the cumulative release exceeding 1 and 10 times the 40 CFR 191.13 containment requirements is estimated to be 0.009 and less than 0.0001, respectively. The cumulative release is most sensitive to the number of groundwater withdrawal wells drilled through the disposal trench. The mean total effective dose equivalent for a member of the public is estimated to reach a maximum of 0.014 milli-Sievert (mSv) at 10,000 years, or approximately 10 percent of the 0.15 mSv 40 CFR 191.15 individual protection requirement. The dose is predominantly from inhalation of short-lived Rn-222 progeny in air produced by low-level waste disposed in the same trench. The transuranic radionuclide released in greatest amounts, Pu-239, contributes only 0.4 percent of the dose. The member of public dose is most sensitive to the U-234 inventory and the radon emanation coefficient. Reasonable assurance of compliance with the Subpart C groundwater protection standard is provided by site characterization data and hydrologic processes modeling which support a conclusion of no groundwater pathway within 10,000 years. Limited quantities of transuranic waste in a shallow land burial trench at the NTS can meet the requirements of 40 CFR 191. (authors)

Shott, G.J.; Yucel, V.; Desotell, L. [National Security Technologies, LLC, Las Vegas, NV (United States); Pyles, G.; Carilli, J. [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Las Vegas, NV (United States)

2008-07-01T23:59:59.000Z

273

Wave-Follower Field Measurements of the Wind-Input Spectral Function. Part II: Parameterization of the Wind Input  

Science Conference Proceedings (OSTI)

Nearly all of the momentum transferred from wind to waves comes about through wave-induced pressure acting on the slopes of waves: known as form drag. Direct field measurements of the wave-induced pressure in airflow over water waves are ...

Mark A. Donelan; Alexander V. Babanin; Ian R. Young; Michael L. Banner

2006-08-01T23:59:59.000Z

274

Spring Season Colorado Cyclones. Part I: Use of Composites to Relate Upper and Lower Tropospheric Wind Fields  

Science Conference Proceedings (OSTI)

A set of 70 cases of spring season Colorado cyclone events is used to form composites which describe the upper (300 mb) and lower (850 mb) tropospheric wind fields during the early stages of cyclone formation. The 70 cases are partitioned into ...

Thomas H. Achtor; Lyle H. Horn

1986-06-01T23:59:59.000Z

275

A Laboratory Study of the Urban Heat Island in a Calm and Stably Stratified Environment. Part I: Temperature Field  

Science Conference Proceedings (OSTI)

An extensive and systematic water-tank study was performed to simulate the urban heat island under a calm and stably stratified environment. The objective was to examine the mean-temperature field, mixing height, and heat-island intensity as ...

Jie Lu; S. Pal Arya; William H. Snyder; Robert E. Lawson Jr.

1997-10-01T23:59:59.000Z

276

A Field Tested Model of Industrial Energy Conservation Assistance to Small Industries  

E-Print Network (OSTI)

The University of Tennessee is one of three universities selected by the Industrial Energy Conservation Program of the Department of Energy to develop and demonstrate the concept of an Energy Analysis and Diagnostics Center (EADC). The objective of the EADC program is to develop and demonstrate the methodology through which universities may provide assistance to small manufacturing firms in identifying and analyzing energy conservation opportunities. The University of Tennessee EADC has completed 52 industrial energy audits of Tennessee manufacturing firms from which over 150 feasible ECO's have been identified and analyzed. The process consists of the following steps: (1) Analyzing energy consumption and costs for a two year period; (2) Conducting a one day on-site energy audit; (3) Analyzing each ECO for potential energy consumption and cost savings; (4) Preparing a technical report to the firm which contains specific recommendations of economically feasible ECO's; (5) Providing the firm with the appropriate financial analysis. The main emphasis of the process is on quantification of potential energy savings so that the firm has the necessary quantitative data for making a capital investment decision. The average benefit cost ratio of the EADC program has been calculated to be approximately 8. Reduction in annual energy consumption identified from the ECO's was approximately 13% and reduction in annual energy costs was approximately 10%. The entire process is described in sufficient detail to permit other universities to follow the field tested methodology and develop their own programs.

Jendrucko, R. J.; Mitchell, D. S.; Snyder, W. T.; Symonds, F. W.

1980-01-01T23:59:59.000Z

277

Statistical Tests of Taylor’s Hypothesis: An Application to Precipitation Fields  

Science Conference Proceedings (OSTI)

The Taylor hypothesis (TH) as applied to rainfall is a proposition about the space–time covariance structure of the rainfall field. Specifically, it supposes that if a spatiotemporal precipitation field with a stationary covariance Cov(r, ?) in ...

Bo Li; Aditya Murthi; Kenneth P. Bowman; Gerald R. North; Marc G. Genton; Michael Sherman

2009-02-01T23:59:59.000Z

278

A New Method to Determine the Thermal Properties of Soil Formations from In Situ Field Tests  

DOE Green Energy (OSTI)

The geothermal or ground-source heat pump (GHP) has been shown to be a very efficient method of providing heating and cooling for buildings. GHPs exchange (reject or extract) heat with the earth by way of circulating water, rather than by use of circulating outdoor air, as with an air-source heat pump. The temperature of water entering a GHP is generally cooler than that of outdoor air when space cooling is required, and warmer than that of outdoor air when space heating is required. Consequently, the temperature lift across a GHP is less than the lift across an air-source heat pump. The lower temperature lift leads to greater efficiency, higher capacity at extreme outdoor air temperatures, and better indoor humidity control. These benefits are achieved, however, at the cost of installing a ground heat exchanger. In general, this cost is proportional to length of the heat exchanger, and for this reason there is an incentive to install the minimum possible length such that design criteria are met. The design of a ground heat exchanger for a GHP system requires, at a minimum, the operating characteristics of the heat pumps, estimates of annual and peak block loads for the building, and information about the properties of the heat exchanger: the size of the U-tubes, the grouting material, etc. The design also requires some knowledge of the thermal properties of the soil, namely thermal conductivity, thermal diffusivity, and undisturbed soil temperature. In the case of a vertical borehole heat exchanger (BHEx) these properties generally vary with depth; therefore, in the design, effective or average thermal properties over the length of the borehole are usually sought. When the cost of doing so can be justified, these properties are measured in an in situ experiment: a test well is drilled to a depth on the same order as the expected depth of the heat pump heat exchangers; a U-tube heat exchanger is inserted and the borehole is grouted according to applicable state and local regulations; water is heated and pumped through the U-tube (using a field generator to power the equipment, or line voltage where available); and the inlet and outlet water temperatures are measured as a function of time. Data on inlet and outlet temperature, power input to the heater and pump, and water flow rate are collected at regular intervals--typically 1 to 15 min--for the duration of the experiment, which may be as long as 60 h. Two common methods for determining soil thermal properties from such measurements are the line source method and the cylinder source method. Both are based on long-term approximate solutions to the classical heat conduction problem of an infinitely long heat source in an infinite homogeneous medium. Although there are some differences in the way the two methods are implemented, the only difference between the two models is whether the heat source is considered to be a line or a cylinder. In both methods, power input to the water loop is assumed to be constant. The simplicity of these methods makes them attractive, but they also have some disadvantages. First of all, because the line source and cylinder source approximations are inaccurate for early time behavior, some of the initial data from the field test must be discarded. The amount of data discarded can affect the property measurement. Also, both methods assume that the heat transfer to the ground loop is constant. In practice, heat input to the loop may vary significantly over the course of a field test due to rough operation of the generator or short-term sags and swells in power line voltage. Presumably, this variation affects the accuracy of the thermal property measurement, but error analysis is rarely performed. This report presents a new method for determining thermal properties from short-term in situ tests using a parameter estimation technique. Because it is based on numerical solutions to the heat conduction equation, the new method is not affected by short-term variations in heat input. Also, since the model is accurate even for short times, there is no n

Shonder, J.A.

2000-05-02T23:59:59.000Z

279

Validation testing a contaminant transport and natural attenuation simulation model using field data. Master`s thesis  

Science Conference Proceedings (OSTI)

This research extends the work begun by Enyeart (1994) which evaluated the process of intrinsic bioremediation, and which developed a model for predicting the velocity of an aerobic degradation front, as it traverses the length of a JP-4 contaminant plume. In the present work, Enyeart`s model was validity tested by comparing its output prediction with field measured values. A methodology was developed to compare the model output with field measured data. The results were analyzed, and the results of this first stage of validity testing show a reasonable basis for accepting the model.

Flier, S.J.

1995-12-01T23:59:59.000Z

280

Fault detection and isolation in aircraft gas turbine engines. Part 2: validation on a simulation test bed  

E-Print Network (OSTI)

319 Fault detection and isolation in aircraft gas turbine engines. Part 2: validation of fault detection and isolation (FDI) in aircraft gas turbine engines. The FDI algorithms are built upon,onasimulationtestbed.Thetestbedisbuiltuponanintegratedmodelofageneric two-spool turbofan aircraft gas turbine engine including the engine control system. Keywords: aircraft

Ray, Asok

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A review and statistical analysis of micellar-polymer field test data: Topical report  

SciTech Connect

A statistical analysis study has been made of 21 micellar-polymer field test projects to evaluate the significance of key parameters upon performance. In this study, the term micellar-polymer is used to describe surfactant recovery processes of which the most common are the water phase low tension and the soluble oil.The micellar slug is usually followed by a drive slug containing a polymer for mobility control. The data include 10 projects that were used in a previous study and 11 other documented projects which have been completed recently. The study indicates three significant correlations. The most important of these is the correlation showing that oil recovery is inversely related to the log of the reservoir connate water salinity. This suggests that prior flooding with a water near the design salinity or use of preflushes to adjust salinity and remove hardness have, at best, been only partially effective. Exxon was successful in their second Loudon pilot when using a specifically designed salt tolerant surfactant, with no preflush. The results of this study, coupled with the results of the Exxon second Loudon pilot, suggest that future research in micellar-polymer flooding should focus on the development of surfactants which can tolerate the connate water salinity and hardness in the reservoir. A second correlation showed that oil recovery increased as the pattern size was decreased. This is attributed to the higher frontal velocities and to the reduced tendency of slug breakdown in smaller patterns. Low oil cuts at the beginning of the micellar-polymer floods indicated that higher recovery efficiency could not be attributed to infill drilling. The third correlation showed the expected results that oil recovery is related to the quantity of surfactant used. This quantity is the product of the surfactant slug volume and the concentration of surfactant. 71 refs., 4 figs., 2 tabs.

Lowry, P.H.; Ferrell, H.H.; Dauben, D.L.

1986-11-01T23:59:59.000Z

282

Development of a Simple Field Test for Vehicle Exhaust to Detect Illicit Use of Dyed Diesel Fuel  

Science Conference Proceedings (OSTI)

The use of tax-free dyed fuel on public highways in the United States provides a convenient way of evading taxes. Current enforcement involves visual inspection for the red azo dye added to the fuel to designate its tax-free status. This approach has shortcomings such as the invasive nature of the tests and/or various deceptive tactics applied by tax evaders. A test designed to detect dyed fuel use by analyzing the exhaust would circumvent these shortcomings. This paper describes the development of a simple color spot test designed to detect the use of tax-free (dyed) diesel fuel by analyzing the engine exhaust. Development first investigated the combustion products of C.I. Solvent Red 164 (the azo dye formulation used in the United States to tag tax-free fuel). A variety of aryl amines were identified as characteristic molecular remnants that appear to survive combustion. A number of microanalytical color tests specific for aryl amines were then investigated. One test based on the use of 4-(dimethylamino)benzaldehyde seemed particularly applicable and was used in a proof-of-principle experiment. The 4-(dimethylamino)benzaldehyde color spot test was able to clearly distinguish between engines burning regular and dyed diesel fuel. Further development will refine this color spot test to provide an easy-to-use field test for Internal Revenue Service Field Compliance specialists.

Harvey, Scott D.; Wright, Bob W.

2011-10-30T23:59:59.000Z

283

Thermal performance measurements of sealed insulating glass units with low-E coatings using the MoWiTT (Mobile Window Thermal Test) field-test facility  

SciTech Connect

Using data obtained in a mobile field-test facility, measured performance of clear and low-emissivity double-glazing units is presented for south-facing and north-facing orientations. The changes in U-value and shading coefficient resulting from addition of the low-E coating are found to agree with theoretical expectations for the cold spring test conditions. Accurate nighttime U-values were derived from the data and found to agree with calculations. Expected correlation between U-value and wind speed was not observed in the data; a plausible experimental reason for this is advanced.

Klems, J.; Keller, H.

1986-12-01T23:59:59.000Z

284

Ice in Clouds Experiment–Layer Clouds. Part II: Testing Characteristics of Heterogeneous Ice Formation in Lee Wave Clouds  

Science Conference Proceedings (OSTI)

Heterogeneous ice nucleation is a source of uncertainty in models that represent ice clouds. The primary goal of the Ice in Clouds Experiment–Layer Clouds (ICE-L) field campaign was to determine if a link can be demonstrated between ice ...

P. R. Field; A. J. Heymsfield; B. J. Shipway; P. J. DeMott; K. A. Pratt; D. C. Rogers; J. Stith; K. A. Prather

2012-03-01T23:59:59.000Z

285

Automated Highway System Field Operational Tests For The State Of California: Potential Sites, Configurations And Characteristics  

E-Print Network (OSTI)

It is included in the 1998 STIP, and the cost is estimatedas part of the 1996 STIP. The I-5 North Improvement ProjectSanta Fe Springs in the 1996 STIP. Truck lanes are proposed

Hall, Randolph W.; Thakker, Viral; Horan, Thomas A.; Glazer, Jesse; Hoene, Chris

1997-01-01T23:59:59.000Z

286

Field Test Results of Automated Demand Response in a Large Office Building  

E-Print Network (OSTI)

generally face retail electricity rates that are fixed formarginal electricity production and the fixed retail rateselectricity charge for usage rising by three times the customer’s summer part-peak energy rate

Han, Junqiao

2008-01-01T23:59:59.000Z

287

Field Testing of Behavioral Barriers for Fish Exclusion at Cooling-Water Intake Systems, Ontario Hydro Pickering Nuclear Generating Station  

Science Conference Proceedings (OSTI)

Depending on site-specific considerations, behavioral barriers such as sound and lights may be more effective, less expensive, and more environmentally suitable for excluding fish from power plant intakes than physical barriers. Specifically, field tests at Ontario Hydro's Pickering station on Lake Ontario indicated that behavioral barriers excluded alewife, an important prey species in the Great Lakes.

1989-03-15T23:59:59.000Z

288

HVAC and water heating system field test experiences at the Tennessee Energy Conservation in Housing (TECH) complex  

DOE Green Energy (OSTI)

The TECH complex has been utilized since 1976 as a field test site for several novel and conventional space conditioning and water heating systems. Systems tested include the Annual Cycle Energy System (ACES), solar space heating systems (hydronic and air), parallel and series solar assisted heat pumps, air-type solar heating with off-peak storage, passive solar heating, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps. System descriptions and test results are presented as well as performance observations.

Baxter, V.D.; McGraw, B.A.

1984-01-01T23:59:59.000Z

289

Wellbore and soil thermal simulation for geothermal wells: comparison of geotemp predictions to field data and evaluation of flow variables. Part II report  

Science Conference Proceedings (OSTI)

A better understanding of temperatures in a well is needed to improve casing selection, cement design, drilling fluid formulation, packer selection, and many other aspects of well design. Two applications of GEOTEMP are presented which provide the calculations needed. First, the results of testing GEOTEMP predictions with analytical solutions and with field temperature data are presented. And second, sensitivity studies establish the importance of certain well variables on downhole temperatures. (MHR)

Wooley, G.R.

1980-01-01T23:59:59.000Z

290

Field performance of residential refrigerators: A comparison with the laboratory test  

SciTech Connect

The field electricity use of 209 refrigerators was compared to their labeled consumption. The mean field use of all units was 1009 kWh/year, 882 kWh/year for top-freezers, and 1366 kWh/year for side-by-sides. There was considerable scatter in the results but, in general, the label overpredicted field use. The relationship could be best described with the formula, Annual Field Use = 0.94 {times} (Annual Label Us) - 85. For a typical unit with a labeled use of 1160 kWh/year, the field use was about 15% lower. There was considerable seasonality in energy use: the peak weeks generally occurred around the beginning of August. However, there was no simple relationship between the label value and the peak-week consumption.

Meier, A.; Jansky, R.

1991-05-01T23:59:59.000Z

291

Field performance of residential refrigerators: A comparison with the laboratory test  

SciTech Connect

The field electricity use of 209 refrigerators was compared to their labeled consumption. The mean field use of all units was 1009 kWh/year, 882 kWh/year for top-freezers, and 1366 kWh/year for side-by-sides. There was considerable scatter in the results but, in general, the label overpredicted field use. The relationship could be best described with the formula, Annual Field Use = 0.94 [times] (Annual Label Us) - 85. For a typical unit with a labeled use of 1160 kWh/year, the field use was about 15% lower. There was considerable seasonality in energy use: the peak weeks generally occurred around the beginning of August. However, there was no simple relationship between the label value and the peak-week consumption.

Meier, A.; Jansky, R.

1991-05-01T23:59:59.000Z

292

Performance test reports and comparison of emission characteristics of prototype liquid multifuel burners developed for US military field cooking applications  

SciTech Connect

The objective of this project is to provide data to the U.S. Army Natick RD&E Center on the performance of three prototype burners, which have the capability of firing with multiple types of fuels (diesel and JP-8), and the conventional gasoline-fired M-2 burner. The prototype burners are intended to replace the M-2 unit currently used in food cooking appliances in the Army. The burners supplied to Brookhaven National Laboratory (BNL) for the purpose of testing under this project included one M-2 unit, one M-3 prototype unit designed by Natick, one Babington prototype unit designed by Babington Engineering, and one ITR prototype designed by International Thermal Research Ltd. It should be noted, however, that after the project began, Babington Engineering provided an upgraded prototype unit for testing which replaced the unit initially provided by the Natick Center. The M-3 unit replaced the Karcher unit listed in the contract. The test procedures which were described in a Test Method Report allowed for the measurement of the concentrations of specific compounds emitted from the burners. These compounds included oxygen (O{sub 2}), carbon monoxide (CO), oxides of nitrogen (NOx), formaldehyde, and particulate emissions. The level of smoke produced was also measured by using a Bacharach Smoke Number system (ASTM Standard D2156). A separate Performance Test Report for each burner was prepared as part of this project, and is attached as part of this report. In those reports details of the measurement techniques, instrumentation, test operating conditions, and data for each burner were included. This paper provides a summary and a comparison of the results for all burners. A brief discussion of emissions from other similar small oil combustion systems is also part of this document to provide perspective on the type of contaminants and levels expected from these systems.

Litzke, W.; Celebi, Y.; McDonald, R.

1994-08-01T23:59:59.000Z

293

Chemical characteristics of material released during Source Term Experiments Project (STEP) in-pile tests: Part 1  

DOE Green Energy (OSTI)

A series of four experiments aimed at characterizing the radiological source term associated with postulated severe light water reactor (LWR) accidents has been conducted at Argonne's Transient Reactor Test Facility (TREAT). The STEP tests drove fuel elements to the point of severe cladding disruption in steam environments by fission heating and oxidation of the Zircaloy cladding. The released fission products and volatile cladding constituents entrained in the steam/hydrogen flows were captured by the test vehicles' sampling systems and analyzed by SEM/EDX. The principal constituents of the deposits were fission product cesium, molybdenum and rubidium, and tin from the cladding. Iodine was generally seen collocated with cesium, although lone iodine deposits were observed indicating that the iodine was not completely transported as CsI. Structural material was also observed. The composition information in conjunction with counted particle distributions were used to determine the particle loading of that portion of the material released during the first test that was transported in aerosol form.

Schlenger, B.J.; Dunn, P.F.; Herceg, J.E.; Simms, R.; Horton, E.L.; Baker, L. Jr.; Ritzman, R.L.

1986-09-01T23:59:59.000Z

294

Chemical tracer test at the Dixie Valley geothermal field, Nevada. Geothermal Reservoir Technology research program  

DOE Green Energy (OSTI)

In the injection test described, chemical tracers established the fluid flow between one injection well and one production well. Measured tracer concentrations, calculated flow rates, sampling schedules, and the daily events of the tracer test are documented. This experiment was designed to test the application of organic tracers, to further refine the predictive capability of the reservoir model, and to improve the effectiveness of Oxbow`s injection strategy.

Adams, M.C.; Moore, J.N. [Utah Univ. Research Inst., Salt Lake City, UT (United States); Benoit, W.R. [Oxbow Geothermal Corp., Reno, NV (United States); Doughty, C.; Bodvarsson, G.S. [Lawrence Berkeley Lab., CA (United States)

1993-10-01T23:59:59.000Z

295

Diagnostic Wind Field Modeling for Complex Terrain: Model Development and Testing  

Science Conference Proceedings (OSTI)

A three dimensional diagnostic wind field model is shown to be capable of generating potential flow solutions associated with simple terrain features. This is achieved by modifying an initially uniform background wind to make the flow divergence ...

D. G. Ross; I. N. Smith; P. C. Manins; D. G. Fox

1988-07-01T23:59:59.000Z

296

Documentation of the Irvine Integrated Corridor Freeway Ramp Metering and Arterial Adaptive Control Field Operational Test  

E-Print Network (OSTI)

and LADOT. NET proceeds with ramp metering coding and thechanges. NET proceeds with ramp metering coding/testing and17: Ramp metering demonstration at NET. Caltrans extends the

McNally, M. G.; Moore, II, James E.; MacCarley, C. Arthur

2001-01-01T23:59:59.000Z

297

ORNL/Sub-01-4000025209 Field Test and Performance Verification  

E-Print Network (OSTI)

. Comparison of cooling efficiency (EER) of the IADR and a conventional rooftop unit at part-load conditions it becomes clear that much of the total cooling load is latent. Based upon the data presented in Figure 1 the load even at 30 tons (middle column) Table 3. Comparison of cooling efficiency (EER) of the IADR

Oak Ridge National Laboratory

298

Near-field heat transfer at the spent fuel test-climax: a comparison of measurements and calculations  

Science Conference Proceedings (OSTI)

The Spent Fuel Test in the Climax granitic stock at the DOE Nevada Test Site is a test of the feasibility of storage and retrieval of spent nuclear reactor fuel in a deep geologic environment. Eleven spent fuel elements, together with six thermally identical electrical resistance heaters and 20 peripheral guard heaters, are emplaced 420 m below surface in a three-drift test array. This array was designed to simulate the near-field effects of thousands of canisters of nuclear waste and to evaluate the effects of heat alone, and heat plus ionizing radiation on the rock. Thermal calculations and measurements are conducted to determine thermal transport from the spent fuel and electrical resistance heaters. Calculations associated with the as-built Spent Fuel Test geometry and thermal source histories are presented and compared with thermocouple measurements made throughout the test array. Comparisons in space begin at the spent fuel canister and include the first few metres outside the test array. Comparisons in time begin at emplacement and progress through the first year of thermal loading in this multi-year test.

Patrick, W.C.; Montan, D.N.; Ballou, L.B.

1981-08-21T23:59:59.000Z

299

9977 TYPE B PACKAGING INTERNAL DATA COLLECTION FEASIBILITY TESTING - MAGNETIC FIELD COMMUNICATIONS  

Science Conference Proceedings (OSTI)

The objective of this report is to document the findings from proof-of-concept testing performed by the Savannah River National Laboratory (SRNL) R&D Engineering and Visible Assets, Inc. for the DOE Packaging Certification Program (PCP) to determine if RuBee (IEEE 1902.1) tags and readers could be used to provide a communication link from within a drum-style DOE certified Type B radioactive materials packaging. A Model 9977 Type B Packaging was used to test the read/write capability and range performance of a RuBee tag and reader. Testing was performed with the RuBee tags placed in various locations inside the packaging including inside the drum on the outside of the lid of the containment vessel and also inside of the containment vessel. This report documents the test methods and results. A path forward will also be recommended.

Shull, D.

2012-06-18T23:59:59.000Z

300

Biomass Cofiring: Field Test Results: Summary of Results at the Bailly and Seward Demonstrations  

Science Conference Proceedings (OSTI)

Cofiring, the simultaneous combustion of two dissimilar fuels in a given boiler, is a technology being considered for low-cost, low-risk use of biomass by electricity generating companies. The process of commercializing cofiring has proceeded from engineering studies through parametric tests to longer-term demonstrations. This report summarizes the results of those demonstrations to date, placing them in the context of the previous test programs.

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Improved Cobalt Removal: Field Testing Phase: Effects of Normally Encountered Plant Impurities on Removal Performance  

Science Conference Proceedings (OSTI)

This study examined the effects of plant impurities on cobalt removal from liquid radioactive waste. Improved process knowledge is critical to utilities that are continually working to increase the performance of their low-level waste (LLW) treatment systems. This report provides predictive chemistry information for improved cobalt removal obtained from test work at Catawba Nuclear Station. It also provides test methodologies for performing similar evaluations at other member plants.

2001-11-26T23:59:59.000Z

302

Field Test of Manufactured Gas Plant Remediation Technologies: Material Removal and Handling  

Science Conference Proceedings (OSTI)

Common manufactured gas plant (MGP) site structures are often sources of contamination and present a number of unique material removal and handling challenges. This report provides results from a field-scale study involving the excavation of the contents of a subgrade gas holder tank. Specifically discussed are the material handling activities needed to prepare MGP impacted soils and debris for remediation processes.

1996-02-02T23:59:59.000Z

303

Information Loss Paradox Tested on Chiral Fermion Coupled to a Background Dilatonic Field  

E-Print Network (OSTI)

A model where chiral boson is coupled to a background dilatonic field is considered to study the s-wave scattering of fermion by a back ground dilatonic black hole. Unlike the conclusion drawn in \\cite{MIT} it is found that the presence of chiral fermion does not violate unitarity and information remains preserved. Regularization plays a crucial role on the information paradox.

Anisur Rahaman

2006-07-24T23:59:59.000Z

304

Field Tests of a New Type of Graphite-Fiber Electrode for Measuring Motionally Induced Voltages  

Science Conference Proceedings (OSTI)

On the basis of a field experiment in a tidal channel, comparisons have been undertaken between a new type of graphite-fiber electrode and conventional Ag/AgCl sensors for measurements of motionally induced voltages. The fiber electrode works ...

Lennart Crona; Tim Fristedt; Peter Lundberg; Peter Sigray

2001-01-01T23:59:59.000Z

305

Design and test of nodes for field information acquisition based on WUSN  

Science Conference Proceedings (OSTI)

The wireless sensor network technology was researched. Some wireless underground sensor network nodes and a sink node based on embedded technology and RF technology were designed innovatively. WUSN node consists of sensor, the processor, wireless communication ... Keywords: MSP430, WUSN, depth, field information acquisition, frequency, sink node

Xiaoqing Yu; Pute Wu; Zenglin Zhang

2011-10-01T23:59:59.000Z

306

Test of Inseparability Criteria for Squeezed Number States of the Radiation Field  

Science Conference Proceedings (OSTI)

We investigate the efficiency of inseparability criteria in detecting the entanglement properties of two-mode non-Gaussian states of the electromagnetic field. We focus our study on the relevant class of two-mode squeezed number states. These states ...

Fabio Dell'Anno; Silvio De Siena; Fabrizio Illuminati

2006-12-01T23:59:59.000Z

307

Test and Evaluation of a 6 kW Microgenerator Aisin G-60 Phase-1 Field Demonstration  

Science Conference Proceedings (OSTI)

This case study documents the demonstration experiences and lessons learned from a 6 kW microgenerator in a field demonstration operating on natural gas at an end-user site. The microgenerator uses a novel internal combustion engine and generator packaged for combined heat and power applications. The test and evaluation case study is one of several distributed generation project case studies under research by EPRI's Distributed Energy Resources Program. This case study was designed to help utilities and ...

2004-12-27T23:59:59.000Z

308

Precision timing of PSR J1012+5307 and strong-field GR tests  

E-Print Network (OSTI)

We report on the high precision timing analysis of the pulsar-white dwarf binary PSR J1012+5307. Using 15 years of multi-telescope data from the European Pulsar Timing Array (EPTA) network, a significant measurement of the variation of the orbital period is obtained. Using this ideal strong-field gravity laboratory we derive theory independent limits for both the dipole radiation and the variation of the gravitational constant.

Lazaridis, Kosmas; Jessner, Axel; Kramer, Michael; Zensus, J Anton; Stappers, Ben W; Janssen, Gemma H; Purver, Mark B; Lyne, Andrew G; Jordan, Christine A; Desvignes, Gregory; Cognard, Ismael; Theureau, Gilles

2010-01-01T23:59:59.000Z

309

Precision timing of PSR J1012+5307 and strong-field GR tests  

E-Print Network (OSTI)

We report on the high precision timing analysis of the pulsar-white dwarf binary PSR J1012+5307. Using 15 years of multi-telescope data from the European Pulsar Timing Array (EPTA) network, a significant measurement of the variation of the orbital period is obtained. Using this ideal strong-field gravity laboratory we derive theory independent limits for both the dipole radiation and the variation of the gravitational constant.

Kosmas Lazaridis; Norbert Wex; Axel Jessner; Michael Kramer; J. Anton Zensus; Ben W. Stappers; Gemma H. Janssen; Mark B. Purver; Andrew G. Lyne; Christine A. Jordan; Gregory Desvignes; Ismael Cognard; Gilles Theureau

2010-01-26T23:59:59.000Z

310

SOLERAS - Solar-Powered Water Desalination Project at Yanbu: Solar-collector field experimental tests  

Science Conference Proceedings (OSTI)

The solar-collection field subsystem of the solar-powered desalination pilot project located at Yanbu in the Kingdom of Saudi Arabia has been operated successfully for two years. It has been demonstrated that during a one-year period, the solar-collector field can, on the average, provide about 2500 kWh of thermal energy a day for days with a daily insolation total greater than 4000 Wh/m/sup 2/. This is a yearlong solar-collector field average efficiency of 22.5%. In Yanbu, from October 1, 1985, until September 30, 1986, there were only 21 days (5.8%) when the daily direct-normal insolation was less than the mid-60% to 70% range with a peak output of 51 kW per solar collector. It has also been demonstrated that the Power Kinetics, Inc., square-dish solar collector has a problem due to the fixed aperture (outboard focus) that seriously hurts the performance of the solar collector during the summer months at this latitude. A location at latitudes greater than +-35/degree/ would see greatly improved daylong summer performance. 4 refs., 3 figs., 1 tab.

Zimmerman, J.C.; Al-Abbadi, N.

1987-06-01T23:59:59.000Z

311

CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana  

SciTech Connect

The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding. As part of the MGSC�������¢����������������s Validation Phase (Phase II) studies, the small injection pilot test was conducted at the Bald Unit site within the Mumford Hills Field in Posey County, southwestern Indiana, which was chosen for the project on the basis of site infrastructure and reservoir conditions. Geologic data on the target formation were extensive. Core analyses, porosity and permeability data, and geophysical logs from 40 wells were used to construct cross sections and structure contour and isopach maps in order to characterize and define the reservoir architecture of the target formation. A geocellular model of the reservoir was constructed to improve understanding of CO2 behavior in the subsurface. At the time of site selection, the Field was under secondary recovery through edge-water injection, but the wells selected for the pilot in the Bald Unit had been temporarily shut-in for several years. The most recently shut-in production well, which was surrounded by four nearby shut-in production wells in a five-spot pattern, was converted to CO2 injection for this pilot. Two additional wells outside the immediate five-spot pattern, one of which was an active producer, were instrumented to measure surface temperature and pressure. The CO2 injection period lasted from September 3, 2009, through December 14, 2010, with one three-month interruption caused by cessation of CO2 deliveries due to winter weather. Water was injected into the CO2 injection well during this period. A total of 6,300 tonnes (6,950 tons) of CO2 were injected into the reservoir at rates that generally ranged from 18 to 32 tonnes (20 to 35 tons) per day. The CO2 injection bottomhole pressure generally remained at 8.3 to 9.0 MPag (1,200 to 1,300 psig). The CO2 injection was followed by continued monitoring for nine months during post-CO2 water injection. A monitoring, verification, and accounting (MVA) program was designed to determine the fate of injected CO2. Extensive periodic sampling and analysis of brine, groundwater, and produced gases began before CO2 injection and continued through the monitored waterflood periods. Samples were gathered from production wells and three newly installed groundwater monitoring wells. Samples underwent geochemical and isotopic analyses to reveal any CO2-related changes. Groundwater and kinetic modeling and mineralogical analysis were also employed to better understand the long-term dynamics of CO2 in the reservoir. No CO2 leakage into groundwater was detected, and analysis of brine and gas chemistry made it possible to track the path of plume migration and infer geochemical reactions and trapping of CO2. Cased-hole logging did not detect any CO2 in the near-wellbore region. An increase in CO2 concentration was first detected in February 2010 from the gas present in the carboy during brine sampling; however, there was no appreciable gas volume associated with the detection of CO2. The first indication of elevated gas rates from the commingled gas of the pilot�������¢����������������s production wells occurred in July 2010 and reached a maximum of 0.36 tonnes/day (0.41 tons/day) in September 2010. An estimated 27 tonnes (30 tons) of CO2 were produced at the surface from the gas separator at the tank battery from September 3, 2009, through September 11, 2011, representing 0.5% of the injected CO2. Consequently, 99.5%

Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

2012-03-30T23:59:59.000Z

312

VAPOR COMPRESSION HEAT PUMP SYSTEM FIELD TESTS AT THE TECH COMPLEX  

E-Print Network (OSTI)

, two conventional air- to-ir heat pumps, an air-to-air heat pump with desuperheater water heater for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series

Oak Ridge National Laboratory

313

Development of Performance Acceptance Test Guidelines for Large Commercial Parabolic Trough Solar Fields: Preprint  

DOE Green Energy (OSTI)

Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the EPC contractor or owners. In lieu of the present absence of engineering code developed for this purpose, NREL has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The fundamental differences between acceptance of a solar power plant and a conventional fossil-fired plant are the transient nature of the energy source and the necessity to utilize an analytical performance model in the acceptance process. These factors bring into play the need to establish methods to measure steady state performance, potential impacts of transient processes, comparison to performance model results, and the possible requirement to test, or model, multi-day performance within the scope of the acceptance test procedure. The power block and BOP are not within the boundaries of this guideline. The current guideline is restricted to the solar thermal performance of parabolic trough systems and has been critiqued by a broad range of stakeholders in CSP development and technology.

Kearney, D.; Mehos, M.

2010-12-01T23:59:59.000Z

314

Design, Construction, and Field Testing of a Prototype Mobile Vault Water Treatment System  

Science Conference Proceedings (OSTI)

Subsurface vaults and manholes provide access to underground electric distribution equipment in many areas. These structures can accumulate water through storm water runoff or ground water seepage. The water must be removed before maintenance work can proceed. This report presents results of a project to design, construct, and test a mobile treatment system to manage vault waters.

2001-07-18T23:59:59.000Z

315

Environmental assessment of proposed geothermal well testing in the Tigre Lagoon Oil Field, Vermilion Parish, Louisiana  

DOE Green Energy (OSTI)

An environmental assessment is made of the proposed testing of two geopressured, geothermal aquifers in central coastal Louisiana. On the basis of an analysis of the environmental setting, subsurface characteristics, and the proposed action, potential environmental impacts are determined and evaluated together with potential conflicts with federal, state, and local programs. (LBS )

Not Available

1976-03-01T23:59:59.000Z

316

Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1  

SciTech Connect

A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

Marc A. Cremer; Bradley R. Adams

2006-06-30T23:59:59.000Z

317

Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report  

DOE Green Energy (OSTI)

This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

Greenberg, S.; Cooley, C.

2005-01-01T23:59:59.000Z

318

Discussion of comparison study of hydraulic fracturing models -- Test case: GRI Staged Field Experiment No. 3  

Science Conference Proceedings (OSTI)

This paper provides comments to a companion journal paper on predictive modeling of hydraulic fracturing patterns (N.R. Warpinski et. al., 1994). The former paper was designed to compare various modeling methods to demonstrate the most accurate methods under various geologic constraints. The comments of this paper are centered around potential deficiencies in the former authors paper which include: limited actual comparisons offered between models, the issues of matching predictive data with that from related field operations was lacking or undocumented, and the relevance/impact of accurate modeling on the overall hydraulic fracturing cost and production.

Cleary, M.P.

1994-02-01T23:59:59.000Z

319

Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint  

DOE Green Energy (OSTI)

Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

2004-05-01T23:59:59.000Z

320

ARM - Field Campaign - Warm-Season Data Assimilation and ISS Test  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsWarm-Season Data Assimilation and ISS Test govCampaignsWarm-Season Data Assimilation and ISS Test Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Warm-Season Data Assimilation and ISS Test 1993.06.01 - 1993.06.30 Lead Scientist : Dave Parsons Data Availability Complete output from a 10-day simulation using a high resolution mesoscale model is available at 1-hr intervals. Verification of June 1993 IOP Assimilation Dataset and its use in Driving a Single-Column CCM3 Model. Update in May 2006 from Ric Cederwall: We were expecting 4-D variational analysis results for the IOP from Jimy Dudhia's 4DVAR model (a version of MM5), but it never happened. I don't expect that we will get the dataset. For data sets, see below. Summary Special rawinsonde soundings and profiler measurements were taken over a

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Can sick buildings be assessed by testing human performance in field experiments  

Science Conference Proceedings (OSTI)

The present paper is devoted to the Sick Building Syndrome and describes an experiment comparing a diagnosed sick' with a healthy' Swedish preschool. The indoor air quality of both buildings were nearly the same and the concentrations of total separated volatile organic compounds were low according to suggested guidelines for indoor air in nonindustrial buildings. Forty-eight previously unexposed subjects were exposed to each of the two buildings for one day, and the effect of the exposure was assessed with a battery of diverse psychological test. Despite a favorable experimental situation of utilizing a building with a record of producing the Syndrome, the results of psychological tests of mental and motor performance, and therefore the answer to the question raised by the title above, were in the negative. This failure raises questions both regarding the choice of subjects and experimental methods including the selection of tests, the duration of exposure, and the environmental setting. Several combinations of experimental method and subjects which must be considered in future research on indoor pollution are discussed.

Berglund, B. (Univ. of Stockholm (Sweden)); Berglund, U. (Royal Inst. of Tech., Stockholm (Sweden)); Engen, T. (Brown Univ., Providence, RI (United States))

1992-01-01T23:59:59.000Z

322

U(VI) bioreduction with emulsified vegetable oil as the electron donor-Model application to a field test  

Science Conference Proceedings (OSTI)

A one-time 2-hour emulsified vegetable oil (EVO) injection in a fast flowing aquifer decreased U discharge to a stream for over a year. Using a comprehensive biogeochemical model developed in the companion article based on microcosm tests, we approximately matched the observed acetate, nitrate, Fe, U, and sulfate concentrations, and described the major evolution trends of multiple microbial functional groups in the field test. While the lab-determined parameters were generally applicable in the field-scale simulation, the EVO hydrolysis rate constant was estimated to be an order of magnitude greater in the field than in the microcosms. The model predicted substantial biomass (sulfate reducers) and U(IV) accumulation near the injection wells and along the side boundaries of the treatment zone where electron donors (long-chain fatty acids) from the injection wells met electron acceptors (sulfate) from the surrounding environment. While EVO retention and hydrolysis characteristics were expected to control treatment longevity, modeling results indicated that electron acceptors such as sulfate may not only compete for electrons but also play a conducive role in degrading complex substrates and enhancing U(VI) reduction and immobilization. As a result, the spacing of the injection wells could be optimized for effective sustainable bioremediation.

Tang, Guoping [ORNL; Watson, David B [ORNL; Wu, Wei-min [Stanford University; Schadt, Christopher Warren [ORNL; Parker, Jack C [ORNL; Brooks, Scott C [ORNL

2013-01-01T23:59:59.000Z

323

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

Michael D. Durham

2003-05-01T23:59:59.000Z

324

Geochemical equilibrium modeling of the Auburn Thermal Energy Storage Field Test  

DOE Green Energy (OSTI)

The objective of the study was to investigate some alternate reservoir damage mechanisms that may have contributed to the loss of well injectivity experienced at the Mobile field site. Specifically, this includes mineral precipitation and/or alteration resulting from: 1) increased temperatures and temperature gradients, 2) presence of oxygen, 3) fluid-fluid incompatibility (mixing of two different aquifer waters), and 4) fluid-rock imcompatibility (introducing foreign groundwaters into storage aquifer sedimentary matrix). The primary investigatory tool used in the study is an Electric Power Research Institute computer program (EQUILIB), which is based on equilibrium chemical thermodynamics. The computer code was utilized to simulate changes in mineralogy and groundwater chemistries due to the interaction of the sediment material and two differing aquifer waters at temperatures of 55/sup 0/C, 100/sup 0/C, and 150/sup 0/C. Conclusions are primarily based on the 55/sup 0/C results since this was the maximum operating temperature for the Auburn experiment.

Stottlemyre, J.A.; Smith, R.P.; Erikson, R.L.

1979-10-01T23:59:59.000Z

325

Field tests of corrosion and chemical sensors for geothermal power plants  

DOE Green Energy (OSTI)

This report summarizes approximately two years of continuous monitoring of corrosion (and other variables that affect corrosion) in a 10-megawatt binary cycle geothermal power plant. The project goal was to develop methods for detecting adverse plant conditions soon enough to prevent equipment failures. The instruments tested were: (1) resistance-type corrosion probes; (2) linear polarization corrosion probes; (3) oxidation/reduction potential (ORP) probes for oxygen detection; (4) high-temperature pH electrodes; and (5) electrodeless conductivity cells for gas bubble detection.

Robertus, R.J.; Shannon, D.W.; Sullivan, R.G.; Mackey, D.B.; Koski, O.H.; McBarron, F.O.; Duce, J.L.; Pierce, D.D.

1986-03-01T23:59:59.000Z

326

Desiccant solar air conditioning in tropical climates: II-field testing in Guadeloupe  

Science Conference Proceedings (OSTI)

This paper presents the results of the experimental investigation of a solar desiccant air conditioning device exposed to the sun in Guadeloupe to test that adaptability of a silicagel compact bed, the most simple technology, in a tropical climate. It has been shown that it is possible to make use of solar flat plate collectors with a balancing water tank, to produce heat for the regeneration of a solid desiccant as silicagel, with solar energy. Second, the compact bed system proposed gives the foreseen cooling power, but considerable losses appear, particularly in the sorption process, which is not close enough to the reversible adiabatic one.

Dupont, M.; Celestine, B.; Beghin, B. (Solar Energy Lab., Pointe-a-Pitre (Guadeloupe))

1994-06-01T23:59:59.000Z

327

IEEE 802.15.4 Communication Protocol Field Test Results and Analysis  

Science Conference Proceedings (OSTI)

The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard defines the 2.4 GHz frequency band with 16 channels (channels 11-26), the 915 MHz band with 10 channels (channels (1-10), and the 836 MHz band with one channel (channel 0). This report introduces IEEE 802.15.4 evaluation tools that are currently under development, open range test results, and a radio-frequency (RF) survey of a suburban ranch style home with a metal roof located in Pleasanton, California. The report presents th...

2009-11-16T23:59:59.000Z

328

TEST  

Science Conference Proceedings (OSTI)

This is an abstract. TEST Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras lacinia dui et est venenatis lacinia. Vestibulum lacus dolor, adipiscing id mattis sit amet, ultricies sed purus. Nulla consectetur aliquet feugiat. Maecenas ips

329

Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water  

SciTech Connect

This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were also analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was limited to sediment depths of 10 cm or greater, which is outside of the primary zone of biological activity. Further, exposure to site sediments did not have any effects on test organisms, and macroinvertebrate communities did not indicate impairment at the oil production site as compared to a reference site. In situ experiments with H. azteca and C. fluminea, indicated a sublethal site effect (on growth of both species), but these could not be definitively linked with produced water infiltration. Severe weather conditions (drought followed by flooding) negatively influenced the intensity of lake sampling aimed at delineating produced water infiltration. Due to the lack of clear evidence of produced water infiltration into the sub-littoral zone of the lake, it was not possible to assess whether the laboratory bioassays of produced water effectively indicate risk in the receiving system. However, the acutely toxic nature of the produced water and general lack of biological effects in the lake at the oil production site suggest minimal to no produced water infiltration into surficial lake sediments and the near-shore water column. This study was able to demonstrate the utility of ion toxicity modeling to support data from toxicity identification evaluations aimed at identifying key toxic constituents in produced water. This information could be used to prioritize options for treating produced water in order to reduce toxic constituents and enhance options for reuse. The study also demonstrated how geographic information systems, toxicity modeling, and toxicity assessment could be used to facilitate future site assessments.

Joseph Bidwell; Jonathan Fisher; Naomi Cooper

2008-03-31T23:59:59.000Z

330

Lateral steam flow revealed by a pressure build-up test at the Matsukawa vapor-dominated geothermal field, Japan  

Science Conference Proceedings (OSTI)

Results and discussion of a pressure build-up test at the Matsukawa vapor-dominated geothermal field in north-east Japan are reported. Pressure build-up behavior of three dry steam wells was monitored at the wellhead in October 1986. The observed pressure gradient clearly shows the existence of a lateral steam flow from south-west to north-east in the reservoir. This result suggests that the vapor-dominated reservoir extends further south-west than it is currently being developed. These conclusions are supported by production records and chemical data.

Hanano, M. Sakagawa, Y. (Japan Metals and Chemicals Co. Ltd., 24-Ukai, Takizawa-mura, Iwate 020-01 (JP))

1990-01-01T23:59:59.000Z

331

Recovery efficiency of enhanced oil recovery methods: a review of significant field tests  

SciTech Connect

This paper analyzes past enhanced oil recovery (EOR) projects to determine how well they have performed as a function of reservoir and process variables. In total, over 100 key tests covering the following six major enhanced oil recovery techniques are analyzed: Steam Drive, In-Situ Combustion, Carbon Dioxide Flooding, Polymer Flooding, Surfactant/Polymer Flooding, and Alkaline Flooding. The analysis includes, by technique and geographical area: the range of oil recovery due to EOR in barrels per acre-foot and as a percentage of oil remaining in-place; a comparison between predicted performance and actual oil recovery; an examination of the performance of different EOR processes within each of the six techniques; and an analysis of the relation of reservoir parameters and process variables to oil recovery.

Hammershaimb, E.C.; Kuuskraa, V.A.; Stosur, G.

1983-10-01T23:59:59.000Z

332

Recovery efficiency of enhanced oil recovery methods: a review of significant field tests  

Science Conference Proceedings (OSTI)

This study analyzes past enhanced oil recovery (EOR) projects to determine how well they have performed as a function of reservoir and process variables. In total, over 100 key tests covering the following 6 major enhanced oil recovery techniques are analyzed: steam drive, in situ combustion, carbon dioxide flooding, polymer flooding, surfactant/polymer flooding, and alkaline flooding. The analysis includes, by technique and geographic area, (1) the range of oil recovery due to EOR in barrels per acre-foot and as a percentage of oil remaining in-place; (2) a comparison between predicted performance and actual oil recovery; (3) an examination of the performance of different EOR processes within each of the 6 techniques; and (4) an analysis of the relation of reservoir parameters and process variables to oil recovery.

Hammershaimb, E.C.; Kuuskraa, V.A.; Stosur, G.

1983-01-01T23:59:59.000Z

333

Instrumentation, Field Network And Process Automation for the LHC Cryogenic Line Tests  

E-Print Network (OSTI)

This paper describes the cryogenic control system and associated instrumentation of the test facility for 3 pre-series units of the LHC Cryogenic Distribution Line. For each unit, the process automation is based on a Programmable Logic Con-troller implementing more than 30 closed control loops and handling alarms, in-terlocks and overall process management. More than 160 sensors and actuators are distributed over 150 m on a Profibus DP/PA network. Parameterization, cali-bration and diagnosis are remotely available through the bus. Considering the diversity, amount and geographical distribution of the instru-mentation involved, this is a representative approach to the cryogenic control system for CERN's next accelerator.

Bager, T; Bertrand, G; Casas-Cubillos, J; Gomes, P; Parente, C; Riddone, G; Suraci, A

2000-01-01T23:59:59.000Z

334

SOLERAS - Solar Cooling Engineering Field Tests Project. Final report. Volume 1. Project summary  

Science Conference Proceedings (OSTI)

The SOLERAS Project Summary - Final Report contains a synopsis of each completed project based on contractors final report. Additionally, a brief description of the limited testing completed by the SOLERAS staff on the collectors is included. SOLERAS comments or opinions expressed in the report are solely based on experiences with the SOLERAS Installations. It must be recognized that many product improvements and design modifications have been made since installation completion, many of which are the result of SOLERAS experience. The last chapter of this report is a synopsis of suggested new research areas for the solar cooling program. These suggestions were made by the participants of the cooling workshop held in Phoenix, Arizona in August 1984.

Not Available

1986-01-01T23:59:59.000Z

335

Field testing of component-level model-based fault detection methods for mixing boxes and VAV fan systems  

SciTech Connect

An automated fault detection and diagnosis tool for HVAC systems is being developed, based on an integrated, life-cycle, approach to commissioning and performance monitoring. The tool uses component-level HVAC equipment models implemented in the SPARK equation-based simulation environment. The models are configured using design information and component manufacturers' data and then fine-tuned to match the actual performance of the equipment by using data measured during functional tests of the sort using in commissioning. This paper presents the results of field tests of mixing box and VAV fan system models in an experimental facility and a commercial office building. The models were found to be capable of representing the performance of correctly operating mixing box and VAV fan systems and detecting several types of incorrect operation.

Xu, Peng; Haves, Philip

2002-05-16T23:59:59.000Z

336

Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits  

SciTech Connect

The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

2005-09-01T23:59:59.000Z

337

In-situ biological treatment test at Kelly Air Force Base. Volume 2. Field test results and cost model. Final report, 1 June 1985-31 May 1987  

SciTech Connect

The objective of this effort was to field test in-situ biodegradation to treat aquifer contaminants. In-situ biodegradation is enhanced by stimulating in indigenous subsurface microbial population by the addition of nutrients and an oxygen source to promote degradation of organic contaminants. In-situ treatments affects contaminants with a mixture of organic and inorganic chemicals. The treatment system consisted of an array of nine pumping wells and four infiltration wells. These wells circulated groundwater and transported the treatment chemical s throughout the 2800-square-feet treatment area. Oxygen was supplied by means of a hydrogen peroxide solution. Nutrients were principally ammonium and phosphate salts. The system was operated for 9 months. Data showed evidence of both aerobic and anaerobic biodegradation. Decreases in tetrachloroethylene and trichloroethylene concentrations in groundwater correlate with anaerobic microcosm tests. Aerobic biodegradation was indicated by acid and carbon dioxide production, and increases in petroleum hydrocarbon concentrations in groundwater, However, any biodegradation of these hydrocarbons was too small to be quantified. The study confirms that indigenous bacteria can be enhanced to degrade organic contaminants. The problems with in situ treatment are primarily those of delivery of chemicals and minimizing adverse reactions between injection chemicals and subsurface minerals.

Wetzel, R.S.; Durst, C.M.; Davidson, D.H.; Sarno, D.J.

1987-07-01T23:59:59.000Z

338

The Numerical Simulation of Nonsupercell Tornadogenesis. Part III: Parameter Tests Investigating the Role of CAPE, Vortex Sheet Strength, and Boundary Layer Vertical Shear  

Science Conference Proceedings (OSTI)

Nonsupercell tornadogenesis has been investigated in a three-part numerical study. Building on the results of Parts I and II, Part III addresses the sensitivity of nonsupercell tornadogenesis to variations in convective available potential energy ...

Bruce D. Lee; Robert B. Wilhelmson

2000-07-01T23:59:59.000Z

339

Advancing weatherization performance: Measured results from the North Carolina field test of an advanced measure selection technique  

SciTech Connect

The field performance of weatherizations based on a newly-developed advanced residential energy conservation measure selection technique was tested alongside current Retro-Tech-based weatherizations in North Carolina. The two weatherization approaches were compared based on implementation ease, measures installed, labor and cost requirements, and energy savings achieved. One-hundred twenty low-income, single-family households served by three different weatherization agencies participated in the field test which was conducted between June 1989 and August 1991. Average heating energy savings were 33% for weatherizations based on the new technique and 23% for Retro-Tech-based weatherizations. Weatherizations based on the new technique achieved 43% more heating energy savings, cost around 10% less at two weatherization agencies and considerably more at the third, and were near equivalent in labor requirements. Major findings from the study include: (1) the advanced audit will install some measures in near identical quantities as Retro-Tech-based weatherizations and others in dramatically different quantities, (2) the advanced audit can significantly increase heating energy savings, (3) blower-door-directed air sealing can more than double the air leakage reductions achieved from standard air sealing techniques, (4) North Carolina low-income houses have much higher average leakage rates than similar New York houses but can be sealed as well or better, and (5) using the advanced audit will not increase weatherization costs and may actually lower costs for most weatherization agencies.

Sharp, T.R.

1993-07-01T23:59:59.000Z

340

Energy Smart Schools--Applied Research, Field Testing, and Technology Integration  

DOE Green Energy (OSTI)

The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among state and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.

Nebiat Solomon; Robin Vieira; William L. Manz; Abby Vogen; Claudia Orlando; Kimberlie A. Schryer

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument  

SciTech Connect

Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-amp mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.

NONE

1998-12-01T23:59:59.000Z

342

No moving parts safe and arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems  

DOE Patents (OSTI)

A laser initiated ordnance controller apparatus which provides a safe and arm scheme with no moving parts. The safe and arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe and arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activated the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel.

Hendrix, J.L.

1994-12-31T23:59:59.000Z

343

No moving parts safe & arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems  

DOE Patents (OSTI)

A laser initiated ordnance controller apparatus which provides a safe and m scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition.

Hendrix, James L. (Overland Park, KS)

1995-01-01T23:59:59.000Z

344

No moving parts safe & arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems  

DOE Patents (OSTI)

A laser initiated ordnance controller apparatus which provides a safe and arm scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition. 6 figures.

Hendrix, J.L.

1995-04-11T23:59:59.000Z

345

NREL Launches Collaborative Resource for Field Test Best Practices (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic portal documents and shares state-of-the-art Dynamic portal documents and shares state-of-the-art residential field test tools and techniques. Field testing is a science and an art-a tricky process that develops through a lot of trial and error. Researchers in the Advanced Residential Buildings group at the National Renewable Energy Labora- tory (NREL) regularly conduct field experiments and long-term monitoring in occupied and unoc- cupied houses throughout the United States. The goal is to capture real-world performance of energy- efficient systems, in support of the U.S. Department of Energy's Build- ing America program. In addition to the technical challenges of making accurate field measurements, NREL researchers realized another problem: the vast body of field test know-how based on years of collective experience is currently scattered throughout the

346

A Sample of Very Young Field L Dwarfs and Implications for the Brown Dwarf "Lithium Test" at Early Ages  

E-Print Network (OSTI)

Using a large sample of optical spectra of late-type dwarfs, we identify a subset of late-M through L field dwarfs that, because of the presence of low-gravity features in their spectra, are believed to be unusually young. From a combined sample of 303 field L dwarfs, we find observationally that 7.6+/-1.6% are younger than 100 Myr. This percentage is in agreement with theoretical predictions once observing biases are taken into account. We find that these young L dwarfs tend to fall in the southern hemisphere (Dec < 0 deg) and may be previously unrecognized, low-mass members of nearby, young associations like Tucana-Horologium, TW Hydrae, beta Pictoris, and AB Doradus. We use a homogeneously observed sample of roughly one hundred and fifty 6300-10000 Angstrom spectra of L and T dwarfs taken with the Low-Resolution Imaging Spectrometer at the W. M. Keck Observatory to examine the strength of the 6708-A Li I line as a function of spectral type and further corroborate the trends noted by Kirkpatrick et al. (2000). We use our low-gravity spectra to investigate the strength of the Li I line as a function of age. The data weakly suggest that for early- to mid-L dwarfs the line strength reaches a maximum for a few 100 Myr, whereas for much older (few Gyr) and much younger (<100 Myr) L dwarfs the line is weaker or undetectable. We show that a weakening of lithium at lower gravities is predicted by model atmosphere calculations, an effect partially corroborated by existing observational data. Larger samples containing L dwarfs of well determined ages are needed to further test this empirically. If verified, this result would reinforce the caveat first cited in Kirkpatrick et al. (2006) that the lithium test should be used with caution when attempting to confirm the substellar nature of the youngest brown dwarfs.

J. Davy Kirkpatrick; Kelle L. Cruz; Travis S. Barman; Adam J. Burgasser; Dagny L. Looper; C. G. Tinney; Christopher R. Gelino; Patrick J. Lowrance; James Liebert; John M. Carpenter; Lynne A. Hillenbrand; John R. Stauffer

2008-08-22T23:59:59.000Z

347

Detecting internal corrosion of natural gas transmission pipelines: field tests of probes and systems for real-time corrosion measurement  

Science Conference Proceedings (OSTI)

A field study was conducted to evaluate the use of automated, multi-technique electrochemical corrosion-rate monitoring devices and probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. It involved measurement of real-time corrosion signals from operating pipelines. Results and interpretation were reported from four different field test locations. Standard flush-mount and custom flange probes were used in four different environments at a gas-gathering site and one environment but two different probe orientations at a natural gas site. These sites were selected to represent normal and upset conditions common in gas transmission pipelines. The environments consisted of two different levels of humidified natural gas, liquid hydrocarbon, and water from natural gas. Probe locations included the 6 and 12 o?clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. The probe data was monitored using completely remote solar powered systems that provided real-time data transmission via wireless back to a pipeline control station. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Kane, R.D. (InterCorr International); Meidinger, B. (Rocky Mountain Oilfield Testing Center)

2005-01-01T23:59:59.000Z

348

The North Carolina Field Test: Field performance of the preliminary version of an advanced weatherization audit for the Department of Energy`s Weatherization Assistance Program  

SciTech Connect

The field performance of weatherizations based on a newly-developed advanced technique for selecting residential energy conservation measures was tested alongside current Retro-Tech-based weatherizations in North Carolina. The new technique is computer-based and determines measures based on the needs of an individual house. In addition, it recommends only those measures that it determines will have a benefit-to-cost ratio greater than 1 for the house being evaluated. The new technique also considers the interaction of measures in computing the benefit-to-cost ratio of each measure. The two weatherization approaches were compared based on implementation ease, measures installed, labor and cost requirements, and both heating and cooling energy savings achieved. One-hundred and twenty houses with the following characteristics participated: the occupants were low-income, eligible for North Carolina`s current weatherization program, and responsible for their own fuel and electric bills. Houses were detached single-family dwellings, not mobile homes; were heated by kerosene, fuel oil, natural gas, or propane; and had one or two operating window air conditioners. Houses were divided equally into one control group and two weatherization groups. Weekly space heating and cooling energy use, and hourly indoor and outdoor temperatures were monitored between November 1989 and September 1990 (pre-period) and between December 1990 and August 1991 (post-period). House consumption models were used to normalize for annual weather differences and a 68{degrees}F indoor temperature. Control group savings were used to adjust the savings determined for the weatherization groups. The two weatherization approaches involved installing attic and floor insulations in near equivalent quantities, and installing storm windows and wall insulation in drastically different quantities. Substantial differences also were found in average air leakage reductions for the two weatherization groups.

Sharp, T.R.

1994-06-01T23:59:59.000Z

349

Ex parte Communication | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Communication Ex parte Communication Ex parte communication on AHAM's development of an ice maker energy test procedure Ex parte Communication More Documents & Publications...

350

Addendum to material selection guidelines for geothermal energy-utilization systems. Part I. Extension of the field experience data base. Part II. Proceedings of the geothermal engineering and materials (GEM) program conference (San Diego, CA, 6-8 October 1982)  

DOE Green Energy (OSTI)

The extension of the field experience data base includes the following: key corrosive species, updated field experiences, corrosion of secondary loop components or geothermal binary power plants, and suitability of conventional water-source heat pump evaporator materials for geothermal heat pump service. Twenty-four conference papers are included. Three were abstracted previously for EDB. Separate abstracts were prepared for twenty-one. (MHR)

Smith, C.S.; Ellis, P.F. II

1983-05-01T23:59:59.000Z

351

W-025, acceptance test report  

SciTech Connect

This acceptance test report (ATR) has been prepared to establish the results of the field testing conducted on W-025 to demonstrate that the electrical/instrumentation systems functioned as intended by design. This is part of the RMW Land Disposal Facility.

Roscha, V.

1994-10-04T23:59:59.000Z

352

The IMPROVE-1 Storm of 1–2 February 2001. Part III: Sensitivity of a Mesoscale Model Simulation to the Representation of Snow Particle Types and Testing of a Bulk Microphysical Scheme with Snow Habit Prediction  

Science Conference Proceedings (OSTI)

A mesoscale model simulation of a wide cold-frontal rainband observed in the Pacific Northwest during the Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE-1) field study was used to test the ...

Christopher P. Woods; Mark T. Stoelinga; John D. Locatelli

2007-11-01T23:59:59.000Z

353

Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies.

D. J. Hansen

2003-09-30T23:59:59.000Z

354

Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.  

DOE Green Energy (OSTI)

This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific recommendations are presented relative to the application of the technique, including ways to mitigate and manage potential sources of error.

He, Hongbo (University of New Mexico, Albuquerque, NM); Vorobieff, Peter V. (University of New Mexico, Albuquerque, NM); Menicucci, David (University of New Mexico, Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Carlson, Jeffrey J.

2012-06-01T23:59:59.000Z

355

Three-Dimensional Wind Field Analysis from Dual-Doppler Radar Data. Part I: Filtering, Interpolating and Differentiating the Raw Data  

Science Conference Proceedings (OSTI)

This paper is the first of three dealing with the three-dimensional wind field analysis from dual-Doppler radar data. Here we deal with the first step of the analysis which consists in interpolating and filtering the raw radial velocity fields ...

J. Testud; M. Chong

1983-07-01T23:59:59.000Z

356

DOE/NETL's phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection  

Science Conference Proceedings (OSTI)

Based on results of field testing conducted by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), this article provides preliminary costs for mercury control via conventional activated carbon injection (ACI), brominated ACI, and conventional ACI coupled with the application of a sorbent enhancement additive (SEA) to coal prior to combustion. The economic analyses are reported on a plant-specific basis in terms of the cost required to achieve low (50%), mid (70%), and high (90%) levels of mercury removal 'above and beyond' the baseline mercury removal achieved by existing emission control equipment. In other words, the levels of mercury control are directly attributable to ACI. Mercury control costs via ACI have been amortized on a current dollar basis. Using a 20-year book life, levelized costs for the incremental increase in cost of electricity (COE), expressed in mills per kilowatt-hour (mills/kWh), and the incremental cost of mercury control, expressed in dollars per pound of mercury removed ($/lb Hg removed), have been calculated for each level of ACI mercury control. For this analysis, the increase in COE varied from 0.14 mills/kWh to 3.92 mills/kWh. Meanwhile, the incremental cost of mercury control ranged from $3810/lb Hg removed to $166 000/lb Hg removed. 13 refs., 4 figs., 3 tabs.

Andrew P. Jones; Jeffrey W. Hoffmann; Dennis N. Smith; Thomas J. Feeley III; James T. Murphy [National Energy Technology Laboratory, Pittsburgh, PA (United States)

2007-02-15T23:59:59.000Z

357

Results of investigation at the Miravalles Geothermal Field, Costa Rica: Part 1, Well logging. Resultados de las investigaciones en el campo geotermico de Miravalles, Costa Rica: Parte 1, Registros de pozos  

DOE Green Energy (OSTI)

The well-logging operations performed in the Miravalles Geothermal Field in Costa Rica were conducted during two separate field trips. The Phase I program provided the deployment of a suite of high-temperature borehole instruments, including the temperature/rabbit, fluid sampler, and three-arm caliper in Well PGM-3. These same tools were deployed in Well PGM-10 along with an additional survey run with a combination fluid velocity/temperature/pressure instrument used to measure thermodynamic properties under flowing well conditions. The Phase II program complemented Phase I with the suite of tools deployed in Wells PGM-5, PGM-11, and PGM-12. 4 refs., 25 figs., 1 tab.

Dennis, B.R.; Lawton, R.G.; Kolar, J.D.; Alvarado, A.

1989-03-01T23:59:59.000Z

358

Wellbore and soil thermal simulation for geothermal wells: development of computer model and acquisition of field temperature data. Part I report  

SciTech Connect

A downhole thermal simulator has been developed to improve understanding of the high downhole temperatures that affect many design factors in geothermal wells. This development is documented and field temperature data presented for flowing and shut-in conditions.

Wooley, G.R.

1980-03-01T23:59:59.000Z

359

Urban Energy Balance Obtained from the Comprehensive Outdoor Scale Model Experiment. Part II: Comparisons with Field Data Using an Improved Energy Partition  

Science Conference Proceedings (OSTI)

The objective of this study is to examine the differences and similarities in the annual trends of the urban surface energy balance (SEB) among long-term field measurements. Four datasets analyzed for the study were collected in the following ...

Toru Kawai; Manabu Kanda

2010-07-01T23:59:59.000Z

360

Deconvolution of Wide Field-of-View Radiometer Measurements of Earth-Emitted Radiation Part II: Analysis of First Year of Nimbus 6 ERB Data  

Science Conference Proceedings (OSTI)

One year of longwave radiation data from July 1975 through June 1976 from the Nimbus 6 satellite Earth Radiation Budget (ERB) experiment is analyzed by representing the longwave radiation field by a spherical harmonic expansion. The data are from ...

T. Dale Bess; Richard N. Green; G. Louis Smith

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Retrieval of Model Initial Fields from Single-Doppler Observations of a Supercell Thunderstorm. Part II: Thermodynamic Retrieval and Numerical Prediction  

Science Conference Proceedings (OSTI)

In this two-part study, a single-Doppler parameter retrieval technique is developed and applied to a real-data case to provide model initial conditions for a short-range prediction of a supercell thunderstorm. The technique consists of the ...

Stephen S. Weygandt; Alan Shapiro; Kelvin K. Droegemeier

2002-03-01T23:59:59.000Z

362

A Parameterization for Land–Atmosphere-Cloud Exchange (PLACE): Documentation and Testing of a Detailed Process Model of the Partly Cloudy Boundary Layer over Heterogeneous Land  

Science Conference Proceedings (OSTI)

This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for Land–Atmosphere–Cloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and ...

Peter J. Wetzel; Aaron Boone

1995-07-01T23:59:59.000Z

363

A study of coal particle shape and three-body wear: Part 1, Design and development of a new three-body wear testing machine: Part 2, Particle shape and three-body wear  

DOE Green Energy (OSTI)

Three-body wear involves two surfaces and an intermediate particle trapped between the two surfaces. A machine has been constructed to measure normal and frictional forces due to three-body wear. This machine accurately positions specimens a predetermined distance apart from each other and introduces particles to the interface between the specimens. Different types of specimen combinations have been tested to give a variety of data. Loads that result from the wear test are sampled and stored. Wear coefficients and rates of wear have been calculated for all specimens. (VC)

Clark, N.N.; Means, K.H.; James, R.; Thompson, T.

1991-01-01T23:59:59.000Z

364

Identification and Testing of Amines for Steam Generator Chemistry and Deposit Control: Part 3: Qualifications of Dodecylamine as an Amine Additive for Steam Generator Fouling Mitigation  

Science Conference Proceedings (OSTI)

This report summarizes an investigation to qualify an amine additive for a pressurized water reactor (PWR) field trial to reduce steam generator (SG) fouling. While the results to date continue to support a field trial, the apparent incompatibility of the amine additive with ion exchange cation resins will be a significant problem for some stations.

2004-12-01T23:59:59.000Z

365

Development and testing of a risk indexing framework to determine field-scale critical source areas of faecal bacteria on grassland  

Science Conference Proceedings (OSTI)

This paper draws on lessons from a UK case study in the management of diffuse microbial pollution from grassland farm systems in the Taw catchment, southwest England. We report on the development and preliminary testing of a field-scale faecal indicator ... Keywords: Critical source area, Diffuse pollution, Escherichia coli, Expert knowledge, Faecal indicator organism, Index, Pathogens, Risk, Water quality

David M. Oliver; Trevor Page; Chris J. Hodgson; A. Louise Heathwaite; Dave R. Chadwick; Rob D. Fish; Michael Winter

2010-04-01T23:59:59.000Z

366

CERTIFICATE OF FIELD VERIFICATION AND DIAGNOSTIC TESTING CF-4R-ENV-21 Quality Insulation Installation (QII) -Framing Stage Checklist (Page 1 of 2)  

E-Print Network (OSTI)

then this is not a valid form and cannot be accepted by the building department or HERS rater. SPF insulation can of the CBC are allowed and must be insulated. These areas shall be called out on the building plansCERTIFICATE OF FIELD VERIFICATION AND DIAGNOSTIC TESTING CF-4R-ENV-21 Quality Insulation

367

CERTIFICATE OF FIELD VERIFICATION AND DIAGNOSTIC TESTING CF-4R-ENV-22 Quality Insulation Installation (QII) -Insulation Stage Checklist (Page 1 of 3)  

E-Print Network (OSTI)

of the CBC are allowed and must be insulated. These areas shall be called out on the building plansCERTIFICATE OF FIELD VERIFICATION AND DIAGNOSTIC TESTING CF-4R-ENV-22 Quality Insulation Installation (QII) - Insulation Stage Checklist (Page 1 of 3) Site Address: Enforcement Agency: Permit Number

368

DOE/EA-1626: Final Environmental Assessment for Midwest Geological Sequestration Consortium (MGSC) Phase III Large-Scale Field Test (October 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26 26 FINAL ENVIRONMENTAL ASSESSMENT Midwest Geological Sequestration Consortium (MGSC) Phase III Large-Scale Field Test Decatur, Illinois October 2008 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy MGSC Phase III National Energy Technology Laboratory Final Environmental Assessment ______________________________________________________________________________ Table of Contents i October 2008 TABLE OF CONTENTS LIST OF TABLES.......................................................................................................................... v LIST OF FIGURES ........................................................................................................................

369

CERTIFICATE OF FIELD VERIFICATION AND DIAGNOSTIC TESTING CF-4R-MECH-23 Verification of High EER Equipment (Page 1 of 1)  

E-Print Network (OSTI)

CERTIFICATE OF FIELD VERIFICATION AND DIAGNOSTIC TESTING CF-4R-MECH-23 Verification of High EER 2009 Verification of High EER Equipment Procedures for verification of High EER Equipment are described. 1 System Name or Identification/Tag 2 System Location or Area Served 3 Certified EER Rating

370

A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data  

Science Conference Proceedings (OSTI)

The global parameter fields used in the revised Simple Biosphere Model (SiB2) of Sellers et al. are reviewed. The most important innovation over the earlier SiB1 parameter set of Dorman and Sellers is the use of satellite data to specify the time-...

Piers J. Sellers; Compton J. Tucker; G. James Collatz; Sietse O. Los; Christopher O. Justice; Donald A. Dazlich; David A. Randall

1996-04-01T23:59:59.000Z

371

Three-Dimensional Wind Field Analysis from Dual-Doppler Radar Data. Part III: The Boundary Condition: An Optimum Determination Based on a Variational Concept  

Science Conference Proceedings (OSTI)

The choice of the boundary condition when integrating the air mass continuity equation, is a major problem of the 3D wind field analysis from dual (or multiple) Doppler radar data. A zero vertical velocity at ground level seems the most natural ...

M. Chong; J. Testud

1983-07-01T23:59:59.000Z

372

The Potential Use of Summer Rainfall Enhancement in Illinois. Part I: A Field Experiment to Define Responses of Crop Yields to Increased Rainfall  

Science Conference Proceedings (OSTI)

An assessment was made of factors affecting the use of cloud seeding to increase summer (June-August) rainfall for improved corn and soybean yields in Illinois. Crop yields from a five-year agricultural field experiment involving nine levels of ...

Stanley A. Changnon; Steven E. Hollinger

1993-03-01T23:59:59.000Z

373

Field Test Report: Preliminary Aquifer Test Characterization Results for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design  

SciTech Connect

This report examines the hydrologic test results for both local vertical profile characterization and large-scale hydrologic tests associated with a new extraction well (well 299-W15-225) that was constructed during FY2009 for inclusion within the future 200-West Area Groundwater Treatment System that is scheduled to go on-line at the end of FY2011. To facilitate the analysis of the large-scale hydrologic test performed at newly constructed extraction well 299-W15-225 (C7017; also referred to as EW-1 in some planning documents), the existing 200-ZP-1 interim pump-and-treat system was completely shut-down ~1 month before the performance of the large-scale hydrologic test. Specifically, this report 1) applies recently developed methods for removing barometric pressure fluctuations from well water-level measurements to enhance the detection of hydrologic test and pump-and-treat system effects at selected monitor wells, 2) analyzes the barometric-corrected well water-level responses for a preliminary determination of large-scale hydraulic properties, and 3) provides an assessment of the vertical distribution of hydraulic conductivity in the vicinity of newly constructed extraction well 299-W15-225. The hydrologic characterization approach presented in this report is expected to have universal application for meeting the characterization needs at other remedial action sites located within unconfined and confined aquifer systems.

Spane, Frank A.; Newcomer, Darrell R.

2009-09-23T23:59:59.000Z

374

Magnetoresistivity in a tilted magnetic field in p-Si/SiGe/Si heterostructures with an anisotropic g-factor. Part II  

Science Conference Proceedings (OSTI)

The magnetoresistance components {rho}xx and {rho}xy are measured in two p-Si/SiGe/Si quantum wells that have an anisotropic g-factor in a tilted magnetic field as a function of the temperature, field, and tilt angle. Activation energy measurements demonstrate the existence of a ferromagnetic-paramagnetic (F-P) transition for the sample with the hole density p = 2 Multiplication-Sign 10{sup 11} cm{sup -2}. This transition is due to the crossing of the 0{up_arrow} and 1{down_arrow} Landau levels. However, in another sample with p = 7.2 Multiplication-Sign 10{sup 10} cm{sup -2}, the 0{up_arrow} and 1{down_arrow} Landau levels coincide for angles {theta} = 0-70 Degree-Sign . Only for {theta} > 70 Degree-Sign do the levels start to diverge which, in turn, results in the energy gap opening.

Drichko, I. L.; Smirnov, I. Yu., E-mail: ivan.smirnov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Suslov, A. V. [National High Magnetic Field Laboratory (United States); Mironov, O. A. [University of Warwick Science Park, Warwick SEMINANO R and D Centre (United Kingdom); Leadley, D. R. [University of Warwick, Department of Physics (United Kingdom)

2012-09-15T23:59:59.000Z

375

Gullfaks development provides challenges; Part 2: Sand control combines with various EOR techniques to increase plateau production -- further developments will extend field life  

Science Conference Proceedings (OSTI)

The introductory article presented last month described Gullfaks field's history, and how it was discovered and appraised in Norway's North Sea Block 34/10 in the early 1980s. The field's complex geology and Statoil's strategy for developing various productive zones were explained. This concluding article describes evolution and status of well completion methods the operator uses in Gullfaks. A new monobore completion configuration for 5 1/2 and 7-in. tubing is described. Then major discussions cover: (1) sand control-gravel packing, stimulation, producing below bubble point techniques, and chemical methods; and (2) state-of-the-art techniques for improving oil recovery, including Water-Alternating-Gas (WAG) injection, thin polymer gel injection and surfactant flooding. Future needs and possible new methods are also covered.

Tollefsen, S.; Graue, E.; Svinndal, S.

1994-05-01T23:59:59.000Z

376

Offshore underbalanced drilling system could revive field developments. Part 2: Making this valuable reservoir drilling/completion technique work on a conventional offshore drilling platform  

Science Conference Proceedings (OSTI)

Part 1, presented in the July issue, discussed the emerging trend to move underbalanced drilling (UBD) operations into the offshore arena, following its successful application in many onshore areas. This concluding article delves into the details of applying UBD offshore. Starting with advantages the technique offers in many maturing or complex/marginal prospects, the UBD system for offshore platforms use is described. This involves conversion of the conventional rotary system, use of rotating diverters, design of the surface fluid separation system and the necessary gas (nitrogen or natural gas) injection system to lighten the fluid column. Commonly faced operational challenges for offshore UBD are listed along with recommended solutions.

Nessa, D.O.; Tangedahl, M.J.; Saponja, J.

1997-10-01T23:59:59.000Z

377

Cryogenic Treatment of Metal Parts  

SciTech Connect

Cryogenic treatment and its variables have been described. Results of eight engineering tests carried out on cryotreated parts have been presented. Cryogenic treatment of metal parts enhances useful properties which in turn, improves various strengths. Our tests viz. Abrasion, Torsion, Fatigue, Tensile, Shear, Hardness and Impact on Mild steel, Cast Iron, Brass and Copper show that the cryogenic treatment improved useful properties of mild steel parts appreciably but did not show promise with brass and copper parts.

Chillar, Rahul [S. P. College of Engineering, Andheri (W), Mumbai - 400 058 (India); Agrawal, S. C. [Tata Institute of Fundamental Research, Colaba, Mumbai - 400 005 (India)

2006-03-31T23:59:59.000Z

378

The Operational Mesogamma-Scale Analysis and Forecast System of the U.S. Army Test and Evaluation Command. Part III: Forecasting with Secondary-Applications Models  

Science Conference Proceedings (OSTI)

Output from the Army Test and Evaluation Command’s Four-Dimensional Weather System’s mesoscale model is used to drive secondary-applications models to produce forecasts of quantities of importance for daily decision making at U.S. Army test ...

Robert D. Sharman; Yubao Liu; Rong-Shyang Sheu; Thomas T. Warner; Daran L. Rife; James F. Bowers; Charles A. Clough; Edward E. Ellison

2008-04-01T23:59:59.000Z

379

Implementation of a Silver Iodide Cloud-Seeding Parameterization in WRF. Part II: 3D Simulations of Actual Seeding Events and Sensitivity Tests  

Science Conference Proceedings (OSTI)

Four cloud-seeding cases over southern Idaho during the 2010/11 winter season have been simulated by the Weather Research and Forecasting (WRF) model using the coupled silver iodide (AgI) cloud-seeding scheme that was described in Part I. The ...

Lulin Xue; Sarah A. Tessendorf; Eric Nelson; Roy Rasmussen; Daniel Breed; Shaun Parkinson; Pat Holbrook; Derek Blestrud

2013-06-01T23:59:59.000Z

380

Design and testing of an electron cyclotron resonance heating ion source for use in high field compact superconducting cyclotrons  

E-Print Network (OSTI)

The main goal of this project is to evaluate the feasibility of axial injection of a high brightness beam from an Electron Cyclotron Resonance ion source into a high magnetic field cyclotron. Axial injection from an ion ...

Artz, Mark E

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Calibration Evaluation and Radiometric Testing of Field Radiometers with the SeaWiFS Quality Monitor (SQM)  

Science Conference Proceedings (OSTI)

One of the goals of calibration and validation programs supporting ocean color satellites is to produce water-leaving radiances with an uncertainty of 5% in clear-water regions. This objective requires field instruments with a calibration and ...

Stanford B. Hooker; James Aiken

1998-08-01T23:59:59.000Z

382

Material Shielding of Power Frequency Magnetic Fields: Research and Testing Results from the EPRI Power Delivery Center -- Lenox  

Science Conference Proceedings (OSTI)

Magnetic fields from power lines and other electrical facilities can interfere with sensitive electronic equipment such as computers, electron microscopes, medical diagnostic and monitoring equipment, and air traffic control displays. Shields can be designed to reduce the magnetic field strength in the areas of interest, but attention must be given to certain aspects of shield design. This report deals with three aspects of practical shield construction: flat sheet dimensions, joining sheets, and thin co...

1998-06-29T23:59:59.000Z

383

Field Test of a Catalytic Combustion System for Non-Ammonia Control of Gas Turbine NOx Emissions  

DOE Green Energy (OSTI)

Under federal Award/Proposal Number DE-FG26-04NT42078, the California Energy Commission (CEC) will subgrant $100,000 to the City of Riverside, California, where the project will be located. In turn, the City of Riverside will subaward the federal funds to Alliance Power and/or Catalytica Energy Systems, Inc. (CESI). Alliance Power will coordinate administrative and management activities associated with this task to ensure compliance with CEC grant requirements. CESI will design and fabricate two Xonon{trademark} modules according to General Electric (GE) specification for operating conditions in the GE-10 gas turbine. CESI will ship the modules to the GE test facility for engine testing. CESI will provide test personnel as required to oversee the installation, testing and removal of the Xonon modules. GE will perform an engine test of the CESI-supplied Xonon modules on a GE-10 test engine in the fall of 2004. GE will record all test data as appropriate to evaluate the emissions and operating performance of the Xonon module. Following the test, GE will provide a letter report of the engine test findings. The letter report shall summarize the testing and provide an assessment of Xonon's ability to ultimately achieve less than 3 ppm NOx emissions on the GE-10. All expenses incurred by GE for this task will be paid by GE; no federal funds will be used. Following the reporting of findings, GE will make a decision whether or not to proceed with the Riverside retrofit project. GE will write a letter to CESI giving their decision. GE and CESI will report of engine test findings and the decision letter to the CEC Project Manager.

James F. Burns

2007-07-31T23:59:59.000Z

384

Field Test of a Catalytic Combustion System for Non-Ammonia Control of Gas Turbine NOx Emissions  

SciTech Connect

Under federal Award/Proposal Number DE-FG26-04NT42078, the California Energy Commission (CEC) will subgrant $100,000 to the City of Riverside, California, where the project will be located. In turn, the City of Riverside will subaward the federal funds to Alliance Power and/or Catalytica Energy Systems, Inc. (CESI). Alliance Power will coordinate administrative and management activities associated with this task to ensure compliance with CEC grant requirements. CESI will design and fabricate two Xonon{trademark} modules according to General Electric (GE) specification for operating conditions in the GE-10 gas turbine. CESI will ship the modules to the GE test facility for engine testing. CESI will provide test personnel as required to oversee the installation, testing and removal of the Xonon modules. GE will perform an engine test of the CESI-supplied Xonon modules on a GE-10 test engine in the fall of 2004. GE will record all test data as appropriate to evaluate the emissions and operating performance of the Xonon module. Following the test, GE will provide a letter report of the engine test findings. The letter report shall summarize the testing and provide an assessment of Xonon's ability to ultimately achieve less than 3 ppm NOx emissions on the GE-10. All expenses incurred by GE for this task will be paid by GE; no federal funds will be used. Following the reporting of findings, GE will make a decision whether or not to proceed with the Riverside retrofit project. GE will write a letter to CESI giving their decision. GE and CESI will report of engine test findings and the decision letter to the CEC Project Manager.

James F. Burns

2007-07-31T23:59:59.000Z

385

Field tests of a vertical-fluted-tube condenser in the prototype power plant at the Raft River Geothermal Test Site  

DOE Green Energy (OSTI)

A vertical-fluted-tube condenser was designed, fabricated, and tested with isobutane as the shell-side working fluid in a binary prototype power plant at the Raft River Geothermal Test Site. After shakedown and contamination removal operations were completed, the four-pass water-cooled unit (with 102 outside-fluted Admiralty tubes) achieved performance predictions while operating with the plant surface evaporator on-line. A sample comparison shows that use of this enhanced condenser concept offers the potential for a reduction of about 65% from the size suggested by corresponding designs using conventional horizontal-smooth-tube concepts. Subsequent substitution of a direct-contact evaporator for the surface evaporator brought drastic reductions in system performance, the apparent consequence of high concentrations of noncondensible gases introduced by the brine/working-fluid interaction.

Murphy, R.W.

1983-04-01T23:59:59.000Z

386

Part II  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Phase-Field Simulation and Nugget Microstructure Analysis of AZ31 ... steel by carefully adjusting the nucleation scenario of austenite and the ...

387

SOLERAS - Solar Cooling Engineering Field Tests Project: Carrier Corporation. Fabrication, testing and installation report: 53 kW solar absorption cooling system  

DOE Green Energy (OSTI)

A 53 kW water cooled packaged solar absorption chiller was fabricated and tested. The generator shell and absorber shell had sight glasses added as a diagnostic device. The unit was modified so that a base suitable for mounting pumps, valves and associated piping was cantilevered from one end of the unit. The installation and start-up of the cooling system is outlined.

Not Available

1985-01-01T23:59:59.000Z

388

Ecological Data in Support of the Tank Closure and Waste Management Environmental Impact Statement. Part 2: Results of Spring 2007 Field Surveys  

SciTech Connect

This review provides an evaluation of potential impacts of actions that have been proposed under various alternatives to support the closure of the high level waste tanks on the Hanford Site. This review provides a summary of data collected in the field during the spring of 2007 at all of the proposed project sites within 200 East and 200 West Areas, and at sites not previously surveyed. The primary purpose of this review is to provide biological data that can be incorporated into or used to support the Tank Closure and Waste Management Environmental Impact Statement.

Sackschewsky, Michael R.; Downs, Janelle L.

2007-05-31T23:59:59.000Z

389

Part Functions  

Science Conference Proceedings (OSTI)

Table 1   Functions served by parts...Mechanical power Shafts, connecting rods, gears Electricity Wires, lightbulb elements, resistors Provide a barrier (for example: reflect, cover, enclose,

390

Comparison of Near-field and Far-field Air Monitoring of Plutonium-contaminated Soils from the Tonopah Test Range, Nevada  

SciTech Connect

Operation Roller Coaster, a series of nuclear material dispersal experiments, resulted in three areas (Clean Slates 1, 2, and 3) of widespread surface soil plutonium (Pu) contamination on the Tonopah Test Range (TTR), located 225 miles northwest of Las Vegas, Nevada. The State's Division of Environmental Protection raised concerns that dispersal of airborne Pu particles from the sites could result in undetected deposition further downwind that the background monitoring stations. Air monitoring data from different distances from the Clean Slate sites but during the same period of time were compared. From the available data, there is no indication that airborne PM10 particles are being transported to the farther distance,however, the data are statistically insufficient to conclude whether there is a difference in transport of respirable Pu particles to the closer verses the farther sites from the Clean Slate sites.

John L. Bowen; David S. Shafer

2001-05-01T23:59:59.000Z

391

Application of Boyd’s Periodization and Relaxation Method in a Spectral Atmospheric Limited-Area Model. Part I: Implementation and Reproducibility Tests  

Science Conference Proceedings (OSTI)

This paper describes the implementation of a proposal of Boyd for the periodization and relaxation of the fields in a full three-dimensional spectral semi-implicit semi-Lagrangian limited-area model structure of an atmospheric modeling system ...

Piet Termonia; Fabrice Voitus; Daan Degrauwe; Steven Caluwaerts; Rafiq Hamdi

2012-10-01T23:59:59.000Z

392

New observations of infiltration through fractured alluvium in Yucca Flat, Nevada Test Site: A preliminary field investigation  

Science Conference Proceedings (OSTI)

Regional tectonics coupled with the subsurface detonation of nuclear explosives has caused widespread fracturing of the alluvium of Yucca Flat. Fractures deeper than 30 meters have been observed in boreholes. Some of these fractures are large enough to capture significant amounts of runoff during storm events. Evidence of stream capture by fractures and observations of runoff flowing into open fractures give qualitative evidence of infiltration to depths greater than several meters and possibly to the saturated zone. Our field observations contradict the assumption that little infiltration occurs on Yucca Flat. The larger, hydrologically important fractures are associated with geologic faults or the regional stress field. Additional field studies are needed to investigate the impact of fractures on the transport of contaminants.

Kao, C.S. [California Univ., Berkeley, CA (United States). Dept. of Civil Engineering; Smith, D.K. [Lawrence Livermore National Lab., CA (United States); McKinnis, W.B. [Lawrence Livermore National Lab., Mercury, NV (United States)

1994-02-01T23:59:59.000Z

393

SOLERAS - Solar Cooling Engineering Field Tests Project: Arizona State University. Prototype carrier 10 ton air-cooled solar absorption chiller. Final evaluation report  

DOE Green Energy (OSTI)

A prototype air-cooled 10 ton solar absorption chiller was disassembled and inspected after having been field-tested for three consecutive cooling seasons. Included in the inspection were some flow visualization experiments which revealed some problems in the absorber header design. The objectives of this evaluation project were to determine possible causes for the frequent crystallization and generally below-design performance of the chiller during the testing period. The major conclusions reached were that a combination of leaks and of poor (50%) flow distribution in the absorber could account for most of the chiller's poor performance.

Not Available

1982-01-01T23:59:59.000Z

394

Evaluating water-based drill-in fluids for horizontal completions. Part 1: Results of eight extensive lab tests are presented for use when assessing and selecting these special fluids  

SciTech Connect

The use of horizontal wells to obtain more cost-effective production from unconsolidated sandstones has become very popular. Since these wells employ open hole completions, success often depends on the fluid system used during drilling and completion. A lab study of three drill-in fluid systems was performed to determine the advantages and disadvantages of each. Intent of the study was not to recommend one fluid over another, but to make available the data necessary for picking the optimum fluid for a particular application. Parameters evaluated and discussed in Part 1 include rheology, lubricity, size distribution of bridging particles, API fluid loss, high-temperature fluid loss, filter cake characteristics, SEM analysis of filter cake and static breaker tests. Part 2 will describe return permeability tests. All were evaluated with 9, 10.5 and 14 ppg muds.

Ali, S.A. [Chevron U.S.A. Production Co., New Orleans, LA (United States); Dearing, H.L. [Chevron U.S.A. Production Co., Houston, TX (United States)

1996-10-01T23:59:59.000Z

395

Deep in Data: Empirical Data Based Software Accuracy Testing Using the Building America Field Data Repository: Preprint  

SciTech Connect

An opportunity is available for using home energy consumption and building description data to develop a standardized accuracy test for residential energy analysis tools. That is, to test the ability of uncalibrated simulations to match real utility bills. Empirical data collected from around the United States have been translated into a uniform Home Performance Extensible Markup Language format that may enable software developers to create translators to their input schemes for efficient access to the data. This may facilitate the possibility of modeling many homes expediently, and thus implementing software accuracy test cases by applying the translated data. This paper describes progress toward, and issues related to, developing a usable, standardized, empirical data-based software accuracy test suite.

Neymark, J.; Roberts, D.

2013-06-01T23:59:59.000Z

396

Field testing of component-level model-based fault detection methods for mixing boxes and VAV fan systems  

E-Print Network (OSTI)

precluded testing the fan based on design data. Since thisStatic Pressure (inWg) fan CFM SF-SP SF-SP-Design-Sim time (supply fan pressure rise) SF- DP SF-DP-Design-simulated D.

Xu, Peng; Haves, Philip

2002-01-01T23:59:59.000Z

397

Field testing of component-level model-based fault detection methods for mixing boxes and VAV fan systems  

E-Print Network (OSTI)

measurement of airflow rate. Supply fan speed (0-1) SA S.A.Supply Fan test S.B.Fan pressure rise calibration SF-DP-Simulated Pressure

Xu, Peng; Haves, Philip

2002-01-01T23:59:59.000Z

398

Results of a field test of heating system efficiency and thermal distribution system efficiency in a manufactured home  

SciTech Connect

A two-day test using electric coheating was performed on a manufactured home in Watertown, New York. The main objective of the test was to evaluate planned procedures for measuring thermal distribution system efficiency. (Thermal distribution systems are the ductwork or piping used to transport heat or cooling effect from the equipment that produces it to the building spaces in which it is used.) These procedures are under consideration for a standard method of test now being prepared by a special committee of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers. The ability of a coheating test to give a credible and repeatable value for the overall heating system efficiency was supported by the test data. Distribution efficiency is derived from system efficiency by correcting for energy losses from the equipment. Alternative means for achieving this were tested and assessed. The best value for system efficiency in the Watertown house was 0.53, while the best value for distribution efficiency was 0.72.

Andrews, J.W.; Krajewski, R.F.; Strasser, J.J. [Brookhaven National Lab., Upton, NY (United States); Kinney, L.; Lewis, G. [Synertech Systems Corp., Syracuse, NY (United States)

1995-05-01T23:59:59.000Z

399

Comparing State-Space Multivariable Controls to Multi-SISO Controls for Load Reduction of Drivetrain-Coupled Modes on Wind Turbines through Field-Testing: Preprint  

DOE Green Energy (OSTI)

This paper presents the structure of an ongoing controller comparison experiment at NREL's National Wind Technology Center; the design process for the two controllers compared in this phase of the experiment, and initial comparison results obtained in field-testing. The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiple single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.

Fleming, P. A.; van Wingerden, J. W.; Wright, A. D.

2011-12-01T23:59:59.000Z

400

Comparing State-Space Multivariable Controls to Multi-SISO Controls for Load Reduction of Drivetrain-Coupled Modes on Wind Turbines through Field-Testing: Preprint  

SciTech Connect

This paper presents the structure of an ongoing controller comparison experiment at NREL's National Wind Technology Center; the design process for the two controllers compared in this phase of the experiment, and initial comparison results obtained in field-testing. The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiple single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.

Fleming, P. A.; van Wingerden, J. W.; Wright, A. D.

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Computational Efficiency and Accuracy of Methods for Asynchronously Coupling Atmosphere-Ocean Climate Models. Part II: Testing with a Seasonal Cycle  

Science Conference Proceedings (OSTI)

The asynchronous coupling schemes used in the seasonal, coupled atmosphere–ocean general circulation models (A/O GCMs) of Manabe et al. 1979 and Washington et al. 1980 are tested in the seasonal, coupled atmosphere–ocean model of Harvey and ...

L. D. Danny Harvey

1986-01-01T23:59:59.000Z

402

The Use of Finite-Volume Methods for Atmospheric Advection of Trace Species. Part I: Test of Various Formulations in a General Circulation Model  

Science Conference Proceedings (OSTI)

In the context of advection of trace species by 3D atmospheric flows, a comparative test of a hierarchy of finite volume transport schemes initially derived by B. Van Leer is presented. Those schemes are conservative by construction and Van Leer ...

Frédéric Hourdin; Alexandre Armengaud

1999-05-01T23:59:59.000Z

403

An Environmental Assessment of Proposed Geothermal Well Testing in the Tigre Lagoon Oil Field, Vermilion Parish, Louisiana  

DOE Green Energy (OSTI)

This report is an environmental assessment of the proposed testing of two geopressured, geothermal aquifers in central coastal Louisiana. On the basis of an analysis of the environmental setting, subsurface characteristics, and the proposed action, potential environmental impacts are determined and evaluated together with potential conflicts with federal, state, and local programs. Oil and gas wells in coastal Louisiana have penetrated a potentially productive geothermal zone of abnormally high-pressured aquifers that also yield large volumes of natural gas. To evaluate the extent to which the geothermal-geopressured water can be used as an alternative energy source and to what extent withdrawal of geopressured water can enhance gas production, it is necessary that flow rates, composition and temperature of fluids and gases, recharge characteristics, pressures, compressibilities, and other hydrodynamic and boundary conditions of the reservoir be determined by means of production tests. Tests are further necessary to evaluate and seek solutions to technological problems.

None

1976-03-01T23:59:59.000Z

404

A Review, Part II  

E-Print Network (OSTI)

This paper is the second of a two-part review of methods for automated fault detection and diagnostics (FDD) and prognostics whose intent is to increase awareness of the HVAC&R research and development community to the body of FDD and prognostics developments in other fields as well as advancements in the field of HVAC&R. The first part of the review focused on generic FDD and prognostics, provided a framework for categorizing methods, described them, and identified their primary strengths and weaknesses (Katipamula and Brambley 2005). In this paper we address research and applications specific to the fields of HVAC&R, provide a brief discussion on the current state of diagnostics in buildings, and discuss the future of automated diagnostics in buildings.

Prognostics For Building Systems; Srinivas Katipamula; Phd Michael; R. Brambley

2004-01-01T23:59:59.000Z

405

Southeast Regional Carbon Sequestration Partnership U.S Regional Carbon Sequestration Partnerships: Sharing Knowledge from Two Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnership Presented to: Carbon Storage Program Infrastructure Annual Review Meeting November 15, 2011 Presented by: Gerald R. Hill, Ph.D. Senior Technical Advisor Southern States Energy Board Acknowledgements  This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory.  Cost share and research support provided by SECARB/SSEB Carbon Management Partners.  CO 2 Capture Unit funded separately by Southern Company and partners. 2 Presentation Outline  Overview  Characterization Studies  Early Test - Cranfield, MS  Anthropogenic Test - Citronelle, AL - Capture Unit Status - Pipeline Status - Injection Well Status 3 SECARB Characterization: CO 2 Sources & Saline Reservoirs

406

Effect of mechanical cleaning on seawater corrosion of candidate OTEC heat exchanger materials. Part 1. Tests with M. A. N. brushes  

DOE Green Energy (OSTI)

Corrosion evaluations were conducted on 3003 Alclad, 5052 aluminum, C7 0600 copper-nickel, AL-6X stainless steel, and commercially-pure titanium in natural seawater under simulated OTEC heat exchanger conditions to investigate the erosion-corrosion effects of mechanical tube cleaning. Test conditions of M.A.N. brush cleaning and M.A.N. brush cleaning + chlorination were compared with no mechanical cleaning over a seven month period. M.A.N. brushing significantly accelerated corrosion of 5052 aluminum and C7 0600 copper-nickel. Chlorination significantly accelerated erosion-corrosion of 3003 Alclad and 5052 aluminium. Chlorination somewhat decreased erosion-corrosion of C7 0600 copper-nickel. There was no detectable effect of M.A.N. brushing or chlorination on AL-6X stainless steel or titanium, although AL-6X exhibited crevice corrosion at tubing connections. 3003 Alclad and 5052 aluminum exhibited piting corrosion in all 3 test environments.

Tipton, D G

1980-09-01T23:59:59.000Z

407

Test of the superluminality of supercurrents induced by a local electric field in a superconducting-core coaxial cable  

E-Print Network (OSTI)

An experiment is proposed to test the prediction that induced supercurrents in a superconductor can become superluminal, as was predicted in the paper by S.J. Minter, K. Wegter-McNelly, R.Y. Chiao, Physica E 42 (2010) 234.

R. Y. Chiao

2010-11-05T23:59:59.000Z

408

Evaluation of a single cell and candidate materials with high water content hydrogen in a generic solid oxide fuel cell stack test fixture, Part II: materials and interface characterization  

Science Conference Proceedings (OSTI)

A generic solid oxide fuel cell (SOFC) test fixture was developed to evaluate candidate materials under realistic conditions. A commerical 50 mm x 50 mm NiO-YSZ anode supported thin YSZ electrolyte cell with lanthanum strontium manganite (LSM) cathode was tested to evaluate the stability of candidate materials. The cell was tested in two stages at 800oC: stage I of low (~3% H2O) humidity and stage II of high (~30% H2O) humidity hydrogen fuel at constant voltage or constant current mode. Part I of the work was published earlier with information of the generic test fixture design, materials, cell performance, and optical post-mortem analysis. In part II, detailed microstructure and interfacial characterizations are reported regarding the SOFC candidate materials: (Mn,Co)-spinel conductive coating, alumina coating for sealing area, ferritic stainless steel interconnect, refractory sealing glass, and their interactions with each other. Overall, the (Mn,Co)-spinel coating was very effective in minimizing Cr migration. No Cr was identified in the cathode after 1720h at 800oC. Aluminization of metallic interconnect also proved to be chemically compatible with alkaline-earth silicate sealing glass. The details of interfacial reaction and microstructure development are discussed.

Chou, Y. S.; Stevenson, Jeffry W.; Choi, Jung-Pyung

2013-01-01T23:59:59.000Z

409

Long-Term Carbon Injection Field Test for 90% Mercury Removal for a PRB Unit and and Spray Dryer Fabric Filter  

SciTech Connect

The digital full text of this document is divided into parts. This part contains part of one of the document's six appendices.

Sjostrom, Sharon; Amrhein, Jerry

2009-04-30T23:59:59.000Z

410

PART I  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-AC02-09CH11466 DE-AC02-09CH11466 Section D i PART I SECTION D PACKAGING AND MARKING TABLE OF CONTENTS PAGE NO. D.1 - PACKAGING D-1 D.2 - MARKING D-1 Contract No. DE-AC02-09CH11466 Section D D-1 PART I SECTION D - PACKAGING AND MARKING D.1 - PACKAGING Preservation, packaging, and packing for shipment or mailing of all work delivered hereunder shall be in accordance with good commercial practice and adequate to ensure acceptance by common carrier and safe transportation at the most economical rates. D.2 - MARKING Each package, report or other deliverable shall be accompanied by a letter or other document which: (a) Identifies the contract number under which the item is being delivered. (b) Identifies the contract requirement or other instruction which requires the

411

Star Polymers Confined in a Nanoslit: A Simulation Test of Scaling and Self-Consistent Field Theories  

E-Print Network (OSTI)

The free energy cost of confining a star polymer where $f$ flexible polymer chains containing $N$ monomeric units are tethered to a central unit in a slit with two parallel repulsive walls a distance $D$ apart is considered, for good solvent conditions. Also the parallel and perpendicular components of the gyration radius of the star polymer, and the monomer density profile across the slit are obtained. Theoretical descriptions via Flory theory and scaling treatments are outlined, and compared to numerical self-consistent field calculations (applying the Scheutjens-Fleer lattice theory) and to Molecular Dynamics results for a bead-spring model. It is shown that Flory theory and self-consistent field (SCF) theory yield the correct scaling of the parallel linear dimension of the star with $N$, $f$ and $D$, but cannot be used for estimating the free energy cost reliably. We demonstrate that the same problem occurs already for the confinement of chains in cylindrical tubes. We also briefly discuss the problem of a free or grafted star polymer interacting with a single wall, and show that the dependence of confining force on the functionality of the star is different for a star confined in a nanoslit and a star interacting with a single wall, which is due to the absence of a symmetry plane in the latter case.

J. Paturej; A. Milchev; S. A. Egorov; K. Binder

2013-07-08T23:59:59.000Z

412

Near-field characterization of hydrogen and helium operation on the TFTR (Tokamak Fusion Test Reactor) diagnostic neutral beam  

DOE Green Energy (OSTI)

An Optical Multichannel Analyzer has been used to measure beam divergence and composition. This measurement is usually performed near the center of the neutralizer or beyond the magnet. In the past, these locations suffered difficult beam composition analysis and low light intensity, respectively. It has been determined that the light emission is relatively independent of neutralizer line density in the near field, allowing near-field measurements to overcome both difficulties. At optimum perveance, but under conditions of high gas throughput, the helium 1/e-divergence angle was measured to be 1.5{degree}. Further investigation found that the divergence decreased with gas throughput down to 1.25{degree}. Mimimum divergences for the full-, half-, and third-energy hydrogen components were 1.1{degree}, 1.2{degree}, and 1.4{degree}, respectively. Relative neutral hydrogen particle fluxes available for injection into TFTR are a function of perveance. At maximum perveance, the full-, half-, and third-energy atom fractions were 0.25 {plus minus} 0.04, 0.5 {plus minus} 0.04, and 0.25 {plus minus} 0.05, respectively. 10 refs., 5 figs.

Kamperschroer, J.H.; Schilling, G.; Roquemore, A.L.

1990-07-01T23:59:59.000Z

413

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL

2011-01-01T23:59:59.000Z

414

40-kW field test power plant modification and development. Monthly technical status report No. 13, September 16, 1978-October 15, 1978  

DOE Green Energy (OSTI)

The contract objective is to complete the design and development actions that upgrade the 40-kW fuel cell power plant to a configuration suitable for on-site demonstration testing. The modifications will improve operating capability, durability and maintenance interval and lead to reduced production costs. Equipment to recover and use the by-product heat of electric generation will be available on the power plant for field verification of on-site heat recovery. The 40-kW power plant will be compatible with the power characteristics required for conventional heat pumps and conventional 60 Hz, 120/208 volts electrically operated equipment. Progress is reported. (WHK)

Not Available

1978-11-10T23:59:59.000Z

415

SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 7. Science Applications, Incorporated field test facility preliminary design  

DOE Green Energy (OSTI)

This report contains the preliminary design of an SCEAS Engineering Test Facility (ETF). The ETF is a 3600 m/sup 2/ fluid roof greenhouse with an inflated plastic film roof to maintain a clean environment for the fluid roof and to protect the inner glazing from hail and other small missiles. The objective of the design was the faithful scaling of the commercial facility to ensure that the ETF results could be extrapolated to a commercial facility of any size. Therefore, all major features, including the photovoltaic power system, an integral water desalination system and even the basic structural module have been retained. The design is described in substantial detail in the body of this report, with appendices giving the drawings and specifications.

Not Available

1985-01-01T23:59:59.000Z

416

First test of a power-pulsed electronics system on a GRPC detector in a 3-Tesla magnetic field  

E-Print Network (OSTI)

An important technological step towards the realization of an ultra-granular hadronic calorimeter to be used in the future International Linear Collider (ILC) experiments has been made. A 33X50 cm2 GRPC detector equipped with a power-pulsed electronics board offering a 1cm2 lateral segmentation was successfully tested in a 3-Tesla magnet operating at the H2 beam line of the CERN SPS. An important reduction of power consumption with no deterioration of the detector performance is obtained when the power-pulsing mode is applied. This important result shows that ultra-granular calorimeters for ILC experiments are not only an attractive but also a realistic option.

L. Caponetto; C. Combaret; C. de la Taille; F. Dulucq; R. Kieffer; I. Laktineh; N. Lumb; L. Mirabito; N. Seguin-Moreau

2011-11-23T23:59:59.000Z

417

Hot dry rock energy extraction field test: 75 days of operation of a prototype reservoir at Fenton Hill, Segment 2 of Phase I  

DOE Green Energy (OSTI)

Results from the first extensive field test of a man-made hot dry rock (HDR) geothermal reservoir in low permeability crystalline rock are presented. A reservoir with a small heat transfer area was utilized to study the characteristics of a prototype HDR system over a shortened lifetime. The resulting accelerated thermal drawdown was modeled to yield an effective area of 8000 m/sup 2/. In addition to the thermal effects, this test provided an opportunity to examine equipment operation, water permeation into the formation, geochemical interaction between the circulating fluid and the rock and flow characteristics including impedance and residence time distributions. Continuous monitoring for induced seismic effects showed that no activity to a Richter threshold of -1.0 was detected during the 75-day experiment.

Tester, J.W.; Albright, J.N. (eds.)

1979-04-01T23:59:59.000Z

418

Comparisons of field performance to closed-door test T ABLE 1 ratings indicate the laboratory procedure is a valid indica-Design Options to Improve the Energy Efficiency of a  

E-Print Network (OSTI)

#12;#12;Comparisons of field performance to closed-door test T ABLE 1 ratings indicate commercially manufactured refrigerators were u~ as laboratory test beds, a testing sequence of ..as PHASE I cabinets with an optimized Option 2 Evaporator/condenser size, surface r~frige~tion circuit or cvcle were

Oak Ridge National Laboratory

419

Comparing State-Space Multivariable Controls to Multi-SISO Controls for Load Reduction of Drivetrain-Coupled Modes on Wind Turbines Through Field-Testing  

Science Conference Proceedings (OSTI)

In this paper we present results from an ongoing controller comparison study at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC). The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiple single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.

Fleming, P. A.; Van Wingerden, J. W.; Wright, A. D.

2012-01-01T23:59:59.000Z

420

Field Test and Performance Verification: Integrated Active Desiccant Rooftop Hybrid System Installed in a School - Final Report: Phase 4A  

SciTech Connect

This report summarizes the results of a field verification pilot site investigation that involved the installation of a hybrid integrated active desiccant/vapor-compression rooftop heating, ventilation, and air-conditioning (HVAC) unit at an elementary school in the Atlanta Georgia area. For years, the school had experienced serious humidity and indoor air quality (IAQ) problems that had resulted in occupant complaints and microbial (mold) remediation. The outdoor air louvers of the original HVAC units had been closed in an attempt to improve humidity control within the space. The existing vapor compression variable air volume system was replaced by the integrated active desiccant rooftop (IADR) system that was described in detail in an Oak Ridge National Laboratory (ORNL) report published in 2004 (Fischer and Sand 2004). The IADR system and all space conditions have been monitored remotely for more than a year. The hybrid system was able to maintain both the space temperature and humidity as desired while delivering the outdoor air ventilation rate required by American Society of Heating, Refrigerating and Air-Conditioning Engineers Standard 62. The performance level of the IADR unit and the overall system energy efficiency was measured and found to be very high. A comprehensive IAQ investigation was completed by the Georgia Tech Research Institute before and after the system retrofit. Before-and-after data resulting from this investigation confirmed a significant improvement in IAQ, humidity control, and occupant comfort. These observations were reported by building occupants and are echoed in a letter to ORNL from the school district energy manager. The IADR system was easily retrofitted in place of the original rooftop system using a custom curb adapter. All work was completed in-house by the school's maintenance staff over one weekend. A subsequent cost analysis completed for the school district by the design engineer of record concluded that the IADR system being investigated was actually less expensive to install than other less-efficient options, most of which were unable to deliver the required ventilation while maintaining the desired space humidity levels.

Fischer, J

2005-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "field testing part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High poloidal beta equilibria in the Tokamak Fusion Test Reactor limited by a natural inboard poloidal field null  

DOE Green Energy (OSTI)

Recent operation of the Tokamak Fusion Test Reactor (TFTR) (Plasma Phys. Controlled Nucl. Fusion Research {bold 1}, 51 (1986)) has produced plasma equilibria with values of {Lambda}{equivalent to}{beta}{sub {ital p} eq}+{ital l}{sub {ital i}}/2 as large as 7, {epsilon}{beta}{sub {ital p} dia}{equivalent to}2{mu}{sub 0}{epsilon}{l angle}{ital p}{sub {perpendicular}}{r angle}/{l angle}{l angle}{ital B}{sub {ital p}}{r angle}{r angle}{sup 2} as large as 1.6, and Troyon normalized diamagnetic beta (Plasma Phys. Controlled Fusion {bold 26}, 209 (1984); Phys. Lett. {bold 110A}, 29 (1985)), {beta}{sub {ital N}dia}{equivalent to}10{sup 8}{l angle}{beta}{sub {ital t}{perpendicular}}{r angle}{ital aB}{sub 0}/{ital I}{sub {ital p}} as large as 4.7. When {epsilon}{beta}{sub {ital p} dia}{approx gt}1.25, a separatrix entered the vacuum chamber, producing a naturally diverted discharge that was sustained for many energy confinement times, {tau}{sub {ital E}}. The largest values of {epsilon}{beta}{sub {ital p}} and plasma stored energy were obtained when the plasma current was ramped down prior to neutral beam injection. The measured peak ion and electron temperatures were as large as 24 and 8.5 keV, respectively. Plasma stored energy in excess of 2.5 MJ and {tau}{sub {ital E}} greater than 130 msec were obtained. Confinement times of greater than 3 times that expected from L-mode predictions have been achieved. The fusion power gain {ital Q}{sub DD} reached a value of 1.3{times}10{sup {minus}3} in a discharge with {ital I}{sub {ital p}}=1 MA and {epsilon}{beta}{sub {ital p} dia}=0.85. A large, sustai