National Library of Energy BETA

Sample records for field salt cavern

  1. ,"Underground Natural Gas Storage - Salt Cavern Storage Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Salt Cavern Storage Fields",8,"Monthly","42016","01151994" ,"Release ...

  2. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  3. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon

    2009-03-01

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  4. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect (OSTI)

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  5. Disposal of oil field wastes and NORM wastes into salt caverns.

    SciTech Connect (OSTI)

    Veil, J. A.

    1999-01-27

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM), the risk to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne's research indicates that disposal of NOW into salt caverns is feasible and, in most cases, would not be prohibited by state agencies (although those agencies may need to revise their wastes management regulations). A risk analysis of several cavern leakage scenarios suggests that the risk from cavern disposal of NOW and NORM wastes is below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  6. New information on disposal of oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build-up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build-up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  7. Can nonhazardous oil field wastes be disposed of in salt caverns?

    SciTech Connect (OSTI)

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal -of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  8. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  9. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  10. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect (OSTI)

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste

  11. Estimate of the risks of disposing nonhazardous oil field wastes into salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-12-31

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Assuming a single, generic salt cavern and generic oil-field wastes, the best-estimate excess cancer risks ranged from 1.7 {times} 10{sup {minus}12} to 1.1 {times} 10{sup {minus}8} and hazard indices (referring to noncancer health effects) ranged from 7 {times} 10{sup {minus}9} to 7 {times} 10{sup {minus}4}. Under worse-case conditions in which the probability of cavern failure is 1.0, excess cancer risks ranged from 4.9 {times} 10{sup {minus}9} to 1.7 {times} 10{sup {minus}5} and hazard indices ranged from 7.0 {times} 10{sup {minus}4} to 0.07. Even under worst-case conditions, the risks are within the US Environmental Protection Agency (EPA) target range for acceptable exposure levels. From a human health risk perspective, salt caverns can, therefore, provide an acceptable disposal method for NOW.

  12. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  13. Risk analyses for disposing of nonhazardous oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed of in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing the contaminants` toxicities; estimating contaminant intakes; and, finally, calculating human cancer and noncancer risks. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Even under worst-case conditions, the risks have been found to be within the US EPA target range for acceptable exposure levels. From a human health risk perspective, salt caverns can provide an acceptable disposal method for NOW.

  14. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns

    SciTech Connect (OSTI)

    Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

    1999-01-21

    This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

  15. Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

  16. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  17. Disposal of NORM waste in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  18. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Salt Cavern ...

  19. Multiphase Flow and Cavern Abandonment in Salt

    SciTech Connect (OSTI)

    Ehgartner, Brian; Tidwell, Vince

    2001-02-13

    This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

  20. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  1. Analysis of SPR salt cavern remedial leach program 2013. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Analysis of SPR salt cavern remedial leach program 2013. The storage caverns of the US Strategic Petroleum Reserve (SPR) exhibit creep behavior resulting in reduction of ...

  2. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc.

  3. Analysis of SPR salt cavern remedial leach program 2013. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Analysis of SPR salt cavern remedial leach program 2013. Citation Details In-Document ... Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of ...

  4. CAVERN ROOF STABILITY FOR NATURAL GAS STORAGE IN BEDDED SALT

    SciTech Connect (OSTI)

    DeVries, Kerry L; Mellegard, Kirby D; Callahan, Gary D; Goodman, William M

    2005-06-01

    This report documents research performed to develop a new stress-based criterion for predicting the onset of damage in salt formations surrounding natural gas storage caverns. Laboratory tests were conducted to investigate the effects of shear stress, mean stress, pore pressure, temperature, and Lode angle on the strength and creep characteristics of salt. The laboratory test data were used in the development of the new criterion. The laboratory results indicate that the strength of salt strongly depends on the mean stress and Lode angle. The strength of the salt does not appear to be sensitive to temperature. Pore pressure effects were not readily apparent until a significant level of damage was induced and the permeability was increased to allow penetration of the liquid permeant. Utilizing the new criterion, numerical simulations were used to estimate the minimum allowable gas pressure for hypothetical storage caverns located in a bedded salt formation. The simulations performed illustrate the influence that cavern roof span, depth, roof salt thickness, shale thickness, and shale stiffness have on the allowable operating pressure range. Interestingly, comparison of predictions using the new criterion with that of a commonly used criterion indicate that lower minimum gas pressures may be allowed for caverns at shallow depths. However, as cavern depth is increased, less conservative estimates for minimum gas pressure were determined by the new criterion.

  5. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect (OSTI)

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  6. A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG

    SciTech Connect (OSTI)

    Michael M. McCall; William M. Bishop; Marcus Krekel; James F. Davis; D. Braxton Scherz

    2005-05-31

    This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly when located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher

  7. STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS

    SciTech Connect (OSTI)

    JOel D. Dieland; Kirby D. Mellegard

    2001-11-01

    This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is

  8. Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns

    SciTech Connect (OSTI)

    Michael S. Bruno

    2005-06-15

    The bedded salt formations located throughout the United States are layered and interspersed with non-salt materials such as anhydrite, shale, dolomite and limestone. The salt layers often contain significant impurities. GRI and DOE have initialized this research proposal in order to increase the gas storage capabilities by providing operators with improved geotechnical design and operating guidelines for thin bedded salt caverns. Terralog has summarized the geologic conditions, pressure conditions, and critical design factors that may lead to: (1) Fracture in heterogeneous materials; (2) Differential deformation and bedding plane slip; (3) Propagation of damage around single and multiple cavern; and (4) Improved design recommendations for single and multiple cavern configurations in various bedded salt environments. The existing caverns within both the Permian Basin Complex and the Michigan and Appalachian Basins are normally found between 300 m to 1,000 m (1,000 ft to 3,300 ft) depth depending on local geology and salt dissolution depth. Currently, active cavern operations are found in the Midland and Anadarko Basins within the Permian Basin Complex and in the Appalachian and Michigan Basins. The Palo Duro and Delaware Basins within the Permian Basin Complex also offer salt cavern development potential. Terralog developed a number of numerical models for caverns located in thin bedded salt. A modified creep viscoplastic model has been developed and implemented in Flac3D to simulate the response of salt at the Permian, Michigan and Appalachian Basins. The formulation of the viscoplastic salt model, which is based on an empirical creep law developed for Waste Isolation Pilot Plant (WIPP) Program, is combined with the Drucker-Prager model to include the formation of damage and failure. The Permian salt lab test data provided by Pfeifle et al. 1983, are used to validate the assumptions made in the material model development. For the actual cavern simulations two

  9. EXAMINE AND EVALUATE A PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LIQUEFIED NATURAL GAS

    SciTech Connect (OSTI)

    Michael M. McCall; William M. Bishop; D. Braxton Scherz

    2003-04-24

    The goal of the U.S. Department of Energy cooperative research project is to define, describe, and validate, a process to utilize salt caverns to receive and store the cargoes of LNG ships. The project defines the process as receiving LNG from a ship, pumping the LNG up to cavern injection pressures, warming it to cavern compatible temperatures, injecting the warmed vapor directly into salt caverns for storage, and distribution to the pipeline network. The performance of work under this agreement is based on U.S. Patent 5,511,905, and other U.S. and Foreign pending patent applications. The cost sharing participants in the research are The National Energy Technology Laboratory (U.S. Department of Energy), BP America Production Company, Bluewater Offshore Production Systems (U.S.A.), Inc., and HNG Storage, L.P. Initial results indicate that a salt cavern based receiving terminal could be built at about half the capital cost, less than half the operating costs and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. There is a significant body of knowledge and practice concerning natural gas storage in salt caverns, and there is a considerable body of knowledge and practice in handling LNG, but there has never been any attempt to develop a process whereby the two technologies can be combined. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or terrorist acts, and much more acceptable to the community. The project team developed conceptual designs of two salt cavern based LNG terminals, one with caverns located in Calcasieu Parish Louisiana, and the second in Vermilion block 179 about 50 miles offshore Louisiana. These conceptual designs were compared to conventional tank based LNG terminals and demonstrate superior security, economy and capacity. The potential for the development of LNG receiving terminals

  10. U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Number of Elements) Salt Caverns Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 29 2000's 28 28 29 30 30 30 31 31 34 35 2010's 37 38 40 40 39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  11. U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Salt Caverns Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 230,456 271,785 2010's 312,003 351,017 488,268 455,729 488,698 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Working

  12. Characterization of bedded salt for storage caverns -- A case study from the Midland Basin, Texas

    SciTech Connect (OSTI)

    Hovorka, Susan D.; Nava, Robin

    2000-06-13

    The geometry of Permian bedding salt in the Midland Basin is a product of interaction between depositional facies and postdepositional modification by salt dissolution. Mapping high-frequency cycle patterns in cross section and map view using wireline logs documents the salt geometry. Geologically based interpretation of depositional and dissolution processes provides a powerful tool for mapping and geometry of salt to assess the suitability of sites for development of solution-mined storage caverns. In addition, this process-based description of salt geometry complements existing data about the evolution of one of the best-known sedimentary basins in the world, and can serve as a genetic model to assist in interpreting other salts.

  13. U.S. Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Salt Caverns Capacity (Million Cubic Feet) U.S. Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 185,451 2000's 189,043 218,483 225,958 234,601 239,990 250,532 261,988 253,410 341,213 397,560 2010's 456,009 512,279 715,821 654,266 702,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. An Investigation of the Integrity of Cemented Casing Seals with Application to Salt Cavern Sealing and Abandonment

    SciTech Connect (OSTI)

    Pfeifle, T.W.; Mellegard, K.D.; Skaug, N.T.; Bruno, M.S.

    2001-04-19

    This research project was pursued in three key areas. (1) Salt permeability testing under complex stress states; (2) Hydraulic and mechanical integrity investigations of the well casing shoe through benchscale testing; and (3) Geomechanical modeling of the fluid/salt hydraulic and mechanical interaction of a sealed cavern.

  15. Gas intrusion into SPR caverns

    SciTech Connect (OSTI)

    Hinkebein, T.E.; Bauer, S.J.; Ehgartner, B.L.; Linn, J.K.; Neal, J.T.; Todd, J.L.; Kuhlman, P.S.; Gniady, C.T.; Giles, H.N.

    1995-12-01

    The conditions and occurrence of gas in crude oil stored in Strategic Petroleum Reserve, SPR, caverns is characterized in this report. Many caverns in the SPR show that gas has intruded into the oil from the surrounding salt dome. Historical evidence and the analyses presented here suggest that gas will continue to intrude into many SPR caverns in the future. In considering why only some caverns contain gas, it is concluded that the naturally occurring spatial variability in salt permeability can explain the range of gas content measured in SPR caverns. Further, it is not possible to make a one-to-one correlation between specific geologic phenomena and the occurrence of gas in salt caverns. However, gas is concluded to be petrogenic in origin. Consequently, attempts have been made to associate the occurrence of gas with salt inhomogeneities including anomalies and other structural features. Two scenarios for actual gas intrusion into caverns were investigated for consistency with existing information. These scenarios are gas release during leaching and gas permeation through salt. Of these mechanisms, the greater consistency comes from the belief that gas permeates to caverns through the salt. A review of historical operating data for five Bryan Mound caverns loosely supports the hypothesis that higher operating pressures reduce gas intrusion into caverns. This conclusion supports a permeability intrusion mechanism. Further, it provides justification for operating the caverns near maximum operating pressure to minimize gas intrusion. Historical gas intrusion rates and estimates of future gas intrusion are given for all caverns.

  16. Number of Existing Natural Gas Salt Caverns Storage Fields

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    34 35 37 38 40 40 1999-2013 Alabama 1 1 1 1 1 1 1999-2013 California 0 1999-2012 Kansas 1 1 1 1 1 1999-2012 Louisiana 9 10 10 10 11 11 1999-2013 Michigan 2 2 2 2 2 2 1999-2013...

  17. Analysis of cavern and well stability at the West Hackberry SPR site using a full-dome model.

    SciTech Connect (OSTI)

    Sobolik, Steven R.

    2015-08-01

    This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve (SPR) West Hackberry site. The cavern field comprises 22 caverns. Five caverns (6, 7, 8, 9, 11) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 17 caverns (101-117) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a three-dimensional geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios corresponding to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant results in this report are relevant to Cavern 6. The cavern is shaped like a bowl with a large ceiling span and is in close proximity to Cavern 9. The analyses predict tensile stresses at the edge of the ceiling during repressurization of Cavern 6 following workover conditions. During a workover the cavern is at low pressure to service a well. The wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension around the edge of the large ceiling span. With time, these stresses relax to a compressive state because of salt creep. However, the potential for salt fracture and propagation exists, particularly towards Cavern 9. With only 200 feet of salt between the caverns, the operational consequences must be examined if the two caverns become connected. A critical time may be during a workover of Cavern 9 in part because of the operational vulnerabilities, but also because dilatant damage

  18. ,"Underground Natural Gas Storage - Storage Fields Other than...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","42016","01151994" ...

  19. CaveMan Version 3.0: A Software System for SPR Cavern Pressure Analysis

    SciTech Connect (OSTI)

    BALLARD,SANFORD; EHGARTNER,BRIAN L.

    2000-07-01

    The U. S. Department of Energy Strategic Petroleum Reserve currently has approximately 500 million barrels of crude oil stored in 62 caverns solution-mined in salt domes along the Gulf Coast of Louisiana and Texas. One of the challenges of operating these caverns is ensuring that none of the fluids in the caverns are leaking into the environment. The current approach is to test the mechanical integrity of all the wells entering each cavern approximately once every five years. An alternative approach to detecting cavern leaks is to monitor the cavern pressure, since leaking fluid would act to reduce cavern pressure. Leak detection by pressure monitoring is complicated by other factors that influence cavern pressure, the most important of which are thermal expansion and contraction of the fluids in the cavern as they come into thermal equilibrium with the host salt, and cavern volume reduction due to salt creep. Cavern pressure is also influenced by cavern enlargement resulting from salt dissolution following introduction of raw water or unsaturated brine into the cavern. However, this effect only lasts for a month or two following a fluid injection. In order to implement a cavern pressure monitoring program, a software program called CaveMan has been developed. It includes thermal, creep and salt dissolution models and is able to predict the cavern pressurization rate based on the operational history of the cavern. Many of the numerous thermal and mechanical parameters in the model have been optimized to produce the best match between the historical data and the model predictions. Future measurements of cavern pressure are compared to the model predictions, and significant differences in cavern pressure set program flags that notify cavern operators of a potential problem. Measured cavern pressures that are significantly less than those predicted by the model may indicate the existence of a leak.

  20. Analysis of cavern shapes for the strategic petroleum reserve.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Sobolik, Steven Ronald

    2006-07-01

    This report presents computational analyses to determine the structural integrity of different salt cavern shapes. Three characteristic shapes for increasing cavern volumes are evaluated and compared to the baseline shape of a cylindrical cavern. Caverns with enlarged tops, bottoms, and mid-sections are modeled. The results address pillar to diameter ratios of some existing caverns in the system and will represent the final shape of other caverns if they are repeatedly drawn down. This deliverable is performed in support of the U.S. Strategic Petroleum Reserve. Several three-dimensional models using a close-packed arrangement of 19 caverns have been built and analyzed using a simplified symmetry involving a 30-degree wedge portion of the model. This approach has been used previously for West Hackberry (Ehgartner and Sobolik, 2002) and Big Hill (Park et al., 2005) analyses. A stratigraphy based on the Big Hill site has been incorporated into the model. The caverns are modeled without wells and casing to simplify the calculations. These calculations have been made using the power law creep model. The four cavern shapes were evaluated at several different cavern radii against four design factors. These factors included the dilatant damage safety factor in salt, the cavern volume closure, axial well strain in the caprock, and surface subsidence. The relative performance of each of the cavern shapes varies for the different design factors, although it is apparent that the enlarged bottom design provides the worst overall performance. The results of the calculations are put in the context of the history of cavern analyses assuming cylindrical caverns, and how these results affect previous understanding of cavern behavior in a salt dome.

  1. Test Proposal Document for Phased Field Thermal Testing in Salt |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Test Proposal Document for Phased Field Thermal Testing in Salt Test Proposal Document for Phased Field Thermal Testing in Salt The document summarizes how a new round of staged thermal field testing will help to augment the safety case for disposal of heat generating nuclear waste in salt. The objectives of the proposed test plan are to: (1) address features, events, and processes (FEPs), (2) build scientific and public confidence, (3) foster international

  2. Converting LPG caverns to natural-gas storage permits fast response to market

    SciTech Connect (OSTI)

    Crossley, N.G.

    1996-02-19

    Deregulation of Canada`s natural-gas industry in the late 1980s led to a very competitive North American natural-gas storage market. TransGas Ltd., Regina, Sask., began looking for method for developing cost-effective storage while at the same time responding to new market-development opportunities and incentives. Conversion of existing LPG-storage salt caverns to natural-gas storage is one method of providing new storage. To supply SaskEnergy Inc., the province`s local distribution company, and Saskatchewan customers, TransGas previously had developed solution-mined salt storage caverns from start to finish. Two Regina North case histories illustrate TransGas` experiences with conversion of LPG salt caverns to gas storage. This paper provides the testing procedures for the various caverns, cross-sectional diagrams of each cavern, and outlines for cavern conversion. It also lists storage capacities of these caverns.

  3. Radioactive waste storage in mined caverns in crystalline rock: results of field investigations at Stripa, Sweden

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1980-10-01

    It is generally agreed that the most practicable method of isolating nuclear wastes from the biosphere is by deep burial in suitable geologic formations. Such burial achieves a high degree of physical isolation but raises questions concerning the rate at which some of these wastes may return to the biosphere through transport by groundwater. Any suitable repository site will be disturbed first by excavation and second by the thermal pulse caused by the radioactive decay of the wastes. To assess the effectiveness of geologic isolation it is necessary to develop the capability of predicting the response of a rock mass to such a thermal pulse. Ultimately, this requires field measurements below the surface in media representative of those likely to be encountered at an actual repository. Access to a granitic rock mass adjacent to a defunct iron ore mine at Stripa, Sweden, at a depth of about 350 m below surface has provided a unique opportunity to conduct a comprehensive suite of hydrological and thermo-mechanical experiments under such conditions. The results of these field tests have shown the importance of geologic structure and the functional dependence of the thermo-mechanical properties on temperature in developing a valid predictive model. The results have also demonstrated the vital importance of carrying out large-scale investigations in a field test facility.

  4. Horizontal natural gas storage caverns and methods for producing same

    DOE Patents [OSTI]

    Russo, Anthony

    1995-01-01

    The invention provides caverns and methods for producing caverns in bedded salt deposits for the storage of materials that are not solvents for salt. The contemplated salt deposits are of the bedded, non-domed variety, more particularly salt found in layered formations that are sufficiently thick to enable the production of commercially usefully sized caverns completely encompassed by walls of salt of the formation. In a preferred method, a first bore hole is drilled into the salt formation and a cavity for receiving insolubles is leached from the salt formation. Thereafter, at a predetermined distance away from the first bore hole, a second bore hole is drilled towards the salt formation. As this drill approaches the salt, the drill assumes a slant approach and enters the salt and drills through it in a horizontal direction until it intersects the cavity for receiving insolubles. This produces a substantially horizontal conduit from which solvent is controlledly supplied to the surrounding salt formation, leaching the salt and producing a concentrated brine which is removed through the first bore hole. Insolubles are collected in the cavity for receiving insolubles. By controlledly supplying solvent, a horizontal cavern is produced with two bore holes extending therefrom.

  5. Overfilling of cavern blamed for LPG blasts

    SciTech Connect (OSTI)

    Not Available

    1992-07-06

    Three explosions and a fire Apr. 7 at an LPG salt dome storage cavern near Brenham, Tex., were triggered when the cavern was overfilled, the Texas Railroad Commission (TRC) has reported. This paper reports that a TRC investigation found that LPG escaped to the surface at the Brenham site through brine injection tubing after excessive fill from an LPG line forced the cavern's water level below the brine tubing's bottom. At the surface, LPG was released into a brine storage pit where it turned into a dense, explosive vapor. At 7:08 a.m., the vapor was ignited by an unknown source. The resulting blast killed three persons and injured 19 and brought operations at the site to a halt.

  6. Commercial potential of natural gas storage in lined rock caverns (LRC)

    SciTech Connect (OSTI)

    1999-11-01

    The geologic conditions in many regions of the United States will not permit the development of economical high-deliverability gas storage in salt caverns. These regions include the entire Eastern Seaboard; several northern states, notably Minnesota and Wisconsin; many of the Rocky Mountain States; and most of the Pacific Northwest. In late 1997, the United States Department of Energy (USDOE) Federal Energy Technology Center engaged Sofregaz US to investigate the commercialization potential of natural gas storage in Lined Rock Caverns (LRC). Sofregaz US teamed with Gaz de France and Sydkraft, who had formed a consortium, called LRC, to perform the study for the USDOE. Underground storage of natural gas is generally achieved in depleted oil and gas fields, aquifers, and solution-mined salt caverns. These storage technologies require specific geologic conditions. Unlined rock caverns have been used for decades to store hydrocarbons - mostly liquids such as crude oil, butane, and propane. The maximum operating pressure in unlined rock caverns is limited, since the host rock is never entirely impervious. The LRC technology allows a significant increase in the maximum operating pressure over the unlined storage cavern concept, since the gas in storage is completely contained with an impervious liner. The LRC technology has been under development in Sweden by Sydkraft since 1987. The development process has included extensive technical studies, laboratory testing, field tests, and most recently includes a storage facility being constructed in southern Sweden (Skallen). The LRC development effort has shown that the concept is technically and economically viable. The Skallen storage facility will have a rock cover of 115 meters (375 feet), a storage volume of 40,000 cubic meters (250,000 petroleum barrels), and a maximum operating pressure of 20 MPa (2,900 psi). There is a potential for commercialization of the LRC technology in the United States. Two regions were studied

  7. Geologic technical assessment of the Chacahoula Salt Dome, Louisiana, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect (OSTI)

    Snider, Anna C.; Rautman, Christopher Arthur; Looff, Karl M.

    2006-03-01

    The Chacahoula salt dome, located in southern Louisiana, approximately 66 miles southwest of New Orleans, appears to be a suitable site for a 160-million-barrel-capacity expansion facility for the U.S. Strategic Petroleum Reserve, comprising sixteen 10-million barrel underground storage caverns. The overall salt dome appears to cover an area of some 1800 acres, or approximately 2.8 square miles, at a subsea elevation of 2000 ft, which is near the top of the salt stock. The shallowest known salt is present at 1116 ft, subsea. The crest of the salt dome is relatively flatlying, outward to an elevation of -4000 ft. Below this elevation, the flanks of the dome plunge steeply in all directions. The dome appears to comprise two separate spine complexes of quasi-independently moving salt. Two mapped areas of salt overhang, located on the eastern and southeastern flanks of the salt stock, are present below -8000 ft. These regions of overhang should present no particular design issues, as the conceptual design SPR caverns are located in the western portion of the dome. The proposed cavern field may be affected by a boundary shear zone, located between the two salt spines. However, the large size of the Chacahoula salt dome suggests that there is significant design flexibility to deal with such local geologic issues.

  8. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  9. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect (OSTI)

    1998-09-30

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage

  10. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered

  11. Influence of Permian salt dissolution on distribution of shallow Niobrara gas fields, eastern Colorado

    SciTech Connect (OSTI)

    Oldham, D.W.; Smosna, R.A.

    1996-06-01

    Subsurface analysis of Permian salt and related strata in the shallow Niobrara gas area on the eastern flank of the Denver basin reveals that the location of faulted anticlines which produce gas from porous chalk is related to the occurrence of six Nippewalla Group (Leonardian) salt zones. Salt distribution is controlled by the configuration of evaporate basins during the Leonardian, truncation at a sub-Jurassic unconformity (which has completely removed Guadalupian salts), and post-Jurassic subsurface dissolution. Significant dissolution took place in response to Laramide orogeny and subsequent eastward regional groundwater flow within the Lyons (Cedar Hills) Sandstone aquifer. Initially, dissolution occurred along a regional facies change from sandstone to salt. Solution collapse allowed for cross-formational flow and removal of younger salts. Shallow Niobrara gas fields are situated above salt outliers or along regionally updip salt edges. No significant Niobrara production exists in areas where salt is absent. Structural relief across fields is related to Leonardian thickness variations, rather than subsalt offset. Seismic data reveal abrupt Leonardian thinning at the regionally updip limit of Eckley field, which has produced over 33 BCFG. Thickness of residual salt may be important in controlling the amount of gas trapped within the Niobrara. Where thick salts are preserved, structural relief is greater, the gas-water transition zone is thicker, and gas saturation is higher at the crests of faulted anticlines.

  12. Working Gas Capacity of Salt Caverns

    Gasoline and Diesel Fuel Update (EIA)

    271,785 312,003 351,017 488,268 455,729 488,698 2008-2014 Alabama 11,900 16,150 16,150 16,150 16,150 21,950 2008-2014 Arkansas 0 0 2012-2014 California 0 0 2012-2014 Colorado 0 0...

  13. Natural Gas Salt Caverns Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    397,560 456,009 512,279 715,821 654,266 702,548 1999-2014 Alabama 15,900 21,900 21,900 21,900 21,900 30,100 1999-2014 Arkansas 0 0 1999-2014 California 0 0 1999-2014 Colorado 0 0 1999-2014 Illinois 0 0 1999-2014 Indiana 0 0 1999-2014 Kansas 931 931 931 931 0 1999-2014 Kentucky 0 0 1999-2014 Louisiana 123,341 142,253 161,668 297,020 213,039 224,129 1999-2014 Maryland 0 0 1999-2014 Michigan 3,821 3,834 3,834 3,834 3,834 3,834 1999-2014 Mississippi 62,301 82,411 90,452 139,627 153,733 181,810

  14. Literature Survey Concerning the Feasibility of Remedial Leach for Select Phase I Caverns

    SciTech Connect (OSTI)

    Weber, Paula D.; Flores, Karen A.; Lord, David L.

    2015-09-01

    Bryan Mound 5 ( BM5 ) and West Hackberry 9 ( WH9 ) have the potential to create a significant amount of new storage space should the caverns be deemed "leach - ready". This study discusses the original drilling history of the caverns, surrounding geology, current stability, and, based on this culmination of data, makes a preliminary assessment of the leach potential for the cavern. The risks associated with leaching BM5 present substantial problems for the SPR . The odd shape and large amount of insoluble material make it difficult to de termine whether a targeted leach would have the desired effect and create useable ullage or further distort the shape with preferential leaching . T he likelihood of salt falls and damaged or severed casing string is significant . In addition, a targeted le ach would require the relocation of approximately 27 MMB of oil . Due to the abundance of unknown factors associated with this cavern, a targeted leach of BM5 is not recommended. A targeted leaching of the neck of WH 9 could potentially eliminate or diminis h the mid - cavern ledge result ing in a more stable cavern with a more favorable shape. A better understanding of the composition of the surrounding salt and a less complicated leaching history yields more confidence in the ability to successfully leach this region. A targeted leach of WH9 can be recommended upon the completion of a full leach plan with consideration of the impacts upon nearby caverns .

  15. Application of the multi-mechanism deformation model for three-dimensional simulations of salt : behavior for the strategic petroleum reserve.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Sobolik, Steven Ronald; Bean, James E.

    2010-07-01

    The U.S. Strategic Petroleum Reserve stores crude oil in 62 solution-mined caverns in salt domes located in Texas and Louisiana. Historically, three-dimensional geomechanical simulations of the behavior of the caverns have been performed using a power law creep model. Using this method, and calibrating the creep coefficient to field data such as cavern closure and surface subsidence, has produced varying degrees of agreement with observed phenomena. However, as new salt dome locations are considered for oil storage facilities, pre-construction geomechanical analyses are required that need site-specific parameters developed from laboratory data obtained from core samples. The multi-mechanism deformation (M-D) model is a rigorous mathematical description of both transient and steady-state creep phenomena. Recent enhancements to the numerical integration algorithm within the model have created a more numerically stable implementation of the M-D model. This report presents computational analyses to compare the results of predictions of the geomechanical behavior at the West Hackberry SPR site using both models. The recently-published results using the power law creep model produced excellent agreement with an extensive set of field data. The M-D model results show similar agreement using parameters developed directly from laboratory data. It is also used to predict the behavior for the construction and operation of oil storage caverns at a new site, to identify potential problems before a final cavern layout is designed.

  16. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  17. Field Mapping At Salt Wells Area (Coolbaugh, Et Al., 2006) |...

    Open Energy Info (EERE)

    Basis Geochemical water sampling, mineral distribution mapping, and shallow (30 cm) temperature probe measurements were conducted to expand on a previous field mapping study...

  18. Feasibility study for lowering the minimum gas pressure in solution-mined caverns based on geomechanical analyses of creep-induced damage and healing

    SciTech Connect (OSTI)

    Ratigan, J.L.; Nieland, J.D.; Devries, K.L.

    1998-12-31

    Geomechanical analyses were made to determine the minimum gas pressure allowable based on an existing stress-based criterion (Damage Potential) and an advanced constitutive model (MDCF model) capable of quantifying the level of damage and healing in rock salt. The MDCF model is a constitutive model developed for the WIPP to provide a continuum description of the dislocation and damage deformation of salt. The purpose of this study was to determine if the MDCF model is applicable for evaluating the minimum gas pressure of CNG storage caverns. Specifically, it was to be determined if this model would predict that the minimum gas pressure in the caverns could be lowered without compromising the stability of the cavern. Additionally, the healing behavior of the salt was analyzed to determine if complete healing of the damaged rock zone would occur during the period the cavern was at maximum gas pressure. Significant findings of this study are reported.

  19. Success in prevention of casing failures opposite salts, Little Knife Field, North Dakota

    SciTech Connect (OSTI)

    Rike, E.A.; Bryant, G.A.; Williams, S.D.

    1986-04-01

    The authors became aware in early 1981 of a severe problem with casing failures opposite salts in the Little Knife Field. A concerted engineering effort was initiated to isolate and to remedy the cause of failures. With the use of a relaxed invert-oil-emulsion drilling fluid and properly designed cementing programs, the problem has been arrested. In the 26 wells drilled in the Little Knife Field since initiation of this drilling program, there have been no instances of casing failure.

  20. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 2, Big Hill Site, Texas.

    SciTech Connect (OSTI)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-08-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 2 focuses on the Big Hill SPR site, located in southeastern Texas. Volumes 1, 3, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  1. Success in Prevention of Casing Failures Opposite Salts, Little Knife Field, ND

    SciTech Connect (OSTI)

    Rilke, E.A.

    1984-05-01

    Early in 1981, Gulf became aware of a severe problem with casing failures opposite salts in the Little Knife Field. A concerted effort was initiated at that time to isolate and remedy the cause of failures. By properly designing tubulars, utilizing a relaxed invert oil emulsion drilling fluid, and properly designing cementing programs, the problem has been arrested. In the 22 wells drilled in the Little Knife Field since initiation of this drilling program in 1981, there have been no instances of casing failure.

  2. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    SciTech Connect (OSTI)

    Elders, W.A.; Cohen, L.H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

  3. Supai salt karst features: Holbrook Basin, Arizona

    SciTech Connect (OSTI)

    Neal, J.T.

    1994-12-31

    More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 m depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.

  4. Observations on vapor pressure in SPR caverns : sources.

    SciTech Connect (OSTI)

    Munson, Darrell Eugene

    2010-05-01

    The oil of the Strategic Petroleum Reserve (SPR) represents a national response to any potential emergency or intentional restriction of crude oil supply to this country, and conforms to International Agreements to maintain such a reserve. As assurance this reserve oil will be available in a timely manner should a restriction in supply occur, the oil of the reserve must meet certain transportation criteria. The transportation criteria require that the oil does not evolve dangerous gas, either explosive or toxic, while in the process of transport to, or storage at, the destination facility. This requirement can be a challenge because the stored oil can acquire dissolved gases while in the SPR. There have been a series of reports analyzing in exceptional detail the reasons for the increases, or regains, in gas content; however, there remains some uncertainty in these explanations and an inability to predict why the regains occur. Where the regains are prohibitive and exceed the criteria, the oil must undergo degasification, where excess portions of the volatile gas are removed. There are only two known sources of gas regain, one is the salt dome formation itself which may contain gas inclusions from which gas can be released during oil processing or storage, and the second is increases of the gases release by the volatile components of the crude oil itself during storage, especially if the stored oil undergoes heating or is subject to biological generation processes. In this work, the earlier analyses are reexamined and significant alterations in conclusions are proposed. The alterations are based on how the fluid exchanges of brine and oil uptake gas released from domal salt during solutioning, and thereafter, during further exchanges of fluids. Transparency of the brine/oil interface and the transfer of gas across this interface remains an important unanswered question. The contribution from creep induced damage releasing gas from the salt surrounding the cavern is

  5. Evaluation of Computational Method of High Reynolds Number Slurry Flow for Caverns Backfilling

    SciTech Connect (OSTI)

    Bettin, Giorgia

    2015-05-01

    The abandonment of salt caverns used for brining or product storage poses a significant environmental and economic risk. Risk mitigation can in part be address ed by the process of backfilling which can improve the cavern geomechanical stability and reduce the risk o f fluid loss to the environment. This study evaluate s a currently available computational tool , Barracuda, to simulate such process es as slurry flow at high Reynolds number with high particle loading . Using Barracuda software, a parametric sequence of simu lations evaluated slurry flow at Re ynolds number up to 15000 and loading up to 25%. Li mitations come into the long time required to run these simulation s due in particular to the mesh size requirement at the jet nozzle. This study has found that slurry - jet width and centerline velocities are functions of Re ynold s number and volume fractio n The solid phase was found to spread less than the water - phase with a spreading rate smaller than 1 , dependent on the volume fraction. Particle size distribution does seem to have a large influence on the jet flow development. This study constitutes a first step to understand the behavior of highly loaded slurries and their ultimate application to cavern backfilling.

  6. Gas-storage calculations yield accurate cavern, inventory data

    SciTech Connect (OSTI)

    Mason, R.G. )

    1990-07-02

    This paper discusses how determining gas-storage cavern size and inventory variance is now possible with calculations based on shut-in cavern surveys. The method is the least expensive of three major methods and is quite accurate when recorded over a period of time.

  7. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    SciTech Connect (OSTI)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

  8. Feasibility report on alternative methods for cooling cavern oils at the U.S. Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Levin, Bruce L.; Lord, David L.; Hadgu, Teklu

    2005-06-01

    Oil caverns at the U.S. Strategic Petroleum Reserve (SPR) are subjected to geothermal heating from the surrounding domal salt. This process raises the temperature of the crude oil from around 75 F upon delivery to SPR to as high as 130 F after decades of storage. While this temperature regime is adequate for long-term storage, it poses challenges for offsite delivery, with warm oil evolving gases that pose handling and safety problems. SPR installed high-capacity oil coolers in the mid-1990's to mitigate the emissions problem by lowering the oil delivery temperature. These heat exchanger units use incoming raw water as the cooling fluid, and operate only during a drawdown event where incoming water displaces the outgoing oil. The design criteria for the heat exchangers are to deliver oil at 100 F or less under all drawdown conditions. Increasing crude oil vapor pressures due in part to methane intrusion in the caverns is threatening to produce sufficient emissions at or near 100 F to cause the cooled oil to violate delivery requirements. This impending problem has initiated discussion and analysis of alternative cooling methods to bring the oil temperature even lower than the original design basis of 100 F. For the study described in this report, two alternative cooling methods were explored: (1) cooling during a limited drawdown, and (2) cooling during a degas operation. Both methods employ the heat exchangers currently in place, and do not require extra equipment. An analysis was run using two heat transfer models, HEATEX, and CaveMan, both developed at Sandia National Laboratories. For cooling during a limited drawdown, the cooling water flowrate through the coolers was varied from 1:1 water:oil to about 3:1, with an increased cooling capacity of about 3-7 F for the test cavern Bryan Mound 108 depending upon seasonal temperature effects. For cooling in conjunction with a degas operation in the winter, cavern oil temperatures for the test cavern Big Hill 102 were

  9. Experimental determination of the relationship between permeability and microfracture-induced damage in bedded salt

    SciTech Connect (OSTI)

    Pfeifle, T.W.

    1998-03-01

    The development of deep underground structures (e.g., shafts, mines, storage and disposal caverns) significantly alters the stress state in the rock near the structure or opening. The effect of such an opening is to concentrate the far-field stress near the free surface. For soft rock such as salt, the concentrating effect of the opening induces deviatoric stresses in the salt that may be large enough to initiate microcracks which then propagate with time. The volume of rock susceptible to damage by microfracturing is often referred to as the disturbed rock zone and, by its nature, is expected to exhibit high permeability relative to that of the native, far-field rock. This paper presents laboratory data that characterize microfracture-induced damage and the effect this damage has on permeability for bedded salt from the Waste Isolation Pilot Plant located in southeastern New Mexico. Damage is induced in the salt through a series of tertiary creep experiments and quantified in terms of dilatant volumetric strain. The permeability of damaged specimens is then measured using nitrogen gas as the permeant. The range in damage investigated included dilatant volumetric strains from less than 0.03 percent to nearly 4.0 percent. Permeability values corresponding to these damage levels ranged from 1 {times} 10{sup {minus}18} m{sup 2} to 1 {times} 10{sup {minus}12} m{sup 2}. Two simple models were fitted to the data for use in predicting permeability from dilatant volumetric strain.

  10. Bryan Mound SPR cavern 113 remedial leach stage 1 analysis. ...

    Office of Scientific and Technical Information (OSTI)

    Title: Bryan Mound SPR cavern 113 remedial leach stage 1 analysis. The U.S. Strategic Petroleum Reserve implemented the first stage of a leach plan in 2011-2012 to expand storage ...

  11. Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-09-26

    The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

  12. Numerical Simulations of Leakage from Underground LPG Storage Caverns

    SciTech Connect (OSTI)

    Yamamoto, Hajime; Pruess, Karsten

    2004-09-01

    To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2

  13. Sandia Energy - Molten Salt Test Loop Melted Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salt Home Renewable Energy Energy News Concentrating Solar Power Solar Molten Salt Test Loop Melted Salt Previous Next Molten Salt Test Loop Melted Salt The Molten Salt Test...

  14. Development and field placement of an expansive salt-saturated concrete (ESC) for the Waste Isolation Pilot Plant (WIPP). Final report

    SciTech Connect (OSTI)

    Wakeley, L.D.; Walley, D.M.

    1986-09-01

    An expansive salt-saturated concrete (ESC) was proportioned for placement underground in halite rock at the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. Requirements for this concrete were: (1) to be chemically compatible with the host rock; (2) to remain pumpable for four hours: (3) to give net volume increase beginning at an early age, and continuing until creep closure of the salt assures sealing at the rock interface; and (4) to cure to a solid with extremely low permeability and fairly high strength. ESC was proportioned and placed underground at the WIPP in two successful field tests during FY 85 and FY 86. This report is the first of three reports about this concrete. It describes (1) the development of ESC in the laboratory, and (2) the mixture properties prior to final set. It summarizes field-placement activities in July 1985 and February 1986, when ESC was placed in test holes underground at the WIPP for two series of Small-Scale Seal Performance Tests (SSSPT). It gives data from tests of expansive behavior of the concrete at early ages and under simulated repository conditions. The second report will describe expansive behavior of ESC relative to several variables that could have an impact on its field performance and long-term stability, as determined during laboratory testing. It also will discuss possible explanations of the rather extraordinary suite of properties exhibited by ESC, as controlled by its chemical composition. The third report will describe laboratory studies of the mechanism of set retardation in a grout derived from this concrete.

  15. Nitrogen Monitoring of West Hackberry 117 Cavern Wells.

    SciTech Connect (OSTI)

    Bettin, Giorgia; Lord, David

    2015-02-01

    U.S. Strategic Petroleum Reserve (SPR) oil storage cavern West Hackberry 117 was tested under extended nitrogen monitoring following a successful mechanical integrity test in order to validate a newly developed hydrostatic column model to be used to differentiate between normal "tight" well behavior and small-leak behavior under nitrogen. High resolution wireline pressure and temperature data were collected during the test period and used in conjunction with the hydrostatic column model to predict the nitrogen/oil interface and the pressure along the entire fluid column from the bradenhead flange nominally at ground surface to bottom of brine pool. Results here and for other SPR caverns have shown that wells under long term nitrogen monitoring do not necessarily pressurize with a relative rate (P N2 /P brine) of 1. The theoretical relative pressure rate depends on the well configuration, pressure and the location of the nitrogen-oil interface and varies from well to well. For the case of WH117 the predicted rates were 0.73 for well A and 0.92 for well B. The measured relative pressurization rate for well B was consistent with the model prediction, while well A rate was found to be between 0.58-0.68. A number of possible reasons for the discrepancy between the model and measured rates of well A are possible. These include modeling inaccuracy, measurement inaccuracy or the possibility of the presence of a very small leak (below the latest calculated minimum detectable leak rate).

  16. Expected near-field thermal environments in a sequentially loaded spent-fuel or high-level waste repository in salt

    SciTech Connect (OSTI)

    Rickertsen, L.D.; Arbital, J.G.; Claiborne, H.C.

    1982-01-01

    This report describes the effect of realistic waste emplacement schedules on repository thermal environments. Virtually all estimates to date have been based on instantaneous loading of wastes having uniform properties throughout the repository. However, more realistic scenarios involving sequential emplacement of wastes reflect the gradual filling of the repository over its lifetime. These cases provide temperatures that can be less extreme than with the simple approximation. At isolated locations in the repository, the temperatures approach the instantaneous-loading limit. However, for most of the repository, temperature rises in the near-field are 10 to 40 years behind the conservative estimates depending on the waste type and the location in the repository. Results are presented for both spent-fuel and high-level reprocessing waste repositories in salt, for a regional repository concept, and for a single national repository concept. The national repository is filled sooner and therefore more closely approximates the instantaneously loaded repository. However, temperatures in the near-field are still 20/sup 0/C or more below the values in the simple model for 40 years after startup of repository emplacement operations. The results suggest that current repository design concepts based on the instantaneous-loading predictions are very conservative. Therefore, experiments to monitor temperatures in a test and evaluation facility, for example, will need to take into account the reduced temperatures in order to provide data used in predicting repository performance.

  17. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect (OSTI)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  18. Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bryan Mound Salt Dome, Texas

    SciTech Connect (OSTI)

    Neal, J.T.; Magorian, T.R.; Ahmad, S.

    1994-11-01

    This report revises the original report that was published in 1980. Some of the topics covered in the earlier report were provisional and it is now practicable to reexamine them using new or revised geotechnical data and that obtained from SPR cavern operations, which involves 16 new caverns. Revised structure maps and sections show interpretative differences as compared with the 1980 report and more definition in the dome shape and caprock structural contours, especially a major southeast-northwest trending anomalous zone. The original interpretation was of westward tilt of the dome, this revision shows a tilt to the southeast, consistent with other gravity and seismic data. This interpretation refines the evaluation of additional cavern space, by adding more salt buffer and allowing several more caverns. Additional storage space is constrained on this nearly full dome because of low-lying peripheral wetlands, but 60 MMBBL or more of additional volume could be gained in six or more new caverns. Subsidence values at Bryan Mound are among the lowest in the SPR system, averaging about 11 mm/yr (0.4 in/yr), but measurement and interpretation issues persist, as observed values are about the same as survey measurement accuracy. Periodic flooding is a continuing threat because of the coastal proximity and because peripheral portions of the site are at elevations less than 15 ft. This threat may increase slightly as future subsidence lowers the surface, but the amount is apt to be small. Caprock integrity may be affected by structural features, especially the faulting associated with anomalous zones. Injection wells have not been used extensively at Bryan Mound, but could be a practicable solution to future brine disposal needs. Environmental issues center on the areas of low elevation that are below 15 feet above mean sea level: the coastal proximity and lowland environment combined with the potential for flooding create conditions that require continuing surveillance.

  19. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  20. Geologic technical assessment of the Richton salt dome, Mississippi, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect (OSTI)

    Snider, Anna C.; Rautman, Christopher Arthur; Looff, Karl M.

    2006-01-01

    Technical assessment and remodeling of existing data indicates that the Richton salt dome, located in southeastern Mississippi, appears to be a suitable site for expansion of the U.S. Strategic Petroleum Reserve. The maximum area of salt is approximately 7 square miles, at a subsurface elevation of about -2000 ft, near the top of the salt stock. Approximately 5.8 square miles of this appears suitable for cavern development, because of restrictions imposed by modeled shallow salt overhang along several sides of the dome. The detailed geometry of the overhang currently is only poorly understood. However, the large areal extent of the Richton salt mass suggests that significant design flexibility exists for a 160-million-barrel storage facility consisting of 16 ten-million-barrel caverns. The dome itself is prominently elongated from northwest to southeast. The salt stock appears to consist of two major spine features, separated by a likely boundary shear zone trending from southwest to northeast. The dome decreases in areal extent with depth, because of salt flanks that appear to dip inward at 70-80 degrees. Caprock is present at depths as shallow as 274 ft, and the shallowest salt is documented at -425 ft. A large number of existing two-dimensional seismic profiles have been acquired crossing, and in the vicinity of, the Richton salt dome. At least selected seismic profiles should be acquired, examined, potentially reprocessed, and interpreted in an effort to understand the limitations imposed by the apparent salt overhang, should the Richton site be selected for actual expansion of the Reserve.

  1. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  2. Pre-test geological and geochemical evaluation of the Caprock, St. Peter Sandstone and formation fluids, Yakley Field, Pike County, Illinois

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    The goal of these studies is to ensure long-term stable containment of air in the underground reservoirs used in conjunction with compressed air energy storage (CAES) plants. The specific objective is to develop stability criteria and engineering guidelines for designing CAES reservoirs in each of the three major reservoir types, including aquifers, salt cavities, and mined hard rock caverns. This document characterizes the geologic nature of porous media constituents native to the aquifer field test site near Pittsfield, Illinois. The geologic samples were subjected to geochemical evaluations to determine anticipated responses to cyclic air injection, heating and moisture - conditions typical of an operating CAES reservoir. This report documents the procedures used and results obtained from these analyses.

  3. Electrolyte salts for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  4. Granular Salt Summary: Reconsolidation Principles and Applications

    SciTech Connect (OSTI)

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stuehrenberg, Dieter

    2014-07-01

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  5. WIPP Shares Expertise with Salt Club Members | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shares Expertise with Salt Club Members WIPP Shares Expertise with Salt Club Members November 26, 2013 - 12:00pm Addthis Carlsbad Field Office’s Abe Van Luik, third from right, examines rock salt taken from the Morsleben mine in Germany. Carlsbad Field Office's Abe Van Luik, third from right, examines rock salt taken from the Morsleben mine in Germany. CARLSBAD, N.M. - EM's Carlsbad Field Office (CBFO) participated in the second meeting of the Nuclear Energy Agency's (NEA) Salt Club and the

  6. Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Feasibility | Department of Energy Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility eSolar logo eSolar, under the Baseload CSP FOA, designed a 100-MW, 75% capacity factor, molten salt power tower plant, based around a molten salt receiver and heliostat field module with a nominal thermal rating of 50 MWth. They used a modular approach, which can be

  7. Slime-busting Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    past issues All Issues submit Slime-busting Salt A potential new treatment gets bacteria deep in their hiding places May 1, 2015 Slime-busting Salt Biofilms are made of...

  8. Ancient Salt Beds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancient Salt Beds Dr. Jack Griffith The key to the search for life on other planets may go through WIPP's ancient salt beds. In 2008, a team of scientists led by Jack Griffith, from the University of North Carolina, Chapel Hill, retrieved salt samples from the WIPP underground and studied them with a transmission electron microscopy lab at the Lineberger Comprehensive Cancer Center of the University of North Carolina School of Medicine. In examining fluid inclusions in the salt and solid halite

  9. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:www.nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  10. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  11. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  12. Dosimetry using silver salts

    DOE Patents [OSTI]

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  13. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  14. Hydroxycarboxylic acids and salts

    SciTech Connect (OSTI)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  15. Tennessee Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    1,200 0 NA NA 1998-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 1,200 0 0 1999-2014 Total Working Gas Capacity 860 0 0 2008-2014 Salt Caverns 0 0...

  16. Water purification using organic salts

    DOE Patents [OSTI]

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  17. Amine salts of nitroazoles

    DOE Patents [OSTI]

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  18. Electrodialysis technology for salt recovery from aluminum salt cake

    SciTech Connect (OSTI)

    Hryn, J. N.; Krumdick, G.; Graziano, D.; Sreenivasarao, K.

    2000-02-02

    Electrodialysis technology for recovering salt from aluminum salt cake is being developed at Argonne National Laboratory. Salt cake, a slag-like aluminum-industry waste stream, contains aluminum metal, salt (NaCl and KCl), and nonmetallics (primarily aluminum oxide). Salt cake can be recycled by digesting with water and filtering to recover the metal and oxide values. A major obstacle to widespread salt cake recycling is the cost of recovering salt from the process brine. Electrodialysis technology developed at Argonne appears to be a cost-effective approach to handling the salt brines, compared to evaporation or disposal. In Argonne's technology, the salt brine is concentrated until salt crystals are precipitated in the electrodialysis stack; the crystals are recovered downstream. The technology is being evaluated on the pilot scale using Eurodia's EUR 40-76-5 stack.

  19. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salt Lake City Gamma Shield Thunder Exercise Concludes National Nuclear Security Administration (NNSA) and the FBI announced today the completion of the Gamma Shield Thunder counterterrorism table-top exercise at LDS Hospital. The exercise is part of NNSA's Silent Thunder table-top series, which is aimed at giving federal, state and local

    6 th US/German Workshop on Salt Repository Research, Design, and Operation Hotel Pullmann Dresden Newa Dresden September 7 - 9, 2015 September 7- Monday

  20. Salt Selected (FINAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WHY SALT WAS SELECTED AS A DISPOSAL MEDIUM Waste Isolation Pilot Plant U.S. Department Of Energy Government officials and scientists chose the Waste Isolation Pilot Plant (WIPP) site through a selection process that started in the 1950s. At that time, the National Academy of Sciences conducted a nationwide search for geological formations stable enough to contain radioactive wastes for thousands of years. In 1955, after extensive study, salt deposits were recommended as a promising medium for

  1. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  2. Fundamental Properties of Salts

    SciTech Connect (OSTI)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  3. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    th US/German Workshop on Salt Repository Research, Design, and Operation Hotel Pullman Dresden Newa September 7 - 9, 2015 September 7- Monday 08:00-08:30 Registration 08:30-08:50 Welcome by the organizers T. Lautsch, DBE F. Hansen, SNL W. Steininger, PTKA 08:50-09:15 Welcome by BMWi U. Borak, BMWi 09:15-09:30 Welcome by USDOE N. Buschman, US DOE 09:30-10:00 NEA Salt Club J. Mönig, GRS SAFETY CASE ISSUES 10:00-10:30 WIPP recovery F. Hansen, SNL 10:30-11:00 Coffee break and photo event

  4. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Salt...

  5. Electrolytic orthoborate salts for lithium batteries (Patent...

    Office of Scientific and Technical Information (OSTI)

    Electrolytic orthoborate salts for lithium batteries Title: Electrolytic orthoborate salts for lithium batteries Orthoborate salts suitable for use as electrolytes in lithium ...

  6. Sandia Energy - Molten Salt Test Loop Commissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy News EC News & Events Concentrating Solar Power Solar Molten Salt Test Loop Commissioning Previous Next Molten Salt Test Loop Commissioning The Molten Salt...

  7. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  8. Salt repository design approach

    SciTech Connect (OSTI)

    Matthews, S.C.

    1983-01-01

    This paper presents a summary discussion of the approaches that have been and will be taken in design of repository facilities for use with disposal of radioactive wastes in salt formations. Since specific sites have yet to be identified, the discussion is at a general level, supplemented with illustrative examples where appropriate. 5 references, 1 figure.

  9. Strategic petroleum reserve (SPR) geological site characterization report, Bayou Choctaw Salt Dome. Sections I and II

    SciTech Connect (OSTI)

    Hogan, R.G.

    1981-03-01

    This report comprises two sections: Bayou Choctaw cavern stability issues, and geological site characterization of Bayou Choctaw. (DLC)

  10. Actinide removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  11. Metals removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  12. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Capacity Definitions Key Terms Definition Aquifer Storage Field A sub-surface facility for storing natural gas, consisting of water-bearing sands topped by an impermeable cap rock. Depleted Reservoir Storage Field A sub-surface natural geological reservoir, usually a depleted gas or oil field, used for storing natural gas. Natural Gas A gaseous mixture of hydrocarbon compounds, the primary one being methane. Salt Dome Storage Field (Salt Cavern) A storage facility that is a cavern hollowed out

  13. Structure and vascular function of MEKK3cerebral cavernous malformations 2 complex

    SciTech Connect (OSTI)

    Fisher, Oriana S.; Deng, Hanqiang; Liu, Dou; Zhang, Ya; Wei, Rong; Deng, Yong; Zhang, Fan; Louvi, Angeliki; Turk, Benjamin E.; Boggon, Titus J.; Su, Bing

    2015-08-03

    Cerebral cavernous malformations 2 (CCM2) loss is associated with the familial form of CCM disease. The protein kinase MEKK3 (MAP3K3) is essential for embryonic angiogenesis in mice and interacts physically with CCM2, but how this interaction is mediated and its relevance to cerebral vasculature are unknown. Here we report that Mekk3 plays an intrinsic role in embryonic vascular development. Inducible endothelial Mekk3 knockout in neonatal mice is lethal due to multiple intracranial haemorrhages and brain blood vessels leakage. We discover direct interaction between CCM2 harmonin homology domain (HHD) and the N terminus of MEKK3, and determine a 2.35 cocrystal structure. We find Mekk3 deficiency impairs neurovascular integrity, which is partially dependent on RhoROCK signalling, and that disruption of MEKK3:CCM2 interaction leads to similar neurovascular leakage. We conclude that CCM2:MEKK3-mediated regulation of Rho signalling is required for maintenance of neurovascular integrity, unravelling a mechanism by which CCM2 loss leads to disease.

  14. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  15. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  16. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  17. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Salt Repository Research, Design, and Operation La Fonda Hotel Santa Fe, New Mexico September 7 - 11, 2014 Please join us Sunday September 7, 2014 for a welcome and reception at the La Fonda Hotel hosted by Sandia National Laboratories beginning at 6:00 PM. Day 1 Technical Agenda September 8 - Monday 08:00-08:45 Sign-in and distribution of meeting materials 08:45-09:45 Welcome addresses H.C. Pape (BMWi) US-DOE Offices Highlights of US/German Collaboration F. Hansen (SNL) W. Steininger (PTKA)

  18. Electrolyte salts for nonaqueous electrolytes

    DOE Patents [OSTI]

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  19. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  20. Electrochromic salts, solutions, and devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky,7,064,212 T. Mark

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  1. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  2. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  3. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    SciTech Connect (OSTI)

    Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

    2012-02-01

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be

  4. Long-Term Outcomes of Stereotactic Radiosurgery for Treatment of Cavernous Sinus Meningiomas

    SciTech Connect (OSTI)

    Santos, Marcos Antonio dos; Calvo, Felipe A.; Samblas, Jose; Marsiglia, Hugo

    2011-12-01

    Purpose: Patients with cavernous sinus meningiomas (CSM) have an elevated risk of surgical morbidity and mortality. Recurrence is often observed after partial resection. Stereotactic radiosurgery (SRS), either alone or combined with surgery, represents an important advance in CSM management, but long-term results are lacking. Methods and Materials: A total of 88 CSM patients, treated from January 1991 to December 2005, were retrospectively reviewed. The mean follow-up was 86.8 months (range, 17.1-179.4 months). Among the patients, 22 were followed for more than 10 years. There was a female predominance (84.1%). The age varied from 16 to 90 years (mean, 51.6). In all, 47 patients (53.4%) received SRS alone, and 41 patients (46.6%) had undergone surgery before SRS. A dose of 14 Gy was prescribed to isodose curves from 50% to 90%. In 25 patients (28.4%), as a result of the proximity to organs at risk, the prescribed dose did not completely cover the target. Results: After SRS, 65 (73.8%) patients presented with tumor volume reduction; 14 (15.9%) remained stable, and 9 (10.2%) had tumor progression. The progression-free survival was 92.5% at 5 years, and 82.5% at 10 years. Age, sex, maximal diameter of the treated tumor, previous surgery, and complete target coverage did not show significant associations with prognosis. Among the 88 treated patients, 17 experienced morbidity that was related to SRS, and 6 of these patients spontaneously recovered. Conclusions: SRS is an effective and safe treatment for CSM, feasible either in the primary or the postsurgical setting. Incomplete coverage of the target did not worsen outcomes. More than 80% of the patients remained free of disease progression during long-term follow-up.

  5. DOE - Office of Legacy Management -- Salt_Lake

    Office of Legacy Management (LM)

    Salt_Lake Salt Lake City Sites ut_map Salt Lake City Disposal Site Salt Lake City Processing Site Last Updated: 12/14/2015

  6. Plant salt-tolerance mechanisms

    SciTech Connect (OSTI)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  7. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  8. Structural Interactions within Lithium Salt Solvates: Acyclic...

    Office of Scientific and Technical Information (OSTI)

    Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters Citation Details In-Document Search Title: Structural Interactions within Lithium Salt Solvates: ...

  9. Enterprise Assessments Salt Waste Processing Facility Construction...

    Office of Environmental Management (EM)

    Salt Waste Processing Facility Construction Quality and Fire Protection Systems Follow-up Review at the Savannah River Site - January 2016 Enterprise Assessments Salt Waste ...

  10. Remediated Nitrate Salt Drums Background

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Providing Additional Pressure Relief to the Remediated Nitrate Salt Drums Background After the radiological event on February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), Department of Energy (DOE) scientists from several national laboratories conducted extensive experiments and modeling studies to determine what caused the drum to breach. These investigations indicated that an incompatible mixture of nitrate salts and an organic absorbent created the conditions that resulted in an

  11. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect

    SciTech Connect (OSTI)

    Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie

    2014-09-14

    To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (?45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 and an overall minimum RMSD of 1.9 from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ? 1.0 C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.

  12. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    SciTech Connect (OSTI)

    Carr, J.E.; Halasz, S.J.; Peters, H.B.

    1980-01-01

    The salt within these domes has penetrated as much as 20,000 feet of Mesozoic and Cenozoic strata, and presently extends to within 120 to 800 feet of the land surface. The salt penetrates or closely underlies major freshwater and salinewater aquifers within the basin. To provide a safe repository for radioactive wastes within one or more of these domes, a thorough understanding of the geohydrology needs to be obtained, and the hydrologic stability of the domes needs to be established for the expected life of the storage facility. Dissolution may exist at all four candidate salt domes, possibly through contact with Cretaceous or Tertiary aquifers, or through fault systems in the vicinity of the domes. Strata overlying and surrounding Palestine and Keechi Salt Domes have been arched into steeply-dipping folds that are complexly faulted. Similar conditions exist at Oakwood and Mount Sylvan Domes, except that the Tertiary strata have been only moderately disturbed. Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome.

  13. Salt site performance assessment activities

    SciTech Connect (OSTI)

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  14. Production of chlorine from chloride salts

    DOE Patents [OSTI]

    Rohrmann, Charles A. (Kennewick, WA)

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  15. Savannah River Site - Salt Waste Processing Facility: Briefing...

    Office of Environmental Management (EM)

    Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing ...

  16. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Reddy, Ramana G.

    2013-10-23

    /no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

  17. Solar on Salt Lake City Convention Center

    Broader source: Energy.gov [DOE]

    This photograph features the Calvin L. Rampton Salt Palace Convention Center, which will soon become a solar power-producing giant. Salt Lake County and its project partners announced plans to...

  18. Salt Wells Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333,...

  19. Brine Migration Experimental Studies for Salt Repositories

    Broader source: Energy.gov [DOE]

    Experiments were used to examine water content in Permian salt samples including impact of variation in thermal regime on water content of evaporites and other mineral species, behavior of brine inclusions in salt, and evolution of the gas/liquid brine/salt system.

  20. Strategic Petroleum Reserve, West Hackberry oil storage cavern fire and spill of September 21, 1978: an environmental assessment. Final report

    SciTech Connect (OSTI)

    Taylor, A

    1980-02-29

    This report summarizes an environmental assessment of the fire and oil spill at the Strategic Petroleum Reserve site, West Hackberry, Louisiana. Subjective identification of oil contaminated habitats was supported by a more rigorous classification of samples utilizing discriminant analysis. Fourteen contaminated stations were identified along the shore of Black Lake just north and west of Wellpad 6, encompassing approximately 9 hectares. Seasonal variation in the structures of marsh and lake bottom communities in this contaminated area were not generally distinguishable from that of similar communities in uncontaminated habitats along the southern and southeastern shores of Black Lake. The major impact of spilled oil on the marsh vegetation was to accelerate the natural marsh deterioration which will eventually impact animals dependent on marsh vegetation for habitat structure. Vanadium, the predominate trace metal in the oil, and pyrogenic products due to the fire were found at the most distant sampling site (5 km) from Cavern 6 during Phase I, but were not detected downwind of the fire in excess of background levels in the later phases. Remote sensing evaluation of vegetation under the plume also indicated that stress existed immediately after the fire, but had disappeared by the end of the 1-year survey.

  1. Thermophysical properties of reconsolidating crushed salt.

    SciTech Connect (OSTI)

    Bauer, Stephen J.; Urquhart, Alexander

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300oC, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  2. Field desorption of lithium fluoride

    SciTech Connect (OSTI)

    Stintz, A.; Panitz, J.A. )

    1995-03-01

    Layers of lithium fluoride (LiF), [similar to]10 nm thick, were field desorbed from iridium substrates at temperatures between 25 and 600 [degree]C. The electric field was increased until desorption of the salt layer occurred. Combined mass spectroscopy and field desorption microscopy characterized the desorption process. During desorption, ions of the form (LiF)[sub [ital n

  3. Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions Authors: Luo, Y., Roux, B. Accurate force fields are critical for meaningful simulation studies of highly concentrated electrolytes. The ion models that are widely used in biomolecular simulations do not necessarily reproduce the correct behavior at finite concentrations. In principle, the osmotic pressure is a key thermodynamic property that could be used to test and refine force

  4. Magneto-hydrodynamic detection of vortex shedding for molten salt flow sensing.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Crocker, Robert W.

    2012-09-01

    High temperature flow sensors must be developed for use with molten salts systems at temperatures in excess of 600%C2%B0C. A novel magneto-hydrodynamic sensing approach was investigated. A prototype sensor was developed and tested in an aqueous sodium chloride solution as a surrogate for molten salt. Despite that the electrical conductivity was a factor of three less than molten salts, it was found that the electrical conductivity of an electrolyte was too low to adequately resolve the signal amidst surrounding noise. This sensor concept is expected to work well with any liquid metal application, as the generated magnetic field scales proportionately with electrical conductivity.

  5. Salt restrains maturation in subsalt plays

    SciTech Connect (OSTI)

    Mello, U.T. ); Anderson, R.N.; Karner, G.D. . Lamont-Doherty Earth Observatory)

    1994-01-31

    The thermal positive anomaly associated with the top of salt diapirs has attracted significant attention in modifying the temperature structure and history of a sedimentary basin. Here the authors explore the role of the negative thermal anomaly beneath salt in modifying the maturation history of the source rocks in subsalt sediments. Organic matter maturation is believed to follow temperature dependent chemical reactions. Therefore, any temperature anomaly associated with salt masses affects the nearby maturation of potential source rocks. The level of maturity of source rocks close to salt diapirs will differ from that predicted based on regional trends. The impact of the thermal anomaly on a given point will depend on the duration and distance of the thermal anomaly to this particular point. Consequently, the maturation history of source rocks in salt basins is closely related to the salt motion history, implying that a transient thermal analysis is necessary to evaluate the sure impact on maturation of the thermal anomalies associated with salt diapirism. The paper describes vitrinite kinetics, salt in evolving basins, correlation of salt and temperature, salt dome heat drains, and restrained maturation.

  6. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    SciTech Connect (OSTI)

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage

  7. Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bayou Choctaw salt dome, Louisiana

    SciTech Connect (OSTI)

    Neal, J.T.; Magorian, T.R.; Byrne, K.O.; Denzler, S.

    1993-09-01

    This report revises and updates the geologic site characterization report that was published in 1980. Revised structure maps and sections show interpretative differences in the dome shape and caprock structural contours, especially a major east-west trending shear zone, not mapped in the 1980 report. Excessive gas influx in Caverns 18 and 20 may be associated with this shear zone. Subsidence values at Bayou Choctaw are among the lowest in the SPR system, averaging only about 10 mm/yr but measurement and interpretation issues persist, as observed values often approximate measurement accuracy. Periodic, temporary flooding is a continuing concern because of the low site elevation (less than 10 ft), and this may intensify as future subsidence lowers the surface even further. Cavern 4 was re-sonared in 1992 and the profiles suggest that significant change has not occurred since 1980, thereby reducing the uncertainty of possible overburden collapse -- as occurred at Cavern 7 in 1954. Other potential integrity issues persist, such as the proximity of Cavern 20 to the dome edge, and the narrow web separating Caverns 15 and 17. Injection wells have been used for the disposal of brine but have been only marginally effective thus far; recompletions into more permeable lower Pleistocene gravels may be a practical way of increasing injection capacity and brinefield efficiency. Cavern storage space is limited on this already crowded dome, but 15 MMBBL could be gained by enlarging Cavern 19 and by constructing a new cavern beneath and slightly north of abandoned Cavern 13. Environmental issues center on the low site elevation: the backswamp environment combined with the potential for periodic flooding create conditions that will require continuing surveillance.

  8. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  9. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  10. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOE Patents [OSTI]

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  11. Noncentrosymmetric salt inclusion oxides: Role of salt lattices and counter ions in bulk polarity

    SciTech Connect (OSTI)

    West, J. Palmer; Hwu, Shiou-Jyh

    2012-11-15

    The synthesis and structural features of a newly emerged class of salt-inclusion solids (SISs) are reviewed. The descriptive chemistry with respect to the role of ionic salt and its correlation with bulk noncentrosymmetricity and polarity of the covalent oxide lattice in question is discussed by means of structure analysis. These unprecedented discoveries have opened doors to novel materials synthesis via the utilities of salt-inclusion chemistry (SIC) that are otherwise known as the molten-salt approach. The result of these investigations prove that the bulk acentricity, or cancellation of which, can be accounted for from the perspective of ionic and/or salt lattices. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of newly emerged salt-inclusion solids are reviewed. Black-Right-Pointing-Pointer Salt lattice and its symmetry correlation with polar framework are discussed. Black-Right-Pointing-Pointer Preservation of acentricity is accounted for from the perspective of ionic and salt lattices.

  12. Metal salt catalysts for enhancing hydrogen spillover

    DOE Patents [OSTI]

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  13. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  14. Protic Salt Polymer Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protic Salt Polymer Membranes Protic Salt Polymer Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. More Documents & Publications Design and Development of High-Performance Polymer Fuel Cell Membranes High Temperature Membrane with HUmidification-Independent Cluster Structure Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications

  15. Solar Policy Environment: Salt Lake

    Office of Energy Efficiency and Renewable Energy (EERE)

    The overall objective of the “Solar Salt Lake” (SSL) team is to develop a fully-scoped city and county-level implementation plan that will facilitate at least an additional ten megawatts of solar photovoltaic (PV) installations in the government, commercial, industrial, and residential sectors by 2015. To achieve this aggressive goal, the program strategy includes a combination of barrier identification, research, and policy analysis that utilizes the input of various stakeholders. Coupled with these activities will be the development and implementation of pilot installations in the government and residential sectors, and broad outreach to builders and potential practitioners of solar energy products in the process. In this way, while creating mechanisms to enable a demand for solar, SSL will also facilitate capacity building for suppliers, thereby helping to ensure long-term sustainability for the regional market.

  16. Field Mapping At Salt Wells Area (Coolbaugh, Et Al., 2004) |...

    Open Energy Info (EERE)

    Details regarding the complete hardware specifications of the device are included in the body of the article. A custom geologic mapping software applet developed by Gary Edmondo...

  17. Evaluation of Salt Coolants for Reactor Applications

    SciTech Connect (OSTI)

    Williams, David F

    2008-01-01

    Molten fluorides were initially developed for use in the nuclear industry as the high-temperature fluid fuel for the Molten Salt Reactor (MSR). The U.S. Department of Energy Office of Nuclear Energy is exploring the use of molten salts as primary and secondary coolants in a new generation of solid-fueled, thermal-spectrum, hightemperature reactors. This paper provides a review of relevant properties for use in evaluation and ranking of salt coolants for high-temperature reactors. Nuclear, physical, and chemical properties were reviewed, and metrics for evaluation are recommended. Chemical properties of the salt were examined to identify factors that affect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented.

  18. SEPARATION OF METAL SALTS BY ADSORPTION

    DOE Patents [OSTI]

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  19. Remediated Nitrate Salt Drums Safety Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Safety Update Remediated Nitrate Salt Drums Safety Update Topic: Mr. Nickless, Environmental Management Los Alamos, Provided a presentation on the status of the Nitrate Salt waste at Los Alamos.

  20. Underground Salt Haul Truck Fire at the Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant February 5, 2014 March 2014 Salt Haul Truck Fire at the Waste Isolation Pilot Plant Salt Haul Truck Fire at the ...

  1. Magnetotellurics At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Salt Wells Area (Bureau of...

  2. Sandia Energy - 2015 VIII MECHANICAL BEHAVIOR OF SALT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VIII MECHANICAL BEHAVIOR OF SALT Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops 2015 VIII MECHANICAL BEHAVIOR OF SALT 2015 VIII MECHANICAL BEHAVIOR OF...

  3. THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project...

    Office of Scientific and Technical Information (OSTI)

    THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project GNOME Citation Details In-Document Search Title: THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project ...

  4. Geothermal Literature Review At Salt Wells Area (Faulds, Et Al...

    Open Energy Info (EERE)

    Salt Wells Area (Faulds, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salt Wells Area (Faulds,...

  5. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  6. Salt Waste Processing Facility Fact Sheet | Department of Energy

    Office of Environmental Management (EM)

    Waste Management Tank Waste and Waste Processing Salt Waste Processing Facility Fact Sheet Salt Waste Processing Facility Fact Sheet Nuclear material production operations at ...

  7. Remediated Nitrate Salt Drums Storage at Los Alamos National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory As a part of its national security ...

  8. Sandia Energy - Molten Nitrate Salt Initial Flow Testing is a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Initial Flow Testing is a Tremendous Success Home Renewable Energy News Concentrating Solar Power Solar Molten Nitrate Salt Initial Flow Testing is a Tremendous...

  9. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources (Redirected from Salt Lake City, UT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map...

  10. Salt Lake County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek Valley, Utah Magna, Utah Midvale, Utah Millcreek, Utah Mount Olympus, Utah Murray, Utah Riverton, Utah Salt Lake City, Utah Sandy, Utah South Jordan, Utah South Salt...

  11. 2016 US/German Workshop on Salt Repository Research, Design,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USGerman Workshop on Salt Repository Research, Design, and Operation - Sandia Energy ... Workshop on Salt Repository Research, Design, and Operation HomeStationary Power...

  12. Voluntary Protection Program Onsite Review, Parsons Corp., Salt...

    Office of Environmental Management (EM)

    Corp., Salt Waste Processing Facility Construction Project - May 2014 Voluntary Protection Program Onsite Review, Parsons Corp., Salt Waste Processing Facility Construction Project...

  13. DOE - Office of Legacy Management -- Penn Salt Manufacturing...

    Office of Legacy Management (LM)

    Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from...

  14. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy...

    Open Energy Info (EERE)

    Ormat Technologies Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Ormat Technologies Salt Wells...

  15. Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2002 -...

  16. Compound and Elemental Analysis At Salt Wells Area (Shevenell...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date...

  17. Conceptual Model At Salt Wells Area (Faulds, Et Al., 2011) |...

    Open Energy Info (EERE)

    At Salt Wells Area (Faulds, Et Al., 2011) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Conceptual Model Activity Date 2011 Usefulness...

  18. Savannah River Site - Salt Waste Processing Facility Independent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Site - Salt Waste Processing Facility Independent Technical Review Full Document and Summary Versions are available for download PDF icon Savannah River Site - Salt ...

  19. Independent Oversight Review, Savannah River Site Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing...

  20. Savannah River Site - Salt Waste Processing Facility Independent...

    Office of Environmental Management (EM)

    SALT WASTE PROCESSING FACILITY INDEPENDENT TECHNICAL REVIEW November 22, 2006 Conducted ... Leader SPD-SWPF-217 SPD-SWPF-217: Salt Waste Processing Facility Independent Technical ...

  1. Savannah River Site Salt Waste Processing Facility Technology...

    Office of Environmental Management (EM)

    Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report ... of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness ...

  2. Project Profile: Deep Eutectic Salt Formulations Suitable as...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Halotechnics ...

  3. Molten salt heat transfer fluids and thermal storage technology...

    Office of Scientific and Technical Information (OSTI)

    Molten salt heat transfer fluids and thermal storage technology. Citation Details In-Document Search Title: Molten salt heat transfer fluids and thermal storage technology. No ...

  4. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar ...

  5. Novel Molten Salts Thermal Energy Storage for Concentrating Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation This presentation ...

  6. Sandia Energy - Molten Salt Test Loop Pump Installed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy News Concentrating Solar Power Solar Energy Storage Systems Molten Salt Test Loop Pump Installed Previous Next Molten Salt Test Loop Pump Installed The pump was...

  7. Assessment of Nuclear Safety Culture at the Salt Waste Processing...

    Office of Environmental Management (EM)

    Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility ... of Nuclear Safety Culture at the Salt Waste Processing Facility Project Table of ...

  8. Construction of Salt Waste Processing Facility (SWPF) | Department...

    Office of Environmental Management (EM)

    of Salt Waste Processing Facility (SWPF) Construction of Salt Waste Processing Facility (SWPF) Presentation from the 2015 DOE National Cleanup Workshop by Frank Sheppard, Project ...

  9. Review of the Savannah River Site Salt Waste Processing Facility...

    Office of Environmental Management (EM)

    Independent Oversight Review of the Savannah River Site Salt Waste Processing Facility ... and Component SWGR Switch Gear SWPF Salt Waste Processing Facility TSRs Technical Safety ...

  10. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    SciTech Connect (OSTI)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-02-25

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

  11. Analytical chemistry of aluminum salt cake

    SciTech Connect (OSTI)

    Graczyk, D.G.; Essling, A.M.; Huff, E.A.; Smith, F.P.; Snyder, C.T.

    1997-02-01

    Component phases of Al salt cake or products from processing salt cake, resist dissolution, a key first step in most analysis procedures. In this work (analysis support to a study of conversion of salt cake fines to value-added oxide products), analysis methods were adapted or devised for determining leachable salt, total halides (Cl and F), Al metal, and elemental composition. Leaching of salt cake fines was by ultrasonic agitation with deionized water. The leachate was analyzed for anions by ion chromatography and for cations by ICP-atomic emission spectroscopy. Only chloride could be measured in the anions, and charge balances between cations and chloride were near unity, indicating that all major dissolved species were chloride salts. For total halides, the chloride and fluorides components were first decomposed by KOH fusion, and the dissolved chloride and fluoride were measured by ion chromatography. Al metal in the fines was determined by a hydrogen evolution procedure adapted for submilligram quantities of metallic Al: the Al was reacted with HCl in a closed system containing a measured amount of high-purity He. After reaction, the H/He ratio was measured by mass spectroscopy. Recoveries of Al metal standards (about 30mg) averaged 93%. Comparison of the acid evolution with caustic reaction of the Al metal showed virtually identical results, but reaction was faster in the acid medium. Decomposition of the salt cake with mineral acids left residues that had to be dissolved by fusion with Na carbonate. Better dissolution was obtained by fusing the salt cake with Li tetraborate; the resulting solution could be used for accurate Al assay of salt cake materials by classical 8-hydroxyquinolate gravimetry.

  12. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  13. Salt Selection for the LS-VHTR

    SciTech Connect (OSTI)

    Williams, D.F.; Clarno, K.T.

    2006-07-01

    Molten fluorides were initially developed for use in the nuclear industry as the high temperature fluid-fuel for a Molten Salt Reactor (MSR). The Office of Nuclear Energy is exploring the use of molten fluorides as a primary coolant (rather than helium) in an Advanced High Temperature Reactor (AHTR) design, also know as the Liquid-Salt cooled Very High Temperature Reactor (LS-VHTR). This paper provides a review of relevant properties for use in evaluation and ranking of candidate coolants for the LS-VHTR. Nuclear, physical, and chemical properties were reviewed and metrics for evaluation are recommended. Chemical properties of the salt were examined for the purpose of identifying factors that effect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented. (authors)

  14. Salt Lake City- High Performance Buildings Requirement

    Broader source: Energy.gov [DOE]

    Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

  15. Director, Salt Waste Processing Facility Project Office

    Broader source: Energy.gov [DOE]

    This position is located within The Department of Energy (DOE) Savannah River (SR) Operations Office, Salt Waste Processing Facility Project Office (SWPFPO). SR is located in Aiken, South Carolina....

  16. Liquid salt environment stress-rupture testing

    DOE Patents [OSTI]

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  17. Molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  18. Molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  19. Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.

    SciTech Connect (OSTI)

    Pacheco, James Edward; Wolf, Thorsten; Muley, Nishant

    2013-03-01

    Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

  20. Ammonia Solubility in High Concentration Salt Solutions

    SciTech Connect (OSTI)

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  1. Thermal Characterization of Molten Salt Systems

    SciTech Connect (OSTI)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  2. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOE Patents [OSTI]

    Lee, Kien-yin; Coburn, Michael D.

    1985-01-01

    Ethylenediamine salt of 5-nitrotetrazole and preparation. This salt has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol % of ammonium nitrate, is close to the CO.sub.2 -balanced composition of 90 mol %, and has a relatively low melting point of 110.5 C. making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C. and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  3. Treatment of Remediated Nitrate Salts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treatment of Remediated Nitrate Salts Treatment of Remediated Nitrate Salts Topic: Plan for remediation the nitrate salt waste from the 3706 campaign that is currently stored at Material Disposal Area G, presenter was David Funk, LANS. Nitrate Salts - November 18, 2015 (1 MB

  4. Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives

    Office of Energy Efficiency and Renewable Energy (EERE)

    CARLSBAD, N.M. – Proceeds from a unique arrangement that turned excavated salt from EM’s Waste Isolation Pilot Plant (WIPP) into a usable commodity have supported an array of public projects, including field trips focusing on conservation education for about 600 elementary-age students.

  5. Low temperature oxidation using support molten salt catalysts

    DOE Patents [OSTI]

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  6. Liquid fuel molten salt reactors for thorium utilization (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Journal Article: Liquid fuel molten salt reactors for thorium utilization Citation Details In-Document Search This content will become publicly available on April 8, 2017 Title: Liquid fuel molten salt reactors for thorium utilization Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and

  7. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    SciTech Connect (OSTI)

    Tilley, Drake; Kelly, Bruce; Burkholder, Frank

    2014-12-12

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler

  8. Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)

    SciTech Connect (OSTI)

    Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D.

    2012-07-01

    The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

  9. Characterization of the molten salt reactor experiment fuel and flush salts

    SciTech Connect (OSTI)

    Williams, D.F.; Peretz, F.J.

    1996-05-01

    Wise decisions about the handling and disposition of spent fuel from the Molten Salt Reactor Experiment (MSRE) must be based upon an understanding of the physical, chemical, and radiological properties of the frozen fuel and flush salts. These {open_quotes}static{close_quotes} properties can be inferred from the extensive documentation of process history maintained during reactor operation and the knowledge gained in laboratory development studies. Just as important as the description of the salt itself is an understanding of the dynamic processes which continue to transform the salt composition and govern its present and potential physicochemical behavior. A complete characterization must include a phenomenological characterization in addition to the typical summary of properties. This paper reports on the current state of characterization of the fuel and flush salts needed to support waste management decisions.

  10. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOE Patents [OSTI]

    Lee, K.; Coburn, M.D.

    1984-05-17

    The ethylenediamine salt of 5-nitrotetrazole has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol% of ammonium nitrate, is close to the CO/sub 2/-balanced composition of 90 mol%, and has a relatively low melting point of 110.5 C making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  11. Corrosion of aluminides by molten nitrate salt

    SciTech Connect (OSTI)

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  12. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  13. Fast Spectrum Molten Salt Reactor Options

    SciTech Connect (OSTI)

    Gehin, Jess C; Holcomb, David Eugene; Flanagan, George F; Patton, Bruce W; Howard, Rob L; Harrison, Thomas J

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  14. Potential vertical movement of large heat-generating waste packages in salt.

    SciTech Connect (OSTI)

    Clayton, Daniel James; Martinez, Mario J.; Hardin, Ernest L.

    2013-05-01

    With renewed interest in disposal of heat-generating waste in bedded or domal salt formations, scoping analyses were conducted to estimate rates of waste package vertical movement. Vertical movement is found to result from thermal expansion, from upward creep or heave of the near-field salt, and from downward buoyant forces on the waste package. A two-pronged analysis approach was used, with thermal-mechanical creep modeling, and coupled thermal-viscous flow modeling. The thermal-mechanical approach used well-studied salt constitutive models, while the thermal-viscous approach represented the salt as a highly viscous fluid. The Sierra suite of coupled simulation codes was used for both approaches. The waste package in all simulations was a right-circular cylinder with the density of steel, in horizontal orientation. A time-decaying heat generation function was used to represent commercial spent fuel with typical burnup and 50-year age. Results from the thermal-mechanical base case showed approximately 27 cm initial uplift of the package, followed by gradual relaxation closely following the calculated temperature history. A similar displacement history was obtained with the package density set equal to that of salt. The slight difference in these runs is attributable to buoyant displacement (sinking) and is on the order of 1 mm in 2,000 years. Without heat generation the displacement stabilizes at a fraction of millimeter after a few hundred years. Results from thermal-viscous model were similar, except that the rate of sinking was constant after cooldown, at approximately 0.15 mm per 1,000 yr. In summary, all calculations showed vertical movement on the order of 1 mm or less in 2,000 yr, including calculations using well-established constitutive models for temperature-dependent salt deformation. Based on this finding, displacement of waste packages in a salt repository is not a significant repository performance issue.

  15. Microsoft Word - Figure_05.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    24 0 1 2 3 4 2013 2014 2015 2016 2017 All Storage Fields Other than Salt Caverns Salt Caverns trillion cubic feet Trillion Cubic Feet Figure 5 Note: Geographic coverage is the 50 states and the District of Columbia. Alaska was added to U.S. total as of January 2013. Source: Energy Information Administration (EIA): Form EIA-191, "Monthly Underground Gas Storage Report." Billion Cubic Meters Figure 5. Working gas in underground natural gas storage in the United States, 2013-2016

  16. Combined gettering and molten salt process for tritium recovery from lithium

    SciTech Connect (OSTI)

    Sze, D.K.; Finn, P.A.; Bartlit, J.; Tanaka, S.; Teria, T.; Yamawaki, M.

    1988-02-01

    A new tritium recovery concept from lithium has been developed as part of the US/Japan collaboration on Reversed-Field Pinch Reactor Design Studies. This concept combines the ..gamma..-gettering process as the front end to recover tritium from the coolant, and a molten salt recovery process to extract tritium for fuel processing. A secondary lithium is used to regenerate the tritium from the gettering bed and, in the process, increases the tritium concentration by a factor of about 20. That way, the required size of the molten salt process becomes very small. A potential problem is the possible poisoning of the gettering bed by the salt dissolved in lithium. 16 refs., 6 figs.

  17. Brine migration test report: Asse Salt Mine, Federal Republic of Germany: Technical report

    SciTech Connect (OSTI)

    Coyle, A.J.; Eckert, J.; Kalia, H.

    1987-01-01

    This report presents a summary of Brine Migration Tests which were undertaken at the Asse mine of the Federal Republic of Germany (FRG) under a bilateral US/FRG agreement. This experiment simulates a nuclear waste repository at the 800-m (2624-ft) level of the Asse salt mine in the Federal Republic of Germany. This report describes the Asse salt mine, the test equipment, and the pretest properties of the salt in the mine and in the vicinity of the test area. Also included are selected test data (for the first 28 months of operation) on the following: brine migration rates, thermomechaical behavior of the salt (including room closure, stress reading, and thermal profiles), borehole gas pressures, and borehole gas analyses. In addition to field data, laboratory analyses of pretest salt properties are included in this report. The operational phase of these experiments was completed on October 4, 1985, with the commencement of cooldown and the start of posttest activities. 7 refs., 68 figs., 48 tabs.

  18. High Temperature Fluoride Salt Test Loop

    SciTech Connect (OSTI)

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  19. Subsidence at Boling salt dome: results of multiple resource production

    SciTech Connect (OSTI)

    Mullican, W.F. III

    1988-02-01

    Boling dome (Wharton and Fort Bend Counties) has experienced more overall subsidence and collapse than any other dome in Texas. These processes are directly related to production of sulfur and hydrocarbons from the southeastern quadrant of the dome. Greatest vertical movement due to subsidence and collapse is 35 ft (based on the Boling 7.5 min topographic map, last surveyed in 1953). Most of the subsidence (83%) is attributed to sulfur production, whereas only 11 to 12% can be linked to hydrocarbon production. Reservoir compaction is the dominant mechanism of land subsidence in areas of hydrocarbon production at Boling dome. Trough subsidence, chimneying, plug caving, and piping are the characteristic mechanisms over sulfur fields developed at the salt dome. The structural and hydrologic stability of the surface and subsurface at Boling dome is compromised by these active deformation processes. Damage to pipelines and well-casing strings may result in costly leaks which have the potential of being uncontrollable and catastrophic. Reduction in hydrologic stability may result if natural aquitards are breached and fresh water mixes with saline water or if hydrologic conduits to the diapir are opened, allowing unrestricted dissolution of the salt stock.

  20. Salt repository project closeout status report

    SciTech Connect (OSTI)

    1988-06-01

    This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

  1. Accelerators for Subcritical Molten-Salt Reactors

    SciTech Connect (OSTI)

    Johnson, Roland

    2011-08-03

    Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

  2. Salt Lake City | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Salt Lake City Gamma Shield Thunder Exercise Concludes National Nuclear Security Administration (NNSA) and the FBI announced today the completion of the Gamma Shield Thunder counterterrorism table-top exercise at LDS Hospital. The exercise is part of NNSA's Silent Thunder table-top series, which is aimed at giving federal, state and local

  3. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect (OSTI)

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  4. File:Salt2.pdf | Open Energy Information

    Open Energy Info (EERE)

    Salt2.pdf Jump to: navigation, search File File history File usage Metadata File:Salt2.pdf Size of this preview: 463 599 pixels. Other resolution: 464 600 pixels. Go to page...

  5. Tank 41-H salt level fill history 1985 to 1987

    SciTech Connect (OSTI)

    Ross, R.H.

    1996-05-16

    The fill rate of the evaporator drop waste tank (i.e., salt tank) at Savannah River Site contained in the Waste Management Technology (WMT) monthly data record is based upon a simple formula that apportioned 10 percent of the evaporator output concentrate to the salt fill volume. Periodically, the liquid level of the salt tank would be decanted below the salt level surface and a visual inspection of the salt profile would be accomplished. The salt volume of the drop tank would then be corrected, if necessary, based upon the visual elevation of the salt formation. This correction can erroneously indicate an excess amount of salt fill occurred in a short time period. This report established the correct fill history for Tank 41H.

  6. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy...

    Open Energy Info (EERE)

    Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells...

  7. Salt Waste Disposal at the Savannah River Site | Department of...

    Office of Environmental Management (EM)

    Salt Waste Disposal at the Savannah River Site Salt Waste Disposal at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal ...

  8. Completing Salt Waste Processing Facility is an EM Priority and...

    Office of Environmental Management (EM)

    Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup Progress Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup ...

  9. Savannah River Site Cuts Ribbon for New Salt Waste Processing...

    Office of Environmental Management (EM)

    Savannah River Site Cuts Ribbon for New Salt Waste Processing Facility Savannah River Site Cuts Ribbon for New Salt Waste Processing Facility June 30, 2016 - 12:55pm Addthis DOE ...

  10. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars

  11. PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Salt Lake City Corporation (Solar Market Pathways) PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways) Title: Wasatch Solar Project WASATCH solar logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Salt Lake City, UT Amount Awarded: $600,000 Awardee Cost Share: $164,645 Salt Lake City and its partners are developing a comprehensive long-term solar deployment strategy, which includes an analysis of the value of

  12. Prediction of heat capacities of solid inorganic salts from group...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; 99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; SALTS; SPECIFIC HEAT; OXIDES; FLUORIDES; CHLORIDES; ANIONS; CATIONS; ...

  13. Method for preparing salt solutions having desired properties

    DOE Patents [OSTI]

    Ally, Moonis R.; Braunstein, Jerry

    1994-01-01

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  14. Combinations of fluorinated solvents with imide salts or methide salts for electrolytes

    DOE Patents [OSTI]

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include imide salts and/or methide salts as well as fluorinated solvents capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and improve safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Linear and cyclic imide salts, such as LiN(SO.sub.2CF.sub.2CF.sub.3).sub.2, and LiN(SO.sub.2CF.sub.3).sub.2, as well as methide salts, such as LiC(SO.sub.2CF.sub.3).sub.3 and LiC(SO.sub.2CF.sub.2CF.sub.3).sub.3, may be used in these electrolytes. Fluorinated alkyl groups enhance solubility of these salts in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene, and/or one or more ionic liquids.

  15. Production of carboxylic acid and salt co-products

    DOE Patents [OSTI]

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  16. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    SciTech Connect (OSTI)

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  17. Los Alamos Field Office Installs Additional Safety Measure to Drums

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – EM’s Los Alamos Field Office and contractor Los Alamos National Security, LLC (LANS) recently completed installation of high efficiency particulate air (HEPA) filtration systems to remediated nitrate salt (RNS) drums.

  18. Oregon Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    29,565 29,565 29,565 28,750 29,565 29,565 1989-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 29,565 29,565 29,565 28,750 29,565 29,565 1999-2014 Total...

  19. Utah Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    129,480 129,480 124,465 124,465 124,465 124,465 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 11,980 11,980 4,265 4,265 4,265 4,265 1999-2014 Depleted Fields 117,500 117,500...

  20. Wyoming Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    111,120 111,120 106,764 124,937 157,985 157,985 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 10,000 10,000 6,733 6,705 6,705 6,705 1999-2014 Depleted Fields 101,120 101,120...

  1. Ohio Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    580,380 580,380 580,380 577,944 577,944 577,944 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 580,380 580,380 580,380 577,944 577,944 577,944...

  2. Texas Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    740,477 766,768 783,579 812,394 831,190 842,072 1988-2013 Salt Caverns 160,786 182,725 196,140 224,955 246,310 253,220 1999-2013 Aquifers 0 1999-2012 Depleted Fields 579,691...

  3. Pennsylvania Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    759,153 776,964 776,822 776,845 774,309 774,309 1988-2013 Salt Caverns 0 1999-2012 Aquifers 0 1999-2012 Depleted Fields 759,153 776,964 776,822 776,845 774,309 774,309 1999-2013...

  4. Kansas Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    82,300 284,821 284,731 284,905 283,974 282,984 1988-2014 Salt Caverns 931 931 931 931 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 281,370 283,891 283,800 283,974 283,974...

  5. Climate Action Champions: Salt Lake City, UT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Lake City, UT Climate Action Champions: Salt Lake City, UT Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the “Crossroads of the West,” Salt Lake City today is a major economic center in the Great Basin and a hub of tourism. │ Photo courtesy of University of Utah Department of Mathematics. Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the

  6. Molten salt battery having inorganic paper separator

    DOE Patents [OSTI]

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  7. Advanced heat exchanger development for molten salts

    SciTech Connect (OSTI)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  8. Supplemental Cooling for Nitrate Salt Waste

    SciTech Connect (OSTI)

    Goldberg, Mitchell S.

    2015-08-19

    In July 2015, Los Alamos National Laboratory completed installation of a supplemental cooling system in the structure where remediated nitrate salt waste drums are stored. Although the waste currently is in a safe configuration and is monitored daily,controlling the temperature inside the structure adds another layer of protection for workers, the public,and the environment.This effort is among several layers of precautions designed to secure the waste.

  9. Advanced heat exchanger development for molten salts

    SciTech Connect (OSTI)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  10. Stationary phase deposition based on onium salts

    DOE Patents [OSTI]

    Wheeler, David R.; Lewis, Patrick R.; Dirk, Shawn M.; Trudell, Daniel E.

    2008-01-01

    Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.