Powered by Deep Web Technologies
Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Small Scale Field Test Demonstrating CO2 sequestration in Arbuckle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Field Test Demonstrating CO 2 sequestration in Arbuckle Saline Aquifer and by CO 2 -EOR at Wellington field, Sumner County, Kansas -- W. Lynn Watney and Jason Rush Kansas...

2

DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Demonstrates Viability of Simultaneous CO2 Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs June 28, 2010 - 1:00pm Addthis Washington, DC - A field test conducted by a U.S. Department of Energy (DOE) team of regional partners has demonstrated that using carbon dioxide (CO2) in an enhanced oil recovery method dubbed "huff-and-puff" can help assess the carbon sequestration potential of geologic formations while tapping America's valuable oil resources. The Plains CO2 Reduction (PCOR) Partnership, one of seven in DOE's Regional Carbon Sequestration Partnership program, collaborated with Eagle Operating Inc. to complete the test in the Northwest McGregor Oil Field in Williams

3

Field Test to Demonstrate Real-Time In-Situ Detection of Volatile Organic Compounds  

E-Print Network (OSTI)

1 Field Test to Demonstrate Real-Time In-Situ Detection of Volatile Organic Compounds Hazmat Spill Center, Nevada Test Site September 19-25, 2001 Clifford K. Ho Sandia National Laboratories Albuquerque-filled 55- gallon drum at the Hazmat Spill Center at the Nevada Test Site. Background and Objectives Tens

Ho, Cliff

4

Biomass Cofiring: Field Test Results: Summary of Results at the Bailly and Seward Demonstrations  

Science Conference Proceedings (OSTI)

Cofiring, the simultaneous combustion of two dissimilar fuels in a given boiler, is a technology being considered for low-cost, low-risk use of biomass by electricity generating companies. The process of commercializing cofiring has proceeded from engineering studies through parametric tests to longer-term demonstrations. This report summarizes the results of those demonstrations to date, placing them in the context of the previous test programs.

1999-11-01T23:59:59.000Z

5

Test and Evaluation of a 6 kW Microgenerator Aisin G-60 Phase-1 Field Demonstration  

Science Conference Proceedings (OSTI)

This case study documents the demonstration experiences and lessons learned from a 6 kW microgenerator in a field demonstration operating on natural gas at an end-user site. The microgenerator uses a novel internal combustion engine and generator packaged for combined heat and power applications. The test and evaluation case study is one of several distributed generation project case studies under research by EPRI's Distributed Energy Resources Program. This case study was designed to help utilities and ...

2004-12-27T23:59:59.000Z

6

Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report  

DOE Green Energy (OSTI)

This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

Greenberg, S.; Cooley, C.

2005-01-01T23:59:59.000Z

7

Small Scale Field Test Demonstrating CO2 sequestration in Arbuckle Saline Aquifer and by CO2-EOR at Wellington field, Sumner County, Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Field Test Demonstrating CO Scale Field Test Demonstrating CO 2 sequestration in Arbuckle Saline Aquifer and by CO 2 -EOR at Wellington field, Sumner County, Kansas -- W. Lynn Watney and Jason Rush Kansas Geological Survey Lawrence, KS 66047 Regional Carbon Sequestration Partnerships Annual Review Meeting October 15-17, 2011 Pittsburgh, PA Funding Opportunity Number: DE-FOA-0000441 Contract #FE0006821 $11,484,499 DOE $3.236 million cost share KANSAS STATE UNIVERSITY 12/2/2011 1 Outline * Background * The Participants * The Plan * Leveraging Current Research at Wellington Field * Inject, Monitor, Verification, and Accounting of CO 2 2 ORGANIZATION CHART Kansas Geological Survey Name Project Job Title Primary Responsibility Lynn Watney Project Leader, Joint Principal Investigator

8

Test and Demonstration Assets of New Mexico  

Science Conference Proceedings (OSTI)

This document was developed by the Arrowhead Center of New Mexico State University as part of the National Security Preparedness Project (NSPP), funded by a DOE/NNSA grant. The NSPP has three primary components: business incubation, workforce development, and technology demonstration and validation. The document contains a survey of test and demonstration assets in New Mexico available for external users such as small businesses with security technologies under development. Demonstration and validation of national security technologies created by incubator sources, as well as other sources, are critical phases of technology development. The NSPP will support the utilization of an integrated demonstration and validation environment.

None

2008-03-31T23:59:59.000Z

9

TYPES OF FIELD TESTING  

NLE Websites -- All DOE Office Websites (Extended Search)

TYPES OF FIELD TESTING Convincing proof of energy savings and performance in a specific building and occupant context If direct proof of savings is desired, the only feasible...

10

Joint demilitarization technology test and demonstration capabilities  

SciTech Connect

This paper provides a review of the two components of the Nevada Test Site (NTS) Demilitarization test and demonstration capabilities. Part one is a general discussion of the NTS and the many assets it offers to the Demilitarization community; and more specifically, a discussion of the NTS Open Burn/Open Detonation (OB/OD) test facility. The NTS Joint Demilitarization Technology (JDT) OB/OD Test Chamber is located at the X Tunnel facility which as been designed and constructed to contain and characterize the effluent from demilitarization activities. X Tunnel consists of a large test chamber capable of withstanding a 3,000 pound net explosive weight detonation or up to a static pressure of well over 100 pounds per square inch. The test chamber is fully instrumented to measure and collect gas and particulate samples as well as to monitor shock phenomenology. Part two is a discussion of the NTS Tactical Demilitarization Demonstration (TaDD) program currently planned for the Area 11 Technical Facility. This project will produce equipment that can dispose of unneeded tactical military rocket motors in a safe, environmentally-friendly, and timely fashion. The initial effort is the development of a demilitarization system for the disposal of excess Shillelagh missiles at the Anniston Army Depot. The prototype for this system will be assembled at the Area 11 facility taking advantage of the inherent infrastructure and proximity to numerous existing structures. Upon completion of testing, the prototype facility will become the test bed for future tactical disposal development activities. It is expected that the research and development techniques, prototype testing and production processes, and expertise developed during the Shillelagh disposal program will be applicable to follow-on tactical missile disposal programs, but with significant cost and schedule advantages.

Williams, S.M. [Bechtel Nevada, Inc., Las Vegas, NV (United States); Byrd, E.R. [Lockheed Martin Missiles and Space (United States); Decker, M.W. [Naval Air Warfare Center, Warminster, PA (United States)

1998-12-31T23:59:59.000Z

11

Analysis Driven Field Testing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ANALYSIS DRIVEN FIELD TESTING ANALYSIS DRIVEN FIELD TESTING Greg Barker, MEP Paul Norton, NERD C.E. Hancock, MEP Building America Residential Energy Efficiency Stakeholder Meeting Austin, TX March 2, 2012 MODELING DRIVEN FIELD TESTING Greg Barker, MEP Paul Norton, NERD C.E. Hancock, MEP Building America Residential Energy Efficiency Stakeholder Meeting Austin, TX March 2, 2012 MODELING DRIVEN MEASUREMENTS Greg Barker, MEP Paul Norton, NERD C.E. Hancock, MEP Building America Residential Energy Efficiency Stakeholder Meeting Austin, TX March 2, 2012 Building America Residential Energy Efficiency Stakeholder Meeting Austin, TX March 2, 2012 "Modeling without measuring lacks credibility. Measuring without modeling lacks generality." Ed Hancock

12

Tidd PFBC Demonstration Plant operation and testing  

Science Conference Proceedings (OSTI)

The Tidd PFBC Demonstration Plant, located in Brilliant, Ohio, is in its third year of operation and testing. The plant has achieved many of its original performance goals and test objectives; however, current emissions standards and the projected performance of competing technologies have caused a reassessment of the program goals. This paper provides a review of PFBC technology and discusses project goals and milestones achieved. Emphasis is placed on environmental performance and on projected modifications to be undertaken to improve sulfur capture and reduce calcium/sulfur molar ratio. A large-scale hot gas clean up demonstration is also in progress at Tidd. The demonstration has been providing information on ceramic barrier filter technology since its commissioning in October 1992. The Tidd Plant has met both its performance guarantees for emissions and its environmental permit limits. However, the tightening of government environmental standards and the projected performance of competing technologies have required a reassessment of the goals of AEP`s PFBC program. Efforts are focusing on achieving better environmental performance, particularly with respect to sulfur capture and sorbent utilization.

Marrocco, M.; Hafer, D.R.

1993-05-01T23:59:59.000Z

13

Tidd PFBC Demonstration Plant operation and testing  

Science Conference Proceedings (OSTI)

The Tidd PFBC Demonstration Plant, located in Brilliant, Ohio, is in its third year of operation and testing. The plant has achieved many of its original performance goals and test objectives; however, current emissions standards and the projected performance of competing technologies have caused a reassessment of the program goals. This paper provides a review of PFBC technology and discusses project goals and milestones achieved. Emphasis is placed on environmental performance and on projected modifications to be undertaken to improve sulfur capture and reduce calcium/sulfur molar ratio. A large-scale hot gas clean up demonstration is also in progress at Tidd. The demonstration has been providing information on ceramic barrier filter technology since its commissioning in October 1992. The Tidd Plant has met both its performance guarantees for emissions and its environmental permit limits. However, the tightening of government environmental standards and the projected performance of competing technologies have required a reassessment of the goals of AEP's PFBC program. Efforts are focusing on achieving better environmental performance, particularly with respect to sulfur capture and sorbent utilization.

Marrocco, M.; Hafer, D.R.

1993-01-01T23:59:59.000Z

14

NETL: Mercury Emissions Control Technologies - Field Demonstration of  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Demonstration of Enhanced Sorbent Injection for Mercury Control Field Demonstration of Enhanced Sorbent Injection for Mercury Control ALSTOM will test their proprietary activated carbon-based sorbent which promotes oxidation and capture of mercury via preparation with chemical additives. ALSTOM proposes to test the sorbents at three utilities burning different coals, PacificCorp’s Dave Johnston (PRB), Basin Electric’s Leland Olds (North Dakota Lignite) and Reliant Energy’s Portland Unit (bituminous). Other project partners include Energy and Environmental Research Center, North Dakota Industrial Commission and Minnkota Power who will be a non-host utility participant. Upon completion of this two year project, ALSTOM will demonstrate the capability of controlling mercury emissions from units equipped with electrostatic precipitators, a configuration representing approximately 75% of the existing units.

15

1994 Fernald field characterization demonstration program data report  

Science Conference Proceedings (OSTI)

The 1994 Fernald field characterization demonstration program, hosted by Fernald Environmental Management Project, was established to investigate technologies that are applicable to the characterization and remediation of soils contaminated with uranium. An important part of this effort was evaluating field-screening tools potentially capable of acquiring high-resolution information on uranium contamination distribution in surface soils. Further-more, the information needed to be obtained in a cost- and time-efficient manner. Seven advanced field-screening technologies were demonstrated at a uranium-contaminated site at Fernald, located 29 kilometers northwest of Cincinnati, Ohio. The seven technologies tested were: (1) alpha-track detectors, (2) a high-energy beta scintillometer, (3) electret ionization chambers, (4) and (5) two variants of gamma-ray spectrometry, (6) laser ablation-inductively coupled plasma-atomic emission spectroscopy, and (7) long-range alpha detection. The goals of this field demonstration were to evaluate the capabilities of the detectors and to demonstrate their utility within the US Department of Energy`s Environmental Restoration Program. Identical field studies were conducted using four industry-standard characterization tools: (1) a sodium-iodide scintillometer, (2) a low-energy FIDLER scintillometer, (3) a field-portable x-ray fluorescence detector, and (4) standard soil sampling coupled with laboratory analysis. Another important aspect of this program was the application of a cost/risk decision model to guide characterization of the site. This document is a compilation of raw data submitted by the technologies and converted total uranium data from the 1994 Fernald field characterization demonstration.

Rautman, C.A. [Sandia National Labs., Albuquerque, NM (United States); Cromer, M.V. [Spectra Research Inst., Albuquerque, NM (United States); Newman, G.C. [GRAM, Inc., Albuquerque, NM (United States); Beiso, D.A. [Los Alamos Technical Associates, Inc., NM (United States)

1995-12-01T23:59:59.000Z

16

Japanese refrigerators field testing  

SciTech Connect

Residential refrigerators consume the equivalent of 1700 megawatts (MW) of baseload power in the Bonneville Power Administration (BPA) service area. Japanese manufacturers have designed refrigerator units that appear more energy efficient than some currently available American models. This report summarizes preliminary findings from field testing of 12 refrigerators of Japanese manufacture to evaluate annual kilowatt hour (kWh) use during actual operation. The units have also undergone laboratory testing sponsored by BPA at ETL Testing Laboratories, Inc. in Cortland, New York. A final report of the project -- due at the end of 1989 -- will correlate in detail the results of field and laboratory tests in comparison to performance ratings determined by the manufacturer.

Lou, A.T.

1989-03-01T23:59:59.000Z

17

Japanese Refrigerators Field Testing.  

SciTech Connect

Residential refrigerators consume the equivalent of 1700 megawatts (MW) of baseload power in the Bonneville Power Administration (BPA) service area. Japanese manufacturers have designed refrigerator units that appear more energy efficient than some currently available American models. This report summarizes preliminary findings from field testing of 12 refrigerators of Japanese manufacture to evaluate annual kilowatt hour (kWh) use during actual operation. The units have also undergone laboratory testing sponsored by BPA at ETL Testing Laboratories, Inc. in Cortland, New York. A final report of the project -- due at the end of 1989 -- will correlate in detail the results of field and laboratory tests in comparison to performance ratings determined by the manufacturer.

Lou, Albert T.

1989-03-01T23:59:59.000Z

18

Field Demonstration of Automated Demand Response for Both Winter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings in the Pacific Northwest Title Field Demonstration of Automated Demand Response for...

19

Biofuel Co-Firing - Field Demonstration Results  

Science Conference Proceedings (OSTI)

Biofuel is a renewable fuel that is derived from biomass. A broad category of biofuels was investigated to identify candidate fuels that would reduce the local dependence on fossil fuels, particularly low-sulfur fuel oil (LSFO). The biofuel selected for evaluation was crude palm oil grown in Malaysia under rigorous sustainability standards established by the Roundtable for Sustainability of Palm Oil. The evaluation culminated in a full-scale demonstration conducted by Hawaiian Electric Company and the El...

2011-10-03T23:59:59.000Z

20

New Technology Demonstration Program - Results of an Attempted Field Test of Full-Spectrum Polarized Lighting in a Mail Processing/Office Space  

SciTech Connect

An assessment of the potential energy savings associated with the use of full-spectrum polarized lighting in a work space was initiated as part of the Department of Energy's (DOE) Federal Energy Management Program (FEMP) New Technology Demonstration Program (NTDP) in 1997. This project was intended to provide information on the effectiveness and application of this technology that could help federal energy managers and other interested individuals determine whether this technology had benefits for their occupied spaces. The use of an actual mail processing/office work area provided the capability of evaluating the technologies effectiveness in the real world.

Richman, Eric E.

2001-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

New Technology Demonstration Program - Results of an Attempted Field Test of Multi-Layer Light Polarizing Panels in an Office Space  

SciTech Connect

An assessment of the potential energy savings associated with the use of multi-layer light polarizing panels in an office space was initiated as part of the Department of Energy's (DOE) Federal Energy Management Program (FEMP) New Technology Demonstration Program (NTDP) in 1997. This project was intended to provide information on the effectiveness and application of this technology that could help federal energy managers and other interested individuals determine whether this technology had benefits for their occupied spaces. The use of an actual working office area provided the capability of evaluating the technology's effectiveness in the real world.

Richman, Eric E.

2001-06-14T23:59:59.000Z

22

New Technology Demonstration Program - Results of an Attempted Field Test of Full-Spectrum Polarized Lighting in a Mail Processing/Office Space  

SciTech Connect

An assessment of the potential energy savings associated with the use of full-spectrum polarized lighting in a work space was initiated as part of the Department of Energy's (DOE) Federal Energy Management Program (FEMP) New Technology Demonstration Program (NTDP) in 1997. This project was intended to provide information on the effectiveness and application of this technology that could help federal energy managers and other interested individuals determine whether this technology had benefits for their occupied spaces. The use of an actual mail processing/office work area provided the capability of evaluating the technologies effectiveness in the real world.

Richman, Eric E.

2001-06-14T23:59:59.000Z

23

Biodiesel Co-Firing--Field Demonstration Results  

Science Conference Proceedings (OSTI)

Biodiesel is a renewable fuel produced through the transesterification process. The fuel is typically produced from soybean oil and is used in diesel engines as a diesel alternative/supplement. Due to potential emission and greenhouse gas benefits, New York Power Authority (NYPA) and EPRI conducted full-scale tests of biodiesel / 6 oil blends at NYPA's Charles Poletti Station, Unit 6 boiler.

2007-04-06T23:59:59.000Z

24

Property:Did The Test Results Demonstrate Projected Performance...  

Open Energy Info (EERE)

Did The Test Results Demonstrate Projected Performance? Jump to: navigation, search Property Name Did The Test Results Demonstrate Projected Performance? Property Type Text...

25

Test plan for demonstration of Rapid Transuranic Monitoring Laboratory  

Science Conference Proceedings (OSTI)

This plan describes tests to demonstrate the capability of the Rapid Transuranic Monitoring Laboratory (RTML) to monitor airborne alpha-emitting radionuclides and analyze soil, smear, and filter samples for alpha- and gamma-emitting radionuclides under field conditions. The RTML will be tested during June 1993 at a site adjacent to the Cold Test Pit at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. Measurement systems installed in the RTML that will be demonstrated include two large-area ionization chamber alpha spectrometers, an x-ray/gamma-ray spectrometer, and four alpha continuous air monitors. Test objectives, requirements for data quality, experimental apparatus and procedures, and safety and logistics issues are described.

McIsaac, C.V.; Sill, C.W.; Gehrke, R.J.; Killian, E.W.; Watts, K.D.

1993-06-01T23:59:59.000Z

26

Demonstration and Field Test of airjacket technology  

SciTech Connect

There are approximately 600,000 paint spray workers in the United States applying paints and coatings with some type of sprayer. Approximately 5% of these spray workers are in the South Coast Air Quality Management District (SCAQMD). These spray workers apply paints or other coatings to products such as bridges, houses, automobiles, wood and metal furniture, and other consumer and industrial products. The materials being sprayed include exterior and interior paints, lacquers, primers, shellacs, stains and varnishes. Our experimental findings indicate that the Airjacket does not significantly reduce the exposure of spray workers to paint fumes during HVLP spraying. The difference between ideal and actual spray paint procedures influence the mechanisms driving spray workers exposures to paint fumes and influence the viability of the Airjacket technology. In the ideal procedure, for which the Airjacket was conceived, the spray worker's exposure to paint fumes is due largely to the formation of a recirculating eddy between the spray worker and the object painted. The Airjacket ejects air to diminish and ventilate this eddy. In actual practice, exposures may result largely from directing paint upstream and from the bounce-back of the air/paint jet of the object being painted. The Airjacket, would not be expected to dramatically reduce exposures to paint fumes when the paint is not directed downstream or when the bounce-back of paint on the object creates a cloud of paint aerosols around the spray worker.

Faulkner, D.; Fisk, W.J.; Gadgil, A.J.; Sullivan, D.P.

1998-06-01T23:59:59.000Z

27

Field demonstration of the ICE 250[trademark] Cleaning System  

SciTech Connect

The ICE 250[trademark] Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moistur2048s generated, thereby reducing cleanup and disposal costs.

Johnston, J.L.; Jackson, L.M.

1999-10-05T23:59:59.000Z

28

Field demonstration of the ICE 250{trademark} Cleaning System  

SciTech Connect

The ICE 250{trademark} Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moisture was generated, thereby reducing cleanup and disposal costs.

Johnston, J.L.; Jackson, L.M.

1999-10-05T23:59:59.000Z

29

Field demonstrations of communication systems for distribution automation. Final report  

Science Conference Proceedings (OSTI)

This report summarizes the results of a field demonstration of the use of UHF radio links in the 950-MHz portion of the spectrum as a communication medium for performing automated electric power distribution. Prototype radiohardware was combined with logic and control equipment developed by Westinghouse for power-line carrier automated distribution systems. Transceivers were used in the remote interactive terminals. 3dbm transceivers were used in the Central Base Station and the three Primary Radio Terminals, which functioned as system repeaters. Pre-installation field-strength measurements were made along selected radials and in spot locations to characterize the anticipated field-strength contours that would be encountered during the operational testing. A propagation model was developed that accurately predicted the conditions actually recorded. Post-installation measurements were used to further calibrate the computer model. The resulting propagation analysis proved exceedingly effective in characterizing a UHF radio system for digital communication. Data collected during a 10-month operational period supports the conclusion that 950-MHz radio is a viable communications medium for performing utility automated distribution functions. The system consists of 250 remote terminals, each interrogated from three sites. This provides 750 paths for communication performance evaluation.The reliability of the prototype radio units used in this project fell below that predicted through MTBF analysis, and did not meet utility reliability standards. The logic and control circuitry and central station required very little maintenance during the test.

Not Available

1981-06-01T23:59:59.000Z

30

Reservoir class field demonstration. Publication and presentation bibliography  

SciTech Connect

The Reservoir Class Field Demonstration Program was initiated in FY92 in response to rapidly declining domestic production and the realization that huge volumes of oil are being abandoned in reservoirs because of uneconomic production techniques. This program is just one of the critical elements of the National Oil Program necessary to move Improved Oil Recovery (IOR) technology from the conceptual stage through research, pilot scale field experiments, and full-scale field demonstrations to industry acceptance and commercialization. Both the successful results and failures of the field demonstrations will provide focus to concurrent research programs. Elements of the field demonstrations that are suitable for broad industry application are being communicated to the industry through the oil program`s technology transfer effort. As part of the technology transfer effort, this listing of publications and presentations by the project operators has been compiled by the US Department of energy`s (DOE) National Petroleum Technology Office (NPTO). The bibliography contains 240 citations for publications and a similar number of citations for presentations.

NONE

1997-12-01T23:59:59.000Z

31

Field Demonstration of the Thermostone III Electric Thermal Storage Furnace  

Science Conference Proceedings (OSTI)

Heat storage furnaces use low-cost, off-peak electricity to satisfy all of a customer's heating needs. This field demonstration showed that prototype heat storage furnaces maintained comfort under diverse climate conditions, usage patterns, and lengths of off-peak periods. In addition, these furnaces effectively shifted the load to off-peak hours.

1992-04-01T23:59:59.000Z

32

Production Hydraulic Packer Field Test  

Science Conference Proceedings (OSTI)

In October 1999, the Rocky Mountain Oilfield Testing Center and Halliburton Energy Services cooperated on a field test of Halliburton's new Production Hydraulic Packer technology on Well 46-TPX-10 at Naval Petroleum Reserve No. 3 near Casper, WY. Performance of the packer was evaluated in set and unset operations. The packer's ability to seal the annulus between the casing and tubing was hydraulically tested and the results were recorded.

Schneller, Tricia; Salas, Jose

2000-06-30T23:59:59.000Z

33

Spent nuclear fuel storage -- Performance tests and demonstrations  

SciTech Connect

This report summarizes the results of heat transfer and shielding performance tests and demonstrations conducted from 1983 through 1992 by or in cooperation with the US Department of Energy (DOE), Office of Commercial Radioactive Waste Management (OCRWM). The performance tests consisted of 6 to 14 runs involving one or two loadings, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. A description of the test plan, spent fuel load patterns, results from temperature and dose rate measurements, and fuel integrity evaluations are contained within the report.

McKinnon, M.A.; DeLoach, V.A.

1993-04-01T23:59:59.000Z

34

Performance demonstration tests for eddy current inspection of steam generator tubing  

SciTech Connect

This report describes the methodology and results for development of performance demonstration tests for eddy current (ET) inspection of steam generator tubes. Statistical test design principles were used to develop the performance demonstration tests. Thresholds on ET system inspection performance were selected to ensure that field inspection systems would have a high probability of detecting and and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented in detail. Statistical test design calculations for probability of detection and flaw sizing tests are described. A recommended performance demonstration test based on the design calculations is presented. A computer program for grading the probability of detection portion of the performance demonstration test is given.

Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

1996-05-01T23:59:59.000Z

35

Trip Report-Produced-Water Field Testing  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

Sullivan, Enid J. [Los Alamos National Laboratory

2012-05-25T23:59:59.000Z

36

Demonstration of Black Start Ancillary Service Certification Testing  

Science Conference Proceedings (OSTI)

This is a discussion of Black Start Tests conducted in April 1999 which then served as a demonstration project for certification of black start capability. This work is a companion effort of the EPRI Measurement of Ancillary Services from Power Plants project. Several of the summary, introductory and background paragraphs of the final report (Ref.1) for that project are reproduced here as a convenience to the reader.

1999-12-21T23:59:59.000Z

37

Silo 3 Vacuum Wand Demonstration Test Final Report  

Science Conference Proceedings (OSTI)

Silo 3, a freestanding, pre-stressed concrete, domed cylindrical tank, located at the Fernald Closure Project near Cincinnati, Ohio, contains approximately 5,100 cubic yards of metal oxide waste generated from Fernald operations that extracted uranium from ore material. The baseline for the Silo 3 Project is to remove a portion of this material from the silo pneumatically by inserting vacuum retrieval wands and/or hoses in existing manways on the silo dome. After the loose material has been removed by the pneumatic system, the project intends to cut an opening in the silo wall and use a mechanical excavator to complete removal of the remaining material, including possible combination with pneumatic retrieval. Fluor Fernald previously requested that the Department of Energy Environmental Management Office of Science and Technology provide a Technical Assistance Team to review this approach. One of the key recommendations made by this team was to assess the wand operability, effectiveness, reliability, and safety in a mock-up test. A team was convened to develop the test plan, build the demonstration test loop, and perform the tests. The tests focused primarily on the operability of the system, and to a significantly lesser extent process performance. This report documents the results for the testing completed in April 2003. Based upon the testing performed, the team identified several key issues to be incorporated into the design and operation of the retrieval system.

Steve Birrer

2003-06-01T23:59:59.000Z

38

Nuclear waste repository transparency technology test bed demonstrations at WIPP  

SciTech Connect

Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

2000-01-27T23:59:59.000Z

39

Forrestal Building Lighting Retrofit Second Live Test Demonstration (LTD)  

SciTech Connect

This report describes and summarizes the Forrestal Building Lighting Retrofit Live Test demonstration (LTD) performed by Pacific Northwest Laboratory (PNL) in Room 5E-080 of the DOE Forrestal Building in Washington, D.C. The purpose of the LTD was to evaluate proposed lighting retrofits for compliance with the requirements laid out in the request for proposal (RFP) for the Shared Energy Savings (SES) Lighting Retrofit Project for the Forrestal Building, Washington, D.C. Testing was conducted from March 9 through March 18, 1992, and again on August 3 through August 6, 1992. Four contractors were initially tested in March. Then, two contractors were retested in August due to changes in the rebate schedule for electronic ballasts being offered by the Potomac Electric Power Company (PEPCO), the utility servicing the Forrestal Building. The two contractors tested in March were retested with different ballasts, tubes, and reflectors. The results from these new tests are reported here and compared with those from the earlier tests.

Halverson, M.A.; Schmelzer, J.R.; Parker, G.B.

1993-02-01T23:59:59.000Z

40

A superwindow field demonstration program in northwest Montana  

SciTech Connect

Of all building envelope elements, windows always have had the highest heat loss rates. However, recent advances in window technologies such as low-emissivity (low-E) coatings and low-conductivity gas fillings have begun to change the status of windows in the building energy equation, raising the average R-value (resistance to heat flow) from 2 to 4 h-ft{sup 2}-{degree}F/Btu. Building on this trend and using a novel combination of low-E coatings, gas-fills, and three glazing layers, the authors developed a design concept for R-6 to R-10 super'' windows. Three major window manufacturers produced prototype superwindows based on this design for testing and demonstration in three utility-sponsored and -monitored energy-conserving homes in northwestern Montana. This paper discusses the design and tested performance of these three windows and identifies areas requiring further research if these window concepts are to be successfully developed for mass markets. 11 refs., 3 figs., 3 tabs.

Arasteh, D.; Selkowitz, S.

1989-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

RFID TECHNOLOGY FOR AVI: FIELD DEMONSTRATION OF A WIRELESS SOLAR POWERED E-ZPASS1  

E-Print Network (OSTI)

- 1 - RFID TECHNOLOGY FOR AVI: FIELD DEMONSTRATION OF A WIRELESS SOLAR POWERED E-ZPASS®1 TAG READER solar powered E-ZPass tag readers were deployed and tested at two locations in upstate New York). EQUIPMENT AND TECHNOLOGY The wireless, solar powered E-ZPass tag readers were developed and deployed by RPI

Mitchell, John E.

42

Reservoir description through pulse testing in a mature field  

SciTech Connect

Pulse testing was used in the Fortescue field to clarify reservoir geometries and fluid communication pathways. The high communication levels demonstrated in the test data required a nonstandard analysis of the pressure responses. In addition, proper attention to test planning, data acquisition, and data processing allowed valuable insights into reservoir limits. Most of the structural implications derived from the pulse tests have been supported subsequently by a recent 3D seismic survey of the area. The results and insights gained from these tests are being incorporated into a full-field simulation model of the Fortescue field, which is an integral part of a continuing depletion field study.

Braisted, D.M.; Spengler, R.M. (Esso Australia Ltd., Sydney (Australia)); Youie, R.A.

1993-06-01T23:59:59.000Z

43

ORNL/IAT ARMATURE DIAGNOSTICS DEMONSTRATION TEST REPORT  

SciTech Connect

This test established feasibility for 'on the fly' temperature measurements of rail gun projectiles. In addition, an approach for projectile velocity measurement was also demonstrated. Insight was gained into other useful optical and fiberoptic diagnostic approaches. Instantaneous diagnostics could be critical for achieving further improvements in rail gun operation. They have the potential to enable design enhancements by providing information on the state of the armature and its relationship to the rail as it proceeds down the bore. To that end, the following was accomplished: (1) Optical fibers successfully delivered optical excitation and returned reflective and fluorescence signals as desired. (2) Luminescent coatings survived multiple firings--approximately 40 shots. (3) Optical triggering effectively synchronized an ultraviolet laser pulse to strike the moving armature. (4) Velocity measurements were successfully accomplished by either triggering on the armature front edge using two red diode lasers or by using a single laser and grooved marks a known distance apart on the armature surface. (5) Velocities ranged from 19 to 88 m/s. (6) Temperatures of 30 to 92 C were measured with a precision of about 2 C-: (a) This precision was achieved with a single laser shot and (b) Motion effect was observed but a methodology adequately corrected the result. The correction was only about 2 C. (7) Adequate signal-to-noise and measurement precision was achieved with a single laser shot.

Allison, Stephen W [ORNL; Cates, Michael R [ORNL; Goedeke, Shawn [ORNL; Crawford, M. T. [Institute for Advanced Technology, Austin, TX; Ferraro, S. B. [Institute for Advanced Technology, Austin, TX; Akerman, A. [Diditco, Inc., Knoxville

2005-03-01T23:59:59.000Z

44

Nevada Test Site-Directed Research, Development, and Demonstration  

Science Conference Proceedings (OSTI)

The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R&D projects, as presented in this report.

Will Lewis, Compiler

2006-09-01T23:59:59.000Z

45

Preliminary Scaling Estimate for Select Small Scale Mixing Demonstration Tests  

SciTech Connect

The Hanford Site double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems.

Wells, Beric E.; Fort, James A.; Gauglitz, Phillip A.; Rector, David R.; Schonewill, Philip P.

2013-09-12T23:59:59.000Z

46

Plug-In 2009: PHEV Testing and Demonstration Activities Conducted...  

NLE Websites -- All DOE Office Websites (Extended Search)

ICE (internal combustion engine) vehicles - 7 models, 400,000 test miles * Full-size battery electric vehicles (BEVs) - 40 BEV models, 5+ million test miles * Urban electric...

47

Demonstration of a Last Field Wet ESP Conversion -- Installation Summary  

Science Conference Proceedings (OSTI)

This report describes the conversion of the electrostatic precipitator (ESP) on Unit 3 at Mirant's (formerly Potomac Electric Power Company's) Dickerson Generating Station to hybrid, dry-wet operation. This Tailored Collaboration project was undertaken to determine, at full scale, if the conversion of a single field of a conventional dry ESP to wet operation could significantly reduce particulate emissions and provide reliable operation with an acceptable level of maintenance. Specifically, the performan...

2001-02-27T23:59:59.000Z

48

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, and we continue, but have as yet been unsuccessful in our attempts, to negotiate with Atmos Energy for a final test of the original project demonstration unit. In the meantime, MTR has located an alternative testing opportunity and signed a contract with Towne Exploration for a demonstration plant in Rio Vista, CA, to be run through May 2007. Several commercial sales have resulted from the partnership with ABB, and total sales of nitrogen/natural gas membrane separation units are now approaching $2.6 million.

Kaaeid Lokhandwala

2006-09-30T23:59:59.000Z

49

NREL: Wind Research - Field Test Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Sites Field Test Sites Aerial view of the National Wind Technology Center with the Flatiron Mountains in the background NREL's NWTC has numerous test pads available to industry partners for testing wind turbines that range in size from a few hundred kilowatts to several megawatts. PIX 17711. Manufacturers can take advantage of NREL's numerous test pads and the technical expertise of its staff to field test prototypes of small and large wind turbines. Many of the small wind turbines tested at the NWTC are participants in NREL's Small Wind Turbine Independent Test Program. Small and mid-sized turbines field tested at the NWTC include those manufactured by Atlantic Orient Corporation, Bergey Windpower, Southwest Wind Power, Northern Power Systems, Endurance Wind Power Inc., Gaia-Wind Ltd.,

50

241-AZ-101 Mixer Pump Demonstration Test Gamma Cart Acceptance Test Procedure and Quality Test Plan (ATP and QTP)  

Science Conference Proceedings (OSTI)

Shop Test of the Gamma Cart System to be used in the AZ-101 Mixer Pump Demonstration Test. Tests hardware and software. This procedure involves testing the Instrumentation involved with the Gamma Cart System, local and remote, including: depth indicators, speed controls, interface to data acquisition software and the raising and lowering functions. This Procedure will be performed twice, once for each Gamma Cart System. This procedure does not test the accuracy of the data acquisition software.

WHITE, D.A.

2000-03-01T23:59:59.000Z

51

241-AZ-101 Mixer Pump Demonstration Test Gamma Cart Acceptance Test Procedure and Quality Test Plan (ATP and QTP)  

SciTech Connect

Shop test of the sludge mobilization cart system to be used in the AZ-101 Mixer Pump Demonstration Test Tests hardware and software. This procedure involves testing the Instrumentation involved with the Gamma Cart System, local and remote, including depth indicators, speed controls, interface to data acquisition software and the raising and lowering functions. This Procedure will be performed twice, once for each Gamma Cart System. This procedure does not test the accuracy of the data acquisition software.

WHITE, D.A.

2000-01-27T23:59:59.000Z

52

Square Butte HVDC modulation system field tests  

SciTech Connect

The authors describe field tests conducted at the Square Butte dc system to validate transfer functions of the digital model for dc current and voltage modulation control design. The field tests and digital model results confirm a dominant interarea mode of oscillation of 0.8 hz. Field tests also established spurious responses in rectifier and inverter frequency measurements which appear to be attributable to transducer distortion.

Grund, C.E. (General Electric Co., Schenectady, NY (USA)); Hauer, J.F. (BPA, Portland, OR (US)); Crane, L.P.; Carlson, D.L. (Minnesota Power and Light Co., Duluth, MN (USA)); Wright, S.E. (EPRI, Palo Alto, CA (US))

1990-01-01T23:59:59.000Z

53

Environmental Energy Technologies Division Thermal Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Field Tests Joseph H. Klems, LBNL DOE PEER Review San Francisco, CA April 20, 1999 Environmental Energy Technologies Division Current Work l Skylight Thermal Performance *...

54

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, which met with limited success. MTR then located an alternative testing opportunity and signed a contract with Towne Exploration in the third quarter of 2006, for a demonstration plant in Rio Vista, CA, to be run through May 2007. The demonstration for Towne has already resulted in the sale of two commercial skids to the company; the units will be delivered in mid-2007. Total sales of nitrogen/natural gas membrane separation units from the partnership with ABB are now approaching $4.0 million.

Kaaeid Lokhandwala

2007-03-31T23:59:59.000Z

55

Methanol fuel vehicle demonstration: Exhaust emission testing. Final report  

DOE Green Energy (OSTI)

Ford Motor Company converted four stock 1986 Ford Crown Victoria sedans to methanol flexible fuel vehicles (FFVs). During 143,108 operational miles from 1987 to 1990, the FFVs underwent more than 300 dynamometer driving tests to measure exhaust emissions, catalytic activity, fuel economy, acceleration, and driveability with gasoline and methanol blend fuels. Dynamometer driving tests included the Federal Test Procedure (FTP), the Highway Fuel Economy Test, and the New York City Cycle. Exhaust emission measurements included carbon dioxide, carbon monoxide (CO), nitrogen oxides (NO{sub x}), non- oxygenated hydrocarbons, organic material hydrocarbon equivalent (OMHCE), formaldehyde, and methanol. Catalytic activity was based on exhaust emissions data from active and inactive catalysts. OMHCE, CO, and NO{sub x} were usually lower with M85 (85% methanol, 15% gasoline) than with gasoline for both active and inactive catalysts when initial engine and catalyst temperatures were at or near normal operating temperatures. CO was higher with M85 than with gasoline when initial engine and catalyst temperatures were at or near ambient temperature. Formaldehyde and methanol were higher with M85. Active catalyst FTP OMHCE, CO, and NO{sub x} increased as vehicle mileage increased, but increased less with M85 than with gasoline. Energy based fuel economy remained almost constant with changes in fuel composition and vehicle mileage.

Hyde, J.D. [New York State Dept. of Environmental Conservation, Albany, NY (US). Automotive Emissions Lab.

1993-07-01T23:59:59.000Z

56

Engine Oil Aeration Test FIELD SERVICE SIMULATED  

E-Print Network (OSTI)

Engine Oil Aeration Test OBJECTIVE FIELD SERVICE SIMULATED SPECIFICATIONS The objective of this test is to determine the effectiveness of engine lubricating oils at minimizing air entrainment oil. TEST FIXTURE The test engine is a 1994 International Truck 7.3 liter V-8, four- stroke

Chapman, Clark R.

57

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, which met with limited success. However, a small test system was installed at a Twin Bottoms Energy well in Kentucky. This unit operated successfully for six months, and demonstrated the technology's reliability on a small scale. MTR then located an alternative test site with much larger gas flow rates and signed a contract with Towne Exploration in the third quarter of 2006, for a demonstration plant in Rio Vista, California, to be run through May 2007. The demonstration for Towne has already resulted in the sale of two commercial skids to the company; both units will be delivered by the end of 2007. Total sales of nitrogen/natural gas membrane separation units from the partnership with ABB are now approaching $4.0 million.

Kaaeid Lokhandwala

2007-03-31T23:59:59.000Z

58

Preliminary field demonstration of a fiber-optic TCE sensor. [Trichloroethylene (TCE)  

SciTech Connect

We have developed a differential-absorption fiber-optic sensor for use in groundwater and vadose zone monitoring of certain volatile organochlorines. The principle of detection is a quantitative, irreversible chemical reaction that forms visible light-absorbing products. The sensor has been evaluated against gas chromatographic (GC) standard measurements and has demonstrated accuracy and sensitivity sufficient for the environmental monitoring of trace levels of trichloroethylene (TCE) and chloroform. This sensor is currently under evaluation in monitoring well and vadose zone applications. In this paper, we describe the principles of the existing single measurement sensor technology and show preliminary field-test results. 3 refs., 8 figs.

Angel, S.M.; Langry, K.; Roe, J.; Colston, B.W. Jr.; Daley, P.F.; Milanovich, F.P.

1991-02-01T23:59:59.000Z

59

Paris Valley Combination Thermal Drive Pilot Demonstration Test. Final report  

SciTech Connect

A wet combustion pilot within the Paris Valley Field, Monterey County, California was initiated in January, 1975 in order to determine the technical and economic feasibility of this enhanced recovery process within a sandstone reservoir having a very viscous crude. Cyclic steaming was also performed and evaluated. Due to the low oil production rates, which were not capable of offsetting the high operating costs, the pilot was terminated during March, 1979. Eighteen producing wells, five air injectors, and one water disposal well were drilled. Primary oil production averaged less than 3 BOPD per well and initial water production ranged from 30 to 100 BWPD per well. Cumulative oil produced during the pilot was 120,623 STBO. Over 90% of the oil produced was due to response from cyclic steaming.

Shipley, R.G. Jr.; Meldau, R.F.; White, P.D.

1980-09-01T23:59:59.000Z

60

Field Test Best Practices (FTBP) Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Best Practices (FTBP) Update: Field Test Best Practices (FTBP) Update: It's here! And we need you! Lieko Earle Dane Christensen Bethany Sparn Building America Stakeholder Meeting 2012-03-02 NATIONAL RENEWABLE ENERGY LABORATORY Identified Field Testing Needs 2 * Difficult to find good general guidelines * Difficult to find examples of good field test plans * Difficult to find information on instrumentation options * No easily-accessible central repository for best practices knowledge * Field tests were taking longer and costing more $$ than initially estimated * We keep reinventing the wheel * Start from scratch each time we write a data-logger program? * Repeat each other's mistakes? NATIONAL RENEWABLE ENERGY LABORATORY What is the FTBP Resource?

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Embankment Loading on Saturated Coal Ash: Centrifuge Demonstration Test  

Science Conference Proceedings (OSTI)

When an embankment of coal combustion residuals or soil is built over a coal ash pond, pore water pressures can accumulate in the underlying saturated ash deposits and trigger a rapid slope failure. This report documents a scale model test completed to obtain data on the conditions that may lead to a slope failure. A 6.5-inch tall sand embankment was built on top of a 6-inch thick deposit of saturated fly ash. The strength of the fly ash was characterized using consolidated undrained triaxial ...

2013-12-10T23:59:59.000Z

62

Commercial-Scale Tests Demonstrate Secure CO2 Storage in Underground Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

CommerCial-SCale TeSTS DemonSTraTe CommerCial-SCale TeSTS DemonSTraTe SeCure Co 2 STorage in unDergrounD FormaTionS Two industry-led commercial-scale projects, the Sleipner Project off the coast of Norway and the Weyburn Project in Ontario, Canada, have enhanced the option of sequestering carbon dioxide (CO 2 ) in underground geologic formations. The United States Department of Energy (DOE) collaborated in both projects, primarily by providing rigorous monitoring of the injected CO 2 and studying CO 2 behavior to a greater extent than the project operators would have pursued on their own - creating a mutually beneficial public/private partnership. The most significant outcome from both field projects is that CO 2 leakage has not been observed, nor is there any indication that CO 2 will leak in the future.

63

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, and we are now negotiating with Atmos Energy for a final test of the project demonstration unit. Several commercial sales have also resulted from the partnership with ABB, and sales of nitrogen/natural gas membrane separation units now total $2.3 million.

Kaaeid Lokhandwala

2006-03-20T23:59:59.000Z

64

DOE Approves Field Test for Promising Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Approves Field Test for Promising Carbon Capture Technology Approves Field Test for Promising Carbon Capture Technology DOE Approves Field Test for Promising Carbon Capture Technology November 20, 2012 - 12:00pm Addthis Washington, DC - A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide (CO2) from a pulverized coal plant has been successfully demonstrated and received Department of Energy (DOE) approval to advance to a larger-scale field test. In an $18.75 million project funded by the American Recovery and Reinvestment Act of 2009, Membrane Technology and Research Inc. (MTR) and its partners tested the Polaris™ membrane system, which uses a CO2-selective polymeric membrane (micro-porous films which act as semi-permeable barriers to separate two different mediums) material and

65

Resampling Hypothesis Tests for Autocorrelated Fields  

Science Conference Proceedings (OSTI)

Presently employed hypothesis tests for multivariate geophysical data (e.g., climatic fields) require the assumption that either the data are serially uncorrelated, or spatially uncorrelated, or both. Good methods have been developed to deal with ...

D. S. Wilks

1997-01-01T23:59:59.000Z

66

SchlumbergerRES/Field-Test-Plan.PPT/18/06/00/1 Field Test Plan Michigan  

E-Print Network (OSTI)

1 La ©SchlumbergerRES/Field-Test-Plan.PPT/18/06/00/1 Field Test Plan Michigan QLand, QBorehole, R Camp, Well --- Oil/Gas PL Permit Zone - CONFIDENTIAL - #12;8 La ©SchlumbergerRES/Field-Test-Plan.PPT/18/VSP compiled by Andreas Laake, SLB Project Coordinator Status :October 26, 2000 #12;2 La ©SchlumbergerRES/Field

67

Demonstration testing and evaluation of in situ soil heating. Treatability study work plan (Revision 2)  

SciTech Connect

A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85{degrees} to 95{degrees}C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern. This document is a Treatability Study Work Plan for the demonstration program. The document contains a description of the proposed treatability study, background of the EM heating process, description of the field equipment, and demonstration test design.

Sresty, G.C.

1994-12-30T23:59:59.000Z

68

Field Testing of Environmentally Friendly Drilling System  

SciTech Connect

The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

David Burnett

2009-05-31T23:59:59.000Z

69

A TEST TO DEMONSTRATE A DIGITAL WEB-BASED OILFIELD DATA COLLECTION SERVICE  

SciTech Connect

The U.S. Department of Energy and HIS Energy tested a web-based field data collection service, FieldDIRECT, at NPR-3. FieldDIRECT provided a way to digitally collect oil and gas data from the field, transfer it quickly, accurately and securely via the Internet, and utilize it immediately to generate executive, operational and administrative reports.

Rochelle, J.

2001-09-30T23:59:59.000Z

70

A field demonstration of energy conservation using occupancy sensor lighting control in equipment rooms  

SciTech Connect

The Pacific Northwest Laboratory identified energy savings potential of automatic equipment-room lighting controls, which was demonstrated by the field experiment described in this report. Occupancy sensor applications have gained popularity in recent years due to improved technology that enhances reliability and reduces cost. Automatic lighting control using occupancy sensors has been accepted as an energy-conservation measure because it reduces wasted lighting. This study focused on lighting control for equipment rooms, which have inherent conditions ideal for automatic lighting control, i.e., an area which is seldom occupied, multiple users of the area who would not know if others are in the room when they leave, and high lighting energy intensity in the area. Two rooms were selected for this study: a small equipment room in the basement of the 337 Building, and a large equipment area in the upper level of the 329 Building. The rooms were selected to demonstrate the various degrees of complexity which may be encountered in equipment rooms throughout the Hanford Site. The 337 Building equipment-room test case demonstrated a 97% reduction in lighting energy consumption, with an annual energy savings of $184. Including lamp-replacement savings, a total savings of $306 per year is offset by an initial installation cost of $1,100. The installation demonstrates a positive net present value of $2,858 when the lamp-replacement costs are included in a life-cycle analysis. This also corresponds to a 4.0-year payback period. The 329 Building equipment-room installation resulted in a 92% reduction in lighting energy consumption. This corresponds to annual energy savings of $1,372, and a total annual savings of $2,104 per year including lamp-replacement savings. The life-cycle cost analysis shows a net present value of $15,855, with a 5.8-year payback period.

Dagle, J.E.

1992-09-01T23:59:59.000Z

71

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

SciTech Connect

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions is being conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute is partially supporting the field demonstration and BP-Amoco helped install the unit and provided onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dewpoint and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. During the course of this project, MTR has sold 11 commercial units related to the field test technology, and by the end of this demonstration project the process will be ready for broader commercialization. A route to commercialization has been developed during this project and involves collaboration with other companies already servicing the natural gas processing industry.

R. Baker; T. Hofmann; K. A. Lokhandwala

2005-09-29T23:59:59.000Z

72

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

Science Conference Proceedings (OSTI)

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions is being conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute is partially supporting the field demonstration and BP-Amoco helped install the unit and provides onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dew point and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. During the course of this project, MTR has sold 13 commercial units related to the field test technology, and by the end of this demonstration project the process will be ready for broader commercialization. A route to commercialization has been developed during this project and involves collaboration with other companies already servicing the natural gas processing industry.

R. Baker; T. Hofmann; K. A. Lokhandwala

2006-09-29T23:59:59.000Z

73

Field Demonstration of the EPRI Resin Tester: Prototype Development and Initial Field Usage  

Science Conference Proceedings (OSTI)

This report presents an update on development of the EPRI Resin Tester, a device designed to assess ion exchange resin kinetics and for other resin testing procedures. The report includes information on fabrication and initial operational testing of the first working prototype of the tester device.

2004-12-21T23:59:59.000Z

74

Demonstration and Testing of ClimaStat for Improved Rooftop Air-Conditioning Efficeincy  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the demonstration and testing of ClimaStat for improved rooftop air-conditioning efficiency at the March 15, 2012, Federal Technology Deployment Working Group meeting.

75

Error analysis in wind turbine field testing  

DOE Green Energy (OSTI)

In wind turbine field testing, one of the most important issues is understanding and accounting for data errors. Extended dynamic testing of wind turbines requires a thorough uncertainty analysis and a regimen of quality assurance steps in order to preserve accuracy. Test objectives need to be identified to determine the accuracy requirements of any data measurement, collection, and analysis process. Frequently, the uncertainty analysis reveals that the major sources of error can be allowed for with careful calibration and signal drift tracking procedures. This paper offers a basis for the discussion and development of a repeatable and accurate process to track errors and account for them in data processing.

McNiff, B [McNiff Light Industries, Carlisle, MA (United States); Simms, D [National Renewable Energy Lab., Golden, CO (United States)

1994-08-01T23:59:59.000Z

76

NETL: Carbon Storage - Small-Scale Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Small-Scale Field Tests Small-Scale Field Tests Carbon Storage Small-Scale Field Tests The U.S. Department of Energy (DOE) is supporting a number of small-scale field tests (injection of less than 500,000 million metric tons of CO2 per year) to explore various geologic CO2 storage opportunities within the United States and portions of Canada. DOE's small-scale field test efforts are designed to demonstrate that regional reservoirs have the capability to store thousands of years of CO2 emissions and provide the basis for larger volume, commercial-scale CO2 tests. The field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The data gathered during these small-scale tests provides valuable information regarding specific formations that have historically not been evaluated for the purpose of CO2 storage. The Carbon Storage Program strategy includes an established set of field test objectives applicable to the small-scale projects:

77

Demonstration and Testing of ClimaStat for Improved Rooftop Air-Conditioning Efficeincy  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration and Testing of ClimaStat® for Improved Rooftop Air-Conditioning Efficiency Presented at IA Technology Deployment Working Group Meeting March 15, 2012 By Dan Howett, PE Oak Ridge National Laboratory Demonstration/Testing of ClimaStat ® for Improved Efficiency of RTU Air Conditioners * Technology from Advantek Consulting - Patented by Dr. Michael West in 2003. (US Patent #6427454) - Originally demonstrated under DOE's Inventions & Innovations program. * Current demonstration sponsored by DOD's ESTCP program * Uses off-the-shelf components to either... - Modify existing packaged air conditioners, or - Incorporate changes into new RTU equipment before installation * Initial tests show 15% improvement in HVAC efficiency.

78

Demonstration and Testing of ClimaStat for Improved Rooftop Air-Conditioning Efficeincy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration and Testing of ClimaStat® for Improved Rooftop Air-Conditioning Efficiency Presented at IA Technology Deployment Working Group Meeting March 15, 2012 By Dan Howett, PE Oak Ridge National Laboratory Demonstration/Testing of ClimaStat ® for Improved Efficiency of RTU Air Conditioners * Technology from Advantek Consulting - Patented by Dr. Michael West in 2003. (US Patent #6427454) - Originally demonstrated under DOE's Inventions & Innovations program. * Current demonstration sponsored by DOD's ESTCP program * Uses off-the-shelf components to either... - Modify existing packaged air conditioners, or - Incorporate changes into new RTU equipment before installation * Initial tests show 15% improvement in HVAC efficiency.

79

NETL: News Release - Carbon Sequestration Field Test Begins in...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 , 2007 Carbon Sequestration Field Test Begins in Illinois Basin Field Test Pairs Geologic Sequestration and Enhanced Oil Recovery WASHINGTON, DC - The Midwest Geological...

80

HVAC Water Heater Field Tests Research Project | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Water Heater Field Tests Research Project HVAC Water Heater Field Tests Research Project The U.S. Department of Energy is currently conducting research into heating,...

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Field Testing of Automated Demand Response for Integration of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products Title Field Testing of Automated...

82

Field testing plan for unsaturated zone monitoring and field studies  

Science Conference Proceedings (OSTI)

The University of Arizona, in cooperation with the Bureau of Economic Geology at The University of Texas at Austin, and Stephens and Associates in Albuquerque, New Mexico has developed a field testing plan for evaluating subsurface monitoring systems. The U.S. Nuclear Regulatory Commission has requested development of these testing plans for low-level radioactive waste disposal sites (LLW) and for monitoring at decommissioned facilities designated under the {open_quotes}Site Decommissioning Management Plan{close_quotes} (SDMP). The tests are conducted on a 50 m by 50 m plot on the University of Arizona`s Maricopa Agricultural Center. Within the 50 m by 50 m plot one finds: (1) an instrumented buried trench, (2) monitoring islands similar to those proposed for the Ward Valley, California LLW Facility, (3) deep borehole monitoring sites, (4) gaseous transport monitoring, and (5) locations for testing non-invasive geophysical measurement techniques. The various subplot areas are instrumented with commercially available instruments such as neutron probes, time domain reflectometry probes, tensiometers, psychrometers, heat dissipation sensors, thermocouples, solution samplers, and cross-hole geophysics electrodes. Measurement depths vary from ground surface to 15 m. The data from the controlled flow and transport experiments, conducted over the plot, will be used to develop an integrated approach to long-term monitoring of the vadose zone at waste disposal sites. The data will also be used to test field-scale flow and transport models. This report describes in detail the design of the experiment and the methodology proposed for evaluating the data.

Young, M.H.; Wierenga, P.J.; Warrick, A.W. [and others

1996-10-01T23:59:59.000Z

83

Field Demonstration of Acetone Pretreatment and Composting of Particulate-TNT-Contaminated Soil  

Science Conference Proceedings (OSTI)

Solid fragments of explosives in soil are common in explosives testing and training areas. In this study we initially sieved the upper 6 in of contaminated soil through a 3-mm mesh, and found 2, 4, 6-trinitrotoluene (TNT) fragments. These contributed to an estimated concentration of 1.7 kg per cubic yard soil, or for 2000 ppm TNT in the soil. Most of the fragments ranged 4 mm to 10 mm diameter in size, but explosives particles weighing up to 56 g (about 4 cm diameter) were frequently observed. An acetone pretreatment/composting system was then demonstrated at field scale. The amount of acetone required for a TNT-dissolving slurry process was controlled by the viscosity of the soil/acetone mix rather than the TNT dissolution rate. The amount needed was estimated at about 55 gallons acetone per cubic yard soil. Smaller, 5- to 10-mm-diameter fragments went into solution in less than 15 min at a mixer speed of 36 rpm, with a minimum of 2 g TNT going into solution per 30 min for the larger chunks. The slurries were than mixed with compost starting materials and composted in a vented 1 yd3 container. After 34 days incubation time TNT was below the site-specific regulatory threshold of 44 ppm. TNT metabolites and acetone were also below their regulatory thresholds established for the site.

Radtke, Corey William; Smith, D.; Owen, S.; Roberto, Francisco Figueroa

2002-02-01T23:59:59.000Z

84

Field test plan: Buried waste technologies, Fiscal Year 1995  

SciTech Connect

The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management.

Heard, R.E.; Hyde, R.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Engleman, V.S.; Evans, J.D.; Jackson, T.W. [Science Applications International Corp., San Diego, CA (United States)

1995-06-01T23:59:59.000Z

85

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

SciTech Connect

The objective of this project was to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions was conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute partially supported the field demonstration and BP-Amoco helped install the unit and provide onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dew point and BTU value and can be delivered without further treatment to the pipeline. During the course of this project, MTR has sold thirteen commercial units related to the field test technology. Revenue generated from new business is already more than four times the research dollars invested in this process by DOE. The process is ready for broader commercialization and the expectation is to pursue the commercialization plans developed during this project, including collaboration with other companies already servicing the natural gas processing industry.

Kaaeid Lokhandwala

2007-03-30T23:59:59.000Z

86

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS  

SciTech Connect

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions would convince industry users of the efficiency and reliability of the process. The system has been designed and fabricated by Membrane Technology and Research, Inc. (MTR) and will be installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and Btu value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

R. Baker; R. Hofmann; K.A. Lokhandwala

2003-02-14T23:59:59.000Z

87

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

SciTech Connect

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions would convince industry users of the efficiency and reliability of the process. The system has been designed and fabricated by Membrane Technology and Research, Inc. (MTR) and will be installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

R. Baker; T. Hofmann; K. A. Lokhandwala

2004-09-29T23:59:59.000Z

88

Field Verification of Distributed Renewable Generation, Volume 1: Renewable Energy Field Test Concepts  

Science Conference Proceedings (OSTI)

This report describes field verification of distributed renewable generation and focuses on renewable energy field test concepts.

2003-03-25T23:59:59.000Z

89

Field test of cosurfactant-enhanced alkaline flooding  

Science Conference Proceedings (OSTI)

To demonstrate that cosurfactant-enhanced alkaline flooding is viable in recovering waterflood residual oil from sandstone reservoirs in the near-offshore Gulf of Mexico, a series of tests is being conducted in the White Caste field, Louisiana. The strategy adopted was to pilot the technology in three stages: (1) a flood without polymer to prove features of the process unrelated to achieving mobility control, (2) a test of process polymer injectivity in the same reservoir, and (3) a full process demonstration in a shallower sand. The first phase of the pilot is described in this paper; pilot design, slug formulation, and operations are summarized and key responses are documented and interpreted. Ref. 2 describes the polymer injectivity test. The final pilot stage has not been initiated yet.

Falls, A.H.; Thigpen, D.R.; Nelson, R.C.; Ciaston, J.W.; Lawson, J.B.; Good, P.A.; Ueber, R.C.; Shahin, G.T.

1994-08-01T23:59:59.000Z

90

Wind tunnel test of 1/30 scale heliostat field array model. Test report  

DOE Green Energy (OSTI)

From 9 January through 20 January 1978, Honeywell conducted a wind tunnel test on a 1/30 scale partial heliostat field. The heliostats were per Honeywell's design developed under the 10 megawatt central receiver pilot electrical power plant subsystem research experiment contract. Likewise, the scaled section of the field geometry duplicated the proposed circular layout. Testing was conducted at the Georgia Institute of Technology's 9 foot subsonic tunnel. The objective of the test was to ascertain from a qualitative standpoint the field effects upon wind loading within a heliostat field. To accomplish this, numerous pressure tap measurements at different heights and at different field positions were taken with varying wind speeds, fence designs, and heliostat gimbal orientations. The Department of Energy specified boundary layer profile was also scaled by 1/30 in order to simulate the total wind effects as accurately as possible taking into account the potentially severe scaling or Reynolds number effects at a 1/30 scale. After initial model set-up within the tunnel and scaled boundary layer generated, 91 separate runs were accomplished. The results do demonstrate the high sensitivity of wind loading upon the collector field due to the actual heliostat orientation and fence geometry. Vertical pressure gradients within the model field and flow reentry angles provide a good qualitative feel as to the full scale environment that might be expected and point to the need for specific additional testing to further explore potentially dangerous conditions.

Brown, G. L.

1978-02-22T23:59:59.000Z

91

3X-100 blade field test.  

DOE Green Energy (OSTI)

In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.

Zayas, Jose R.; Johnson, Wesley D.

2008-03-01T23:59:59.000Z

92

IN SITU FIELD TESTING OF PROCESSES  

Science Conference Proceedings (OSTI)

The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses provide data useful for refining and confirming the understanding of flow, drift seepage, and transport processes in the UZ. The UZ testing activities included measurement of permeability distribution, quantification of the seepage of water into the drifts, evaluation of fracture-matrix interaction, study of flow along faults, testing of flow and transport between drifts, characterization of hydrologic heterogeneity along drifts, estimation of drying effects on the rock surrounding the drifts due to ventilation, monitoring of moisture conditions in open and sealed drifts, and determination of the degree of minimum construction water migration below drift. These field tests were conducted in two underground drifts at Yucca Mountain, the Exploratory Studies Facility (ESF) drift, and the cross-drift for Enhanced Characterization of the Repository Block (ECRB), as described in Section 1.2. Samples collected in boreholes and underground drifts have been used for additional hydrochemical and isotopic analyses for additional understanding of the UZ setting. The UZ transport tests conducted at the nearby Busted Butte site (see Figure 1-4) are also described in this scientific analysis report.

J.S.Y. YANG

2004-11-08T23:59:59.000Z

93

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology Group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group first found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produced about 1 MMscfd of gas containing 24% nitrogen. The membrane unit was built to bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid was built by ABB. NTE ordered the required compressor and MTR made the membrane modules for a December 2004 delivery. However, the gas supply was not steady enough for field testing, and MTR/ABB have now located other sites for field testing and commercial development.

Kaaeid Lokhandwala

2005-12-22T23:59:59.000Z

94

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is now working with the company's Randall Gas Technology Group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group first found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produced about 1 MMscfd of gas containing 24% nitrogen. The membrane unit was built to bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid was built by ABB. NTE ordered the required compressor and MTR made the membrane modules for a December 2004 delivery. However, the gas supply was not steady enough for field testing, and MTR/ABB have now located other sites for field testing and commercial development.

Kaaeid Lokhandwala

2005-12-15T23:59:59.000Z

95

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas: Nineteenth Quarterly Progress Report (Second Quarter 2006)  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation, and is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, and we continue, but have as yet been unsuccessful in our attempts, to negotiate with Atmos Energy for a final test of the project demonstration unit. In the meantime, MTR has located an alternative testing opportunity and signed a contract for a demonstration plant in Rio Vista, CA. Several commercial sales have resulted from the partnership with ABB, and total sales of nitrogen/natural gas membrane separation units are now approaching $2.6 million.

Kaaeid Lokhandwala

2006-06-30T23:59:59.000Z

96

Cost results from the 1994 Fernald characterization field demonstration for uranium-contaminated soils  

Science Conference Proceedings (OSTI)

One of the principal objectives of the US Department of Energy (DOE) Office of Technology Development is to develop an optimum integrated system of technologies for removing uranium substances from soil. This system of technologies, through demonstration, must be proven in terms of cost reduction, waste minimization, risk reduction, and user applicability. To evaluate the effectiveness of these technologies, a field demonstration was conducted at the Fernald site in the summer of 1994. Fernald was selected as the host site for the demonstration based on environmental problems stemming from past production of uranium metal for defense-related applications. The following six alternative technologies were developed and/or demonstrated by the principal investigators in the Characterization Task Group at the field demonstration: (1) beta scintillation detector by Pacific Northwest Laboratory (PNL), (2) in situ gamma detector by PNL, (3) mobile laser ablation-inductively coupled plasma/atomic emission spectrometry (LA-ICP/AES) laboratory by Ames Laboratory, (4) long-range alpha detector (LRAD) by Los Alamos National Laboratory (LANL), (5) passive radon monitoring by ORNL, and (6) electret ion chamber by ORNL.

Douthat, D.M.; Stewart, R.N.; Armstrong, A.Q.

1995-04-01T23:59:59.000Z

97

FIELD TEST OF THE FLAME QUALITY INDICATOR  

Science Conference Proceedings (OSTI)

The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion chambers, and poor fuel pump cut-off. Service organizations can use these early indications to reduce problems and service costs. There were also some ''call-for-service'' indications for which problems were not identified. The test program also showed that monitoring of the flame can provide information on burner run times and this can be used to estimate current oversize factors and to determine actual fuel usage, enabling more efficient fuel delivery procedures.

Andrew M. Rudin; Thomas Butcher; Henry Troost

2003-02-04T23:59:59.000Z

98

Cooperative field test program for wind systems  

DOE Green Energy (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

99

DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM  

SciTech Connect

This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has already been designed, constructed and tested, having exceeded performance expectations. The full prototype system will be comprehensively tested in the laboratory followed by two field demonstrations in real applications in NGA member utilities' pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. The present report summarizes the accomplishments of the project during its third six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on the last system integration issues and on software development for the turning and launching routines. Testing of the prototype in the lab is expected to be completed by Summer 2003, to be followed by two field demonstrations in early Fall 2003.

Dr. George C. Vradis; Dr. Hagen Schempf

2003-04-01T23:59:59.000Z

100

Field Demonstration of a 24-kV Superconducting Cable at Detroit Edison  

SciTech Connect

Customer acceptance of high temperature superconducting (HTS) cable technology requires a substantial field demonstration illustrating both the system's technical capabilities and its suitability for installation and operation within the utility environment. In this project, the world's first underground installation of an HTS cable using existing ductwork, a 120 meter demonstration cable circuit was designed and installed between the 24 kV bus distribution bus and a 120 kV-24 kV transformer at Detroit Edison's Frisbie substation. The system incorporated cables, accessories, a refrigeration system, and control instrumentation. Although the system was never put in operation because of problems with leaks in the cryostat, the project significantly advanced the state-of-the-art in the design and implementation of Warm Dielectric cable systems in substation applications. Lessons learned in this project are already being incorporated in several ongoing demonstration projects.

Kelley, Nathan; Corsaro, Pietro

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Criticality Safety Evaluation for the Advanced Test Reactor U-Mo Demonstration Elements  

SciTech Connect

The Reduced Enrichment Research Test Reactors (RERTR) fuel development program is developing a high uranium density fuel based on a (LEU) uranium-molybdenum alloy. Testing of prototypic RERTR fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. Two RERTR-Full Size Demonstration fuel elements based on the ATR-Reduced YA elements (all but one plate fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). The two fuel elements will be irradiated in alternating cycles such that only one element is loaded in the reactor at a time. Existing criticality analyses have analyzed Standard (HEU) ATR elements (all plates fueled) from which controls have been derived. This criticality safety evaluation (CSE) documents analysis that determines the reactivity of the Demonstration fuel elements relative to HEU ATR elements and shows that the Demonstration elements are bound by the Standard HEU ATR elements and existing HEU ATR element controls are applicable to the Demonstration elements.

Leland M. Montierth

2010-12-01T23:59:59.000Z

102

Status of the Virginia Power/DOE Cooperative Cask Testing/Demonstration Program: A video presentation  

SciTech Connect

This paper is documentation of a video presentation and provides a brief summary of the Virginia power/US Department of Energy Cooperative Cask Testing/Demonstration Program. The program consists of two phases. The first phase has been completed and involved the unlicensed performance testing (heat transfer and shielding) of three metal spent fuel storage casks at the federally owned Idaho National Engineering Laboratory. The second phase is ongoing and consists of licensed demonstrations of standard casks from two different vendors and of one or two enhanced capacity casks. 6 refs., 1 tab.

McKinnon, M.A.; Creer, J.M. (Pacific Northwest Lab., Richland, WA (USA)); Collantes, C.E. (Department of Energy, Richland, WA (USA). Richland Operations Office)

1990-01-01T23:59:59.000Z

103

Demonstration Development Project: Evaluation of a Test Loop to Demonstrate Handling Properties of Liquid CO2-Coal Slurry  

Science Conference Proceedings (OSTI)

Integrated gasification combined cycle (IGCC) power plants employing liquid CO2 in lieu of water as the slurrying medium to feed coal to the gasifier are a promising option for carbon capture and storage (CCS). This report summarizes the design and cost estimate for a proposed CO2-coal slurry test loop system. The objective is to validate a cost estimate for the construction of a full scale CO2-coal slurry test loop and aid in technical aspects of working with ...

2014-01-07T23:59:59.000Z

104

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with their Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's Engineering group has found a new site for the project at a Duke Energy gas processing plant in Milfay, Oklahoma.

Dr. Andre Da Costa

2003-04-10T23:59:59.000Z

105

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Membrane Technology and Research, Inc. (MTR) has started to negotiate a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with their Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry.

Dr. Andre Da Costa

2003-04-10T23:59:59.000Z

106

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Membrane Technology and Research, Inc. (MTR) continued to negotiate a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with their Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry.

Dr. Andre Da Costa

2003-04-10T23:59:59.000Z

107

U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities  

DOE Green Energy (OSTI)

The U.S. Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOEs Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

James E. Francfort; Donald Karner; John G. Smart

2009-05-01T23:59:59.000Z

108

Building Technologies Office: Field Test Best Practices Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Best Field Test Best Practices Website to someone by E-mail Share Building Technologies Office: Field Test Best Practices Website on Facebook Tweet about Building Technologies Office: Field Test Best Practices Website on Twitter Bookmark Building Technologies Office: Field Test Best Practices Website on Google Bookmark Building Technologies Office: Field Test Best Practices Website on Delicious Rank Building Technologies Office: Field Test Best Practices Website on Digg Find More places to share Building Technologies Office: Field Test Best Practices Website on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center

109

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1-MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technologies group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The system has been installed in the field and initial startup activities have been completed. The system has not yet produced the flow rate required for continuous stable operation. NTE, the company hosting this test site/pilot plant, will drill additional wells to increase the inlet flow rate. The system is expected to be in full continuous operation by May 2004.

Kaaeid Lokhandwala

2004-04-30T23:59:59.000Z

110

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd nitrogen removal/gas treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project field test at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. The membrane skid is scheduled to be completed by December 29. Our target is to have the unit installed and optimized by mid-January.

Kaaeid Lokhandwala

2005-02-28T23:59:59.000Z

111

Heber Binary-Cycle Geothermal Demonstration Power Plant: Startup and Low-Power Testing  

Science Conference Proceedings (OSTI)

This 45-MWe demonstration plant, the first of its kind, could lead to full-scale commercial development of moderate temperature hydrothermal resources. In startup, shakedown, and lowpower testing from October 1984 to June 1986, the facility confirmed the feasibility of binary-conversion technology.

1987-11-01T23:59:59.000Z

112

Demonstration: The Key to Technology Transfer in the Field of Energy Conservation in the UK  

E-Print Network (OSTI)

Technology transfer has been one of the most intractable problems faced on a worldwide basis. The problem is particularly acute in the field of energy efficiency because none of the 3 major parties involved, the researcher, the manufacturer or the user is well geared to undertake the task in this still developing field. The UK Government recognized the problem and established the Energy Conservation Demonstration Project Scheme in 1978 to promote the take-up of cost effective conservation technology. The Scheme offers financial support to companies 'hosting' novel projects which the Government then monitors and publicizes to the relevant market sectors in order to stimulate 'replication' of the by then proven technology. This paper outlines the objectives and operation of the scheme and illustrates work underway with case studies in the areas of automatic energy management control systems and industrial heat recovery and cogeneration.

Carter, D. E. F.; Lawrence, J. E.

1983-01-01T23:59:59.000Z

113

Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model  

SciTech Connect

Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

Sharma, Chandan; Raustad, Richard

2013-06-01T23:59:59.000Z

114

Pilot plant test results and demonstration of the Ahlstrom Pyroflow pressurized CFB technology  

SciTech Connect

Ahlstrom Pyropower initiated development of PCFB technology in 1086 after a detailed analysis of competing advanced coal utilization technologies. A 10 MWth pilot plant was started up in 1989 and has produced very promising test results which are highly competitive with coal gasification. This led to a successful application for demonstration of the technology under round III of the DOE Clean Coal Technology Program. The resulting project is Iowa Power's DMEC-1 PCFB Repowering Project. The project is currently in the preliminary engineering phase with supporting pilot plant testing being performed in parallel. Successful demonstration of PCFB technology will provide utilities with a cost effective option for repowering older power stations to comply with the requirements of the 1990 Clean Air Act Amendment in the near term and a clean and high efficiency new plant option in the longer term. This paper will present recent pilot plant test results and review the major technical features of the DMEC-1 project.

Provol, S.J.; Dryden, R.J. (Pyropower Corp., San Diego, CA (United States))

1992-01-01T23:59:59.000Z

115

Pilot plant test results and demonstration of the Ahlstrom Pyroflow pressurized CFB technology  

Science Conference Proceedings (OSTI)

Ahlstrom Pyropower initiated development of PCFB technology in 1086 after a detailed analysis of competing advanced coal utilization technologies. A 10 MWth pilot plant was started up in 1989 and has produced very promising test results which are highly competitive with coal gasification. This led to a successful application for demonstration of the technology under round III of the DOE Clean Coal Technology Program. The resulting project is Iowa Power`s DMEC-1 PCFB Repowering Project. The project is currently in the preliminary engineering phase with supporting pilot plant testing being performed in parallel. Successful demonstration of PCFB technology will provide utilities with a cost effective option for repowering older power stations to comply with the requirements of the 1990 Clean Air Act Amendment in the near term and a clean and high efficiency new plant option in the longer term. This paper will present recent pilot plant test results and review the major technical features of the DMEC-1 project.

Provol, S.J.; Dryden, R.J. [Pyropower Corp., San Diego, CA (United States)

1992-11-01T23:59:59.000Z

116

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPERATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. System fabrication was completed in January 2004 and the membrane inserts were loaded. Additional pressure testing and verification will be completed prior to shipment, which is expected in early February 2004.

Kaaeid Lokhandwala

2004-01-30T23:59:59.000Z

117

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. System fabrication was completed in January 2004 and the membrane inserts were loaded. Additional pressure testing and verification will be completed prior to shipment, which is expected in early February 2004.

Kaaeid Lokhandwala

2003-12-31T23:59:59.000Z

118

Building Technologies Office: HVAC and Water Heater Field Tests Research  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC and Water Heater HVAC and Water Heater Field Tests Research Project to someone by E-mail Share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Facebook Tweet about Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Twitter Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Google Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Delicious Rank Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Digg Find More places to share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research

119

Hanford Tanks Initiative alternate retrieval system demonstrations - final report of testing performed by Grey Pilgrim LLC  

Science Conference Proceedings (OSTI)

A waste retrieval system has been defined to provide a safe and cost-effective solution to the Hanford Tanks Initiative. This system consists of the EMMA robotic manipulator (by GreyPilgrim LLC) and the lightweight Scarifier (by Waterjet Technology, Inc.) powered by a 36-kpsi Jet-Edge diesel powered high pressure pumping system. For demonstration and testing purposes, an air conveyance system was utilized to remove the waste from the simulated tank floor. The EMMA long reach manipulator utilized for this demonstration was 33 feet long. It consisted of 4 hydraulically controlled stages of varying lengths and coupling configurations. T

Berglin, E.J.

1997-07-24T23:59:59.000Z

120

Enhancing Building Operations Through Automated Diagnostics: Field Test Results  

E-Print Network (OSTI)

The Whole Building Diagnostician (WBD) is a modular diagnostic software system that provides detection and diagnosis of problems with the operation of heating, ventilation, and air-conditioning (HVAC) systems and major energy end-uses. It has been extensively field tested and demonstrated in buildings over the past several years. WBD found problems with many air-handling units at all sites. The problems ranged from a simple set point deviation to improper implementation of controls. The results from these demonstrations, along with the feedback from building operators and managers on the use of diagnostic tools, are presented in the paper. Experience from field tests indicates that providing diagnostic tools to building operators can increase their awareness of equipment faults, but it will not by itself solve the problems of inefficient operations. Changes in operation and maintenance practices and behavior are needed. We discuss how these new technologies might be delivered and used more effectively to better manage facilities, improving their condition and increasing their energy efficiency.

Katipamula, S.; Brambley, M. R.; Bauman, N.; Pratt, R. G.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results  

Science Conference Proceedings (OSTI)

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

Gary M. Blythe

2006-03-01T23:59:59.000Z

122

DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM  

SciTech Connect

This program is undertaken in order to construct and field-demonstrate ''EXPLORER'', a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6- inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its fourth six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on endurance testing and testing of launching procedures. Testing of the prototype in the lab is expected to be completed by Fall 2003, to be followed by two field demonstrations in Winter 2003-2004.

Hagen Schempf

2003-10-01T23:59:59.000Z

123

Field Demonstration of a 24-kV Superconducting Cable at Detroit Edison: Final Report  

Science Conference Proceedings (OSTI)

Following up the successful testing of a complete 50 m, 115 kV high temperature superconducting (HTS) power cable system prototype, EPRI, Pirelli Power Cables and Systems, the Department of Energy, Detroit Edison, and American Superconductor Corporation undertook a project to design, install, and operate a 24 kV HTS power cable at Detroit Edison's Frisbie substation to serve customer load. The demonstration cable circuit ran approximately 120 m between the 24 kV bus distribution bus and a 120 kV-24 kV tr...

2004-12-22T23:59:59.000Z

124

Intertechnology Corporation proposed test and evaluation plan, commercial buildings. National Solar Demonstration Program  

DOE Green Energy (OSTI)

This report has three major parts. The first of these derives the requirements for the Test and Evaluation plan from the System Level Plan which is summarized in Section II. The second part contains the proposed plan to fill these requirements and includes hardware and software recommendations as well as procedures and management considerations. Primary emphasis has been given to the remote site because this is the area in which the commercial part of the demonstration is most unique. Finally, some pre-demonstration activities are described. The pilot program is intended to resolve a number of issues which arose in the course of the T and E plan. These relate to choice of scan frequencies, compression algorithms, etc. It is also intended to confirm performance and cost effectiveness of the site data collection package. The base line measurements of attitudes, etc. provide a reference mark against which one can measure the non-technical effectiveness of the demonstration program. (WDM)

None

1976-09-01T23:59:59.000Z

125

Demonstration Test of Iron Addition to a Flue Gas Desulfurization (FGD) Absorber to Enhance Mercury Removal  

Science Conference Proceedings (OSTI)

This report documents the findings from a full-scale demonstration test of the effects on trace elements of adding iron to a forced oxidation flue gas desulfurization (FGD) scrubber. Three specific effects were evaluated: lowering mercury emissions to the atmosphere; lowering the concentration of soluble or sub-micron-sized mercury particles in FGD purge water, which could improve removal of mercury in FGD purge water treatment; and lowering the concentration of selenate in FGD purge water, which could i...

2009-12-31T23:59:59.000Z

126

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. The membrane skid is scheduled to be completed by December 29. Our target is to have the unit installed and optimized by mid-January.

Kaaeid Lokhandwala

2004-09-01T23:59:59.000Z

127

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. The membrane skid is scheduled to be completed by December 29. Our target is to have the unit installed and optimized by mid-January.

Kaaeid Lokhandwala

2004-11-15T23:59:59.000Z

128

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. The membrane skid is scheduled to be completed by December 29. The target is to have the unit installed and optimized by mid-January.

Andre Da Costa

2003-11-24T23:59:59.000Z

129

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. In early 2002, Membrane Technology and Research, Inc. (MTR) began to negotiate a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR and ABB Lummus have now completed negotiations and have signed a joint development, marketing and sales agreement with a focus on natural gas applications. Part of the agreement calls for the Randall Gas Technology division of ABB Lummus to provide cost share for the current project.

Dr. Andre Da Costa

2003-04-10T23:59:59.000Z

130

Field Test Best Practices Website | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » Field Test Best Residential Buildings » Building America » Field Test Best Practices Website Field Test Best Practices Website Photo of a man standing in front of a door performing a blower door test. The Field Test Best Practices website is a start-to-finish best practice guide for building science researchers engaged in field evaluations of energy efficiency measures. Developed by the National Renewable Energy Laboratory (NREL), this site is a collaborative effort to improve the quality of research methods that aim to improve energy efficiency of homes. On this website, find detailed guidance on: Defining the research objectives Planning for and conducting a field test Choosing, testing, and installing components Selecting equipment and knowing when and how to use it.

131

DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASOLINE INSPECTION ROBOT SYSTEM  

SciTech Connect

This program is undertaken in order to construct and field-demonstrate ''EXPLORER'', a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its sixth six-month period. The project has in general achieved its goals for this period as outlined in the report. The prototype robot completed its first field demonstration in June 2004 and is undergoing further extensive endurance testing and some minor modifications in order to prepare for the second and last field demonstration planned for October 2004.

George C. Vradis; Hagen Schempf

2004-10-01T23:59:59.000Z

132

West Valley Demonstration Project vitrification process equipment Functional and Checkout Testing of Systems (FACTS)  

Science Conference Proceedings (OSTI)

The Vitrification Facility (VF) at the West Valley Demonstration Project was designed to convert stored radioactive waste into a stable glass for disposal in a federal repository. The Functional and Checkout Testing of Systems (FACTS) program was conducted from 1984 to 1989. During this time new equipment and processes were developed, installed, and implemented. Thirty-seven FACTS tests were conducted, and approximately 150,000 kg of glass were made by using nonradioactive materials to simulate the radioactive waste. By contrast, the planned radioactive operation is expected to produce approximately 500,000 kg of glass. The FACTS program demonstrated the effectiveness of equipment and procedures in the vitrification system, and the ability of the VF to produce quality glass on schedule. FACTS testing also provided data to validate the WVNS waste glass qualification method and verify that the product glass would meet federal repository acceptance requirements. The system was built and performed to standards which would have enabled it to be used in radioactive service. As a result, much of the VF tested, such as the civil construction, feed mixing and holding vessels, and the off-gas scrubber, will be converted for radioactive operation. The melter was still in good condition after being at temperature for fifty-eight of the sixty months of FACTS. However, the melter exceeded its recommended design life and will be replaced with a similar melter. Components that were not designed for remote operation and maintenance will be replaced with remote-use items. The FACTS testing was accomplished with no significant worker injury or environmental releases. During the last FACTS run, the VF processes approximated the remote-handling system that will be used in radioactive operations. Following this run the VF was disassembled for conversion to a radioactive process. Functional and checkout testing of new components will be performed prior to radioactive operation.

Carl, D.E.; Paul, J.; Foran, J.M.; Brooks, R.

1990-09-30T23:59:59.000Z

133

Field Demonstration of Horizontal Infill Drilling Using Cost-effective Integrated Reservoir Modeling--Mississippian Carbonates, Central Kansas  

Science Conference Proceedings (OSTI)

Mississippian carbonate reservoirs have produced in excess of 1 billion barrels of oil in Kansas accounting for over 16% of the state's production. With declining production from other age reservoirs, the contribution of Mississippian reservoirs to Kansas's oil production has risen to 43% as of 2004. However, solution-enhanced features such as vertical shale intervals extending from the karst erosional surface at the top introduce complexities/compartmentalizations in Mississippian carbonate reservoirs. Coupled with this, strong water drives charge many of these reservoirs resulting in limited drainage from vertical wells due to high water cuts after an initial period of low water production. Moreover, most of these fields are operated by small independent operators without access to the knowledge bank of modern research in field characterization and exploitation/development practices. Thus, despite increasing importance of Mississippian fields to Kansas production, these fields are beset with low recovery factors and high abandonment rates leaving significant resources in the ground. Worldwide, horizontal infill wells have been successful in draining compartmentalized reservoirs with limited pressure depletion. The intent of this project was to demonstrate the application of horizontal wells to successfully exploit the remaining potential in mature Mississippian fields of the mid-continent. However, it is of critical importance that for horizontal wells to be economically successful, they must be selectively targeted. This project demonstrated the application of initial and secondary screening methods, based on publicly available data, to quickly shortlist fields in a target area for detailed studies to evaluate their potential to infill horizontal well applications. Advanced decline curve analyses were used to estimate missing well-level production data and to verify if the well produced under unchanging bottom-hole conditions--two commonly occurring data constraints afflicting mature Mississippian fields. A publicly accessible databank of representative petrophysical properties and relationships was developed to overcome the paucity of such data that is critical to modeling the storage and flow in these reservoirs. Studies in 3 Mississippian fields demonstrated that traditional reservoir models built by integrating log, core, DST, and production data from existing wells on 40-acre spacings are unable to delineate karst-induced compartments, thus making 3D-seismic data critical to characterize these fields. Special attribute analyses on 3D data were shown to delineate reservoir compartments and predict those with pay porosities. Further testing of these techniques is required to validate their applicability in other Mississippian reservoirs. This study shows that detailed reservoir characterization and simulation on geomodels developed by integrating wireline log, core, petrophysical, production and pressure, and 3D-seismic data enables better evaluation of a candidate field for horizontal infill applications. In addition to reservoir compartmentalization, two factors were found to control the economic viability of a horizontal infill well in a mature Mississippian field: (a) adequate reservoir pressure support, and (b) an average well spacing greater than 40-acres.

Saibal Bhattacharya

2005-08-31T23:59:59.000Z

134

ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION  

Science Conference Proceedings (OSTI)

The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those predicted by fracture models. There was no accepted optimal method for conducting hydraulic fracturing in the Bossier. Each operator used a different approach. Anadarko, the most active operator in the play, had tested at least four different kinds of fracture treatments. The ability to arrive at an optimal fracturing program was constrained by the lack of adequate fracture models to simulate the fracturing treatment, and an inability to completely understand the results obtained in previous fracturing programs. This research aimed at a combined theoretical, experimental and field-testing program to improve fracturing practices in the Bossier and other tight gas plays.

Mukul M. Sharma

2005-03-01T23:59:59.000Z

135

Hot-gas filter testing with the transport reactor demonstration unit  

Science Conference Proceedings (OSTI)

The objectives of the hot-gas cleanup (HGC) work on the transport reactor demonstration unit (TRDU) located at the Energy & Environmental Research Center (EERC) is to demonstrate acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term demonstration tests. The primary focus of the experimental effort in the 2-year project will be the testing of hot-gas filter element performance (particulate collection efficiency, filter pressure differential, filter cleanability, and durability) as a function of temperature and filter face velocity during short-term operation (100-200 hours). This filter vessel will be utilized in combination with the TRDU to evaluate the performance of selected hot-gas filter elements under gasification operating conditions. This work will directly support the power systems development facility (PSDF) utilizing the M.W. Kellogg transport reactor located at Wilsonville, Alabama and, indirectly, the Foster Wheeler advanced pressurized fluid-bed combustor, also located at Wilsonville.

Mann, M.D.; Swanson, M.L.; Ness, R.O.; Haley, J.S.

1995-11-01T23:59:59.000Z

136

Demonstration testing and evaluation of in situ soil heating: Management Plan  

Science Conference Proceedings (OSTI)

This document is the Management Plan for US DOE contract entitled, {open_quotes}Demonstration, Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. In this project IITRI will demonstrate an in situ soil heating technology for the removal of hazardous organic contaminants present in the soil. In situ heating will be accomplished by the application of 60 Hz ac power to the soil. The soil will be heated to a temperature of about 90{degrees}C. This technology is suited for the removal of those organic compounds which have a normal boiling point in the range of 100{degrees} to 210{degrees}C, or else for those which exhibit a pure component vapor pressure of at least 10 mm Hg in the 90{degrees} to 100{degrees}C temperature range. For example, perchloroethylene, dichlorobenzene, trichlorobenzene, etc. may be removed by in situ ac heating. It is planned to demonstrate the technology by heating approximately 400 tons of soil in the K-1070 Classified Burial Ground located at DOE`s K-25 Site located in Oak Ridge, TN. It is estimated that the heating portion of the demonstration will take approximately 3 weeks at an average power input rate of 150 to 175 kW. IITRI expects to spend considerable time in the front end reviewing site characteristics, preparing detail design, developing Health and Safety Plans and other documents needed to obtain regulatory approval for the demonstration, arranging for site sampling, infrastructure development and document preparation. It is anticipated that site activities will begin in approximately 5 to 6 months. This contract was signed on September 30, 1993. IITRI started work on it in October 1993. It is planned to complete the demonstration and submit approved final reports by September 30, 1994. This project has 12 tasks and four major milestones. The major milestones and their planned completion dates are shown.

Dev, H.

1993-12-31T23:59:59.000Z

137

Controller Field Tests on the NREL CART2 Turbine  

DOE Green Energy (OSTI)

This document presents the results of the field tests carried out on the CART2 turbine at NREL to validate individual pitch control and active tower damping.

Bossanyi, E.; Wright, A.; Fleming, P.

2010-12-01T23:59:59.000Z

138

Demonstration testing and evaluation of in situ soil heating. Management Plan, Revision 2  

SciTech Connect

This is the second revision to the Management Plan for US DOE contract entitled, ``Demonstration Testing and Evaluation of In Situ Soil Heating,`` Contract Number DE-AC05-93OR22160, IITRI Project Number C06787. The cost plan and schedule have been revised herein. The Management Plan was revised once before, in March 1994. In this project IITRI will demonstrate its in situ soil heating and decontamination technology which uses 60 Hz AC power to heat soil to a temperature of about 900C. This technology is aimed at the decontamination of soil by the removal of organic hazardous constituents by the action of heat and a vacuum gas collection system.

Dev, H.

1995-03-06T23:59:59.000Z

139

Solar site test module. [DOE/NASA solar heating and cooling demonstration installations  

SciTech Connect

A solar site test module using the Rockwell AIM 65 micro-computer is described. The module is designed to work at any site where an IBM site data acquisition system (SDAS) is installed and is intended primarily as a troubleshooting tool for DOE/NASA commercial solar heating and cooling system demonstration installations. It collects sensor information (temperatures, flow rates, etc.) and displays or prints it immediately in calibrated engineering units. It will read one sensor on demand, periodically read up to 10 sensors or periodically read all sensors. Performance calculations can also be included with sensor data. Unattended operation is possible to, e.g., monitor a group of sensors once per hour. Work is underway to add a data acquisition system to the test module so that it can be used at sites which have no SDAS.

Kissel, R.R.; Scott, D.R.

1980-07-01T23:59:59.000Z

140

Photovoltaic Field Test Performance Assessment: 1987  

Science Conference Proceedings (OSTI)

Four of the larger U.S. photovoltaic power plants continue to demonstrate excellent performance, with annual availability measures as high as 98% and operations and maintenance costs as low as 0.1 cents per kilowatthour. These findings suggest that no major problems exist with the engineering, construction, and operation of these utility-grade plants.

1989-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Interwell pressure testing for field pilots  

SciTech Connect

Procedures are described, and results are compared with core analyses, for a number of transient pressure experiments that were carried out between wells in a small chemical flood pilot. Tests include: a standard pulse test, a simultaneous pressure buildup and falloff of wells in a five-spot pattern, a reverse pulse test, in which response from a producer was measured at a nearby injector during injection, and production drawdown tests from normally shut-in observation wells during polymer injection and during subsequent waterflood in a nearby injector. Flowing these observation wells provided an effective way to measure in-situ mobilities of injected fluids. For pulse tests, a simplified method for design and interpretation of single pulses is derived from basic equations. Dimensionless functions, representing directional permeability and geometrical mean permeability, are shown to be functions of a single dimensionless time lag of the maximum pressure response. For large dimensionless time lags, the ratio of dimensionless permeabilities approaches the value ..pi..e and simple geometric relationships may be used to predict either compressibility or formation thickness.

Stegemeier, G.L.

1982-09-01T23:59:59.000Z

142

An evaluation of the Big Muddy Field low-tension flood demonstration project  

SciTech Connect

A commercial scale low-tension flood (micellar-polymer) demonstration project was conducted in the Second Wall Creek Reservoir in the Big Muddy Field in east central Wyoming. The cost-shared, low-tension flood used a 0.1 pore volume preflush and a 0.1 pore volume low-tension slug followed by a polymer drive bank. The sulfonate used in the low-tension slug was a blend of both low and high molecular weight synthetic sulfonates. Dow Pusher 500, a dry polyacrylamide polymer, was used in both the low-tension slug and polymer drive bank for mobility control. Although project oil recovery was or will be significantly less than originally predicted, the low-tension process successfully mobilized waterflood residual oil. The primary factor contributing to lower than anticipated recovery was lack of containment of the injected fluids in the reservoir. Behind-pipe communication in abandoned or reconditioned wellbores in the project area represented the most probable source of fluid migration from the reservoir. Fluid entry from other reservoirs occurred concurrently with migration of the fluids from the reservoir. Fluid containment deteriorated significantly when injection pressures during the polymer injection period were allowed to exceed the formation parting pressure. Injectivity in the relatively low permeability reservoir was a continuing operational problem. 6 refs., 78 figs., 19 tabs.

Cole, E.L.

1988-12-01T23:59:59.000Z

143

Demonstration testing and evaluation of in situ soil heating. Treatability study work plan, Revision 1  

SciTech Connect

A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the `70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid `80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern.

Sresty, G.C.

1994-07-07T23:59:59.000Z

144

Geothermal field tests: heat exchanger evaluation  

DOE Green Energy (OSTI)

Results of the heat exchanger tests conducted on a scale model of a heat exchanger that has been designed and fabricated for the Geothermal Test Facility show that this exchanger will lose 60% of its heat transfer capability and fall below design requirements after 92 hours of operation. When the test exchanger was clean and operating as close as possible to design conditions, its overall heat transfer coefficient was 426 BTU/hr-ft/sup 2/ - /sup 0/f. when calculating in the fouling factor of .0035 this gave a design coefficient of 171 BTU/hr-ft/sup 2/ - /sup 0/f which was reached after less than four days of steady state operation. Thermal shocking of the test heat exchanger once each hour while the exchanger was operating at design conditions had no effect on scale removal or heat transfer. Results of tube cleaning showed that chemical treatment with 30% hydrochloric acid followed by a high pressure water jet (6000 psig), was effective in removing scale from tubes contacted with geothermal brine. After cleaning, the tubes were examined and some pitting was observed throughout the length of one tube.

Felsinger, D.E.

1973-07-06T23:59:59.000Z

145

Demonstration Assessment of Light-Emitting Diode (LED) Accent Lighting at the Field Museum in Chicago, IL  

SciTech Connect

This report reviews a demonstration of light-emitting diode (LED) accent lighting compared to halogen (typical) accent lighting in a gallery of the Field Museum in Chicago, IL.

Myer, Michael; Kinzey, Bruce R.

2010-12-10T23:59:59.000Z

146

DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Finds Potential for Permanent Storage of Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams November 4, 2010 - 1:00pm Addthis Washington, DC - A field test sponsored by the U.S. Department of Energy (DOE) has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented. This finding supports national efforts to address climate change through long-term storage of CO2 in underground geologic reservoirs. Lowering the core barrel at the PCOR Partnership lignite site.The PCOR Partnership, one of seven partnerships in DOE's Regional Carbon Sequestration Partnership Program, collaborated with Eagle Operating Inc. (Kenmare, N.D.) to complete the field test in Burke County, N.D. In March

147

FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS  

DOE Green Energy (OSTI)

Progress is reported for the period from October 1, 2001 to December 31, 2001. Technical design and budget for a larger (60-acre) CO{sub 2} demonstration project are being reviewed by the US DOE for approval. While this review process is being conducted, work is proceeding on well testing to obtain reservoir properties and on the VIP reservoir simulation model to improve model prediction and better understand the controls that certain parameters exert on predicted performance. Testing of present Colliver lease injection water on Lansing-Kansas City (L-KC) oomoldic rock indicates that injection brine must be filtered to < {approx}3-5 um and <15 um to prevent plugging of rocks with permeability as low as 1 md (millidarcy; 0.001 um2) and 10 md (0.01 um2), respectively. Pressure build-up testing on the Carter-Colliver No.7 well is interpreted to indicate the L-KC reservoir surrounding this well is {approx}9 ft (2.7 m) thick having an average effective water permeability of 25-35 md (0.025-0.035 um2) that is connected to the wellbore by either a high permeability fracture, bed, or region with low skin. Reservoir simulation evaluation of gridcell size effect on model oil recovery prediction indicates that, based on the model prediction of distribution of produced oil and CO{sub 2} volumes, oil recovery is strongly influenced by gravity segregation of CO{sub 2} into the upper higher permeability layers and indicates the strong control that vertical permeability and permeability barriers between depositional flood cycles exert on the CO{sub 2} flooding process. Simulations were performed on modifications of the 60-acre, two-injector pattern to evaluate oil recovery using other large-scale patterns. Simulations indicated that several 73-acre patterns with a single injector located near the Colliver No.7 could provide improved economics without increasing the amount of CO{sub 2} injected. The US Energy Partners ethanol plant in Russell, KS began operations in October ahead of schedule.

Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

2001-12-31T23:59:59.000Z

148

DOE/RMOTC/05.98001 Hydro-Balanced Stuffing Box Field Test Field Test Project Report  

NLE Websites -- All DOE Office Websites (Extended Search)

RMOTC/05.98001 RMOTC/05.98001 Hydro-Balanced Stuffing Box Field Test Field Test Project Report Date Published: May 28, 1999 Leo A. Giangiacomo, P.E. Rocky Mountain Oilfield Testing Center 907 N. Poplar, Suite 150 Casper, WY 82601 Distribution A. Approved for public release; Further dissemination unlimited. (Unclassified Unlimited) DOE/RMOTC/05.98001 Hydro-Balanced Stuffing Box Field Test Test Project Report Test Project Report Test Project Report Test Project Report Date Published: May 28, 1999 Leo A. Giangiacomo, P.E. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY ROCKY MOUNTAIN OILFIELD TESTING CENTER 907 N. Poplar, Suite 150 Casper, WY 82601 Work Performed Under RMOTC ERIP Funding Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

149

Construction, Field Testing, and Engineering Benefit Analysis  

E-Print Network (OSTI)

This project provides techniques to improve hot-mix asphalt (HMA) overlays specifically through the use of special additives and innovative surfacing technologies with aggregates that are locally available in Illinois. The ultimate goal is to improve pavement performance through optimized materials while also controlling cost by efficiently using local materials. Therefore, the proposed new mixes use locally available aggregates when possible. The project also considered the use of alternative aggregates such as steel slag to increase the friction quality of the HMA and therefore improve pavement performance. To evaluate the newly developed wearing course mixtures and evaluate their performance under actual traffic loading, test pavements were

High Friction; Surface Layer; Imad L. Al-qadi; Songsu Son; Thomas Zehr; Imad L. Al-qadi; Songsu Son; Thomas Zehr

2013-01-01T23:59:59.000Z

150

Test Functions Space in Noncommutative Quantum Field Theory  

E-Print Network (OSTI)

It is proven that the $\\star$-product of field operators implies that the space of test functions in the Wightman approach to noncommutative quantum field theory is one of the Gel'fand-Shilov spaces $S^{\\beta}$ with $\\beta test functions smears the noncommutative Wightman functions, which are in this case generalized distributions, sometimes called hyperfunctions. The existence and determination of the class of the test function spaces in NC QFT is important for any rigorous treatment in the Wightman approach.

M. Chaichian; M. Mnatsakanova; A. Tureanu; Yu. Vernov

2007-06-12T23:59:59.000Z

151

DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM  

SciTech Connect

This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its fifth six-month period. The project has in general achieved its goals for this period as outlined in the report. The prototype robot is undergoing extensive endurance testing in order to prepare for the field demonstrations planned for June 2004.

George C. Vradis, Hagen Schempf

2004-04-01T23:59:59.000Z

152

Status of micellar-polymer field tests: another view  

SciTech Connect

Questions are raised concerning the validity of the data and correlations and on choice of field data in correlations described in Petrol. Eng. Nov. 1979 concerning micellar-polymer field tests. The questions concern the use of incomplete field test results, selection of certain field tests and use of correlations obtained from data in 2 cases not presented consistently. This work develops different micellar-polymer field test graphs and conclusions with regard to the amount of surfactant used, correlation of mobility buffer slug size with oil recovery, effect of salinity of the reservoir, and effect of well spacing. The analysis offered indicates that use of micellar-polymer flooding as a means to provide additional energy shows potential, but determining factors for economic success will be reservoir selection and thorough process design. 13 references.

Holm, L.W.

1980-04-01T23:59:59.000Z

153

Certification Testing and Demonstration of Insulated Pressure Vessels for Vehicular Hydrogen and Natural Gas Storage  

Science Conference Proceedings (OSTI)

We are working on developing an alternative technology for storage of hydrogen or natural gas on light-duty vehicles. This technology has been titled insulated pressure vessels. Insulated pressure vessels are cryogenic-capable pressure vessels that can accept either liquid fuel or ambient-temperature compressed fuel. Insulated pressure vessels offer the advantages of cryogenic liquid fuel tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for fuel liquefaction and reduced evaporative losses). The work described in this paper is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen or LNG. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Future activities include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining insulated pressure vessel certification.

Aceves, S M; Martinez-Frias, J; Espinosa-Loza, F; Schaffer, R; Clapper, W

2002-05-22T23:59:59.000Z

154

Advanced Rooftop Control (ARC) Retrofit: Field-Test Results  

Science Conference Proceedings (OSTI)

The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energys (DOEs) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

2013-07-31T23:59:59.000Z

155

Accelerated Stress Testing, Qualification Testing, HAST, Field Experience - What Do They All Mean? (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the need for a set of tests for modules that would predict their long term-field performance.

Wohlgemuth, J.

2013-05-01T23:59:59.000Z

156

Small-Scale Carbon Sequestration Field Test Yields Significant Lessons  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small-Scale Carbon Sequestration Field Test Yields Significant Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned May 20, 2009 - 1:00pm Addthis Washington, DC - The Midwest Regional Carbon Sequestration Partnership, one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon capture and storage technologies, has completed a preliminary geologic characterization and sequestration field test at FirstEnergy's R. E. Burger Plant near Shadyside, Ohio. The project provided significant geologic understanding and "lessons learned" from a region of the Appalachian Basin with few existing deep well penetrations for geologic characterization. The initial targets for the geologic storage of carbon dioxide (CO2) at the

157

The field test was conducted in the Prairie  

NLE Websites -- All DOE Office Websites (Extended Search)

field test was conducted in the Prairie Pothole Region - an area field test was conducted in the Prairie Pothole Region - an area that stretches from central Iowa into Northern Alberta, Canada, and contains thousands of shallow wetlands formed by retreating glaciers approximately 10,000 years ago. Terrestrial carbon capture and storage (CCS) involves plant removal of CO 2 from the atmosphere using photosynthesis and storing the greenhouse gas (GHG) in biomass

158

Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume I  

SciTech Connect

This document is a draft final report (Volume 1) for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees} to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

Dev, H.; Enk, J.; Jones, D.; Saboto, W.

1996-02-12T23:59:59.000Z

159

Test Summary Report INEEL Sodium-Bearing Waste Vitrification Demonstration RSM-01-1  

SciTech Connect

The U.S. Department of Energy's Idaho National Engineering and Environmental Laboratory is storing large amounts of radioactive and mixed wastes. Most of the sodium-bearing wastes have been calcined, but about a million gallons remain uncalcined, and this waste does not meet current regulatory requirements for long-term storage and/or disposal. As a part of the Settlement Agreement between DOE and the State of Idaho, the tanks currently containing SBW are to be taken out of service by December 31, 2012, which requires removing and treatment the remaining SBW. Vitrification is the option for waste disposal that received the highest weighted score against the criteria used. Beginning in FY 2000, the INEEL high-level waste program embarked on a program for technology demonstration and development that would lead to conceptual design of a vitrification facility in the event that vitrification is the preferred alternative for SBW disposal. The Pacific Northwest National Laborator's Research-Scale Melter was used to conduct these initial melter-flowsheet evaluations. Efforts are underway to reduce the volume of waste vitrified, and during the current test, an overall SBW waste volume-reduction factor of 7.6 was achieved.

Goles, Ronald W.; Perez, Joseph M.; Macisaac, Brett D.; Siemer, Darryl D.; Mccray, John A.

2001-05-21T23:59:59.000Z

160

A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site  

SciTech Connect

The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, which Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex.

Jackson, J. P.; Pastor, R. S.

2002-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced Utility Mercury-Sorbent Field-Testing Program  

Science Conference Proceedings (OSTI)

This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was purchased used and all of the equipment has nearly reached the end of its useful service.

Ronald Landreth

2007-12-31T23:59:59.000Z

162

Field testing advanced geothermal turbodrill (AGT). Phase 1 final report  

DOE Green Energy (OSTI)

Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

Maurer, W.C.; Cohen, J.H.

1999-06-01T23:59:59.000Z

163

FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS  

DOE Green Energy (OSTI)

Progress is reported for the period from July 1, 2002 to September 30, 2002. Assessment of the demonstration site has defined many aspects of the reservoir. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. Further analysis of the pilot site by the partners has indicated that a staged demonstration is considered optimal. A phased approach to implementation of the demonstration is proposed to reduce the risk of uncertainties as to whether the reservoir has basic properties (connectivity and ability to pressure-up) conducive to a meaningful CO2 flood demonstration. The proposed plan is to flood a 10+-acre pattern. The results of this small flood will be used to evaluate the viability of performing a larger-scale ({approx}60-acre) demonstration and will be used by the partners to decide their role in a larger-scale demonstration. The 10+-acre pattern requires the least up-front expense to all parties to obtain the data required to accurately assess the viability and economics of CO2 flooding in the L-KC and of a larger-scale demonstration. In general, the following significant modifications to the original Statement of Work are proposed: (1) The proposed plan would extend the period of Budget Period 1 to May 7, 2003. (2) Redefine the period of Budget Period 2 from 3/7/01-3/7/05 to 5/7/03-3/7/08. (3) Redefine the period of Budget Period 3 from 3/7/05-3/7/06 to 3/7/08-3/7/09. (4) To allow initial verification of the viability of the process before proceeding into the flood demonstration, move activities involved with preparing wells in the flood pattern (Task 5.1), repressurizing the pattern (Task 5.2), and constructing surface facilities (Task 5.3) from Budget Period 2 to Budget Period 1. (5) Allow US Energy Partners (USEP) to be a supplier of carbon dioxide from the ethanol plant in Russell, Kansas. (6) Change the pilot flood pattern, including the number and location of wells involved in the pilot. (7) Expenses are shifted from Budget Period 2 to Budget Period 1 to cover costs of additional reservoir characterization. All modified activities and tasks would maintain the existing required industry match of 55% in Budget Period 1, 65% in Budget Period 2, and 90% in Budget Period 3. Carbon dioxide supplied by the USEP ethanol facility would be valued such that the total cost of CO2 delivered to the demonstration site injection wellhead would not exceed the $3.00/MCF cost of supplying CO2 from Guymon, OK. Total cost of the modified project is $4,415,300 compared with $5,388,064 in the original project. The modified project would require no additional funding from US DOE.

Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

2002-06-30T23:59:59.000Z

164

An Act to Facilitate Testing and Demonstration of Renewable Ocean Energy Technology (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

This law streamlines and coordinates State permitting and submerged lands leasing requirements for renewable ocean energy demonstration projects, aiding Maine's goal to become an international...

165

Possible demonstration of ionization cooling using absorbers in a solenoidal field  

SciTech Connect

Ionization cooling may play an important role in reducing the phase space volume of muons for a future muon-muon collider. We describe a possible experiment to demonstrate transverse emittance cooling using a muon beam at the AGS at Brookhaven National Laboratory. The experiment uses device dimensions and parameters and beam conditions similar to what is expected in an actual muon-muon collider.

Fernow, R.C.; Gallardo, J.C.; Kirk, H.G. [and others

1995-12-01T23:59:59.000Z

166

Title: Electrical Power Generation from Produced Water: Field Demonstration of Ways to Reduce Operating Costs of Small Producers  

E-Print Network (OSTI)

Title: Electrical Power Generation from Produced Water: Field Demonstration of Ways to Reduce produced water to create "green" electricity usable on site or for transmission off site . The goal the environmental impact by creating green electricity using produced water and no additional fossil fuel. Approach

167

Heber Binary-Cycle Geothermal Demonstration Power Plant, Half-Load Testing, Performance, and Thermodynamics  

Science Conference Proceedings (OSTI)

In its second year of operation, the Heber binary-cycle geothermal demonstration plant met design expectations for part-load operation. The plant, located in Heber, California, also demonstrated the environmental acceptability and design thermodynamic performance capabilities of the binary-cycle process.

1988-08-01T23:59:59.000Z

168

Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters  

Science Conference Proceedings (OSTI)

Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with ??warm bore? diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged ??spider? design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project ??Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters? was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZP??s product development program, the amount of HTS wire employed per FCL and its cost as a percentage of the total FCL product content had not dropped substantially from an unsustainable level of more than 50% of the total cost of the FCL, nor had the availability increased (today the availability of 2G wire for commercial applications outside of specific partnerships with the leading 2G wire manufacturers is extremely limited). ZP had projected a very significant commercial potential for FCLs with higher performance and lower costs compared to the initial models built with 1G wire, which would come about from the widespread availability of low-cost, high-performance 2G HTS wire. The potential for 2G wires at greatly reduced performance-based prices compared to 1G HTS conductor held out the potential for the commercial production of FCLs at price and performance levels attractive to the utility industry. However, the price of HTS wire did not drop as expected and today the available quantities of 2G wire are limited, and the price is higher than the currently available supplies of 1G wire. The commercial option for ZP to provide a reliable and reasonably priced FCL to the utility industry is to employ conventional resistive conductor DC electromagnets to bias the FCL. Since the premise of the original funding was to stimulate the HTS wire industry and ZP concluded that copper-based magnets were more economical for the foreseeable future, DOE and ZP decided to mutually terminate the project.

Frank Darmann; Robert Lombaerde; Franco Moriconi; Albert Nelson

2011-10-31T23:59:59.000Z

169

DOE Field Operations Program EV and HEV Testing  

SciTech Connect

The United States Department of Energys (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

Francfort, James Edward; Slezak, L. A.

2001-10-01T23:59:59.000Z

170

Strategies for designing, testing and demonstrating safety : what synthetic biology can learn from retrospective cases  

E-Print Network (OSTI)

Synthetic biology is an emerging technology field within the realm of genetic engineering, differing from traditional genetic engineering in that it focuses on the modularization of genetic parts and the creation of de ...

Yeddanapudi, Neelima, 1976-

2009-01-01T23:59:59.000Z

171

Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 1  

Science Conference Proceedings (OSTI)

The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 1 discusses the following topics: the background of the project; test program description; summary of tests and test results; problem evaluation; functional requirements confirmation; recommendations; and completed test documentation for tests performed in Phase 3.

Not Available

1993-05-01T23:59:59.000Z

172

Full scale field demonstration of unheated anaerobic contact stabilization. Project status report, October 1980-February 1981  

DOE Green Energy (OSTI)

The objective of the study reported here is to demonstrate that municipal sewage sludges can be anaerobically digested with little or no heating. To this end, two digesters at the Jackson Pike Wastewater Treatment Plant in Columbus, Ohio, have been converted to the anaerobic contact stabilization process. This, it is hoped, will permit positive and independent control of the solids retention time (SRT) in the system, so that solids may be retained long enough to ensure substantially complete digestion even at reduced temperatures. Digestion at a temperature of 71/sup 0/F and an SRT of 33 days produces results similar to digestion at a temperature of 91/sup 0/F and an SRT of 11 days. There is no evidence of impaired or unstable digestion at the lower temperature. (DMC)

Sykes, R.M.

1981-04-01T23:59:59.000Z

173

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercialization demonstration  

Science Conference Proceedings (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U. S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-07-01T23:59:59.000Z

174

Continuous-flow stirred-tank reactor 20-L demonstration test: Final report  

SciTech Connect

One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

Lee, D.D.; Collins, J.L.

2000-02-01T23:59:59.000Z

175

Field Demonstration of Active Desiccant Modules Designed to Integrate with Standard Unitary Rooftop Package Equipment - Final Report: Phase 3  

SciTech Connect

This report summarizes the investigation of two active desiccant module (ADM) pilot site installations initiated in 2001. Both pilot installations were retrofits at existing facilities served by conventional heating, ventilating, and air-conditioning (HVAC) systems that had encountered frequent humidity control, indoor air quality (IAQ), and other operational problems. Each installation involved combining a SEMCO, Inc., ADM (as described in Fischer and Sand 2002) with a standard packaged rooftop unit built by the Trane Company. A direct digital control (DDC) system integral to the ADM performed the dual function of controlling the ADM/rooftop combination and facilitating data collection, trending, and remote performance monitoring. The first installation involved providing preconditioned outdoor air to replace air exhausted from the large kitchen hood and bathrooms of a Hooters restaurant located in Rome, Georgia. This facility had previously added an additional rooftop unit in an attempt to achieve occupant comfort without success. The second involved conditioning the outdoor air delivered to each room of a wing of the Mountain Creek Inn at the Callaway Gardens resort. This hotel, designed in the ''motor lodge'' format with each room opening to the outdoors, is located in southwest Georgia. Controlling the space humidity always presented a serious challenge. Uncomfortable conditions and musty odors had caused many guests to request to move to other areas within the resort. This is the first field demonstration performed by Oak Ridge National Laboratory where significant energy savings, operating cost savings, and dramatically improved indoor environmental conditions can all be claimed as the results of a retrofit desiccant equipment field installation. The ADM/rooftop combination installed at the restaurant resulted in a reduction of about 34% in the electricity used by the building's air-conditioning system. This represents a reduction of approximately 15% in overall electrical energy consumption and a 12.5-kW reduction in peak demand. The cost of gas used for regeneration of the desiccant wheel over this period of time is estimated to be only $740, using a gas cost of $0.50 per therm--the summer rate in 2001. The estimated net savings is $5400 annually, resulting in a 1-2 year payback. It is likely that similar energy/cost savings were realized at the Callaway Gardens hotel. In this installation, however, a central plant supplied the chilled water serving fan coil units in the hotel wing retrofitted with the ADM, so it was not metered separately. Consequently, the owner could not provide actual energy consumption data specific to the facility. The energy and operating cost savings at both sites are directly attributable to higher cooling-season thermostat settings and decreased conventional system run times. These field installations were selected as an immediate and appropriate response to correct indoor humidity and fresh air ventilation problems being experienced by building occupants and owners, so no rigorous baseline-building vs. test-building energy use/operating cost savings results can be presented. The report presents several simulated comparisons between the ADM/roof HVAC approach and other equipment combinations, where both desiccant and conventional systems are modeled to provide comparable fresh air ventilation rates and indoor humidity levels. The results obtained from these simulations demonstrate convincingly the energy and operating cost savings obtainable with this hybrid desiccant/vapor-compression technology, verifying those actually seen at the pilot installations. The ADM approach is less expensive than conventional alternatives providing similar performance and indoor air quality and provides a very favorable payback (1 year or so) compared with oversized rooftop units that cannot be operated effectively with the necessary high outdoor air percentages.

Fischer, J

2004-03-15T23:59:59.000Z

176

Engineering design and test plan for demonstrating DETOX treatment of mixed wastes  

SciTech Connect

DETOX is a cocatalyzed wet oxidation process in which the catalysts are a relatively great concentration of iron ions (typically as iron(III) chloride) in the presence of small amounts of platinum and ruthenium ions. Organic compounds are oxidized completely to carbon dioxide, water, and (if chlorinated) hydrogen chloride. The process has shown promise as a non-thermal alternative to incineration for treatment and/or volume reduction of hazardous, radioactive, and mixed wastes. Design and fabrication of a demonstration unit capable of destroying 25. Kg/hr of organic material is now in progress. This paper describes the Title 2 design of the demonstration unit, and the planned demonstration effort at Savannah River Site (SRS) and Weldon Spring Site Remedial Action Project (WSSRAP).

Goldblatt, S.; Dhooge, P.

1995-03-01T23:59:59.000Z

177

Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)  

SciTech Connect

This document is the Health and Safety Plan (HASP) for the demonstration of IITRI`s EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85{degrees} to 95{degrees}C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area.

Dev, H.

1994-12-28T23:59:59.000Z

178

Santa Clara 2MW Fuel Cell Demonstration Power Plant: Interim Acceptance Test Report  

Science Conference Proceedings (OSTI)

Power generation testing of the world's largest carbonate fuel cell power system began in Spring 1996. Lessons learned will enable developers to advance the commercialization of megawatt- scale, carbonate fuel cell systems for distributed generation applications.

1997-02-01T23:59:59.000Z

179

Technical specification: Mixed-oxide pellets for the light-water reactor irradiation demonstration test  

Science Conference Proceedings (OSTI)

This technical specification is a Level 2 Document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-oxide Fuel Irradiation Test Project Plan. It is patterned after the pellet specification that was prepared by Atomic Energy of Canada, Limited, for use by Los Alamos National Laboratory in fabrication of the test fuel for the Parallex Project, adjusted as necessary to reflect the differences between the Canadian uranium-deuterium reactor and light-water reactor fuels. This specification and the associated engineering drawing are to be utilized only for preparation of test fuel as outlined in the accompanying Request for Quotation and for additional testing as directed by Oak Ridge National Laboratory or the Department of Energy.

Cowell, B.S.

1997-06-01T23:59:59.000Z

180

Austin Energy AltCar Expo - AVTA's PHEV Testing and Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Economy Driving Schedule) dynamometer test cycles 6 Hymotion Prius - UDDS Fuel Use * 5 kWh A123Systems (Li) V1 and Prius packs (AC kWh) Hymotion PHEV Prius MPG & kWh - UDDS...

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Seasonal variations of grounding parameters by field tests  

SciTech Connect

The past fifteen years have seen considerable research in the area of substation grounding design, analysis and testing. These research include the revision of the IEEE Std.-80, the development of PC based computer programs, the in depth analysis of grounding parameters and the development of new field testing methods and devices. In spite of these advances, several questions were often asked, primarily due to safety concerns. The questions were related to the seasonal variation of critical grounding parameters such as the soil and gravel resistivities and their influence on the body current in an accidental circuit. There was also a need to study the total behavior of a substation ground grid with respect to different weather conditions by performing field tests. In response to the above needs, a comprehensive field test program was developed and implemented. The field test consisted of flowing approximately 150 amperes through the Texas Valley ground grid from a remote substation. The parameters investigated in this project were the grid impedance, the grid potential rise (GPR) , the fault current distribution, the touch/step voltages, the body current on different gravel beds and the soil/gravel resistivities. The measurements were performed in the rainy, winter and summer weather conditions during 1989--1990. The field test results, overall, indicate that the rainy weather is the worst condition for the substation safety because of the substantial reduction in the protective characteristics of the gravel. Among the gravel types, the washed gravel has much superior protective characteristics compared to the crusher run type of gravel. A comparison of SGSYS computed grounding parameters with measured results indicates that the grid resistance and GPR compare well but the computed touch voltage and body current are substantially higher than the measured values.

Patel, S.G. (Georgia Power Co., Forest Park, GA (United States). Research Center)

1992-07-01T23:59:59.000Z

182

Prototypical Rod Construction Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 3  

Science Conference Proceedings (OSTI)

The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 3 discusses the following topics: Downender Test Results and Analysis Report; NFBC Canister Upender Test Results and Analysis Report; Fuel Assembly Handling Fixture Test Results and Analysis Report; and Fuel Canister Upender Test Results and Analysis Report.

Not Available

1993-05-01T23:59:59.000Z

183

Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas  

SciTech Connect

A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide was injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide was injected to displace the oil bank to the production wells by water injection. By March 7,2010, 8,736 bbl of oil were produced from the pilot. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver A7, Colliver A3, Colliver A14 and Graham A4 located on adjacent leases. About 19,166 bbl of incremental oil were estimated to have been produced from these wells as of March 7, 2010. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Estimated oil recovery attributed to the CO2 flood is 27,902 bbl which is equivalent to a gross CO2 utilization of 4.8 MCF/bbl. The pilot project is not economic.

Alan Byrnes; G. Paul Willhite; Don Green; Richard Pancake; JyunSyung Tsau; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

2010-03-07T23:59:59.000Z

184

Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment  

SciTech Connect

In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

2012-07-01T23:59:59.000Z

185

Management Plan: Demonstration testing and evaluation of in situ soil heating  

Science Conference Proceedings (OSTI)

In this project IITRI will demonstrate an in situ soil heating technology for the removal of hazardous organic contaminants present in the soil. In Situ heating will be accomplished by the application of 60 Hz AC power to the soil. The soil will be heated to a temperature of about 90{degree}C. This technology is suited for the removal of those organic compounds which have a normal boiling point in the range of 100{degree} to 210{degree}C, or else for those which exhibit a pure component vapor pressure of at least 10 mm Hg in the 90{degree} to 100{degree}C temperature range. For example, perchloroethylene, dichlorobenzene, trichlorobenzene, etc. may be removed by in situ AC heating. It is planned to demonstrate the technology by heating approximately 400 tons of soil in the K-1070 Classified Burial Ground located at DOE`s K-25 Site located in Oak Ridge, TN. It is estimated that the heating portion of the demonstration will take approximately 3 weeks at an average power input rate of 150 to 175 kill. IITRI expects to spend considerable time in the front end reviewing site characteristics, preparing detail design, developing Health and Safety Plans and other documents needed to obtain regulatory approval for the demonstration, arranging for site sampling, infrastructure development and document preparation. It is anticipated that site activities will begin in approximately 5 to 6 months. This contract was signed on September 30, 1993. IITRI started work on it in October 1993. It is planned to complete the demonstration and submit approved final reports by September 30, 1994. This project has 12 tasks and four major milestones. The major milestones and their planned completion dates are presented.

Dev, H.

1993-11-01T23:59:59.000Z

186

Capacity degradation of field-tested silica gel samples  

DOE Green Energy (OSTI)

Researchers at the Solar Energy Research Institute (SERI) have begun preliminary studies to quantify the effect of contamination of silica gel used in dehumidification processes of desiccant cooling systems. Sorption capacity degradation of field tested samples was measured, and the source of degradation was quantified using surface analysis experimental methods.

Penney, T.R.; Pesaran, A.A.; Thomas, T.M.

1985-06-01T23:59:59.000Z

187

FIELD OBSERVATIONS OF GAS-CONDENSATE WELL TESTING  

E-Print Network (OSTI)

, a commercial simulator was used to perform phase- equilibrium and property calculations based on the PengFIELD OBSERVATIONS OF GAS- CONDENSATE WELL TESTING A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY-point pressure is impacted severely due to condensate banking around the wellbore. Condensate banking also

188

Gas characterization system 241-AN-105 field acceptance test procedure  

DOE Green Energy (OSTI)

This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AN-105. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

Schneider, T.C.

1996-03-01T23:59:59.000Z

189

Gas characterization system 241-AW-101 field acceptance test procedure  

DOE Green Energy (OSTI)

This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AW-101. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

Schneider, T.C.

1996-03-01T23:59:59.000Z

190

An Integrated Refrigeration, Humidity Control and HVAC Solution for Supermarkets: Field Demonstration at a Wal-Mart SuperCenter  

Science Conference Proceedings (OSTI)

This report describes a systematic approach to developing an energy efficient and cost effective solution for refrigeration, humidity control, indoor air quality, and space heating and cooling for large retail super centers. The report also presents the results of a field demonstration using a newly developed integrated system that achieved significant energy savings and other benefits compared to the state-of-the-art system.

2004-04-20T23:59:59.000Z

191

SOLERAS - Solar Cooling Engineering Field Test Project: Honeywell Technology Strategy Center. Final report, Volume 2. Engineering field test  

Science Conference Proceedings (OSTI)

The SOLERAS solar cooling system at Arizona Public Service Company in Phoenix, Arizona, was subjected to engineering field testing for a period of 18 months. Although some problems arose, which is typical with a new engineering model, the system generally ran well. This document describes the work completed in all three phases of this program, which included the preliminary analysis and detailed design of the solar cooling system, installation, testing, and data analysis.

Not Available

1982-01-01T23:59:59.000Z

192

Prototype Engineered Barrier System Field Test (PEBSFT); Final report  

SciTech Connect

This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity and attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT.

Ramirez, A.L. [ed.; Buscheck, T.; Carlson, R.; Daily, W.; Lee, K.; Lin, Wunan; Mao, Nai-hsien; Ueng, Tzou-Shin; Wang, H.; Watwood, D.

1991-08-01T23:59:59.000Z

193

NETL: News Release - Field Testing Underway of Remote Sensor Gas Leak  

NLE Websites -- All DOE Office Websites (Extended Search)

September 16, 2004 September 16, 2004 Field Testing Underway of Remote Sensor Gas Leak Detection Systems CASPER, WY-An extensive field test that will document and demonstrate how effective technologies are in remotely detecting natural gas leaks is being held September 13-17, as the Department of Energy simulates natural gas leaks along a predetermined course at DOE's Rocky Mountain Oilfield Testing Center (RMOTC). Low-flying aircraft, satellites and special ground vehicles carrying advanced leak detection sensors will participate as representatives of the gas industry and potential technology manufacturers observe the technologies in a real-world environment and evaluate their readiness for commercialization. The test plan was devised with strong input from an industry advisory board and test participants to compare the effectiveness of several gas-leak detection devices from ground, air and satellite based platforms.

194

Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.  

SciTech Connect

The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

Quarles, Stephen, L.; Sindelar, Melissa

2011-12-13T23:59:59.000Z

195

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results  

SciTech Connect

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

Gary Blythe

2007-05-01T23:59:59.000Z

196

Modeling and optimization of operating parameters for a test-cell option of the Fusion Power Demonstration-II tandem mirror design  

SciTech Connect

Models of tandem mirror devices operated with a test-cell insert have been used to calculate operating parameters for FPD-II+T, an upgrade of the Fusion Power Demonstration-II device. Two test-cell configurations were considered, one accommodating two 1.5 m blanket test modules and the other having four. To minimize the cost of the upgrade, FPD-II+T utilizes the same coil arrangement and machine dimensions outside of the test cell as FPD-II, and the requirements on the end cell systems have been held near or below those for FPD-II. The maximum achievable test cell wall loading found for the short test-cell was 3.5 MW/m/sup 2/ while 6.0 MW/m/sup 2/ was obtainable in the long test-cell configuration. The most severe limitation on the achievable wall loading is the upper limit on test-cell beta set by MHD stability calculations. Modification of the shape of the magnetic field in the test-cell by improving the magnet design could raise this beta limit and lead to improved test-cell performance.

Haney, S.W.; Fenstermacher, M.E.

1985-04-03T23:59:59.000Z

197

Results of a Field Test Using R-407C in Split System Heat Pumps  

E-Print Network (OSTI)

This paper discusses the results of a field test to determine implications of an R-407C replacement of R-22. A change of refrigerants precipitates other changes in materials, component selection, and processing. In addition, thermodynamic properties are different. Consequently, the effects on durability, thermal performance, humidity control, servicing, and manufacturability were questioned. The field test addressed many of these questions. Anticipated changes in manufacturing processes were implemented on the production line. Contractors were educated on the differences in the refrigerant. Data were obtained by refrigerant, lubricant, and component tear down analysis. Experiential information was derived from feed back of contractors and home owners, as well as multiple site visits. Generally, the field test has demonstrated that by following a few basic rules, the industry can anticipate use of R-407C with satisfactory results. However, the surprising appearance of a contaminate precipitant indicates the need for more investigation into long term effects.

Boyd, A.

1996-01-01T23:59:59.000Z

198

Flow reference method testing and analysis: Field test plan, Texas Utilities Decordova Steam Electric Station  

SciTech Connect

This report describes the experimental design and test plan for the first of three field tests that the US Environmental Protection Agency (EPA) conducted in 1997 as part of a major study to evaluate potential improvements to Method 2, EPA`s test method for measuring flue gas volumetric flow in stacks. The experimental design involved four test teams taking concurrent in-stack measurements with velocity sensing probes. Seven types of probes were included in the study. Three test matrices were used to gather data for inter-probe and inter-team comparisons and to assess the impact of velocity decline near the stack wall on volumetric flow measurements.

Lieberman, E.; Werner, A.S.

1997-05-30T23:59:59.000Z

199

GLASS FORMULATION DEVELOPMENT AND TESTING FOR COLD CRUCIBLE INDUCTION MELTER (CCIM) ADVANCED REMEDIATION TECHNOLOGIES DEMONSTRATION PROJECT - 9208  

SciTech Connect

Over the past few years, Cold Crucible Induction Melter (CCIM) demonstrations have been completed using SRS sludge batches 2, 3 and 4 (SB2, SB3 and SB4) simulant compositions. These campaigns demonstrated the ability of the CCIM to effectively produce quality glasses at high waste loadings. The current Advanced Remediation Technology (ART) Phase II-A Project is aimed at demonstrating the CCIM technology under representative DWPF flowsheet conditions and to demonstrate extended operations of the melter. A glass composition development effort was completed to identify and recommend a frit composition and sludge batch 4 (SB4) simulant waste loading target for subsequent ART-Phase II-A CCIM demonstration testing. Based on the results of the glass formulation testing, it was recommended that the Frit 503-R6 composition (B{sub 2}O{sub 3} = 14 wt %; Li{sub 2}O = 9 wt %; Na{sub 2}O = 3 wt %; and SiO{sub 2} = 74 wt %) be utilized for the demonstration. Furthermore, a waste loading of 46 wt % was recommended. The recommended frit and waste loading would produce a glass with acceptable durability with a liquidus temperature adequately below the 1250 C nominal CCIM operating temperature. This frit composition and waste loading was found to result in a glass that met CCIM processing requirements for viscosity, electrical conductivity and thermal conductivity. The recommended frit and waste loading level should also provide a buffer for sludge product compositional variation to support the Phase II-A CCIM demonstration.

Marra, J; Amanda Billings, A; David Peeler, D; Michael Stone, M; Tommy Edwards, T

2008-08-27T23:59:59.000Z

200

Field Test and Demonstration of 5-kW Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

Fuel cell power systems have very high fuel efficiencies and low environmental emissions. They can be used to serve local end-use loads as distributed generators, thus helping to relieve distribution system constraints. As the cost of new central power generation systems continue to rise, delivered electricity and retail energy rates are also likely to rise, making electricity generated by fuel cell systems potentially as efficient and cost-effective as electricity delivered from large central power stat...

2008-10-09T23:59:59.000Z

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 2  

Science Conference Proceedings (OSTI)

The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 2 discusses the following topics: Fuel Rod Extraction System Test Results and Analysis Reports and Clamping Table Test Results and Analysis Reports.

Not Available

1993-05-01T23:59:59.000Z

202

Demonstration, testing, and evaluation of in situ heating of soil. Volume 1, Final report  

SciTech Connect

This document is a final reports in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating.

Dev, H.; Enk, J.; Jones, D.; Sabato, W.

1996-04-05T23:59:59.000Z

203

Isotope Brayton ground demonstration testing and flight qualification. Volume 1. Technical program  

SciTech Connect

A program is proposed for the ground demonstration, development, and flight qualification of a radioisotope nuclear heated dynamic power system for use on space missions beginning in the 1980's. This type of electrical power system is based upon and combines two aerospace technologies currently under intense development; namely, the MHW isotope heat source and the closed Brayton cycle gas turbine. This power system represents the next generation of reliable, efficient economic electrical power equipment for space, and will be capable of providing 0.5 to 2.0 kW of electric power to a wide variety of spacecraft for earth orbital and interplanetary missions. The immediate design will be based upon the requirements for the Air Force SURVSATCOM mission. The proposal is presented in three volumes plus an Executive Summary. This volume describes the tasks in the technical program.

1974-12-09T23:59:59.000Z

204

Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1  

SciTech Connect

The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

1997-05-10T23:59:59.000Z

205

Field Testing: Independent, Accredited Testing and Validation for the Wind Industry (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the field testing capabilities at the National Wind Technology Center (NWTC). NREL's specialized facilities and personnel at the NWTC provide the U.S. wind industry with scientific and engineering support that has proven critical to the development of wind energy for U.S. energy needs. The NWTC's specialized field-testing capabilities have evolved over 30 years of continuous support by the U.S. Department of Energy Wind and Hydropower Technologies Program and long standing industry partnerships. The NWTC provides wind industry manufacturers, developers, and operators with turbine and component testing all in one convenient location. Although industry utilizes sophisticated modeling tools to design and optimize turbine configurations, there are always limitations in modeling capabilities, and testing is a necessity to ensure performance and reliability. Designs require validation and testing is the only way to determine if there are flaws. Prototype testing is especially important in capturing manufacturing flaws that might require fleet-wide retrofits. The NWTC works with its industry partners to verify the performance and reliability of wind turbines that range in size from 400 Watts to 3 megawatts. Engineers conduct tests on components and full-scale turbines in laboratory environments and in the field. Test data produced from these tests can be used to validate turbine design codes and simulations that further advance turbine designs.

Not Available

2011-11-01T23:59:59.000Z

206

NETL: News Release - DOE Announces Further Field Testing of Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Announces Further Field Testing of Advanced Mercury Control Technologies DOE Announces Further Field Testing of Advanced Mercury Control Technologies Six Projects Selected in Round 2 to Address Future Power Plant Mercury Reduction Initiatives PITTSBURGH, PA - With an eye on future federal regulations aimed at reducing mercury emissions, the U.S. Department of Energy has selected six additional projects as part of a DOE research program to advance the technical readiness of mercury control options for the Nation's fleet of coal-fired power plants. The six projects in this second round of awards build on last year's selection of eight projects, and will verify technology performance, evaluate costs, and assess balance-of-plant impacts. The projects will field test advanced, post-combustion technologies involving all coal types at utilities using pulverized coal or cyclone-boiler configurations, and focus on technologies capable of removing mercury from flue gas containing higher concentrations of elemental mercury. The technologies include sorbent injection, wet flue gas desulfurization systems enhancement, and combustion optimization.

207

Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 4  

Science Conference Proceedings (OSTI)

The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 4 discusses the following topics: Rod Compaction/Loading System Test Results and Analysis Report; Waste Collection System Test Results and Analysis Report; Waste Container Transfer Fixture Test Results and Analysis Report; Staging and Cutting Table Test Results and Analysis Report; and Upper Cutting System Test Results and Analysis Report.

Not Available

1993-05-01T23:59:59.000Z

208

Pretest Caluculations of Temperature Changes for Field Thermal Conductivity Tests  

Science Conference Proceedings (OSTI)

A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transport properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J {center_dot} m{sup -3} {center_dot} K{sup -1}), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result.

N.S. Brodsky

2002-07-17T23:59:59.000Z

209

Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site  

DOE Green Energy (OSTI)

Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

Murphy, R.W.; Domingo, N.

1982-05-01T23:59:59.000Z

210

Field investigation at the Faultless Site Central Nevada Test Area  

DOE Green Energy (OSTI)

An evaluation of groundwater monitoring at non-Nevada Test Site underground nuclear test sites raised questions about the potential for radionuclide migration from the Faultless event and how to best monitor for such migration. With its long standing interest in the Faultless area and background in Nevada hydrogeology, the Desert Research Institute conducted a field investigation in FY92 to address the following issues: The status of chimney infilling (which determines the potential for migration); the best level(s) from which to collect samples from the nearby monitoring wells, HTH-1 and HTH-2; the status of hydraulic heads in the monitoring well area following records of sustained elevated post-shot heads. The field investigation was conducted from July 27 to 31 and August 4 to 7, 1992. Temperature and electrical conductivity logging were performed in HTH-1, HTH-2, and UC-1-P-2SR. Water samples were collected from HTH-1 and HTH-2. Lawrence Livermore National Laboratory (LLNL) also collected samples during the July trip, including samples from UC-1-P-2SR. This report presents the data gathered during these field excursions and some preliminary conclusions. Full interpretation of the data in light of the issues listed above is planned for FY93.

Chapman, J.B.; Mihevc, T.M.; Lyles, B.

1992-11-01T23:59:59.000Z

211

FIELD INVESTIGATION AT THE FAULTLESS SITE CENTRAL NEVADA TEST  

NLE Websites -- All DOE Office Websites (Extended Search)

FIELD FIELD INVESTIGATION AT THE FAULTLESS SITE CENTRAL NEVADA TEST AREA DOEINV/10845--T3 DE93 005915 by JennyB. Chapman, Thdd M. Mihevc and Brad Lyles Water Resources Center Desert Research Institute DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring

212

Scaled Vitrification System III (SVS III) Process Development and Laboratory Tests at the West Valley Demonstration Project  

SciTech Connect

At the West Valley Demonstration Project (WVDP),the Vitrification Facility (VF)is designed to convert the high-level radioactive waste (HLW)stored on the site to a stable glass for disposal at a Department of Energy (DOE)-specified federal repository. The Scaled Vitrification System III (SVS-III)verification tests were conducted between February 1995 and August 1995 as a supplemental means to support the vitrification process flowsheet, but at only one seventh the scale.During these tests,the process flowsheet was refined and optimized. The SVS-III test series was conducted with a focus on confirming the applicability of the Redox Forecasting Model, which was based on the Index of Feed Oxidation (IFO)developed during the Functional and Checkout Testing of Systems (FACTS)and SVS-I tests. Additional goals were to investigate the prototypical feed preparation cycle and test the new target glass composition. Included in this report are the basis and current designs of the major components of the Scale Vitrification System and the results of the SVS-III tests.The major subsystems described are the feed preparation and delivery, melter, and off-gas treatment systems. In addition,the correlation between the melter's operation and its various parameters;which included feed rate,cold cap coverage,oxygen reduction (redox)state of the glass,melter power,plenum temperature,and airlift analysis;were developed.

V. Jain; S. M. Barnes; B. G. Bindi; R. A. Palmer

2000-04-30T23:59:59.000Z

213

Operation and design of selected industrial process heat field tests  

DOE Green Energy (OSTI)

The DOE program of solar industrial process heat field tests has shown solar energy to be compatible with numerous industrial needs. Both the operational projects and the detailed designs of systems that are not yet operational have resulted in valuable insights into design and hardware practice. Typical of these insights are the experiences discussed for the four projects reviewed. Future solar IPH systems should benefit greatly not only from the availability of present information, but also from the wealth of operating experience from projects due to start up in 1981.

Kearney, D. W.

1981-02-01T23:59:59.000Z

214

System Identification of Alfred Zampa Memorial Bridge Using Dynamic Field Test Data  

E-Print Network (OSTI)

Bridge Using Dynamic Field Test Data by Xianfei He 1 , Babak80. A set of dynamic field tests were conducted on the AZMBto traffic. These tests provided a unique opportunity to

He, Xianfei; Moaveni, Babak; Conte, Joel P; Elgamal, Ahmed; Masri, Sami F.

2009-01-01T23:59:59.000Z

215

NETL: News Release - DOE Regional Partnership Successfully Demonstrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada Washington, DC - A field test demonstrating the best approaches for terrestrial carbon...

216

Field Testing of Nano-PCM Enhanced Building Envelope Components  

SciTech Connect

The U.S. Department of Energy s (DOE) Building Technologies Program s goal of developing high-performance, energy efficient buildings will require more cost-effective, durable, energy efficient building envelopes. Forty-eight percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field-testing of prototype envelope components is an important step in estimating their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility at Charleston, SC. The first test wall was divided into four sections, which were separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCM-enhanced wallboards: one was a three-layer structure, in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheets-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side, which served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. Further, numerical modeling of the walls containing the nano-PCM wallboards were performed to determine their actual impact on wall-generated heating and cooling loads. The models were first validated using field data, and then used to perform annual simulations using Typical Meteorological Year (TMY) weather data. This article presents the measured performance and numerical analysis to evaluate the energy-saving potential of the nano-PCM-enhanced building components.

Biswas, Kaushik [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL

2013-08-01T23:59:59.000Z

217

Williston basin. Milestone test renews interest in Red Wing Creek field's meteor crater  

SciTech Connect

New drilling in the vicinity of Red Wing Creek field in McKenzie County, North Dakota has renewed interest in an area that has intrigued geologists for a number of years. Red Wing Creek was discovered in 1972 by True Oil Co. and has demonstrated better per-acre oil recovery than any other oil field in the Williston Basin. Fully developed several years ago, the field produces from what has been described as the central peak of an astrobleme, within a meteor crater. The current test by Milestone Petroleum Inc. is permitted to 14,200 ft and is being drilled on the rim of the crater, in SW SW 35-148n-101w, approx. a mile south of Red Wing production. The primary objective is the Ordovician Red River; but plans call for drilling deeper, through the Winnipeg, to below the Mississippian sediments that produce at Red Wing Creek field. At least 3 unsuccessful Red River tests have been drilled in or near the field in earlier years, but not in the area where Milestone is drilling. Production at Red Wing has come from porosity zones in a Mississippian oil column that measured 2600 ft in the original well; the better wells are in the heart of the field, on a rebound cone in the center of the crater.

Rountree, R.

1983-04-01T23:59:59.000Z

218

Exploration 3-D Seismic Field Test/Native Tribes Initiative  

SciTech Connect

To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

1999-04-27T23:59:59.000Z

219

Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study  

SciTech Connect

Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced RISMC toolkit that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

2012-08-01T23:59:59.000Z

220

Cooperative field test program for wind systems. Final report  

DOE Green Energy (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS  

DOE Green Energy (OSTI)

Western Research Institute (WRI) has developed a new commercial product ready for technology transfer, the Diesel Dog{reg_sign} Portable Soil Test Kit, for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to the technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated as ASTM Method D 5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In June 2001, the Diesel Dog technology won an American Chemical Society Regional Industrial Innovations Award. To gain field experience with the new technology, Diesel Dog kits have been used for a variety of site evaluation and cleanup activities. Information gained from these activities has led to improvements in hardware configurations and additional insight into correlating Diesel Dog results with results from laboratory methods. The Wyoming Department of Environmental Quality (DEQ) used Diesel Dog Soil Test Kits to guide cleanups at a variety of sites throughout the state. ENSR, of Acton, Massachusetts, used a Diesel Dog Portable Soil Test Kit to evaluate sites in the Virgin Islands and Georgia. ChemTrack and the U.S. Army Corps of Engineers successfully used a test kit to guide excavation at an abandoned FAA fuel-contaminated site near Fairbanks, Alaska. Barenco, Inc. is using a Diesel Dog Portable Soil Test Kit for site evaluations in Canada. A small spill of diesel fuel was cleaned up in Laramie, Wyoming using a Diesel Dog Soil Test Kit.

Susan S. Sorini; John F. Schabron; Joseph F. Rovani, Jr.

2002-09-30T23:59:59.000Z

222

Documentation of the Irvine Integrated Corridor Freeway Ramp Metering and Arterial Adaptive Control Field Operational Test  

E-Print Network (OSTI)

Integrated Ramp Metering/Adaptive Signal Control FieldIntegrated Ramp Metering/Adaptive Signal Control FieldTest Plan," Integrated Ramp Metering/Adaptive Signal Control

McNally, M. G.; Moore, II, James E.; MacCarley, C. Arthur

2001-01-01T23:59:59.000Z

223

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results  

SciTech Connect

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

Gary Blythe; MariJon Owens

2007-12-01T23:59:59.000Z

224

Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, April 1--June 30, 1996  

Science Conference Proceedings (OSTI)

This report covers the period April--June, 1996 for the utility advanced turbine systems (ATS) technical readiness testing and pre-commercial demonstration program. The topics of the report include NEPA information, ATS engine design, integrated program plan, closed loop cooling, thin wall casting development, rotor air sealing development, compressor aerodynamic development, turbine aerodynamic development, phase 3 advanced air sealing development, active tip clearance control, combustion system development, ceramic ring segment, advanced thermal barrier coating development, steam cooling effects, directionally solidified blade development, single crystal blade development program, advanced vane alloy development, blade and vane life prediction, nickel based alloy rotor, and plans for the next reporting period.

NONE

1996-09-09T23:59:59.000Z

225

Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests  

Science Conference Proceedings (OSTI)

This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptual models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.

Ward, Anderson L.; Gee, Glendon W.

2000-06-23T23:59:59.000Z

226

Lithium bromide absorption chiller passes gas conditioning field test  

Science Conference Proceedings (OSTI)

A lithium bromide absorption chiller has been successfully used to provide refrigeration for field conditioning of natural gas. The intent of the study was to identify a process that could provide a moderate level of refrigeration necessary to meet the quality restrictions required by natural-gas transmission companies, minimize the initial investment risk, and reduce operating expenses. The technology in the test proved comparatively less expensive to operate than a propane refrigeration plant. Volatile product prices and changes in natural-gas transmission requirements have created the need for an alternative to conventional methods of natural-gas processing. The paper describes the problems with the accumulation of condensed liquids in pipelines, gas conditioning, the lithium bromide absorption cycle, economics, performance, and operating and maintenance costs.

Lane, M.J.; Huey, M.A. [Nicol and Associates, Richardson, TX (United States)

1995-07-31T23:59:59.000Z

227

Full scale field demonstration of unheated anaerobic contact stabilization. Quarterly project status report, April-June 1980  

DOE Green Energy (OSTI)

The City of Columbus provided funds for the preliminary shakedown of the anaerobic contact stabilization system. During the shakedown period, the sludge recycle system was tested, and the temperature control system was refurbished. At temperatures as low as 82/sup 0/F there is no noticeable loss in gas production for SRT's over 14 days. Some of the preliminary data on the overflow and underflow liquors from unit 6E suggested that substantial amounts of VS were not settling in 6E and, consequently, were not being recycled. Therefore, an examination of the settleability of the transfer sludge (4E to 6E) is underway. Some typical preliminary results are shown. The occurence of gasification in the scum layer raises the issue of where the mathanogenic bacteria are to be found in the settler (6E). Some preliminary tests have been conducted to answer this question, and a typical set of results demonstrate the relative population densities of methanogens in scum and settled digested solids. It is clear that if scum is not retained in the system, significant losses of system biomass will occur via the settler overflow.

Sykes, R.M.

1980-08-01T23:59:59.000Z

228

FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS  

SciTech Connect

Western Research Institute (WRI) is commercializing Diesel Dog Portable Soil Test Kits for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to the technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated ASTM Method D-5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In FY 99, twenty-five preproduction kits were successfully constructed in cooperation with CF Electronics, Inc., of Laramie, Wyoming. The kit components work well and the kits are fully operational. In the calendar year 2000, kits were provided to the following entities who agreed to participate as FY 99 and FY 00 JSR (Jointly Sponsored Research) cosponsors and use the kits as opportunities arose for field site work: Wyoming Department of Environmental Quality (DEQ) (3 units), F.E. Warren Air Force Base, Gradient Corporation, The Johnson Company (2 units), IT Corporation (2 units), TRC Environmental Corporation, Stone Environmental, ENSR, Action Environmental, Laco Associates, Barenco, Brown and Caldwell, Dames and Moore Lebron LLP, Phillips Petroleum, GeoSyntek, and the State of New Mexico. By early 2001, ten kits had been returned to WRI following the six-month evaluation period. On return, the components of all ten kits were fully functional. The kits were upgraded with circuit modifications, new polyethylene foam inserts, and updated instruction manuals.

Unknown

2001-05-31T23:59:59.000Z

229

NREL Gearbox Reliability Collaborative: Comparing In-Field Gearbox Response to Different Dynamometer Test Conditions: Preprint  

DOE Green Energy (OSTI)

This paper presents the results of NREL's Gearbox Reliability Collaborative comparison of dynamometer tests conducted on a 750-kW gearbox to field testing.

LaCava, W.; van Dam, J.; Wallen, R.; McNiff, B.

2011-08-01T23:59:59.000Z

230

Field Operations Program - U.S. Postal Service - Fountain Valley Electric Carrier Route Vehicle Testing  

Science Conference Proceedings (OSTI)

The United States Postal Service (USPS) has ordered 500 light-duty electric carrier route vehicles (ECRV) mostly for their delivery carriers to use in several California locations. The 500 ECRVs have been defined as a demonstration fleet to support a decision of potentially ordering 5,500 additional ECRVs. Several different test methods are being used by the USPS to evaluate the 500-vehicle deployment. One of these test methods is the ECRV Customer Acceptance Test Program at Fountain Valley, California. Two newly manufactured ECRVs were delivered to the Fountain Valley Post Office and eighteen mail carriers primarily drove the ECRVs on ''park and loop'' mail delivery routes for a period of 2 days each. This ECRV testing consisted of 36 route tests, 18 tests per vehicle. The 18 mail carriers testing the ECRVs were surveyed for the opinions on the performance of the ECRVs. The U.S. Department of Energy, through its Field Operations Program, is supporting the USPS's ECRV testing activities both financially and with technical expertise. As part of this support, Field Operations Program personnel at the Idaho National Engineering and Environmental Laboratory have compiled this report based on the data generated by the USPS and its testing contractor (Ryerson, Master and Associates, Inc.) During the 36 route tests, the two test vehicles were driven a total of 474 miles, averaging 13 mile per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of-Charge (SOC) data was collected for only 28 of the route tests. During these 28 tests, the ECRVs were driven a total of 447 miles. The SOC used during the 28 tests averaged a 41% decrease and the average distance driven was 16 miles. This suggests that a 16-mile route uses almost half of the ECRV's battery energy. The 18 carriers also rated 12 ECRV traits that included the physical design of the ECRVs as well as their performance. Based on a scale of 1 being the lowest and 5 being highest, or best, the overall average score for the ECRV was 4.3. The report also included individual comments from the ECRV drivers.

Francfort, J.E.

2002-01-21T23:59:59.000Z

231

Field Operations Program - US Postal Service Fountain Valley Electric Carrier Route Vehicle Testing  

SciTech Connect

The United States Postal Service (USPS) has ordered 500 light-duty electric carrier route vehicles (ECRV) mostly for their delivery carriers to use in several California locations. The 500 ECRVs have been defined as a demonstration fleet to support a decision of potentially ordering 5,500 additional ECRVs. Several different test methods are being used by the USPS to evaluate the 500-vehicle deployment. One of these test methods is the ECRV Customer Acceptance Test Program at Fountain Valley, California. Two newly manufactured ECRVs were delivered to the Fountain Valey Post Office and eighteen mail carriers primarily drove the ECRVs on "park and loop" mail delivery routes for a period of 2 days each. This ECRV testing consisted of 36 route tests, 18 tests per vehicle. The 18 mail carriers testing the ECRVs were surveyed for the opinions on the performance of the ECRVs. The U.S. Department of Energy, through its Field Operations Program, is supporting the USPS's ECRV testing activities both financially and with technical expertise. As part of this support, Field Operations Program personnel at the Idaho National Engineering and Environmental Laboratory have compiled this report based on the data generated by the USPS and its testing contractor (Ryerson, Master and Associates, Inc.) During the 36 route tests, the two test vehicles were driven a total of 474 miles, averaging 13 mile per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of-Charge (SOC) data was collected for only 28 of the route tests. During these 28 tests, the ECRVs were driven a total of 447 miles. The SOC used during the 28 tests averaged a 41% decrease and the average distance driven was 16 miles. This suggests that a 16-mile route uses almost half of the ECRV's battery energy. The 18 carriers also rated 12 ECRV traits that included the physical design of the ECRVs as well as their performance. Based on a scale of 1 being the lowest and 5 being highest, or best, the overall average score for the ECRV was 4.3. The report also included individual comments from the ECRV drivers.

Francfort, James Edward

2002-01-01T23:59:59.000Z

232

Field Demonstration of a High-Efficiency Packaged Rooftop Air Conditioning Unit at Fort Gordon, Augusta, GA  

Science Conference Proceedings (OSTI)

As part of a larger program targeting the market transformation of packaged rooftop air conditioning, five high-efficiency rooftop air conditioning products were selected in 2002 by the U.S. Department of Energy (DOE) under the Unitary Air Conditioner (UAC) Technology Procurement (http://www.pnl.gov/uac). In February 2003, Fort Gordon in Augusta, Georgia was chosen as the demonstration site. With the goal of validating the field performance and operation of one of the awarded products, a 10-ton high-efficiency packaged rooftop unit (RTU) manufactured by Global Energy Group (GEG) was installed at Fort Gordon in October 2003. Following equipment installation, power metering, air- and refrigerant-side instrumentation was installed on the GEG RTU and a 4-year old typical-efficiency 20-ton RTU manufactured by AAON . The GEG and AAON units were instrumented identically and operated May through July, 2005, to observe performance under a range of conditions. Based on the data collected as part of this demonstration, the GEG equipment performed at least 8% better in stage-1 (single compressor running) cooling and at least 16% better in stage-2 (both compressors running) than the baseline AAON equipment. Performance comparisons are based on what we call application EER normalized to equivalent specific fan power. The full-load, specific-fan-power-normalized application EERs at ARI design conditions were 10.48 Btu/Wh for the GEG and 9.00 Btu/Wh for the baseline machine. With a cost premium of nearly 50%, and slightly higher maintenance costs, the life-cycle cost analysis shows that the GEG technology pays for itself--a positive net-present value (NPV)--only in climates and buildings with long cooling seasons. Manufacture of this equipment on a larger scale can be expected to reduce costs to the point where it is more broadly cost-effective. The assumed 10-ton baseline and new-technology unit costs are $3824.00 and $5525.00 respectively. If the new technology cost is assumed to drop as sales increase to $4674.50 for a 10-ton unit (i.e. the original cost difference is halved), the life-cycle costs improve. A grid of first cost, annual maintenance cost and electricity price is enumerated and the results presented in the report show the sensitivity of life cycle cost to these three financial parameters in each of eight different climates.

Armstrong, Peter R.; Sullivan, Gregory P.; Parker, Graham B.

2006-03-31T23:59:59.000Z

233

Ball Rust Test(ASTM D 6557) FIELD SERVICE SIMULATED  

E-Print Network (OSTI)

-controlled shaker table. A syringe pump is used to inject acid into the test oil. In addition, a compressed air the Sequence IID (ASTM D 5844) gaso- line engine test, and evaluates the ability of an oil to prevent with regard to rusting. TEST PARAMETERS Tests are run for 18 hours with the test oil environment controlled

Chapman, Clark R.

234

NREL: Performance and Reliability R&D - Field Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

testing-Long-term testing of PV arrays to evaluate degradation rates. Contact Dirk Jordan. Real-Time Meteorological and Irradiance Monitoring (RMIS)-Monitoring and recording of...

235

Vadose zone transport field study: Detailed test plan for simulated leak tests  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from these uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to: identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.

AL Ward; GW Gee

2000-06-23T23:59:59.000Z

236

Smart Infrared Inspection System Field Operational Test Final Report  

SciTech Connect

The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL

2011-06-01T23:59:59.000Z

237

Superconducting magnet development capability of the LLNL (Lawrence Livermore National Laboratory) High Field Test Facility  

SciTech Connect

This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility.

Miller, J.R.; Shen, S.; Summers, L.T.

1990-02-01T23:59:59.000Z

238

Field Testing of a Wet FGD Additive for Enhanced Mercury Control  

SciTech Connect

This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved management and reporting. The other four tasks involved field testing on FGD systems, either at pilot or full scale. These four tasks included: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and the full-scale test using high-sulfur coal was completed in 2006; only the TMT-15 additive was tested in these efforts. The Task 5 full-scale additive tests conducted at Southern Company's Plant Yates Unit 1 were completed in 2007, and both the TMT-15 and Nalco 8034 additives were tested.

Gary Blythe; MariJon Owens

2007-12-31T23:59:59.000Z

239

Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration  

SciTech Connect

The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

1995-08-01T23:59:59.000Z

240

NETL: Control Technology - Field Testing of a Wet FGD Additive...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Mercury Control URS Corporation will demonstrate the use of an additive in wet lime or limestone flue gas desulfurization (FGD) systems to prevent oxidized mercury that...

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation  

SciTech Connect

The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.

1994-10-01T23:59:59.000Z

242

BOBCAT Personal Radiation Detector Field Test and Evaluation Campaign  

SciTech Connect

Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as Pagers. This test, Bobcat, was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS.

Chris Hodge

2008-03-01T23:59:59.000Z

243

Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project  

SciTech Connect

This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

1993-05-01T23:59:59.000Z

244

NETL: News Release - Small-Scale Carbon Sequestration Field Test...  

NLE Websites -- All DOE Office Websites (Extended Search)

hole would be ideal to develop a robust logging, coring, and testing program. Formation Stimulation-As part of the project design process, project developers should request the...

245

Validating surge test standards by field experience: High ...  

Science Conference Proceedings (OSTI)

... review of the statistics of the occurrence of fuse blowing, the use of ... the current in the varis- tor resulting from the three high-energy tests discussed ...

2013-05-17T23:59:59.000Z

246

Fourth Novatek Hammer Field Test Department of Energy Well PM-2-31  

NLE Websites -- All DOE Office Websites (Extended Search)

Novatek Hammer Field Test Novatek Hammer Field Test Department of Energy Well PM-2-31 Garfield County, Colorado September, 1995 Report Prepared for Mud Hammer Development Project Partners Mobil Oil Novatek Brian Tarr, MEPTEC Drilling MOBIL EXPLORATION AND PRODUCTION TECHNICAL CENTER Dallas, Texas September 1995 Fourth Novatek Hammer Field Test Department of Energy Well PM-2-31 September 1995 Contents Page EXECUTIVE SUMMARY 3 CONCLUSIONS 4 RECOMMENDATIONS5 5 Field Test Procedure and Results 6 APPENDIX 1 - Well Data 10 APPENDIX 2 - ∆P Calculations APPENDIX 3 - Novatek hammer drawings and photo.'s Fourth Novatek Hammer Field Test Department of Energy Well PM-2-31 September 1995 EXECUTIVE SUMMARY Objectives The primary objective of the fourth field test was to establish if the threshold level of power required to increase rock bit

247

Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program  

SciTech Connect

The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

Backus, P.M.; Benson, C.E.; Gilbert, V.P.

1994-08-01T23:59:59.000Z

248

Test and demonstration report on single and three phase 60 to 400 hz sleep inverter 3. 75kva Gulton model emir302  

SciTech Connect

This Test and Demonstration Report presents the Test Plan and the results of the tests performed on SLEEP Inverter, Gulton Model EMIR302. The objective of the overall program is to design, develop, fabricate and test the 120V, 60 to 400Hz, 3.75KVA SLEEP Inverter in accordance with the requirements of U. S. Army Mobility Equipment Research and Development Command Specification EED 76 022501.

Rance, J.

1979-03-20T23:59:59.000Z

249

Deep Frying: Chemistry, Nutrition and Practical ApplicationsChapter 17 Designing Field Frying Tests  

Science Conference Proceedings (OSTI)

Deep Frying: Chemistry, Nutrition and Practical Applications Chapter 17 Designing Field Frying Tests Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press ...

250

RDI Development: Wisdom Way Solar Village, Greenfield, Massachusetts Field Test Report  

DOE Green Energy (OSTI)

NREL, Mountain Energy Partnership, and the Consortium of Advanced Residential Buildings conducted field tests on a house in Wisdom Way Solar Village to verify energy efficiency.

Fang, X.; Hancock, E.

2009-05-01T23:59:59.000Z

251

ANOLE Portable Radiation Detection System Field Test and Evaluation Campaign  

SciTech Connect

Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named Anole, it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign.

Chris A. Hodge

2007-07-12T23:59:59.000Z

252

Radiation Isotope Identification Device (RIIDs) Field Test and Evaluation Campaign  

SciTech Connect

Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign.

Christopher Hodge, Raymond Keegan

2007-08-01T23:59:59.000Z

253

Poplar breeding and testing strategies in the NC US: Demonstration of potential yield and consideration of future research needs.  

SciTech Connect

The objective of this project was to extend previous poplar breeding and selection in the NC US by implementing a regional testing system with multiple test locations in Minnesota, Iowa, Wisconsin and Michigan.

Riemenschneider, Don; Berguson, William E; Dickmann, Don; Hall, Richard

2004-06-30T23:59:59.000Z

254

Field Demonstration of a 24-kV Warm Dielectric Cable at Detroit Edison: FY2002 Annual Progress Report for the Detroit Edison HTS Cab le Field Demonstration Project  

Science Conference Proceedings (OSTI)

A project sponsored by EPRI, Pirelli Power Cables and Systems, the Department of Energy, Detroit Edison, and American Superconductor Corporation was initiated in 1998 to install and operate a 24 kV high temperature superconductor (HTS) power cable in a Detroit Edison substation to serve customer load. The previous years of activity have focused on design, testing, manufacturing, and installation of the cable system as described in the FY2000 and FY2001 status reports. The successful implementation of thi...

2003-02-26T23:59:59.000Z

255

Field tests of a circuit breaker synchronous control  

Science Conference Proceedings (OSTI)

A circuit breaker synchronous control interface which controls the point-on-wave at which shunt reactor circuit breakers open or close has been developed and tested on Hydro-Quebec`s 735-kV power system. It takes into account the influence of outdoor temperature on the breaker closing and opening times. It is also equipped with a reignition and a high-inrush-current detection system. Opening tests at different preset arcing times were conducted and the arcing time range where there are no re-ignitions in air-blast breakers was established. The tests showed that the interface is a valuable device for the elimination of re-ignitions associated with the interruption of small inductive currents. Closing tests have shown that the interface is also useful for the limitation of high inrush currents by selecting an appropriate point-on-wave for circuit breaker closing.

Rajotte, R.J.; Charpentier, C.; Breault, S.; Le, H.H.; Huynh, H. [Hydro-Quebec, Montreal, Quebec (Canada); Desmarais, J. [Snemo Ltd., Brossard, Quebec (Canada)

1995-07-01T23:59:59.000Z

256

Solar Energy Education. Industrial arts: student activities. Field test edition  

DOE Green Energy (OSTI)

In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

Not Available

1981-02-01T23:59:59.000Z

257

Field Demonstration of a 24-KV Warm Dielectric Cable at Detroit Edison: FY2001 Annual Progress Report  

Science Conference Proceedings (OSTI)

A project sponsored by EPRI, Pirelli Power Cables and Systems, the U.S. Department of Energy, Detroit Edison, and American Superconductor Corporation was initiated in 1998 to install and operate a 24 kV high-temperature superconducting (HTS) power cable in a Detroit Edison substation to serve customer load. The scope of this demonstration will result in the world's first underground installation of an HTS cable system using an existing duct network. Furthermore, the project involves installing the necess...

2002-02-12T23:59:59.000Z

258

Documentation of the Irvine Integrated Corridor Freeway Ramp Metering and Arterial Adaptive Control Field Operational Test  

E-Print Network (OSTI)

and LADOT. NET proceeds with ramp metering coding and thechanges. NET proceeds with ramp metering coding/testing and17: Ramp metering demonstration at NET. Caltrans extends the

McNally, M. G.; Moore, II, James E.; MacCarley, C. Arthur

2001-01-01T23:59:59.000Z

259

Summary of seasonal thermal energy storage field test projects in the United States  

DOE Green Energy (OSTI)

Seasonal thermal energy storage (STES) involves storage of available heat or chill for distribution at a later time to meet thermal loads. STES can reduce energy consumption, peak energy demand, and emissions of carbon dioxide to the atmosphere over conventional systems. It is estimated that full-scale application of STES would provide 2% to 4% of total energy needs in the United States. One STES technology, aquifer thermal energy storage (ATES), has been determined to be the most cost-effective option in the United States when site conditions enable its use. ATES has been analyzed in the laboratory and investigated in the field in the United States since the program was established at Pacific Northwest Laboratory (PNL) in 1979. Two field test facilities (FTFs), one for heating ATES at the University of Minnesota and the other for cooling ATES at the University of Alabama, have been primary testing grounds for US ATES research. Computer models have been developed to analyze the complex thermal and fluid dynamics. Extensive monitoring of FTFs has provided verification of and refinements to the computer models. The areas of geochemistry and microbiology have been explored as they apply to the aquifer environment. In general, the two FTFs have been successful in demonstrating the steps needed to make an ATES system operational.

Johnson, B.K.

1989-07-01T23:59:59.000Z

260

Thermal Energy Storage Evaluation Program: 1986 annual report. [Economic planning, technical assessment, field tests  

DOE Green Energy (OSTI)

The Thermal Energy Storage Evaluation Program activities were initiated to provide economic planning, technical assessment and field testing support for the thermal energy storage program, as well as management of the overall program for the DOE. Economic planning included two assessment studies. In technical assessment, issues that might affect an assessment were outlined for the development of a standard methodology to conduct assessments; work is underway to establish ''market-based'' cost and performance goals for cool storage technologies in residential applications; planning has begun for investigation of benefits in incorporating aquifer thermal energy storage with heat pumps; and plans are being formulated to evaluate the potential benefit of using aquifer thermal energy storage to augment power plant cooling. Field testing to develop technologies for the recovery and reuse of industrial waste heat began with the instrumentation design for the ceramic/salt matrix in an operating brick-making plant. Work in advanced studies by Lawrence Berkeley Laboratory continued on thermochemical conversion and storage using small particles as the heat exchanger catalyst. In SO/sub 3/ dissociation experiments at 645/sup 0/C using light and dark conditions, results clearly demonstrated the benefit in directly radiantly heating the catalyst to accomplish the endothermic step of a thermochemical storage reaction.

Drost, M.K.; Bates, J.M.; Brown, D.R.; Weijo, R.O.

1987-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Program mid-year summaries research, development, demonstration, testing and evaluation: Office of Technology Development, FY 1993  

SciTech Connect

This mid-year review provides a summary of activities within the Office of Technology Development with individual presentations being made to DOE HQ and field management staff. The presentations are by EM-541, 542, 551, and 552 organizations.

Not Available

1993-10-01T23:59:59.000Z

262

Hydraulic fracturing and propping tests at Yakedake field in Japan  

DOE Green Energy (OSTI)

Hydraulic fracturing experiments have been conducted at Yakedake field in Gifu prefecture, Japan. From the data obtained during the fracturing operation, the open-hole section permeability was estimated of the wellbore, the minimum pressure required to propagate the fracture, the impedances before and after the propping, and the earth stress normal to the fracture plane. The final fracture plane was also mapped with the microseismic events.

Yamaguchi, Tsutomu; Seo, Kunio; Suga, Shoto; Itoh, Toshinobu; Kuriyagawa, Michio

1984-01-01T23:59:59.000Z

263

Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Researdh and Commercial-Scale Field Demonstration Project  

Science Conference Proceedings (OSTI)

The Coal-Seq consortium is a government-industry collaborative consortium with the objective of advancing industry's understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. This will allow primary recovery, enhanced recovery and CO{sub 2} sequestration operations to be commercially enhanced and/or economically deployed. The project was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO{sub 2} sequestration in deep, unmineable coalseams. The initial project accomplished a number of important objectives, which mainly revolved around performing baseline experimental studies, documenting and analyzing existing field projects, and establishing a global network for technology exchange. The results from that Phase have been documented in a series of reports which are publicly available. An important outcome of the initial phase was that serious limitations were uncovered in our knowledge of reservoir behavior when CO{sub 2} is injected into coal. To address these limitations, the project was extended in 2005 as a government-industry collaborative consortium. Selected accomplishments from this phase have included the identification and/or development of new models for multi-component sorption and diffusion, laboratory studies of coal geomechanical and permeability behavior with CO{sub 2} injection, additional field validation studies, and continued global technology exchange. Further continuation of the consortium is currently being considered. Some of the topics that have been identified for investigation include further model development/refinement related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins, the extension of the work to gas shale reservoirs, and continued global technology exchange.

Scott Reeves; George Koperna

2008-09-30T23:59:59.000Z

264

Built-In Self-Test of Field Programmable Analog Arrays based on Transient Response Analysis  

Science Conference Proceedings (OSTI)

In this work a strategy for testing analog networks, known as Transient Response Analysis Method, is applied to test the Configurable Analog Blocks (CABs) of Field Programmable Analog Arrays (FPAAs). In this method the Circuit Under Test (CUT) is programmed ... Keywords: Analog built-in self-test, FPAA, Transient response analysis

T. R. Balen; J. V. Calvano; M. S. Lubaszewski; M. Renovell

2007-12-01T23:59:59.000Z

265

Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction  

SciTech Connect

The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction.

Ostowari, Ken; Nosson, Ali

2000-09-30T23:59:59.000Z

266

DOE/NETL's Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase II Plans for Full-Scale Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing Air Quality III September 12, 2002 Arlington, Va Scott Renninger, Project Manager for Mercury Control Technology Enviromental Projects Division Presentation Outline * Hg Program goals & objectives * Focus on Future Hg control R&D * Q&As President Bush's Clear Skies Initiative Current Mid-Term 2008-2010 2018 SO 2 11 million tons 4.5 million tons 3 million tons NOx 5 million tons 2.1 million tons 1.7 million tons Mercury 48 tons 26 tons 15 tons Annual U.S. Power Plant Emissions Mercury Control * Developing technologies ready for commercial demonstration: - By 2005, reduce emissions 50-70% - By 2010, reduce emissions by 90% - Cost 25-50% less than current estimates 2000 Year 48 Tons $2 - 5 Billion @ 90% Removal w/Activated

267

FIELD TESTING & OPTIMIZATION OF CO2/SAND FRACTURING TECHNOLOGY  

SciTech Connect

These contract efforts involved the demonstration of a unique liquid free stimulation technology which was, at the beginning of these efforts, in 1993 unavailable in the US. The process had been developed, and patented in Canada in 1981, and held promise for stimulating liquid sensitive reservoirs in the US. The technology differs from that conventionally used in that liquid carbon dioxide (CO{sub 2}), instead of water is the base fluid. The CO{sub 2} is pumped as a liquid and then vaporizes at reservoir conditions, and because no other liquids or chemicals are used, a liquid free fracture is created. The process requires a specialized closed system blender to mix the liquid CO{sub 2} with proppant under pressure. These efforts were funded to consist of up to 21 cost-shared stimulation events. Because of the vagaries of CO{sub 2} supplies, service company support and operator interest only 19 stimulation events were performed in Montana, New Mexico, and Texas. Final reports have been prepared for each of the four demonstration groups, and the specifics of those demonstrations are summarized. A summary of the demonstrations of a novel liquid-free stimulation process which was performed in four groups of ''Candidate Wells'' situated in Crockett Co., TX; San Juan Co., NM; Phillips Co., MT; and Blaine Co., MT. The stimulation process which employs CO{sub 2} as the working fluid and the production responses were compared with those from wells treated with conventional stimulation technologies, primarily N{sub 2} foam, excepting those in Blaine Co., MT where the reservoir pressure is too low to clean up spent stimulation liquids. A total of 19 liquid-free CO{sub 2}/sand stimulations were performed in 16 wells and the production improvements were generally uneconomic.

Raymond L. Mazza

2004-11-30T23:59:59.000Z

268

Field Trial of AEP Sodium-Sulfur (NAS) Battery Demonstration Project: Interim Report - Plant Design and Expected Performance  

Science Conference Proceedings (OSTI)

The first stationary power demonstration of sodium-sulfur (NAS) batteries in the United States has been hosted by the American Electric Power Company. The battery system was co-developed by the Tokyo Electric Power Company (TEPCO) and NGK Insulators, Ltd. (NGK). This report defines the NAS technology, as well as the associated power conversion system (PCS) parameters and requirements that were necessary to convert the DC power from the NAS battery modules to AC power for connection to the utility grid sy...

2003-03-27T23:59:59.000Z

269

Demonstration of Commissioning Tests for Extra-High Voltage Cross-Linked Polyethylene Cable Systems at Los Angeles Department of Wat er and Power  

Science Conference Proceedings (OSTI)

Today, utilities are installing an increasing number of cross-linked polyethylene (XLPE) transmission cables with system voltages ranging from 115 kV up to 345 kV. This report summarizes field partial discharge measurements and high-voltage ac commissioning tests performed on a Los Angeles Department of Water and Power (LADWP) 230-kV XLPE transmission cable system. The commissioning tests were performed with a field transportable, variable frequency, series resonant test set at 1.4 times rated voltage.

2002-09-11T23:59:59.000Z

270

Wind Tunnel and Field Test of Three 2D Sonic Anemometers  

E-Print Network (OSTI)

Wind Tunnel and Field Test of Three 2D Sonic Anemometers Wiel Wauben R&D Information and Observation Technology, KNMI September 17, 2007 #12;#12;Wind Tunnel and Field Test of Three 2D Sonic.....................................................................................................1 2. Wind sensors

Stoffelen, Ad

271

Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, October 1--December 31, 1996  

DOE Green Energy (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-06-01T23:59:59.000Z

272

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, April 1--June 30, 1997  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q97.

1997-12-31T23:59:59.000Z

273

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, January 1--March 31, 1997  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 1Q97.

1997-12-31T23:59:59.000Z

274

Field Demonstration of a 24-kV Warm Dielectric Superconducting Cable at Detroit Edison: FY2003 Annual Progress Report  

Science Conference Proceedings (OSTI)

A project sponsored by EPRI, Pirelli Power Cables and Systems, the Department of Energy, Detroit Edison, and American Superconductor Corporation was initiated in 1998 to install and operate a 24 kV HTS power cable in a Detroit Edison substation to serve customer load. The previous years of activity have focused on design, testing, manufacturing, and installation of the cable system as described in the FY2000 and FY2001 status reports. The FY2002 status report focused on leak detection. The cornerstone of...

2004-03-30T23:59:59.000Z

275

CX-100 and TX-100 blade field tests.  

SciTech Connect

In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

2005-12-01T23:59:59.000Z

276

Advanced Hydropower Turbine System Design for Field Testing  

Science Conference Proceedings (OSTI)

The Alden/Concepts NREC hydroturbine was initially developed under the U.S. Department of Energy's (DOE) Advanced Hydropower Turbine Systems Program. This design work was intended to develop a new runner that would substantially reduce fish mortality at hydroelectric projects, while developing power at efficiencies similar to competing hydroturbine designs. A pilot-scale test facility was constructed to quantify the effects of the conceptual turbine design on passing fish and to verify the hydraulic char...

2009-07-31T23:59:59.000Z

277

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

Science Conference Proceedings (OSTI)

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

278

Gridley Ethanol Demonstration Project Utilizing Biomass Gasification Technology: Pilot Plant Gasifier and Syngas Conversion Testing; August 2002 -- June 2004  

DOE Green Energy (OSTI)

This report is part of an overall evaluation of using a modified Pearson Pilot Plant for processing rice straw into syngas and ethanol and the application of the Pearson technology for building a Demonstration Plant at Gridley. This report also includes information on the feedstock preparation, feedstock handling, feedstock performance, catalyst performance, ethanol yields and potential problems identified from the pilot scale experiments.

Not Available

2005-02-01T23:59:59.000Z

279

Hyperboloidal evolution of test fields in three spatial dimensions  

E-Print Network (OSTI)

We present the numerical implementation of a clean solution to the outer boundary and radiation extraction problems within the 3+1 formalism for hyperbolic partial differential equations on a given background. Our approach is based on compactification at null infinity in hyperboloidal scri fixing coordinates. We report numerical tests for the particular example of a scalar wave equation on Minkowski and Schwarzschild backgrounds. We address issues related to the implementation of the hyperboloidal approach for the Einstein equations, such as nonlinear source functions, matching, and evaluation of formally singular terms at null infinity.

Zenginoglu, Anil

2010-01-01T23:59:59.000Z

280

Hyperboloidal evolution of test fields in three spatial dimensions  

E-Print Network (OSTI)

We present the numerical implementation of a clean solution to the outer boundary and radiation extraction problems within the 3+1 formalism for hyperbolic partial differential equations on a given background. Our approach is based on compactification at null infinity in hyperboloidal scri fixing coordinates. We report numerical tests for the particular example of a scalar wave equation on Minkowski and Schwarzschild backgrounds. We address issues related to the implementation of the hyperboloidal approach for the Einstein equations, such as nonlinear source functions, matching, and evaluation of formally singular terms at null infinity.

Anil Zenginoglu; Lawrence E. Kidder

2010-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Field test corrosion experiences when co-firing straw and coal: 10 year status within Elsam  

SciTech Connect

In Denmark, straw is utilised for the generation of energy and district heating in power plants. Combustion of straw gives rise to high contents of potassium chloride and some sulphur dioxide in the flue gas. These compounds can lead to deposits with high content of potassium chloride and potassium sulphate on superheater tubes resulting in increased corrosion rates. From field experimental results this paper show, that by co-firing straw with coal, corrosion rates can be brought down to an acceptable level. This paper firstly deals with the results from a demonstration program co-firing coal and straw at the 150 MW pulverized coal fired boiler Studstrup unit 1. Two exposure series lasting 3000 hours each were performed for co-firing 10 and 20% of straw (% energy basis) with coal. Using built in test tubes in the hot end of the actual superheaters and air/water cooled corrosion probes, the corrosion during these experiments was monitored. Various ferritic and austenitic materials were investigated at steam temperatures ranging from 520 to 580{degree}C and flue gas temperatures ranging from 925 to 1100{degree}C. The results obtained in the demonstration program led to the rebuilding of the 350 MW pulverized coal fired boiler, Studstrup unit 4, into a co-firing boiler with straw in 2002. During the rebuilding, test tube sections of X20CrMoV12 1 and TP347H FG were built into the superheater and the reheater loops. The temperature ranges during these exposures was for the steam from 470 to 575{degree}C and for the flue gas from 1025 to 1300{degree}C. All these test tubes have been removed during the last three years at one year intervals for corrosion studies. The corrosion studies performed on all investigated tubes included measurements of the corrosion attack, light optical microscopy and scanning electron microscopy of the corrosion products.

Frandsen, R.B.; Montgomery, M.; Larsen, O.H. [Elsam Engineering, Kolding (Denmark)

2007-07-01T23:59:59.000Z

282

Efficient Depth of Field Rasterization Using a Tile Test Based on Half-Space Culling  

Science Conference Proceedings (OSTI)

For depth of field (DOF) rasterization, it is often desired to have an efficient tile versus triangle test, which can conservatively compute which samples on the lens that need to execute the sample-in-triangle test. We present a novel test for this, ... Keywords: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and RealismVisible line/surface algorithms, culling, depth of field, rasterization

Tomas Akenine-Mller; Robert Toth; Jacob Munkberg; Jon Hasselgren

2012-02-01T23:59:59.000Z

283

A Field Tested Model of Industrial Energy Conservation Assistance to Small Industries  

E-Print Network (OSTI)

The University of Tennessee is one of three universities selected by the Industrial Energy Conservation Program of the Department of Energy to develop and demonstrate the concept of an Energy Analysis and Diagnostics Center (EADC). The objective of the EADC program is to develop and demonstrate the methodology through which universities may provide assistance to small manufacturing firms in identifying and analyzing energy conservation opportunities. The University of Tennessee EADC has completed 52 industrial energy audits of Tennessee manufacturing firms from which over 150 feasible ECO's have been identified and analyzed. The process consists of the following steps: (1) Analyzing energy consumption and costs for a two year period; (2) Conducting a one day on-site energy audit; (3) Analyzing each ECO for potential energy consumption and cost savings; (4) Preparing a technical report to the firm which contains specific recommendations of economically feasible ECO's; (5) Providing the firm with the appropriate financial analysis. The main emphasis of the process is on quantification of potential energy savings so that the firm has the necessary quantitative data for making a capital investment decision. The average benefit cost ratio of the EADC program has been calculated to be approximately 8. Reduction in annual energy consumption identified from the ECO's was approximately 13% and reduction in annual energy costs was approximately 10%. The entire process is described in sufficient detail to permit other universities to follow the field tested methodology and develop their own programs.

Jendrucko, R. J.; Mitchell, D. S.; Snyder, W. T.; Symonds, F. W.

1980-01-01T23:59:59.000Z

284

Field tests of a novel inverter for photovoltaic power conditioning  

SciTech Connect

The Dickerson inverter synthesizes a sinewave current from a photovoltaic array that is segmented into a number of subarrays. These subarrays are switched among the ac phases so that the current from a given subarray is continuous, and each phase is connected at all times to one or more subarrays. The control scheme assures a near-unity power factor current with real-time phase adjustment to power-system disturbances. A prototype inverter was operated into a three-phase power system, with the dc supplied by a photovoltaic array at Sandia National Laboratories. The results of these tests under normal, abnormal and fault conditions are reported. Inversion efficiencies up to 99% were achieved with 0.97 power factor. A simple filter reduced current harmonics from 18% to 5%. The performance for the inverter was projected for a 480-V, three-phase system at the 50-kVA level. An analysis of filtering costs indicates that harmonic reduction to 5% can be achieved at under $0.003 per watt for typical central-station applications. The intended power range for these inverters is 50--250 kVA. The cost to produce the inverter at the 50-kVA level in quantities of 1000 units is estimated to be $0.05 per watt, which is less than the projected cost of other 50-kVA inverters. 22 figs., 9 tabs.

Dickerson, A.; Bower, W.; Schalles, F.

1989-05-01T23:59:59.000Z

285

Hanna, Wyoming underground coal gasification data base. Volume 2. The Hanna I field test  

SciTech Connect

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Based on the recommendations of A.D. Little, Inc. in a 1971 report prepared for the US Bureau of Mines, the Hanna I test represented the first field test in reestablishing a field program by the US Bureau of Mines. The test was directed toward comparing results from a thick subbitiminous coal seam with those obtained during the field test series conducted at Gorgas, AL, in the 1940's and 1950's. Hanna I was conducted from March 1973 through February 1974. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facility description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 9 refs., 10 figs., 4 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01T23:59:59.000Z

286

Novel Cleanup Agents Designed Exclusively for Oil Field Membrane Filtration Systems Low Cost Field Demonstrations of Cleanup Agents in Controlled Experimental Environments  

Science Conference Proceedings (OSTI)

The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texas A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.

David Burnett; Harold Vance

2007-08-31T23:59:59.000Z

287

Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing  

DOE Green Energy (OSTI)

How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

Butterfield, C.P.; Musial, W.P.; Simms, D.A.

1992-10-01T23:59:59.000Z

288

Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks  

DOE Green Energy (OSTI)

Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on fuel economy was determined, either through on-road testing or full-size wind tunnel testing. All of the manufacturers worked with devices and systems that offer practical solutions to reduce aerodynamic drag, accounting for functionality, durability, cost effectiveness, reliability, and maintainability. The project team members and their roles and responsibilities are shown in Figure 2-1. Figure 2-2 shows the Phase I and II project schedules for all four projects and associated management activities.

Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

2007-04-30T23:59:59.000Z

289

First-of-a-Kind Sequestration Field Test Begins in West Virginia |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-of-a-Kind Sequestration Field Test Begins in West Virginia First-of-a-Kind Sequestration Field Test Begins in West Virginia First-of-a-Kind Sequestration Field Test Begins in West Virginia September 8, 2009 - 1:00pm Addthis Washington, DC - Injection of carbon dioxide (CO2) began today in a first-of-a-kind field trial of enhanced coalbed methane recovery with simultaneous CO2 sequestration in an unmineable coal seam. The ultimate goal of the U.S. Department of Energy-sponsored project is to help mitigate climate change by providing an effective and economic means to permanently store CO2 in unmineable coal seams. CONSOL Energy Inc., West Virginia University, and the National Energy Technology Laboratory (NETL) are collaborating in the $13 million field trial, located in Marshall County, W.Va. The site was chosen because of its

290

Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system  

SciTech Connect

A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

Moreno, J.B.

1983-07-01T23:59:59.000Z

291

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test November 12, 2009 - 12:00pm Addthis Washington, DC - A U.S. Department of Energy (DOE) team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind. Carbon capture and storage (CCS) is seen as a key technology for reducing greenhouse gas emissions and helping to mitigate climate change. The injection, which is expected to last 6-8 months, is an integral step in DOE's Regional Carbon Sequestration Partnership program. The Midwest Geological Sequestration Consortium (MGSC) is conducting the field test to

292

DOE/EPA site demonstration  

DOE Green Energy (OSTI)

This Health and Safety Plan applies to the technology demonstration of the Retech, Inc., centrifugal furnace under the US Environmental Protection Agency's (EPA) Superfund Innovative Evaluation (SITE) Program. Retech will conduct a series of furnace tests at the Department of Energy's (DOE) Component Development and Integration Facility (CDIF) in Butte, Montana. MSE, operating contractor of the CDIF, will evaluate the furnace technology and determine the feasibility of further testing based on these demonstrations. This plan applies to the field demonstration at DOE's CDIF. This plan is designed to cover most work assignment activities under the Retech furnace evaluation to ensure safe and healthful conditions. Specific guidance is necessary for workers at the CDIF for the entire demonstration, addressing each of the known or expected safety hazards and contaminants. The layout of the exclusion zone and decontamination areas at the CDIF has been incorporated into this plan. This plan has been prepared in accordance with applicable federal regulations, but should the regulations be changed or if other situations require, the plan will be modified by the SITE Program Health and Safety Manager. The following items are covered in the plan: organization and responsibilities for the demonstration; hazard evaluation of the technology, test waste, and test site; contamination control zones; standard operating procedures (SOP) for the demonstration; protective and emergency equipment; exposure monitoring during test operations; medical surveillance; applicable safety and health regulations; and, references. 6 refs., 2 figs.

Not Available

1989-11-01T23:59:59.000Z

293

Usability evaluation for mobile device: a comparison of laboratory and field tests  

Science Conference Proceedings (OSTI)

Usability testing of mobile devices is an emerging area of research in the field of Human-Computer Interaction. Guidelines had been established as to how usability tests should be conducted. However, there are limitations to the effectiveness of conventional ... Keywords: dynamics environment, mobile devices, usability

Henry Been-Lirn Duh; Gerald C. B. Tan; Vivian Hsueh-hua Chen

2006-09-01T23:59:59.000Z

294

Silica control and materials tests at the Salton Sea geothermal field  

DOE Green Energy (OSTI)

The Lawrence Livermore Laboratory maintains and operates a test facility near Niland, California, in the Imperial Valley for field studies on SSGF brine chemistry, scale and solids control, materials, and injection. Recent work in silica control and materials testing is reviewed.

Quong, R.; Harrar, J.E.; McCright, R.D.; Locke, R.D.; Lorensen, L.E.; Tardiff, G.E.

1979-06-07T23:59:59.000Z

295

1974 geothermal field tests at the Niland Reservoir in the Imperial Valley of California  

DOE Green Energy (OSTI)

The phases of the 1974 geothermal field tests at the Niland Reservoir in the Imperial Valley of California are documented. The following tests are included: separator, steam scrubber, steam turbine, heat exchanger, packed heat exchanger, corrosion, chemical cleaning, and control and instrumentation. (MHR)

Not Available

1974-01-01T23:59:59.000Z

296

Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing  

SciTech Connect

In Phase 1 of this project, a variety of developmental and commercial tubing alloys and claddings was exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy are being exposed for 4,000, 12,000, and 16,000 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after approximately 4,400 hours of exposure.

Blough, J.L. [Foster Wheeler Development Corp., Livingston, NJ (United States)

1996-08-01T23:59:59.000Z

297

Field Testing of Low-Cost Bio-Based Phase Change Material  

SciTech Connect

A test wall built with phase change material (PCM)-enhanced loose-fill cavity insulation was monitored for a period of about a year in the warm-humid climate of Charleston, South Carolina. The test wall was divided into various sections, one of which contained only loose-fill insulation and served as a control for comparing and evaluating the wall sections with the PCM-enhanced insulation. This report summarizes the findings of the field test.

Biswas, Kaushik [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL

2013-03-01T23:59:59.000Z

298

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

299

Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study  

DOE Green Energy (OSTI)

As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.

Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.

2011-01-01T23:59:59.000Z

300

Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field  

DOE Green Energy (OSTI)

During Phases 2 and 3 of the Lake City GRED II project two slim holes were cored to depths of 1728 and 4727 ft. Injection and production tests with temperature and pressure logging were performed on the OH-1 and LCSH-5 core holes. OH-1 was permanently modified by cementing an NQ tubing string in place below a depth of 947 ft. The LCSH-1a hole was drilled in Quaternary blue clay to a depth of 1727 ft and reached a temperature of 193 oF at a depth of 1649 ft. This hole failed to find evidence of a shallow geothermal system east of the Mud Volcano but the conductive temperature profile indicates temperatures near 325 oF could be present below depth of 4000 ft. The LCSH-5 hole was drilled to a depth of 4727 ft and encountered a significant shallow permeability between depths of 1443 and 1923 ft and below 3955 ft. LCSH-5 drilled impermeable Quaternary fanglomerate to a depth of 1270 ft. Below 1270 ft the rocks consist primarily of Tertiary sedimentary rocks. The most significant formation deep in LCSH-5 appears to be a series of poikoilitic mafic lava flows below a depth of 4244 ft that host the major deep permeable fracture encountered. The maximum static temperature deep in LCSH-5 is 323 oF and the maximum flowing temperature is 329 oF. This hole extended the known length of the geothermal system by of a mile toward the north and is located over mile north of the northernmost hot spring. The OH-1 hole was briefly flow tested prior to cementing the NQ rods in place. This flow test confirmed the zone at 947 ft is the dominant permeability in the hole. The waters produced during testing of OH-1 and LCSH-5 are generally intermediate in character between the deep geothermal water produced by the Phipps #2 well and the thermal springs. Geothermometers applied to deeper fluids tend to predict higher subsurface temperatures with the maximum being 382 oF from the Phipps #2 well. The Lake City geothermal system can be viewed as having shallow (elevation > 4000 ft and temperatures of 270 to 310 oF), intermediate (elevation 2800 to 3700 ft and temperatures 270 to 320 oF ) and deep (elevations < 1000 ft and temperatures 323 to 337 oF) components. In the south part of the field, near Phipps #2 the shallow and deep components are present. In the central part of the field, near OH-1 the shallow and intermediate components are present and presumably the deep component is also present. In the north part of the field, the intermediate and deep components are present. Most or all of the fractures in the core have dips between 45 degrees and vertical and no strong stratigraphic control on the resource has yet been demonstrated. Conceptually, the Lake City geothermal resource seems to be located along the north-south trending range front in a relatively wide zone of fractured rock. The individual fractures do not seem to be associated with any readily identifiable fault. In fact, no major hydraulically conductive faults were identified by the core drilling.

Dick Benoit; David Blackwell; Joe Moore; Colin Goranson

2005-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development of simple quantitative test for lack of field emission orthodoxy  

E-Print Network (OSTI)

This paper describes a simple quantitative test applicable to current-voltage data for cold field electron emission (CFE). It can decide whether individual reported field-enhancement-factor (FEF) values are spuriously large. The paper defines an "orthodox emission situation" by a set of ideal experimental, physical and mathematical conditions, and shows how (in these conditions) operating values of scaled barrier field (f) can be extracted from Fowler-Nordheim (FN) and Millikan-Lauritsen (ML) plots. By analyzing historical CFE experiments, which are expected to nearly satisfy the orthodoxy conditions, "apparently reasonable" and "clearly unreasonable" experimental ranges for f are found. These provide a test for lack of orthodoxy. For illustration, this test is applied to 17 post-1975 CFE data sets, mainly for carbon and semiconductor nanostructures. Some extracted f-value ranges are apparently reasonable (including many carbon results), some are clearly unreasonable. It is shown that this test applies to any field-emission diode geometry and any form of FN or ML plot. It is proved mathematically that, if the extracted f-value range is "unreasonably high", then FEF-values extracted by the usual literature method are spuriously large. Probably, all new field-emitter materials should be tested in this way. Appropriate data-analysis theory needs developing for non-orthodox emitters.

Richard G. Forbes

2012-09-28T23:59:59.000Z

302

Special ESP configurations designed to test and produce Yemen oil field. [Electric-Submersible Pump  

SciTech Connect

Innovative electric-submersible-pump (ESP) configurations were used in the exploration phase of a Yemen oil field discovered by Canadian Occidental Petroleum Ltd. Because of subnormal reservoir pressure, CanOxy developed the field with ESPs and had to install surface components that could operate at the high, 130 F., ambient temperatures common in Yemen. The field is in a remote area that has seen very little development. The reservoirs produce a medium-to-heavy crude with a low gas/oil ratio, typically less than 20 scf/bbl. Problems faced in evaluating the field included drilling through unconsolidated sands with high flow capacity and subnormal reservoir pressure. CanOxy had to develop the technology to test the wells during the exploration phase, and intends to use new, or at least uncommon technology, for producing the wells. The paper describes testing the wells, the electric generators and variable speed drives, and the use of these pumps on production wells.

Wilkie, D.I. (Canadian Occidental Petroleum Ltd., Calgary, Alberta (Canada))

1993-09-27T23:59:59.000Z

303

High-Voltage Broadband-Over-Powerline (HV-BPL) Field Test Report | Open  

Open Energy Info (EERE)

High-Voltage Broadband-Over-Powerline (HV-BPL) Field Test Report High-Voltage Broadband-Over-Powerline (HV-BPL) Field Test Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: High-Voltage Broadband-Over-Powerline (HV-BPL) Field Test Report Focus Area: Crosscutting Topics: Policy Impacts Website: www.netl.doe.gov/smartgrid/referenceshelf/reports/HV-BPL_Final_Report. Equivalent URI: cleanenergysolutions.org/content/high-voltage-broadband-over-powerline Language: English Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance This reports details findings from a pilot High Voltage Broadband over Power Line (HV-BPL) program, an effort to develop a disruptive technology

304

Visualizing microbial pollution in Santa Monica Bay with Geographic Information Systems (GIS) and through field-testing a rapid, robust, field-portable water detection sensing system  

E-Print Network (OSTI)

hic Information Systems (GIS) and Through Field - testing aEngineering, UCLA Introduction: GIS and rapid detection:water quality characterizi ng GIS is a powerful mapping tool

2009-01-01T23:59:59.000Z

305

Direct-field acoustic testing of a flight system : logistics, challenges, and results.  

DOE Green Energy (OSTI)

Before a spacecraft can be considered for launch, it must first survive environmental testing that simulates the launch environment. Typically, these simulations include vibration testing performed using an electro-dynamic shaker. For some spacecraft however, acoustic excitation may provide a more severe loading environment than base shaker excitation. Because this was the case for a Sandia Flight System, it was necessary to perform an acoustic test prior to launch in order to verify survival due to an acoustic environment. Typically, acoustic tests are performed in acoustic chambers, but because of scheduling, transportation, and cleanliness concerns, this was not possible. Instead, the test was performed as a direct field acoustic test (DFAT). This type of test consists of surrounding a test article with a wall of speakers and controlling the acoustic input using control microphones placed around the test item, with a closed-loop control system. Obtaining the desired acoustic input environment - proto-flight random noise input with an overall sound pressure level (OASPL) of 146.7 dB-with this technique presented a challenge due to several factors. An acoustic profile with this high OASPL had not knowingly been obtained using the DFAT technique prior to this test. In addition, the test was performed in a high-bay, where floor space and existing equipment constrained the speaker circle diameter. And finally, the Flight System had to be tested without contamination of the unit, which required a contamination bag enclosure of the test unit. This paper describes in detail the logistics, challenges, and results encountered while performing a high-OASPL, direct-field acoustic test on a contamination-sensitive Flight System in a high-bay environment.

Stasiunas, Eric Carl; Gurule, David Joseph; Babuska, Vit; Skousen, Troy J.

2010-10-01T23:59:59.000Z

306

Field test of a downhole-activated centralizer to reduce casing drag  

Science Conference Proceedings (OSTI)

A good cementation is based on an adequate centralization. Conventional bow-type centralizers create a drag force, which is not acceptable under certain conditions. The downhole-activated centralizer (DAC{trademark}) was developed for use in highly inclined wells and whenever restrictions in the wellbore like close tolerance wellheads have to be passed. It can be released by external hydraulic pressure, by temperature or by a chemical reaction. The first downhole-activated centralizers with pressure released locking mechanism were field tested in two wells offshore Italy. These field tests proved the function and the effectiveness of the downhole-activated centralizers under operational conditions.

Kinzel, H. [Weatherford Oil Tool GmbH, Langenhagen (Germany); Calderoni, A. [Agip SpA, Milan (Italy)

1995-06-01T23:59:59.000Z

307

Field Test Evaluation of Conservation Retrofits of Low-Income, Single-Family Buildings in Wisconsin: Audit Field Test Implementation and Results  

SciTech Connect

This report describes the field test of a retrofit audit. The field test was performed during the winter of 1985-86 in four South Central Wisconsin counties. The purpose of the field test was to measure the energy savings and cost effectiveness of the audit-directed retrofit program for optimizing the programs benefit-to-cost ratio. The audit-directed retrofit program is described briefly in this report and in more detail by another report in this series (ORNL/CON-228/P3). The purpose of this report is to describe the methods and results of the field test. Average energy savings of the 20 retrofitted houses are likely (0.90 probability) to lie between 152 and 262 therms/year/house. The most likely value of the average savings is 207 therms/year/house. These savings are significantly (p < .05) smaller than the audit-predicted savings (286 therms/year/house). Measured savings of individual houses were significantly different than predicted savings for half of the houses. Each house received at least one retrofit. Thirteen of the 20 retrofitted houses received a new condensing furnace or blown-in wall insulation; all but two of the houses received one or more minor retrofits. The seven houses which received condensing furnaces saved, on average, about as much as predicted, but three of the seven houses had significantly more or less savings than predicted. The six houses which received wall insulation saved, on average, about half as much as predicted. The remaining houses which received only minor retrofits saved, on average, less than predicted, but the difference was not significant. Actual retrofit costs were close to expected costs. Overall measured energy savings averaged 15 therms/year per hundred retrofit dollars invested. Houses which received wall insulation or a condensing furnace did slightly better, and the houses which received only minor retrofits did poorly. When estimated program costs were included, average savings dropped to about 13 therms/year/per hundred dollars. The uncertainty associated with the energy savings means that these comparisons of savings and costs also have large uncertainties.

McCold, L.N.

1988-01-01T23:59:59.000Z

308

Field test of ultra-low head hydropower package based on marine thrusters. Final report  

DOE Green Energy (OSTI)

The project includes the design, fabrication, assembly, installation, and field test of the first full-scale operating hydropower package (turbine, transmission, and generator) based on a design which incorporates a marine-thruster as the hydraulic prime mover. Included here are: the project overview; engineering design; ultra-low head hydropower package fabrication; component procurement, cost control, and scheduling; thruster hydraulic section installation; site modeling and resulting recommended modifications; testing; and baseline environmental conditions at Stone Drop. (MHR)

Not Available

1983-12-01T23:59:59.000Z

309

Safety of high speed ground transportation systems: X2000 US demonstration vehicle dynamics trials, preliminary test report. Report for October 1992-January 1993  

SciTech Connect

The report documents the procedures, events, and results of vehicle dynamic tests carried out on the ASEA-Brown Boveri (ABB) X2000 tilt body trainset in the US between October 1992 and January 1993. These tests, sponsored by Amtrak and supported by the FRA, were conducted to assess the suitability of the X2000 trainset for safe operation at elevated cant deficiencies and speeds in Amtrak's Northeast Corridor under existing track conditions in a revenue service demonstration. The report describes the safety criteria against which the performance of the X2000 test train was examined, the instrumentation used, the test locations, and the track conditions. Preliminary results are presented from tests conducted on Amtrak lines between Philadelphia and Harrisburg, PA, and between Washington DC and New York NY, in which cant deficiencies of 12.5 inches and speeds of 154 mph were reached in a safe and controlled manner. The significance of the results is discussed, and preliminary conclusions and recommendations are presented.

Whitten, B.T.; Kesler, J.K.

1993-01-01T23:59:59.000Z

310

Silica Deposition in Field and Laboratory Thermal Tests of Yucca Mountain Tuff  

SciTech Connect

A field thermal test was conducted by the Yucca Mountain Site Characterization Project to observe changes in the Topopah Spring Tuff middle nonlithophysal zone geohydrologic system due to thermal loading. A laboratory-scale crushed-tuff hydrothermal column test was used to investigate the tuff as a potential construction material within a nuclear-waste repository. Results of similar column tests have been cited as indications that silica deposition would plug the rock fractures above a repository and create unfavorable drainage conditions. Data from field and laboratory tests are used here to predict the magnitude of fracture sealing. For the crushed-tuff column test, a one-meter-high column was packed with crushed tuff to a porosity of about 50%. Water filling the lowermost 10 cm of the column was boiled and the vapor condensed at the top of the column, percolating down to the boiling zone. After 100 days, intergranular pore space in the saturated portion of the column was almost filled with amorphous silica. The Drift Scale Test at Yucca Mountain is a heating test in the unsaturated zone. It consists of a four-year heating phase, now complete, followed by a four-year cooling phase. Heaters in a 60-m-long drift and in the adjacent rock have heated the drift walls to 200 C. As the rock was heated, fluids naturally present in the rock migrated away from the heat sources. A boiling zone now separates an inner dry-out zone from an outer condensation zone. A heat-pipe region exists in the outer margin of the boiling zone above the heated drift. Amorphous silica coatings up to a few micrometers thick were deposited in this region. Deposits were observed in less than 10% of the fractures in the heat pipe region. Drift-scale test results yield a silica deposition rate of about 250 {micro}m/1000 years in 10% of the fractures in the heat-pipe region. We did not calculate deposition rates from our column test, but a rate of 9.1 mm/1000 years in all fractures of the heat-pipe region is predicted by Sun and Rimstidt (2002) from the results of a similar test. We believe the rate based on field-test observations is a better prediction because the field test more closely resembles the expected environment in a repository. Rates based on column-test results may be reasonable for local zones of preferred fluid flow.

S.S. Levy; S.J. Chipera; M.G. Snow

2002-08-30T23:59:59.000Z

311

Assembly and Field Testing of a Ground-Based Presence-of-Cloud Detector  

Science Conference Proceedings (OSTI)

A presence-of-cloud (POC) detector has been developed for use in remote locations. The principal components of the POC detector are a moisture-sensitive resistance grid, a heater, a fan, and housing with rain shielding. Field testing at a ...

D. O. Krovetz; M. A. Reiter; J. T. Sigmon; F. S. Gilliam

1988-08-01T23:59:59.000Z

312

A Test Of The Transiel Method On The Travale Geothermal Field | Open Energy  

Open Energy Info (EERE)

Of The Transiel Method On The Travale Geothermal Field Of The Transiel Method On The Travale Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Test Of The Transiel Method On The Travale Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: An original electromagnetic method has been applied to geothermal prospecting on the Travale test site. The results show good correlations between observed polarization anomalies and productive zones. It is believed that these anomalies are related to reduction phenomena that occurred in the overburden (such as pyrite formation) caused by thermochemical exchanges between the reservoir and the overburden above those zones where the reservoir permeability is highest. Author(s): A. Duprat, M. Roudot, S. Spitz Published: Geothermics, 1985

313

NETL: News Release - First-of-a-Kind Sequestration Field Test Begins in  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2009 8, 2009 First-of-a-Kind Sequestration Field Test Begins in West Virginia DOE-Sponsored Test to Evaluate Carbon Storage in Unmineable Coal Seams Washington, D.C. - Injection of carbon dioxide (CO2) began today in a first-of-a-kind field trial of enhanced coalbed methane recovery with simultaneous CO2 sequestration in an unmineable coal seam. The ultimate goal of the U.S. Department of Energy-sponsored project is to help mitigate climate change by providing an effective and economic means to permanently store CO2 in unmineable coal seams. CONSOL Energy Inc., West Virginia University, and the National Energy Technology Laboratory (NETL) are collaborating in the $13 million field trial, located in Marshall County, W.Va. The site was chosen because of its accessibility, availability, and typical northern Appalachian topography and geology. The project is funded by DOE's Office of Fossil Energy and managed by NETL.

314

Laboratory and Modeling Evaluations in Support of Field Testing for Desiccation at the Hanford Site  

SciTech Connect

The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau includes testing of the desiccation technology as a potential technology to be used in conjunction with surface infiltration control to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. Laboratory and modeling efforts were conducted to investigate technical uncertainties related to the desiccation process and its impact on contaminant transport. This information is intended to support planning, operation, and interpretation of a field test for desiccation in the Hanford Central Plateau.

Truex, Michael J.; Oostrom, Martinus; Freedman, Vicky L.; Strickland, Christopher E.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Ward, Anderson L.

2011-02-23T23:59:59.000Z

315

Evolving Einstein's Field Equations with Matter: The ``Hydro without Hydro'' Test  

E-Print Network (OSTI)

We include matter sources in Einstein's field equations and show that our recently proposed 3+1 evolution scheme can stably evolve strong-field solutions. We insert in our code known matter solutions, namely the Oppenheimer-Volkoff solution for a static star and the Oppenheimer-Snyder solution for homogeneous dust sphere collapse to a black hole, and evolve the gravitational field equations. We find that we can evolve stably static, strong-field stars for arbitrarily long times and can follow dust sphere collapse accurately well past black hole formation. These tests are useful diagnostics for fully self-consistent, stable hydrodynamical simulations in 3+1 general relativity. Moreover, they suggest a successive approximation scheme for determining gravitational waveforms from strong-field sources dominated by longitudinal fields, like binary neutron stars: approximate quasi-equilibrium models can serve as sources for the transverse field equations, which can be evolved without having to re-solve the hydrodynamical equations (``hydro without hydro'').

Thomas W. Baumgarte; Scott A. Hughes; Stuart L. Shapiro

1999-02-09T23:59:59.000Z

316

Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency  

Science Conference Proceedings (OSTI)

A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

Not Available

1985-07-04T23:59:59.000Z

317

Closed-loop flow test Miravalles Geothermal Field well log results  

DOE Green Energy (OSTI)

The Instituto Costarricense de Electricidad (ICE) conducted a closed-loop flow test in the Miravalles Geothermal Field. The closed-loop test was started in May and ran through August of 1990. The effluent from the production well PG-11 was carried by a pipeline through a monitor station to the injection well PG-2. Before starting the long-term flow test in May, cold-water injection experiments were performed in each well to determine the pressure and temperature response. A series of downhole measurements were made in each well to obtain background information. The downhole measurements were repeated in August just before terminating the flow test to evaluate the results.

Dennis, B.; Eden, G.; Lawton, R.

1992-01-01T23:59:59.000Z

318

SOLERAS Program: engineering field test of a solar cooling system. Phase I and II  

Science Conference Proceedings (OSTI)

The rationale for selecting the engineering field test site and the building cooling requirements are described. Descriptions of the Phase I activities are presented and descriptions of the overall cooling system and its major subsystems and components are provided. The preliminary design analyses conducted to select collector/storage, chiller module and thermal distribution components; operating features and estimated system performance are included. Economic analyses and the results obtained are described including an assessment of the commercialization potential for the solar cooling system. Phase II activities are presented and detailed design, construction and installation features of the solar system at the test site are described. Testing documentation is provided by the checkout and acceptance tests and their results are described.

Not Available

1982-06-01T23:59:59.000Z

319

A test of Einstein's theory of gravitation: Velocity distribution of low-energy particles in a spherically symmetric gravitational field  

E-Print Network (OSTI)

We propose a new test of Einstein's theory of gravitation. It concerns the velocity distribution of low-energy particles in a spherically symmetric gravitational field.

Jian-Miin Liu

2002-06-17T23:59:59.000Z

320

L&E: Participate in a field test for high-efficiency troffer lighting. |  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting & Electrical » Participate Lighting & Electrical » Participate in a field test for high efficiency troffer lighting Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Participate in a field test for high-efficiency troffer lighting 50% of all commercial fluorescent lighting fixtures are recessed troffers in 1'x4', 2'x2' and 2'x4' configurations, in operation for more than 10 hours a day on average and collectively consuming more than 87 TWh of electricity annually. The Lighting & Electrical team supported the market introduction of high-efficiency troffers by developing a specification that allows for

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Field TesTing oF AcTivATed cArbon Field TesTing oF AcTivATed cArbon injecTion opTions For Mercury conTrol AT TXu's big brown sTATion Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. Lignite coal is unique because of its highly variable ash content (rich in alkali and alkaline-earth elements), high moisture levels, low chlorine content, and high calcium content. Unique to Texas lignite coals are relatively high iron and selenium concentrations. When combusting Texas lignite coals, up to 80 percent of the mercury in the flue gas is present as elemental mercury, which is not readily captured by downstream pollution control devices. To better understand the factors that influence mercury control at units firing

322

Notes from DOE/EPRI Meeting on Phase II Mercury Field Test Needs  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes DOE/EPRI meeting on Phase II Mercury Field Test Needs Washington DC June 5, 2002 Attendees (phone/e-mail at end of notes) AEP - Gary Spitznogle EPRI - Stu Dalton DOE - Scott Renninger EPRI - George Offen DOE - Tom Feeley GRE - Mark Strohfus Duke - Tim Shawver Southern - Larry Monroe EPA - Jim Kilgroe TVA - Tom Burnett TXU - David Lamb DOE and EPRI jointly convened this meeting to obtain feedback from deeply involved industry members on the needs, scope, schedule, etc. for a second phase of full-scale, longer-term field tests of mercury controls on power plants. The program objectives would be to determine performance and costs of the major near-term control approaches with the hope of using this information both to inform the regulatory (MACT) and legislative (Clear Skies Initiative, CSI) processes as well as industry selections of

323

Laboratory and field testing of an aerosol-based duct-sealing technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory and field testing of an aerosol-based duct-sealing technology Laboratory and field testing of an aerosol-based duct-sealing technology for large commercial buildings. Title Laboratory and field testing of an aerosol-based duct-sealing technology for large commercial buildings. Publication Type Journal Article LBNL Report Number LBNL-44220 Year of Publication 2002 Authors Carrié, François Rémi, Ronnen M. Levinson, Tengfang T. Xu, Darryl J. Dickerhoff, William J. Fisk, Jennifer A. McWilliams, Mark P. Modera, and Duo Wang Journal ASHRAE Transactions Start Page Chapter Date Published January 2002 Abstract Laboratory and field experiments were performed to evaluate the feasibility of sealing leaks in commercial duct systems with an aerosol sealant. The method involves blowing an aerosol through the duct system to seal the leaks from the inside, the principle being that the aerosol particles deposit in the cracks as they try to escape under pressure. It was shown that the seals created with the current sealant material can withstand pressures far in excess of what is found in commercial-building duct systems. We also performed two field experiments in two large-commercial buildings. The ASHRAE leakage classes of the systems were reduced from 653 down to 103, and from 40 down to 3. Methods and devices specifically devised for this application proved to be very efficient at (a) increasing the sealing rate and (b) attaining state-of-the-art duct leakage classes. Additional research is needed to improve the aerosol injection and delivery processes.

324

Field pilot tests for tertiary recovery using butane and propane injection  

SciTech Connect

This work describes a pilot project for tertiary recovery of liquid hydrocarbons through LPG injection in water-out sections of the Bolivar reservoir in La Pena Field, Santa Cruz, Boliva. The promising results obtained in the initial field miscibility tests, as well as the results from a mathematical model built to stimulate and evaluate the tertiary recovery project, directed subsequent work into a cyclic scheme for enhanced recovery. This scheme is explained and injection production data is presented. Field facilities built to handle both the injected LPG and the produced oil-LPG mixture are described. The oil/LPG ratio and the LPG recovered/injected fraction are the main factors measured in this to make further considerations for a full scale project.

Pacheco, E.F.; Garcia, A.I.

1981-01-01T23:59:59.000Z

325

Field-based tests of geochemical modeling codes using New Zealand hydrothermal systems  

DOE Green Energy (OSTI)

Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions.

Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

1994-06-01T23:59:59.000Z

326

Field Testing of Location Tracking Technologies for Radiation Management: Interim Report  

Science Conference Proceedings (OSTI)

The nuclear power industry is challenged with monitoring an ever-increasing load of work activities and workers, while cost effective measures have greatly reduced the number of staff able to perform job coverage. The adoption of location tracking technologies may assist plant staff in maintaining safe operation of nuclear power plants. Performing field tests of the available equipment will help the industry understand the set up requirements and limitations of coverage. This interim report provides info...

2011-12-20T23:59:59.000Z

327

SOLERAS - Solar-Powered Water Desalination Project at Yanbu: Solar-collector field experimental tests  

Science Conference Proceedings (OSTI)

The solar-collection field subsystem of the solar-powered desalination pilot project located at Yanbu in the Kingdom of Saudi Arabia has been operated successfully for two years. It has been demonstrated that during a one-year period, the solar-collector field can, on the average, provide about 2500 kWh of thermal energy a day for days with a daily insolation total greater than 4000 Wh/m/sup 2/. This is a yearlong solar-collector field average efficiency of 22.5%. In Yanbu, from October 1, 1985, until September 30, 1986, there were only 21 days (5.8%) when the daily direct-normal insolation was less than the mid-60% to 70% range with a peak output of 51 kW per solar collector. It has also been demonstrated that the Power Kinetics, Inc., square-dish solar collector has a problem due to the fixed aperture (outboard focus) that seriously hurts the performance of the solar collector during the summer months at this latitude. A location at latitudes greater than +-35/degree/ would see greatly improved daylong summer performance. 4 refs., 3 figs., 1 tab.

Zimmerman, J.C.; Al-Abbadi, N.

1987-06-01T23:59:59.000Z

328

Office of Technology Development FY 1993 program summary: Office of Research and Development, Office of Demonstration, Testing and Evaluation. Revision 1  

SciTech Connect

This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs are discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.

Not Available

1994-02-01T23:59:59.000Z

329

NETL: News Release - DOE-Funded Acoustic Monitor Passes Key Field Test  

NLE Websites -- All DOE Office Websites (Extended Search)

March 7, 2005 March 7, 2005 DOE-Funded Acoustic Monitor Passes Key Field Test Detection System Can Help Locate Pipeline Leaks, Damage MORGANTOWN, WV - A new, lightweight device that uses natural gas itself to detect leaks in natural gas pipelines has been successfully tested on a transmission main owned and operated by Dominion Transmission Inc., in Morgantown, W.Va. The test was conducted by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) and West Virginia University, which has worked with NETL for the past 2 years to advance the detection system. The device is one of a suite of technologies being developed by the Energy Department's Office of Fossil Energy to effectively and efficiently monitor the 1.3 million miles of transmission and distribution pipelines which crisscross the United States

330

Discussion of comparison study of hydraulic fracturing models -- Test case: GRI Staged Field Experiment No. 3  

Science Conference Proceedings (OSTI)

This paper provides comments to a companion journal paper on predictive modeling of hydraulic fracturing patterns (N.R. Warpinski et. al., 1994). The former paper was designed to compare various modeling methods to demonstrate the most accurate methods under various geologic constraints. The comments of this paper are centered around potential deficiencies in the former authors paper which include: limited actual comparisons offered between models, the issues of matching predictive data with that from related field operations was lacking or undocumented, and the relevance/impact of accurate modeling on the overall hydraulic fracturing cost and production.

Cleary, M.P.

1994-02-01T23:59:59.000Z

331

Field test of Six-Phase Soil Heating and evaluation of engineering design code  

SciTech Connect

A field test was conducted to evaluate the performance of Six-Phase Soil Heating to enhance the removal of contaminants. The purpose of the test was to determine the scale-up characteristics of the Six-Phase Soil Heating technology and to evaluate a computer process simulator developed for the technology. The test heated a 20-ft diameter cylinder of uncontaminated soil to a 10-ft depth. Six-phase ac power was applied at a rate of 30--35 kW using a power system built from surplus electrical components. The test ran unattended, using a computer-based system to record data, alert staff of any excursions in operating conditions via telephone, and provide automatic shut-off of power depending on the type of excursion. The test data included in situ soil temperatures, voltage profiles, and moisture profiles (using a neutron-probetechnique). After 50 days of heating, soil in the center of the array at the 6-ft depth reached 80[degrees]C. Soil temperatures between the two electrodes at this depth reached approximately 75[degrees]C. Data from this test were compared with those predicted by a computer process simulator. The computer process simulator is a modified version of the TOUGH2 code, a thermal porous media code that can be used to determine the movement of air and moisture in soils. The code was modified to include electrical resistive heating and configured such that an application could be run quickly on a workstation (approximately 5 min for 1 day of field operation). Temperature and soil resistance data predicted from the process simulations matched actual data fairly closely. A series of parametric studies was performed to assess the affect of simulation assumptions on predicted parameters.

Bergsman, T.M.; Roberts, J.S.; Lessor, D.L.; Heath, W.O.

1993-02-01T23:59:59.000Z

332

Field test of Six-Phase Soil Heating and evaluation of engineering design code  

SciTech Connect

A field test was conducted to evaluate the performance of Six-Phase Soil Heating to enhance the removal of contaminants. The purpose of the test was to determine the scale-up characteristics of the Six-Phase Soil Heating technology and to evaluate a computer process simulator developed for the technology. The test heated a 20-ft diameter cylinder of uncontaminated soil to a 10-ft depth. Six-phase ac power was applied at a rate of 30--35 kW using a power system built from surplus electrical components. The test ran unattended, using a computer-based system to record data, alert staff of any excursions in operating conditions via telephone, and provide automatic shut-off of power depending on the type of excursion. The test data included in situ soil temperatures, voltage profiles, and moisture profiles (using a neutron-probetechnique). After 50 days of heating, soil in the center of the array at the 6-ft depth reached 80{degrees}C. Soil temperatures between the two electrodes at this depth reached approximately 75{degrees}C. Data from this test were compared with those predicted by a computer process simulator. The computer process simulator is a modified version of the TOUGH2 code, a thermal porous media code that can be used to determine the movement of air and moisture in soils. The code was modified to include electrical resistive heating and configured such that an application could be run quickly on a workstation (approximately 5 min for 1 day of field operation). Temperature and soil resistance data predicted from the process simulations matched actual data fairly closely. A series of parametric studies was performed to assess the affect of simulation assumptions on predicted parameters.

Bergsman, T.M.; Roberts, J.S.; Lessor, D.L.; Heath, W.O.

1993-02-01T23:59:59.000Z

333

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

Science Conference Proceedings (OSTI)

The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

2009-01-07T23:59:59.000Z

334

Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report  

SciTech Connect

The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair of field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.

Aglan, H.

2005-08-04T23:59:59.000Z

335

Development of analytical and numerical models for the assessment and interpretation of hydrogeological field tests  

Science Conference Proceedings (OSTI)

Mathematical models of the flow and tracer tests in fractured aquifers are being developed for the further study of radioactive wastes migration in round water at the Lake Area, which is associated with one of the waste disposal site in Russia. The choice of testing methods, tracer types (chemical or thermal) and the appropriate models are determined by the nature of the ongoing ground-water pollution processes and the hydrogeological features of the site under consideration. Special importance is attached to the increased density of wastes as well as to the possible redistribution of solutes both in the liquid phase and in the absorbed state (largely, on fracture surfaces). This allows for studying physical-and-chemical (hydrogeochemical) interaction parameters which are hard to obtain (considering a fractured structure of the rock mass) in laboratory. Moreover, a theoretical substantiation is being given to the field methods of studying the properties of a fractured stratum aimed at the further construction of the drainage system or the subsurface flow barrier (cutoff wall), as well as the monitoring system that will evaluate the reliability of these ground-water protection measures. The proposed mathematical models are based on a tight combination of analytical and numerical methods, the former being preferred in solving the principal (2D axisymmetrical) class of the problems. The choice of appropriate problems is based on the close feedback with subsequent field tests in the Lake Area. 63 refs.

Mironenko, V.A.; Rumynin, V.G.; Konosavsky, P.K. [St. Petersburg Mining Inst. (Russian Federation); Pozdniakov, S.P.; Shestakov, V.M. [Moscow State Univ. (Russian Federation); Roshal, A.A. [Geosoft-Eastlink, Moscow (Russian Federation)

1994-07-01T23:59:59.000Z

336

Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data  

SciTech Connect

The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

Cena, R. J.; Thorsness, C. B.

1981-08-21T23:59:59.000Z

337

Rapid field testing of low-emittance coated glazings for product verification  

Science Conference Proceedings (OSTI)

This paper analyzes prospects for developing a test device suitable for field verification of the types of low-emittance (low-e) coatings present on high-performance window products. Test devices are currently available that can simply detect the presence of low-e coatings and that can measure other important characteristics of high-performance windows, such as the thickness of glazing layers or the gap in dual glazings. However, no devices have yet been developed that can measure gas concentrations or distinguish among types of coatings. This paper presents two optical methods for verification of low-e coatings. The first method uses a portable, fiber-optic spectrometer to characterize spectral reflectances from 650 to 1,100 nm for selected surfaces within an insulated glazing unit (IGU). The second method uses an infrared-light-emitting diode and a phototransistor to evaluate the aggregate normal reflectance of an IGU at 940 nm. Both methods measure reflectance in the near (solar) infrared spectrum and are useful for distinguishing between regular and spectrally selective low-e coatings. The infrared-diode/phototransistor method appears promising for use in a low-cost, hand-held field test device.

Griffith, Brent; Kohler, Christian; Goudey, Howdy; Turler, Daniel; Arasteh, Dariush

1998-02-01T23:59:59.000Z

338

ANL/APS/TB-32 Test of Horizontal Field Measurements Using Two-Axis Hall  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Test of Horizontal Field Measurements Using Two-Axis Hall Probes at the APS Magnetic Measurement Facility I. Vasserman Advanced Photon Source Argonne National Laboratory Argonne, IL 60439 1. Introduction The free-electron laser (FEL) project at the Advanced Photon Source (APS) will use a 400-MeV particle beam from the APS linac with RMS beam transverse size of 100 µm and requires very high performance of the insertion devices in order to achieve high intensity radiation. Averaged over period, the trajectory must deviate from the ideal on-axis trajectory by not more than 10% of the RMS beam size. Meaning that the second field integral should be straight within ±1300 G-cm 2 over the length of the device for both horizontal and vertical directions for the 400-MeV particle

339

Field tests of probes for detecting internal corrosion of natural gas transmission pipelines  

Science Conference Proceedings (OSTI)

A field study was conducted to evaluate the use of electrochemical corrosion rate (ECR) probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. Results and interpretation will be reported from four different field tests. Flange and flush-mount probes were used in four different environments at a gas-gathering site and one environment but two different orientations at a natural gas plant. These sites were selected to represent normal and upset conditions in a gas transmission pipeline. The environments consisted of 2 different levels of humidified natural gas/organic/water mixtures removed from natural gas, and the environments at the 6 and 12 o'clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S. (Intercorr International Inc.); Kane, Russell D. (Intercorr International Inc.); Meidinger, Brian (RMOTC-DOE)

2005-01-01T23:59:59.000Z

340

Automated Critical Peak Pricing Field Tests: 2006 Program Description and Results APPENDICES  

NLE Websites -- All DOE Office Websites (Extended Search)

Automated Critical Peak Pricing Field Tests: 2006 Program Description and Results APPENDICES Mary Ann Piette David Watson Naoya Motegi Sila Kiliccote Lawrence Berkeley National Laboratory MS90R3111 1 Cyclotron Road Berkeley, California 94720 August 30, 2007 This work described in this report was coordinated by the Demand Response Research Center and funded by the California Energy Commission, Public Interest Energy Research Program, under Work for Others Contract No. 150-99-003, Am #1 and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. LBNL Report Number 62218 2 Table of Contents List of Tables ......................................................................................................................................3

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

On-site fuel cell field test support program. Annual report Jul 81-Jun 82  

SciTech Connect

United continued this past year to assist the utilities and the Gas Research Institute in the review and selection of sites for data monitoring. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation continued to show that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

Staniunas, J.W.; Merten, G.P.

1982-09-01T23:59:59.000Z

342

Impact of residential photovoltaics on electric utilities: some evidence from field test and simulation  

SciTech Connect

The adoption of residential photovoltaics will affect the load profile of electric utilities, the adequacy and reliability of their capacity, and their consumption of fuels. Impacts are examined by a comparison of the actual load profile facing a Texas utility with solar outputs from both TRNSYS simulations and a test array in Fort Worth. Array output is scaled up parametrically to represent different levels of solar penetration. The reductions in peak load and loss-of-load probability indicate that the adoption of 5 kW arrays by 50% of the residences reduces capacity requirements by only 4%. The value of utility savings will exceed the cost of the PV systems before 1990. The field test results are more favorable than the simulation.

Katzman, M.T.

1981-01-01T23:59:59.000Z

343

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

Brayton Point Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of the impacts of future mercury regulations to Brayton Point Unit 1, including performance, estimated cost, and operation data. This unit has variable (29-75%) native mercury removal, thus it was important to understand the impacts of process variables and activated carbon on mercury capture. The team responsible for executing this program included: (1) Plant and PG&E National Energy Group corporate personnel; (2) Electric Power Research Institute (EPRI); (3) United States Department of Energy National Energy Technology Laboratory (DOE/NETL); (4) ADA-ES, Inc.; (5) NORIT Americas, Inc.; (6) Apogee Scientific, Inc.; (7) TRC Environmental Corporation; (8) URS Corporation; (9) Quinapoxet Solutions; (10) Energy and Environmental Strategies (EES); and (11) Reaction Engineering International (REI). The technical support of all of these entities came together to make this program achieve its goals. Overall, the objectives of this field test program were to determine the impact of activated carbon injection on mercury control and balance-of-plant processes on Brayton Point Unit 1. Brayton Point Unit 1 is a 250-MW unit that fires a low-sulfur eastern bituminous coal. Particulate control is achieved by two electrostatic precipitators (ESPs) in series. The full-scale tests were conducted on one-half of the flue gas stream (nominally 125 MW). Mercury control sorbents were injected in between the two ESPs. The residence time from the injection grid to the second ESP was approximately 0.5 seconds. In preparation for the full-scale tests, 12 different sorbents were evaluated in a slipstream of flue gas via a packed-bed field test apparatus for mercury adsorption. Results from these tests were used to determine the five carbon-based sorbents that were tested at full-scale. Conditions of interest that were varied included SO{sub 3} conditioning on/off, injection concentrations, and distribution spray patterns. The original test plan called for parametric testing of NORIT FGD carbon at 1, 3, and 10 lbs/MMacf. These injection concentrations were estimated based on results from the Pleasant Prairie tests that showed no additional mercury removal when injection concentrations were increased above 10 lbs/MMacf. The Brayton Point parametric test data indicated that higher injection concentrations would achieve higher removal efficiencies and should be tested. The test plan was altered to include testing at 20 lbs/MMacf. The first test at this higher rate showed very high removal across the second ESP (>80%). Unlike the ''ceiling'' phenomenon witnessed at Pleasant Prairie, increasing sorbent injection concentration resulted in further capture of vapor-phase mercury. The final phase of field-testing was a 10-day period of continuous injection of NORIT FGD carbon. During the first five days, the injection concentration was held at 10 lbs/MMacf, followed by nominally five days of testing at an injection concentration of 20 lbs/MMacf. The mercury removal, as measured by the semi-continuous emission monitors (S-CEM), varied between 78% and 95% during the 10 lbs/MMacf period and increased to >97% when the injection concentration was increased to 20 lbs/MMacf. During the long-term testing period, mercury measurements following EPA's draft Ontario Hydro method were conducted by TRC Environmental Corporation at both 10 and 20 lbs/MMacf test conditions. The Ontario Hydro data showed that the particulate mercury removal was similar between the two conditions of 10 or 20 lbs/MMacf and removal efficiencies were greater than 99%. Elemental mercury was not detected in any samples, so no conclusions as to its removal can be drawn. Removal of oxidized mercury, on the other hand, increased from 68% to 93% with the higher injection concentration. These removal rates agreed well with the S-CEM results.

Michael D. Durham

2005-03-17T23:59:59.000Z

344

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

345

ARM - Field Campaign - NASA Coordinated Airborne CO2 Lidar Flight Test  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsNASA Coordinated Airborne CO2 Lidar Flight Test Campaign govCampaignsNASA Coordinated Airborne CO2 Lidar Flight Test Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : NASA Coordinated Airborne CO2 Lidar Flight Test Campaign 2009.07.27 - 2009.08.07 Lead Scientist : Edward Browell For data sets, see below. Description This airborne field test campaign was designed to obtain a coordinated set of remote CO2 Laser Absorption Spectrometer (LAS) measurements using the NASA Langley/ITT 1.57-micron Continuous-Wave (CW) LAS operating from the NASA Langley UC-12 aircraft; the NASA Goddard 1.57-micron pulsed LAS operating from the NASA Glenn Lear-25 aircraft; and the NASA Jet Propulsion Laboratory 2.0-micron CW-coherent LAS operating from a contracted Twin Otter aircraft. These remote LAS CO2 column measurements were compared with

346

Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report  

DOE Green Energy (OSTI)

This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.

J. Francfort (INEEL); J. Argueta; M. Wehrey (Southern California Edison); D. Karner; L. Tyree (Electric Transportation Applications)

1999-07-01T23:59:59.000Z

347

Field test results of the physical solvent N-Formyl morpholine for gas treating applications  

Science Conference Proceedings (OSTI)

The Institute of Gas Technology (IGT) is developing gas processing technology that will reduce gas processing costs for current production and allow subquality gas to be economically produced that would have been otherwise, not produced. The experimental program has primarily focused on the evaluation of N-Formyl Morpholine (NFM) as a physical solvent for the cost-effective upgrading of subquality natural gas to pipeline quality. The selection of NFM for this program was based on previous work conducted by IGT in the selective removal of hydrogen sulfide, and carbon dioxide from coal gasifier effluents. That work showed that the use of NFM resulted in a significant cost advantage over 107 other solvents for that application. The project approach for the development of NFM process has been divided into following main categories: obtain vapor-liquid equilibrium, physical properties and additional published literature data; obtain mass-transfer coefficients using 2 inch absorber/stripper apparatus and calculate equation of state parameters and binary interaction parameters using VLE data; develop a gas processing model using Aspen Plus simulation program and evaluate economic advantages of the NFM process compared to commercial physical solvent; and design a pilot plant skid mounted field test unit and conduct field test experiments.

Palla, N.; Lee, A.L.

1997-12-31T23:59:59.000Z

348

Field testing the Raman gas composition sensor for gas turbine operation  

Science Conference Proceedings (OSTI)

A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 ?m ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

2012-01-01T23:59:59.000Z

349

successfully demonstrated the separation  

NLE Websites -- All DOE Office Websites (Extended Search)

successfully demonstrated the separation and capture of 90 percent successfully demonstrated the separation and capture of 90 percent of the c arbon dioxide (CO 2 ) from a pulve rized coal plant. In t he ARRA-funded project, Membrane Technology and Research Inc. (MTR) and its partners tested the Polaris(tm) membrane system, which uses a CO 2 -selective polymeric membrane material and module to capture CO 2 from a plant's flue gas. Since the Polaris(tm) membranes

350

Comparing State-Space Multivariable Controls to Multi-SISO Controls for Load Reduction of Drivetrain-Coupled Modes on Wind Turbines through Field-Testing: Preprint  

DOE Green Energy (OSTI)

This paper presents the structure of an ongoing controller comparison experiment at NREL's National Wind Technology Center; the design process for the two controllers compared in this phase of the experiment, and initial comparison results obtained in field-testing. The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiple single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.

Fleming, P. A.; van Wingerden, J. W.; Wright, A. D.

2011-12-01T23:59:59.000Z

351

Comparing State-Space Multivariable Controls to Multi-SISO Controls for Load Reduction of Drivetrain-Coupled Modes on Wind Turbines through Field-Testing: Preprint  

SciTech Connect

This paper presents the structure of an ongoing controller comparison experiment at NREL's National Wind Technology Center; the design process for the two controllers compared in this phase of the experiment, and initial comparison results obtained in field-testing. The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiple single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.

Fleming, P. A.; van Wingerden, J. W.; Wright, A. D.

2011-12-01T23:59:59.000Z

352

LIMB Demonstration Project Extension and Coolside Demonstration  

SciTech Connect

This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

Goots, T.R.; DePero, M.J.; Nolan, P.S.

1992-11-10T23:59:59.000Z

353

Description, field test and data analysis of a controlled-source EM system (EM-60). [Leach Hot Springs, Grass Valley  

DOE Green Energy (OSTI)

The three sections describe the transmitter, the receiver, and data interpretations and indicate the advances made toward the development of a large moment electromagnetic (EM) system employing a magnetic dipole source. A brief description is given of the EM-60 transmitter, its general design, and the consideration involved in the selection of a practical coil size and weight for routine field operations. A programmable, multichannel, multi-frequency, phase-sensitive receiver is described. A field test of the EM-60, the data analysis and interpretation procedures, and a comparison between the survey results and the results obtained using other electrical techniques are presented. The Leach Hot Springs area in Grass Valley, Pershing County, Nevada, was chosen for the first field site at which the entire system would be tested. The field tests showed the system capable of obtaining well-defined sounding curves (amplitude and phase of magnetic fields) from 1 kHz down to 0.1 Hz. (MHR)

Morrison, H.F.; Goldstein, N.E.; Hoversten, M.; Oppliger, G.; Riveros, C.

1978-10-01T23:59:59.000Z

354

DTE Energy Technologies With Detroit Edison Co. and Kinectrics Inc.: Distributed Resources Aggregation Modeling and Field Configuration Testing  

Science Conference Proceedings (OSTI)

Summarizes the work of DTE Energy Technologies, Detroit Edison, and Kinectrics, under contract to DOE's Distribution and Interconnection R&D, to develop distributed resources aggregation modeling and field configuration testing.

Not Available

2003-10-01T23:59:59.000Z

355

Studies of strong-field gravity : testing the black hole hypothesis and investigating spin-curvature coupling  

E-Print Network (OSTI)

Observations of gravitational systems agree well with the predictions of general relativity (GR); however, to date we have only tested gravity in the weak-field limit. In the next few years, observational advances may make ...

Vigeland, Sarah Jane

2012-01-01T23:59:59.000Z

356

Dehumidification Performance of Air Conditioning Systems in Supermarkets: Field Demonstration with Heat Pipe Heat Exchangers in Delchamps Supermarket, Gulf Breeze, Florida  

Science Conference Proceedings (OSTI)

Lower humidity in supermarkets translates to reduced operational cost from refrigeration equipment. A demonstration project at a Florida supermarket showed that use of a heat pipe heat exchanger (HPHX) improved the HVAC system's dehumidification performance; but lower airflow rates, with or without an HPHX, also provided significant dehumidification enhancements.

1996-07-27T23:59:59.000Z

357

V2X communication in Europe - From research projects towards standardization and field testing of vehicle communication technology  

Science Conference Proceedings (OSTI)

Following the success story of passive and autonomous active safety systems, cooperative Intelligent Transportation Systems based on vehicular communication are the next important step to the vision of accident-free driving. In recent years, various ... Keywords: Cooperative systems, Field operational test (FOT), Intelligent Transportation Systems (ITS), Safe intelligent mobility - test field Germany (simTD), Vehicle-to-infrastructure (V2I), Vehicle-to-vehicle (V2V)

Christian Wei

2011-10-01T23:59:59.000Z

358

Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

i Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results Mary Ann Piette David Watson Naoya Motegi Sila Kiliccote Lawrence Berkeley National Laboratory MS90R3111 1 Cyclotron Road Berkeley, California 94720 June 19, 2007 LBNL Report Number 62218 ii Acknowledgements The work described in this report was funded by the Emerging Technologies Program at Pacific Gas and Electric Company. Additional funding was provided by the Demand Response Research Center which is funded by the California Energy Commission (Energy Commission), Public Interest Energy Research (PIER) Program, under Work for Others Contract No.500-03-026, Am #1 and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are grateful for the extensive

359

Development and field testing of the high-temperature borehole televiewer  

DOE Green Energy (OSTI)

The High-Temperature Borehole Televiewer is a downhole instrument which provides acoustic pictures of the borehole walls that are suitable for casing inspection and fracture detection in geothermal wells. The Geothermal Drilling Organization has funded the development of a commercial tool survivable to temperatures up to 275{degree}C and pressures of 5000 psi. A real-time display on an IBM-compatible PC was included as part of the developmental effort. This paper describes the three principal components are: the mechanical section, the electronics, and the computer software and hardware. Each of these three components are described with special attention to important design changes most pertinent to a high temperature environment. The results of two field tests of the televiewer system are also described. 7 refs., 4 figs.

Duda, L.E.; Uhl, J.E.; Wemple, R.P.

1990-01-01T23:59:59.000Z

360

Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A field-scale test of in situ chemical oxidation through recirculation  

Science Conference Proceedings (OSTI)

In situ chemical oxidation is a developing class of remediation technologies in which organic contaminants are degraded in place by powerful oxidants. Successful implementation of this technology requires an effective means for dispersing the oxidant to contaminated regions in the subsurface. An oxidant delivery technique has been developed wherein the treatment solution is made by adding an oxidant to extracted groundwater. The oxidant-laden groundwater is then injected and recirculated into a contaminated aquifer through multiple horizontal and/or vertical wells. This technique, referred to as in situ chemical oxidation through recirculation (ISCOR), can be applied to saturated and hydraulically conductive formations and used with relatively stable oxidants such as potassium permanganate (KMnO{sub 4}). A field-scale test of ISCOR was conducted at a site (Portsmouth Gaseous Diffusion Plant) where groundwater in a 5-ft thick silty gravel aquifer is contaminated with trichloroethylene (TCE) at levels that indicate the presence of residual dense non-aqueous phase liquids (DNAPLs). The field test was implemented using a pair of parallel horizontal wells with 200-ft screened sections. For approximately one month, groundwater was extracted from one horizontal well, dosed with crystalline KMnO{sub 4}, and re-injected into the other horizontal well 90 ft away. Post-treatment characterization showed that ISCOR was effective at removing TCE in the saturated region. Lateral and vertical heterogeneities within the treatment zone impacted the uniform delivery of the oxidant solution. However, TCE was not detected in groundwater samples collected from monitoring wells and soil samples from borings in locations where the oxidant had permeated.

West, O.R.; Cline, S.R.; Holden, W.L.; Gardner, F.G.; Schlosser, B.M. [Oak Ridge National Lab., TN (United States); Siegrist, R.L. [Colorado School of Mines, Golden, CO (United States); Houk, T.C. [Bechtel-Jacobs, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant

1998-09-01T23:59:59.000Z

362

THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests  

Science Conference Proceedings (OSTI)

This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

2010-08-31T23:59:59.000Z

363

Heber Geothermal Binary Demonstration Plant: Design, Construction, and Early Startup  

Science Conference Proceedings (OSTI)

Binary-cycle technology could almost double the electric energy yield from known hydrothermal resources. The 45-MWe Heber geothermal demonstration plant--now in a three-year test and demonstration program--has successfully passed through a series of feasibility studies, design stages, and field experiments that show its promise to tap these resources.

1987-10-09T23:59:59.000Z

364

On-Road and In-Laboratory Testing to Demonstrate Effects of ULSD, B20 and B99 on a Retrofit Urea-SCR Aftertreatment System  

DOE Green Energy (OSTI)

Emissions changes for a 2005 International tractor operating on low-sulfur diesel and biodiesel in Santa Monica were measured to demonstrate performance and impacts of selective catalytic reduction.

Walkowicz, K.; Na, K.; Robertson, W.; Sahay, K.; Bogdanoff, M.; Weaver, C.; Carlson, R.

2010-03-01T23:59:59.000Z

365

Field drilling tests on improved geothermal unsealed roller-cone bits. Final report  

DOE Green Energy (OSTI)

The development and field testing of a 222 mm (8-3/4 inch) unsealed, insert type, medium hard formation, high-temperature bit are described. Increased performance was gained by substituting improved materials in critical bit components. These materials were selected on bases of their high temperature properties, machinability and heat treatment response. Program objectives required that both machining and heat treating could be accomplished with existing rock bit production equipment. Six of the experimental bits were subjected to air drilling at 240/sup 0/C (460/sup 0/F) in Franciscan graywacke at the Geysers (California). Performances compared directly to conventional bits indicate that in-gage drilling time was increased by 70%. All bits at the Geysers are subjected to reaming out-of-gage hole prior to drilling. Under these conditions the experimental bits showed a 30% increase in usable hole drilled, compared with the conventional bits. The materials selected improved roller wear by 200%, friction per wear by 150%, and lug wear by 150%. These tests indicate a potential well cost savings of 4 to 8%. Savings of 12% are considered possible with drilling procedures optimized for the experimental bits.

Hendrickson, R.R.; Jones, A.H.; Winzenried, R.W.; Maish, A.B.

1980-05-01T23:59:59.000Z

366

First field test of NAPL detection with high resolution borehole seismic imaging  

Science Conference Proceedings (OSTI)

The purpose of this field test is to evaluate the detectability of NAPLs by high resolution tomographic borehole seismic imaging. The site is a former Department of Energy (DOE) manufacturing facility in Pinellas County, Florida. Cross-hole seismic and radar measurements were made in a shallow aquifer contaminated with non-aqueous phase liquids (NAPLs). Cone penetration test (CPT) and induction logging were performed for lithology and conductivity, respectively. The main challenge is to distinguish fluid phase heterogeneities from anomalies arising from geologic structure. Our approach is to compare measurements between locations of known contamination with a nearby uncontaminated location of similar lithology where differences in signal transmission may be attributed to fluid phase changes. The CPT data show similar lithologic structure at the locations both within and outside the NAPL-contaminated area. Zones of low seismic amplitude at about 7 m depth appear more extensive in the NAPL-contaminated area. These zones may be the result of fluid phase heterogeneities (NAPL or gas), or they may be due to the lithology, i.e. attenuating nature of the layer itself, or the transition between two distinct layers. The presence of lithologic contrasts, specifically from higher permeability sands to lower permeability silts and clays, also indicate potential locations of NAPL, as they could be flow barriers to downward NAPL migration.

Geller, Jil T.; Peterson, John E.; Williams, Kenneth H.; Ajo-Franklin, Jonathan B.; Majer, Ernest L.

2002-05-01T23:59:59.000Z

367

Software demonstration: Demand Response Quick Assessment Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Software demonstration: Demand Response Quick Assessment Tool Software demonstration: Demand Response Quick Assessment Tool Speaker(s): Peng Xu Date: February 4, 2008 - 12:00pm Location: 90-3122 The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. The Demand Response Quick Assessment Tools developed at LBNL will be demonstrated. The tool is built on EnergyPlus simulation and is able to evaluate and compare different DR strategies, such as global temperature reset, chiller cycling, supply air temperature reset, etc. A separate EnergyPlus plotting tool will also be demonstrated during this seminar. Users can use the tool to test EnergyPlus models, conduct parametric analysis, or compare multiple EnergyPlus simulation

368

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration phase 3. Quarterly progress report, October 1--December 31, 1995  

DOE Green Energy (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-05-01T23:59:59.000Z

369

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, April 1--June 30, 1996  

Science Conference Proceedings (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished during the period 2Q96.

NONE

1996-12-31T23:59:59.000Z

370

Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits  

SciTech Connect

The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

2005-09-01T23:59:59.000Z

371

Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water  

SciTech Connect

This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were also analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was limited to sediment depths of 10 cm or greater, which is outside of the primary zone of biological activity. Further, exposure to site sediments did not have any effects on test organisms, and macroinvertebrate communities did not indicate impairment at the oil production site as compared to a reference site. In situ experiments with H. azteca and C. fluminea, indicated a sublethal site effect (on growth of both species), but these could not be definitively linked with produced water infiltration. Severe weather conditions (drought followed by flooding) negatively influenced the intensity of lake sampling aimed at delineating produced water infiltration. Due to the lack of clear evidence of produced water infiltration into the sub-littoral zone of the lake, it was not possible to assess whether the laboratory bioassays of produced water effectively indicate risk in the receiving system. However, the acutely toxic nature of the produced water and general lack of biological effects in the lake at the oil production site suggest minimal to no produced water infiltration into surficial lake sediments and the near-shore water column. This study was able to demonstrate the utility of ion toxicity modeling to support data from toxicity identification evaluations aimed at identifying key toxic constituents in produced water. This information could be used to prioritize options for treating produced water in order to reduce toxic constituents and enhance options for reuse. The study also demonstrated how geographic information systems, toxicity modeling, and toxicity assessment could be used to facilitate future site assessments.

Joseph Bidwell; Jonathan Fisher; Naomi Cooper

2008-03-31T23:59:59.000Z

372

SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA  

Science Conference Proceedings (OSTI)

The principal objectives of this project were to test and evaluate technologies that would result in improved characterization of fractured natural-gas reservoirs in the Appalachian Basin. The Bureau of Economic Geology (Bureau) worked jointly with industry partner Atlas Resources, Inc. to design, execute, and evaluate several experimental tests toward this end. The experimental tests were of two types: (1) tests leading to a low-cost methodology whereby small-scale microfractures observed in matrix grains of sidewall cores can be used to deduce critical properties of large-scale fractures that control natural-gas production and (2) tests that verify methods whereby robust seismic shear (S) waves can be generated to detect and map fractured reservoir facies. The grain-scale microfracture approach to characterizing rock facies was developed in an ongoing Bureau research program that started before this Appalachian Basin study began. However, the method had not been tested in a wide variety of fracture systems, and the tectonic setting of rocks in the Appalachian Basin composed an ideal laboratory for perfecting the methodology. As a result of this Appalachian study, a low-cost commercial procedure now exists that will allow Appalachian operators to use scanning electron microscope (SEM) images of thin sections extracted from oriented sidewall cores to infer the spatial orientation, relative geologic timing, and population density of large-scale fracture systems in reservoir sandstones. These attributes are difficult to assess using conventional techniques. In the Henderson Dome area, large quartz-lined regional fractures having N20E strikes, and a subsidiary set of fractures having N70W strikes, are prevalent. An innovative method was also developed for obtaining the stratigraphic and geographic tops of sidewall cores. With currently deployed sidewall coring devices, no markings from which top orientation can be obtained are made on the sidewall core itself during drilling. The method developed in this study involves analysis of the surface morphology of the broken end of the core as a top indicator. Together with information on the working of the tool (rotation direction), fracture-surface features, such as arrest lines and plume structures, not only give a top direction for the cores but also indicate the direction of fracture propagation in the tough, fine-grained Cataract/Medina sandstones. The study determined that microresistivity logs or other image logs can be used to obtain accurate sidewall core azimuths and to determine the precise depths of the sidewall cores. Two seismic S-wave technologies were developed in this study. The first was a special explosive package that, when detonated in a conventional seismic shot hole, produces more robust S-waves than do standard seismic explosives. The importance of this source development is that it allows S-wave seismic data to be generated across all of the Appalachian Basin. Previously, Appalachian operators have not been able to use S-wave seismic technology to detect fractured reservoirs because the industry-standard S-wave energy source, the horizontal vibrator, is not a practical source option in the heavy timber cover that extends across most of the basin. The second S-wave seismic technology that was investigated was used to verify that standard P-wave seismic sources can create robust downgoing S-waves by P-to-S mode conversion in the shallow stratigraphic layering in the Appalachian Basin. This verification was done by recording and analyzing a 3-component vertical seismic profile (VSP) in the Atlas Montgomery No. 4 well at Henderson Dome, Mercer County, Pennsylvania. The VSP data confirmed that robust S-waves are generated by P-to-S mode conversion at the basinwide Onondaga stratigraphic level. Appalachian operators can thus use converted-mode seismic technology to create S-wave images of fractured and unfractured rock systems throughout the basin.

BOB A. HARDAGE; ELOISE DOHERTY; STEPHEN E. LAUBACH; TUCKER F. HENTZ

1998-08-14T23:59:59.000Z

373

Buried waste integrated demonstration FY 94 deployment plan  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

Hyde, R.A.; Walker, S.; Garcia, M.M.

1994-05-01T23:59:59.000Z

374

Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system  

SciTech Connect

As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

Marshall, B.W.

1983-05-01T23:59:59.000Z

375

40-kW field test power plant modification and development. Monthly technical status report No. 13, September 16, 1978-October 15, 1978  

DOE Green Energy (OSTI)

The contract objective is to complete the design and development actions that upgrade the 40-kW fuel cell power plant to a configuration suitable for on-site demonstration testing. The modifications will improve operating capability, durability and maintenance interval and lead to reduced production costs. Equipment to recover and use the by-product heat of electric generation will be available on the power plant for field verification of on-site heat recovery. The 40-kW power plant will be compatible with the power characteristics required for conventional heat pumps and conventional 60 Hz, 120/208 volts electrically operated equipment. Progress is reported. (WHK)

Not Available

1978-11-10T23:59:59.000Z

376

Utility advanced turbine system (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, July 1--September 30, 1995  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This initial report summarizes work accomplished during the third quarter of 1995. The most significant accomplishments reported include the following. Overall design continued, progressing from preliminary and conceptual design activities to detailed design activities. The aerodynamic design of six out of eight 9H turbine airfoils was completed. The 9H compressor design concept was finalized including rotor configuration, aerodynamic design of compressor, and compressor structure. Conceptual on-base and external piping layout was begun. The ATS Phase 3 Cooperative Agreement was negotiated and signed.

NONE

1995-12-31T23:59:59.000Z

377

Field test and assessment of thermal energy storage for residential heating  

SciTech Connect

Thermal energy storage (TES) heating units can be connected to the utility grid to accept electricity only during utility off-peak periods and yet provide round-the-clock comfort heating. Their use by an increasingly larger part of the electric-heat market could provide economic and oil-saving benefits. A field test was carried out over two full heating seasons in Vermont and Maine at 45 TES sites and 30 control sites heated by electric baseboard heaters. The TES users were billed under applicable time-of-day (TOD) rates. All sites were instrumented, and measurements of inside and outside temperatures and electrical energy consumption for heating were made and recorded every 15 min. Analysis of the data has led to the following findings and conclusions: Overall technical performance of the TES units was good under extreme weather conditions. Annualized energy use was the same for the TES and the control households. Proper sizing of the storage systems is much more important for storage heaters than for nonstorage heaters. TES users were satisfied with performance. Electric-heat bills were much lower for TES users. Occupancy effects were large and caused wide variations in energy consumption on days that had the same number of heating degree-days. The individual building heat loss determined experimentally from an analysis of the actual energy consumption per heating degreeday was 30% to 50% smaller than that determined by a walkthrough energy audit.

Hersh, H.

1983-12-01T23:59:59.000Z

378

Preliminary operational results of the low-temperature solar industrial process heat field tests  

DOE Green Energy (OSTI)

Six solar industrial process heat field tests have been in operation for a year or more - three are hot water systems and three are hot air systems. All are low-temperature projects (process heat at temperatures below 212/sup 0/F). Performance results gathered by each contractor's data acquisition system are presented and project costs and problems encountered are summarized. Flat-plate, evacuated-tube, and line-focus collectors are all represented in the program, with collector array areas ranging from 2500 to 21,000 ft/sup 2/. Collector array efficiencies ranged from 12% to 36% with net system efficiencies from 8% to 33%. Low efficiencies are attributable in some cases to high thermal losses and, for the two projects using air collectors, are due in part to high parasitic power consumption. Problems have included industrial effluents on collectors, glazing and absorber surface failures, excessive thermal losses, freezing and overheating, control problems, and data acquisition system failure. With design and data acquisition costs excluded costs of the projects ranged from $25/ft/sup 2/ to $87/ft/sup 2/ and $499/(MBtu/yr) to $1537/(MBtu/yr).

Kutscher, C.F.; Davenport, R.L.

1980-06-01T23:59:59.000Z

379

RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory's (INL's) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a twoinch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

Douglas W. Marshall

2008-09-01T23:59:59.000Z

380

RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH-DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratorys (INLs) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a two inch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

Charles M Barnes

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "field test demonstrating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Statistical Tests of Taylors Hypothesis: An Application to Precipitation Fields  

Science Conference Proceedings (OSTI)

The Taylor hypothesis (TH) as applied to rainfall is a proposition about the spacetime covariance structure of the rainfall field. Specifically, it supposes that if a spatiotemporal precipitation field with a stationary covariance Cov(r, ?) in ...

Bo Li; Aditya Murthi; Kenneth P. Bowman; Gerald R. North; Marc G. Genton; Michael Sherman

2009-02-01T23:59:59.000Z

382

Control of hydrogen sulfide emission from geothermal power plants. Volume III. Final report: demonstration plant equipment descriptions, test plan, and operating instructions  

DOE Green Energy (OSTI)

The elements of the final, detailed design of the demonstration plant for the copper sulfate process for the removal of hydrogen sulfide from geothermal steam are summarized. Descriptions are given of all items of equipment in sufficient detail that they can serve as purchase specifications. The process and mechanical design criteria which were used to develop the specifications, and the process descriptions and material and energy balance bases to which the design criteria were applied are included. (MHR)

Brown, F.C.; Harvey, W.W.; Warren, R.B.

1977-01-01T23:59:59.000Z

383

The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report  

Science Conference Proceedings (OSTI)

Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.

NONE

1997-10-24T23:59:59.000Z

384

A New Method to Determine the Thermal Properties of Soil Formations from In Situ Field Tests  

DOE Green Energy (OSTI)

The geothermal or ground-source heat pump (GHP) has been shown to be a very efficient method of providing heating and cooling for buildings. GHPs exchange (reject or extract) heat with the earth by way of circulating water, rather than by use of circulating outdoor air, as with an air-source heat pump. The temperature of water entering a GHP is generally cooler than that of outdoor air when space cooling is required, and warmer than that of outdoor air when space heating is required. Consequently, the temperature lift across a GHP is less than the lift across an air-source heat pump. The lower temperature lift leads to greater efficiency, higher capacity at extreme outdoor air temperatures, and better indoor humidity control. These benefits are achieved, however, at the cost of installing a ground heat exchanger. In general, this cost is proportional to length of the heat exchanger, and for this reason there is an incentive to install the minimum possible length such that design criteria are met. The design of a ground heat exchanger for a GHP system requires, at a minimum, the operating characteristics of the heat pumps, estimates of annual and peak block loads for the building, and information about the properties of the heat exchanger: the size of the U-tubes, the grouting material, etc. The design also requires some knowledge of the thermal properties of the soil, namely thermal conductivity, thermal diffusivity, and undisturbed soil temperature. In the case of a vertical borehole heat exchanger (BHEx) these properties generally vary with depth; therefore, in the design, effective or average thermal properties over the length of the borehole are usually sought. When the cost of doing so can be justified, these properties are measured in an in situ experiment: a test well is drilled to a depth on the same order as the expected depth of the heat pump heat exchangers; a U-tube heat exchanger is inserted and the borehole is grouted according to applicable state and local regulations; water is heated and pumped through the U-tube (using a field generator to power the equipment, or line voltage where available); and the inlet and outlet water temperatures are measured as a function of time. Data on inlet and outlet temperature, power input to the heater and pump, and water flow rate are collected at regular intervals--typically 1 to 15 min--for the duration of the experiment, which may be as long as 60 h. Two common methods for determining soil thermal properties from such measurements are the line source method and the cylinder source method. Both are based on long-term approximate solutions to the classical heat conduction problem of an infinitely long heat source in an infinite homogeneous medium. Although there are some differences in the way the two methods are implemented, the only difference between the two models is whether the heat source is considered to be a line or a cylinder. In both methods, power input to the water loop is assumed to be constant. The simplicity of these methods makes them attractive, but they also have some disadvantages. First of all, because the line source and cylinder source approximations are inaccurate for early time behavior, some of the initial data from the field test must be discarded. The amount of data discarded can affect the property measurement. Also, both methods assume that the heat transfer to the ground loop is constant. In practice, heat input to the loop may vary significantly over the course of a field test due to rough operation of the generator or short-term sags and swells in power line voltage. Presumably, this variation affects the accuracy of the thermal property measurement, but error analysis is rarely performed. This report presents a new method for determining thermal properties from short-term in situ tests using a parameter estimation technique. Because it is based on numerical solutions to the heat conduction equation, the new method is not affected by short-term variations in heat input. Also, since the model is accurate even for short times, there is no n

Shonder, J.A.

2000-05-02T23:59:59.000Z

385

Validation testing a contaminant transport and natural attenuation simulation model using field data. Master`s thesis  

Science Conference Proceedings (OSTI)

This research extends the work begun by Enyeart (1994) which evaluated the process of intrinsic bioremediation, and which developed a model for predicting the velocity of an aerobic degradation front, as it traverses the length of a JP-4 contaminant plume. In the present work, Enyeart`s model was validity tested by comparing its output prediction with field measured values. A methodology was developed to compare the model output with field measured data. The results were analyzed, and the results of this first stage of validity testing show a reasonable basis for accepting the model.

Flier, S.J.

1995-12-01T23:59:59.000Z

386

PERMIT ATTACHMENT DD Contingency Plan Section 10 of the Permit Application; and Hanford Test and Demonstration Facility Contingency Plan Appendix C of the Permit Application  

E-Print Network (OSTI)

The following listed documents are hereby incorporated, in their entirety, by reference into this Permit. Some of the documents are excerpts from the Permittees DBVS Facility Research, Development, and Demonstration Dangerous Waste Permit Application dated May 10, 2004 (document #04-TED-036); hereafter called the Permit Application. Ecology has, as deemed necessary, modified specific language in the attachments. These modifications are described in the permit conditions (Parts I through V), and thereby supersede the language of the attachment. These incorporated attachments are enforceable conditions of this Permit, as modified by the

unknown authors

2004-01-01T23:59:59.000Z

387

A review and statistical analysis of micellar-polymer field test data: Topical report  

SciTech Connect

A statistical analysis study has been made of 21 micellar-polymer field test projects to evaluate the significance of key parameters upon performance. In this study, the term micellar-polymer is used to describe surfactant recovery processes of which the most common are the water phase low tension and the soluble oil.The micellar slug is usually followed by a drive slug containing a polymer for mobility control. The data include 10 projects that were used in a previous study and 11 other documented projects which have been completed recently. The study indicates three significant correlations. The most important of these is the correlation showing that oil recovery is inversely related to the log of the reservoir connate water salinity. This suggests that prior flooding with a water near the design salinity or use of preflushes to adjust salinity and remove hardness have, at best, been only partially effective. Exxon was successful in their second Loudon pilot when using a specifically designed salt tolerant surfactant, with no preflush. The results of this study, coupled with the results of the Exxon second Loudon pilot, suggest that future research in micellar-polymer flooding should focus on the development of surfactants which can tolerate the connate water salinity and hardness in the reservoir. A second correlation showed that oil recovery increased as the pattern size was decreased. This is attributed to the higher frontal velocities and to the reduced tendency of slug breakdown in smaller patterns. Low oil cuts at the beginning of the micellar-polymer floods indicated that higher recovery efficiency could not be attributed to infill drilling. The third correlation showed the expected results that oil recovery is related to the quantity of surfactant used. This quantity is the product of the surfactant slug volume and the concentration of surfactant. 71 refs., 4 figs., 2 tabs.

Lowry, P.H.; Ferrell, H.H.; Dauben, D.L.

1986-11-01T23:59:59.000Z

388

Comparing State-Space Multivariable Controls to Multi-SISO Controls for Load Reduction of Drivetrain-Coupled Modes on Wind Turbines Through Field-Testing  

Science Conference Proceedings (OSTI)

In this paper we present results from an ongoing controller comparison study at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC). The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiple single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.

Fleming, P. A.; Van Wingerden, J. W.; Wright, A. D.

2012-01-01T23:59:59.000Z

389

Energy Smart Schools--Applied Research, Field Testing, and Technology Integration  

DOE Green Energy (OSTI)

The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among state and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.

Nebiat Solomon; Robin Vieira; William L. Manz; Abby Vogen; Claudia Orlando; Kimberlie A. Schryer

2004-12-01T23:59:59.000Z

390

Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York  

Science Conference Proceedings (OSTI)

A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

Weaver, Phyllis C.

2012-08-29T23:59:59.000Z