National Library of Energy BETA

Sample records for field size distribution

  1. Paleozoic expulsion in Bolivia-its influence on field size and distribution

    SciTech Connect (OSTI)

    Beer, J.A. ); Lopez, O. )

    1993-02-01

    Production within the Chaco Basin of Bolivia may be grouped into three areas: a northern area with several large fields (> 100 MMBOE), a central area nearly devoid of fields, and a southern area with numerous small fields. Models for the timing of hydrocarbon charge suggest that field size and distribution can be tied to spatial variation in the magnitude of a Paleozoic expulsion event. In the central Chaco, the Devonian Los Monos Formation source rock interval was deeply buried beneath a Carboniferous depocenter (1600 to 2000 m of sediment). An in-house thermal modeling program, constrained by vitrinite reflectance data, indicates that the source rock interval entered the oil window as early as 270 Ma. Basal Los Monos kerogen was completely converted to oil prior to Neogene trap formation, making oil accumulations impossible. In the southern Chaco, an intermediate Carboniferous thickness (1300-1600 m) resulted in a less pronounced pre-Cenzoic expulsion event. Expulsion began at 150 Ma, with 80% of basal Los Monos kerogen converted to oil prior to trap formation. The southern Chaco thus has limited exploration opportunity for large accumulations. The northern Chaco has a thin Carboniferous veneer (01300 m), and experienced insignificant pre-Cenozoic expulsion. As a result, 90% of the basal Los Monos kerogen was available for conversion to oil at the time of trap formation, and large accumulations were possible. Given the relationship between field presence/size and subsidence history, a Carboniferous isopach map is a powerful exploration tool. Where there is a thin Carboniferous section, unconverted Devonian source rocks are able to charge Cenozoic structures. One area that meets this criterium is the western Subandean, a relatively unexplored province adjacent to the Chaco Basin.

  2. ARM - Measurement - Particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle size distribution The number of particles present in any given volume of air within a specified size range. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  3. Pore size distribution and accessible pore size distribution...

    Office of Scientific and Technical Information (OSTI)

    both rank and type (expressed as either hydrogen or vitrinite content) in the size range ... Subject: 01 COAL, LIGNITE, AND PEAT; 03 NATURAL GAS; 08 HYDROGEN; AMBIENT TEMPERATURE; ...

  4. ARM - Measurement - Hydrometeor Size Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of hydrometeors observed in a given size range. Categories Atmospheric State, Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  5. Particle size distribution instrument. Topical report 13

    SciTech Connect (OSTI)

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  6. ARM - Measurement - Cloud particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air...

  7. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 m) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 m), known as the small mode. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud

  8. Pore size distribution and accessible pore size distribution in bituminous coals

    SciTech Connect (OSTI)

    Sakurovs, Richard; He, Lilin; Melnichenko, Yuri B; Radlinski, Andrzej Pawell; Blach, Tomasz P

    2012-01-01

    The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the rest from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5 nm to 7 {micro}m. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250 nm to 7 {micro}m and 5 to 10 nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD{sub 4}, at ambient temperature. In some coals most of the small ({approx} 10 nm) pores were found to be inaccessible to CD{sub 4} on the time scale of the measurement ({approx} 30 min - 16 h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total

  9. Measuring the Raindrop Size Distribution, ARM's Efforts at Darwin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Raindrop Size Distribution, ARM's Efforts at Darwin and SGP Bartholomew, Mary Jane Brookhaven National Laboratory Category: Instruments ARM has purchased two impact...

  10. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    SciTech Connect (OSTI)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  11. Pore-size-distribution of cationic polyacrylamide hydrogels

    SciTech Connect (OSTI)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  12. Evolution of droplet size distribution and autoconversion parameterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in turbulent clouds Evolution of droplet size distribution and autoconversion parameterization in turbulent clouds McGraw, Robert Brookhaven National Laboratory Liu, Yangang Brookhaven National Laboratory Category: Modeling Effects from turbulence-induced fluctuations in water vapor saturation on cloud droplet growth are examined using a Brownian diffusion model [McGraw and Liu, 2006]. The model predicts diffusive broadening of the droplet size distribution, tempered by enhanced

  13. Particle size and shape distributions of hammer milled pine

    SciTech Connect (OSTI)

    Westover, Tyler Lott; Matthews, Austin Colter; Williams, Christopher Luke; Ryan, John Chadron Benjamin

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.

  14. Concentrations and Size Distributions of Particulate Matter Emissions from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel | Department of Energy Concentrations and Size Distributions of Particulate Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel Concentrations and Size Distributions of Particulate Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel 2002 DEER Conference Presentation: West Virginia

  15. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect (OSTI)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  16. Effect of Engine-Out NOx Control Strategies on PM Size Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010 Effect of Engine-Out NOx Control Strategies on PM Size Distribution in ...

  17. Glass bead size and morphology characteristics in support of Crystal Mist field experiments

    SciTech Connect (OSTI)

    Einfeld, W.

    1995-03-01

    One of the tasks of the Lethality Group within US Army Space and Strategic Defense Command (USASSDC) is the development of a capability to simulate various missile intercept scenarios using computer codes. Currently under development within USASSDC and its various contractor organizations is a group of codes collected under a master code called PEGEM for Post Event Ground Effects Model. Among the various components of the code are modules which are used to predict atmospheric dispersion and transport of particles or droplets following release at the altitude specified in the missile intercept scenario. The atmospheric transport code takes into account various source term data from the intercept such as: initial cloud size; droplet or particle size distribution; and, total mass of agent released. An ongoing USASSDC experimental program termed Crystal Mist involved release of precision glass beads under various altitude and meteorological conditions to assist in validation and refinement of various codes that are components of PEGEM used to predict particle atmospheric transport and diffusion following a missile intercept. Here, soda-lime glass beads used in the Crystal Mist series of atmospheric transport and diffusion tests were characterized by scanning electron microscopy and automated image processing routines in order to fully define their size distributions and morphology. Four bead size classifications ranging from a median count diameter of 45 to 200 micrometers were found to be approximately spherical and to fall within the supplier`s sizing specifications. Log-normal functions fit to the measured size distributions resulted in geometric standard deviations ranging from 1.08 to 1.12, thereby fulfilling the field trial requirements for a relatively narrow bead size distribution.

  18. Diode magnetic-field influence on radiographic spot size

    SciTech Connect (OSTI)

    Ekdahl, Carl A. Jr.

    2012-09-04

    Flash radiography of hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories. The Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos was developed for flash radiography of large hydrodynamic experiments. Two linear induction accelerators (LIAs) produce the bremsstrahlung radiographic source spots for orthogonal views of each experiment ('hydrotest'). The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. For time resolution of the hydrotest dynamics, the 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by slicing them out of a longer pulse that has a 1.6-{micro}s flattop. Both axes now routinely produce radiographic source spot sizes having full-width at half-maximum (FWHM) less than 1 mm. To further improve on the radiographic resolution, one must consider the major factors influencing the spot size: (1) Beam convergence at the final focus; (2) Beam emittance; (3) Beam canonical angular momentum; (4) Beam-motion blur; and (5) Beam-target interactions. Beam emittance growth and motion in the accelerators have been addressed by careful tuning. Defocusing by beam-target interactions has been minimized through tuning of the final focus solenoid for optimum convergence and other means. Finally, the beam canonical angular momentum is minimized by using a 'shielded source' of electrons. An ideal shielded source creates the beam in a region where the axial magnetic field is zero, thus the canonical momentum zero, since the beam is born with no mechanical angular momentum. It then follows from Busch's conservation theorem that the canonical angular momentum is minimized at the target, at least in principal. In the DARHT accelerators, the axial magnetic field at the cathode is minmized by using a 'bucking coil' solenoid with reverse polarity to cancel out whatever solenoidal beam transport field exists there. This is imperfect in practice, because of

  19. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets

    SciTech Connect (OSTI)

    Igathinathane, C; Pordesimo, L.O.

    2009-08-01

    Dust management strategies in industrial environment, especially of airborne dust, require quantification and measurement of size and size distribution of the particles. Advanced specialized instruments that measure airborne particle size and size distribution apply indirect methods that involve light scattering, acoustic spectroscopy, and laser diffraction. In this research, we propose a simple and direct method of airborne dust particle dimensional measurement and size distribution analysis using machine vision. The method involves development of a user-coded ImageJ plugin that measures particle length and width and analyzes size distribution of particles based on particle length from high-resolution scan images. Test materials were airborne dust from soft pine wood sawdust pellets and ground pine tree bark pellets. Subsamples prepared by dividing the actual dust using 230 mesh (63 m) sieve were analyzed as well. A flatbed document scanner acquired the digital images of the dust particles. Proper sampling, layout of dust particles in singulated arrangement, good contrast smooth background, high resolution images, and accurate algorithm are essential for reliable analysis. A halo effect around grey-scale images ensured correct threshold limits. The measurement algorithm used Feret s diameter for particle length and pixel-march technique for particle width. Particle size distribution was analyzed in a sieveless manner after grouping particles according to their distinct lengths, and several significant dimensions and parameters of particle size distribution were evaluated. Results of the measurement and analysis were presented in textual and graphical formats. The developed plugin was evaluated to have a dimension measurement accuracy in excess of 98.9% and a computer speed of analysis of <8 s/image. Arithmetic mean length of actual wood and bark pellets airborne dust particles were 0.1138 0.0123 and 0.1181 0.0149 mm, respectively. The airborne dust particles of

  20. A practical and theoretical definition of very small field size for radiotherapy output factor measurements

    SciTech Connect (OSTI)

    Charles, P. H. Crowe, S. B.; Langton, C. M.; Trapp, J. V.; Cranmer-Sargison, G.; Thwaites, D. I.; Kairn, T.; Knight, R. T.; Kenny, J.

    2014-04-15

    Purpose: This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods: A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. Results: According to the practical definition established in this project, field sizes ?15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ?12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ?12 mm. Source occlusion also caused a large change in OPF for field sizes ?8 mm. Based on the results of this study, field sizes ?12 mm were considered to be theoretically very small for 6 MV beams

  1. Method of determining interwell oil field fluid saturation distribution

    DOE Patents [OSTI]

    Donaldson, Erle C.; Sutterfield, F. Dexter

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  2. THE SIZE DISTRIBUTION OF THE NEPTUNE TROJANS AND THE MISSING INTERMEDIATE-SIZED PLANETESIMALS

    SciTech Connect (OSTI)

    Sheppard, Scott S.; Trujillo, Chadwick A.

    2010-11-10

    We present an ultra-deep survey for Neptune Trojans using the Subaru 8.2 m and Magellan 6.5 m telescopes. The survey reached a 50% detection efficiency in the R band at m{sub R} = 25.7 mag and covered 49 deg{sup 2} of sky. m{sub R} = 25.7 mag corresponds to Neptune Trojans that are about 16 km in radius (assuming an albedo of 0.05). A paucity of smaller Neptune Trojans (radii < 45 km) compared with larger ones was found. The brightest Neptune Trojans appear to follow a steep power-law slope (q = 5 {+-} 1) similar to the brightest objects in the other known stable reservoirs such as the Kuiper Belt, Jupiter Trojans, and main belt asteroids. We find a roll-over for the Neptune Trojans that occurs around a radius of r = 45 {+-} 10 km (m{sub R} = 23.5 {+-} 0.3), which is also very similar to the other stable reservoirs. All the observed stable regions in the solar system show evidence for Missing Intermediate-Sized Planetesimals (MISPs). This indicates a primordial and not collisional origin, which suggests that planetesimal formation proceeded directly from small to large objects. The scarcity of intermediate- and smaller-sized Neptune Trojans may limit them as being a strong source for the short period comets.

  3. Effect of a polynomial arbitrary dust size distribution on dust acoustic solitons

    SciTech Connect (OSTI)

    Ishak-Boushaki, M.; Djellout, D.; Annou, R.

    2012-07-15

    The investigation of dust-acoustic solitons when dust grains are size-distributed and ions adiabatically heated is conducted. The influence of an arbitrary dust size-distribution described by a polynomial function on the properties of dust acoustic waves is investigated. An energy-like integral equation involving Sagdeev potential is derived. The solitary solutions are shown to undergo a transformation into cnoidal ones under some physical conditions. The dust size-distribution can significantly affect both lower and upper critical Mach numbers for both solitons and cnoidal solutions.

  4. Deviations from the Gutenberg–Richter law on account of a random distribution of block sizes

    SciTech Connect (OSTI)

    Sibiryakov, B. P.

    2015-10-27

    This paper studies properties of a continuum with structure. The characteristic size of the structure governs the fact that difference relations are nonautomatically transformed into differential ones. It is impossible to consider an infinitesimal volume of a body, to which the major conservation laws could be applied, because the minimum representative volume of the body must contain at least a few elementary microstructures. The corresponding equations of motion are equations of infinite order, solutions of which include, along with usual sound waves, unusual waves with abnormally low velocities without a lower limit. It is shown that in such media weak perturbations can increase or decrease outside the limits. The number of complex roots of the corresponding dispersion equation, which can be interpreted as the number of unstable solutions, depends on the specific surface of cracks and is an almost linear dependence on a logarithmic scale, as in the seismological Gutenberg–Richter law. If the distance between one pore (crack) to another one is a random value with some distribution, we must write another dispersion equation and examine different scenarios depending on the statistical characteristics of the random distribution. In this case, there are sufficient deviations from the Gutenberg–Richter law and this theoretical result corresponds to some field and laboratory observations.

  5. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ganguli, Rajive; Bandopadhyay, Sukumar

    2012-01-01

    Tmore » he impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO 2 , NO x , CO), and carbon content of ash (fly ash and bottom ash).he study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions.he PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns.here was negligible correlation between PSD and the followings factors: efficiency, SO 2 , NO x , and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD.he results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal).hese plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.« less

  6. Measurements of Aerosol Charge and Size Distribution for Graphite, Gold, Palladium, and Silver Nanoparticles

    SciTech Connect (OSTI)

    Simones, Matthew P.; Gutti, Veera R.; Meyer, Ryan M.; Loyalka, Sudarshan K.

    2011-11-01

    The role of charge on aerosol evolution and hence the nuclear source term has been an issue of interest, and there is a need for both experimental techniques and modeling for quantifying this role. Our focus here is on further exploration of a tandem differential mobility analyzer (TDMA) technique to simultaneously measure both the size and charge (positive, negative and neutral) dependent aerosol distributions. We have generated graphite, gold, silver, and palladium nanoparticles (aerosol) using a spark generator. We measure the electrical mobility-size distributions for these aerosols using a TDMA, and from these data we deduce the full charge-size distributions. We observe asymmetry in the particle size distributions for negative and positive charges. This asymmetry could have a bearing on the dynamics of charged aerosols, indicating that the assumption of symmetry for size distributions of negatively and positively charged particles in source term simulations may not be always appropriate. Also, the experimental technique should find applications in measurements of aerosol rate processes that are affected by both particle charge and size (e.g. coagulation, deposition, resuspension), and hence in modeling and simulation of the nuclear source term.

  7. Consideration of Grain Size Distribution in the Diffusion of Fission Gas to Grain Boundaries

    SciTech Connect (OSTI)

    Paul C. Millett; Yongfeng Zhang; Michael R. Tonks; S. B. Biner

    2013-09-01

    We analyze the accumulation of fission gas on grain boundaries in a polycrystalline microstructure with a distribution of grain sizes. The diffusion equation is solved throughout the microstructure to evolve the gas concentration in space and time. Grain boundaries are treated as infinite sinks for the gas concentration, and we monitor the cumulative gas inventory on each grain boundary throughout time. We consider two important cases: first, a uniform initial distribution of gas concentration without gas production (correlating with post-irradiation annealing), and second, a constant gas production rate with no initial gas concentration (correlating with in-reactor conditions). The results show that a single-grain-size model, such as the Booth model, over predicts the gas accumulation on grain boundaries compared with a polycrystal with a grain size distribution. Also, a considerable degree of scatter, or variability, exists in the grain boundary gas accumulation when comparing all of the grain boundaries in the microstructure.

  8. Low pressure shock initiation of porous HMX for two grain size distributions and two densities

    SciTech Connect (OSTI)

    Gustavsen, R.L.; Sheffield, S.A.; Alcon, R.R.

    1995-09-01

    Shock initiation measurements have been made on granular HMX (octotetramethylene tetranitrainine) for two particle size distributions and two densities. Samples were pressed to either 65% or 73% of crystal density from fine ({approx} 10 {mu}m grain size) and coarse (broad distribution of grain sizes peaking at {approx} 150 {mu}m) powders. Planar shocks of 0.2--1 GPa were generated by impacting gas gun driven projectiles on plastic targets containing the HMX. Wave profiles were measured at the input and output of the {approx} 3.9 mm thick HMX layer using electromagnetic particle velocity gauges. The initiation behavior for the two particle size distributions was very different. The coarse HMX began initiating at input pressures as low as 0.5 GPa. Transmitted wave profiles showed relatively slow reaction with most of the buildup occurring at the shock front. In contrast, the fine particle HMX did not begin to initiate at pressures below 0.9 GPa. When the fine powder did react, however, it did so much faster than the coarse HMX. These observations are consistent with commonly held ideas about bum rates being correlated to surface area, and initiation thresholds being correlated with the size and temperature of the hot spots created by shock passage. For each size, the higher density pressings were less sensitive than the lower density pressings.

  9. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect (OSTI)

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J.; Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S.

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ≈50 fs, 800 nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (≈90%) of small nanoparticles, and a residual part (≈10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  10. COLOR DEPENDENCE IN THE SIZE DISTRIBUTION OF MAIN BELT ASTEROIDS REVISITED

    SciTech Connect (OSTI)

    August, Tyler M.; Wiegert, Paul A.

    2013-06-15

    The size distribution of the asteroid belt is examined with 16956 main belt asteroids detected in data taken from the Canada-France-Hawaii Telescope Legacy Survey in two filters (g' and r'). The cumulative H (absolute magnitude) distribution is examined in both filters, and both match well to simple power laws down to H = 17, with slopes in rough agreement with those reported the literature. This implies that disruptive collisions between asteroids are gravitationally dominated down to at least this size, and probably sub-kilometer scales. The slopes of these distributions appear shallower in the outer belt than the inner belt, and the g' distributions appear slightly steeper than the r'. The slope shallowing in the outer belt may reflect a real compositional difference: the inner asteroid belt has been suggested to consist mostly of stony and/or metallic S-type asteroids, whereas carbonaceous C-types are thought to be more prevalent further from the Sun. No waves are seen in the size distribution above H = 15. Since waves are expected to be produced at the transition from gravitationally-dominated to internal strength-dominated collisions, their absence here may imply that the transition occurs at sub-kilometer scales, much smaller than the H = 17 (diameter {approx} 1.6 km) cutoff of this study.

  11. Pore size distribution, strength, and microstructure of portland cement paste containing metal hydroxide waste

    SciTech Connect (OSTI)

    Majid, Z.A.; Mahmud, H.; Shaaban, M.G.

    1996-12-31

    Stabilization/solidification of hazardous wastes is used to convert hazardous metal hydroxide waste sludge into a solid mass with better handling properties. This study investigated the pore size development of ordinary portland cement pastes containing metal hydroxide waste sludge and rice husk ash using mercury intrusion porosimetry. The effects of acre and the addition of rice husk ash on pore size development and strength were studied. It was found that the pore structures of mixes changed significantly with curing acre. The pore size shifted from 1,204 to 324 {angstrom} for 3-day old cement paste, and from 956 to 263 {angstrom} for a 7-day old sample. A reduction in pore size distribution for different curing ages was also observed in the other mixtures. From this limited study, no conclusion could be made as to any correlation between strength development and porosity. 10 refs., 6 figs., 3 tabs.

  12. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  13. Size and spacial distribution of micropores in SBA-15 using CM-SANS

    SciTech Connect (OSTI)

    Pollock, Rachel A; Walsh, Brenna R; Fry, Jason A; Ghampson, Tyrone; Centikol, Ozgul; Melnichenko, Yuri B; Kaiser, Helmut; Pynn, Roger; Frederick, Brian G

    2011-01-01

    Diffraction intensity analysis of small-angle neutron scattering measurements of dry SBA-15 have been combined with nonlocal density functional theory (NLDFT) analysis of nitrogen desorption isotherms to characterize the micropore, secondary mesopore, and primary mesopore structure. The radial dependence of the scattering length density, which is sensitive to isolated surface hydroxyls, can only be modeled if the NLDFT pore size distribution is distributed relatively uniformly throughout the silica framework, not localized in a 'corona' around the primary mesopores. Contrast matching-small angle neutron scattering (CM-SANS) measurements, using water, decane, tributylamine, cyclohexane, and isooctane as direct probes of the size of micropores indicate that the smallest pores in SBA-15 have diameter between 5.7 and 6.2 {angstrom}. Correlation of the minimum pore size with the onset of the micropore size distribution provides direct evidence that the shape of the smallest micropores is cylinderlike, which is consistent with their being due to unraveling of the polymer template.

  14. Magnetic field distribution in the plasma flow generated by a plasma focus discharge

    SciTech Connect (OSTI)

    Mitrofanov, K. N.; Krauz, V. I. Myalton, V. V.; Velikhov, E. P.; Vinogradov, V. P.; Vinogradova, Yu. V.

    2014-11-15

    The magnetic field in the plasma jet propagating from the plasma pinch region along the axis of the chamber in a megajoule PF-3 plasma focus facility is studied. The dynamics of plasma with a trapped magnetic flow is analyzed. The spatial sizes of the plasma jet region in which the magnetic field concentrates are determined in the radial and axial directions. The magnetic field configuration in the plasma jet is investigated: the radial distribution of the azimuthal component of the magnetic field inside the jet is determined. It is shown that the magnetic induction vector at a given point in space can change its direction during the plasma flight. Conclusions regarding the symmetry of the plasma flow propagation relative to the chamber axis are drawn.

  15. The effect of a dust size distribution on electrostatic sheaths in unmagnetized dusty plasmas

    SciTech Connect (OSTI)

    Benlemdjaldi, D.; Tahraoui, A.; Hugon, R.; Bougdira, J.

    2013-04-15

    In this work, the structure of plasma sheaths in presence of dust particles with different sizes is investigated numerically in a multifluid framework, where the dust size distribution is modeled by Gauss' law. For this, we have established a 1D, stationary, unmagnetized, and weakly collisional electronegative dusty plasma sheath model. The electrons and negative ions are considered in a local thermodynamic equilibrium, therefore, described by a Boltzmann distribution. On the other hand, positive ions and dust grains are described by fluid equations. The charging process is described by the orbit motion limited model. It is shown that taking into account dust grains with different sizes reduces considerably the sheath thickness. The behavior of dust surface potential is not affected, but the dust charge number is reduced, as well as the electrostatic force. It results in a decrease of layered structure. The presence of negative ions makes the structure of the electrostatic potential more oscillatory. The other physical parameters are also analyzed and discussed.

  16. OPTIMIZATION OF COMMINUTION CIRCUIT THROUGHPUT AND PRODUCT SIZE DISTRIBUTION BY SIMULATION AND CONTROL

    SciTech Connect (OSTI)

    H.J. Walqui; T.C. Eisele; S.K. Kawatra

    2003-07-01

    The goal of this project is to improve energy efficiency of industrial crushing and grinding operations (comminution). Mathematical models of the comminution process are being used to study methods for optimizing the product size distribution, so that the amount of excessively fine material produced can be minimized. The goal is to save energy by reducing the amount of material that is ground below the target size, while simultaneously reducing the quantity of materials wasted as ''slimes'' that are too fine to be useful. This will be accomplished by: (1) modeling alternative circuit arrangements to determine methods for minimizing overgrinding, and (2) determining whether new technologies, such as high-pressure roll crushing, can be used to alter particle breakage behavior to minimize fines production.

  17. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size.more » From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.« less

  18. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    SciTech Connect (OSTI)

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 13 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ? 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size. From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.

  19. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    SciTech Connect (OSTI)

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size. From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.

  20. Pore size distribution and methane equilibrium conditions at Walker Ridge Block 313, northern Gulf of Mexico

    SciTech Connect (OSTI)

    Bihani, Abhishek; Daigle, Hugh; Cook, Ann; Glosser, Deborah; Shushtarian, Arash

    2015-12-15

    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  1. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOE Patents [OSTI]

    Scott, Timothy C.; Wham, Robert M.

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  2. Pseudopotential approach for dust acoustic solitary waves in dusty plasmas with kappa-distributed ions and electrons and dust grains having power law size distribution

    SciTech Connect (OSTI)

    Banerjee, Gadadhar; Maitra, Sarit

    2015-04-15

    Sagdeev's pseudopotential method is used to study small as well as arbitrary amplitude dust acoustic solitons in a dusty plasma with kappa distributed electrons and ions with dust grains having power law size distribution. The existence of potential well solitons has been shown for suitable parametric region. The criterion for existence of soliton is derived in terms of upper and lower limit for Mach numbers. The numerical results show that the size distribution can affect the existence as well as the propagation characteristics of the dust acoustic solitons. The effect of kappa distribution is also highlighted.

  3. OPTIMIZATION OF COMMINUTION CIRCUIT THROUGHPUT AND PRODUCT SIZE DISTRIBUTION BY SIMULATION AND CONTROL

    SciTech Connect (OSTI)

    S.K. Kawatra; T.C. Eisele; H.J. Walqui

    2002-10-01

    The goal of this project is to improve energy efficiency of industrial crushing and grinding operations (comminution). Mathematical models of the comminution process are being used to study methods for optimizing he product size distribution, so that the amount of excessively fine material produced can be minimized. This will save energy by reducing the amount of material that is ground below the target size, and will also reduce the quantity of materials wasted as ''slimes'' that are too fine to be useful. This will be accomplished by: (1) modeling alternative circuit arrangements to determine methods for minimizing overgrinding, and (2) determining whether new technologies, such as high-pressure roll crushing, can be used to alter particle breakage behavior to minimize fines production. In the seventh quarter of this project, analysis of the plant operation identified sources of overgrinding in the circuit. Overgrinding was primarily caused by two effects: (1) The hydrocyclones used to close the circuit and remove fully-ground particles from the circuit were preferentially returning high-density ore particles to the secondary mills for regrinding even after they were already ground to pass the desired product size, and (2) The primary grinding mills were operating at less than full capacity, suggesting that a shift of grinding load to the primary mills could liberate more material before it reached the secondary mills, allowing more complete liberation with a coarser grind. Circuit modeling is underway to determine how best to modify the circuit to reduce these effects.

  4. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    SciTech Connect (OSTI)

    Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken; Terris, Bruce D.; Hellwig, Olav; Wang, Tianhan; Wu, Benny; Graves, Catherine; Dürr, Hermann A.; Scherz, Andreas; Stöhr, Jo

    2015-05-18

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizes of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.

  5. SU-E-T-589: A Comparison of Field Size Dependence of Electron Depth Dose From Different Linacs

    SciTech Connect (OSTI)

    Kim, M; Zhu, T

    2014-06-01

    Purpose: For accurate dose calculation in electron beam therapy, it is important to know the percentage depth dose (PDD) for each beam. This can vary depending on the machine make and model and the field size. Three different linear accelerators were compared in this study. Methods: PDD data was collected for different output beam energies and different field sizes for three different linear accelerators (Siemens Primus, Varian 2300ix, Varian Truebeam). Data was compared for the same energy with the same field size to see if the PDD differed among manufacturers. Furthermore, PDD was compared for different field sizes of the same machine at the same energy. Results: For the same beam energy and the same field size, the PDD curves were comparable for the three linacs with variations within 13%. PDD curves for different field sizes and beam energies were compared to verify this result. At higher beam energies, the disagreement between PDD curves is more pronounced between different field sizes for all three of the linacs compared. Conclusions: For the same energy and field size, the variation between different machines was within 13%. For the same manufacturer (Varian Clinac 2300ix and Truebeam), the agreement is within 3% with a standard deviation of less than 2.5%. PDD curves for different field sizes for the same energy were also investigated for the three linacs.

  6. SU-E-T-299: Small Fields Profiles Correction Through Detectors Spatial Response Functions and Field Size Dependence Analysis

    SciTech Connect (OSTI)

    Filipuzzi, M; Garrigo, E; Venencia, C; Germanier, A

    2014-06-01

    Purpose: To calculate the spatial response function of various radiation detectors, to evaluate the dependence on the field size and to analyze the small fields profiles corrections by deconvolution techniques. Methods: Crossline profiles were measured on a Novalis Tx 6MV beam with a HDMLC. The configuration setup was SSD=100cm and depth=5cm. Five fields were studied (200200mm2,100100mm2, 2020mm2, 1010mm2and 55mm2) and measured were made with passive detectors (EBT3 radiochromic films and TLD700 thermoluminescent detectors), ionization chambers (PTW30013, PTW31003, CC04 and PTW31016) and diodes (PTW60012 and IBA SFD). The results of passive detectors were adopted as the actual beam profile. To calculate the detectors kernels, modeled by Gaussian functions, an iterative process based on a least squares criterion was used. The deconvolutions of the measured profiles were calculated with the Richardson-Lucy method. Results: The profiles of the passive detectors corresponded with a difference in the penumbra less than 0.1mm. Both diodes resolve the profiles with an overestimation of the penumbra smaller than 0.2mm. For the other detectors, response functions were calculated and resulted in Gaussian functions with a standard deviation approximate to the radius of the detector in study (with a variation less than 3%). The corrected profiles resolve the penumbra with less than 1% error. Major discrepancies were observed for cases in extreme conditions (PTW31003 and 55mm2 field size). Conclusion: This work concludes that the response function of a radiation detector is independent on the field size, even for small radiation beams. The profiles correction, using deconvolution techniques and response functions of standard deviation equal to the radius of the detector, gives penumbra values with less than 1% difference to the real profile. The implementation of this technique allows estimating the real profile, freeing from the effects of the detector used for the

  7. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    SciTech Connect (OSTI)

    Kushwaha, Manvir S.

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  8. Arrays of Ru Nanoclusters with Narrow Size Distribution Templated by Monolayer Graphene on Ru

    SciTech Connect (OSTI)

    Sutter, P.; Sutter, E.; Albrecht, P.; Wang, B.; Bocquet M.-L.; Wu, L.; Zhu, Y.

    2011-09-01

    Ru nanoclusters self-assemble over macroscopic sample areas during vapor deposition of Ru on monolayer graphene (MLG) on Ru(0001). The Ru nanoclusters form arrays with a mean lateral cluster diameter of {approx} 20 {angstrom}, cluster heights of 1 or 2 ML, and a size distribution that remains nearly constant with increasing coverage. Combined scanning tunneling microscopy and density functional theory (DFT) show that the clusters are templated by the MLG/Ru(0001) moire unit cell and identify the preferred binding site of the clusters as the low fcc region of the moire. Cross-sectional transmission electron microscopy (TEM) and high-resolution TEM contrast simulations experimentally demonstrate that the interaction of the Ru clusters with the underlying MLG/Ru(0001) leads to a local lifting of the graphene layer of the template. DFT calculations confirm this mechanism of interaction of the Ru clusters with the strongly coupled MLG/Ru(0001). Weakening of the graphene-support coupling via oxygen intercalation is shown to have a major effect on the assembly of Ru nanocluster arrays. With a preferred binding site lacking on decoupled graphene, the Ru nanoclusters grow significantly larger, and clusters with 1 to 4 ML height can coexist.

  9. Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities

    SciTech Connect (OSTI)

    Giangrande S. E.; Luke, E. P.; Kollias, P.

    2012-02-01

    Extended, high-resolution measurements of vertical air motion and median volume drop diameter D0 in widespread precipitation from three diverse Atmospheric Radiation Measurement Program (ARM) locations [Lamont, Oklahoma, Southern Great Plains site (SGP); Niamey, Niger; and Black Forest, Germany] are presented. The analysis indicates a weak (0-10 cm{sup -1}) downward air motion beneath the melting layer for all three regions, a magnitude that is to within the typical uncertainty of the retrieval methods. On average, the hourly estimated standard deviation of the vertical air motion is 0.25 m s{sup -1} with no pronounced vertical structure. Profiles of D0 vary according to region and rainfall rate. The standard deviation of 1-min-averaged D0 profiles for isolated rainfall rate intervals is 0.3-0.4 mm. Additional insights into the form of the raindrop size distribution are provided using available dual-frequency Doppler velocity observations at SGP. The analysis suggests that gamma functions better explain paired velocity observations and radar retrievals for the Oklahoma dataset. This study will be useful in assessing uncertainties introduced in the measurement of precipitation parameters from ground-based and spaceborne remote sensors that are due to small-scale variability.

  10. Method development and validation for measuring the particle size distribution of pentaerythritol tetranitrate (PETN) powders.

    SciTech Connect (OSTI)

    Young, Sharissa Gay

    2005-09-01

    Currently, the critical particle properties of pentaerythritol tetranitrate (PETN) that influence deflagration-to-detonation time in exploding bridge wire detonators (EBW) are not known in sufficient detail to allow development of a predictive failure model. The specific surface area (SSA) of many PETN powders has been measured using both permeametry and gas absorption methods and has been found to have a critical effect on EBW detonator performance. The permeametry measure of SSA is a function of particle shape, packed bed pore geometry, and particle size distribution (PSD). Yet there is a general lack of agreement in PSD measurements between laboratories, raising concerns regarding collaboration and complicating efforts to understand changes in EBW performance related to powder properties. Benchmarking of data between laboratories that routinely perform detailed PSD characterization of powder samples and the determination of the most appropriate method to measure each PETN powder are necessary to discern correlations between performance and powder properties and to collaborate with partnering laboratories. To this end, a comparison was made of the PSD measured by three laboratories using their own standard procedures for light scattering instruments. Three PETN powder samples with different surface areas and particle morphologies were characterized. Differences in bulk PSD data generated by each laboratory were found to result from variations in sonication of the samples during preparation. The effect of this sonication was found to depend on particle morphology of the PETN samples, being deleterious to some PETN samples and advantageous for others in moderation. Discrepancies in the submicron-sized particle characterization data were related to an instrument-specific artifact particular to one laboratory. The type of carrier fluid used by each laboratory to suspend the PETN particles for the light scattering measurement had no consistent effect on the resulting

  11. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect (OSTI)

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  12. SU-E-T-98: Dependence of Radiotherapy Couch Transmission Factors On Field Size and Couch-Isocenter Distance

    SciTech Connect (OSTI)

    Benhabib, S; Duan, J; Wu, X; Cardan, R; Shen, S; Huang, M; Popple, R; Brezovich, I

    2014-06-01

    Purpose: The dosimetric effect of the treatment couch is non-negligible in today's radiotherapy treatment. To accurately include couch in dose calculation, we investigated the dependence of couch transmission factors on field size and couch-isocenter distance. Methods: Couch transmission factors for Varian Exact Couch were determined by taking the ratios of ionization of a posterior-anterior beam with and without the couch in the beam path. Measurements were performed at the isocenter using a PTW cylindrical ionization chamber (Model 31030) with an Aluminum buildup cap of 1.1 cm thick for the 6 MV photon beam. Ionization readings for beam sizes ranging from 2 2 cm2 to 40 40 cm2 were taken. Transmission factors for couch-isocenter distances ranging from 3 cm to 20 cm were also investigated. Results: The couch transmission factors increased with the field size approximately in an exponential manner. For the field sizes that we tested, the transmission factor ranged from 0.976 to 0.992 for couch-isocenter distance of 3 cm. The transmission factor was also monotonically dependent on couch-isocenter separation distance, but in a lighter magnitude. For the tested couch heights, the transmission factor ranged from 0.974 0.972 for 2 2 cm2 field size and 0.992 0.986 for 40 40 cm2 field size. The dependence on couch-isocenter distance is stronger for larger field size. Conclusions: The transmission factor of a radiotherapy treatment couch increases with field size of the radiation beam and its distance from the isocenter. Such characterization of the couch transmission factor helps improve the accuracy of couch modeling for radiotherapy treatment planning.

  13. Method and apparatus for controlled size distribution of gel microspheres formed from aqueous dispersions

    DOE Patents [OSTI]

    Ryon, Allen D.; Haas, Paul A.; Vavruska, John S.

    1984-01-01

    The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.

  14. VELOCITY AND MAGNETIC FIELD DISTRIBUTION IN A FORMING PENUMBRA

    SciTech Connect (OSTI)

    Romano, P.; Guglielmino, S. L.; Frasca, D.; Zuccarello, F.; Ermolli, I.; Tritschler, A.; Reardon, K. P.

    2013-07-01

    We present results from the analysis of high-resolution spectropolarimetric and spectroscopic observations of the solar photosphere and chromosphere, obtained shortly before the formation of a penumbra in one of the leading polarity sunspots of NOAA active region 11490. The observations were performed at the Dunn Solar Telescope of the National Solar Observatory on 2012 May 28, using the Interferometric Bidimensional Spectrometer. The data set is comprised of a 1 hr time sequence of measurements in the Fe I 617.3 nm and Fe I 630.25 nm lines (full Stokes polarimetry) and in the Ca II 854.2 nm line (Stokes I only). We perform an inversion of the Fe I 630.25 nm Stokes profiles to derive magnetic field parameters and the line-of-sight (LOS) velocity at the photospheric level. We characterize chromospheric LOS velocities by the Doppler shift of the centroid of the Ca II 854.2 nm line. We find that, before the formation of the penumbra, an annular zone of 3''-5'' width is visible around the sunspot. In the photosphere, we find that this zone is characterized by an uncombed structure of the magnetic field although no visible penumbra has formed yet. We also find that the chromospheric LOS velocity field shows several elongated structures characterized by downflow and upflow motions in the inner and outer parts of the annular zone, respectively.

  15. Para-hydrogen and helium cluster size distributions in free jet expansions based on Smoluchowski theory with kernel scaling

    SciTech Connect (OSTI)

    Kornilov, Oleg; Toennies, J. Peter

    2015-02-21

    The size distribution of para-H{sub 2} (pH{sub 2}) clusters produced in free jet expansions at a source temperature of T{sub 0} = 29.5 K and pressures of P{sub 0} = 0.91.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, N{sub k} = A?k{sup a} e{sup ?bk}, shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH{sub 2}){sub k} magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b{sup ?(a+1)} on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections ?{sub 11} with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.

  16. Method and apparatus for controlled size distribution of gel microspheres formed from aqueous dispersions. [Patent application

    DOE Patents [OSTI]

    Ryon, A.D.; Haas, P.A.; Vavruska, J.S.

    1982-01-19

    The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. This is accomplished by subjecting aqueous dispersions of a sol, within a water-immiscible organic liquid to a turbulent flow. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.

  17. THE DISTRIBUTION OF QUIET-SUN MAGNETIC FIELDS AT DIFFERENT HELIOCENTRIC ANGLES

    SciTech Connect (OSTI)

    Orozco Suarez, D.; Katsukawa, Y.

    2012-02-20

    This paper presents results from the analysis of high signal-to-noise ratio spectropolarimetric data taken at four heliocentric angles in quiet-Sun internetwork regions with the Hinode satellite. First, we find that the total circular and total linear polarization signals vary with heliocentric angle, at least for fields with large polarization signals. We also report changes on the Stokes V amplitude asymmetry histograms with viewing angle for fields weaker than 200 G. Then, we subject the data to a Milne-Eddington inversion and analyze the variation of the field vector probability density functions with heliocentric angle. Weak, highly inclined fields permeate the internetwork at all heliocentric distances. For fields weaker than 200 G, the distributions of field inclinations peak at 90 Degree-Sign and do not vary with viewing angle. The inclination distributions change for fields stronger than 200 G. We argue that the shape of the inclination distribution for weak fields partly results from the presence of coherent, loop-like magnetic features at all heliocentric distances and not from tangled fields within the field of view. We also find that the average magnetic field strength is about 180 G (for 75% of the pixels) and is constant with heliocentric angle. The average vertical and horizontal magnetic field components are 70 and 150 G. The latter (former) is slightly greater (smaller) near the limb. Finally, the ratio between the horizontal and vertical components of the fields ranges from {approx}1 for strong fields to {approx}3.5 for weak fields, suggesting that the magnetic field vector is not isotropically distributed within the field of view.

  18. Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts

    SciTech Connect (OSTI)

    Benavidez, Angelica D.; Kovarik, Libor; Genc, Arda; Agrawal, Nitin; Larsson, Elin M.; Hansen, Thomas W.; Karim, Ayman M.; Datye, Abhaya K.

    2012-10-31

    In this Environmental TEM (ETEM) study of supported Pt and Pd model catalysts, individual nanoparticles were tracked during heat treatments at temperatures up to 600C in H2, O2, and vacuum. We found anomalous growth of nanoparticles occurred during the early stages of catalyst sintering wherein some particles started to grow significantly larger than the mean, resulting in a broadening of the particle size distribution. We can rule out sample non-uniformity as a cause for the growth of these large particles, since images were recorded prior to heat treatments. The anomalous growth of these particles may help explain particle size distributions in heterogeneous catalysts which often show particles that are significantly larger than the mean, resulting in a long tail to the right. It has been suggested that particle migration and coalescence could be the likely cause for the broad size distributions. This study shows that anomalous growth of nanoparticles can occur under conditions where Ostwald ripening is the primary sintering mechanism.

  19. Shoreline, grain-size, and total-carbon distribution changes before and after Hurricane Alicia, Galveston Island, Texas, 1983

    SciTech Connect (OSTI)

    Rothammer, C.M.; Morrison, L.R.; Warkentin, S.L.

    1985-02-01

    Shoreline, grain-size, and sediment total-carbon changes were monitored, on a monthly basis, on three Galveston Island beaches, from January through December 1983. The study area included: (1) East Beach, obstructed by groins and a seawall; (2) Galveston Island State Park, obstructed by fences artificially stabilizing the dunes; and (3) West Beach, an unobstructed beach. Beach profiles revealed the effects of beach obstruction, such as erosion and undercutting at East Beach, and truncation of the dunes at Galveston Island State Park. Approximately 20 m of expansional cutback occurred on the beaches after Hurricane Alicia hit on August 18, 1983. Contour maps of grain-size and total-carbon distributions reflect the movement of beach sand by either onshore-offshore transport during low-energy periods, or longshore, edge-wave transport during high-energy periods. Statistical analyses revealed a small variation in grain size throughout the year. There were well-defined times of either no correlation or strong correlation between total carbon vs. mean grain size, skewness vs. mean grain size, kurtosis vs. mean grain size, skewness vs. mean grain size, kurtosis vs. mean grain size, total carbon vs. percent sand, total carbon vs. skewness, and skewness vs. kurtosis. Strong correlation was found in response to high-energy events, whereas no correlation was found in response to low-energy events. Galveston Island is undergoing net erosion and appears to be in a metastable state, still capable of responding to oceanographic conditions. The economic effects of Hurricane Alicia include considerable loss of the shoreline and destruction of property. Beach nourishment appears to be the only economically feasible solution to counteract the extensive erosion.

  20. Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation

    SciTech Connect (OSTI)

    Hakim, Sikander H.; Sener, Canan; Alba Rubio, Ana C.; Gostanian, Thomas M.; O'neill, Brandon J; Ribeiro, Fabio H.; Miller, Jeffrey T.; Dumesic, James A

    2015-08-01

    Elucidation of active sites in supported bimetallic catalysts is complicated by the high level of dispersity in the nanoparticle size and composition that is inherent in conventional methods of catalyst preparation. We present a synthesis strategy that leads to highly dispersed, bimetallic nanoparticles with uniform particle size and composition by means of controlled surface reactions. We demonstrate the synthesis of three systems, RhMo, PtMo, and RhRe, consisting of a highly reducible metal with an oxophilic promoter. These catalysts are characterized by FTIR, CO chemisorption, STEM/EDS, TPR, and XAS analysis. The catalytic properties of these bimetallic nanoparticles were probed for the selective CO hydrogenolysis of (hydroxymethyl)tetrahydropyran to produce 1,6 hexanediol. Based on the characterization results and reactivity trends, the active sites in the hydrogenolysis reaction are identified to be small ensembles of the more noble metal (Rh, Pt) adjacent to highly reduced moieties of the more oxophilic metal (Mo, Re).

  1. Importance of Size and Distribution of Ni Nanoparticles for the Hydrodeoxygenation of Microalgae Oil

    SciTech Connect (OSTI)

    Song, Wenji; Zhao, Chen; Lercher, Johannes A.

    2013-07-22

    Improved synthetic approaches for preparing small-sized Ni nanoparticles (d=3 nm) supported on HBEA zeolite have been explored and compared with the traditional impregnation method. The formation of surface nickel silicate/aluminate involved in the two precipitation processes are inferred to lead to the stronger interaction between the metal and the support. The lower Brnsted acid concentrations of these two Ni/HBEA catalysts compared with the parent zeolite caused by the partial exchange of Brnsted acid sites by Ni2+ cations do not influence the hydrodeoxygenation rates, but alter the product selectivity. Higher initial rates and higher stability have been achieved with these optimized catalysts for the hydrodeoxygenation of stearic acid and microalgae oil. Small metal particles facilitate high initial catalytic activity in the fresh sample and size uniformity ensures high catalyst stability.

  2. Field Test of a DHW Distribution System: Temperature and Flow Analyses (Presentation)

    SciTech Connect (OSTI)

    Barley, C. D.; Hendron, B.; Magnusson, L.

    2010-05-13

    This presentation discusses a field test of a DHW distribution system in an occupied townhome. It includes measured fixture flows and temperatures, a tested recirculation system, evaluated disaggregation of flow by measured temperatures, Aquacraft Trace Wizard analysis, and comparison.

  3. AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: NEAR-INFRARED MORPHOLOGIES AND STELLAR SIZES

    SciTech Connect (OSTI)

    Chen, Chian-Chou; Smail, Ian; Swinbank, A. M.; Simpson, J. M.; Ma, Cheng-Jiun; Alexander, D. M.; Danielson, A. L. R.; Edge, A. C.; Biggs, A. D.; Ivison, R. J.; Brandt, W. N.; Chapman, S. C.; Coppin, K. E. K.; Dannerbauer, H.; Greve, T. R.; Karim, A.; Menten, Karl M.; Schinnerer, E.; Walter, F.; Wardlow, J. L.; and others

    2015-02-01

    We analyze Hubble Space Telescope WFC3/H {sub 160}-band observations of a sample of 48 Atacama Large Millimeter/submillimeter Array detected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South field, to study their stellar morphologies and sizes. We detect 79% ± 17% of the SMGs in the H {sub 160}-band imaging with a median sensitivity of 27.8 mag, and most (80%) of the nondetections are SMGs with 870 μm fluxes of S {sub 870} < 3 mJy. With a surface brightness limit of μ {sub H} ∼ 26 mag arcsec{sup –2}, we find that 82% ± 9% of the H {sub 160}-band-detected SMGs at z = 1-3 appear to have disturbed morphologies, meaning they are visually classified as either irregulars or interacting systems, or both. By determining a Sérsic fit to the H {sub 160} surface brightness profiles, we derive a median Sérsic index of n = 1.2 ± 0.3 and a median half-light radius of r{sub e} = 4.4{sub −0.5}{sup +1.1} kpc for our SMGs at z = 1-3. We also find significant displacements between the positions of the H {sub 160} component and 870 μm emission in these systems, suggesting that the dusty starburst regions and less-obscured stellar distribution are not colocated. We find significant differences in the sizes and the Sérsic index between our z = 2-3 SMGs and z ∼ 2 quiescent galaxies, suggesting that a major transformation of the stellar light profile is needed in the quenching processes if SMGs are progenitors of the red-and-dead z ∼ 2 galaxies. Given the short-lived nature of SMGs, we postulate that the majority of the z = 2-3 SMGs with S {sub 870} ≳ 2 mJy are early/mid-stage major mergers.

  4. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations

    SciTech Connect (OSTI)

    Durand, O.; Soulard, L.

    2015-04-28

    The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.

  5. Electron distribution function and recombination coefficient in ultracold plasma in a magnetic field

    SciTech Connect (OSTI)

    Bobrov, A. A.; Bronin, S. Ya.; Zelener, B. B.; Zelener, B. V.; Manykin, E. A.; Khikhlukha, D. R.

    2013-07-15

    The electron distribution function and diffusion coefficient in energy space have been calculated for the first time for a weakly coupled ultracold plasma in a magnetic field in the range of magnetic fields B = 100-50000 G for various temperatures. The dependence of these characteristics on the magnetic field is analyzed and the distribution function is shown to depend on the electron energy shift in a magnetic field. The position of the 'bottleneck' of the distribution function has been found to be shifted toward negative energies with increasing magnetic field. The electron velocity autocorrelators as a function of the magnetic field have been calculated; their behavior suggests that the frequency of collisions between charged particles decreases significantly with increasing magnetic field. The collisional recombination coefficient {alpha}{sub B} has been calculated in the diffusion approximation for a weakly coupled ultracold plasma in a magnetic field. An increase in magnetic field is shown to lead to a decrease in {alpha}{sub B} and this decrease can be several orders of magnitude.

  6. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    SciTech Connect (OSTI)

    Mendoza Herrera, Luis J.; Arboleda, David Muetn; Schinca, Daniel C.; Scaffardi, Luca B.

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ?{sub P}?? and the damping constant ?{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ?{sub p} (0.5%1.6%) and for ?{sub free} (3%8%), which are smaller than those reported in the literature. These small uncertainties in ?{sub p} and ?{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ?{sub p} and ?{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  7. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-03-26

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are n(i, f) similar to 10(4)-10(5). We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one canmore » infer the decay width in more realistic magnetic fields of 10(15) G, where n(i, f) similar to 10(12)-10(13), from the results for n(i, f) similar to 10(4)-10(5). The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  8. Field investigation of the relationship between battery size and PV system performance

    SciTech Connect (OSTI)

    Stevens, J.; Kratochvil, J. [Sandia National Labs., Albuquerque, NM (United States); Harrington, S. [Ktech Corp., Albuquerque, NM (United States)

    1993-07-01

    Four photovoltaic-powered lighting systems were installed in a National Forest Service campground in June of 1991. These systems have identical arrays, loads and charge controllers. The only difference was in the rated capacity of the battery bank for each system. The battery banks all use the same basic battery as a building block with the four systems utilizing either one battery, two batteries, three batteries or four batteries. The purpose of the experiment is to examine the effect of the various battery sizes on the ability of the system to charge the battery, energy available to the load, and battery lifetime. Results show an important trend in system performance concerning the impact of charge controllers on the relation between array size and battery size which results in an inability to achieve the days of battery storage originally designed for.

  9. SU-E-T-586: Field Size Dependence of Output Factor for Uniform Scanning Proton Beams: A Comparison of TPS Calculation, Measurement and Monte Carlo Simulation

    SciTech Connect (OSTI)

    Zheng, Y; Singh, H; Islam, M

    2014-06-01

    Purpose: Output dependence on field size for uniform scanning beams, and the accuracy of treatment planning system (TPS) calculation are not well studied. The purpose of this work is to investigate the dependence of output on field size for uniform scanning beams and compare it among TPS calculation, measurements and Monte Carlo simulations. Methods: Field size dependence was studied using various field sizes between 2.5 cm diameter to 10 cm diameter. The field size factor was studied for a number of proton range and modulation combinations based on output at the center of spread out Bragg peak normalized to a 10 cm diameter field. Three methods were used and compared in this study: 1) TPS calculation, 2) ionization chamber measurement, and 3) Monte Carlos simulation. The XiO TPS (Electa, St. Louis) was used to calculate the output factor using a pencil beam algorithm; a pinpoint ionization chamber was used for measurements; and the Fluka code was used for Monte Carlo simulations. Results: The field size factor varied with proton beam parameters, such as range, modulation, and calibration depth, and could decrease over 10% from a 10 cm to 3 cm diameter field for a large range proton beam. The XiO TPS predicted the field size factor relatively well at large field size, but could differ from measurements by 5% or more for small field and large range beams. Monte Carlo simulations predicted the field size factor within 1.5% of measurements. Conclusion: Output factor can vary largely with field size, and needs to be accounted for accurate proton beam delivery. This is especially important for small field beams such as in stereotactic proton therapy, where the field size dependence is large and TPS calculation is inaccurate. Measurements or Monte Carlo simulations are recommended for output determination for such cases.

  10. Laser Transmission Measurements and Plume Particle Size Distributions for Propellant Burn Tests at ATK Elkton in May 2012

    SciTech Connect (OSTI)

    Willitsford, Adam H.; Brown, David M.; Brown, Andrea M.; Airola, Marc B.; Dinello-Fass, Ryan P.; Thomas, Michael E.; Siegrist, Karen M.

    2014-08-28

    Multi-wavelength laser transmittance was measured during a series of open-air propellant burn tests at Alliant Techsystems, Inc., in Elkton, MD, in May 2012. A Mie scattering model was combined with an alumina optical properties model in a simple single-scatter approach to fitting plume transmittance. Wavelength-dependent plume transmission curves were fit to the measured multi-wave- length transmittance data to infer plume particle size distributions at several heights in the plume. Tri-modal lognormal distributions described transmittance data well at all heights. Overall distributions included a mode with nanometer-scale diameter, a second mode at a diameter of ~0.5 µm, and a third, larger particle mode. Larger parti- cles measured 2.5 µm in diameter at 34 cm (14 in.) above the burning propellant surface, but grew to 4 µm in diameter at a height of 57 cm (22 in.), indicative of particle agglomeration in progress as the plume rises. This report presents data, analysis, and results from the study.

  11. Kinetic (particle-in-cell) simulation of nonlinear laser absorption in a finite-size plasma with a background inhomogeneous magnetic field

    SciTech Connect (OSTI)

    Mehdian, H. Kargarian, A.; Hajisharifi, K.

    2015-06-15

    In this paper, the effect of an external inhomogeneous magnetic field on the high intensity laser absorption rate in a sub-critical plasma has been investigated by employing a relativistic electromagnetic 1.5 dimensional particle-in-cell code. Relying on the effective nonlinear phenomena such as phase-mixing and scattering, this study shows that in a finite-size plasma the laser absorption increases with inhomogeneity of the magnetic field (i.e., reduction of characteristic length of inhomogeneous magnetic field, λ{sub p}) before exiting a considerable amount of laser energy from the plasma due to scattering process. On the other hand, the presence of the external inhomogeneous magnetic field causes the maximum absorption of laser to occur at a shorter time. Moreover, study of the kinetic results associated with the distribution function of plasma particles shows that, in a special range of the plasma density and the characteristic length of inhomogeneous magnetic field, a considerable amount of laser energy is transferred to the particles producing a population of electrons with kinetic energy along the laser direction.

  12. Electromagnetic Simulation of the Near-Field Distribution around a Wind Farm

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Shang-Te; Ling, Hao

    2013-01-01

    An efficienmore » t approach to compute the near-field distribution around and within a wind farm under plane wave excitation is proposed. To make the problem computationally tractable, several simplifying assumptions are made based on the geometry problem. By comparing the approximations against full-wave simulations at 500 MHz, it is shown that the assumptions do not introduce significant errors into the resulting near-field distribution. The near fields around a 3 × 3 wind farm are computed using the developed methodology at 150 MHz, 500 MHz, and 3 GHz. Both the multipath interference patterns and the forward shadows are predicted by the proposed method.« less

  13. Self-consistent field theory based molecular dynamics with linear system-size scaling

    SciTech Connect (OSTI)

    Richters, Dorothee; Khne, Thomas D.

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  14. DTE Energy Technologies With Detroit Edison Co. and Kinectrics Inc.: Distributed Resources Aggregation Modeling and Field Configuration Testing

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes the work of DTE Energy Technologies, Detroit Edison, and Kinectrics, under contract to DOE's Distribution and Interconnection R&D, to develop distributed resources aggregation modeling and field configuration testing.

  15. Bimodal switching field distributions in all-perpendicular spin-valve nanopillars

    SciTech Connect (OSTI)

    Gopman, D. B. Kent, A. D.; Bedau, D.; Katine, J. A.; Mangin, S.; Fullerton, E. E.

    2014-05-07

    Switching field measurements of the free layer element of 75 nm diameter spin-valve nanopillars reveal a bimodal distribution of switching fields at low temperatures (below 100 K). This result is inconsistent with a model of thermal activation over a single perpendicular anisotropy barrier. The correlation between antiparallel to parallel and parallel to antiparallel switching fields increases to nearly 50% at low temperatures. This reflects random fluctuation of the shift of the free layer hysteresis loop between two different magnitudes, which may originate from changes in the dipole field from the polarizing layer. The magnitude of the loop shift changes by 25% and is correlated to transitions of the spin-valve into an antiparallel configuration.

  16. Intercomparison of Large-eddy Simulations of Arctic Mixed-phase Clouds: Importance of Ice Size Distribution Assumptions

    SciTech Connect (OSTI)

    Ovchinnikov, Mikhail; Ackerman, Andrew; Avramov, Alex; Cheng, Anning; Fan, Jiwen; Fridlind, Ann; Ghan, Steven J.; Harrington, Jerry Y.; Hoose, Corinna; Korolev, Alexei; McFarquhar, Greg; Morrison, H.; Paukert, Marco; Savre, Julien; Shipway, Ben; Shupe, Matthew D.; Solomon, Amy; Sulia, Kara

    2014-03-14

    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP) and potential cloud dissipation, in agreement with earlier studies. By comparing simulations with the same microphysics coupled to different dynamical cores as well as the same dynamics coupled to different microphysics schemes, it is found that the ice water path (IWP) is mainly controlled by ice microphysics, while the inter-model differences in LWP are largely driven by physics and numerics of the dynamical cores. In contrast to previous intercomparisons, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSD) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case.

  17. Influence of compensator thickness, field size, and off-axis distance on the effective attenuation coefficient of a cerrobend compensator for intensity-modulated radiation therapy

    SciTech Connect (OSTI)

    Haghparast, Abbas; Hashemi, Bijan; Eivazi, Mohammad Taghi

    2013-04-01

    Intensity-modulated radiation therapy (IMRT) can be performed by using compensators. To make a compensator for an IMRT practice, it is required to calculate the effective attenuation coefficient (?{sub eff}) of its material, which is affected by various factors. We studied the effect of the variation of the most important factors on the calculation of the ?{sub eff} of the cerrobend compensator for 6-MV photon beams, including the field size, compensator thickness, and off-axis distance. Experimental measurements were carried out at 100 cm source-to-surface distance and 10 cm depth for the 6-MV photon beams of an Elekta linac using various field size, compensator thickness, and off-axis settings. The field sizes investigated ranged from 4 4 to 25 25 cm{sup 2} and the cerrobend compensator thicknesses from 0.56 cm. For a fixed compensator thickness, variation of the ?{sub eff} with the field size ranged from 3.76.8%, with the highest value attributed to the largest compensator thickness. At the reference field size of 10 10 cm{sup 2}, the ?{sub eff} varied by 16.5% when the compensator thickness was increased from 0.56 cm. However, the variation of the ?{sub eff} with the off-axis distance was only 0.99% at this field size, whereas for the largest field size, it was more significant. Our results indicated that the compensator thickness and field size have the most significant effect on the calculation of the compensator ?{sub eff} for the 6-MV photon beam. Therefore, it is recommended to consider these parameters when calculating the compensator thickness for an IMRT practice designed for these beams. The off-axis distance had a significant effect on the calculation of the ?{sub eff} only for the largest field size. Hence, it is recommended to consider the effect of this parameter only for field sizes larger than 25 25 cm{sup 2}.

  18. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect (OSTI)

    Kleinman, L.I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2011-06-21

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO{sub 2} from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25% of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50% of aerosol with D{sub p} > 110 nm were not activated, the difference between the two

  19. Determination of the Average Aromatic Cluster Size of Fossil Fuels by Solid-State NMR at High Magnetic Field

    SciTech Connect (OSTI)

    Mao, Kanmi; Kennedy, Gordon J.; Althaus, Stacey M.; Pruski, Marek

    2013-01-07

    We show that the average aromatic cluster size in complex carbonaceous materials can be accurately determined using fast magic-angle spinning (MAS) NMR at a high magnetic field. To accurately quantify the nonprotonated aromatic carbon, we edited the 13C spectra using the recently reported MAS-synchronized spinecho, which alleviated the problem of rotational recoupling of 1H-13C dipolar interactions associated with traditional dipolar dephasing experiments. The dependability of this approach was demonstrated on selected Argonne Premium coal standards, for which full sets of basic structural parameters were determined with high accuracy.

  20. The Occurrence of Particle Size Distribution Bimodality in Midlatitude Cirrus as Inferred from Ground-Based Remote Sensing Data

    SciTech Connect (OSTI)

    Zhao, Yang; Mace, Gerald G.; Comstock, Jennifer M.

    2011-06-01

    To better understand the role of small particles in the microphysical processes and the radiative properties of cirrus, the reliability of historical in-situ data must be understood. Recent studies call into question the validity of that data because of shattering of large crystals on probe and aircraft surfaces thereby artificially amplifying the concentration of crystals smaller than approximately 50 ?m. We contend that the general character of the in-situ measurements must be consistent, in a broad sense, with statistics derived from long-term remote sensing data. To examine this consistency, an algorithm using Doppler radar moments and Raman lidar extinction is developed to retrieve a bimodal particle size distribution and its uncertainty. Using case studies and statistics compiled over one year we show that the existence of high concentrations (> 1 cm-3 ) of small (sub 50 ?m) particles in cirrus are not consistent with any reasonable interpretation of the remote sensing data. We conclude that the high concentrations of small particles found in many aircraft data sets are therefore likely an artifact of the in situ measurement process.

  1. Size dependence of magnetization switching and its dispersion of Co/Pt nanodots under the assistance of radio frequency fields

    SciTech Connect (OSTI)

    Furuta, Masaki Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Shimatsu, Takehito

    2014-04-07

    We have studied the dot size dependence of microwave assisted magnetization switching (MAS) on perpendicular magnetic Co/Pt multilayer dot array. The significant microwave assistance effect has been observed over the entire dot size D ranging from 50?nm to 330?nm examined in the present study. The MAS behavior, however, critically depends on D. The excitation frequency dependence of the switching field is well consistent with the spin wave theory, indicating that the magnetization precession in MAS is in accordance with the well defined eigenmodes depending on the dot diameter. The lowest order spin wave is only excited for D???100?nm, and then the MAS effect is well consistent with that of the single macrospin prediction. On the other hand, higher order spin waves are excited for D?>?100?nm, giving rise to the significant enhancement of the MAS effect. The dispersion of MAS effect also depends on D and is significantly reduced for the region of D?>?100?nm. This significant reduction of the dispersion is attributed to the essential feature of the MAS effect which is insensitive to the local fluctuation of anisotropy field, such as defect, damaged layer, and so on.

  2. Determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer quantum dots via spectral analysis of optical signature of the Aharanov-Bohm excitons

    SciTech Connect (OSTI)

    Ji, Haojie; Dhomkar, Siddharth; Roy, Bidisha; Kuskovsky, Igor L.; Shuvayev, Vladimir; Deligiannakis, Vasilios; Tamargo, Maria C.; Ludwig, Jonathan; Smirnov, Dmitry; Wang, Alice

    2014-10-28

    For submonolayer quantum dot (QD) based photonic devices, size and density of QDs are critical parameters, the probing of which requires indirect methods. We report the determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer QDs, based on spectral analysis of the optical signature of Aharanov-Bohm (AB) excitons, complemented by photoluminescence studies, secondary-ion mass spectroscopy, and numerical calculations. Numerical calculations are employed to determine the AB transition magnetic field as a function of the type-II QD radius. The study of four samples grown with different tellurium fluxes shows that the lateral size of QDs increases by just 50%, even though tellurium concentration increases 25-fold. Detailed spectral analysis of the emission of the AB exciton shows that the QD radii take on only certain values due to vertical correlation and the stacked nature of the QDs.

  3. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect (OSTI)

    Kleinman L. I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2012-01-04

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (D{sub p} > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25 % of aerosol with D{sub p} > 100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the

  4. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    SciTech Connect (OSTI)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  5. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    SciTech Connect (OSTI)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  6. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report

    SciTech Connect (OSTI)

    Greenberg, S.; Cooley, C.

    2005-01-01

    This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

  7. Evaluation of moist processes during intense precipitation in km-scale NWP models using remote sensing and in-situ data: Impact of microphysics size distribution assumptions

    SciTech Connect (OSTI)

    VanWeverberg, K.; vanLipzig, N. P. M.; Delobbe, L.

    2011-02-01

    This study investigates the sensitivity of moist processes and surface precipitation during three extreme precipitation events over Belgium to the representation of rain, snow and hail size distributions in a bulk one-moment microphysics parameterisation scheme. Sensitivities included the use of empirically derived relations to calculate the slope parameter and diagnose the intercept parameter of the exponential snow and rain size distributions and sensitivities to the treatment of hail/graupel. A detailed evaluation of the experiments against various high temporal resolution and spatially distributed observational data was performed to understand how moist processes responded to the implemented size distribution modifications. Net vapor consumption by microphysical processes was found to be unaffected by snow or rain size distribution modifications, while it was reduced replacing formulations for hail by those typical for graupel, mainly due to intense sublimation of graupel. Cloud optical thickness was overestimated in all experiments and all cases, likely due to overestimated snow amounts. The overestimation slightly deteriorated by modifying the rain and snow size distributions due to increased snow depositional growth, while it was reduced by including graupel. The latter was mainly due to enhanced cloud water collection by graupel and reduced snow depositional growth. Radar reflectivity and cloud optical thickness could only be realistically represented by inclusion of graupel during a stratiform case, while hail was found indispensable to simulate the vertical reflectivity profile and the surface precipitation structure. Precipitation amount was not much altered by any of the modifications made and the general overestimation was only decreased slightly during a supercell convective case.

  8. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    SciTech Connect (OSTI)

    Plionis, Alexander A; Peterson, Dominic S; Tandon, Lav; Lamont, Stephen P

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  9. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect (OSTI)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  10. Simple method for highlighting the temperature distribution into a liquid sample heated by microwave power field

    SciTech Connect (OSTI)

    Surducan, V.; Surducan, E.; Dadarlat, D.

    2013-11-13

    Microwave induced heating is widely used in medical treatments, scientific and industrial applications. The temperature field inside a microwave heated sample is often inhomogenous, therefore multiple temperature sensors are required for an accurate result. Nowadays, non-contact (Infra Red thermography or microwave radiometry) or direct contact temperature measurement methods (expensive and sophisticated fiber optic temperature sensors transparent to microwave radiation) are mainly used. IR thermography gives only the surface temperature and can not be used for measuring temperature distributions in cross sections of a sample. In this paper we present a very simple experimental method for temperature distribution highlighting inside a cross section of a liquid sample, heated by a microwave radiation through a coaxial applicator. The method proposed is able to offer qualitative information about the heating distribution, using a temperature sensitive liquid crystal sheet. Inhomogeneities as smaller as 1°-2°C produced by the symmetry irregularities of the microwave applicator can be easily detected by visual inspection or by computer assisted color to temperature conversion. Therefore, the microwave applicator is tuned and verified with described method until the temperature inhomogeneities are solved.

  11. Influence of Permian salt dissolution on distribution of shallow Niobrara gas fields, eastern Colorado

    SciTech Connect (OSTI)

    Oldham, D.W.; Smosna, R.A.

    1996-06-01

    Subsurface analysis of Permian salt and related strata in the shallow Niobrara gas area on the eastern flank of the Denver basin reveals that the location of faulted anticlines which produce gas from porous chalk is related to the occurrence of six Nippewalla Group (Leonardian) salt zones. Salt distribution is controlled by the configuration of evaporate basins during the Leonardian, truncation at a sub-Jurassic unconformity (which has completely removed Guadalupian salts), and post-Jurassic subsurface dissolution. Significant dissolution took place in response to Laramide orogeny and subsequent eastward regional groundwater flow within the Lyons (Cedar Hills) Sandstone aquifer. Initially, dissolution occurred along a regional facies change from sandstone to salt. Solution collapse allowed for cross-formational flow and removal of younger salts. Shallow Niobrara gas fields are situated above salt outliers or along regionally updip salt edges. No significant Niobrara production exists in areas where salt is absent. Structural relief across fields is related to Leonardian thickness variations, rather than subsalt offset. Seismic data reveal abrupt Leonardian thinning at the regionally updip limit of Eckley field, which has produced over 33 BCFG. Thickness of residual salt may be important in controlling the amount of gas trapped within the Niobrara. Where thick salts are preserved, structural relief is greater, the gas-water transition zone is thicker, and gas saturation is higher at the crests of faulted anticlines.

  12. Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing: Supplemental Report on Penetration Software Algorithms

    SciTech Connect (OSTI)

    Davis, M.; Costyk, D.; Narang, A.

    2005-03-01

    This report supplements the July 2003 report ''Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing'' (NREL/SR-560-33909). The original report presented methods for calculating penetration limits for distributed energy resources interconnected with distribution circuits of utility-owned electric power systems. This report describes the algorithms required to develop application software to calculate penetration limits. The original report can be found at http://www.nrel.gov/docs/fy03osti/33909.pdf.

  13. Electrical analysis of wideband and distributed windows using time-dependent field codes

    SciTech Connect (OSTI)

    Shang, C.C.; Caplan, M.; Nickel, H.U.; Thumm, M. |

    1993-09-16

    Windows, which provide the barrier to maintain the vacuum envelope in a microwave tube, are critical components in high-average-power microwave sources, especially at millimeter wavelengths. As RF power levels approach the 100`s of kWs to 1 MW range (CW), the window assembly experiences severe thermal and mechanical stresses. Depending on the source, the bandwidth of the window may be less than 1 GHz for gyrotron oscillators or up to {approximately}20 GHz for the FOM Institute`s fast-tunable, free-electron-maser. The bandwidth requirements give rise to a number of window configurations where the common goal is locally distributed heat dissipation. In order to better understand the transmission and RF properties of these microwave structures, the authors use detailed time-dependent field solvers.

  14. DEEPER BY THE DOZEN: UNDERSTANDING THE CROSS-FIELD TEMPERATURE DISTRIBUTIONS OF CORONAL LOOPS

    SciTech Connect (OSTI)

    Schmelz, J. T.; Pathak, S.; Jenkins, B. S.; Worley, B. T., E-mail: jschmelz@memphis.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2013-02-10

    Spectroscopic analysis of coronal loops has revealed a variety of cross-field temperature distributions. Some loops appear to be isothermal while others require multithermal plasma. The EUV Imaging Spectrometer on Hinode has the spatial resolution and temperature coverage required for differential emission measure (DEM) analysis of coronal loops. Our results also use data from the X-Ray Telescope on Hinode as a high-temperature constraint. Of our 12 loops, two were post-flare loops with broad temperature distributions, two were narrow but not quite isothermal, and the remaining eight were in the mid range. We consider our DEM methods to be a significant advance over previous work, and it is also reassuring to learn that our findings are consistent with results available in the literature. For the quiescent loops analyzed here, 10 MK plasma, a signature of nanoflares, appears to be absent at a level of approximately two orders of magnitude down from the DEM peak. We find some evidence that warmer loops require broader DEMs. The cross-field temperatures obtained here cannot be modeled as single flux tubes. Rather, the observed loop must be composed of several or many unresolved strands. The plasma contained in each of these strands could be cooling at different rates, contributing to the multithermal nature of the observed loop pixels. An important implication of our DEM results involves observations from future instruments. Once solar telescopes can truly resolve X-ray and EUV coronal structures, these images would have to reveal the loop substructure implied by our multithermal results.

  15. ATMOSPHERIC IMAGING ASSEMBLY OBSERVATIONS OF CORONAL LOOPS: CROSS-FIELD TEMPERATURE DISTRIBUTIONS

    SciTech Connect (OSTI)

    Schmelz, J. T.; Jenkins, B. S.; Pathak, S., E-mail: jschmelz@memphis.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2013-06-10

    We construct revised response functions for the Atmospheric Imaging Assembly (AIA) using the new atomic data, ionization equilibria, and coronal abundances available in CHIANTI 7.1. We then use these response functions in multithermal analysis of coronal loops, which allows us to determine a specific cross-field temperature distribution without ad hoc assumptions. Our method uses data from the six coronal filters and the Monte Carlo solutions available from our differential emission measure (DEM) analysis. The resulting temperature distributions are not consistent with isothermal plasma. Therefore, the observed loops cannot be modeled as single flux tubes and must be composed of a collection of magnetic strands. This result is now supported by observations from the High-resolution Coronal Imager, which show fine-scale braiding of coronal strands that are reconnecting and releasing energy. Multithermal analysis is one of the major scientific goals of AIA, and these results represent an important step toward the successful achievement of that goal. As AIA DEM analysis becomes more straightforward, the solar community will be able to take full advantage of the state-of-the-art spatial, temporal, and temperature resolution of the instrument.

  16. Ion energy-angle distribution functions at the plasma-material interface in oblique magnetic fields

    SciTech Connect (OSTI)

    Khaziev, Rinat; Curreli, Davide

    2015-04-15

    The ion energy-angle distribution (IEAD) at the wall of a magnetized plasma is of fundamental importance for the determination of the material processes occurring at the plasma-material interface, comprising secondary emissions and material sputtering. Here, we present a numerical characterization of the IEAD at the wall of a weakly collisional magnetized plasma with the magnetic field inclined at an arbitrary angle with respect to the wall. The analysis has been done using two different techniques: (1) a fluid-Monte Carlo method, and (2) particle-in-cell simulations, the former offering a fast but approximate method for the determination of the IEADs, the latter giving a computationally intensive but self-consistent treatment of the plasma behavior from the quasi-neutral region to the material boundary. The two models predict similar IEADs, whose similarities and differences are discussed. Data are presented for magnetic fields inclined at angles from normal to grazing incidence (0°–85°). We show the scaling factors of the average and peak ion energy and trends of the pitch angle at the wall as a function of the magnetic angle, for use in the correlation of fluid plasma models to material models.

  17. Property Improvement in CZT via Modeling and Processing Innovations . Te-particles in vertical gradient freeze CZT: Size and Spatial Distributions and Constitutional Supercooling

    SciTech Connect (OSTI)

    Henager, Charles H.; Alvine, Kyle J.; Bliss, Mary; Riley, Brian J.; Stave, Jean A.

    2014-10-01

    A section of a vertical gradient freeze CZT boule approximately 2100-mm3 with a planar area of 300-mm2 was prepared and examined using transmitted IR microscopy at various magnifications to determine the three-dimensional spatial and size distributions of Te-particles over large longitudinal and radial length scales. The boule section was approximately 50-mm wide by 60-mm in length by 7-mm thick and was doubly polished for TIR work. Te-particles were imaged through the thickness using extended focal imaging to locate the particles in thickness planes spaced 15-µm apart and then in plane of the image using xy-coordinates of the particle center of mass so that a true three dimensional particle map was assembled for a 1-mm by 45-mm longitudinal strip and for a 1-mm by 50-mm radial strip. Te-particle density distributions were determined as a function of longitudinal and radial positions in these strips, and treating the particles as vertices of a network created a 3D image of the particle spatial distribution. Te-particles exhibited a multi-modal log-normal size density distribution that indicated a slight preference for increasing size with longitudinal growth time, while showing a pronounced cellular network structure throughout the boule that can be correlated to dislocation network sizes in CZT. Higher magnification images revealed a typical Rayleigh-instability pearl string morphology with large and small satellite droplets. This study includes solidification experiments in small crucibles of 30:70 mixtures of Cd:Te to reduce the melting point below 1273 K (1000°C). These solidification experiments were performed over a wide range of cooling rates and clearly demonstrated a growth instability with Te-particle capture that is suggested to be responsible for one of the peaks in the size distribution using size discrimination visualization. The results are discussed with regard to a manifold Te-particle genesis history as 1) Te

  18. Effect of Field Size and Length of Plantar Spur on Treatment Outcome in Radiation Therapy of Plantar Fasciitis: The Bigger the Better?

    SciTech Connect (OSTI)

    Hermann, Robert Michael; Meyer, Andreas; Reible, Michael; Carl, Ulrich Martin; Nitsche, Mirko

    2013-12-01

    Purpose: Radiation therapy is well established in the treatment of painful plantar fasciitis or heel spur. A retrospective analysis was conducted to investigate the effect of field definition on treatment outcome and to determine the impact of factors potentially involved. Methods and Materials: A review of treatment data of 250 patients (285 heels) with a mean follow-up time of 11 months showed that complete symptom remission occurred in 38%, partial remission in 32%, and no change in 19% (11% were lost to follow-up). Variables such as radiologic evidence of plantar spurs, their length, radiation dose, field size, age, sex, and onset of pain before administration of radiation therapy were investigated in univariate and multivariate regression analyses. Results: Treatment response depended upon age >53 years, length of heel spur ≤6.5 mm (or no radiologic evidence of a heel spur), and onset of pain <12 months before radiation therapy. Patients with these clinical prerequisites stood a 93% chance of clinical response. Without these prerequisites, only 49% showed any impact. No influence of field size on treatment outcome became evident. Conclusion: Patients with short plantar heel spurs benefit from radiation therapy equally well as patients without any radiologic evidence. Moreover, smaller field sizes have the same positive effect as commonly used large field definitions covering the entire calcaneal bone. This leads to a recommendation of a considerable reduction of field size in future clinical practice.

  19. Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing

    SciTech Connect (OSTI)

    Davis, M.; Costyk, D.; Narang, A.

    2003-07-01

    This study determines the magnitude of distributed resources that can be added to a distribution circuit without causing undesirable conditions or equipment damage.

  20. The role of precipitation size distributions in km-scale NWP simulations of intense precipitation: Evaluation of cloud properties and surface precipitation

    SciTech Connect (OSTI)

    VanWeverberg K.; Vogelmann A.; vanLipzig, N. P. M.; Delobbec, L.

    2012-04-01

    We investigate the sensitivity of simulated cloud properties and surface precipitation to assumptions regarding the size distributions of the precipitating hydrometeors in a one-moment bulk microphysics scheme. Three sensitivity experiments were applied to two composites of 15 convective and 15 frontal stratiform intense precipitation events observed in a coastal midlatitude region (Belgium), which were evaluated against satellite-retrieved cloud properties and radar-rain-gauge derived surface precipitation. It is found that the cloud optical thickness distribution was well captured by all experiments, although a significant underestimation of cloudiness occurred in the convective composite. The cloud-top-pressure distribution was improved most by more realistic snow size distributions (including a temperature-dependent intercept parameter and non-spherical snow for the calculation of the slope parameter), due to increased snow depositional growth at high altitudes. Surface precipitation was far less sensitive to whether graupel or hail was chosen as the rimed ice species, as compared to previous idealized experiments. This smaller difference in sensitivity could be explained by the stronger updraught velocities and higher freezing levels in the idealized experiments compared to typical coastal midlatitude environmental conditions.

  1. THE IMPORTANCE OF PHYSICAL MODELS FOR DERIVING DUST MASSES AND GRAIN SIZE DISTRIBUTIONS IN SUPERNOVA EJECTA. I. RADIATIVELY HEATED DUST IN THE CRAB NEBULA

    SciTech Connect (OSTI)

    Temim, Tea; Dwek, Eli, E-mail: tea.temim@nasa.gov [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-09-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 M{sub Sun }, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 {mu}m. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  2. Star-cluster mass and age distributions of two fields in M83 based on HST/WFC3 observations

    SciTech Connect (OSTI)

    Chandar, Rupali; Whitmore, Bradley C.; Calzetti, Daniela; O'Connell, Robert

    2014-05-20

    We study star clusters in two fields in the nearby spiral galaxy M83 using broadband and narrowband optical imaging taken with the Wide Field Camera 3 onboard the Hubble Space Telescope. We present results on the basis of several different catalogs of star clusters in inner and outer fields, and we conclude that different methods of selection do not strongly affect the results, particularly for clusters older than ?10 Myr. The age distributions can be described by a power law, dN/d???{sup ?}, with ? ? 0.84 0.12 in the inner field, and ? ? 0.48 0.12 in the outer field for ? ? 10 Myr. We bracket the difference, ??, between the two fields to be in the 0.18 to 0.36 range, based on estimates of the relative star-formation histories. The mass functions can also be described by a power law, dN/dM?M {sup ?}, with ? ? 1.98 0.14 and ? ? 2.34 0.26 in the inner and outer fields, respectively. We conclude that the shapes of the mass and age distributions of the clusters in the two fields are similar, as predicted by the quasi-universal model. Any differences between the two fields are at the ?2?-3? (?1?-2?) level for the age (mass) distributions. Therefore, any dependence of these distributions on the local environment is probably weak. We compare the shapes of the distributions with those predicted by two popular cluster disruption models. We find that both show evidence that the clusters are disrupted at a rate that is approximately independent of their mass. We compare the shapes of the distributions with those predicted by two popular cluster disruption models, and find that both show evidence that the clusters are disrupted at a rate that is approximately independent of their mass, and that observational results do not support the earlier disruption of lower-mass clusters relative to their higher-mass counterparts.

  3. Distribution:

    Office of Legacy Management (LM)

    JAN26 19% Distribution: OR00 Attn: h.H.M.Roth DFMusser ITMM MMMann INS JCRyan FIw(2) Hsixele SRGustavson, Document rocm Formal file i+a@mmm bav@ ~@esiaw*cp Suppl. file 'Br & Div rf's s/health (lic.only) UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAB MATERIAL LICENSE pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, P&t 70, "Special Nuclear Material Reg)llatiqm," a license is hereby issued a$hortztng the licensee to rekeive

  4. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    SciTech Connect (OSTI)

    Muth, jr., David J.; Langholtz, Matthew H.; Tan, Eric; Jacobson, Jacob; Schwab, Amy; Wu, May; Argo, Andrew; Brandt, Craig C.; Cafferty, Kara; Chiu, Yi-Wen; Dutta, Abhijit; Eaton, Laurence M.; Searcy, Erin

    2014-03-31

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the

  5. Influence of ion irradiation on switching field and switching field distribution in arrays of Co/Pd-based bit pattern media

    SciTech Connect (OSTI)

    Hauet, T.; Hellwig, O.; Dobisz, E.; Terris, B. D.; Park, S.-H.; Ravelosona, D.; Beigne, C.

    2011-04-25

    We have used ion irradiation to tune switching field and switching field distribution (SFD) in polycrystalline Co/Pd multilayer-based bit pattern media. Light He{sup +} ion irradiation strongly decreases perpendicular magnetic anisotropy amplitude due to Co/Pd interface intermixing, while the granular structure, i.e., the crystalline anisotropy, remains unchanged. In dot arrays, the anisotropy reduction leads to a decrease in coercivity (H{sub C}) but also to a strong broadening of the normalized SFD/H{sub C} (in percentage), since the relative impact of misaligned grains is enhanced. Our experiment thus confirms the major role of misorientated grains in SFD of nanodevice arrays.

  6. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  7. The effect of turbulence on the stability of liquid jets and the resulting droplet size distributions. Third quarterly technical report, July 1, 1993--September 30, 1993

    SciTech Connect (OSTI)

    Mansour, A.; Chigier, N.

    1993-12-01

    Laminar and turbulent columns of liquids issuing from capillary tubes were studied in order to determine the effects of turbulence on the stability of liquid jets and to establish the influence of liquid turbulence on droplet size distributions after breakup. Two capillary tubes were chosen with diameters D{sub 1}=3.0mm and D{sub 2}=1.2mm; jet Reynolds numbers were 1000--30000, and 400--7200. For water injection into stagnant air, stability curve is bounded by a laminar portion, where a jet radius and {delta}{sub o} initial disturbance amplitude, and a fully developed turbulent portion characterized by high initial disturbance amplitude (ln(a/{delta}{sub o,T}) {approximately} 4.85). In the transition region, ln(a/{delta}{sub o}) is not single valued; it decreases with increasing Reynolds number. In absence of aerodynamic effects, turbulent jets are as stable as laminar jets. For this breakup mode turbulence propagates initial disturbances with amplitudes orders of magnitude larger than laminar jets ({delta}{sub o,T}=28{times}10{sup 6} {delta}{sub o,L}). Growth rates of initial disturbances are same for both laminar and turbulent columns with theoretical Weber values. Droplet size distribution is bi-modal; the number ratio of large (> D/2), to small (< D/2) droplets is 3 and independent of Reynolds number. For laminar flow optimum wavelength ({lambda}{sub opt}) corresponding to fastest growing disturbance is equal to 4.45D, exactly the theoretical Weber value. For turbulent flow conditions, the turbulent column segments. Typically, segments with lengths of one to several wavelengths, detach from the liquid jet. The long ligaments contract under the action of surface tension, resulting in droplet sizes larger than predicted by Rayleigh and Weber. For turbulent flow conditions, {lambda}{sub opt} = 9.2D, about 2 times the optimum Weber wavelength.

  8. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:www.nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  9. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  10. Sample size requirements for estimating effective dose from computed tomography using solid-state metal-oxide-semiconductor field-effect transistor dosimetry

    SciTech Connect (OSTI)

    Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.; Hoffmann, Udo; Douglas, Pamela S.; Einstein, Andrew J.

    2014-04-15

    Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample size required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomenpelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same

  11. Origin of magnetic switching field distribution in bit patterned media based on pre-patterned substrates

    SciTech Connect (OSTI)

    Pfau, B.; Guenther, C. M.; Eisebitt, S.; Guehrs, E.; Hauet, T.; Yang, H.; Vinh, L.; Xu, X.; Yaney, D.; Hellwig, O.; Rick, R.

    2011-08-08

    Using a combination of synchrotron radiation based magnetic imaging and high-resolution transmission electron microscopy we reveal systematic correlations between the magnetic switching field and the internal nanoscale structure of individual islands in bit patterned media fabricated by Co/Pd-multilayer deposition onto pre-patterned substrates. We find that misaligned grains at the island periphery are a common feature independent of the island switching field, while irregular island shapes and misaligned grains specifically extending into the center of an island are systematically correlated with a reduced island reversal field.

  12. Aerosol mobility size spectrometer

    DOE Patents [OSTI]

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  13. SU-E-T-07: A Comparison of SSD and Field Size Dependence of Output for Megavoltage Electron Beams for Different Manufacturers

    SciTech Connect (OSTI)

    Dimofte, A; Zhu, T

    2014-06-01

    Purpose: The purpose of this study was to compare the electron beam in-air output factor (H) for Varian and Siemens accelerators. Methods: Measurements were performed among four accelerators: Varian CL2300ix, Varian TrueBeam, Siemens Oncor, and Siemens Primus. The nominal electron energy measured ranges from 6 to 21 MeV. Measurements were made in air using a diode detector for different square cone sizes (6 – 25cm) with circular field inserts with radius r between 1 cm and 8 cm and for different SSD (100 – 120 cm). H is defined asH(r,SSD){sup =} X(r,SSD)/X(open,SSD), where X is the charge measured by the diode detector without buildup cap in air. Results: For the same nominal energy, cone size, radius of circular cutout, and SSD, H agreed within a maximum deviation of 2.3% and standard deviation of 1% among Varian accelerators but can be as much as 8.7% different between the Varian and the Siemens accelerators. H is a function of electron energy and cutout radius only when the field radius for H measured at different SSD is renormalized as r = r0*5/(SSD-95), where r{sub 0} is the physical field radius at the end of the cone. The radius dependence of H for five cone sizes (6×6, 10×10, 15×15, 20×20 and 25×25cm{sup 2}) and three SSD(100, 110 and 120cm) for three energies was measured. Conclusion: The in air output factor (H) measured for the same manufacturer can be treated as identical to within 1.1% for Varian machines and to within 1.6% for Siemens machines, but the difference in H measured for the different manufacturers is large enough (>2%) to require machine specific data set.

  14. Field Trial of a Low-Cost, Distributed Plug Load Monitoring System

    SciTech Connect (OSTI)

    Auchter, B.; Cautley, D.; Ahl, D.; Earle, L.; Jin, X.

    2014-03-01

    Researchers have struggled to inventory and characterize the energy use profiles of the ever-growing category of so-called miscellaneous electric loads (MELs) because plug-load monitoring is cost-prohibitive to the researcher and intrusive to the homeowner. However, these data represent a crucial missing link to understanding how homes use energy. Detailed energy use profiles would enable the nascent automated home energy management (AHEM) industry to develop effective control algorithms that target consumer electronics and other plug loads. If utility and other efficiency programs are to incent AHEM devices, they need large-scale datasets that provide statistically meaningful justification of their investments by quantifying the aggregate energy savings achievable. To address this need, NREL researchers investigated a variety of plug-load measuring devices available commercially and tested them in the laboratory to identify the most promising candidates for field applications. This report centers around the lessons learned from a field validation of one proof-of-concept system, called Smartenit (formerly SimpleHomeNet). The system was evaluated based on the rate of successful data queries, reliability over a period of days to weeks, and accuracy. This system offers good overall performance when deployed with up to 10 end nodes in a residential environment, although deployment with more nodes and in a commercial environment is much less robust. NREL concludes that the current system is useful in selected field research projects, with the recommendation that system behavior is observed over time.

  15. Improvement of dose distribution in breast radiotherapy using a reversible transverse magnetic field Linac-MR unit

    SciTech Connect (OSTI)

    Esmaeeli, A. D.; Mahdavi, S. R.; Pouladian, M.; Bagheri, S.; Monfared, A. S.

    2014-01-15

    Purpose: To investigate the improvement in dose distribution in tangential breast radiotherapy using a reversible transverse magnetic field that maintains the same direction of Lorentz force between two fields. The investigation has a potential application in future Linac-MR units. Methods: Computed tomography images of four patients and magnetic fields of 0.251.5 Tesla (T) were used for Monte Carlo simulation. Two patients had intact breast while the other two had mastectomy. Simulations of planning and chest wall irradiation were similar to the actual clinical process. The direction of superior-inferior magnetic field for the medial treatment beam was reversed for the lateral beam. Results: For the ipsilateral lung and heart mean doses were reduced by a mean (range) of 45.8% (27.6%58.6%) and 26.0% (20.2%38.9%), respectively, depending on various treatment plan setups. The mean V{sub 20} for ipsilateral lung was reduced by 55.0% (43.6%77.3%). In addition acceptable results were shown after simulation of 0.25 T magnetic field demonstrated in dose-volume reductions of the heart, ipsilateral lung, and noninvolved skin. Conclusions: Applying a reversible magnetic field during breast radiotherapy, not only reduces the dose to the lung and heart but also produces a sharp drop dose volume histogram for planning target volume, because of bending of the path of secondary charged particles toward the chest wall by the Lorentz force. The simulations have shown that use of the magnetic field at 1.5 T is not feasible for clinical applications due to the increase of ipsilateral chest wall skin dose in comparison to the conventional planning while 0.25 T is suitable for all patients due to dose reduction to the chest wall skin.

  16. Improvement of dose distribution in breast radiotherapy using a reversible transverse magnetic field Linac-MR unit

    SciTech Connect (OSTI)

    Esmaeeli, A. D.; Mahdavi, S. R.; Pouladian, M.; Bagheri, S.; Monfared, A. S.

    2014-01-15

    Purpose: To investigate the improvement in dose distribution in tangential breast radiotherapy using a reversible transverse magnetic field that maintains the same direction of Lorentz force between two fields. The investigation has a potential application in future Linac-MR units. Methods: Computed tomography images of four patients and magnetic fields of 0.25–1.5 Tesla (T) were used for Monte Carlo simulation. Two patients had intact breast while the other two had mastectomy. Simulations of planning and chest wall irradiation were similar to the actual clinical process. The direction of superior-inferior magnetic field for the medial treatment beam was reversed for the lateral beam. Results: For the ipsilateral lung and heart mean doses were reduced by a mean (range) of 45.8% (27.6%–58.6%) and 26.0% (20.2%–38.9%), respectively, depending on various treatment plan setups. The mean V{sub 20} for ipsilateral lung was reduced by 55.0% (43.6%–77.3%). In addition acceptable results were shown after simulation of 0.25 T magnetic field demonstrated in dose-volume reductions of the heart, ipsilateral lung, and noninvolved skin. Conclusions: Applying a reversible magnetic field during breast radiotherapy, not only reduces the dose to the lung and heart but also produces a sharp drop dose volume histogram for planning target volume, because of bending of the path of secondary charged particles toward the chest wall by the Lorentz force. The simulations have shown that use of the magnetic field at 1.5 T is not feasible for clinical applications due to the increase of ipsilateral chest wall skin dose in comparison to the conventional planning while 0.25 T is suitable for all patients due to dose reduction to the chest wall skin.

  17. Field Trial of a Low-Cost, Distributed Plug Load Monitoring System

    SciTech Connect (OSTI)

    Auchter, B.; Cautley, D.; Ahl, D.; Earle, L.; Jin, X.

    2014-03-01

    Researchers have struggled to inventory and characterize the energy use profiles of the ever-growing category of so-called miscellaneous electric loads (MELs) because plug-load monitoring is cost-prohibitive to the researcher and intrusive to the homeowner. However, these data represent a crucial missing link to our understanding of how homes use energy, and we cannot control what we do not understand. Detailed energy use profiles would enable the nascent automated home energy management (AHEM) industry to develop effective control algorithms that target consumer electronics and other plug loads. If utility and other efficiency programs are to incent AHEM devices, they need large-scale datasets that provide statistically meaningful justification of their investments by quantifying the aggregate energy savings achievable. To address this need, we have investigated a variety of plug-load measuring devices available commercially and tested them in the laboratory to identify the most promising candidates for field applications. The scope of this report centers around the lessons learned from a field validation of one proof-of-concept system, called Smartenit (formerly SimpleHomeNet). The system was evaluated based on the rate of successful data queries, reliability over a period of days to weeks, and accuracy. This system offers good overall performance when deployed with up to ten end nodes in a residential environment, although deployment with more nodes and in a commercial environment is much less robust. We conclude that the current system is useful in selected field research projects, with the recommendation that system behavior is observed over time.

  18. Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Koribanics, Nicole M.; Tuorto, Steven J.; Lopez-Chiaffarelli, Nora; McGuinness, Lora R.; Häggblom, Max M.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.; Morais, Paula V

    2015-04-13

    The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminalmore » electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.« less

  19. Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site

    SciTech Connect (OSTI)

    Koribanics, Nicole M.; Tuorto, Steven J.; Lopez-Chiaffarelli, Nora; McGuinness, Lora R.; Häggblom, Max M.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.; Morais, Paula V

    2015-04-13

    The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminal electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.

  20. Effect of Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010

    Broader source: Energy.gov [DOE]

    A distinct relationship was found between engine-out and SCR-out PM distributions for single-mode testing.

  1. Oil gravity distribution in the diatomite at South Belridge Field, Kern County, CA: Implications for oil sourcing and migration

    SciTech Connect (OSTI)

    Hill, D.W.; Sande, J.J.; Doe, P.H.

    1995-04-01

    Understanding oil gravity distribution in the Belridge Diatomite has led to economic infill development and specific enhanced recovery methods for targeted oil properties. To date more than 100 wells have provided samples used to determining vertical and areal distribution of oil gravity in the field. Detailed geochemical analyses were also conducted on many of the oil samples to establish different oil types, relative maturities, and to identify transformed oils. The geochemical analysis also helped identify source rock expulsion temperatures and depositional environments. The data suggests that the Belridge diatomite has been charged by a single hydrocarbon source rock type and was generated over a relatively wide range of temperatures. Map and statistical data support two distinct oil segregation processes occurring post expulsion. Normal gravity segregation within depositional cycles of diatomite have caused lightest oils to migrate to the crests of individual cycle structures. Some data suggests a loss of the light end oils in the uppermost cycles to the Tulare Formation above, or through early biodegradation. Structural rotation post early oil expulsion has also left older, heavier oils concentrated on the east flank of the structure. With the addition of other samples from the south central San Joaquin area, we have been able to tie the Belridge diatomite hydrocarbon charge into a regional framework. We have also enhanced our ability to predict oil gravity and well primary recovery by unraveling some key components of the diatomite oil source and migration history.

  2. Spatial Distribution of -Crystals in Metallocene-Made Isotactic Polypropylene Crystallized under Combined Thermal and Flow Fields

    SciTech Connect (OSTI)

    Wang, Y.; Pan, J; Mao, Y; Li, Z; Li, L; Hsiao, B

    2010-01-01

    The present Article reports the relationships between molecular orientation, formation, and spatial distribution of {gamma}-crystals in metallocene-made isotactic polypropylene (m-iPP) samples prepared by two industrial processes: conventional injection molding (CIM) and oscillatory shear injection molding (OSIM), in which combined thermal and flow fields typically exist. In particular, spatial distributions of crystallinity, fraction of {gamma}-crystal (f{gamma}) with respect to {alpha}-crystal, and lamella-branched shish-kebab structure in the shaped samples were characterized by synchrotron two-dimensional (2D) wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. The results showed that the crystallinity in any given region of OSIM samples was always higher than that of CIM samples. The value of f{gamma} increased monotonously from skin to core in CIM samples, whereas the corresponding f{gamma} increased nonmonotonically in OSIM samples. The spatial distribution of {gamma}-crystal in OSIM samples can be explained by the epitaxial arrangement between {gamma}- and {alpha}-crystal in a lamella-branched shish-kebab structure. In the proposed model, the parent lamellae of {alpha}-crystal provide secondary nucleation sites for daughter lamellae of {alpha}-crystal and {gamma}-crystal, and the different content of parent lamellae results in varying amounts of {gamma}-crystal. In OSIM samples, the smallest parent-daughter ratio ([R] = 1.38) in the core region led to the lowest fraction of {gamma}-crystal (0.57), but relatively higher {gamma}-crystal content (0.69) at 600 and 1200 {micro}m depth of the samples (corresponding to [R] of 4.5 and 5.8, respectively). This is consistent with the proposed model where more parent lamellae provide more nucleation sites for crystallization, thus resulting in higher content of {gamma}-crystal. The melting behavior of CIM and OSIM samples was studied by differential scanning calorimetery (DSC). The

  3. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    SciTech Connect (OSTI)

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; Thomas, Justin; Guerrero, Kevin; Munayco, Pablo; Munayco, Jimmy; Scorzelli, Rosa B.; Burnham, Philip; Viescas, Arthur J; Tiano, Amanda L.

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. As such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.

  4. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; et al

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. Asmore » such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.« less

  5. The impact of size distribution assumptions in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics during a low-topped supercell case in Belgium

    SciTech Connect (OSTI)

    Van Weverberg, K.; VanLipzig, N. P. M.; Delobbe, L.

    2011-04-01

    In this research the impact of modifying the size distribution assumptions of the precipitating hydrometeors in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics has been explored for long-lived low-topped supercells in Belgium. It was shown that weighting the largest precipitating ice species of the microphysics scheme to small graupel results in an increase of surface precipitation because of counteracting effects. On the one hand, the precipitation formation process slowed down, resulting in lower precipitation efficiency. On the other hand, latent heat release associated with freezing favored more intense storms. In contrast to previous studies finding decreased surface precipitation when graupel was present in the microphysics parameterization, storms were rather shallow in the authors simulations. This left little time for graupel sublimation. The impact of size distribution assumptions of snow was found to be small, but more realistic size distribution assumptions of rain led to the strongest effect on surface precipitation. Cold pools shrunk because of weaker rain evaporation at the cold pool boundaries, leading to a decreased surface rain area.

  6. EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. I. THE EFFECT OF INJECTION ENERGY AND REDSHIFT

    SciTech Connect (OSTI)

    Xu Hao; Li Hui; Li Shengtai; Collins, David C.; Norman, Michael L. E-mail: hli@lanl.go E-mail: dcollins@physics.ucsd.ed

    2010-12-20

    We present a series of cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus (AGN). Specifically, we investigate the influence of both the epoch of the AGN (z {approx} 3-0.5) and the AGN energy ({approx}3 x 10{sup 57}- 2 x 10{sup 60} erg) on the final magnetic field distribution in a relatively massive cluster (M{sub vir} {approx} 10{sup 15} M{sub sun}). We find that as long as the AGN magnetic fields are ejected before the major mergers in the cluster formation history, magnetic fields can be transported throughout the cluster and can be further amplified by the intracluster medium (ICM) turbulence caused by hierarchical mergers during the cluster formation process. The total magnetic energy in the cluster can reach {approx}10{sup 61} erg, with micro Gauss fields distributed over the {approx}Mpc scale. The amplification of the total magnetic energy by the ICM turbulence can be significant, up to {approx}1000 times in some cases. Therefore even weak magnetic fields from AGNs can be used to magnetize the cluster to the observed level. The final magnetic energy in the ICM is determined by the ICM turbulent energy, with a weak dependence on the AGN injection energy. We discuss the properties of magnetic fields throughout the cluster and the synthetic Faraday rotation measure maps they produce. We also show that high spatial resolution over most of the magnetic regions of the cluster is very important to capture the small-scale dynamo process and maintain the magnetic field structure in our simulations.

  7. Final Report, The Influence of Organic-Aerosol Emissions and Aging on Regional and Global Aerosol Size Distributions and the CCN Number Budget

    SciTech Connect (OSTI)

    Donahue, Neil M.

    2015-12-23

    We conducted laboratory experiments and analyzed data on aging of organic aerosol and analysis of field data on volatility and CCN activity. With supplemental ASR funding we participated in the FLAME-IV campaign in Missoula MT in the Fall of 2012, deploying a two-chamber photochemical aging system to enable experimental exploration of photochemical aging of biomass burning emissions. Results from that campaign will lead to numerous publications, including demonstration of photochemical production of Brown Carbon (BrC) from secondary organic aerosol associated with biomass burning emissions as well as extensive characterization of the effect of photochemical aging on the overall concentrations of biomass burning organic aerosol. Excluding publications arising from the FLAME-IV campaign, project research resulted in 8 papers: [11, 5, 3, 10, 12, 4, 8, 7], including on in Nature Geoscience addressing the role of organic compounds in nanoparticle growth [11

  8. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

    2014-08-01

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the

  9. Field Study of Performance, Comfort, and Sizing of Two Variable-Speed Heat Pumps Installed in a Single 2-Story Residence

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL; Odukomaiya, Adewale O [ORNL; Gehl, Anthony C [ORNL; Jackson, Roderick K [ORNL

    2014-01-01

    With the recent advancements in the application of variable-speed (VS) compressors to residential HVAC systems, opportunities are now available to size heat pumps (HPs) to more effectively meet heating and cooling loads in many of the climate zones in the US with limited use of inefficient resistance heat. This is in contrast to sizing guidance for traditional single-speed HPs that limits the ability to oversize with regard to cooling loads, because of risks of poor dehumidification during the cooling season and increased cycling losses. VS-drive HPs can often run at 30-40% of their rated cooling capacity to reduce cycling losses, and can adjust fan speed to provide better indoor humidity control. Detailed air-side performance data was collected on two VS-drive heat pumps installed in a single unoccupied research house in Knoxville, TN, a mixed-humid climate. One system provided space conditioning for the upstairs, while the other unit provided space conditioning for the downstairs. Occupancy was simulated by operating the lights, shower, appliances, other plug loads, etc. to simulate the sensible and latent loads imposed on the building space by internal electric loads and human occupants according to the Building America Research Benchmark (2008). The seasonal efficiency and energy use of the units are calculated. Annual energy use is compared to that of the single speed minimum efficiency HPs tested in the same house previously. Sizing of the units relative to the measured building load and manual J design load calculations is examined. The impact of the unit sizing with regards to indoor comfort is also evaluated.

  10. Comparison of parameter sensitivities between a laboratory and field scale model of uranium transport in a dual domain, distributed-rate reactive system

    SciTech Connect (OSTI)

    Greskowiak, Janek; Prommer, Henning; Liu, Chongxuan; Post, Vincent; Ma, Rui; Zheng, Chunmiao; Zachara, John M.

    2010-09-16

    A laboratory-derived conceptual and numerical model for U(VI) transport at the Hanford 300A site, Washington, USA, was applied to a range of field-scale scenarios of different complexity to systematically evaluate model parameter sensitivities. The model, originally developed from column experiment data, included distributed-rate surface complexation kinetics of U(VI), aqueous speciation, and physical non-equilibrium transport processes. A rigorous parameter sensitivity analysis was carried out with respect to different state variables: concentrations, mass fluxes, total mass and spatial moments of dissolved U(VI) for laboratory systems, and various simulation scenarios that represented the field-scale characteristics at the Hanford 300A site. The field-scenarios accounted for transient groundwater flow and variable geochemical conditions driven by frequent water level changes of the nearby Columbia River. Simulations indicated that the transient conditions significantly affected U(VI) plume migration at the site. The parameter sensitivities were largely similar between the laboratory and field scale systems. Where differences existed, they were shown to result from differing degrees of U(VI) adsorption disequilibrium caused by hydraulic or hydrogeochemical conditions. Adorption disequilibrium was found to differ (i) between short duration peak flow events at the field scale and much longer flow events in the laboratory, (ii) for changing groundwater chemical compositions due to river water intrusion, and (iii) for different sampling locations at the field scale. Parameter sensitivities were also found to vary with respect to the different investigated state variables. An approach is demonstrated that elucidates the most important parameters of a laboratory-scale model that must constrained in both the laboratory and field for meaningful field application.

  11. Effect of the laser spot shape on spatial distribution of the ion bunch accelerated in a superstrong field

    SciTech Connect (OSTI)

    Komarov, V M; Charukhchev, A V; Andreev, A A; Platonov, K Yu

    2014-12-31

    We have investigated the effect of the laser spot shape on the spatial distribution of accelerated ions on the front and back sides of a thin target irradiated by a picosecond laser pulse having the intensity of (3 – 4) × 10{sup 18} W cm{sup -2}. Experimental data are compared with numerical calculations. It is shown that the spatial structure of the ion bunch on the front side of the target resembles the laser spot structure rotated by 90°. (interaction of laser radiation with matter. laser plasma)

  12. Field Demonstration of Using Advanced PV Inverter Functionality to Mitigate the Impacts of High-Penetration PV Grid Integration on the Distribution System

    SciTech Connect (OSTI)

    Mather, Barry; Gebeyehu, Araya

    2015-06-14

    This paper describes a field demonstration that was completed to show the ability of currently installed PV inverters to implement advanced PV inverter functionality and that such functionality was effective at reducing the voltage-related PV impacts of high-penetration PV integration. A distribution circuit was instrumented and then tested for a two week period using off-unity power factor operation. Specifically, an inductive power factor of -0.95 was demonstrated. The results show that the PV inverters were capable of such operation and that the use of off-unity power factor operation was highly effective at reducing the voltage-related impacts of the PV systems interconnected to the circuits used in the demonstration. The impacts of using off-unity power factor operation - resulting in additional reactive current flow on the distribution circuit - are also presented and analyzed.

  13. ARM - Measurement - Aerosol particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer HTDMA : Humidified Tandem Differential Mobility Analyzer SMPS : Scanning mobility particle sizer TDMA : Tandem...

  14. Characterizing Uncertainties in Ice Particle Size Distributions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight In many parameterization schemes for numerical models or remote sensing...

  15. Size distributions of boundary-layer clouds

    SciTech Connect (OSTI)

    Stull, R.; Berg, L.; Modzelewski, H.

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  16. Wide size range fast integrated mobility spectrometer

    DOE Patents [OSTI]

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  17. In-service Inspection Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density and Size Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace

    2012-09-17

    Pressurized thermal shock (PTS) events are system transients in a pressurized water reactor (PWR) in which there is a rapid operating temperature cool-down that results in cold vessel temperatures with or without repressurization of the vessel. The rapid cooling of the inside surface of the reactor pressure vessel (RPV) causes thermal stresses that can combine with stresses caused by high pressure. The aggregate effect of these stresses is an increase in the potential for fracture if a pre-existing flaw is present in a material susceptible to brittle failure. The ferritic, low alloy steel of the reactor vessel beltline adjacent to the core, where neutron radiation gradually embrittles the material over the lifetime of the plant, can be susceptible to brittle fracture. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events,” adopted on July 23, 1985, establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed a rule, §50.61a, published on January 4, 2010, entitled “Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events” (75 FR 13). Use of the new rule by licensees is optional. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants. These analyses are intended to determine if the actual flaw density and size distribution in the licensee’s reactor vessel beltline welds are bounded

  18. Investigation of thermochemical biorefinery sizing and environmental...

    Office of Scientific and Technical Information (OSTI)

    Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs...

  19. THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR

    SciTech Connect (OSTI)

    Labbé, I.; Bouwens, R. J.; Franx, M.; Oesch, P. A.; Illingworth, G. D.; Magee, D.; González, V.; Trenti, M.; Van Dokkum, P. G.; Stiavelli, M.

    2013-11-10

    Using new ultradeep Spitzer/InfraRed Array Camera (IRAC) photometry from the IRAC Ultra Deep Field program, we investigate the stellar populations of a sample of 63 Y-dropout galaxy candidates at z ∼ 8, only 650 Myr after the big bang. The sources are selected from HST/ACS+WFC3/IR data over the Hubble Ultra Deep Field (HUDF), two HUDF parallel fields, and wide area data over the CANDELS/GOODS-South. The new Spitzer/IRAC data increase the coverage in [3.6] and [4.5] to ∼120h over the HUDF reaching depths of ∼28 (AB,1σ). The improved depth and inclusion of brighter candidates result in direct ≥3σ InfraRed Array Camera (IRAC) detections of 20/63 sources, of which 11/63 are detected at ≥5σ. The average [3.6]-[4.5] colors of IRAC detected galaxies at z ∼ 8 are markedly redder than those at z ∼ 7, observed only 130 Myr later. The simplest explanation is that we witness strong rest-frame optical emission lines (in particular [O III] λλ4959, 5007 + Hβ) moving through the IRAC bandpasses with redshift. Assuming that the average rest-frame spectrum is the same at both z ∼ 7 and z ∼ 8 we estimate a rest-frame equivalent width of contributing 0.56{sup +0.16}{sub -0.11} mag to the [4.5] filter at z ∼ 8. The corresponding W{sub Hα}=430{sup +160}{sub -110} Å implies an average specific star formation rate of sSFR=11{sub -5}{sup +11} Gyr{sup –1} and a stellar population age of 100{sub -50}{sup +100} Myr. Correcting the spectral energy distribution for the contribution of emission lines lowers the average best-fit stellar masses and mass-to-light ratios by ∼3 ×, decreasing the integrated stellar mass density to ρ{sup *}(z=8,M{sub UV}<-18)=0.6{sup +0.4}{sub -0.3}×10{sup 6} M{sub sun} Mpc{sup –3}.

  20. Hopper Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Size Charts Hopper Job Size Charts Fractional Jobs The following charts show the fraction of hours used on Hopper in each of five job-core-size bins: 2014 Usage by Job Size Chart 2013 2012 2011 Large Jobs The following charts show the fraction of hours used on Hopper by jobs using greater than 16,384 cores: 2014 2013 2012 Usage by Job Size Chart 2011 Last edited: 2016-05-02 09:20:42

  1. Edison Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reports » Edison Job Size Charts Edison Job Size Charts Fraction of Hours Used per Job Size Note: Interactive charts with current and past Cori and Edison data are now available on MyNERSC This chart shows the fraction of hours used on Edison in each of 5 job-core-size bins. 2015 Usage by Job Size Chart 2014 Fraction of Hours Used by Big Jobs This chart shows the fraction of hours used on Edison by jobs using 16,384 or more cores. 2015 Usage by Job Size Chart 2014 Last edited: 2016-04-21

  2. Powder processing for the fabrication of Si{sub 3}N{sub 4} ceramics. 1: Influence of spray-dried granule strength on pore size distribution in green compacts

    SciTech Connect (OSTI)

    Kamiya, Hidehiro; Isomura, Kenji; Jimbo, Genji; Junichiro, Tsubaki

    1995-01-01

    The effect of spray-dried granule strength on the microstructure of green compacts obtained by isostatic pressing was quantitatively analyzed. The fracture strength of single granules of Si{sub 3}N{sub 4} powder made with ultrafine Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} powders was measured directly by diametral compression. It was found that fracture strength increased notably with the increasing relative density of the granule and the decreasing size of agglomerates in suspension before spray-drying. Even when green bodies were prepared at an isostatic pressure of 200 MPa, intergranular pores, which negatively affected densification of the sintered bodies, occurred between unfractured granules. The volume and size of these pores in the green compacts increased with the increasing fracture strength of the granules. In the case of closely packed granules, an isostatic pressure of 800 MPa was required to completely collapse the intergranular pores. A simple equation was derived to calculate the isostatic pressure necessary for complete collapse of intergranular pores in the green compacts, and it was determined that granule strength must be kept as low as possible to obtain uniform green compacts.

  3. Correlating Size and Composition-Dependent Effects with Magnetic...

    Office of Scientific and Technical Information (OSTI)

    Correlating Size and Composition-Dependent Effects with Magnetic, Mssbauer, and Pair Distribution Function Measurements in a Family of Catalytically Active Ferrite Nanoparticles ...

  4. Distributed charging of electrical assets

    DOE Patents [OSTI]

    Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun

    2016-02-16

    The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.

  5. ARM - Measurement - Hydrometeor size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor size The size of a hydrometeor, measured directly or derived from other measurements. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  6. EIS Distribution

    Broader source: Energy.gov [DOE]

    This DOE guidance presents a series of recommendations related to the EIS distribution process, which includes creating and updating a distribution list, distributing an EIS, and filing an EIS with the EPA.

  7. Origin of primordial magnetic fields

    SciTech Connect (OSTI)

    Souza, Rafael S. de; Opher, Reuven

    2008-02-15

    Magnetic fields of intensities similar to those in our galaxy are also observed in high redshift galaxies, where a mean field dynamo would not have had time to produce them. Therefore, a primordial origin is indicated. It has been suggested that magnetic fields were created at various primordial eras: during inflation, the electroweak phase transition, the quark-hadron phase transition (QHPT), during the formation of the first objects, and during reionization. We suggest here that the large-scale fields {approx}{mu}G, observed in galaxies at both high and low redshifts by Faraday rotation measurements (FRMs), have their origin in the electromagnetic fluctuations that naturally occurred in the dense hot plasma that existed just after the QHPT. We evolve the predicted fields to the present time. The size of the region containing a coherent magnetic field increased due to the fusion of smaller regions. Magnetic fields (MFs) {approx}10 {mu}G over a comoving {approx}1 pc region are predicted at redshift z{approx}10. These fields are orders of magnitude greater than those predicted in previous scenarios for creating primordial magnetic fields. Line-of-sight average MFs {approx}10{sup -2} {mu}G, valid for FRMs, are obtained over a 1 Mpc comoving region at the redshift z{approx}10. In the collapse to a galaxy (comoving size {approx}30 kpc) at z{approx}10, the fields are amplified to {approx}10 {mu}G. This indicates that the MFs created immediately after the QHPT (10{sup -4} s), predicted by the fluctuation-dissipation theorem, could be the origin of the {approx}{mu}G fields observed by FRMs in galaxies at both high and low redshifts. Our predicted MFs are shown to be consistent with present observations. We discuss the possibility that the predicted MFs could cause non-negligible deflections of ultrahigh energy cosmic rays and help create the observed isotropic distribution of their incoming directions. We also discuss the importance of the volume average magnetic field

  8. Cyclic sedimentation, depositional environments, and facies distribution of the Permian Paddock member of the Yeso Formation, Vacuum (Glorieta) field, northwest shelf of the Permian basin

    SciTech Connect (OSTI)

    Burnham, D.E. ); Womochel, D.R. )

    1992-04-01

    The Vacuum (Glorieta) field is located on the northwest shelf of the Permian basin in central Lea County, New Mexico. Cumulative oil production of 62 MMBO is primarily from the upper 100 ft of the Leonardian Paddock Member of the Yeso Formation. Cores from 10 wells were examined to identify lithologies and facies relationships. Five lithofacies were identified: (1) fine-grained quartz sandstone/siltstone facies, (2) pelletoid mudstone facies, (3) skeletal packstone/wackestone facies, (4) oolitic-pelletoid grainstone facies, and (5) crystalline dolomite facies. These lithofacies occur sequentially in four shoaling-upward cycles that can be correlated throughout much of the study area. Three major depositional environments are recognized in the Paddock Member of the Yeso Formation: (1) a subtidal open-marine environment in which the oolitic grainstone facies was deposited, (2) a subtidal protected shallow-marine environment where the skeletal packstone/wackestone facies was deposited, and (3) a subtidal to supratidal restricted shallow-marine environment where the pelletoid mudstone facies accumulated. Facies analysis indicates that the Paddock Member was deposited on a broad shallow-marine shelf. Numerous shoaling-upward cycles are possibly related to worldwide Permian sea level fluctuations. Porosity development is enhanced at the upper surface of each shoaling-upward cycle by dissolution of fossil fragments and grains.

  9. Method for producing solid or hollow spherical particles of chosen chemical composition and of uniform size

    DOE Patents [OSTI]

    Hendricks, Charles D.

    1988-01-01

    A method is provided for producing commercially large quantities of high melting temperature solid or hollow spherical particles of a predetermined chemical composition and having a uniform and controlled size distribution. An end (18, 50, 90) of a solid or hollow rod (20, 48, 88) of the material is rendered molten by a laser beam (14, 44, 82). Because of this, there is no possibility of the molten rod material becoming contaminated with extraneous material. In various aspects of the invention, an electric field is applied to the molten rod end (18, 90), and/or the molten rod end (50, 90) is vibrated. In a further aspect of the invention, a high-frequency component is added to the electric field applied to the molten end of the rod (90). By controlling the internal pressure of the rod, the rate at which the rod is introduced into the laser beam, the environment of the process, the vibration amplitude and frequency of the molten rod end, the electric field intensity applied to the molten rod end, and the frequency and intensity of the component added to the electric field, the uniformity and size distribution of the solid or hollow spherical particles (122) produced by the inventive method is controlled. The polarity of the electric field applied to the molten rod end can be chosen to eliminate backstreaming electrons, which tend to produce run-away heating in the rod, from the process.

  10. Does size matter?

    SciTech Connect (OSTI)

    Carreras, B. A.; Physics Department, College of Natural Science and Mathematics and Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775; Physics Department, Universidad Carlos III de Madrid, Madrid ; Newman, D. E.; Dobson, Ian

    2014-06-15

    Failures of the complex infrastructures society depends on having enormous human and economic cost that poses the question: Are there ways to optimize these systems to reduce the risks of failure? A dynamic model of one such system, the power transmission grid, is used to investigate the risk from failure as a function of the system size. It is found that there appears to be optimal sizes for such networks where the risk of failure is balanced by the benefit given by the size.

  11. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  12. WINDExchange: Distributed Wind

    Wind Powering America (EERE)

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  13. Magnetoresistance of polycrystalline gadolinium with varying grain size

    SciTech Connect (OSTI)

    Chakravorty, Manotosh Raychaudhuri, A. K.

    2015-01-21

    In this paper, we report a study of evolution of low field magnetoresistance (MR) of Gadolinium as the grain size in the sample is changed from few microns (∼4 μm) to the nanoscopic regime (∼35 nm). The low field MR has a clear effect on varying grain size. In large grain sample (few μm), the magnetic domains are controlled by local anisotropy field determined mainly by the magnetocrystalline anisotropy. The low field MR clearly reflects the temperature dependence of the magnetocrystalline anisotropy. For decreasing gain size, the contribution of spin disorder at the grain boundary increases and enhances the local anisotropy field.

  14. Magnetic field generator

    DOE Patents [OSTI]

    Krienin, Frank (Shoreham, NY)

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  15. Distributed PV Interconnection: Recent Analysis Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Make Smart Solar Decisions Distributed Solar Interconnection: Challenges and Best ... 50, Arizona: 54, Colorado: 63, New York: 68 New Jersey: 90 System Size Mean Median Std. ...

  16. Concentrations and Size Distributions of Particulate Matter Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Devices on the Emission Profiles of Trucks and Buses CNG and Diesel Transite Bus Emissions in Review ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses

  17. Dispersion of Cloud Droplet Size Distributions, Cloud Parameterization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broomfield, Colorado, March 31-April 4, 2003 indicates that for a given liquid water content and droplet concentration, the effect of spectral dispersion alone can cause...

  18. Characterization of Vertical Velocity and Drop Size Distribution...

    Office of Scientific and Technical Information (OSTI)

    to within the typical uncertainty of the retrieval methods. ... This study will be useful in assessing uncertainties ... Country of Publication: United States Language: English ...

  19. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, ...

  20. Distribution Workshop

    Broader source: Energy.gov [DOE]

    On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

  1. Droplet sizes, dynamics and deposition in vertical annular flow

    SciTech Connect (OSTI)

    Lopes, J C.B.; Dukler, A E

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.

  2. Distributed Wind Market Applications

    SciTech Connect (OSTI)

    Forsyth, T.; Baring-Gould, I.

    2007-11-01

    Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, central station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.

  3. How Distributed Wind Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Distributed Wind Works How Distributed Wind Works Your browser does not support iframes. Distributed wind energy systems are commonly installed on, but are not limited to, residential, agricultural, commercial, industrial, and community sites, and can range in size from a 5-kilowatt turbine at a home to a multi-megawatt (MW) turbine at a manufacturing facility. Distributed wind systems are connected on the customer side of the meter to meet the onsite load or directly to distribution or

  4. DISTRIBUTION CATEGORY

    Office of Scientific and Technical Information (OSTI)

    University of CahfmiaLivermore, California94550 UCRL-52658 CALCULATION OF ... fields in the Imperial Valley of California. In each case the water will be heated. ...

  5. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project ...

  6. Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time

    SciTech Connect (OSTI)

    Nguyen, Vanthan; Yan, Lihe Si, Jinhai; Hou, Xun

    2015-02-28

    Photoluminescent carbon nanodots (C-dots) with size tunability and uniformity were fabricated in polyethylene glycol (PEG{sub 200N}) solution using femtosecond laser ablation method. The size distributions and photoluminescence (PL) properties of C-dots are well controlled by adjusting the combined parameters of laser fluence, spot size, and irradiation time. The size reduction efficiency of the C-dots progressively increases with decreasing laser fluence and spot size. The optimal PL spectra are red-shifted and the quantum yields decrease with the increase in C-dots size, which could be attributed to the more complex surface functional groups attached on C-dots induced at higher laser fluence and larger spot size. Moreover, an increase in irradiation time leads to a decrease in size of C-dots, but long-time irradiation will result in the generation of complex functional groups on C-dots, subsequently the PL spectra are red-shifted.

  7. P wave anisotropy, stress, and crack distribution at Coso geothermal...

    Open Energy Info (EERE)

    scalar. The resulting anisotropy distribution is used to estimate variations in crack density, stress distribution and permeability within the producing geothermal field. A...

  8. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    DOE Patents [OSTI]

    Huber, Dale L.

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  9. Quantum size effects in classical hadrodynamics

    SciTech Connect (OSTI)

    Nix, J.R.

    1994-03-01

    The author discusses future directions in the development of classical hydrodynamics for extended nucleons, corresponding to nucleons of finite size interacting with massive meson fields. This new theory provides a natural covariant microscopic approach to relativistic nucleus-nucleus collisions that includes automatically spacetime nonlocality and retardation, nonequilibrium phenomena, interactions among all nucleons, and particle production. The present version of the theory includes only the neutral scalar ({sigma}) and neutral vector ({omega}) meson fields. In the future, additional isovector pseudoscalar ({pi}{sup +}, {pi}{sup {minus}}, {pi}{sup 0}), isovector vector ({rho}{sup +}, {rho}{sup {minus}}, {rho}{sup 0}), and neutral pseudoscalar ({eta}) meson fields should be incorporated. Quantum size effects should be included in the equations of motion by use of the spreading function of Moniz and Sharp, which generates an effective nucleon mass density smeared out over a Compton wavelength. However, unlike the situation in electrodynamics, the Compton wavelength of the nucleon is small compared to its radius, so that effects due to the intrinsic size of the nucleon dominate.

  10. Impact of aerosol size representation on modeling aerosol-cloud interactions: AEROSOL SIZE REPRESENTATION

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    We use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach. The modal approachmore » with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  11. Computing Frontier: Distributed Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Frontier: Distributed Computing and Facility Infrastructures Conveners: Kenneth Bloom 1 , Richard Gerber 2 1 Department of Physics and Astronomy, University of Nebraska-Lincoln 2 National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory 1.1 Introduction The field of particle physics has become increasingly reliant on large-scale computing resources to address the challenges of analyzing large datasets, completing specialized computations and

  12. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized

  13. Distribution Category:

    Office of Legacy Management (LM)

    - Distribution Category: Remedial Action and Decommissioning Program (UC-70A) DOE/EV-0005/48 ANL-OHS/HP-84-104 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 FORMERLY UTILIZED MXD/AEC SITES REMEDIAL ACTION PROGRAM RADIOLOGICAL SURVEY OF THE HARSHAW CHEMICAL COMPANY CLEVELAND. OHIO Prepared by R. A. Wynveen Associate Division Director, OHS W. H. Smith Senior Health Physicist C. M. Sholeen Health Physicist A. L. Justus Health Physicist K. F. Flynn Health Physicist

  14. Strategic Petroleum Reserve: Analysis of size options

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    This report presents the results of the deliberations of the interagency group formed to study the costs and benefits of expanding the size of the SPR. The study concentrated on severe oil supply disruptions involving sharp reductions in world oil production that were 2 to 4 times larger than the largest 1970s interruption. The disruption sizes and estimated probability of occurrence of these scenarios were supplied by the CIA. The most critical part of the CIA's analysis was the assessment of likelihood of these cases occurring. The CIA approached the likelihood problem by combining an examination of past oil supply disruptions with qualitative analysis of important oil market and regional trends. The study group then used statistical techniques and probability distributions to synthesize the historical data with CIA evaluations of as yet unobserved events. The SPR size study assumed direct purchases of SPR oil and did not assume the use of alternative financing mechanisms. Members of the working group with foreign policy and national security responsibilities provided an in-depth review of strategic considerations affecting SPR size. A number of prior studies, some classified, have addressed the strategic importance and insurance value of the SPR to the US and its allies. The results of these studies have also been incorporated in the current effort. 10 refs., 5 figs.

  15. Glitter-Sized Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    Featured in this photograph are tiny glitter-sized photovoltaic cells, developed by Sandia National Laboratories scientists, that could revolutionize the way solar energy is collected and used....

  16. Finite-size effects of hysteretic dynamics in multilayer graphene on a ferroelectric

    SciTech Connect (OSTI)

    Morozovska, Anna N.; Pusenkova, Anastasiia S.; Varenyk, Oleksandr V.; Kalinin, Sergei V.; Eliseev, Eugene A.; Strikha, Maxym V.

    2015-06-11

    The origin and influence of finite-size effects on the nonlinear dynamics of space charge stored by multilayer graphene on a ferroelectric and resistivity of graphene channel were analyzed. In this paper, we develop a self-consistent approach combining the solution of electrostatic problems with the nonlinear Landau-Khalatnikov equations for a ferroelectric. The size-dependent behaviors are governed by the relations between the thicknesses of multilayer graphene, ferroelectric film, and the dielectric layer. The appearance of charge and electroresistance hysteresis loops and their versatility stem from the interplay of polarization reversal dynamics and its incomplete screening in an alternating electric field. These features are mostly determined by the dielectric layer thickness. The derived analytical expressions for electric fields and space-charge-density distribution in a multilayer system enable knowledge-driven design of graphene-on-ferroelectric heterostructures with advanced performance. We further investigate the effects of spatially nonuniform ferroelectric domain structures on the graphene layers’ conductivity and predict its dramatic increase under the transition from multi- to single-domain state in a ferroelectric. Finally, this intriguing effect can open possibilities for the graphene-based sensors and explore the underlying physical mechanisms in the operation of graphene field-effect transistor with ferroelectric gating.

  17. Finite-size effects of hysteretic dynamics in multilayer graphene on a ferroelectric

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morozovska, Anna N.; Pusenkova, Anastasiia S.; Varenyk, Oleksandr V.; Kalinin, Sergei V.; Eliseev, Eugene A.; Strikha, Maxym V.

    2015-06-11

    The origin and influence of finite-size effects on the nonlinear dynamics of space charge stored by multilayer graphene on a ferroelectric and resistivity of graphene channel were analyzed. In this paper, we develop a self-consistent approach combining the solution of electrostatic problems with the nonlinear Landau-Khalatnikov equations for a ferroelectric. The size-dependent behaviors are governed by the relations between the thicknesses of multilayer graphene, ferroelectric film, and the dielectric layer. The appearance of charge and electroresistance hysteresis loops and their versatility stem from the interplay of polarization reversal dynamics and its incomplete screening in an alternating electric field. These featuresmore » are mostly determined by the dielectric layer thickness. The derived analytical expressions for electric fields and space-charge-density distribution in a multilayer system enable knowledge-driven design of graphene-on-ferroelectric heterostructures with advanced performance. We further investigate the effects of spatially nonuniform ferroelectric domain structures on the graphene layers’ conductivity and predict its dramatic increase under the transition from multi- to single-domain state in a ferroelectric. Finally, this intriguing effect can open possibilities for the graphene-based sensors and explore the underlying physical mechanisms in the operation of graphene field-effect transistor with ferroelectric gating.« less

  18. Function allocation in distributed safeguards and security systems

    SciTech Connect (OSTI)

    Barlich, G.L. )

    1991-01-01

    Computerized distributed systems are being used to collect and manage data for activities such as nuclear materials accounting, process control, laboratory coordination, and security. Poor choices made in allocating functions to individual processors can make a system unusable by burdening machines with excessive network retrievals and updates. During system design phases, data allocation algorithms based on operation frequencies, field sizes, security information, and reliability requirements can be applied in sensitivity studies to mathematically ensure processor efficiency. The Los Alamos Network Design System (NDS) implements such an allocation algorithm. The authors analyzed a large, existing distributed system to test the cost functions and to compare actual network problems with NDS results. Several common configurations were also designed and studied using the software. From these studies, some basic principles for allocating functions emerged. In this paper recommendations for function allocation in generic systems and related design options are discussed.

  19. A process for the chemical preparation of high-field ZnO varistors

    DOE Patents [OSTI]

    Brooks, R.A.; Dosch, R.G.; Tuttle, B.A.

    1986-02-19

    Chemical preparation techniques involving co-precipitation of metals are used to provide microstructural characteristics necessary in order to produce ZnO varistors and their precursors for high field applications. The varistors produced have homogeneous and/or uniform dopant distributions and a submicron average grain size with a narrow size distribution. Precursor powders are prepared via chemical precipitation techniques and varistors made by sintering uniaxially and/or isostatically pressed pellets. Using these methods, varistors were made which were suitable for high-power applications, having values of breakdown field, E/sub B/, in the 10 to 100 kV/cm range, ..cap alpha.. > 30 and densities in the range of 65 to 99% of theoretical, depending on both composition and sintering temperature.

  20. Process for the chemical preparation of high-field ZnO varistors

    DOE Patents [OSTI]

    Brooks, Robert A.; Dosch, Robert G.; Tuttle, Bruce A.

    1987-01-01

    Chemical preparation techniques involving co-precipitation of metals are used to provide micro-structural characteristics necessary in order to produce ZnO varistors and their precursors for high field applications. The varistors produced have homogeneous and/or uniform dopant distributions and a submicron average grain size with a narrow size distribution. Precursor powders are prepared via chemical precipitation techniques and varistors made by sintering uniaxially and/or isostatically pressed pellets. Using these methods, varistors were made which were suitable for high-power applications, having values of breakdown field, E.sub.B, in the 10-100 kV/cm range, .alpha.>30 and densities in the range of 65-99% of theoretical, depending on both composition and sintering temperature.

  1. Defect distributions in weld-deposited cladding

    SciTech Connect (OSTI)

    Li, Y.Y.; Mabe, W.R.

    1998-11-01

    Defect distributions in stainless steel and nickel-chromium alloy weld-deposited cladding over a low alloy steel base were characterized by destructive evaluation (DE). An evaluation of the observed defects was conducted to characterize the defects by type or classification. Size distributions of cladding defect types were developed from the information obtained. This paper presents the results of the cladding evaluation.

  2. Method for sizing hollow microspheres

    DOE Patents [OSTI]

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  3. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributions and Detailed Exhaust Chemical Composition | Department of Energy Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition 2003 DEER Conference Presentation: University of Wisconsin-Madison 2003_deer_foster.pdf (1.18 MB) More Documents & Publications Mass Correlation of Engine Emissions with

  4. Study of magnetic fields and current in the Z pinch at stagnation

    SciTech Connect (OSTI)

    Ivanov, V. V.; Anderson, A. A.; Astanovitskiy, A. L.; Nalajala, V.; Dmitriev, O.; Papp, D.

    2015-09-15

    The structure of magnetic fields in wire-array Z pinches at stagnation was studied using a Faraday rotation diagnostic at the wavelength of 266 nm. The electron plasma density and the Faraday rotation angle in plasma were calculated from images of the three-channel polarimeter. The magnetic field was reconstructed with Abel transform, and the current was estimated using a simple model. Several shots with wire-array Z pinches at 0.5–1.5 MA were analyzed. The strength of the magnetic field measured in plasma of the stagnated pinch was in the range of 1–2 MG. The magnetic field and current profile in plasma near the neck on the pinch were reconstructed, and the size of the current-carrying plasma was estimated. It was found that current flowed in the large-size trailing plasma near the dense neck. Measurements of the magnetic field near the bulge on the pinch also showed current in trailing plasma. A distribution of current in the large-size trailing plasma can prevent the formation of multi-MG fields in the Z pinch.

  5. EIA - Coal Distribution

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal ...

  6. 2015 Distributed Wind Market Report Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Market Report Fact Sheet 2015 Distributed Wind Market Report Fact Sheet 2015-Distributed-Wind-Market-Report-Fact-Sheet_Page_1.jpg Wind turbines in distributed applications are found in all 50 states, Puerto Rico, and the U.S. Virgin Islands to provide energy locally, either serving on-site electricity needs or a local grid. Distributed wind is defined by the wind project's location relative to end-use and powerdistribution infrastructure, rather than turbine or project size.

  7. Preliminary Phase Field Computational Model Development

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Xu, Ke; Suter, Jonathan D.; McCloy, John S.; Johnson, Bradley R.; Ramuhalli, Pradeep

    2014-12-15

    experiments, special experimental methods were devised to create similar boundary conditions in the iron films. Preliminary MFM studies conducted on single and polycrystalline iron films with small sub-areas created with focused ion beam have correlated quite well qualitatively with phase-field simulations. However, phase-field model dimensions are still small relative to experiments thus far. We are in the process of increasing the size of the models and decreasing specimen size so both have identical dimensions. Ongoing research is focused on validation of the phase-field model. Validation is being accomplished through comparison with experimentally obtained MFM images (in progress), and planned measurements of major hysteresis loops and first order reversal curves. Extrapolation of simulation sizes to represent a more stochastic bulk-like system will require sampling of various simulations (i.e., with single non-magnetic defect, single magnetic defect, single grain boundary, single dislocation, etc.) with distributions of input parameters. These outputs can then be compared to laboratory magnetic measurements and ultimately to simulate magnetic Barkhausen noise signals.

  8. MO-G-BRF-09: Investigating Magnetic Field Dose Effects in Mice: A Monte Carlo Study

    SciTech Connect (OSTI)

    Rubinstein, A; Guindani, M; Followill, D; Melancon, A; Hazle, J; Court, L

    2014-06-15

    Purpose: In MRI-linac treatments, radiation dose distributions are affected by magnetic fields, especially at high-density/low-density interfaces. Radiobiological consequences of magnetic field dose effects are presently unknown; therefore, preclinical studies are needed to ensure the safe clinical use of MRI-linacs. This study investigates the optimal combination of beam energy and magnetic field strength needed for preclinical murine studies. Methods: The Monte Carlo code MCNP6 was used to simulate the effects of a magnetic field when irradiating a mouse-sized lung phantom with a 1.0cmx1.0cm photon beam. Magnetic field effects were examined using various beam energies (225kVp, 662keV[Cs-137], and 1.25MeV[Co-60]) and magnetic field strengths (0.75T, 1.5T, and 3T). The resulting dose distributions were compared to Monte Carlo results for humans with various field sizes and patient geometries using a 6MV/1.5T MRI-linac. Results: In human simulations, the addition of a 1.5T magnetic field caused an average dose increase of 49% (range:36%60%) to lung at the soft tissue-to-lung interface and an average dose decrease of 30% (range:25%36%) at the lung-to-soft tissue interface. In mouse simulations, the magnetic fields had no effect on the 225kVp dose distribution. The dose increases for the Cs-137 beam were 12%, 33%, and 49% for 0.75T, 1.5T, and 3.0T magnetic fields, respectively while the dose decreases were 7%, 23%, and 33%. For the Co-60 beam, the dose increases were 14%, 45%, and 41%, and the dose decreases were 18%, 35%, and 35%. Conclusion: The magnetic field dose effects observed in mouse phantoms using a Co-60 beam with 1.5T or 3T fields and a Cs-137 beam with a 3T field compare well with those seen in simulated human treatments with an MRI-linac. These irradiator/magnet combinations are suitable for preclinical studies investigating potential biological effects of delivering radiation therapy in the presence of a magnetic field. Partially funded by Elekta.

  9. A dosimetric study of small photon fields using polymer gel and Gafchromic EBT films

    SciTech Connect (OSTI)

    Hassani, Hossein; Nedaie, Hassan Ali; Zahmatkesh, Mohammad Hassan; Shirani, Kaveh

    2014-04-01

    The use of small field sizes is increasingly becoming important in radiotherapy particularly since the introduction of stereotactic radiosurgery and intensity-modulated radiation therapy techniques. The reliable measurement of delivered dose from such fields with conventional dosimeters, such as ionization chambers, is a challenging task. In this work, methacrylic and ascorbic acid in gelatin initiated by copper polymer gel dosimeters are employed to measure dose in 3 dimensions. Field sizes of 5 × 5 mm{sup 2}, 10 × 10 mm{sup 2}, 20 × 20 mm{sup 2}, and 30 × 30 mm{sup 2} are investigated for a 6-MV x-rays. The results show an agreement with Gafchromic film, with some variation in measured doses near the edge of the fields, where the film data decrease more rapidly than the other methods. Dose penumbra widths obtained with gel dosimeters and Gafchormic film were generally in agreement with each other. The results of this work indicate that polymer gel dosimetry could be invaluable for the quantification of the 3-dimensional dose distribution in small field size.

  10. Probability distribution of the vacuum energy density

    SciTech Connect (OSTI)

    Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen

    2010-12-15

    As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.

  11. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  12. Solar wind thermal electron distributions

    SciTech Connect (OSTI)

    Phillips, J.L.; Gosling, J.T.

    1991-01-01

    Solar wind thermal electron distributions exhibit distinctive trends which suggest Coulomb collisions and geometric expansion in the interplanetary magnetic field play keys roles in electron transport. We introduce a simple numerical model incorporating these mechanisms, discuss the ramifications of model results, and assess the validity of the model in terms of ISEE-3 and Ulysses observations. Although the model duplicates the shape of the electron distributions, and explains certain other observational features, observed gradients in total electron temperature indicate the importance of additional heating mechanisms. 5 refs., 7 figs.

  13. Metal oxide porous ceramic membranes with small pore sizes

    DOE Patents [OSTI]

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  14. Metal oxide porous ceramic membranes with small pore sizes

    DOE Patents [OSTI]

    Anderson, Marc A.; Xu, Qunyin

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  15. Size exclusion deep bed filtration: Experimental and modelling uncertainties

    SciTech Connect (OSTI)

    Badalyan, Alexander You, Zhenjiang; Aji, Kaiser; Bedrikovetsky, Pavel; Carageorgos, Themis; Zeinijahromi, Abbas

    2014-01-15

    A detailed uncertainty analysis associated with carboxyl-modified latex particle capture in glass bead-formed porous media enabled verification of the two theoretical stochastic models for prediction of particle retention due to size exclusion. At the beginning of this analysis it is established that size exclusion is a dominant particle capture mechanism in the present study: calculated significant repulsive Derjaguin-Landau-Verwey-Overbeek potential between latex particles and glass beads is an indication of their mutual repulsion, thus, fulfilling the necessary condition for size exclusion. Applying linear uncertainty propagation method in the form of truncated Taylor's series expansion, combined standard uncertainties (CSUs) in normalised suspended particle concentrations are calculated using CSUs in experimentally determined parameters such as: an inlet volumetric flowrate of suspension, particle number in suspensions, particle concentrations in inlet and outlet streams, particle and pore throat size distributions. Weathering of glass beads in high alkaline solutions does not appreciably change particle size distribution, and, therefore, is not considered as an additional contributor to the weighted mean particle radius and corresponded weighted mean standard deviation. Weighted mean particle radius and LogNormal mean pore throat radius are characterised by the highest CSUs among all experimental parameters translating to high CSU in the jamming ratio factor (dimensionless particle size). Normalised suspended particle concentrations calculated via two theoretical models are characterised by higher CSUs than those for experimental data. The model accounting the fraction of inaccessible flow as a function of latex particle radius excellently predicts normalised suspended particle concentrations for the whole range of jamming ratios. The presented uncertainty analysis can be also used for comparison of intra- and inter-laboratory particle size exclusion data.

  16. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOE Patents [OSTI]

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.; Kupperman, D.S.

    1998-05-19

    A slashing process is disclosed for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns. 2 figs.

  17. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOE Patents [OSTI]

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.; Kupperman, David S.

    1998-01-01

    A slashing process for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.

  18. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  19. Annual Coal Distribution Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report ...

  20. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  1. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables...

  2. LCLS Far-Field Spontaneous Radiation

    Energy Science and Technology Software Center (OSTI)

    2004-04-16

    This application (FarFieldDisplay) is a tool for displaying and analyzing far-field spontaneous spectral flux data for the Linac Coherent Light Source (LCLS) Calculated by Roman Tatchyn (Stanford University). This tool allows the user to view sliced spatial and energy distributions of the fat-field photons selected for specific energies or positions transverse to the beam axis,

  3. SIZE AND SURFACE AREA OF ICY DUST AGGREGATES AFTER A HEATING EVENT AT A PROTOPLANETARY NEBULA

    SciTech Connect (OSTI)

    Sirono, Sin-iti

    2013-03-01

    The activity of a young star rises abruptly during an FU Orionis outburst. This event causes a temporary temperature increase in the protoplanetary nebula. H{sub 2}O icy grains are sublimated by this event, and silicate cores embedded inside the ice are ejected. During the high-temperature phase, the silicate grains coagulate to form silicate core aggregates. After the heating event, the temperature drops, and the ice recondenses onto the aggregates. I determined numerically the size distribution of the ice-covered aggregates. The size of the aggregates exceeds 10 {mu}m around the snow line. Because of the migration of the ice to large aggregates, only a small fraction of the silicate core aggregate is covered with H{sub 2}O ice. After the heating event, the surface of an ice-covered aggregate is totally covered by silicate core aggregates. This might reduce the fragmentation velocity of aggregates when they collide. It is possible that the covering silicate cores shield the UV radiation field which induces photodissociation of H{sub 2}O ice. This effect may cause the shortage of cold H{sub 2}O vapor observed by Herschel.

  4. Integrated Transmission and Distribution Control

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment

  5. Annual Coal Distribution

    Reports and Publications (EIA)

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  6. Annual Coal Distribution

    Reports and Publications (EIA)

    2015-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  7. Distributed Wind Ordinances: Slides

    Wind Powering America (EERE)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  8. EIA -Quarterly Coal Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    - Coal Distribution Quarterly Coal Distribution Archives Release Date: August 17, 2016 Next Release Date: December 22, 2016 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009

  9. 2012 Market Report on Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  10. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  11. Commercial thermal distribution systems, Final report for CIEE/CEC

    SciTech Connect (OSTI)

    Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

    1999-12-01

    insulation, and improved equipment sizing; and (3) to develop and evaluate innovative techniques applicable to large buildings for sealing ducts and encapsulating internal duct insulation. In the UCB fan project, the goals were: (1) to develop a protocol for testing, analyzing and diagnosing problems in large commercial building built-up air handling systems, and (2) to develop low-cost measurement techniques to improve short term monitoring practices. To meet our stated goals and objectives, this project: (1) continued to investigate and characterize the performance of thermal distribution systems in commercial buildings; (2) performed energy analyses and evaluation for duct-performance improvements for both small and large commercial buildings; (3) developed aerosol injection technologies for both duct sealing and liner encapsulation in commercial buildings; and (4) designed energy-related diagnostic protocols based on short term measurement and used a benchmarking database to compare subject systems with other measured systems for certain performance metrics. This year's efforts consisted of the following distinct tasks: performing characterization measurements for five light commercial building systems and five large-commercial-building systems; analyzing the potential for including duct performance in California's Energy Efficiency Standards for Residential and Non-Residential Buildings (Title 24), including performing energy and equipment sizing analyses of air distribution systems using DOE 2.1E for non-residential buildings; conducting laboratory experiments, field experiments, and modeling of new aerosol injection technologies concepts for sealing and coating, including field testing aerosol-based sealing in two large commercial buildings; improving low-cost fan monitoring techniques measurements, and disseminating fan tools by working with energy practitioners directly where possible and publishing the results of this research and the tools developed on a web

  12. Finite-size instabilities in nuclear energy density functionals

    SciTech Connect (OSTI)

    Hellemans, V.; Heenen, P.-H.; Bender, M.

    2012-10-20

    The systematic lack of convergence of self-consistent mean-field calculations with certain parameterizations of the Skyrme energy density functional has been attributed to the appearance of finite-size instabilities. In this contribution, we investigate what happens at the instability associated with the C{sub 0}{sup {Delta}s}s{sub 0} Dot-Operator {Delta}s{sub 0} term in a high-spin state of the superdeformed band in {sup 194}Hg.

  13. Atom Probe Tomography Analysis of the Distribution of Rhenium in Nickel Alloys

    SciTech Connect (OSTI)

    Mottura, A.; Warnken, N; Miller, Michael K; Reed, R. C.; Finnis, M.

    2010-01-01

    Atom probe tomography (APT) is used to characterise the distributions of rhenium in a binary Ni-Re alloy and the nickel-based single-crystal CMSX-4 superalloy. A purpose-built algorithm is developed to quantify the size distribution of solute clusters, and applied to the APT datasets to critique the hypothesis that rhenium is prone to the formation of clusters in these systems. No evidence is found to indicate that rhenium forms solute clusters above the level expected from random fluctuations. In CMSX-4, enrichment of Re is detected in the matrix phase close to the matrix/precipitate ({gamma}/{gamma}{prime}) phase boundaries. Phase field modelling indicates that this is due to the migration of the {gamma}/{gamma}{prime} interface during cooling from the temperature of operation. Thus, neither clustering of rhenium nor interface enrichments can be the cause of the enhancement in high temperature mechanical properties conferred by rhenium alloying.

  14. Top 10 Things You Didn't Know About Distributed Wind Power |...

    Energy Savers [EERE]

    by households, schools, farms, industrial facilities and municipalities, distributed wind doesn't only refer to small-scale turbines; it includes any size turbine or array of...

  15. Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chapman, Henry, N.

    2014-10-30

    64x64 scan of a group of latex spheres with 45 nm step size, used for demonstrating Wigner-distribution deconvolution.

  16. A new model of cloud drop distribution that simulates the observed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Michigan Technological University Wiscombe, Warren BNLNASA Goddard Space Flight Center Category: Modeling Cloud droplet size distribution is one of the most fundamental...

  17. The Zechsteinkalk reservoir of the Hewett field, southern North Sea

    SciTech Connect (OSTI)

    Southwood, D.A.; Morgan, R.K. ); Hill, W.O.R. )

    1993-09-01

    The Zechsteinkalk of Hewett field is characterized by complex porosity and permeability distribution. Facies and diagenesis together control porosity distribution, while production rates are enhanced by subseismic [open quotes]megafractures.[open quotes] Highest porosities occur in the upper part of the sequence where dolomitized shoal and perishoal oolitic and peloidal grainstones predominate. Intershoal and main shoal facies show no significant differences in average porosity. Tidal-flat muds developed at the shoreward margin of shoals have only very low porosity. Extreme porosity variation within perishoal facies is caused by differential diagenesis. Porosity has been created by dolomitization and leaching but has been occluded by early carbonate cementation and anhydrite cementation. Anhydrite is volumetrically the most significant effect, destroying 20% porosity in many intervals and completely cementing many fractures. Its distribution is highly heterogeneous. Models for the origin of the anhydrite explain and predict gross distribution trends, but superimposed smaller scale trends are related to depositional grain size and the local development of evaporitic environment over subaerially exposed grainstones. Cementation took place in at least three phases, pre-, syn-, and postfracturing. Natural fracturing occurs throughout the field. Fractures are typically subvertical, planar, dilational, and completely or partially cemented by anhydrite. The cementation history of the fractures indicates formation prior to the development of the structure. Although fracture aperture porosity occurs in a significant proportion of fractures recorded in core (30-40%), DST results indicate fracture-enhanced flow from only a small number of fractured zones where individual fractures are sufficiently closely spaced to form an interconnected system or [open quotes]megafracture.[close quotes] The megafractures trend northwest-southwest oblique to the primary fracture trend.

  18. Distributed Wind 2015

    Broader source: Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  19. Doubly Distributed Transactions

    Energy Science and Technology Software Center (OSTI)

    2014-08-25

    Doubly Distributed Transactions (D2T) offers a technique for managing operations from a set of parallel clients with a collection of distributed services. It detects and manages faults. Example code with a test harness is also provided

  20. Distribution of electric field and energy flux around the cracks...

    Office of Scientific and Technical Information (OSTI)

    Optics; Journal Volume: 49; Journal Issue: 35; Other Information: (c) 2010 Optical Society of America; Country of input: International Atomic Energy Agency (IAEA) Country of...

  1. Hazards of explosives dusts: Particle size effects

    SciTech Connect (OSTI)

    Cashdollar, K L; Hertzberg, M; Green, G M

    1992-02-01

    At the request of the Department of Energy, the Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. In this report, the effect of particle size for HMX, HNS, RDX, TATB, and TNT explosives dusts is studied in detail. The explosibility data for these dusts are also compared to those for pure fuel dusts. The data show that all of the sizes of the explosives dusts that were studied were capable of sustaining explosions as dust clouds dispersed in air. The finest sizes (<10 [mu]m) of explosives dusts were less reactive than the intermediate sizes (20 to 60 [mu]m); this is opposite to the particle size effect observed previously for the pure fuel dusts. At the largest sizes studied, the explosives dusts become somewhat less reactive as dispersed dust clouds. The six sizes of the HMX dust were also studied as dust clouds dispersed in nitrogen.

  2. Distributed Parallel Particle Advection using Work Requesting

    SciTech Connect (OSTI)

    Muller, Cornelius; Camp, David; Hentschel, Bernd; Garth, Christoph

    2013-09-30

    Particle advection is an important vector field visualization technique that is difficult to apply to very large data sets in a distributed setting due to scalability limitations in existing algorithms. In this paper, we report on several experiments using work requesting dynamic scheduling which achieves balanced work distribution on arbitrary problems with minimal communication overhead. We present a corresponding prototype implementation, provide and analyze benchmark results, and compare our results to an existing algorithm.

  3. FRIB cryogenic distribution system

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Dixon, Kelly D.; Laverdure, Nathaniel A.; Knudsen, Peter N.; Arenius, Dana M.; Barrios, Matthew N.; Jones, S.; Johnson, M.; Casagrande, Fabio

    2014-01-01

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  4. Field Mapping At Salt Wells Area (Coolbaugh, Et Al., 2006) |...

    Open Energy Info (EERE)

    Basis Geochemical water sampling, mineral distribution mapping, and shallow (30 cm) temperature probe measurements were conducted to expand on a previous field mapping study...

  5. DNA fragment sizing and sorting by laser-induced fluorescence

    DOE Patents [OSTI]

    Hammond, Mark L.; Jett, James H.; Keller, Richard A.; Marrone, Babetta L.; Martin, John C.

    1996-01-01

    A method is provided for sizing DNA fragments using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA piece or the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is linearly related to the fragment length. The distribution of DNA fragment sizes forms a characterization of the DNA piece for use in forensic and research applications.

  6. Fuel cells in distributed generation

    SciTech Connect (OSTI)

    O'Sullivan, J.B.

    1999-07-01

    In the past the vertically integrated electric utility industry has not utilized Distributed Generation (DG) because it was viewed as competition to central station power production. Gas utilities have been heavily and aggressively involved in the promotion of gas fired DG because for them it is additional load that may also balance the winter load. With deregulation and restructuring of the electricity industry DG is now viewed in a different light. For those utilities that have sold their generation assets DG can be a new retail service to provide to their customers. For those who are still vertically integrated, DG can be an asset management tool at the distribution level. DG can be utilized to defer capital investments involving line and substation upgrades. Coupled to this new interest in DG technologies and their performance characteristics are the associated interests in implementation issues. These range from the codes and standards requirements and hardware for interfacing to the grid as well as C{sup 3}-I (command, control, communication--intelligence) issues. The latter involves dispatching on-grid or customer sited resources, monitoring their performance and tracking the economic transactions. Another important aspect is the impact of DG resources (size, number and location) on service area dynamic behavior (power quality, reliability, stability, etc.). EPRI has ongoing programs addressing all these aspects of DG and the distribution grid. Since fuel cells can be viewed as electrochemical engines, and as with thermomechanical engines, there doesn't have to be a best fuel cell. Each engine can serve many markets and some will be better suited than others in a specific market segment (e.g. spark ignition in cars and turbines in planes). This paper will address the status of developing fuel cell technologies and their application to various market areas within the context of Distributed Generation.

  7. Localized parallel parametric generation of spin waves in a Ni{sub 81}Fe{sub 19} waveguide by spatial variation of the pumping field

    SciTech Connect (OSTI)

    Brächer, T.; Pirro, P.; Heussner, F.; Serga, A. A.; Hillebrands, B.

    2014-03-03

    We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. This provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.

  8. Effect of a uniform electric field on soot in laminar premixed ethylene/air flames

    SciTech Connect (OSTI)

    Wang, Y.; Yao, Q. [Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, 100084 Beijing (China); Nathan, G.J. [School of Mechanical Engineering, Centre for Energy Technology, The University of Adelaide, S.A. 5005 (Australia); Alwahabi, Z.T.; King, K.D.; Ho, K. [School of Chemical Engineering, Centre for Energy Technology, The University of Adelaide, S.A. 5005 (Australia)

    2010-07-15

    The effect of a nominally uniform electric field on the initially uniform distribution of soot has been assessed for laminar premixed ethylene/air flames from a McKenna burner. An electrophoretic influence on charged soot particles was measured through changes to the deposition rate of soot on the McKenna plug, using laser extinction (LE). Soot volume fraction was measured in situ using laser-induced incandescence (LII). Particle size and morphologies were assessed through ex situ transmission electron microscopy (TEM) using thermophoretic sampling particle diagnostics (TSPD). The results show that the majority of these soot particles are positively charged. The presence of a negatively charged plug was found to decrease the particle residence times in the flame and to influence the formation and oxidation progress. A positively charged plug has the opposite effect. The effect on soot volume fraction, particles size and morphology with electric field strength is also reported. Flame stability was also found to be affected by the presence of the electric field, with the balance of the electrophoretic force and drag force controlling the transition to unstable flame flicker. The presence of charged species generated by the flame was found to reduce the dielectric field strength to one seventh that of air. (author)

  9. Distributed generation systems model

    SciTech Connect (OSTI)

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  10. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    TF RailroadVesselShip Fuel It is also noted that Destination State code of "X Export" indicates movements to foreign destinations. 1 68 Domestic Coal Distribution...

  11. Distribution of Correspondence

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-08-30

    Defines correct procedures for distribution of correspondence to the Naval Reactors laboratories. Does not cancel another directive. Expired 8-30-97.

  12. Ductless Hydronic Distribution Systems

    Broader source: Energy.gov [DOE]

    This presentation is from a Building America webinar conducted on November 8, 2011, by the Alliance for Residential Building Innovation (ARBI) about ductless hydronic distribution systems.

  13. PV distribution system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distribution system - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  14. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ... of the distributed, or local, power generation into the electric power system. ...

  15. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by...

  16. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is...

  17. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  18. Phosphorus removal from slow-cooled steelmaking slags: Grain size determination and liberation studies

    SciTech Connect (OSTI)

    Fregeau-Wu, E.; Iwasaki, I.

    1995-07-01

    The major obstacle in recycling steelmaking slags to the blast furnace is their phosphorus content. Removal of the phosphorus, which is primarily associated with the silicate and phosphate phases, would allow for greater recycle of these slags for their iron, manganese, and lime contents. Calculations show that separation of the silicates from the oxide phases would remove nearly 90% of the phosphorus from the slag. The variable grain size of the as-received slag made liberation by fine grinding difficult. Therefore, slow-cooling experiments were undertaken to improve the grain size distribution. The grain size distributions were determined using in-situ image analysis. The samples were ground to their apparent liberation size and high gradient magnetic separation was used to separate the magnetic oxides from the nonmagnetic silicates and phosphates. Liberation analysis and modeling was performed on selected separation products for discussion of benefication characteristics.

  19. Assessing the Importance of Using Biomodal Size Distribution for Ice Cloud Optical Property Parameterizations

    SciTech Connect (OSTI)

    Stackhouse, P. W.

    2006-03-31

    This report represents the final report for DE-AI02-0 IER63074. This work represented some follow-on work to that completed under DE-AI02-0 1 ER62669. The research reported here is undertaken in collaboration with Dr. David Mitchell of the Desert Research Institute in Reno, Nevada. The progress given here represents my contribution to his approach by providing radiative transfer expertise and calculations.

  20. Optimal site selection and sizing of distributed utility-scale wind power plants

    SciTech Connect (OSTI)

    Milligan, M.R.; Artig, R.

    1998-04-01

    As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their advantage to be able to specify the quantity of electricity available and the time of availability. Since wind power plants are driven by the stochastic nature of the wind itself, this can present difficulties. To the extent that an accurate wind forecast is available, contract deviations, and therefore penalties, can be significantly reduced. Even though one might have the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility`s peak load than a single site. There are several wind plants in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming and Iowa. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant. In this paper, the authors use hourly wind-speed data from six geographically diverse sites to provide some insight into the potential benefits of disperse wind plant development. They provide hourly wind power from each of these sites to an electric reliability simulation model. This model uses generating plant characteristics of the generators within the state of Minnesota to calculate various reliability indices. Since they lack data on wholesale power transactions, they do not include them in the analysis, and they reduce the hourly load data accordingly. The authors present and compare results of their methods and suggest some areas of future research.

  1. Smart distribution systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jiang, Yazhou; Liu, Chen -Ching; Xu, Yin

    2016-04-19

    The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs) and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs) of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. Amore » comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD), is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Furthermore, test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs) is introduced. Future research in a smart distribution environment is proposed.« less

  2. Distribution of Clokey's Eggvetch

    SciTech Connect (OSTI)

    David C. Anderson

    1998-12-01

    The Environment, Safety and Health Division of the U.S. Department of Energy, Nevada Operations Office implements the Ecological Monitoring and Compliance Program on the Nevada Test Site (NTS). This program ensures compliance with applicable environmental laws and regulations, delineates and describes NTS ecosystems, and provides ecological information for predicting and evaluating potential impacts of proposed projects on those ecosystems. Over the last several decades, has taken an active role in providing information on the tatus of plant species proposed for protection under the Endangered Species Act(ESA). One such species is Clokey's eggvetch (Astragalus oophorus var. clokeyanus), which is a candidate species under the listing guidelines of the ESA. Surveys for this species were conducted on the NTS in 1996, 1997, and 1998. Field surveys focused on potential habitat for this species in the southern Belted range and expanded to other areas with similar habitat. Over 30 survey day s were completed; five survey days in 1996, 25 survey days in 1997, and three survey days in 1998. Clokey's eggvetch was located at several sites in the southern Belted Range. It was found through much of the northern section of Kawich Canyon, one site at the head of Gritty Gulch, and a rather extensive location in Lambs Canyon. It was also located further south at Captain Jack Springs in the Eleana Range, in much of Falcon Canyon and around Echo Peak on Pahute Mesa, and was also found in the Timber and Shoshone Mountains. Overall, the locations of Clokey's eggvetch on the NTS appears to form a distinct bridge between populations of the species located further north in the Belted and Kawich Ranges and the population located in the Spring Mountains. Clokey's eggvetch was commonly found along washes and small draws, and typically in sandy loam soils with a covering of light tuffaceous rock. It occurs primarily above 1830 meters (6000 feet) in association with single-leaf pinyon (Pinus

  3. Particle impactor assembly for size selective high volume air sampler

    DOE Patents [OSTI]

    Langer, Gerhard

    1988-08-16

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented impactor slots of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind the relatively larger particles according to the human thoracic separation system and passes through two elongate exhaust apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. The elongate exhaust apertures defining the impaction collection surface are spaced apart by a distance greater than the lengths of elongate impactor slots in the inlet element and are oriented to be normal thereto. By appropriate selection of dimensions and the number of impactor slots air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the impactor slots, in order to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks.

  4. Field Observation of the Green Ocean Amazon. Neutral Cluster...

    Office of Scientific and Technical Information (OSTI)

    The NAIS is an instrument that measures aerosol particle and ion number size distributions ... between 3.2 and 0.0013 cm2 V-1 s-1. New particle formation (NPF) events were detected ...

  5. AMIE Gan Island Ancillary Disdrometer Field Campaign Report ...

    Office of Scientific and Technical Information (OSTI)

    SMART-R C-band radar, and the National Center for Atmospheric Research (NCAR) dual ... Comparing the disdrometer data with 2DVD data, the raindrop size distribution data will be ...

  6. Cybersecurity Intrusion Detection and Security Monitoring for Field Area Networks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intrusion Detection and Security Monitoring for Field Area Networks Continuous security validation, intrusion detection, and situational awareness for advanced metering infrastructure and distribution automation Background Advanced metering infrastructure (AMI) and distribution automation (DA) field area networks (FANs) are among the largest, possibly most complex, networks operated by utilities in the United States. Exploitable vulnerabilities in AMI and DA systems may arise from weaknesses in

  7. Distribution Workshop | Department of Energy

    Office of Environmental Management (EM)

    Variable distributed generation Dispatchable distributed generation Electric vehicle charging and electrolyzers Energy storage Building and industrial loads and demand response ...

  8. Oscillating magnetocaloric effect in size-quantized diamagnetic film

    SciTech Connect (OSTI)

    Alisultanov, Z. Z.

    2014-03-21

    We investigate the oscillating magnetocaloric effect on a size-quantized diamagnetic film in a transverse magnetic field. We obtain the analytical expression for the thermodynamic potential in case of the arbitrary spectrum of carriers. The entropy change is shown to be the oscillating function of the magnetic field and the film thickness. The nature of this effect is the same as for the de Haas–van Alphen effect. The magnetic part of entropy has a maximal value at some temperature. Such behavior of the entropy is not observed in magneto-ordered materials. We discuss the nature of unusual behavior of the magnetic entropy. We compare our results with the data obtained for 2D and 3D cases.

  9. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect (OSTI)

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  10. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less