National Library of Energy BETA

Sample records for field salt cavern

  1. ,"Underground Natural Gas Storage - Salt Cavern Storage Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Salt Cavern Storage Fields",8,"Monthly","42016","01151994" ,"Release ...

  2. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  3. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon

    2009-03-01

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  4. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect (OSTI)

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  5. Disposal of oil field wastes and NORM wastes into salt caverns.

    SciTech Connect (OSTI)

    Veil, J. A.

    1999-01-27

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM), the risk to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne's research indicates that disposal of NOW into salt caverns is feasible and, in most cases, would not be prohibited by state agencies (although those agencies may need to revise their wastes management regulations). A risk analysis of several cavern leakage scenarios suggests that the risk from cavern disposal of NOW and NORM wastes is below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  6. New information on disposal of oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build-up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build-up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  7. Can nonhazardous oil field wastes be disposed of in salt caverns?

    SciTech Connect (OSTI)

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal -of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  8. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  9. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  10. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect (OSTI)

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste

  11. Estimate of the risks of disposing nonhazardous oil field wastes into salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-12-31

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Assuming a single, generic salt cavern and generic oil-field wastes, the best-estimate excess cancer risks ranged from 1.7 {times} 10{sup {minus}12} to 1.1 {times} 10{sup {minus}8} and hazard indices (referring to noncancer health effects) ranged from 7 {times} 10{sup {minus}9} to 7 {times} 10{sup {minus}4}. Under worse-case conditions in which the probability of cavern failure is 1.0, excess cancer risks ranged from 4.9 {times} 10{sup {minus}9} to 1.7 {times} 10{sup {minus}5} and hazard indices ranged from 7.0 {times} 10{sup {minus}4} to 0.07. Even under worst-case conditions, the risks are within the US Environmental Protection Agency (EPA) target range for acceptable exposure levels. From a human health risk perspective, salt caverns can, therefore, provide an acceptable disposal method for NOW.

  12. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  13. Risk analyses for disposing of nonhazardous oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed of in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing the contaminants` toxicities; estimating contaminant intakes; and, finally, calculating human cancer and noncancer risks. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Even under worst-case conditions, the risks have been found to be within the US EPA target range for acceptable exposure levels. From a human health risk perspective, salt caverns can provide an acceptable disposal method for NOW.

  14. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns

    SciTech Connect (OSTI)

    Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

    1999-01-21

    This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

  15. Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

  16. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  17. Disposal of NORM waste in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  18. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Salt Cavern ...

  19. Multiphase Flow and Cavern Abandonment in Salt

    SciTech Connect (OSTI)

    Ehgartner, Brian; Tidwell, Vince

    2001-02-13

    This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

  20. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  1. Analysis of SPR salt cavern remedial leach program 2013. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Analysis of SPR salt cavern remedial leach program 2013. The storage caverns of the US Strategic Petroleum Reserve (SPR) exhibit creep behavior resulting in reduction of ...

  2. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc.

  3. Analysis of SPR salt cavern remedial leach program 2013. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Analysis of SPR salt cavern remedial leach program 2013. Citation Details In-Document ... Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of ...

  4. CAVERN ROOF STABILITY FOR NATURAL GAS STORAGE IN BEDDED SALT

    SciTech Connect (OSTI)

    DeVries, Kerry L; Mellegard, Kirby D; Callahan, Gary D; Goodman, William M

    2005-06-01

    This report documents research performed to develop a new stress-based criterion for predicting the onset of damage in salt formations surrounding natural gas storage caverns. Laboratory tests were conducted to investigate the effects of shear stress, mean stress, pore pressure, temperature, and Lode angle on the strength and creep characteristics of salt. The laboratory test data were used in the development of the new criterion. The laboratory results indicate that the strength of salt strongly depends on the mean stress and Lode angle. The strength of the salt does not appear to be sensitive to temperature. Pore pressure effects were not readily apparent until a significant level of damage was induced and the permeability was increased to allow penetration of the liquid permeant. Utilizing the new criterion, numerical simulations were used to estimate the minimum allowable gas pressure for hypothetical storage caverns located in a bedded salt formation. The simulations performed illustrate the influence that cavern roof span, depth, roof salt thickness, shale thickness, and shale stiffness have on the allowable operating pressure range. Interestingly, comparison of predictions using the new criterion with that of a commonly used criterion indicate that lower minimum gas pressures may be allowed for caverns at shallow depths. However, as cavern depth is increased, less conservative estimates for minimum gas pressure were determined by the new criterion.

  5. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect (OSTI)

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  6. A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG

    SciTech Connect (OSTI)

    Michael M. McCall; William M. Bishop; Marcus Krekel; James F. Davis; D. Braxton Scherz

    2005-05-31

    This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly when located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher

  7. STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS

    SciTech Connect (OSTI)

    JOel D. Dieland; Kirby D. Mellegard

    2001-11-01

    This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is

  8. Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns

    SciTech Connect (OSTI)

    Michael S. Bruno

    2005-06-15

    The bedded salt formations located throughout the United States are layered and interspersed with non-salt materials such as anhydrite, shale, dolomite and limestone. The salt layers often contain significant impurities. GRI and DOE have initialized this research proposal in order to increase the gas storage capabilities by providing operators with improved geotechnical design and operating guidelines for thin bedded salt caverns. Terralog has summarized the geologic conditions, pressure conditions, and critical design factors that may lead to: (1) Fracture in heterogeneous materials; (2) Differential deformation and bedding plane slip; (3) Propagation of damage around single and multiple cavern; and (4) Improved design recommendations for single and multiple cavern configurations in various bedded salt environments. The existing caverns within both the Permian Basin Complex and the Michigan and Appalachian Basins are normally found between 300 m to 1,000 m (1,000 ft to 3,300 ft) depth depending on local geology and salt dissolution depth. Currently, active cavern operations are found in the Midland and Anadarko Basins within the Permian Basin Complex and in the Appalachian and Michigan Basins. The Palo Duro and Delaware Basins within the Permian Basin Complex also offer salt cavern development potential. Terralog developed a number of numerical models for caverns located in thin bedded salt. A modified creep viscoplastic model has been developed and implemented in Flac3D to simulate the response of salt at the Permian, Michigan and Appalachian Basins. The formulation of the viscoplastic salt model, which is based on an empirical creep law developed for Waste Isolation Pilot Plant (WIPP) Program, is combined with the Drucker-Prager model to include the formation of damage and failure. The Permian salt lab test data provided by Pfeifle et al. 1983, are used to validate the assumptions made in the material model development. For the actual cavern simulations two

  9. EXAMINE AND EVALUATE A PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LIQUEFIED NATURAL GAS

    SciTech Connect (OSTI)

    Michael M. McCall; William M. Bishop; D. Braxton Scherz

    2003-04-24

    The goal of the U.S. Department of Energy cooperative research project is to define, describe, and validate, a process to utilize salt caverns to receive and store the cargoes of LNG ships. The project defines the process as receiving LNG from a ship, pumping the LNG up to cavern injection pressures, warming it to cavern compatible temperatures, injecting the warmed vapor directly into salt caverns for storage, and distribution to the pipeline network. The performance of work under this agreement is based on U.S. Patent 5,511,905, and other U.S. and Foreign pending patent applications. The cost sharing participants in the research are The National Energy Technology Laboratory (U.S. Department of Energy), BP America Production Company, Bluewater Offshore Production Systems (U.S.A.), Inc., and HNG Storage, L.P. Initial results indicate that a salt cavern based receiving terminal could be built at about half the capital cost, less than half the operating costs and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. There is a significant body of knowledge and practice concerning natural gas storage in salt caverns, and there is a considerable body of knowledge and practice in handling LNG, but there has never been any attempt to develop a process whereby the two technologies can be combined. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or terrorist acts, and much more acceptable to the community. The project team developed conceptual designs of two salt cavern based LNG terminals, one with caverns located in Calcasieu Parish Louisiana, and the second in Vermilion block 179 about 50 miles offshore Louisiana. These conceptual designs were compared to conventional tank based LNG terminals and demonstrate superior security, economy and capacity. The potential for the development of LNG receiving terminals

  10. U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Number of Elements) Salt Caverns Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 29 2000's 28 28 29 30 30 30 31 31 34 35 2010's 37 38 40 40 39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  11. U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Salt Caverns Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 230,456 271,785 2010's 312,003 351,017 488,268 455,729 488,698 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Working

  12. Characterization of bedded salt for storage caverns -- A case study from the Midland Basin, Texas

    SciTech Connect (OSTI)

    Hovorka, Susan D.; Nava, Robin

    2000-06-13

    The geometry of Permian bedding salt in the Midland Basin is a product of interaction between depositional facies and postdepositional modification by salt dissolution. Mapping high-frequency cycle patterns in cross section and map view using wireline logs documents the salt geometry. Geologically based interpretation of depositional and dissolution processes provides a powerful tool for mapping and geometry of salt to assess the suitability of sites for development of solution-mined storage caverns. In addition, this process-based description of salt geometry complements existing data about the evolution of one of the best-known sedimentary basins in the world, and can serve as a genetic model to assist in interpreting other salts.

  13. U.S. Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Salt Caverns Capacity (Million Cubic Feet) U.S. Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 185,451 2000's 189,043 218,483 225,958 234,601 239,990 250,532 261,988 253,410 341,213 397,560 2010's 456,009 512,279 715,821 654,266 702,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. An Investigation of the Integrity of Cemented Casing Seals with Application to Salt Cavern Sealing and Abandonment

    SciTech Connect (OSTI)

    Pfeifle, T.W.; Mellegard, K.D.; Skaug, N.T.; Bruno, M.S.

    2001-04-19

    This research project was pursued in three key areas. (1) Salt permeability testing under complex stress states; (2) Hydraulic and mechanical integrity investigations of the well casing shoe through benchscale testing; and (3) Geomechanical modeling of the fluid/salt hydraulic and mechanical interaction of a sealed cavern.

  15. Gas intrusion into SPR caverns

    SciTech Connect (OSTI)

    Hinkebein, T.E.; Bauer, S.J.; Ehgartner, B.L.; Linn, J.K.; Neal, J.T.; Todd, J.L.; Kuhlman, P.S.; Gniady, C.T.; Giles, H.N.

    1995-12-01

    The conditions and occurrence of gas in crude oil stored in Strategic Petroleum Reserve, SPR, caverns is characterized in this report. Many caverns in the SPR show that gas has intruded into the oil from the surrounding salt dome. Historical evidence and the analyses presented here suggest that gas will continue to intrude into many SPR caverns in the future. In considering why only some caverns contain gas, it is concluded that the naturally occurring spatial variability in salt permeability can explain the range of gas content measured in SPR caverns. Further, it is not possible to make a one-to-one correlation between specific geologic phenomena and the occurrence of gas in salt caverns. However, gas is concluded to be petrogenic in origin. Consequently, attempts have been made to associate the occurrence of gas with salt inhomogeneities including anomalies and other structural features. Two scenarios for actual gas intrusion into caverns were investigated for consistency with existing information. These scenarios are gas release during leaching and gas permeation through salt. Of these mechanisms, the greater consistency comes from the belief that gas permeates to caverns through the salt. A review of historical operating data for five Bryan Mound caverns loosely supports the hypothesis that higher operating pressures reduce gas intrusion into caverns. This conclusion supports a permeability intrusion mechanism. Further, it provides justification for operating the caverns near maximum operating pressure to minimize gas intrusion. Historical gas intrusion rates and estimates of future gas intrusion are given for all caverns.

  16. Number of Existing Natural Gas Salt Caverns Storage Fields

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    34 35 37 38 40 40 1999-2013 Alabama 1 1 1 1 1 1 1999-2013 California 0 1999-2012 Kansas 1 1 1 1 1 1999-2012 Louisiana 9 10 10 10 11 11 1999-2013 Michigan 2 2 2 2 2 2 1999-2013...

  17. Analysis of cavern and well stability at the West Hackberry SPR site using a full-dome model.

    SciTech Connect (OSTI)

    Sobolik, Steven R.

    2015-08-01

    This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve (SPR) West Hackberry site. The cavern field comprises 22 caverns. Five caverns (6, 7, 8, 9, 11) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 17 caverns (101-117) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a three-dimensional geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios corresponding to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant results in this report are relevant to Cavern 6. The cavern is shaped like a bowl with a large ceiling span and is in close proximity to Cavern 9. The analyses predict tensile stresses at the edge of the ceiling during repressurization of Cavern 6 following workover conditions. During a workover the cavern is at low pressure to service a well. The wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension around the edge of the large ceiling span. With time, these stresses relax to a compressive state because of salt creep. However, the potential for salt fracture and propagation exists, particularly towards Cavern 9. With only 200 feet of salt between the caverns, the operational consequences must be examined if the two caverns become connected. A critical time may be during a workover of Cavern 9 in part because of the operational vulnerabilities, but also because dilatant damage

  18. ,"Underground Natural Gas Storage - Storage Fields Other than...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","42016","01151994" ...

  19. CaveMan Version 3.0: A Software System for SPR Cavern Pressure Analysis

    SciTech Connect (OSTI)

    BALLARD,SANFORD; EHGARTNER,BRIAN L.

    2000-07-01

    The U. S. Department of Energy Strategic Petroleum Reserve currently has approximately 500 million barrels of crude oil stored in 62 caverns solution-mined in salt domes along the Gulf Coast of Louisiana and Texas. One of the challenges of operating these caverns is ensuring that none of the fluids in the caverns are leaking into the environment. The current approach is to test the mechanical integrity of all the wells entering each cavern approximately once every five years. An alternative approach to detecting cavern leaks is to monitor the cavern pressure, since leaking fluid would act to reduce cavern pressure. Leak detection by pressure monitoring is complicated by other factors that influence cavern pressure, the most important of which are thermal expansion and contraction of the fluids in the cavern as they come into thermal equilibrium with the host salt, and cavern volume reduction due to salt creep. Cavern pressure is also influenced by cavern enlargement resulting from salt dissolution following introduction of raw water or unsaturated brine into the cavern. However, this effect only lasts for a month or two following a fluid injection. In order to implement a cavern pressure monitoring program, a software program called CaveMan has been developed. It includes thermal, creep and salt dissolution models and is able to predict the cavern pressurization rate based on the operational history of the cavern. Many of the numerous thermal and mechanical parameters in the model have been optimized to produce the best match between the historical data and the model predictions. Future measurements of cavern pressure are compared to the model predictions, and significant differences in cavern pressure set program flags that notify cavern operators of a potential problem. Measured cavern pressures that are significantly less than those predicted by the model may indicate the existence of a leak.

  20. Analysis of cavern shapes for the strategic petroleum reserve.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Sobolik, Steven Ronald

    2006-07-01

    This report presents computational analyses to determine the structural integrity of different salt cavern shapes. Three characteristic shapes for increasing cavern volumes are evaluated and compared to the baseline shape of a cylindrical cavern. Caverns with enlarged tops, bottoms, and mid-sections are modeled. The results address pillar to diameter ratios of some existing caverns in the system and will represent the final shape of other caverns if they are repeatedly drawn down. This deliverable is performed in support of the U.S. Strategic Petroleum Reserve. Several three-dimensional models using a close-packed arrangement of 19 caverns have been built and analyzed using a simplified symmetry involving a 30-degree wedge portion of the model. This approach has been used previously for West Hackberry (Ehgartner and Sobolik, 2002) and Big Hill (Park et al., 2005) analyses. A stratigraphy based on the Big Hill site has been incorporated into the model. The caverns are modeled without wells and casing to simplify the calculations. These calculations have been made using the power law creep model. The four cavern shapes were evaluated at several different cavern radii against four design factors. These factors included the dilatant damage safety factor in salt, the cavern volume closure, axial well strain in the caprock, and surface subsidence. The relative performance of each of the cavern shapes varies for the different design factors, although it is apparent that the enlarged bottom design provides the worst overall performance. The results of the calculations are put in the context of the history of cavern analyses assuming cylindrical caverns, and how these results affect previous understanding of cavern behavior in a salt dome.

  1. Test Proposal Document for Phased Field Thermal Testing in Salt |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Test Proposal Document for Phased Field Thermal Testing in Salt Test Proposal Document for Phased Field Thermal Testing in Salt The document summarizes how a new round of staged thermal field testing will help to augment the safety case for disposal of heat generating nuclear waste in salt. The objectives of the proposed test plan are to: (1) address features, events, and processes (FEPs), (2) build scientific and public confidence, (3) foster international

  2. Converting LPG caverns to natural-gas storage permits fast response to market

    SciTech Connect (OSTI)

    Crossley, N.G.

    1996-02-19

    Deregulation of Canada`s natural-gas industry in the late 1980s led to a very competitive North American natural-gas storage market. TransGas Ltd., Regina, Sask., began looking for method for developing cost-effective storage while at the same time responding to new market-development opportunities and incentives. Conversion of existing LPG-storage salt caverns to natural-gas storage is one method of providing new storage. To supply SaskEnergy Inc., the province`s local distribution company, and Saskatchewan customers, TransGas previously had developed solution-mined salt storage caverns from start to finish. Two Regina North case histories illustrate TransGas` experiences with conversion of LPG salt caverns to gas storage. This paper provides the testing procedures for the various caverns, cross-sectional diagrams of each cavern, and outlines for cavern conversion. It also lists storage capacities of these caverns.

  3. Radioactive waste storage in mined caverns in crystalline rock: results of field investigations at Stripa, Sweden

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1980-10-01

    It is generally agreed that the most practicable method of isolating nuclear wastes from the biosphere is by deep burial in suitable geologic formations. Such burial achieves a high degree of physical isolation but raises questions concerning the rate at which some of these wastes may return to the biosphere through transport by groundwater. Any suitable repository site will be disturbed first by excavation and second by the thermal pulse caused by the radioactive decay of the wastes. To assess the effectiveness of geologic isolation it is necessary to develop the capability of predicting the response of a rock mass to such a thermal pulse. Ultimately, this requires field measurements below the surface in media representative of those likely to be encountered at an actual repository. Access to a granitic rock mass adjacent to a defunct iron ore mine at Stripa, Sweden, at a depth of about 350 m below surface has provided a unique opportunity to conduct a comprehensive suite of hydrological and thermo-mechanical experiments under such conditions. The results of these field tests have shown the importance of geologic structure and the functional dependence of the thermo-mechanical properties on temperature in developing a valid predictive model. The results have also demonstrated the vital importance of carrying out large-scale investigations in a field test facility.

  4. Horizontal natural gas storage caverns and methods for producing same

    DOE Patents [OSTI]

    Russo, Anthony

    1995-01-01

    The invention provides caverns and methods for producing caverns in bedded salt deposits for the storage of materials that are not solvents for salt. The contemplated salt deposits are of the bedded, non-domed variety, more particularly salt found in layered formations that are sufficiently thick to enable the production of commercially usefully sized caverns completely encompassed by walls of salt of the formation. In a preferred method, a first bore hole is drilled into the salt formation and a cavity for receiving insolubles is leached from the salt formation. Thereafter, at a predetermined distance away from the first bore hole, a second bore hole is drilled towards the salt formation. As this drill approaches the salt, the drill assumes a slant approach and enters the salt and drills through it in a horizontal direction until it intersects the cavity for receiving insolubles. This produces a substantially horizontal conduit from which solvent is controlledly supplied to the surrounding salt formation, leaching the salt and producing a concentrated brine which is removed through the first bore hole. Insolubles are collected in the cavity for receiving insolubles. By controlledly supplying solvent, a horizontal cavern is produced with two bore holes extending therefrom.

  5. Overfilling of cavern blamed for LPG blasts

    SciTech Connect (OSTI)

    Not Available

    1992-07-06

    Three explosions and a fire Apr. 7 at an LPG salt dome storage cavern near Brenham, Tex., were triggered when the cavern was overfilled, the Texas Railroad Commission (TRC) has reported. This paper reports that a TRC investigation found that LPG escaped to the surface at the Brenham site through brine injection tubing after excessive fill from an LPG line forced the cavern's water level below the brine tubing's bottom. At the surface, LPG was released into a brine storage pit where it turned into a dense, explosive vapor. At 7:08 a.m., the vapor was ignited by an unknown source. The resulting blast killed three persons and injured 19 and brought operations at the site to a halt.

  6. Commercial potential of natural gas storage in lined rock caverns (LRC)

    SciTech Connect (OSTI)

    1999-11-01

    The geologic conditions in many regions of the United States will not permit the development of economical high-deliverability gas storage in salt caverns. These regions include the entire Eastern Seaboard; several northern states, notably Minnesota and Wisconsin; many of the Rocky Mountain States; and most of the Pacific Northwest. In late 1997, the United States Department of Energy (USDOE) Federal Energy Technology Center engaged Sofregaz US to investigate the commercialization potential of natural gas storage in Lined Rock Caverns (LRC). Sofregaz US teamed with Gaz de France and Sydkraft, who had formed a consortium, called LRC, to perform the study for the USDOE. Underground storage of natural gas is generally achieved in depleted oil and gas fields, aquifers, and solution-mined salt caverns. These storage technologies require specific geologic conditions. Unlined rock caverns have been used for decades to store hydrocarbons - mostly liquids such as crude oil, butane, and propane. The maximum operating pressure in unlined rock caverns is limited, since the host rock is never entirely impervious. The LRC technology allows a significant increase in the maximum operating pressure over the unlined storage cavern concept, since the gas in storage is completely contained with an impervious liner. The LRC technology has been under development in Sweden by Sydkraft since 1987. The development process has included extensive technical studies, laboratory testing, field tests, and most recently includes a storage facility being constructed in southern Sweden (Skallen). The LRC development effort has shown that the concept is technically and economically viable. The Skallen storage facility will have a rock cover of 115 meters (375 feet), a storage volume of 40,000 cubic meters (250,000 petroleum barrels), and a maximum operating pressure of 20 MPa (2,900 psi). There is a potential for commercialization of the LRC technology in the United States. Two regions were studied

  7. Geologic technical assessment of the Chacahoula Salt Dome, Louisiana, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect (OSTI)

    Snider, Anna C.; Rautman, Christopher Arthur; Looff, Karl M.

    2006-03-01

    The Chacahoula salt dome, located in southern Louisiana, approximately 66 miles southwest of New Orleans, appears to be a suitable site for a 160-million-barrel-capacity expansion facility for the U.S. Strategic Petroleum Reserve, comprising sixteen 10-million barrel underground storage caverns. The overall salt dome appears to cover an area of some 1800 acres, or approximately 2.8 square miles, at a subsea elevation of 2000 ft, which is near the top of the salt stock. The shallowest known salt is present at 1116 ft, subsea. The crest of the salt dome is relatively flatlying, outward to an elevation of -4000 ft. Below this elevation, the flanks of the dome plunge steeply in all directions. The dome appears to comprise two separate spine complexes of quasi-independently moving salt. Two mapped areas of salt overhang, located on the eastern and southeastern flanks of the salt stock, are present below -8000 ft. These regions of overhang should present no particular design issues, as the conceptual design SPR caverns are located in the western portion of the dome. The proposed cavern field may be affected by a boundary shear zone, located between the two salt spines. However, the large size of the Chacahoula salt dome suggests that there is significant design flexibility to deal with such local geologic issues.

  8. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  9. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect (OSTI)

    1998-09-30

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage

  10. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered

  11. Influence of Permian salt dissolution on distribution of shallow Niobrara gas fields, eastern Colorado

    SciTech Connect (OSTI)

    Oldham, D.W.; Smosna, R.A.

    1996-06-01

    Subsurface analysis of Permian salt and related strata in the shallow Niobrara gas area on the eastern flank of the Denver basin reveals that the location of faulted anticlines which produce gas from porous chalk is related to the occurrence of six Nippewalla Group (Leonardian) salt zones. Salt distribution is controlled by the configuration of evaporate basins during the Leonardian, truncation at a sub-Jurassic unconformity (which has completely removed Guadalupian salts), and post-Jurassic subsurface dissolution. Significant dissolution took place in response to Laramide orogeny and subsequent eastward regional groundwater flow within the Lyons (Cedar Hills) Sandstone aquifer. Initially, dissolution occurred along a regional facies change from sandstone to salt. Solution collapse allowed for cross-formational flow and removal of younger salts. Shallow Niobrara gas fields are situated above salt outliers or along regionally updip salt edges. No significant Niobrara production exists in areas where salt is absent. Structural relief across fields is related to Leonardian thickness variations, rather than subsalt offset. Seismic data reveal abrupt Leonardian thinning at the regionally updip limit of Eckley field, which has produced over 33 BCFG. Thickness of residual salt may be important in controlling the amount of gas trapped within the Niobrara. Where thick salts are preserved, structural relief is greater, the gas-water transition zone is thicker, and gas saturation is higher at the crests of faulted anticlines.

  12. Working Gas Capacity of Salt Caverns

    Gasoline and Diesel Fuel Update (EIA)

    271,785 312,003 351,017 488,268 455,729 488,698 2008-2014 Alabama 11,900 16,150 16,150 16,150 16,150 21,950 2008-2014 Arkansas 0 0 2012-2014 California 0 0 2012-2014 Colorado 0 0...

  13. Natural Gas Salt Caverns Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    397,560 456,009 512,279 715,821 654,266 702,548 1999-2014 Alabama 15,900 21,900 21,900 21,900 21,900 30,100 1999-2014 Arkansas 0 0 1999-2014 California 0 0 1999-2014 Colorado 0 0 1999-2014 Illinois 0 0 1999-2014 Indiana 0 0 1999-2014 Kansas 931 931 931 931 0 1999-2014 Kentucky 0 0 1999-2014 Louisiana 123,341 142,253 161,668 297,020 213,039 224,129 1999-2014 Maryland 0 0 1999-2014 Michigan 3,821 3,834 3,834 3,834 3,834 3,834 1999-2014 Mississippi 62,301 82,411 90,452 139,627 153,733 181,810

  14. Literature Survey Concerning the Feasibility of Remedial Leach for Select Phase I Caverns

    SciTech Connect (OSTI)

    Weber, Paula D.; Flores, Karen A.; Lord, David L.

    2015-09-01

    Bryan Mound 5 ( BM5 ) and West Hackberry 9 ( WH9 ) have the potential to create a significant amount of new storage space should the caverns be deemed "leach - ready". This study discusses the original drilling history of the caverns, surrounding geology, current stability, and, based on this culmination of data, makes a preliminary assessment of the leach potential for the cavern. The risks associated with leaching BM5 present substantial problems for the SPR . The odd shape and large amount of insoluble material make it difficult to de termine whether a targeted leach would have the desired effect and create useable ullage or further distort the shape with preferential leaching . T he likelihood of salt falls and damaged or severed casing string is significant . In addition, a targeted le ach would require the relocation of approximately 27 MMB of oil . Due to the abundance of unknown factors associated with this cavern, a targeted leach of BM5 is not recommended. A targeted leaching of the neck of WH 9 could potentially eliminate or diminis h the mid - cavern ledge result ing in a more stable cavern with a more favorable shape. A better understanding of the composition of the surrounding salt and a less complicated leaching history yields more confidence in the ability to successfully leach this region. A targeted leach of WH9 can be recommended upon the completion of a full leach plan with consideration of the impacts upon nearby caverns .

  15. Application of the multi-mechanism deformation model for three-dimensional simulations of salt : behavior for the strategic petroleum reserve.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Sobolik, Steven Ronald; Bean, James E.

    2010-07-01

    The U.S. Strategic Petroleum Reserve stores crude oil in 62 solution-mined caverns in salt domes located in Texas and Louisiana. Historically, three-dimensional geomechanical simulations of the behavior of the caverns have been performed using a power law creep model. Using this method, and calibrating the creep coefficient to field data such as cavern closure and surface subsidence, has produced varying degrees of agreement with observed phenomena. However, as new salt dome locations are considered for oil storage facilities, pre-construction geomechanical analyses are required that need site-specific parameters developed from laboratory data obtained from core samples. The multi-mechanism deformation (M-D) model is a rigorous mathematical description of both transient and steady-state creep phenomena. Recent enhancements to the numerical integration algorithm within the model have created a more numerically stable implementation of the M-D model. This report presents computational analyses to compare the results of predictions of the geomechanical behavior at the West Hackberry SPR site using both models. The recently-published results using the power law creep model produced excellent agreement with an extensive set of field data. The M-D model results show similar agreement using parameters developed directly from laboratory data. It is also used to predict the behavior for the construction and operation of oil storage caverns at a new site, to identify potential problems before a final cavern layout is designed.

  16. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  17. Field Mapping At Salt Wells Area (Coolbaugh, Et Al., 2006) |...

    Open Energy Info (EERE)

    Basis Geochemical water sampling, mineral distribution mapping, and shallow (30 cm) temperature probe measurements were conducted to expand on a previous field mapping study...

  18. Feasibility study for lowering the minimum gas pressure in solution-mined caverns based on geomechanical analyses of creep-induced damage and healing

    SciTech Connect (OSTI)

    Ratigan, J.L.; Nieland, J.D.; Devries, K.L.

    1998-12-31

    Geomechanical analyses were made to determine the minimum gas pressure allowable based on an existing stress-based criterion (Damage Potential) and an advanced constitutive model (MDCF model) capable of quantifying the level of damage and healing in rock salt. The MDCF model is a constitutive model developed for the WIPP to provide a continuum description of the dislocation and damage deformation of salt. The purpose of this study was to determine if the MDCF model is applicable for evaluating the minimum gas pressure of CNG storage caverns. Specifically, it was to be determined if this model would predict that the minimum gas pressure in the caverns could be lowered without compromising the stability of the cavern. Additionally, the healing behavior of the salt was analyzed to determine if complete healing of the damaged rock zone would occur during the period the cavern was at maximum gas pressure. Significant findings of this study are reported.

  19. Success in prevention of casing failures opposite salts, Little Knife Field, North Dakota

    SciTech Connect (OSTI)

    Rike, E.A.; Bryant, G.A.; Williams, S.D.

    1986-04-01

    The authors became aware in early 1981 of a severe problem with casing failures opposite salts in the Little Knife Field. A concerted engineering effort was initiated to isolate and to remedy the cause of failures. With the use of a relaxed invert-oil-emulsion drilling fluid and properly designed cementing programs, the problem has been arrested. In the 26 wells drilled in the Little Knife Field since initiation of this drilling program, there have been no instances of casing failure.

  20. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 2, Big Hill Site, Texas.

    SciTech Connect (OSTI)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-08-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 2 focuses on the Big Hill SPR site, located in southeastern Texas. Volumes 1, 3, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  1. Success in Prevention of Casing Failures Opposite Salts, Little Knife Field, ND

    SciTech Connect (OSTI)

    Rilke, E.A.

    1984-05-01

    Early in 1981, Gulf became aware of a severe problem with casing failures opposite salts in the Little Knife Field. A concerted effort was initiated at that time to isolate and remedy the cause of failures. By properly designing tubulars, utilizing a relaxed invert oil emulsion drilling fluid, and properly designing cementing programs, the problem has been arrested. In the 22 wells drilled in the Little Knife Field since initiation of this drilling program in 1981, there have been no instances of casing failure.

  2. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    SciTech Connect (OSTI)

    Elders, W.A.; Cohen, L.H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

  3. Supai salt karst features: Holbrook Basin, Arizona

    SciTech Connect (OSTI)

    Neal, J.T.

    1994-12-31

    More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 m depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.

  4. Observations on vapor pressure in SPR caverns : sources.

    SciTech Connect (OSTI)

    Munson, Darrell Eugene

    2010-05-01

    The oil of the Strategic Petroleum Reserve (SPR) represents a national response to any potential emergency or intentional restriction of crude oil supply to this country, and conforms to International Agreements to maintain such a reserve. As assurance this reserve oil will be available in a timely manner should a restriction in supply occur, the oil of the reserve must meet certain transportation criteria. The transportation criteria require that the oil does not evolve dangerous gas, either explosive or toxic, while in the process of transport to, or storage at, the destination facility. This requirement can be a challenge because the stored oil can acquire dissolved gases while in the SPR. There have been a series of reports analyzing in exceptional detail the reasons for the increases, or regains, in gas content; however, there remains some uncertainty in these explanations and an inability to predict why the regains occur. Where the regains are prohibitive and exceed the criteria, the oil must undergo degasification, where excess portions of the volatile gas are removed. There are only two known sources of gas regain, one is the salt dome formation itself which may contain gas inclusions from which gas can be released during oil processing or storage, and the second is increases of the gases release by the volatile components of the crude oil itself during storage, especially if the stored oil undergoes heating or is subject to biological generation processes. In this work, the earlier analyses are reexamined and significant alterations in conclusions are proposed. The alterations are based on how the fluid exchanges of brine and oil uptake gas released from domal salt during solutioning, and thereafter, during further exchanges of fluids. Transparency of the brine/oil interface and the transfer of gas across this interface remains an important unanswered question. The contribution from creep induced damage releasing gas from the salt surrounding the cavern is

  5. Evaluation of Computational Method of High Reynolds Number Slurry Flow for Caverns Backfilling

    SciTech Connect (OSTI)

    Bettin, Giorgia

    2015-05-01

    The abandonment of salt caverns used for brining or product storage poses a significant environmental and economic risk. Risk mitigation can in part be address ed by the process of backfilling which can improve the cavern geomechanical stability and reduce the risk o f fluid loss to the environment. This study evaluate s a currently available computational tool , Barracuda, to simulate such process es as slurry flow at high Reynolds number with high particle loading . Using Barracuda software, a parametric sequence of simu lations evaluated slurry flow at Re ynolds number up to 15000 and loading up to 25%. Li mitations come into the long time required to run these simulation s due in particular to the mesh size requirement at the jet nozzle. This study has found that slurry - jet width and centerline velocities are functions of Re ynold s number and volume fractio n The solid phase was found to spread less than the water - phase with a spreading rate smaller than 1 , dependent on the volume fraction. Particle size distribution does seem to have a large influence on the jet flow development. This study constitutes a first step to understand the behavior of highly loaded slurries and their ultimate application to cavern backfilling.

  6. Gas-storage calculations yield accurate cavern, inventory data

    SciTech Connect (OSTI)

    Mason, R.G. )

    1990-07-02

    This paper discusses how determining gas-storage cavern size and inventory variance is now possible with calculations based on shut-in cavern surveys. The method is the least expensive of three major methods and is quite accurate when recorded over a period of time.

  7. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    SciTech Connect (OSTI)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

  8. Feasibility report on alternative methods for cooling cavern oils at the U.S. Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Levin, Bruce L.; Lord, David L.; Hadgu, Teklu

    2005-06-01

    Oil caverns at the U.S. Strategic Petroleum Reserve (SPR) are subjected to geothermal heating from the surrounding domal salt. This process raises the temperature of the crude oil from around 75 F upon delivery to SPR to as high as 130 F after decades of storage. While this temperature regime is adequate for long-term storage, it poses challenges for offsite delivery, with warm oil evolving gases that pose handling and safety problems. SPR installed high-capacity oil coolers in the mid-1990's to mitigate the emissions problem by lowering the oil delivery temperature. These heat exchanger units use incoming raw water as the cooling fluid, and operate only during a drawdown event where incoming water displaces the outgoing oil. The design criteria for the heat exchangers are to deliver oil at 100 F or less under all drawdown conditions. Increasing crude oil vapor pressures due in part to methane intrusion in the caverns is threatening to produce sufficient emissions at or near 100 F to cause the cooled oil to violate delivery requirements. This impending problem has initiated discussion and analysis of alternative cooling methods to bring the oil temperature even lower than the original design basis of 100 F. For the study described in this report, two alternative cooling methods were explored: (1) cooling during a limited drawdown, and (2) cooling during a degas operation. Both methods employ the heat exchangers currently in place, and do not require extra equipment. An analysis was run using two heat transfer models, HEATEX, and CaveMan, both developed at Sandia National Laboratories. For cooling during a limited drawdown, the cooling water flowrate through the coolers was varied from 1:1 water:oil to about 3:1, with an increased cooling capacity of about 3-7 F for the test cavern Bryan Mound 108 depending upon seasonal temperature effects. For cooling in conjunction with a degas operation in the winter, cavern oil temperatures for the test cavern Big Hill 102 were

  9. Experimental determination of the relationship between permeability and microfracture-induced damage in bedded salt

    SciTech Connect (OSTI)

    Pfeifle, T.W.

    1998-03-01

    The development of deep underground structures (e.g., shafts, mines, storage and disposal caverns) significantly alters the stress state in the rock near the structure or opening. The effect of such an opening is to concentrate the far-field stress near the free surface. For soft rock such as salt, the concentrating effect of the opening induces deviatoric stresses in the salt that may be large enough to initiate microcracks which then propagate with time. The volume of rock susceptible to damage by microfracturing is often referred to as the disturbed rock zone and, by its nature, is expected to exhibit high permeability relative to that of the native, far-field rock. This paper presents laboratory data that characterize microfracture-induced damage and the effect this damage has on permeability for bedded salt from the Waste Isolation Pilot Plant located in southeastern New Mexico. Damage is induced in the salt through a series of tertiary creep experiments and quantified in terms of dilatant volumetric strain. The permeability of damaged specimens is then measured using nitrogen gas as the permeant. The range in damage investigated included dilatant volumetric strains from less than 0.03 percent to nearly 4.0 percent. Permeability values corresponding to these damage levels ranged from 1 {times} 10{sup {minus}18} m{sup 2} to 1 {times} 10{sup {minus}12} m{sup 2}. Two simple models were fitted to the data for use in predicting permeability from dilatant volumetric strain.

  10. Bryan Mound SPR cavern 113 remedial leach stage 1 analysis. ...

    Office of Scientific and Technical Information (OSTI)

    Title: Bryan Mound SPR cavern 113 remedial leach stage 1 analysis. The U.S. Strategic Petroleum Reserve implemented the first stage of a leach plan in 2011-2012 to expand storage ...

  11. Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-09-26

    The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

  12. Numerical Simulations of Leakage from Underground LPG Storage Caverns

    SciTech Connect (OSTI)

    Yamamoto, Hajime; Pruess, Karsten

    2004-09-01

    To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2

  13. Sandia Energy - Molten Salt Test Loop Melted Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salt Home Renewable Energy Energy News Concentrating Solar Power Solar Molten Salt Test Loop Melted Salt Previous Next Molten Salt Test Loop Melted Salt The Molten Salt Test...

  14. Development and field placement of an expansive salt-saturated concrete (ESC) for the Waste Isolation Pilot Plant (WIPP). Final report

    SciTech Connect (OSTI)

    Wakeley, L.D.; Walley, D.M.

    1986-09-01

    An expansive salt-saturated concrete (ESC) was proportioned for placement underground in halite rock at the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. Requirements for this concrete were: (1) to be chemically compatible with the host rock; (2) to remain pumpable for four hours: (3) to give net volume increase beginning at an early age, and continuing until creep closure of the salt assures sealing at the rock interface; and (4) to cure to a solid with extremely low permeability and fairly high strength. ESC was proportioned and placed underground at the WIPP in two successful field tests during FY 85 and FY 86. This report is the first of three reports about this concrete. It describes (1) the development of ESC in the laboratory, and (2) the mixture properties prior to final set. It summarizes field-placement activities in July 1985 and February 1986, when ESC was placed in test holes underground at the WIPP for two series of Small-Scale Seal Performance Tests (SSSPT). It gives data from tests of expansive behavior of the concrete at early ages and under simulated repository conditions. The second report will describe expansive behavior of ESC relative to several variables that could have an impact on its field performance and long-term stability, as determined during laboratory testing. It also will discuss possible explanations of the rather extraordinary suite of properties exhibited by ESC, as controlled by its chemical composition. The third report will describe laboratory studies of the mechanism of set retardation in a grout derived from this concrete.

  15. Nitrogen Monitoring of West Hackberry 117 Cavern Wells.

    SciTech Connect (OSTI)

    Bettin, Giorgia; Lord, David

    2015-02-01

    U.S. Strategic Petroleum Reserve (SPR) oil storage cavern West Hackberry 117 was tested under extended nitrogen monitoring following a successful mechanical integrity test in order to validate a newly developed hydrostatic column model to be used to differentiate between normal "tight" well behavior and small-leak behavior under nitrogen. High resolution wireline pressure and temperature data were collected during the test period and used in conjunction with the hydrostatic column model to predict the nitrogen/oil interface and the pressure along the entire fluid column from the bradenhead flange nominally at ground surface to bottom of brine pool. Results here and for other SPR caverns have shown that wells under long term nitrogen monitoring do not necessarily pressurize with a relative rate (P N2 /P brine) of 1. The theoretical relative pressure rate depends on the well configuration, pressure and the location of the nitrogen-oil interface and varies from well to well. For the case of WH117 the predicted rates were 0.73 for well A and 0.92 for well B. The measured relative pressurization rate for well B was consistent with the model prediction, while well A rate was found to be between 0.58-0.68. A number of possible reasons for the discrepancy between the model and measured rates of well A are possible. These include modeling inaccuracy, measurement inaccuracy or the possibility of the presence of a very small leak (below the latest calculated minimum detectable leak rate).

  16. Expected near-field thermal environments in a sequentially loaded spent-fuel or high-level waste repository in salt

    SciTech Connect (OSTI)

    Rickertsen, L.D.; Arbital, J.G.; Claiborne, H.C.

    1982-01-01

    This report describes the effect of realistic waste emplacement schedules on repository thermal environments. Virtually all estimates to date have been based on instantaneous loading of wastes having uniform properties throughout the repository. However, more realistic scenarios involving sequential emplacement of wastes reflect the gradual filling of the repository over its lifetime. These cases provide temperatures that can be less extreme than with the simple approximation. At isolated locations in the repository, the temperatures approach the instantaneous-loading limit. However, for most of the repository, temperature rises in the near-field are 10 to 40 years behind the conservative estimates depending on the waste type and the location in the repository. Results are presented for both spent-fuel and high-level reprocessing waste repositories in salt, for a regional repository concept, and for a single national repository concept. The national repository is filled sooner and therefore more closely approximates the instantaneously loaded repository. However, temperatures in the near-field are still 20/sup 0/C or more below the values in the simple model for 40 years after startup of repository emplacement operations. The results suggest that current repository design concepts based on the instantaneous-loading predictions are very conservative. Therefore, experiments to monitor temperatures in a test and evaluation facility, for example, will need to take into account the reduced temperatures in order to provide data used in predicting repository performance.

  17. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect (OSTI)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  18. Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bryan Mound Salt Dome, Texas

    SciTech Connect (OSTI)

    Neal, J.T.; Magorian, T.R.; Ahmad, S.

    1994-11-01

    This report revises the original report that was published in 1980. Some of the topics covered in the earlier report were provisional and it is now practicable to reexamine them using new or revised geotechnical data and that obtained from SPR cavern operations, which involves 16 new caverns. Revised structure maps and sections show interpretative differences as compared with the 1980 report and more definition in the dome shape and caprock structural contours, especially a major southeast-northwest trending anomalous zone. The original interpretation was of westward tilt of the dome, this revision shows a tilt to the southeast, consistent with other gravity and seismic data. This interpretation refines the evaluation of additional cavern space, by adding more salt buffer and allowing several more caverns. Additional storage space is constrained on this nearly full dome because of low-lying peripheral wetlands, but 60 MMBBL or more of additional volume could be gained in six or more new caverns. Subsidence values at Bryan Mound are among the lowest in the SPR system, averaging about 11 mm/yr (0.4 in/yr), but measurement and interpretation issues persist, as observed values are about the same as survey measurement accuracy. Periodic flooding is a continuing threat because of the coastal proximity and because peripheral portions of the site are at elevations less than 15 ft. This threat may increase slightly as future subsidence lowers the surface, but the amount is apt to be small. Caprock integrity may be affected by structural features, especially the faulting associated with anomalous zones. Injection wells have not been used extensively at Bryan Mound, but could be a practicable solution to future brine disposal needs. Environmental issues center on the areas of low elevation that are below 15 feet above mean sea level: the coastal proximity and lowland environment combined with the potential for flooding create conditions that require continuing surveillance.

  19. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  20. Geologic technical assessment of the Richton salt dome, Mississippi, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect (OSTI)

    Snider, Anna C.; Rautman, Christopher Arthur; Looff, Karl M.

    2006-01-01

    Technical assessment and remodeling of existing data indicates that the Richton salt dome, located in southeastern Mississippi, appears to be a suitable site for expansion of the U.S. Strategic Petroleum Reserve. The maximum area of salt is approximately 7 square miles, at a subsurface elevation of about -2000 ft, near the top of the salt stock. Approximately 5.8 square miles of this appears suitable for cavern development, because of restrictions imposed by modeled shallow salt overhang along several sides of the dome. The detailed geometry of the overhang currently is only poorly understood. However, the large areal extent of the Richton salt mass suggests that significant design flexibility exists for a 160-million-barrel storage facility consisting of 16 ten-million-barrel caverns. The dome itself is prominently elongated from northwest to southeast. The salt stock appears to consist of two major spine features, separated by a likely boundary shear zone trending from southwest to northeast. The dome decreases in areal extent with depth, because of salt flanks that appear to dip inward at 70-80 degrees. Caprock is present at depths as shallow as 274 ft, and the shallowest salt is documented at -425 ft. A large number of existing two-dimensional seismic profiles have been acquired crossing, and in the vicinity of, the Richton salt dome. At least selected seismic profiles should be acquired, examined, potentially reprocessed, and interpreted in an effort to understand the limitations imposed by the apparent salt overhang, should the Richton site be selected for actual expansion of the Reserve.

  1. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  2. Pre-test geological and geochemical evaluation of the Caprock, St. Peter Sandstone and formation fluids, Yakley Field, Pike County, Illinois

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    The goal of these studies is to ensure long-term stable containment of air in the underground reservoirs used in conjunction with compressed air energy storage (CAES) plants. The specific objective is to develop stability criteria and engineering guidelines for designing CAES reservoirs in each of the three major reservoir types, including aquifers, salt cavities, and mined hard rock caverns. This document characterizes the geologic nature of porous media constituents native to the aquifer field test site near Pittsfield, Illinois. The geologic samples were subjected to geochemical evaluations to determine anticipated responses to cyclic air injection, heating and moisture - conditions typical of an operating CAES reservoir. This report documents the procedures used and results obtained from these analyses.

  3. Electrolyte salts for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  4. Granular Salt Summary: Reconsolidation Principles and Applications

    SciTech Connect (OSTI)

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stuehrenberg, Dieter

    2014-07-01

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  5. WIPP Shares Expertise with Salt Club Members | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shares Expertise with Salt Club Members WIPP Shares Expertise with Salt Club Members November 26, 2013 - 12:00pm Addthis Carlsbad Field Office’s Abe Van Luik, third from right, examines rock salt taken from the Morsleben mine in Germany. Carlsbad Field Office's Abe Van Luik, third from right, examines rock salt taken from the Morsleben mine in Germany. CARLSBAD, N.M. - EM's Carlsbad Field Office (CBFO) participated in the second meeting of the Nuclear Energy Agency's (NEA) Salt Club and the

  6. Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Feasibility | Department of Energy Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility eSolar logo eSolar, under the Baseload CSP FOA, designed a 100-MW, 75% capacity factor, molten salt power tower plant, based around a molten salt receiver and heliostat field module with a nominal thermal rating of 50 MWth. They used a modular approach, which can be

  7. Slime-busting Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    past issues All Issues submit Slime-busting Salt A potential new treatment gets bacteria deep in their hiding places May 1, 2015 Slime-busting Salt Biofilms are made of...

  8. Ancient Salt Beds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancient Salt Beds Dr. Jack Griffith The key to the search for life on other planets may go through WIPP's ancient salt beds. In 2008, a team of scientists led by Jack Griffith, from the University of North Carolina, Chapel Hill, retrieved salt samples from the WIPP underground and studied them with a transmission electron microscopy lab at the Lineberger Comprehensive Cancer Center of the University of North Carolina School of Medicine. In examining fluid inclusions in the salt and solid halite

  9. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  10. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:www.nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  11. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  12. Dosimetry using silver salts

    DOE Patents [OSTI]

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  13. Tennessee Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    1,200 0 NA NA 1998-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 1,200 0 0 1999-2014 Total Working Gas Capacity 860 0 0 2008-2014 Salt Caverns 0 0...

  14. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  15. Hydroxycarboxylic acids and salts

    SciTech Connect (OSTI)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  16. Water purification using organic salts

    DOE Patents [OSTI]

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  17. Amine salts of nitroazoles

    DOE Patents [OSTI]

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  18. Electrodialysis technology for salt recovery from aluminum salt cake

    SciTech Connect (OSTI)

    Hryn, J. N.; Krumdick, G.; Graziano, D.; Sreenivasarao, K.

    2000-02-02

    Electrodialysis technology for recovering salt from aluminum salt cake is being developed at Argonne National Laboratory. Salt cake, a slag-like aluminum-industry waste stream, contains aluminum metal, salt (NaCl and KCl), and nonmetallics (primarily aluminum oxide). Salt cake can be recycled by digesting with water and filtering to recover the metal and oxide values. A major obstacle to widespread salt cake recycling is the cost of recovering salt from the process brine. Electrodialysis technology developed at Argonne appears to be a cost-effective approach to handling the salt brines, compared to evaporation or disposal. In Argonne's technology, the salt brine is concentrated until salt crystals are precipitated in the electrodialysis stack; the crystals are recovered downstream. The technology is being evaluated on the pilot scale using Eurodia's EUR 40-76-5 stack.

  19. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salt Lake City Gamma Shield Thunder Exercise Concludes National Nuclear Security Administration (NNSA) and the FBI announced today the completion of the Gamma Shield Thunder counterterrorism table-top exercise at LDS Hospital. The exercise is part of NNSA's Silent Thunder table-top series, which is aimed at giving federal, state and local

    6 th US/German Workshop on Salt Repository Research, Design, and Operation Hotel Pullmann Dresden Newa Dresden September 7 - 9, 2015 September 7- Monday

  20. Salt Selected (FINAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WHY SALT WAS SELECTED AS A DISPOSAL MEDIUM Waste Isolation Pilot Plant U.S. Department Of Energy Government officials and scientists chose the Waste Isolation Pilot Plant (WIPP) site through a selection process that started in the 1950s. At that time, the National Academy of Sciences conducted a nationwide search for geological formations stable enough to contain radioactive wastes for thousands of years. In 1955, after extensive study, salt deposits were recommended as a promising medium for

  1. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  2. Fundamental Properties of Salts

    SciTech Connect (OSTI)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  3. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    th US/German Workshop on Salt Repository Research, Design, and Operation Hotel Pullman Dresden Newa September 7 - 9, 2015 September 7- Monday 08:00-08:30 Registration 08:30-08:50 Welcome by the organizers T. Lautsch, DBE F. Hansen, SNL W. Steininger, PTKA 08:50-09:15 Welcome by BMWi U. Borak, BMWi 09:15-09:30 Welcome by USDOE N. Buschman, US DOE 09:30-10:00 NEA Salt Club J. Mönig, GRS SAFETY CASE ISSUES 10:00-10:30 WIPP recovery F. Hansen, SNL 10:30-11:00 Coffee break and photo event

  4. Electrolytic orthoborate salts for lithium batteries (Patent...

    Office of Scientific and Technical Information (OSTI)

    Electrolytic orthoborate salts for lithium batteries Title: Electrolytic orthoborate salts for lithium batteries Orthoborate salts suitable for use as electrolytes in lithium ...

  5. Sandia Energy - Molten Salt Test Loop Commissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy News EC News & Events Concentrating Solar Power Solar Molten Salt Test Loop Commissioning Previous Next Molten Salt Test Loop Commissioning The Molten Salt...

  6. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Salt...

  7. Strategic petroleum reserve (SPR) geological site characterization report, Bayou Choctaw Salt Dome. Sections I and II

    SciTech Connect (OSTI)

    Hogan, R.G.

    1981-03-01

    This report comprises two sections: Bayou Choctaw cavern stability issues, and geological site characterization of Bayou Choctaw. (DLC)

  8. Salt repository design approach

    SciTech Connect (OSTI)

    Matthews, S.C.

    1983-01-01

    This paper presents a summary discussion of the approaches that have been and will be taken in design of repository facilities for use with disposal of radioactive wastes in salt formations. Since specific sites have yet to be identified, the discussion is at a general level, supplemented with illustrative examples where appropriate. 5 references, 1 figure.

  9. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  10. Actinide removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  11. Metals removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  12. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Capacity Definitions Key Terms Definition Aquifer Storage Field A sub-surface facility for storing natural gas, consisting of water-bearing sands topped by an impermeable cap rock. Depleted Reservoir Storage Field A sub-surface natural geological reservoir, usually a depleted gas or oil field, used for storing natural gas. Natural Gas A gaseous mixture of hydrocarbon compounds, the primary one being methane. Salt Dome Storage Field (Salt Cavern) A storage facility that is a cavern hollowed out

  13. Structure and vascular function of MEKK3cerebral cavernous malformations 2 complex

    SciTech Connect (OSTI)

    Fisher, Oriana S.; Deng, Hanqiang; Liu, Dou; Zhang, Ya; Wei, Rong; Deng, Yong; Zhang, Fan; Louvi, Angeliki; Turk, Benjamin E.; Boggon, Titus J.; Su, Bing

    2015-08-03

    Cerebral cavernous malformations 2 (CCM2) loss is associated with the familial form of CCM disease. The protein kinase MEKK3 (MAP3K3) is essential for embryonic angiogenesis in mice and interacts physically with CCM2, but how this interaction is mediated and its relevance to cerebral vasculature are unknown. Here we report that Mekk3 plays an intrinsic role in embryonic vascular development. Inducible endothelial Mekk3 knockout in neonatal mice is lethal due to multiple intracranial haemorrhages and brain blood vessels leakage. We discover direct interaction between CCM2 harmonin homology domain (HHD) and the N terminus of MEKK3, and determine a 2.35 cocrystal structure. We find Mekk3 deficiency impairs neurovascular integrity, which is partially dependent on RhoROCK signalling, and that disruption of MEKK3:CCM2 interaction leads to similar neurovascular leakage. We conclude that CCM2:MEKK3-mediated regulation of Rho signalling is required for maintenance of neurovascular integrity, unravelling a mechanism by which CCM2 loss leads to disease.

  14. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Salt Repository Research, Design, and Operation La Fonda Hotel Santa Fe, New Mexico September 7 - 11, 2014 Please join us Sunday September 7, 2014 for a welcome and reception at the La Fonda Hotel hosted by Sandia National Laboratories beginning at 6:00 PM. Day 1 Technical Agenda September 8 - Monday 08:00-08:45 Sign-in and distribution of meeting materials 08:45-09:45 Welcome addresses H.C. Pape (BMWi) US-DOE Offices Highlights of US/German Collaboration F. Hansen (SNL) W. Steininger (PTKA)

  15. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  16. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  17. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  18. Electrolyte salts for nonaqueous electrolytes

    DOE Patents [OSTI]

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  19. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    SciTech Connect (OSTI)

    Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

    2012-02-01

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be

  20. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  1. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  2. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  3. Electrochromic salts, solutions, and devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky,7,064,212 T. Mark

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  4. Long-Term Outcomes of Stereotactic Radiosurgery for Treatment of Cavernous Sinus Meningiomas

    SciTech Connect (OSTI)

    Santos, Marcos Antonio dos; Calvo, Felipe A.; Samblas, Jose; Marsiglia, Hugo

    2011-12-01

    Purpose: Patients with cavernous sinus meningiomas (CSM) have an elevated risk of surgical morbidity and mortality. Recurrence is often observed after partial resection. Stereotactic radiosurgery (SRS), either alone or combined with surgery, represents an important advance in CSM management, but long-term results are lacking. Methods and Materials: A total of 88 CSM patients, treated from January 1991 to December 2005, were retrospectively reviewed. The mean follow-up was 86.8 months (range, 17.1-179.4 months). Among the patients, 22 were followed for more than 10 years. There was a female predominance (84.1%). The age varied from 16 to 90 years (mean, 51.6). In all, 47 patients (53.4%) received SRS alone, and 41 patients (46.6%) had undergone surgery before SRS. A dose of 14 Gy was prescribed to isodose curves from 50% to 90%. In 25 patients (28.4%), as a result of the proximity to organs at risk, the prescribed dose did not completely cover the target. Results: After SRS, 65 (73.8%) patients presented with tumor volume reduction; 14 (15.9%) remained stable, and 9 (10.2%) had tumor progression. The progression-free survival was 92.5% at 5 years, and 82.5% at 10 years. Age, sex, maximal diameter of the treated tumor, previous surgery, and complete target coverage did not show significant associations with prognosis. Among the 88 treated patients, 17 experienced morbidity that was related to SRS, and 6 of these patients spontaneously recovered. Conclusions: SRS is an effective and safe treatment for CSM, feasible either in the primary or the postsurgical setting. Incomplete coverage of the target did not worsen outcomes. More than 80% of the patients remained free of disease progression during long-term follow-up.

  5. DOE - Office of Legacy Management -- Salt_Lake

    Office of Legacy Management (LM)

    Salt_Lake Salt Lake City Sites ut_map Salt Lake City Disposal Site Salt Lake City Processing Site Last Updated: 12/14/2015

  6. Plant salt-tolerance mechanisms

    SciTech Connect (OSTI)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  7. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  8. Structural Interactions within Lithium Salt Solvates: Acyclic...

    Office of Scientific and Technical Information (OSTI)

    Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters Citation Details In-Document Search Title: Structural Interactions within Lithium Salt Solvates: ...

  9. Enterprise Assessments Salt Waste Processing Facility Construction...

    Office of Environmental Management (EM)

    Salt Waste Processing Facility Construction Quality and Fire Protection Systems Follow-up Review at the Savannah River Site - January 2016 Enterprise Assessments Salt Waste ...

  10. Remediated Nitrate Salt Drums Background

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Providing Additional Pressure Relief to the Remediated Nitrate Salt Drums Background After the radiological event on February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), Department of Energy (DOE) scientists from several national laboratories conducted extensive experiments and modeling studies to determine what caused the drum to breach. These investigations indicated that an incompatible mixture of nitrate salts and an organic absorbent created the conditions that resulted in an

  11. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    SciTech Connect (OSTI)

    Carr, J.E.; Halasz, S.J.; Peters, H.B.

    1980-01-01

    The salt within these domes has penetrated as much as 20,000 feet of Mesozoic and Cenozoic strata, and presently extends to within 120 to 800 feet of the land surface. The salt penetrates or closely underlies major freshwater and salinewater aquifers within the basin. To provide a safe repository for radioactive wastes within one or more of these domes, a thorough understanding of the geohydrology needs to be obtained, and the hydrologic stability of the domes needs to be established for the expected life of the storage facility. Dissolution may exist at all four candidate salt domes, possibly through contact with Cretaceous or Tertiary aquifers, or through fault systems in the vicinity of the domes. Strata overlying and surrounding Palestine and Keechi Salt Domes have been arched into steeply-dipping folds that are complexly faulted. Similar conditions exist at Oakwood and Mount Sylvan Domes, except that the Tertiary strata have been only moderately disturbed. Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome.

  12. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect

    SciTech Connect (OSTI)

    Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie

    2014-09-14

    To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (?45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 and an overall minimum RMSD of 1.9 from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ? 1.0 C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.

  13. Salt site performance assessment activities

    SciTech Connect (OSTI)

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  14. Production of chlorine from chloride salts

    DOE Patents [OSTI]

    Rohrmann, Charles A. (Kennewick, WA)

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  15. Savannah River Site - Salt Waste Processing Facility: Briefing...

    Office of Environmental Management (EM)

    Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing ...

  16. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Reddy, Ramana G.

    2013-10-23

    /no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

  17. Solar on Salt Lake City Convention Center

    Broader source: Energy.gov [DOE]

    This photograph features the Calvin L. Rampton Salt Palace Convention Center, which will soon become a solar power-producing giant. Salt Lake County and its project partners announced plans to...

  18. Salt Wells Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333,...

  19. Brine Migration Experimental Studies for Salt Repositories

    Broader source: Energy.gov [DOE]

    Experiments were used to examine water content in Permian salt samples including impact of variation in thermal regime on water content of evaporites and other mineral species, behavior of brine inclusions in salt, and evolution of the gas/liquid brine/salt system.

  20. Strategic Petroleum Reserve, West Hackberry oil storage cavern fire and spill of September 21, 1978: an environmental assessment. Final report

    SciTech Connect (OSTI)

    Taylor, A

    1980-02-29

    This report summarizes an environmental assessment of the fire and oil spill at the Strategic Petroleum Reserve site, West Hackberry, Louisiana. Subjective identification of oil contaminated habitats was supported by a more rigorous classification of samples utilizing discriminant analysis. Fourteen contaminated stations were identified along the shore of Black Lake just north and west of Wellpad 6, encompassing approximately 9 hectares. Seasonal variation in the structures of marsh and lake bottom communities in this contaminated area were not generally distinguishable from that of similar communities in uncontaminated habitats along the southern and southeastern shores of Black Lake. The major impact of spilled oil on the marsh vegetation was to accelerate the natural marsh deterioration which will eventually impact animals dependent on marsh vegetation for habitat structure. Vanadium, the predominate trace metal in the oil, and pyrogenic products due to the fire were found at the most distant sampling site (5 km) from Cavern 6 during Phase I, but were not detected downwind of the fire in excess of background levels in the later phases. Remote sensing evaluation of vegetation under the plume also indicated that stress existed immediately after the fire, but had disappeared by the end of the 1-year survey.

  1. Thermophysical properties of reconsolidating crushed salt.

    SciTech Connect (OSTI)

    Bauer, Stephen J.; Urquhart, Alexander

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300oC, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  2. Field desorption of lithium fluoride

    SciTech Connect (OSTI)

    Stintz, A.; Panitz, J.A. )

    1995-03-01

    Layers of lithium fluoride (LiF), [similar to]10 nm thick, were field desorbed from iridium substrates at temperatures between 25 and 600 [degree]C. The electric field was increased until desorption of the salt layer occurred. Combined mass spectroscopy and field desorption microscopy characterized the desorption process. During desorption, ions of the form (LiF)[sub [ital n

  3. Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions Authors: Luo, Y., Roux, B. Accurate force fields are critical for meaningful simulation studies of highly concentrated electrolytes. The ion models that are widely used in biomolecular simulations do not necessarily reproduce the correct behavior at finite concentrations. In principle, the osmotic pressure is a key thermodynamic property that could be used to test and refine force

  4. Magneto-hydrodynamic detection of vortex shedding for molten salt flow sensing.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Crocker, Robert W.

    2012-09-01

    High temperature flow sensors must be developed for use with molten salts systems at temperatures in excess of 600%C2%B0C. A novel magneto-hydrodynamic sensing approach was investigated. A prototype sensor was developed and tested in an aqueous sodium chloride solution as a surrogate for molten salt. Despite that the electrical conductivity was a factor of three less than molten salts, it was found that the electrical conductivity of an electrolyte was too low to adequately resolve the signal amidst surrounding noise. This sensor concept is expected to work well with any liquid metal application, as the generated magnetic field scales proportionately with electrical conductivity.

  5. Salt restrains maturation in subsalt plays

    SciTech Connect (OSTI)

    Mello, U.T. ); Anderson, R.N.; Karner, G.D. . Lamont-Doherty Earth Observatory)

    1994-01-31

    The thermal positive anomaly associated with the top of salt diapirs has attracted significant attention in modifying the temperature structure and history of a sedimentary basin. Here the authors explore the role of the negative thermal anomaly beneath salt in modifying the maturation history of the source rocks in subsalt sediments. Organic matter maturation is believed to follow temperature dependent chemical reactions. Therefore, any temperature anomaly associated with salt masses affects the nearby maturation of potential source rocks. The level of maturity of source rocks close to salt diapirs will differ from that predicted based on regional trends. The impact of the thermal anomaly on a given point will depend on the duration and distance of the thermal anomaly to this particular point. Consequently, the maturation history of source rocks in salt basins is closely related to the salt motion history, implying that a transient thermal analysis is necessary to evaluate the sure impact on maturation of the thermal anomalies associated with salt diapirism. The paper describes vitrinite kinetics, salt in evolving basins, correlation of salt and temperature, salt dome heat drains, and restrained maturation.

  6. Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bayou Choctaw salt dome, Louisiana

    SciTech Connect (OSTI)

    Neal, J.T.; Magorian, T.R.; Byrne, K.O.; Denzler, S.

    1993-09-01

    This report revises and updates the geologic site characterization report that was published in 1980. Revised structure maps and sections show interpretative differences in the dome shape and caprock structural contours, especially a major east-west trending shear zone, not mapped in the 1980 report. Excessive gas influx in Caverns 18 and 20 may be associated with this shear zone. Subsidence values at Bayou Choctaw are among the lowest in the SPR system, averaging only about 10 mm/yr but measurement and interpretation issues persist, as observed values often approximate measurement accuracy. Periodic, temporary flooding is a continuing concern because of the low site elevation (less than 10 ft), and this may intensify as future subsidence lowers the surface even further. Cavern 4 was re-sonared in 1992 and the profiles suggest that significant change has not occurred since 1980, thereby reducing the uncertainty of possible overburden collapse -- as occurred at Cavern 7 in 1954. Other potential integrity issues persist, such as the proximity of Cavern 20 to the dome edge, and the narrow web separating Caverns 15 and 17. Injection wells have been used for the disposal of brine but have been only marginally effective thus far; recompletions into more permeable lower Pleistocene gravels may be a practical way of increasing injection capacity and brinefield efficiency. Cavern storage space is limited on this already crowded dome, but 15 MMBBL could be gained by enlarging Cavern 19 and by constructing a new cavern beneath and slightly north of abandoned Cavern 13. Environmental issues center on the low site elevation: the backswamp environment combined with the potential for periodic flooding create conditions that will require continuing surveillance.

  7. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    SciTech Connect (OSTI)

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage

  8. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOE Patents [OSTI]

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  9. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  10. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  11. Noncentrosymmetric salt inclusion oxides: Role of salt lattices and counter ions in bulk polarity

    SciTech Connect (OSTI)

    West, J. Palmer; Hwu, Shiou-Jyh

    2012-11-15

    The synthesis and structural features of a newly emerged class of salt-inclusion solids (SISs) are reviewed. The descriptive chemistry with respect to the role of ionic salt and its correlation with bulk noncentrosymmetricity and polarity of the covalent oxide lattice in question is discussed by means of structure analysis. These unprecedented discoveries have opened doors to novel materials synthesis via the utilities of salt-inclusion chemistry (SIC) that are otherwise known as the molten-salt approach. The result of these investigations prove that the bulk acentricity, or cancellation of which, can be accounted for from the perspective of ionic and/or salt lattices. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of newly emerged salt-inclusion solids are reviewed. Black-Right-Pointing-Pointer Salt lattice and its symmetry correlation with polar framework are discussed. Black-Right-Pointing-Pointer Preservation of acentricity is accounted for from the perspective of ionic and salt lattices.

  12. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  13. Metal salt catalysts for enhancing hydrogen spillover

    DOE Patents [OSTI]

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  14. Protic Salt Polymer Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protic Salt Polymer Membranes Protic Salt Polymer Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. More Documents & Publications Design and Development of High-Performance Polymer Fuel Cell Membranes High Temperature Membrane with HUmidification-Independent Cluster Structure Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications

  15. Solar Policy Environment: Salt Lake

    Office of Energy Efficiency and Renewable Energy (EERE)

    The overall objective of the “Solar Salt Lake” (SSL) team is to develop a fully-scoped city and county-level implementation plan that will facilitate at least an additional ten megawatts of solar photovoltaic (PV) installations in the government, commercial, industrial, and residential sectors by 2015. To achieve this aggressive goal, the program strategy includes a combination of barrier identification, research, and policy analysis that utilizes the input of various stakeholders. Coupled with these activities will be the development and implementation of pilot installations in the government and residential sectors, and broad outreach to builders and potential practitioners of solar energy products in the process. In this way, while creating mechanisms to enable a demand for solar, SSL will also facilitate capacity building for suppliers, thereby helping to ensure long-term sustainability for the regional market.

  16. Field Mapping At Salt Wells Area (Coolbaugh, Et Al., 2004) |...

    Open Energy Info (EERE)

    Details regarding the complete hardware specifications of the device are included in the body of the article. A custom geologic mapping software applet developed by Gary Edmondo...

  17. SEPARATION OF METAL SALTS BY ADSORPTION

    DOE Patents [OSTI]

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  18. Evaluation of Salt Coolants for Reactor Applications

    SciTech Connect (OSTI)

    Williams, David F

    2008-01-01

    Molten fluorides were initially developed for use in the nuclear industry as the high-temperature fluid fuel for the Molten Salt Reactor (MSR). The U.S. Department of Energy Office of Nuclear Energy is exploring the use of molten salts as primary and secondary coolants in a new generation of solid-fueled, thermal-spectrum, hightemperature reactors. This paper provides a review of relevant properties for use in evaluation and ranking of salt coolants for high-temperature reactors. Nuclear, physical, and chemical properties were reviewed, and metrics for evaluation are recommended. Chemical properties of the salt were examined to identify factors that affect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented.

  19. Remediated Nitrate Salt Drums Safety Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Safety Update Remediated Nitrate Salt Drums Safety Update Topic: Mr. Nickless, Environmental Management Los Alamos, Provided a presentation on the status of the Nitrate Salt waste at Los Alamos.

  20. Underground Salt Haul Truck Fire at the Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant February 5, 2014 March 2014 Salt Haul Truck Fire at the Waste Isolation Pilot Plant Salt Haul Truck Fire at the ...

  1. 2016 US/German Workshop on Salt Repository Research, Design,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USGerman Workshop on Salt Repository Research, Design, and Operation - Sandia Energy ... Workshop on Salt Repository Research, Design, and Operation HomeStationary Power...

  2. Voluntary Protection Program Onsite Review, Parsons Corp., Salt...

    Office of Environmental Management (EM)

    Corp., Salt Waste Processing Facility Construction Project - May 2014 Voluntary Protection Program Onsite Review, Parsons Corp., Salt Waste Processing Facility Construction Project...

  3. DOE - Office of Legacy Management -- Penn Salt Manufacturing...

    Office of Legacy Management (LM)

    Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from...

  4. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy...

    Open Energy Info (EERE)

    Ormat Technologies Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Ormat Technologies Salt Wells...

  5. Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2002 -...

  6. Compound and Elemental Analysis At Salt Wells Area (Shevenell...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date...

  7. Conceptual Model At Salt Wells Area (Faulds, Et Al., 2011) |...

    Open Energy Info (EERE)

    At Salt Wells Area (Faulds, Et Al., 2011) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Conceptual Model Activity Date 2011 Usefulness...

  8. Savannah River Site - Salt Waste Processing Facility Independent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Site - Salt Waste Processing Facility Independent Technical Review Full Document and Summary Versions are available for download PDF icon Savannah River Site - Salt ...

  9. Sandia Energy - Molten Nitrate Salt Initial Flow Testing is a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Initial Flow Testing is a Tremendous Success Home Renewable Energy News Concentrating Solar Power Solar Molten Nitrate Salt Initial Flow Testing is a Tremendous...

  10. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources (Redirected from Salt Lake City, UT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map...

  11. Salt Lake County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek Valley, Utah Magna, Utah Midvale, Utah Millcreek, Utah Mount Olympus, Utah Murray, Utah Riverton, Utah Salt Lake City, Utah Sandy, Utah South Jordan, Utah South Salt...

  12. Assessment of Nuclear Safety Culture at the Salt Waste Processing...

    Office of Environmental Management (EM)

    Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility ... of Nuclear Safety Culture at the Salt Waste Processing Facility Project Table of ...

  13. Construction of Salt Waste Processing Facility (SWPF) | Department...

    Office of Environmental Management (EM)

    of Salt Waste Processing Facility (SWPF) Construction of Salt Waste Processing Facility (SWPF) Presentation from the 2015 DOE National Cleanup Workshop by Frank Sheppard, Project ...

  14. Review of the Savannah River Site Salt Waste Processing Facility...

    Office of Environmental Management (EM)

    Independent Oversight Review of the Savannah River Site Salt Waste Processing Facility ... and Component SWGR Switch Gear SWPF Salt Waste Processing Facility TSRs Technical Safety ...

  15. Sandia Energy - Molten Salt Test Loop Pump Installed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy News Concentrating Solar Power Solar Energy Storage Systems Molten Salt Test Loop Pump Installed Previous Next Molten Salt Test Loop Pump Installed The pump was...

  16. Savannah River Site - Salt Waste Processing Facility Independent...

    Office of Environmental Management (EM)

    SALT WASTE PROCESSING FACILITY INDEPENDENT TECHNICAL REVIEW November 22, 2006 Conducted ... Leader SPD-SWPF-217 SPD-SWPF-217: Salt Waste Processing Facility Independent Technical ...

  17. Savannah River Site Salt Waste Processing Facility Technology...

    Office of Environmental Management (EM)

    Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report ... of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness ...

  18. Project Profile: Deep Eutectic Salt Formulations Suitable as...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Halotechnics ...

  19. Molten salt heat transfer fluids and thermal storage technology...

    Office of Scientific and Technical Information (OSTI)

    Molten salt heat transfer fluids and thermal storage technology. Citation Details In-Document Search Title: Molten salt heat transfer fluids and thermal storage technology. No ...

  20. Sandia Energy - 2015 VIII MECHANICAL BEHAVIOR OF SALT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VIII MECHANICAL BEHAVIOR OF SALT Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops 2015 VIII MECHANICAL BEHAVIOR OF SALT 2015 VIII MECHANICAL BEHAVIOR OF...

  1. THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project...

    Office of Scientific and Technical Information (OSTI)

    THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project GNOME Citation Details In-Document Search Title: THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project ...

  2. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar ...

  3. Novel Molten Salts Thermal Energy Storage for Concentrating Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation This presentation ...

  4. Geothermal Literature Review At Salt Wells Area (Faulds, Et Al...

    Open Energy Info (EERE)

    Salt Wells Area (Faulds, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salt Wells Area (Faulds,...

  5. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  6. Salt Waste Processing Facility Fact Sheet | Department of Energy

    Office of Environmental Management (EM)

    Waste Management Tank Waste and Waste Processing Salt Waste Processing Facility Fact Sheet Salt Waste Processing Facility Fact Sheet Nuclear material production operations at ...

  7. Remediated Nitrate Salt Drums Storage at Los Alamos National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory As a part of its national security ...

  8. Independent Oversight Review, Savannah River Site Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing...

  9. Magnetotellurics At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Salt Wells Area (Bureau of...

  10. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    SciTech Connect (OSTI)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-02-25

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

  11. Analytical chemistry of aluminum salt cake

    SciTech Connect (OSTI)

    Graczyk, D.G.; Essling, A.M.; Huff, E.A.; Smith, F.P.; Snyder, C.T.

    1997-02-01

    Component phases of Al salt cake or products from processing salt cake, resist dissolution, a key first step in most analysis procedures. In this work (analysis support to a study of conversion of salt cake fines to value-added oxide products), analysis methods were adapted or devised for determining leachable salt, total halides (Cl and F), Al metal, and elemental composition. Leaching of salt cake fines was by ultrasonic agitation with deionized water. The leachate was analyzed for anions by ion chromatography and for cations by ICP-atomic emission spectroscopy. Only chloride could be measured in the anions, and charge balances between cations and chloride were near unity, indicating that all major dissolved species were chloride salts. For total halides, the chloride and fluorides components were first decomposed by KOH fusion, and the dissolved chloride and fluoride were measured by ion chromatography. Al metal in the fines was determined by a hydrogen evolution procedure adapted for submilligram quantities of metallic Al: the Al was reacted with HCl in a closed system containing a measured amount of high-purity He. After reaction, the H/He ratio was measured by mass spectroscopy. Recoveries of Al metal standards (about 30mg) averaged 93%. Comparison of the acid evolution with caustic reaction of the Al metal showed virtually identical results, but reaction was faster in the acid medium. Decomposition of the salt cake with mineral acids left residues that had to be dissolved by fusion with Na carbonate. Better dissolution was obtained by fusing the salt cake with Li tetraborate; the resulting solution could be used for accurate Al assay of salt cake materials by classical 8-hydroxyquinolate gravimetry.

  12. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  13. Salt Lake City- High Performance Buildings Requirement

    Broader source: Energy.gov [DOE]

    Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

  14. Director, Salt Waste Processing Facility Project Office

    Broader source: Energy.gov [DOE]

    This position is located within The Department of Energy (DOE) Savannah River (SR) Operations Office, Salt Waste Processing Facility Project Office (SWPFPO). SR is located in Aiken, South Carolina....

  15. Liquid salt environment stress-rupture testing

    DOE Patents [OSTI]

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  16. Salt Selection for the LS-VHTR

    SciTech Connect (OSTI)

    Williams, D.F.; Clarno, K.T.

    2006-07-01

    Molten fluorides were initially developed for use in the nuclear industry as the high temperature fluid-fuel for a Molten Salt Reactor (MSR). The Office of Nuclear Energy is exploring the use of molten fluorides as a primary coolant (rather than helium) in an Advanced High Temperature Reactor (AHTR) design, also know as the Liquid-Salt cooled Very High Temperature Reactor (LS-VHTR). This paper provides a review of relevant properties for use in evaluation and ranking of candidate coolants for the LS-VHTR. Nuclear, physical, and chemical properties were reviewed and metrics for evaluation are recommended. Chemical properties of the salt were examined for the purpose of identifying factors that effect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented. (authors)

  17. Molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  18. Molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  19. Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.

    SciTech Connect (OSTI)

    Pacheco, James Edward; Wolf, Thorsten; Muley, Nishant

    2013-03-01

    Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

  20. Thermal Characterization of Molten Salt Systems

    SciTech Connect (OSTI)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  1. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOE Patents [OSTI]

    Lee, Kien-yin; Coburn, Michael D.

    1985-01-01

    Ethylenediamine salt of 5-nitrotetrazole and preparation. This salt has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol % of ammonium nitrate, is close to the CO.sub.2 -balanced composition of 90 mol %, and has a relatively low melting point of 110.5 C. making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C. and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  2. Ammonia Solubility in High Concentration Salt Solutions

    SciTech Connect (OSTI)

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  3. Treatment of Remediated Nitrate Salts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treatment of Remediated Nitrate Salts Treatment of Remediated Nitrate Salts Topic: Plan for remediation the nitrate salt waste from the 3706 campaign that is currently stored at Material Disposal Area G, presenter was David Funk, LANS. Nitrate Salts - November 18, 2015 (1 MB

  4. Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives

    Office of Energy Efficiency and Renewable Energy (EERE)

    CARLSBAD, N.M. – Proceeds from a unique arrangement that turned excavated salt from EM’s Waste Isolation Pilot Plant (WIPP) into a usable commodity have supported an array of public projects, including field trips focusing on conservation education for about 600 elementary-age students.

  5. Low temperature oxidation using support molten salt catalysts

    DOE Patents [OSTI]

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  6. Liquid fuel molten salt reactors for thorium utilization (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Journal Article: Liquid fuel molten salt reactors for thorium utilization Citation Details In-Document Search This content will become publicly available on April 8, 2017 Title: Liquid fuel molten salt reactors for thorium utilization Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and

  7. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    SciTech Connect (OSTI)

    Tilley, Drake; Kelly, Bruce; Burkholder, Frank

    2014-12-12

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler

  8. Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)

    SciTech Connect (OSTI)

    Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D.

    2012-07-01

    The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

  9. Characterization of the molten salt reactor experiment fuel and flush salts

    SciTech Connect (OSTI)

    Williams, D.F.; Peretz, F.J.

    1996-05-01

    Wise decisions about the handling and disposition of spent fuel from the Molten Salt Reactor Experiment (MSRE) must be based upon an understanding of the physical, chemical, and radiological properties of the frozen fuel and flush salts. These {open_quotes}static{close_quotes} properties can be inferred from the extensive documentation of process history maintained during reactor operation and the knowledge gained in laboratory development studies. Just as important as the description of the salt itself is an understanding of the dynamic processes which continue to transform the salt composition and govern its present and potential physicochemical behavior. A complete characterization must include a phenomenological characterization in addition to the typical summary of properties. This paper reports on the current state of characterization of the fuel and flush salts needed to support waste management decisions.

  10. Corrosion of aluminides by molten nitrate salt

    SciTech Connect (OSTI)

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  11. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOE Patents [OSTI]

    Lee, K.; Coburn, M.D.

    1984-05-17

    The ethylenediamine salt of 5-nitrotetrazole has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol% of ammonium nitrate, is close to the CO/sub 2/-balanced composition of 90 mol%, and has a relatively low melting point of 110.5 C making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  12. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  13. Fast Spectrum Molten Salt Reactor Options

    SciTech Connect (OSTI)

    Gehin, Jess C; Holcomb, David Eugene; Flanagan, George F; Patton, Bruce W; Howard, Rob L; Harrison, Thomas J

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  14. Potential vertical movement of large heat-generating waste packages in salt.

    SciTech Connect (OSTI)

    Clayton, Daniel James; Martinez, Mario J.; Hardin, Ernest L.

    2013-05-01

    With renewed interest in disposal of heat-generating waste in bedded or domal salt formations, scoping analyses were conducted to estimate rates of waste package vertical movement. Vertical movement is found to result from thermal expansion, from upward creep or heave of the near-field salt, and from downward buoyant forces on the waste package. A two-pronged analysis approach was used, with thermal-mechanical creep modeling, and coupled thermal-viscous flow modeling. The thermal-mechanical approach used well-studied salt constitutive models, while the thermal-viscous approach represented the salt as a highly viscous fluid. The Sierra suite of coupled simulation codes was used for both approaches. The waste package in all simulations was a right-circular cylinder with the density of steel, in horizontal orientation. A time-decaying heat generation function was used to represent commercial spent fuel with typical burnup and 50-year age. Results from the thermal-mechanical base case showed approximately 27 cm initial uplift of the package, followed by gradual relaxation closely following the calculated temperature history. A similar displacement history was obtained with the package density set equal to that of salt. The slight difference in these runs is attributable to buoyant displacement (sinking) and is on the order of 1 mm in 2,000 years. Without heat generation the displacement stabilizes at a fraction of millimeter after a few hundred years. Results from thermal-viscous model were similar, except that the rate of sinking was constant after cooldown, at approximately 0.15 mm per 1,000 yr. In summary, all calculations showed vertical movement on the order of 1 mm or less in 2,000 yr, including calculations using well-established constitutive models for temperature-dependent salt deformation. Based on this finding, displacement of waste packages in a salt repository is not a significant repository performance issue.

  15. Microsoft Word - Figure_05.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    24 0 1 2 3 4 2013 2014 2015 2016 2017 All Storage Fields Other than Salt Caverns Salt Caverns trillion cubic feet Trillion Cubic Feet Figure 5 Note: Geographic coverage is the 50 states and the District of Columbia. Alaska was added to U.S. total as of January 2013. Source: Energy Information Administration (EIA): Form EIA-191, "Monthly Underground Gas Storage Report." Billion Cubic Meters Figure 5. Working gas in underground natural gas storage in the United States, 2013-2016

  16. Combined gettering and molten salt process for tritium recovery from lithium

    SciTech Connect (OSTI)

    Sze, D.K.; Finn, P.A.; Bartlit, J.; Tanaka, S.; Teria, T.; Yamawaki, M.

    1988-02-01

    A new tritium recovery concept from lithium has been developed as part of the US/Japan collaboration on Reversed-Field Pinch Reactor Design Studies. This concept combines the ..gamma..-gettering process as the front end to recover tritium from the coolant, and a molten salt recovery process to extract tritium for fuel processing. A secondary lithium is used to regenerate the tritium from the gettering bed and, in the process, increases the tritium concentration by a factor of about 20. That way, the required size of the molten salt process becomes very small. A potential problem is the possible poisoning of the gettering bed by the salt dissolved in lithium. 16 refs., 6 figs.

  17. High Temperature Fluoride Salt Test Loop

    SciTech Connect (OSTI)

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  18. Brine migration test report: Asse Salt Mine, Federal Republic of Germany: Technical report

    SciTech Connect (OSTI)

    Coyle, A.J.; Eckert, J.; Kalia, H.

    1987-01-01

    This report presents a summary of Brine Migration Tests which were undertaken at the Asse mine of the Federal Republic of Germany (FRG) under a bilateral US/FRG agreement. This experiment simulates a nuclear waste repository at the 800-m (2624-ft) level of the Asse salt mine in the Federal Republic of Germany. This report describes the Asse salt mine, the test equipment, and the pretest properties of the salt in the mine and in the vicinity of the test area. Also included are selected test data (for the first 28 months of operation) on the following: brine migration rates, thermomechaical behavior of the salt (including room closure, stress reading, and thermal profiles), borehole gas pressures, and borehole gas analyses. In addition to field data, laboratory analyses of pretest salt properties are included in this report. The operational phase of these experiments was completed on October 4, 1985, with the commencement of cooldown and the start of posttest activities. 7 refs., 68 figs., 48 tabs.

  19. Salt Lake City | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Salt Lake City Gamma Shield Thunder Exercise Concludes National Nuclear Security Administration (NNSA) and the FBI announced today the completion of the Gamma Shield Thunder counterterrorism table-top exercise at LDS Hospital. The exercise is part of NNSA's Silent Thunder table-top series, which is aimed at giving federal, state and local

  20. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect (OSTI)

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  1. Salt repository project closeout status report

    SciTech Connect (OSTI)

    1988-06-01

    This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

  2. Accelerators for Subcritical Molten-Salt Reactors

    SciTech Connect (OSTI)

    Johnson, Roland

    2011-08-03

    Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

  3. Subsidence at Boling salt dome: results of multiple resource production

    SciTech Connect (OSTI)

    Mullican, W.F. III

    1988-02-01

    Boling dome (Wharton and Fort Bend Counties) has experienced more overall subsidence and collapse than any other dome in Texas. These processes are directly related to production of sulfur and hydrocarbons from the southeastern quadrant of the dome. Greatest vertical movement due to subsidence and collapse is 35 ft (based on the Boling 7.5 min topographic map, last surveyed in 1953). Most of the subsidence (83%) is attributed to sulfur production, whereas only 11 to 12% can be linked to hydrocarbon production. Reservoir compaction is the dominant mechanism of land subsidence in areas of hydrocarbon production at Boling dome. Trough subsidence, chimneying, plug caving, and piping are the characteristic mechanisms over sulfur fields developed at the salt dome. The structural and hydrologic stability of the surface and subsurface at Boling dome is compromised by these active deformation processes. Damage to pipelines and well-casing strings may result in costly leaks which have the potential of being uncontrollable and catastrophic. Reduction in hydrologic stability may result if natural aquitards are breached and fresh water mixes with saline water or if hydrologic conduits to the diapir are opened, allowing unrestricted dissolution of the salt stock.

  4. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy...

    Open Energy Info (EERE)

    Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells...

  5. Tank 41-H salt level fill history 1985 to 1987

    SciTech Connect (OSTI)

    Ross, R.H.

    1996-05-16

    The fill rate of the evaporator drop waste tank (i.e., salt tank) at Savannah River Site contained in the Waste Management Technology (WMT) monthly data record is based upon a simple formula that apportioned 10 percent of the evaporator output concentrate to the salt fill volume. Periodically, the liquid level of the salt tank would be decanted below the salt level surface and a visual inspection of the salt profile would be accomplished. The salt volume of the drop tank would then be corrected, if necessary, based upon the visual elevation of the salt formation. This correction can erroneously indicate an excess amount of salt fill occurred in a short time period. This report established the correct fill history for Tank 41H.

  6. Completing Salt Waste Processing Facility is an EM Priority and...

    Office of Environmental Management (EM)

    Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup Progress Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup ...

  7. Savannah River Site Cuts Ribbon for New Salt Waste Processing...

    Office of Environmental Management (EM)

    Savannah River Site Cuts Ribbon for New Salt Waste Processing Facility Savannah River Site Cuts Ribbon for New Salt Waste Processing Facility June 30, 2016 - 12:55pm Addthis DOE ...

  8. Salt Waste Disposal at the Savannah River Site | Department of...

    Office of Environmental Management (EM)

    Salt Waste Disposal at the Savannah River Site Salt Waste Disposal at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal ...

  9. File:Salt2.pdf | Open Energy Information

    Open Energy Info (EERE)

    Salt2.pdf Jump to: navigation, search File File history File usage Metadata File:Salt2.pdf Size of this preview: 463 599 pixels. Other resolution: 464 600 pixels. Go to page...

  10. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars

  11. PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Salt Lake City Corporation (Solar Market Pathways) PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways) Title: Wasatch Solar Project WASATCH solar logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Salt Lake City, UT Amount Awarded: $600,000 Awardee Cost Share: $164,645 Salt Lake City and its partners are developing a comprehensive long-term solar deployment strategy, which includes an analysis of the value of

  12. Method for preparing salt solutions having desired properties

    DOE Patents [OSTI]

    Ally, Moonis R.; Braunstein, Jerry

    1994-01-01

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  13. Prediction of heat capacities of solid inorganic salts from group...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; 99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; SALTS; SPECIFIC HEAT; OXIDES; FLUORIDES; CHLORIDES; ANIONS; CATIONS; ...

  14. Combinations of fluorinated solvents with imide salts or methide salts for electrolytes

    DOE Patents [OSTI]

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include imide salts and/or methide salts as well as fluorinated solvents capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and improve safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Linear and cyclic imide salts, such as LiN(SO.sub.2CF.sub.2CF.sub.3).sub.2, and LiN(SO.sub.2CF.sub.3).sub.2, as well as methide salts, such as LiC(SO.sub.2CF.sub.3).sub.3 and LiC(SO.sub.2CF.sub.2CF.sub.3).sub.3, may be used in these electrolytes. Fluorinated alkyl groups enhance solubility of these salts in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene, and/or one or more ionic liquids.

  15. Production of carboxylic acid and salt co-products

    DOE Patents [OSTI]

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  16. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    SciTech Connect (OSTI)

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  17. Los Alamos Field Office Installs Additional Safety Measure to Drums

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – EM’s Los Alamos Field Office and contractor Los Alamos National Security, LLC (LANS) recently completed installation of high efficiency particulate air (HEPA) filtration systems to remediated nitrate salt (RNS) drums.

  18. Oregon Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    29,565 29,565 29,565 28,750 29,565 29,565 1989-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 29,565 29,565 29,565 28,750 29,565 29,565 1999-2014 Total...

  19. Utah Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    129,480 129,480 124,465 124,465 124,465 124,465 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 11,980 11,980 4,265 4,265 4,265 4,265 1999-2014 Depleted Fields 117,500 117,500...

  20. Wyoming Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    111,120 111,120 106,764 124,937 157,985 157,985 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 10,000 10,000 6,733 6,705 6,705 6,705 1999-2014 Depleted Fields 101,120 101,120...

  1. Ohio Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    580,380 580,380 580,380 577,944 577,944 577,944 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 580,380 580,380 580,380 577,944 577,944 577,944...

  2. Texas Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    740,477 766,768 783,579 812,394 831,190 842,072 1988-2013 Salt Caverns 160,786 182,725 196,140 224,955 246,310 253,220 1999-2013 Aquifers 0 1999-2012 Depleted Fields 579,691...

  3. Pennsylvania Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    759,153 776,964 776,822 776,845 774,309 774,309 1988-2013 Salt Caverns 0 1999-2012 Aquifers 0 1999-2012 Depleted Fields 759,153 776,964 776,822 776,845 774,309 774,309 1999-2013...

  4. Kansas Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    82,300 284,821 284,731 284,905 283,974 282,984 1988-2014 Salt Caverns 931 931 931 931 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 281,370 283,891 283,800 283,974 283,974...

  5. Climate Action Champions: Salt Lake City, UT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Lake City, UT Climate Action Champions: Salt Lake City, UT Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the “Crossroads of the West,” Salt Lake City today is a major economic center in the Great Basin and a hub of tourism. │ Photo courtesy of University of Utah Department of Mathematics. Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the

  6. Supplemental Cooling for Nitrate Salt Waste

    SciTech Connect (OSTI)

    Goldberg, Mitchell S.

    2015-08-19

    In July 2015, Los Alamos National Laboratory completed installation of a supplemental cooling system in the structure where remediated nitrate salt waste drums are stored. Although the waste currently is in a safe configuration and is monitored daily,controlling the temperature inside the structure adds another layer of protection for workers, the public,and the environment.This effort is among several layers of precautions designed to secure the waste.

  7. Advanced heat exchanger development for molten salts

    SciTech Connect (OSTI)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  8. Stationary phase deposition based on onium salts

    DOE Patents [OSTI]

    Wheeler, David R.; Lewis, Patrick R.; Dirk, Shawn M.; Trudell, Daniel E.

    2008-01-01

    Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

  9. Molten salt battery having inorganic paper separator

    DOE Patents [OSTI]

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  10. Advanced heat exchanger development for molten salts

    SciTech Connect (OSTI)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  11. Advanced heat exchanger development for molten salts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet materialmore » in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.« less

  12. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOE Patents [OSTI]

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  13. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOE Patents [OSTI]

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  14. Liquid Fluoride Salt Experimentation Using a Small Natural Circulation Cell

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Heatherly, Dennis Wayne; Williams, David F; Elkassabgi, Yousri M.; Caja, Joseph; Caja, Mario; Jordan, John; Salinas, Roberto

    2014-04-01

    A small molten fluoride salt experiment has been constructed and tested to develop experimental techniques for application in liquid fluoride salt systems. There were five major objectives in developing this test apparatus: Allow visual observation of the salt during testing (how can lighting be introduced, how can pictures be taken, what can be seen) Determine if IR photography can be used to examine components submerged in the salt Determine if the experimental configuration provides salt velocity sufficient for collection of corrosion data for future experimentation Determine if a laser Doppler velocimeter can be used to quantify salt velocities. Acquire natural circulation heat transfer data in fluoride salt at temperatures up to 700oC All of these objectives were successfully achieved during testing with the exception of the fourth: acquiring velocity data using the laser Doppler velocimeter. This paper describes the experiment and experimental techniques used, and presents data taken during natural circulation testing.

  15. Polymeric salt bridges for conducting electric current in microfluidic devices

    DOE Patents [OSTI]

    Shepodd, Timothy J.; Tichenor, Mark S.; Artau, Alexander

    2009-11-17

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  16. In-Drift Precipitates/Salts Model

    SciTech Connect (OSTI)

    P. Mariner

    2004-11-09

    This report documents the development and validation of the in-drift precipitates/salts (IDPS) model. The IDPS model is a geochemical model designed to predict the postclosure effects of evaporation and deliquescence on the chemical composition of water within the Engineered Barrier System (EBS) in support of the Total System Performance Assessment for the License Application (TSPA-LA). Application of the model in support of TSPA-LA is documented in ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2004 [DIRS 169860]). Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration (BSC 2004 [DIRS 171156]) is the technical work plan (TWP) for this report. It called for a revision of the previous version of the report (BSC 2004 [DIRS 167734]) to achieve greater transparency, readability, data traceability, and report integration. The intended use of the IDPS model is to estimate and tabulate, within an appropriate level of confidence, the effects of evaporation, deliquescence, and potential environmental conditions on the pH, ionic strength, and chemical compositions of water and minerals on the drip shield or other location within the drift during the postclosure period. Specifically, the intended use is as follows: (1) To estimate, within an appropriate level of confidence, the effects of evaporation and deliquescence on the presence and composition of water occurring within the repository during the postclosure period (i.e., effects on pH, ionic strength, deliquescence relative humidity, total concentrations of dissolved components in the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O, and concentrations of the following aqueous species that potentially affect acid neutralizing capacity: HCO{sub 3}{sup -}, CO{sub 3}{sup 2-}, OH{sup -}, H{sup +}, HSO{sub 4}{sup -}, Ca{sup 2+}, Mg{sup 2+}, CaHCO{sub 3}{sup +}, MgHCO{sub 3}{sup +}, HSiO{sub 3

  17. Influence of Permian salt dissolution on Cretaceous oil and gas entrapment and reserve potential, Denver basin, Western Nebraska

    SciTech Connect (OSTI)

    Oldham, D.W.; Smosna, R.A.

    1996-06-01

    Location and trap type of Cretaceous oil and gas fields in the D-J Fairway of Nebraska are related to the occurrence of 12 Permian salt zones. Salt distribution is controlled by the configuration of evaporate basins, truncation at a sub-Jurassic unconformity, and post-Jurassic subsurface dissolution. The Sidney Trough, which marks the eastern (regionally updip) limit of Cretaceous oil production in western Nebraska, is a rootless salt-dissolution collapse feature, whose location and origin is controlled by an abrupt linear facies change from thick, porous Lyons Sandstone to Leonardian salt. Eastward gravity-driven groundwater flow within the Lyons occurred in response to hydraulic gradient and recharge along the Front Range Uplift following Laramide orogeny. Dissolution of salt at the facies change caused collapse of overlying strata, producing fractures through which cross-formational flow occurred. Younger salts were dissolved, enhancing relief across the regional depression and subsidiary synclines. Timing of post-Jurassic dissolution influenced entrapment within D and J sandstone reservoirs. Where Early Cretaceous (pre-reservoir) dissolution occurred, structure at the D and J sandstone level is relatively simple, and stratigraphic traps predominate. Where Late Cretaceous - Tertiary (post-reservoir) dissolution occurred, structure is more complex, formation waters are more saline, oil and gas are localized on dissolution-induced anticlines, and per-well reserves are significantly higher.

  18. ANNULUS CLOSURE TECHNOLOGY DEVELOPMENT INSPECTION/SALT DEPOSIT CLEANING MAGNETIC WALL CRAWLER

    SciTech Connect (OSTI)

    Minichan, R; Russell Eibling, R; James Elder, J; Kevin Kane, K; Daniel Krementz, D; Rodney Vandekamp, R; Nicholas Vrettos, N

    2008-06-01

    demonstration testing performed on the integrated system. The crawler was modified to address the two primary objectives of the task (inspection and spot cleaning). SRNL recommends this technology as a viable option for annulus inspection and salt removal in tanks with minimal salt deposits (such as Tanks 5 and 6.) This report further recommends that the technology be prepared for field deployment by: (1) developing an improved mounting system for the magnetic idler wheel, (2) improving the robustness of the cleaning tool mounting, (3) resolving the nozzle selection valve connections, (4) determining alternatives for the brush and bristle assembly, and (5) adding a protective housing around the motors to shield them from water splash. In addition, SRNL suggests further technology development to address annulus cleaning issues that are apparent on other tanks that will also require salt removal in the future such as: (1) Developing a duct drilling device to facilitate dissolving salt inside ventilation ducts and draining the solution out the bottom of the ducts. (2) Investigating technologies to inspect inside the vertical annulus ventilation duct.

  19. Three dimensional simulation for bayou choctaw strategic petroleum reserve (SPR).

    SciTech Connect (OSTI)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon; Lee, Moo Yul

    2006-12-01

    Three dimensional finite element analyses were performed to evaluate the structural integrity of the caverns located at the Bayou Choctaw (BC) site which is considered a candidate for expansion. Fifteen active and nine abandoned caverns exist at BC, with a total cavern volume of some 164 MMB. A 3D model allowing control of each cavern individually was constructed because the location and depth of caverns and the date of excavation are irregular. The total cavern volume has practical interest, as this void space affects total creep closure in the BC salt mass. Operations including both cavern workover, where wellhead pressures are temporarily reduced to atmospheric, and cavern enlargement due to leaching during oil drawdowns that use water to displace the oil from the caverns, were modeled to account for as many as the five future oil drawdowns in the six SPR caverns. The impacts on cavern stability, underground creep closure, surface subsidence, infrastructure, and well integrity were quantified.

  20. Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant

    SciTech Connect (OSTI)

    James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

    2011-09-20

    A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers and towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.

  1. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  2. An Overview of Liquid Fluoride Salt Heat Transport Technology

    SciTech Connect (OSTI)

    Cetiner, Mustafa Sacit; Holcomb, David Eugene

    2010-01-01

    Liquid fluoride salts are a leading candidate heat transport medium for high-temperature applications. This report provides an overview of the current status of liquid salt heat transport technology. The report includes a high-level, parametric evaluation of liquid fluoride salt heat transport loop performance to allow intercomparisons between heat-transport fluid options as well as providing an overview of the properties and requirements for a representative loop. Much of the information presented here derives from the earlier molten salt reactor program and a significant advantage of fluoride salts, as high temperature heat transport media is their consequent relative technological maturity. The report also includes a compilation of relevant thermophysical properties of useful heat transport fluoride salts. Fluoride salts are both thermally stable and with proper chemistry control can be relatively chemically inert. Fluoride salts can, however, be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report also provides an overview of the state-of-the-art in reduction-oxidation chemistry control methodologies employed to minimize salt corrosion as well as providing a general discussion of heat transfer loop operational issues such as start-up procedures and freeze-up vulnerability.

  3. Salt tectonics in the southern North Sea, Netherlands

    SciTech Connect (OSTI)

    Remmelts, G. )

    1993-09-01

    Large parts of the southern North Sea are underlain by Upper Permian Zechstein salt. A vast amount of this sequence, originally more than 1000 m thick, has migrated into salt structures. Many hydrocarbon accumulations are related to these structures. The formation of the salt structures may have created structural traps or (by influencing the sedimentation pattern) stratigraphic traps. Salt generally acts as a seal, but depletion of salt can create migration routes into higher strata for hydrocarbons originating from underlying source rocks. The thermal conductivity of the salt can influence the maturity of source rocks in its direct vicinity. Salt structures are formed almost exclusively by Zechstein salt. Minor movement occurred in Triassic evaporites. The development of salt structures is influenced strongly by regional tectonics. Basement faulting probably triggered the salt movement. The dominant structural grain is reflected in the orientation and location of the salt structures. Periods of increased growth rates coincide with tectonic phases. Long walls of salt formed in the northern area where the Triassic north-south orientated faults (which were rejuvenated in Late Jurassic) predominate. Toward the south, the northwest-southeast direction of the Late Jurassic interferes with the north-south trend and gradually becomes the dominant direction. This is reflected in the shortening of the north-south salt structures and eventually in the change in their orientation. Average vertical growth rates have been calculated to be around 0.005-0.035 mm/yr. When correction for suberosion and erosion processes could be quantified and applied to the growth rates, they were significantly higher.

  4. Tank 37H Salt Removal Batch Process and Salt Dissolution Mixing Study

    SciTech Connect (OSTI)

    Kwon, K.C.

    2001-09-18

    Tank 30H is the receipt tank for concentrate from the 3H Evaporator. Tank 30H has had problems, such as cooling coil failure, which limit its ability to receive concentrate from the 3H Evaporator. SRS High Level Waste wishes to use Tank 37H as the receipt tank for the 3H Evaporator concentrate. Prior to using Tank 37H as the 3H Evaporator concentrate receipt tank, HLW must remove 50 inches of salt cake from the tank. They requested SRTC to evaluate various salt removal methods for Tank 37H. These methods include slurry pumps, Flygt mixers, the modified density gradient method, and molecular diffusion.

  5. Direct Grout Stabilization of High Cesium Salt Waste: Salt Alternative Phase III Feasibility Study

    SciTech Connect (OSTI)

    Langton, C.A.

    1998-12-07

    The direct grout alternative is a viable option for treatment/stabilization and disposal of salt waste containing Cs-137 concentrations of 1-3 Ci/gal. The composition of the direct grout salt solution is higher in sodium salts and contains up to a few hundred ppm Cs-137 more than the current reference salt solution. However it is still similar to the composition of the current reference salt solution. Consequently, the processing, setting, and leaching properties (including TCLP for Cr and Hg) of the direct grout and current saltstone waste forms are very similar. The significant difference between these waste solutions is that the high cesium salt solution will contain between 1 and 3 Curies of Cs-137 per gallon compared to a negligible amount in the current salt solution. This difference will require special engineering and shielding for a direct grout processing facility and disposal units to achieve acceptable radiation exposure conditions. The Cs-137 concentration in the direct grout salt solution will also affect the long-term curing temperature of the waste form since 4.84 Watts of energy are generated per 1000 Ci of Cs-137. The temperature rise of the direct grout during long-term curing has been calculated by A. Shaddy, SRTC.1 The effect of curing temperature on the strength, leaching and physical durability of the direct grout saltstone is described in this report. At the present time, long term curing at 90 degrees C appears to be unacceptable because of cracking which will affect the structural integrity as evaluated in the immersion test. (The experiments conducted in this feasibility study do not address the effect of cracking on leaching of contaminants other than Cr, Hg, and Cs.) No cracking of the direct grout or reference saltstone waste forms was observed for samples cured at 70 degrees C. At the present time the implications of waste form cracking at elevated curing temperatures has not been fully addressed. The direct grout falls within the

  6. Solar ponds in hydrometallurgy and salt production

    SciTech Connect (OSTI)

    Lesino, G.; Saravia, L. )

    1991-01-01

    The possibilities of using solar ponds in the mining industry are explored. Their advantages are identified from an economic point of view and the main technical points for proper operation are discussed. A short account is given of the hydrometallurgical and salt production processes of interest from the point of view of solar ponds. Solar ponds can provide a working environment for many mineral processing systems, not only as a source of energy, but also as a large basin maintained at nearly constant temperature where different operations can be performed. Examples are described for applications in the production of sodium sulfate, boric acid, copper, potassium chloride, and sodium borate.

  7. Experimental studies of actinides in molten salts

    SciTech Connect (OSTI)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  8. Genomic insights into salt adaptation in a desert poplar

    SciTech Connect (OSTI)

    Ma, Tao; Wang, Junyi; Zhou, Gongke; Yue, Zhen; Hu, Quanjun; Chen, Yan; Liu, Bingbing; Qiu, Qiang; Wang, Zhuo; Zhang, Jian; Wang, Kun; Jaing, Dechun; Gou, Caiyun; Yu, Lili; Zhan, Dongliang; Zhou, Ran; Luo, Wenchun; Ma, Hui; Yang, Yongzhi; Pan, Shengkai; Fang, Dongming; Luo, Yadan; Wang, Xia; Wang, Gaini; Wang, Juan; Wang, Qian; Lu, Xu; Chen, Zhe; Liu, Jinchao; Lu, Yao; Yin, Ye; Yang, Huanming; Abbott, Richard; Wu, Yuxia; Wan, Dongshi; Li, Jia; Yin, Tongming; Yin, Tongming; Lascoux, Martin; DiFazio, Steven P; Tuskan, Gerald A; Wang, Jun; Jianquan, Liu

    2013-01-01

    Despite the high economic and ecological importance of forests, our knowledge of the genomic evolution of trees under salt stress remains very limited. Here we report the genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to sa lt stress. Its genome is very similar and collinear to that of the closely related mesophytic congener, P trichocarpa. However, we find that several gene families likely to be involved in tolerance to salt stress contain significantly more gene copies within the P euphratica lineage. Furthermore, genes showing evidence of positive selection are significantly enriched in functional categories related to salt stress. Some of these genes, and others within the same categories, are significantly upregulated under salt stress relative to their expression in another salt-sensitive poplar. Our results provide an important background for understanding tree adaptation to salt stress and facilitating the genetic improvement of cultivated poplars for saline soils.

  9. Properties of salt-grown uranium single crystals.

    SciTech Connect (OSTI)

    Cooley, J. C.; Hanrahan, R. J.; Hults, W. L.; Lashley, J. C.; Manley, M. E.; Mielke, C. H.; Smith, J. L.; Thoma, D. J.; Clark, R. G.; Hamilton, A. R.; O'Brien, J. L.; Gay, E. C.; Lumpkin, N. E.; McPheeters, C. C.; Willit, J.; Schmiedeshoff, G. M.; Touton, S.; Woodfield, B. F.; Lang, B. E.; Boerio-Goates, Juliana

    2001-01-01

    Recently single crystals of {alpha}-uranium were grown from a liquid salt bath. The electrical, magnetic and thermal properties of these crystals have been surveyed. The ratio of the room temperature resistivity of these crystals to the saturation value at low temperature is three times larger than any previously reported demonstrating that the crystals are of higher purity and quality than those in past work. The resistive signatures of the CDW transitions at 43, 37 and 22 K are obvious to the naked eye. The transition at 22 K exhibits temperature hysteresis that increases with magnetic field. In addition the superconducting transition temperature from resistivity is 820 mK and the critical field is 80 mT. Contrary to earlier work where the Debye temperature ranged from 186 to 218 K, the Debye temperature extracted from the heat capacity is 254 K in good agreement with the predicted value of 250 K. Magnetoresistance, Hall effect and magnetic susceptibility measurements are underway. In time, measurements made on these crystals may help us to understand the origin of superconductivity and its relation to the CDW transitions in pure uranium.

  10. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    SciTech Connect (OSTI)

    Hsu, P.C.

    1997-11-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

  11. Molecular dynamics study of saltsolution interface: Solubility and surface charge of salt in water

    SciTech Connect (OSTI)

    Kobayashi, Kazuya; Liang, Yunfeng E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Sakka, Tetsuo

    2014-04-14

    The NaCl saltsolution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl saltsolution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a saltsolution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  12. Salt Lake County Residential Solar Financing Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Salt Lake County Residential Solar Financing Study Salt Lake County Residential Solar Financing Study As part of our engagement with the National Renewable Energy Laboratories conducting the Salt Lake County Solar America Residential Finance Study, we have drafted this report summarizing the tools and mechanisms available for residential solar projects. These include the financial incentives available, possible financing models that could be used in the County, and a

  13. Salts of alkali metal anions and process of preparing same

    DOE Patents [OSTI]

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  14. Delivery system for molten salt oxidation of solid waste

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

    2002-01-01

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  15. Independent Oversight Assessment, Salt Waste Processing Facility Project -

    Office of Environmental Management (EM)

    January 2013 | Department of Energy Salt Waste Processing Facility Project - January 2013 Independent Oversight Assessment, Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the

  16. Enterprise Assessments Review of the Savannah River Site Salt Waste

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Facility Construction Quality and Startup Test Plans - June 2015 | Department of Energy Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 Enterprise Assessments Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 June 2015 Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans The Office of Nuclear Safety and Environmental

  17. Project Profile: Advanced Nitrate Salt Central Receiver Power Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nitrate Salt Central Receiver Power Plant Project Profile: Advanced Nitrate Salt Central Receiver Power Plant Abengoa logo Abengoa, under the Baseload CSP FOA, demonstrated a 100-megawatt electrical (MWe) central receiver plant using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator. Approach Photo of two lit towers surrounded by much smaller blue flat plates that are mounted on the ground. Abengoa planned to

  18. Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Fluids | Department of Energy Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Halotechnics logo Halotechnics, under the Thermal Storage FOA, is conducting high-throughput, combinatorial research and development of salt formulations for use as highly efficient heat transfer fluids (HTFs). Approach Robotic high-throughput screening methods typically used in the

  19. Project Profile: Molten Salt-Carbon Nanotube Thermal Storage | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Molten Salt-Carbon Nanotube Thermal Storage Project Profile: Molten Salt-Carbon Nanotube Thermal Storage TEES logo Texas Engineering Experiment Station (TEES), under the Thermal Storage FOA, created a composite thermal energy storage material by embedding nanoparticles in a molten salt base material. Approach Graphic of a chart with dots and horizontal lines. TEES measured the specific heat using modulated digital scanning calorimetry and created a system performance and economic

  20. Project Profile: Novel Molten Salts Thermal Energy Storage for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Generation | Department of Energy Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Alabama logo The University of Alabama, under the Thermal Storage FOA, is developing thermal energy storage (TES) media consisting of low melting point (LMP) molten salt with high TES density for sensible heat storage systems. Approach They will conduct

  1. DOE Issues Salt Waste Determination for the Savannah River Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Salt Waste Determination for the Savannah River Site DOE Issues Salt Waste Determination for the Savannah River Site January 18, 2006 - 10:49am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued the waste determination for the treatment and stabilization of low activity salt-waste at the Savannah River Site allowing for significant reductions in environmental and health risks posed by the material. Stored in forty-nine underground tanks,

  2. DOE - Office of Legacy Management -- Penn Salt Manufacturing Co Whitemarsh

    Office of Legacy Management (LM)

    Research Laboratories - PA 20 Penn Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Penn Salt Company PA.20-1 Location: Philiadelphia , Pennsylvania PA.20-1 Evaluation Year: 1987 PA.20-1 Site Operations: Conducted process studies for recovery of uranium from fluoride scrap. PA.20-1

  3. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan | Department of Energy Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the Plan required by the New Mexico Environment Department Administrative Order 05-20001 issued on May 20, 2014 to the U. S. Department of Energy and Nuclear Waste Partnership LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container

  4. Independent Oversight Review, Savannah River Site Salt Waste Processing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility - April 2014 | Department of Energy Salt Waste Processing Facility - April 2014 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - April 2014 April 2014 Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted an independent review of the

  5. Evaluation of Salt Coolants for Reactor Applications (Journal...

    Office of Scientific and Technical Information (OSTI)

    Some preliminary consideration of economic factors for the candidate salts is also presented. Authors: Williams, David F 1 + Show Author Affiliations ORNL Publication Date: ...

  6. Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    In addition to the remediated nitrate salt (RNS) waste at the Laboratory, similar drums are underground at WIPP and at Waste Control Specialists (WCS) in Andrews, Texas.

  7. Summary - Salt Waste Processing Facility Design at the Savannah...

    Office of Environmental Management (EM)

    of the Salt Waste Processing Facility Design at the Savannah River Site (SRS) Why ... and disposal in grout vaults. Parsons to design, construct, commission and initially ...

  8. Voluntary Protection Program Onsite Review, Salt Waste Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Team conducted its review during February 5 - 14, 2013 to determine whether Parsons ... Voluntary Protection Program Onsite Review, Parsons Corporation Salt Waste Processing ...

  9. Accelerator-driven subcritical fission in molten salt core: Closing...

    Office of Scientific and Technical Information (OSTI)

    Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy Citation Details In-Document Search Title: Accelerator-driven ...

  10. Salt Waste Processing Facility (SWPF) System Turnover from Constructio...

    Office of Environmental Management (EM)

    Facility (SWPF) System Turnover from Construction to Commissioning Salt Waste Processing Facility (SWPF) System Turnover from Construction to Commissioning The SWPF Project ...

  11. Radiometrics At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Radiometrics At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity...

  12. Development Wells At Salt Wells Area (Nevada Bureau of Mines...

    Open Energy Info (EERE)

    (Nevada Bureau of Mines and Geology, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Development Drilling Activity Date 2005 - 2005...

  13. Savannah River Site Salt Waste Processing Facility Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report Full Document and Summary Versions are available for download PDF icon Savannah River Site ...

  14. Accident Investigation of the February 5, 2014, Underground Salt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM March 26, 2014 Accident Investigation of the ...

  15. Enterprise Assessments Review of the Savannah River Site Salt...

    Energy Savers [EERE]

    and Startup Test Plans - June 2015 Enterprise Assessments Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans - June ...

  16. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating...

    Office of Scientific and Technical Information (OSTI)

    Concentrating Solar Power Systems Final Report Citation Details In-Document Search Title: Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems ...

  17. Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pressure solution and dislocation creep, with both terms dependent on effective stress to account for the effects of porosity. This provides insight into granular salt...

  18. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map Loading map... "minzoom":false,"mapping...

  19. BLM Approves Salt Wells Geothermal Energy Projects | Open Energy...

    Open Energy Info (EERE)

    Energy Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BLM Approves Salt Wells Geothermal Energy Projects Abstract Abstract unavailable....

  20. Liquid Salt Heat Exchanger Technology for VHTR Based Applications...

    Office of Scientific and Technical Information (OSTI)

    The third task focuses integral testing of flowing liquid salts in a heat transfer... Country of Publication: United States Language: English Subject: 21 SPECIFIC NUCLEAR ...

  1. Water Sampling At Salt Wells Area (Shevenell & Garside, 2003...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details...

  2. Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details...

  3. Salt River Electric- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for...

  4. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  5. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, Robert K.; LaCamera, Alfred F.; Troup, R. Lee; Ray, Siba P.; Hosler, Robert B.

    1999-01-01

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  6. Salt Waste Processing Facility, Line Management Review Board Charter

    Broader source: Energy.gov [DOE]

    The Line Management Review Board (LMRB) serves an important oversight function to monitor the readiness processes and associated deliverables for the Salt Waste Processing Facility (SWPF). The...

  7. Salt Waste Processing Facility, Line Management Review Board...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Line Management Review Board Charter Salt Waste Processing Facility, Line Management Review Board Charter The Line Management Review Board (LMRB) serves an important oversight ...

  8. Product Recovery from HTGR Reactor Fuel Processing Salt Official...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration of Fuel and Fission Product Recovery from HTGR Reactor Fuel Processing Salt ... HTGR, MST, CST Retention: Permanent Demonstration of Fuel and Fission Product Recovery ...

  9. Controlled Source Frequency-Domain Magnetics At Salt Wells Area...

    Open Energy Info (EERE)

    At Salt Wells Area (Montgomery, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Frequency-Domain Magnetics At...

  10. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Prepared in Response to New Mexico ... (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. ...

  11. Lithium Salt-doped, Gelled Polymer Electrolyte with a Nanoporous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Lithium Salt-doped, Gelled Polymer Electrolyte with a ... electrolyte material for use in lithium ion batteries that exhibits better ion ...

  12. Method for the production of uranium chloride salt

    DOE Patents [OSTI]

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  13. Project Profile: Novel Molten Salts Thermal Energy Storage for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project ... They will conduct detailed tests using a laboratory-scale TES system to: Graphic of a ...

  14. Salt Wells Geothermal Energy Projects Environmental Impact Statement...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Energy Projects Environmental Impact Statement Abstract Abstract unavailable....

  15. ENEL Salt Wells Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Facility Sector Geothermal energy Location Information Location Churchill, NV Coordinates 39.651603422063, -118.49778413773 Loading map......

  16. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  17. Exploratory Well At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management,...

  18. An Overview of Liquid Fluoride Salt Heat Transport Systems

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Cetiner, Sacit M

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years, and

  19. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect (OSTI)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  20. Laboratory investigation of crushed salt consolidation and fracture healing

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

  1. Treatment of plutonium process residues by molten salt oxidation

    SciTech Connect (OSTI)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.; Wernly, K.

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  2. Alternative Waste Forms for Electro-Chemical Salt Waste

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

    2009-10-28

    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

  3. Technical review of Molten Salt Oxidation

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The process was reviewed for destruction of mixed low-level radioactive waste. Results: extensive development work and scaleup has been documented on coal gasification and hazardous waste which forms a strong experience base for this MSO process; it is clearly applicable to DOE wastes such as organic liquids and low-ash wastes. It also has potential for processing difficult-to-treat wastes such as nuclear grade graphite and TBP, and it may be suitable for other problem waste streams such as sodium metal. MSO operating systems may be constructed in relatively small units for small quantity generators. Public perceptions could be favorable if acceptable performance data are presented fairly; MSO will likely require compliance with regulations for incineration. Use of MSO for offgas treatment may be complicated by salt carryover. Figs, tabs, refs.

  4. A new family of salts for lithium secondary batteries

    SciTech Connect (OSTI)

    Baril, D.; Beranger, S.; Ravet, N.; Michot, C.; Armand, M.

    2000-07-01

    A novel family of salts suitable for lithium battery application was synthesized and characterized. These salts have a large delocalized anion whose charge is spread over a single SO{sub 2} and a phenyl ring. Remarkable properties were obtained for the lithium N-(3-trifluoromethyl phenyl) trifluoromethanesulfonamide salt or LiTFPTS. The electrochemical stability window is around 4.0 V and its conductivity in solid poly(ethylene oxide) or PEO is close to the one of the lithium perchlorate salt. Calorimetric analysis also showed that LiTFPTS behaves as a plasticizer since it hinders, to a certain extent, the PEO crystallization when it is used in a solid polymer matrix. Above all, its synthesis is quite straightforward and leads to potentially inexpensive salts as the starting amines are made commercially on a large scale.

  5. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    SciTech Connect (OSTI)

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  6. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    SciTech Connect (OSTI)

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng; Kim, Heejae; Kim, Seongheun

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the OD stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the OD stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of OD vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing OD stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the OD stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the OD stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the OD stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating OD stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the OD stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the OD stretch mode is shown to be important and the asymmetric line shapes of the OD stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We anticipate that this

  7. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High...

    Office of Scientific and Technical Information (OSTI)

    and Reactivity Control for Salt-Cooled High Temperature Reactors Citation Details In-Document Search Title: Pebble Fuel Handling and Reactivity Control for Salt-Cooled High ...

  8. Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005)...

  9. Slim Holes At Salt Wells Area (Combs, Et Al., 1999) | Open Energy...

    Open Energy Info (EERE)

    Salt Wells Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Salt Wells Area (Combs, Et Al., 1999)...

  10. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area...

  11. Fluoroalkyl containing salts combined with fluorinated solvents for electrolytes

    DOE Patents [OSTI]

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Erickson, Michael Jason

    2015-04-21

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte may include a fluoroalkyl-substituted LiPF.sub.6 salt or a fluoroalkyl-substituted LiBF.sub.4 salt. In some embodiments, at least one fluorinated alkyl of the salt has a chain length of from 1 to 8 or, more specifically, between about 2 and 8. These fluorinated alkyl groups, in particular, relatively large fluorinated alkyl groups improve solubility of these salts in fluorinated solvents that are less flammable than, for example, conventional carbonate solvents. At the same time, the size of fluoroalkyl-substituted salts should be limited to ensure adequate concentration of the salt in an electrolyte and low viscosity of the electrolyte. In some embodiments, the concentration of a fluoroalkyl-substituted salt is at least about 0.5M. Examples of fluorinated solvents include various fluorinated esters, fluorinated ethers, and fluorinated carbonates, such a 1-methoxyheptafluoropropane, methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane, and 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-pentane.

  12. Molecular Thermodynamics for Swelling of a Mesoscopic Ionomer Gelin 1:1 Salt Solutions

    SciTech Connect (OSTI)

    Victorov, Alexey; Radke, Clayton; Prausnitz,John

    2005-06-15

    For a microphase-separated diblock copolymer ionic gel swollen in salt solution, a molecular-thermodynamic model is based on the self-consistent field theory in the limit of strongly segregated copolymer subchains. The geometry of microdomains is described using the Milner generic wedge construction neglecting the packing frustration. Thermodynamic functions are expressed analytically for gels of lamellar, bicontinuous, cylindrical and spherical morphologies. Molecules are characterized by chain composition, length, rigidity, degree of ionization, and by effective polymer-polymer and polymer-solvent interaction parameters. The model predicts equilibrium solvent uptakes and the equilibrium microdomain spacing for gels swollen in salt solutions. Results are given for details of the gel structure: distribution of mobile ions and polymer segments, and the electric potential across microdomains. Apart from effects obtained by coupling classical Flory-Rehner theory with Donnan equilibria, viz., increased swelling with polyelectrolyte charge and shrinking of gel upon addition of salt, the model predicts the effects of microphase morphology on swelling.

  13. Fast Thorium Molten Salt Reactors Started with Plutonium

    SciTech Connect (OSTI)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.

    2006-07-01

    One of the pending questions concerning Molten Salt Reactors based on the {sup 232}Th/{sup 233}U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since {sup 233}U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing {sup 233}U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce {sup 233}U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/{sup 233}U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into {sup 233}U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with {sup 233}U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with {sup 233}U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  14. Sol-gel processing with inorganic metal salt precursors

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  15. Electrolyte materials containing highly dissociated metal ion salts

    DOE Patents [OSTI]

    Lee, Hung-Sui; Geng, Lin; Skotheim, Terje A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  16. Electrolyte materials containing highly dissociated metal ion salts

    DOE Patents [OSTI]

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  17. Experimental Investigation of Two-Phase Flow in Rock Salt

    SciTech Connect (OSTI)

    Malama, Bwalya; Howard, Clifford L.

    2014-07-01

    This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.

  18. Gradient zone boundary control in salt gradient solar ponds

    DOE Patents [OSTI]

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  19. The structure and IR signatures of the arginine-glutamate salt bridge. Insights from the classical MD simulations

    SciTech Connect (OSTI)

    Vener, M. V.; Odinokov, A. V.; Wehmeyer, C.; Sebastiani, D.

    2015-06-07

    Salt bridges and ionic interactions play an important role in protein stability, protein-protein interactions, and protein folding. Here, we provide the classical MD simulations of the structure and IR signatures of the arginine (Arg)glutamate (Glu) salt bridge. The Arg-Glu model is based on the infinite polyalanine antiparallel two-stranded ?-sheet structure. The 1 ?s NPT simulations show that it preferably exists as a salt bridge (a contact ion pair). Bidentate (the end-on and side-on structures) and monodentate (the backside structure) configurations are localized [Donald et al., Proteins 79, 898915 (2011)]. These structures are stabilized by the short {sup +}NH?O{sup ?} bonds. Their relative stability depends on a force field used in the MD simulations. The side-on structure is the most stable in terms of the OPLS-AA force field. If AMBER ff99SB-ILDN is used, the backside structure is the most stable. Compared with experimental data, simulations using the OPLS all-atom (OPLS-AA) force field describe the stability of the salt bridge structures quite realistically. It decreases in the following order: side-on > end-on > backside. The most stable side-on structure lives several nanoseconds. The less stable backside structure exists a few tenth of a nanosecond. Several short-living species (solvent shared, completely separately solvated ionic groups ion pairs, etc.) are also localized. Their lifetime is a few tens of picoseconds or less. Conformational flexibility of amino acids forming the salt bridge is investigated. The spectral signature of the Arg-Glu salt bridge is the IR-intensive band around 2200 cm{sup ?1}. It is caused by the asymmetric stretching vibrations of the {sup +}NH?O{sup ?} fragment. Result of the present paper suggests that infrared spectroscopy in the 20002800 frequency region may be a rapid and quantitative method for the study of salt bridges in peptides and ionic interactions between proteins. This region is usually not considered in

  20. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material

  1. Microsoft Word - DisposalInSaltDifferentThanDisposalInWIPP.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Issues Statement Concerning Debates Over Waste Disposal in Salt CARLSBAD, N.M., July 24, 2009 - The U.S. Department of Energy and its Carlsbad Field Office recognize and respect the long history that led to the current regulations that govern operations at the Waste Isolation Pilot Plant (WIPP). The WIPP is authorized to ship and dispose of transuranic (TRU) waste that was created by U.S. defense programs. TRU waste is a category of waste strictly defined by legislation and legal agreements.

  2. Crystallization of rhenium salts in a simulated low-activity...

    Office of Scientific and Technical Information (OSTI)

    This salt phase was analyzed with X-ray diffraction, scanning electron microscopy as well as some of the other aforementioned techniques and identified to be composed of alkali ...

  3. Polyimide amic acid salts and polyimide membranes formed therefrom

    DOE Patents [OSTI]

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz; Macheras, James Timothy

    2004-04-06

    The invention relates to preparation and uses of novel polymeric materials, polyimide amic acid salts (PIAAS). The use of these materials for the fabrication of fluid separation membranes is further disclosed.

  4. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    Gasoline and Diesel Fuel Update (EIA)

    Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin ... Major Tight Gas Plays, Lower 48 States 0 200 400 100 300 Miles Source: Energy ...

  5. Salt Fog Testing Iron-Based Amorphous Alloys

    SciTech Connect (OSTI)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-07-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  6. Apparatus and method for making metal chloride salt product

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Homer Glen, IL); Richmann, Michael K. (Carlsbad, NM)

    2007-05-15

    A method of producing metal chlorides is disclosed in which chlorine gas is introduced into liquid Cd. CdCl.sub.2 salt is floating on the liquid Cd and as more liquid CdCl.sub.2 is formed it separates from the liquid Cd metal and dissolves in the salt. The salt with the CdCl.sub.2 dissolved therein contacts a metal which reacts with CdCl.sub.2 to form a metal chloride, forming a mixture of metal chloride and CdCl.sub.2. After separation of bulk Cd from the salt, by gravitational means, the metal chloride is obtained by distillation which removes CdCl.sub.2 and any Cd dissolved in the metal chloride.

  7. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of tank waste at SRS. SWPF will separate the salt waste into a low-volume, high radioactivity fraction for vitrification in the Defense Waste Processing Facility (DWPF) and ...

  8. Expected brine movement at potential nuclear waste repository salt sites

    SciTech Connect (OSTI)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  9. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Office of Environmental Management (EM)

    molt en-salt HTF CSP plant show an LCOE of below 0.12kWhe (real 2009 ), w it h a 10% ITC Innovat ive Technology Solut ions f or Sustainability ABENGOA SOLAR Phase 1 Conclusions ...

  10. Salt River Electric Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    River Electric Coop Corp Jump to: navigation, search Name: Salt River Electric Coop Corp Place: Kentucky References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form...

  11. Salt Wells, Eight Mile Flat | Open Energy Information

    Open Energy Info (EERE)

    Eight Mile Flat Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells, Eight Mile Flat Abstract Abstract unavailable. Author Nevada Bureau...

  12. Molten salt electrolyte battery cell with overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D.; Nelson, Paul A.

    1989-01-01

    A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

  13. Oxidation of aqueous pollutants using ultrasound: Salt-induced enhancement

    SciTech Connect (OSTI)

    Seymour, J.D.; Gupta, R.B.

    1997-09-01

    Ultrasound can be used to oxidize aqueous pollutants; however, due to economic reasons, higher oxidation/destruction rates are needed. This study reports enhancements of reaction rates by the addition of sodium chloride salt. Using 20 kHz ultrasound, large salt-induced enhancements are observed--6-fold for chlorobenzene, 7-fold for p-ethylphenol, and 3-fold for phenol oxidation. The reaction rate enhancements are proportional to the diethyl ether--water partitioning coefficient of the pollutants. It appears that the majority of oxidation reactions occur in the bubble-bulk interface region. The addition of salt increases the ionic strength of the aqueous phase which drives the organic pollutants toward the bubble-bulk interface. A first order reaction rate equation is proposed which can represent the observed enhancement with a good accuracy. A new sonochemical-waste-oxidation process is proposed utilizing the salt-induced enhancement.

  14. Molten Salt Heat Transfer Fluid (HTF) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Molten Salt Heat Transfer Fluid (HTF) Sandia National ... Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has ...

  15. Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance...

    Open Energy Info (EERE)

    To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  16. Basis for Section 3116 Determination for Salt Waste Disposal...

    Office of Environmental Management (EM)

    WD-2005-001 January 2006 Basis for Section 3116 Determination for Salt Waste Disposal at ......... 28 4.0 THE WASTE DOES NOT REQUIRE PERMANENT ISOLATION IN A ...

  17. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    Open Energy Info (EERE)

    Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory...

  18. Direct esterification of ammonium salts of carboxylic acids

    DOE Patents [OSTI]

    Halpern, Yuval

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  19. Category:Salt Lake City, UT | Open Energy Information

    Open Energy Info (EERE)

    UT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Salt Lake City, UT" The following 16 files are in this category, out of 16 total....

  20. Surface Indicators of Geothermal Activity at Salt Wells, Nevada...

    Open Energy Info (EERE)

    of geothermal fluids. An example is provided by the Salt Wells geothermal system in Churchill County, Nevada, USA, where surface features define a 9-km-long area that matches the...

  1. BLM Approves Salt Wells Geothermal Plant in Churchill County...

    Open Energy Info (EERE)

    Plant in Churchill County Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BLM Approves Salt Wells Geothermal Plant in Churchill County Abstract...

  2. Current and proposed regulations for salt water disposal wells

    SciTech Connect (OSTI)

    Moody, T.

    1994-09-01

    In recent years, all aspects of hydrocarbon exploration and production (E & P) activities have drawn closer scrutiny in terms of existing and potential impairment of the environment. In addition to drilling, production, and transportation activities, the USEPA has focused on the nature of E & P generated wastes, and the subsequent management of both hazardous and nonhazardous E & P wastes. Approximately 98% of all of the volume of wastes generated by E & P activities is salt water associated with the recovery of hydrocarbons. By far the majority of this waste is disposed of in class II salt water disposal wells. Due to the tremendous volume of salt water generated, the USEPA continues to reevaluate the federal class II salt water injection well program, offering comments, revising its interpretation of existing regulations, and promulgating new regulations. The purpose of the presentation will be to provide a review of existing class II federal regulations, and to provide an overview of potential or newly promulgated regulations.

  3. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    SciTech Connect (OSTI)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  4. Mechanochemical Preparation of Phosphonium Salts and Phosphorus Ylides -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Industrial Technologies Industrial Technologies Find More Like This Return to Search Mechanochemical Preparation of Phosphonium Salts and Phosphorus Ylides Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Researchers at Iowa State University and Ames Laboratory have developed a unique, solvent-free mechanochemical preparation method to prepare phosphonium salts and phosphorous ylides. The phosphorous ylides are then utilized in carrying

  5. Pyrochemical investigations into recovering plutonium from americium extraction salt residues

    SciTech Connect (OSTI)

    Fife, K.W.; West, M.H.

    1987-05-01

    Progress into developing a pyrochemical technique for separating and recovering plutonium from spent americium extraction waste salts has concentrated on selective chemical reduction with lanthanum metal and calcium metal and on the solvent extraction of americium with calcium metal. Both techniques are effective for recovering plutonium from the waste salt, although neither appears suitable as a separation technique for recycling a plutonium stream back to mainline purification processes. 17 refs., 13 figs., 2 tabs.

  6. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell, M. A.; Brandstetter, A.; Benson, G. L.; Raymond, J. R.; Brandley, D. J.; Serne, R. J.; Soldat, J. K.; Cole, C. R.; Deutsch, W. J.; Gupta, S. K.; Harwell, C. C.; Napier, B. A.; Reisenauer, A. E.; Prater, L. S.; Simmons, C. S.; Strenge, D. L.; Washburn, J. F.; Zellmer, J. T.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario

  7. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell, M. A.; Brandstetter, A.; Benson, G. L.; Bradley, D. J.; Serne, R. J.; Soldat, J. K; Cole, C. R.; Deutsch, W. J.; Gupta, S. K.; Harwell, C. C.; Napier, B. A.; Reisenauer, A. E.; Prater, L. S.; Simmons, C. S.; Strenge, D. L.; Washburn, J. F.; Zellmer, J. T.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario

  8. Independent Oversight Review, Savannah River Site Salt Waste Processing Facility- August 2013

    Broader source: Energy.gov [DOE]

    Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development.

  9. EIS-0099: Remedial Actions at the Former Vitro Chemical Company Site, South Salt Lake, Salt Lake County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of various scenarios associated with the cleanup of those residues remaining at the abandoned uranium mill tailings site located in South Salt Lake, Utah.

  10. Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 dipping fault

  11. LIFE Materails: Molten-Salt Fuels Volume 8

    SciTech Connect (OSTI)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  12. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    SciTech Connect (OSTI)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  13. DOE - Office of Legacy Management -- Salt Lake City Vitro Chemical - UT

    Office of Legacy Management (LM)

    0-04 Vitro Chemical - UT 0-04 Site ID (CSD Index Number): UT.0-04 Site Name: Salt Lake City Vitro Chemical Site Summary: Site Link: Salt Lake City, Utah, Processing Site External Site Link: Alternate Name(s): Salt Lake City Vitro Chemical Salt Lake City Mill Alternate Name Documents: Location: Salt Lake City, Utah Location Documents: Historical Operations (describe contaminants): Historical Operations Documents: Eligibility Determination: Uranium Mill Tailings Radiation Control Act (UMTRCA)

  14. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    SciTech Connect (OSTI)

    Michael McDowell; Alan Schwartz

    2010-03-31

    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to

  15. In-Drift Precipitates/Salts Model

    SciTech Connect (OSTI)

    P. Mariner

    2003-10-21

    As directed by ''Technical Work Plan For: Engineered Barrier System Department Modeling and Testing FY03 Work Activities'' (BSC 2003 [165601]), the In-Drift Precipitates/Salts (IDPS) model is developed and refined to predict the aqueous geochemical effects of evaporation in the proposed repository. The purpose of this work is to provide a model for describing and predicting the postclosure effects of evaporation and deliquescence on the chemical composition of water within the proposed Engineered Barrier System (EBS). Application of this model is to be documented elsewhere for the Total System Performance Assessment License Application (TSPA-LA). The principal application of this model is to be documented in REV 02 of ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2003 [165601]). The scope of this document is to develop, describe, and validate the IDPS model. This model is a quasi-equilibrium model. All reactions proceed to equilibrium except for several suppressed minerals in the thermodynamic database not expected to form under the proposed repository conditions within the modeling timeframe. In this revision, upgrades to the EQ3/6 code (Version 8.0) and Pitzer thermodynamic database improve the applicable range of the model. These new additions allow equilibrium and reaction-path modeling of evaporation to highly concentrated brines for potential water compositions of the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O at temperatures in the range of 0 C to 125 C, pressures in the atmospheric range, and relative humidity in the range of 0 to 100 percent. This system applies to oxidizing conditions only, and therefore limits the model to applications involving oxidizing conditions. A number of thermodynamic parameters in the Pitzer database have values that have not been determined or verified for the entire temperature range. In these cases, the known values are used to approximate

  16. Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release | Department of Energy Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and Radiological Release Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and Radiological Release The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) actions for addressing issues identified in the March 2014, accident investigation report for the Underground Salt Haul Truck Fire at the Waste

  17. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward

    SciTech Connect (OSTI)

    Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

    2010-03-01

    Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

  18. History of the Strategic Petroleum Reserve | Department of Energy

    Energy Savers [EERE]

    emergency oil in deep underground storage caverns created in salt domes along the Texas and Louisiana Gulf Coasts. Although the idea of stockpiling emergency oil arose as early ...

  19. Geomechanical Analysis and Design Considerations for Thin-Bedded...

    Office of Scientific and Technical Information (OSTI)

    Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns Citation Details In-Document Search Title: Geomechanical Analysis and Design Considerations for...

  20. New York State Electric & Gas Corporation Smart Grid Demonstration...

    Open Energy Info (EERE)

    New York. Overview Demonstrate an advanced, less costly 150 MW Compressed Air Energy Storage (CAES) technology plant using an existing salt cavern. The project will be...

  1. Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR).

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon; Sobolik, Steven Ronald; Lee, Moo Yul

    2005-07-01

    3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

  2. CRITICALITY SAFETY OF PROCESSING SALT SOLUTION AT SRS

    SciTech Connect (OSTI)

    Stephens, K; Davoud Eghbali, D; Michelle Abney, M

    2008-01-15

    High level radioactive liquid waste generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site has been stored as 36 million gallons in underground tanks. About ten percent of the waste volume is sludge, composed of insoluble metal hydroxides primarily hydroxides of Mn, Fe, Al, Hg, and most radionuclides including fission products. The remaining ninety percent of the waste volume is saltcake, composed of primarily sodium (nitrites, nitrates, and aluminates) and hydroxides. Saltcakes account for 30% of the radioactivity while the sludge accounts for 70% of the radioactivity. A pilot plant salt disposition processing system has been designed at the Savannah River Site for interim processing of salt solution and is composed of two facilities: the Actinide Removal Process Facility (ARPF) and the Modular Caustic Side Solvent Extraction Unit (MCU). Data from the pilot plant salt processing system will be used for future processing salt at a much higher rate in a new salt processing facility. Saltcake contains significant amounts of actinides, and other long-lived radioactive nuclides such as strontium and cesium that must be extracted prior to disposal as low level waste. The extracted radioactive nuclides will be mixed with the sludge from waste tanks and vitrified in another facility. Because of the presence of highly enriched uranium in the saltcake, there is a criticality concern associated with concentration and/or accumulation of fissionable material in the ARP and MCU.

  3. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect (OSTI)

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  4. Fuel salt and container material studies for MOSART transforming system

    SciTech Connect (OSTI)

    Ignatiev, V.; Feynberg, O.; Merzlyakov, A.; Surenkov, A.; Zagnitko, A.; Afonichkin, V.; Bovet, A.; Khokhlov, V.; Subbotin, V.; Gordeev, M.; Panov, A.; Toropov, A.

    2013-07-01

    A study is under progress to examine the feasibility of single stream Molten Salt Actinide Recycling and Transmuting system without and with Th support (MOSART) fuelled with different compositions of actinide tri-fluorides (AnF{sub 3}) from used LWR fuel. New fast-spectrum design options with homogeneous core and fuel salts with high enough solubility for AnF{sub 3} are being examined because of new goals. The flexibility of single fluid MOSART concept with Th support is underlined, particularly, possibility of its operation in self-sustainable mode (Conversion Ratio: CR=1) using different loadings and make up. The paper summarizes the most current status of fuel salt and container material data for the MOSART concept received within ISTC-3749 and ROSATOM-MARS projects. Key physical and chemical properties of various fluoride fuel salts are reported. The issues like salt purification, the electroreduction of U(IV) to U(III) in LiF-ThF{sub 4} and the electroreduction of Yb(III) to Yb(II) in LiF-NaF are detailed.

  5. Method for making a uranium chloride salt product

    DOE Patents [OSTI]

    Miller, William E.; Tomczuk, Zygmunt

    2004-10-05

    The subject apparatus provides a means to produce UCl.sub.3 in large quantities without incurring corrosion of the containment vessel or associated apparatus. Gaseous Cl is injected into a lower layer of Cd where CdCl.sub.2 is formed. Due to is lower density, the CdCl.sub.2 rises through the Cd layer into a layer of molten LiCl--KCL salt where a rotatable basket containing uranium ingots is suspended. The CdCl.sub.2 reacts with the uranium to form UCl.sub.3 and Cd. Due to density differences, the Cd sinks down to the liquid Cd layer and is reused. The UCl.sub.3 combines with the molten salt. During production the temperature is maintained at about 600.degree. C. while after the uranium has been depleted the salt temperature is lowered, the molten salt is pressure siphoned from the vessel, and the salt product LiCl--KCl-30 mol % UCl.sub.3 is solidified.

  6. Effect of water in salt repositories. Final report

    SciTech Connect (OSTI)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

  7. Mechanical modeling of the growth of salt structures

    SciTech Connect (OSTI)

    Alfaro, R.A.M.

    1993-05-01

    A 2D numerical model for studying the morphology and history of salt structures by way of computer simulations is presented. The model is based on conservation laws for physical systems, a fluid marker equation to keep track of the salt/sediments interface, and two constitutive laws for rocksalt. When buoyancy alone is considered, the fluid-assisted diffusion model predicts evolution of salt structures 2.5 times faster than the power-law creep model. Both rheological laws predict strain rates of the order of 4.0 {times} 10{sup {minus}15}s{sup {minus}1} for similar structural maturity level of salt structures. Equivalent stresses and viscosities predicted by the fluid-assisted diffusion law are 10{sup 2} times smaller than those predicted by the power-law creep rheology. Use of East Texas Basin sedimentation rates and power-law creep rheology indicate that differential loading is an effective mechanism to induce perturbations that amplify and evolve to mature salt structures, similar to those observed under natural geological conditions.

  8. Geomechanical analysis to predict the oil leak at the wellbores in Big Hill Strategic Petroleum Reserve

    SciTech Connect (OSTI)

    Park, Byoung Yoon

    2014-02-01

    Oil leaks were found in wellbores of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interbed between the caprock bottom and salt top. A three dimensional finite element model, which contains wellbore element blocks and allows each cavern to be configured individually, is constructed to investigate the wellbore damage mechanism. The model also contains element blocks to represent interface between each lithology and a shear zone to examine the interbed behavior in a realistic manner. The causes of the damaged casing segments are a result of vertical and horizontal movements of the interbed between the caprock and salt dome. The salt top subsides because the volume of caverns below the salt top decrease with time due to salt creep closure, while the caprock subsides at a slower rate because the caprock is thick and stiffer. This discrepancy yields a deformation of the well. The deformed wellbore may fail at some time. An oil leak occurs when the wellbore fails. A possible oil leak date of each well is determined using the equivalent plastic strain failure criterion. A well grading system for a remediation plan is developed based on the predicted leak dates of each wellbore.

  9. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    SciTech Connect (OSTI)

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk

    2013-07-01

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

  10. Injector nozzle for molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, W.A.; Upadhye, R.S.

    1996-02-13

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

  11. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect (OSTI)

    Baroch, C.J.; Grant, P.J.

    1995-10-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. There is considerable interest in developing processes that remove or destroy the nitrate wastes. Electrodialysis-Ion Exchange (EDIX) is a possible process that should be more cost effective in treating aqueous waste steams. This report describes the EDIX process.

  12. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect (OSTI)

    Baroch, C.J.; Grant, P.J.

    1995-12-31

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. This report describes the process of electrodialysis-ion exchange (EDIX) for treating aqueous wastes streams consisting of nitrates, sodium, organics, heavy metals, and radioactive species.

  13. Seawater as salt and water source for solar ponds

    SciTech Connect (OSTI)

    Folchitto, S. )

    1991-01-01

    This paper presents a method for preliminary design of a 1 km{sup 2} solar pond that will be supplied with salt and water from the sea. The evaporating basins, needed to concentrate the seawater are also included in the project. Starting from the experience that Agip Petroli gained in running the 25,000 m{sup 2} Solar Pond, built inside a salt-work in Margherita di Savoia, in southern Italy, two projects were worked out: the first one of 25,000 m{sup 2} and the second one of 1 km{sup 2} of surface. Making comparison between harvested energy cost of the solar pond, and the energy cost of alternative and traditional energy sources, the coastal Solar Pond of 1 km{sup 2} that utilizes seawater as salt and water source, is competitive.

  14. Injector nozzle for molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA)

    1996-01-01

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

  15. Current and proposed regulations for salt-water disposal wells

    SciTech Connect (OSTI)

    Moody, T.

    1994-12-31

    In recent years, all aspects of hydrocarbon exploration and production (E&P) activities have drawn closer scrutiny in terms of existing and potential impairment of the environment. In addition to drilling, production, and transportation activities, the United States Environmental Protection Agency (USEPA) has focused on the nature of E&P wastes. Approximately 98% of the volume of wastes generated by E&P activities is salt water associated with the recovery of hydrocarbons. By far the majority of this waste is reinjected in Class II wells as a nonhazardous waste. Due to the tremendous volume of salt water disposed of in Class II injection wells, the USEPA continues to reevaluate the Federal salt-water injection well program, offering comments, revising its interpretation of existing regulations, and promulgating new regulations. The purpose of this paper is to provide a review of existing Federal Class II injection well regulations and to provide an overview of potential of newly promulgated regulations.

  16. Analytical methods for determining the reactivity of pyrochemical salts

    SciTech Connect (OSTI)

    Phillips, A.G.; Stakebake, J.L.

    1994-05-01

    Pyrochemical processes used for the purification of plutonium have generated quantities of residue that contain varying amounts of reactive metals such as potassium, sodium, calcium, and magnesium. These residues are currently considered hazardous and are being managed under RCRA because of the reactivity characteristic. This designation is based solely on process knowledge. Currently there is no approved procedure for determining the reactivity of a solid with water. A method is being developed to rapidly evaluate the reactivity of pyrochemical salts with water by measuring the rate of hydrogen generation. The method was initially tested with a magnesium containing pyrochemical salt. A detection limit of approximately 0.004 g of magnesium was established. A surrogate molten salt extraction residue was also tested. Extrapolation of test data resulted in a hydrogen generation rate of 4.4 mg/(g min).

  17. Salt transport extraction of transuranium elements from lwr fuel

    DOE Patents [OSTI]

    Pierce, R. Dean; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.

  18. Salt transport extraction of transuranium elements from LWR fuel

    DOE Patents [OSTI]

    Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

    1992-11-03

    A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

  19. Salt Waste Processing Facility, Construction Turnover to Testing and

    Energy Savers [EERE]

    Waste Management » Tank Waste and Waste Processing » Salt Waste Processing Facility Fact Sheet Salt Waste Processing Facility Fact Sheet Nuclear material production operations at SRS resulted in the generation of liquid radioactive waste that is being stored, on an interim basis, in 49 underground waste storage tanks in the F- and H-Area Tank Farms. SWPF Fact Sheet (390.01 KB) More Documents & Publications EIS-0082-S2: Amended Record of Decision EIS-0082-S2: Record of Decision Enterprise

  20. Liquid fuel molten salt reactors for thorium utilization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gehin, Jess C.; Powers, Jeffrey J.

    2016-04-08

    Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing

  1. Materials and methods for stabilizing nanoparticles in salt solutions

    DOE Patents [OSTI]

    Robinson, David Bruce; Zuckermann, Ronald; Buffleben, George M.

    2013-06-11

    Sequence-specific polymers are proving to be a powerful approach to assembly and manipulation of matter on the nanometer scale. Ligands that are peptoids, or sequence-specific N-functional glycine oligomers, allow precise and flexible control over the arrangement of binding groups, steric spacers, charge, and other functionality. We have synthesized short peptoids that can prevent the aggregation of gold nanoparticles in high-salt environments including divalent salt, and allow co-adsorption of a single DNA molecule. This degree of precision and versatility is likely to prove essential in bottom-up assembly of nanostructures and in biomedical applications of nanomaterials.

  2. Simulation of water transport in heated rock salt

    SciTech Connect (OSTI)

    Schlich, M.; Jockwer, N.

    1986-01-01

    This paper summarizes computer simulation studies on water transport in German rock salt. Based on JOCKWERS experimental investigations on water content and water liberation, the object of these studies was to select a water transport model, that matches the water inflow which was measured in some heater experiments in the Asse Salt Mine. The main result is, that an evaporation front model, with Knudsen-type vapor transport combined with fluid transport by thermal expansion of the adsorbed water layers in the non evaporated zone, showed the best agreement with experimental evidence.

  3. Expected environments in high-level nuclear waste and spent fuel repositories in salt

    SciTech Connect (OSTI)

    Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

    1980-08-01

    The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

  4. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    SciTech Connect (OSTI)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat

    2013-11-27

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  5. Effects of Variations in Salt-Spray Conditions on the Corrosion Mechanisms of an AE44 Magnesium Alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martin, Holly J.; Horstemeyer, M. F.; Wang, Paul T.

    2010-01-01

    The understanding of how corrosion affects magnesium alloys is of utmost importance as the automotive and aerospace industries have become interested in the use of these lightweight alloys. However, the standardized salt-spray test does not produce adequate corrosion results when compared with field data, due to the lack of multiple exposure environments. This research explored four test combinations through three sets of cycles to determine how the corrosion mechanisms of pitting, intergranular corrosion, and general corrosion were affected by the environment. Of the four test combinations, Humidity-Drying was the least corrosive, while the most corrosive test condition was Salt Spray-Humidity-Drying.more » The differences in corrosivity of the test conditions are due to the various reactions needed to cause corrosion, including the presence of chloride ions to cause pit nucleation, the presence of humidity to cause galvanic corrosion, and the drying phase which trapped chloride ions beneath the corrosion by-products.« less

  6. TGS measurements of pyrochemical salts at Rocky Flats

    SciTech Connect (OSTI)

    Mercer, D. J.; Hansen, J. S.; Lestone, J. P.; Prettyman, T. H.

    2001-01-01

    A new skid-mounted tomographic gamma scanner (TGS) was designed to assist in the decommissioning of Rocky Flats Building 37 1, This instrument was used to assay pyrochemical salts as a prerequisite for disposal at the Waste Isolation Pilot Plant (WIPP). The following paper discusses measurement challenges and results from the first year of operation of the instrument.

  7. Molten salt processing of mixed wastes with offgas condensation

    SciTech Connect (OSTI)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R. ); Gay, R.L.; Stewart, A.; Yosim, S. . Energy Systems Group)

    1991-05-13

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000{degrees}C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700{degrees}C. 15 refs., 5 figs., 1 tab.

  8. Sealing of boreholes using natural, compatible materials: Granular salt

    SciTech Connect (OSTI)

    Finley, R.E.; Zeuch, D.H.; Stormont, J.C.; Daemen, J.J.K.

    1994-05-01

    Granular salt can be used to construct high performance permanent seals in boreholes which penetrate rock salt formations. These seals are described as seal systems comprised of the host rock, the seal material, and the seal rock interface. The performance of these seal systems is defined by the complex interactions between these seal system components through time. The interactions are largely driven by the creep of the host formation applying boundary stress on the seal forcing host rock permeability with time. The immediate permeability of these seals is dependent on the emplaced density. Laboratory test results suggest that careful emplacement techniques could results in immediate seal system permeability on the order of 10{sup {minus}16} m{sup 2} to 10{sup {minus}18} m{sup 2} (10{sup {minus}4} darcy to 10{sup {minus}6}). The visco-plastic behavior of the host rock coupled with the granular salts ability to ``heal`` or consolidate make granular salt an ideal sealing material for boreholes whose permanent sealing is required.

  9. Sample Results from Routine Salt Batch 7 Samples

    SciTech Connect (OSTI)

    Peters, T.

    2015-05-13

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the microbatches of Integrated Salt Disposition Project (ISDP) Salt Batch (Macrobatch) 7B have been analyzed for 238Pu, 90Sr, 137Cs, Inductively Coupled Plasma Emission Spectroscopy (ICPES), and Ion Chromatography Anions (IC-A). The results from the current microbatch samples are similar to those from earlier samples from this and previous macrobatches. The Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU) continue to show more than adequate Pu and Sr removal, and there is a distinct positive trend in Cs removal, due to the use of the Next Generation Solvent (NGS). The Savannah River National Laboratory (SRNL) notes that historically, most measured Concentration Factor (CF) values during salt processing have been in the 12-14 range. However, recent processing gives CF values closer to 11. This observation does not indicate that the solvent performance is suffering, as the Decontamination Factor (DF) has still maintained consistently high values. Nevertheless, SRNL will continue to monitor for indications of process upsets. The bulk chemistry of the DSSHT and SEHT samples do not show any signs of unusual behavior.

  10. Hydrodynamic simulation of a lithium chloride salt system.

    SciTech Connect (OSTI)

    Eberle, C. S.; Herrmann, S. D.; Knighton, G. C.

    1999-02-12

    A fused lithium chloride salt system's constitutive properties were evaluated and compared to a number of fluid properties, and water was shown to be an excellent simulant of lithium chloride salt. With a simple flow model, the principal scaling term was shown to be a function of the kinematic viscosity. A water mock-up of the molten salt was also shown to be within a {+-}3% error in the scaling analysis. This made it possible to consider developing water scaled tests of the molten salt system. Accurate flow velocity and pressure measurements were acquired by developing a directional velocity probe. The device was constructed and calibrated with a repeatable accuracy of {+-}15%. This was verified by a detailed evaluation of the probe. Extensive flow measurements of the engineering scale mockup were conducted, and the results were carefully compared to radial flow patterns of a straight blade stirrer. The flow measurements demonstrated an anti-symmetric nature of the stirring, and many additional effects were also identified. The basket design was shown to prevent fluid penetration into the fuel baskets when external stirring was the flow mechanism.

  11. Mechanochemical Preparation of Phosphonium Salts and Phosphorus Ylides

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2015-03-04

    Researchers at Iowa State University and Ames Laboratory have developed a unique, solvent-free mechanochemical preparation method to prepare phosphonium salts and phosphorous ylides. The phosphorous ylides are then utilized in carrying out the solvent-free synthesis of desired organic compounds employing the Wittig-Horner reaction....

  12. Salt Lake City, Utah: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Salt Lake City, UT, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  13. Molten-Salt-Based Growth of Group III Nitrides

    DOE Patents [OSTI]

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  14. Decommissioning of the Molten Salt Reactor Experiment: A technical evaluation

    SciTech Connect (OSTI)

    Notz, K.J.

    1988-01-01

    This report completes a technical evaluation of decommissioning planning for the former Molten Salt Reactor Experiment, which was shut down in December, 1969. The key issues revolve around the treatment and disposal of some five tons of solid fuel salt which contains over 30 kg of fissionable uranium-233 plus fission products and higher actinides. The chemistry of this material is complicated by the formation of elemental fluorine via a radiolysis reaction under certain conditions. Supporting studies carried out as part of this evaluation include (a) a broad scope analysis of possible options for storage/disposal of the salts, (b) calculation of nuclide decay in future years, (c) technical evaluation of the containment facility and hot cell penetrations, (d) review and update of surveillance and maintenance procedures, (e) measurements of facility groundwater radioactivity and sump pump operation, (f) laboratory studies of the radiolysis reaction, and (g) laboratory studies which resulted in finding a suitable getter for elemental fluorine. In addition, geologic and hydrologic factors of the surrounding area were considered, and also the implications of entombment of the fuel in-place with concrete. The results of this evaluation show that the fuel salt cannot be left in its present form and location permanently. On the other hand, extended storage in its present form is quite acceptable for 20 to 30 years, or even longer. For continued storage in-place, some facility modifications are recommended. 30 refs., 5 figs., 9 tabs.

  15. Virginia Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    9,500 9,500 9,500 9,500 9,500 9,500 1998-2014 Salt Caverns 6,200 6,200 6,200 6,200 6,200 6,200 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 3,300 3,300 3,300 3,300 3,300 3,300...

  16. Biography U. Düsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. Düsterloh Degree: PD Dr.- Ing. habil. Institution: Clausthal University of Technology. Chair: chair for waste disposal technologies and geomechanics. 1982- 1988 field of study: mining engineer 1989- 1993 PhD work - geomechanical investigations on the stability of salt caverns for waste disposal. 2009 Habilitation - proof of stability and integrity of underground excavations in saliniferous formations with special regard to lab tests. 1989 - 2012 chief engineer at Clausthal University of

  17. Sample results from the interim salt disposition program macrobatch 9 tank 21H qualification samples

    SciTech Connect (OSTI)

    Peters, T. B.

    2015-11-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H.

  18. Methods of producing sulfate salts of cations from heteroatomic compounds and dialkyl sulfates and uses thereof

    DOE Patents [OSTI]

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-09-29

    Methods of preparing sulfate salts of heteroatomic compounds using dialkyl sulfates as a primary reactant are disclosed. Also disclosed are methods of making ionic liquids from the sulfate salts of the heteroatomic compound, and electrochemical cells comprising the ionic liquids.

  19. Annular core liquid-salt cooled reactor with multiple fuel and...

    Office of Scientific and Technical Information (OSTI)

    Annular core liquid-salt cooled reactor with multiple fuel and blanket zones Citation Details In-Document Search Title: Annular core liquid-salt cooled reactor with multiple fuel ...

  20. Measurements under salt sheets in the Gulf of Mexico: Observations and inferences

    SciTech Connect (OSTI)

    O'Brien, J.J. ); Lerche, I.; Yu, Z. )

    1993-09-01

    Four wells in the offshore Gulf of Mexico have penetrated through four different salt sheets and into the underlying formations. Interpretations of sonic and density logs, together with mud weight variations, imply highly overpressured regimes below each of the four salt sheets. Models of the development with time of sediments and salt sheets show the estimates of timing and magnitude of this buildup of overpressure. Investigations of both horizontal and tilted sand sheets, together with sheets having a sub-salt thief sand, provide estimates of (1) thermal focusing by the highly conductive salt, (2) timing and magnitude of pressure buildup and bleed off in formations underlying the impermeable salt sheet, and (3) porosity retention by formations below the salt. Importance of salt sheets as an impermeable seal for hydrocarbon retention and high porosity due to overpressure development are significant to exploration assessments in the Gulf of Mexico.

  1. Preconceptual design of a salt splitting process using ceramic membranes

    SciTech Connect (OSTI)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R.; Balagopal, S.; Landro, T.; Sutija, D.P.

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  2. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

  3. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect (OSTI)

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  4. Molten Salt Test Loop (MSTL) system customer interface document.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  5. Summary - Salt Waste Processing Facility Design at the Savannah River Site

    Office of Environmental Management (EM)

    Salt Waste Processing Facility ETR Report Date: November 2006 ETR-4 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Salt Waste Processing Facility Design at the Savannah River Site (SRS) Why DOE-EM Did This Review The Salt Waste Processing Facility (SWPF) is intended to remove and concentrate the radioactive strontium (Sr), actinides, and cesium (Cs) from the bulk salt waste solutions in the SRS high-level waste tanks. The sludge

  6. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOE Patents [OSTI]

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  7. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOE Patents [OSTI]

    Tsai, S.P.

    1997-07-08

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

  8. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOE Patents [OSTI]

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  9. Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives

    SciTech Connect (OSTI)

    Elder, H.H.

    2001-07-11

    The HLW salt waste (salt cake and supernate) now stored at the SRS must be treated to remove insoluble sludge solids and reduce the soluble concentration of radioactive cesium radioactive strontium and transuranic contaminants (principally Pu and Np). These treatments will enable the salt solution to be processed for disposal as saltstone, a solid low-level waste.

  10. Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-11

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  11. Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-20

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  12. November 2015 Newsletter - Los Alamos Field Office Legacy Cleanup |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy November 2015 Newsletter - Los Alamos Field Office Legacy Cleanup November 2015 Newsletter - Los Alamos Field Office Legacy Cleanup November 30, 2015 - 12:00pm Addthis TA-21-286 being demolished TA-21-286 being demolished Safety Safety and health record for October is clean Safe storage plan for nitrate salts has been completed and implemented. Contracts/Acquisition Removing concrete at the airport landfill Los Alamos Legacy Cleanup Bridge Contract commenced October 1

  13. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac; Flores, Francisco

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  14. Process for the preparation of protected dihydroxypropyl trialkylammonium salts and derivatives thereof

    DOE Patents [OSTI]

    Hollingsworth, Rawle I.; Wang, Guijun

    2000-01-01

    A process for the preparation of protected dihydroxypropyl trialkylammonium salts, particularly in chiral form is described. In particular, a process for the preparation of (2,2-dimethyl-1,3-dioxolan-4-ylmethyl)trialkylammonium salts, particularly in chiral form is described. Furthermore, a process is described wherein the (2,2-dimethyl-1,3-dioxolan-4ylmethyl)trialkylammonium salts is a 2,2-dimethyl-1,3-dioxolan-4-ylmethyl trimethylammonium salt, preferably in chiral form. The protected dihydroxypropyl trialkylammonium salts lead to L-carnitine (9) when in chiral form (5).

  15. Development and Calibration of New 3-D Vector VSP Imaging Technology: Vinton Salt Dome, LA

    SciTech Connect (OSTI)

    Kurt J. Marfurt; Hua-Wei Zhou; E. Charlotte Sullivan

    2004-09-01

    Vinton salt dome is located in Southwestern Louisiana, in Calcasieu Parish. Tectonically, the piercement dome is within the salt dome minibasin province. The field has been in production since 1901, with most of the production coming from Miocene and Oligocene sands. The goal of our project was to develop and calibrate new processing and interpretation technology to fully exploit the information available from a simultaneous 3-D surface seismic survey and 3-C, 3-D vertical seismic profile (VSP) survey over the dome. More specifically the goal was to better image salt dome flanks and small, reservoir-compartmentalizing faults. This new technology has application to mature salt-related fields across the Gulf Coast. The primary focus of our effort was to develop, apply, and assess the limitations of new 3-C, 3-D wavefield separation and imaging technology that could be used to image aliased, limited-aperture, vector VSP data. Through 2-D and 3-D full elastic modeling, we verified that salt flank reflections exist in the horizontally-traveling portion of the wavefield rather than up- and down-going portions of the wavefield, thereby explaining why many commercial VSP processing flow failed. Since the P-wave reflections from the salt flank are measured primarily on the horizontal components while P-wave reflections from deeper sedimentary horizons are measured primarily on the vertical component, a true vector VSP analysis was needed. We developed an antialiased discrete Radon transform filter to accurately model P- and S-wave data components measured by the vector VSP. On-the-fly polarization filtering embedded in our Kirchhoff imaging algorithm was effective in separating PP from PS wave images. By the novel application of semblance-weighted filters, we were able to suppress many of the migration artifacts associated with low fold, sparse VSP acquisition geometries. To provide a better velocity/depth model, we applied 3-D prestack depth migration to the surface data

  16. Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters

    SciTech Connect (OSTI)

    Afroz, Taliman; Seo, D. M.; Han, Sang D.; Boyle, Paul D.; Henderson, Wesley A.

    2015-03-06

    Solvate crystal structures serve as useful models for the molecular-level interactions within the diverse solvates present in liquid electrolytes. Although acyclic carbonate solvents are widely used for Li-ion battery electrolytes, only three solvate crystal structures with lithium salts are known for these and related solvents. The present work, therefore, reports six lithium salt solvate structures with dimethyl and diethyl carbonate: (DMC)2:LiPF6, (DMC)1:LiCF3SO3, (DMC)1/4:LiBF4, (DEC)2:LiClO4, (DEC)1:LiClO4 and (DEC)1:LiCF3SO3 and four with the structurally related methyl and ethyl acetate: (MA)2:LiClO4, (MA)1:LiBF4, (EA)1:LiClO4 and (EA)1:LiBF4.

  17. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  18. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  19. Cooling molten salt reactors using “gas-lift”

    SciTech Connect (OSTI)

    Zitek, Pavel E-mail: klimko@kke.zcu.cz; Valenta, Vaclav E-mail: klimko@kke.zcu.cz; Klimko, Marek E-mail: klimko@kke.zcu.cz

    2014-08-06

    This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a “Two-phase flow demonstrator” (TFD) used for experimental study of the “gas-lift” system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for “gas-lift” (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.

  20. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect (OSTI)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  1. Separation of actinides from lanthanides utilizing molten salt electrorefining

    SciTech Connect (OSTI)

    Grimmett, D.L.; Fusselman, S.P.; Roy, J.J.; Gay, R.L.; Krueger, C.L.; Storvick, T.S.; Inoue, T.; Hijikata, T.; Takahashi, N.

    1996-10-01

    TRUMP-S (TRansUranic Management through Pyropartitioning Separation) is a pyrochemical process being developed to separate actinides form fission products in nuclear waste. A key process step involving molten salt electrorefining to separate actinides from lanthanides has been studied on a laboratory scale. Electrorefining of U, Np, Pu, Am, and lanthanide mixtures from molten cadmium at 450 C to a solid cathode utilizing a molten chloride electrolyte resulted in > 99% removal of actinides from the molten cadmium and salt phases. Removal of the last few percent of actinides is accompanied by lowered cathodic current efficiency and some lanthanide codeposition. Actinide/lanthanide separation ratios on the cathode are ordered U > Np > Pu > Am and are consistent with predictions based on equilibrium potentials.

  2. STAINLESS STEEL INTERACTIONS WITH SALT CONTAINING PLUTONIUM OXIDES

    SciTech Connect (OSTI)

    Nelson, Z.; Chandler, G.; Dunn, K.; Stefek, T.; Summer, M.

    2010-02-01

    Salt containing plutonium oxide materials are treated, packaged and stored within nested, stainless steel containers based on requirements established in the DOE 3013 Standard. The moisture limit for the stored materials is less than 0.5 weight %. Surveillance activities which are conducted to assess the condition of the containers and assure continuing 3013 container integrity include the destructive examination of a select number of containers to determine whether corrosion attack has occurred as a result of stainless steel interactions with salt containing plutonium oxides. To date, some corrosion has been observed on the innermost containers, however, no corrosion has been noted on the outer containers and the integrity of the 3013 container systems is not expected to be compromised over a 50 year storage lifetime.

  3. Photosensitive dissolution inhibitors and resists based on onium salt carboxylates

    DOE Patents [OSTI]

    Dentinger, Paul M.; Simison, Kelby L.

    2005-11-29

    A photoresist composition that employs onium salt carboxylates as thermally stable dissolution inhibitors. The photoresist composition can be either an onium carboxylate salt with a phenolic photoresist, such as novolac, or an onium cation protected carboxylate-containing resin such as an acrylic/acrylic acid copolymer. The onium carboxylate can be an onium cholate, wherein the onium cholate is an iodonium cholate. Particularly preferred iodonium cholates are alkyloxyphenylphenyl iodonium cholates and most particularly preferred is octyloxyphenyphenyl iodonium cholate. The photoresist composition will not create nitrogen or other gaseous byproducts upon exposure to radiation, does not require water for photoactivation, has acceptable UV radiation transmission characteristics, and is thermally stable at temperatures required for solvent removal.

  4. Salt South Central Region Natural Gas Working Underground Storage (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 159 01/08 123 01/15 91 01/22 102 01/29 108 2010-Feb 02/05 95 02/12 85 02/19 71 02/26 70 2010-Mar 03/05 63 03/12 71 03/19 80 03/26 89 2010-Apr 04/02 101 04/09 112 04/16 120

  5. Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory Background Technical Area (TA) 54 is Los Alamos National Laboratory's transuranic (TRU) and low-level waste storage, characterization, and remediation area. The 63-acre site is located one mile from the community of White Rock and approximately one-eighth mile from the boundary be- tween Pueblo de San Ildefonso and the Laboratory. As a part of its national security mission, the Laboratory conducts research that generates

  6. WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update May 12, 2015 Panel 6 and Panel 7, Room 7 a. Rollback * Contamination Assessment-This prerequisite is complete and therefore status updates are no longer required. * Fixing/Decontamination Activities-Decontaminated equipment has been removed from Room 7 of Panel 7 to prepare for Room 7 closure activities. Remaining items in Panel 7, Room 7 include thirteen empty magnesium oxide racks, about 200 roof bolts, nine messenger

  7. Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties

    SciTech Connect (OSTI)

    Manohar S. Sohal; Matthias A. Ebner; Piyush Sabharwall; Phil Sharpe

    2010-03-01

    The purpose of this report is to provide a review of thermodynamic and thermophysical properties of candidate molten salt coolants, which may be used as a primary coolant within a nuclear reactor or heat transport medium from the Next Generation Nuclear Plant (NGNP) to a processing plant, for example, a hydrogen-production plant. Thermodynamic properties of four types of molten salts, including LiF-BeF2 (67 and 33 mol%, respectively; also known as FLiBe), LiF-NaF-KF (46.5, 11.5, and 52 mol%, also known as FLiNaK), and KCl-MgCl2 (67 and 33 mol%), and sodium nitrate-sodium nitrite-potassium nitrate (NaNO3–NaNO2–KNO3, (7-49-44 or 7-40-53 mol%) have been investigated. Limitations of existing correlations to predict density, viscosity, specific heat capacity, surface tension, and thermal conductivity, were identified. The impact of thermodynamic properties on the heat transfer, especially Nusselt number was also discussed. Stability of the molten salts with structural alloys and their compatibility with the structural alloys was studied. Nickel and alloys with dense Ni coatings are effectively inert to corrosion in fluorides but not so in chlorides. Of the chromium containing alloys, Hastelloy N appears to have the best corrosion resistance in fluorides, while Haynes 230 was most resistant in chloride. In general, alloys with increasing carbon and chromium content are increasingly subject to corrosion by the fluoride salts FLiBe and FLiNaK, due to attack and dissolution of the intergranular chromium carbide. Future research to obtain needed information was identified.

  8. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    SciTech Connect (OSTI)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  9. Generic effluent monitoring system certification for salt well portable exhauster

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Maughan, A.D.

    1997-09-01

    Tests were conducted to verify that the Generic Effluent Monitoring System (GEMS), as it is applied to the Salt Well Portable Exhauster, meets all applicable regulatory performance criteria for air sampling systems at nuclear facilities. These performance criteria address both the suitability of the air sampling probe location and the transport of the sample to the collection devices. The criteria covering air sampling probe location ensure that the contaminants in the stack are well mixed with the airflow at the probe location such that the extracted sample represents the whole. The sample transport criteria ensure that the sampled contaminants are quantitatively delivered to the collection device. The specific performance criteria are described in detail in the report. The tests demonstrated that the GEMS/Salt Well Exhauster system meets all applicable performance criteria. Pacific Northwest National Laboratory conducted the testing using a mockup of the Salt Well Portable Exhauster stack at the Numatec Hanford Company`s 305 Building. The stack/sampling system configuration tested was designed to provide airborne effluent control for the Salt Well pumping operation at some U.S. Department of Energy (DOE) radioactive waste storage tanks at the Hanford Site, Washington. The portable design of the exhauster allows it to be used in other applications and over a range of exhaust air flowrates (approximately 200 - 1100 cubic feet per minute). The unit includes a stack section containing the sampling probe and another stack section containing the airflow, temperature and humidity sensors. The GEMS design features a probe with a single shrouded sampling nozzle, a sample delivery line, and sample collection system. The collection system includes a filter holder to collect the sample of record and an in-line detector head and filter for monitoring beta radiation-emitting particles.

  10. Salt Stress in Desulfovibrio vulgaris Hildenborough: An integratedgenomics approach

    SciTech Connect (OSTI)

    Mukhopadhyay, Aindrila; He, Zhili; Alm, Eric J.; Arkin, Adam P.; Baidoo, Edward E.; Borglin, Sharon C.; Chen, Wenqiong; Hazen, Terry C.; He, Qiang; Holman, Hoi-Ying; Huang, Katherine; Huang, Rick; Hoyner,Dominique C.; Katz, Natalie; Keller, Martin; Oeller, Paul; Redding,Alyssa; Sun, Jun; Wall, Judy; Wei, Jing; Yang, Zamin; Yen, Huei-Che; Zhou, Jizhong; Keasling Jay D.

    2005-12-08

    The ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste has made all factors that affect the physiology of this organism of great interest. Increased salinity is an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt resulted in striking elongation of D. vulgaris cells. Using data from transcriptomics, proteomics, metabolite assays, phospholipid fatty acid profiling, and electron microscopy, we used a systems approach to explore the effects of excess NaCl on D. vulgaris. In this study we demonstrated that import of osmoprotectants, such as glycine betaine and ectoine, is the primary mechanism used by D. vulgaris to counter hyperionic stress. Several efflux systems were also highly up-regulated, as was the ATP synthesis pathway. Increases in the levels of both RNA and DNA helicases suggested that salt stress affected the stability of nucleic acid base pairing. An overall increase in the level of branched fatty acids indicated that there were changes in cell wall fluidity. The immediate response to salt stress included up-regulation of chemotaxis genes, although flagellar biosynthesis was down-regulated. Other down-regulated systems included lactate uptake permeases and ABC transport systems. The results of an extensive NaCl stress analysis were compared with microarray data from a KCl stress analysis, and unlike many other bacteria, D. vulgaris responded similarly to the two stresses. Integration of data from multiple methods allowed us to develop a conceptual model for the salt stress response in D. vulgaris that can be compared to those in other microorganisms.

  11. Fluorination utilizing thermodynamically unstable fluorides and fluoride salts thereof

    DOE Patents [OSTI]

    Bartlett, Neil; Whalen, J. Marc; Chacon, Lisa

    2000-12-12

    A method for fluorinating a carbon compound or cationic carbon compound utilizes a fluorination agent selected from thermodynamically unstable nickel fluorides and salts thereof in liquid anhydrous hydrogen fluoride. The desired carbon compound or cationic organic compound to undergo fluorination is selected and reacted with the fluorination agent by contacting the selected organic or cationic organic compound and the chosen fluorination agent in a reaction vessel for a desired reaction time period at room temperature or less.

  12. Atomistic Adaptive Ensemble Calculations of Eutectics of Molten Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixtures | Argonne Leadership Computing Facility Atomistic Adaptive Ensemble Calculations of Eutectics of Molten Salt Mixtures PI Name: Saivenkataraman Jayaraman PI Email: sjayara@sandia.gov Institution: Sandia National Laboratories Allocation Program: INCITE Allocation Hours at ALCF: 10,000,000 Year: 2012 Research Domain: Energy Technologies New and improved heat-transfer media with higher operating temperature ranges promise to turn solar-thermal power into a competitively cost-effective

  13. Transpiring wall supercritical water oxidation reactor salt deposition studies

    SciTech Connect (OSTI)

    Haroldsen, B.L.; Mills, B.E.; Ariizumi, D.Y.; Brown, B.G.

    1996-09-01

    Sandia National Laboratories has teamed with Foster Wheeler Development Corp. and GenCorp, Aerojet to develop and evaluate a new supercritical water oxidation reactor design using a transpiring wall liner. In the design, pure water is injected through small pores in the liner wall to form a protective boundary layer that inhibits salt deposition and corrosion, effects that interfere with system performance. The concept was tested at Sandia on a laboratory-scale transpiring wall reactor that is a 1/4 scale model of a prototype plant being designed for the Army to destroy colored smoke and dye at Pine Bluff Arsenal in Arkansas. During the tests, a single-phase pressurized solution of sodium sulfate (Na{sub 2}SO{sub 4}) was heated to supercritical conditions, causing the salt to precipitate out as a fine solid. On-line diagnostics and post-test observation allowed us to characterize reactor performance at different flow and temperature conditions. Tests with and without the protective boundary layer demonstrated that wall transpiration provides significant protection against salt deposition. Confirmation tests were run with one of the dyes that will be processed in the Pine Bluff facility. The experimental techniques, results, and conclusions are discussed.

  14. Salt Repository Project site study plan for meteorology/air quality: Revision 1

    SciTech Connect (OSTI)

    Not Available

    1987-12-01

    The Site Study Plan for Meteorology/Air Quality describes a field program consisting of continuous measurements of wind speed and direction, temperature, humidity, dew point, and pressure neede for later modeling and dose calculations. These measurements will include upper level winds, vertical temperature structure, and vertical wind speed. All measurements will be made at a site located within the 9-m/sup 2/ site area but remote from the ESF. The SSP describes the need for each study; its design and design rationale; analysis, management, and use of data; schedule of field activities, organization of field personnel and sample management and quality assurance requirements. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Project Requirements Document. Although titled Meteorology/Air Quality, this SSP addresses only meteorology, as there are no air quality data needs in the SCP. A correction to the title will be made in a later revision. 27 refs., 6 figs., 3 tabs.

  15. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    SciTech Connect (OSTI)

    Denis Clark; Ronald Mizia; Piyush Sabharwall

    2012-09-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700

  16. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    SciTech Connect (OSTI)

    Denis Clark; Ronald Mizia

    2012-05-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C

  17. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... salt caverns 2 1.00 1.20 2.88 0.02 Dry-mined salt caverns 2 10.00 11.50 27.60 0.16 ... tank, feed water demineralizer, hydrogen scrubber, gas holder, two compressor units, ...

  18. Millimeter-Wave Measurements at 137 GHZ of DWPF Black Frit Glass Flow and Salt Layer Pooling in a Pilot Scale Melter

    SciTech Connect (OSTI)

    Woskov, Paul P.; Sundaram, S.K.; Miller, Don; Daniel, Gene; Harden, John

    2004-03-31

    Nuclear waste vitrification in joule-heated melters would be greatly facilitated by the availability of on-line monitoring instrumentation for critical process parameters such as viscosity and salt accumulation. A field test of the applicability of millimeter-wave (MMW) technology to providing such tools was carried out on a pilot scale melter (EV-16) at the Clemson Environmental Technology Laboratory. Flow measurements of Defense Waste Processing Facility (DWPF) black frit glass over a temperature (T) range of 800-1150 C and to depths of over 7 inches (17.8 cm) were made with an immersed ceramic waveguide. Pressure induced melt flow inside the waveguide was observed over an average velocity range of 0.1-10 mm/s consistent with a 1/T viscosity scaling. In another test, sodium sulfate salt (NaSO4) was added to the melt to demonstrate salt layer detection. A 30% decrease in MMW melt emissivity was clearly observed as pools of salt formed and flowed under the waveguide.

  19. Salt effects on isotope partitioning and their geochemical implications: An overview

    SciTech Connect (OSTI)

    Horita, J.; Cole, D.R.; Fortier, S.M.

    1996-01-01

    Essential to the use of stable isotopes as natural tracers and geothermometers is the knowledge of equilibrium isotope partitioning between different phases and species, which is usually a function of temperature only. The one exception known to date is oxygen and hydrogen isotope fractionation between liquid water and other phases (steam, gases, minerals), which changes upon the addition of salts to water, i.e., the isotope salt salt effect. Our knowledge of this effect, the difference between activity and composition (a-X) of isotopic water molecules in salt solutions, is very limited and controversial, especially at elevated temperatures. For the last several years, we have been conducting a detailed, systematic experimental study at Oak Ridge National Laboratory to determine the isotope salt effects from room temperature to elevated temperatures (currently to 500{degree}C). From this effort, a simple, coherent picture of the isotope salt effect is emerging, that differs markedly from the complex results reported in the literature. In this communication, we present an overview on the isotope salt effect, obtained chiefly from our study. Observed isotope salt effects in salt solutions are significant even at elevated temperatures. The importance and implications of the isotope salt effect for isotopic studies of brine-dominated systems are also discussed in general terms.

  20. TEMPERATURE MEASUREMENTS COLLECTED FROM AN INSTRUMENTED VAN IN SALT LAKE CITY, UTAH AS PART OF URBAN 2000

    SciTech Connect (OSTI)

    M.J. BROWN; E.R. PARDYJAK

    2001-08-01

    Measurements of temperature and position were collected during the night from an instrumented van on routes through Salt Lake City and the rural outskirts. The measurements were taken as part of the Department of Energy Chemical and Biological National Security Program URBAN 2 Field Experiment conducted in October 2000 (Shinn et al., 2000 and Allwine et al., 2001a). The instrumented van was driven over three primary routes, two including downtown, residential, and ''rural'' areas and a third that went by a line of permanently fixed temperature probes (Allwine et al., 2001b) for cross-checking purposes. Each route took from 45 to 60 minutes to complete. Based on four nights of data, initial analyses indicate that there was a temperature difference of 2-5 C between the urban core and nearby ''rural'' areas. Analyses also suggest that there were significant fine scale temperature differences over distances of tens of meters within the city and in the nearby rural areas. The temperature measurements that were collected are intended to supplement the meteorological measurements taken during the URBAN2000 Field Experiment, to assess the importance of the urban heat island phenomenon in Salt Lake City, and to test the urban canopy parameterizations that have been developed for regional scale meteorological codes as part of the DOE CBNP program.

  1. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2013-07-01

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  2. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  3. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect (OSTI)

    Kehle, R.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  4. Transportation of pyrochemical salts from Rocky Flats to Los Alamos

    SciTech Connect (OSTI)

    Schreiber, S.B.

    1997-02-01

    Radioactive legacy wastes or residues are currently being stored on numerous Sites around the former Department of Energy`s (DOE) Nuclear Weapons Complex. Since most of the operating facilities were shut down and have not operated since before the declared end to the Cold War in 1993, the historical method for treating these residues no longer exists. The risk associated with continued storage of these residues will dramatically increase with time. Thus, the DOE was directed by the Defense Nuclear Facility Safety Board in its Recommendation 94-1 to address and stabilize these residues and established an eight year time frame for doing so. There are only two options available to respond to this requirement: (1) restart existing facilities to treat and package the residues for disposal or (2) transport the residues to another operating facility within the Complex where they can be treated and packaged for disposal. This paper focuses on one such residue type, pyrochemical salts, produced at one Complex site, the Rocky Flats Plant located northwest of Denver, Colorado. One option for treating the salts is their shipment to Los Alamos, New Mexico, for handling at the Plutonium Facility. The safe transportation of these salts can be accomplished at present with several shipping containers including a DOT 6M, a DOE 9968, Type A or Type B quantity 55-gallon drum overpacks, or even the TRUPACT II. The tradeoffs between each container is examined with the conclusion that none of the available shipping containers is fully satisfactory. Thus, the advantageous aspects of each container must be utilized in an integrated and efficient way to effectively manage the risk involved. 1 fig.

  5. Method of preparing sodalite from chloride salt occluded zeolite

    DOE Patents [OSTI]

    Lewis, Michele A.; Pereira, Candido

    1997-01-01

    A method for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000.degree. K. to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

  6. Method of preparing sodalite from chloride salt occluded zeolite

    DOE Patents [OSTI]

    Lewis, M.A.; Pereira, C.

    1997-03-18

    A method is described for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000 K to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

  7. Tanzania wildcats to evaluate Jurassic Mandawa salt basin

    SciTech Connect (OSTI)

    Nagati, M.

    1996-10-07

    After 5 years of stagnant exploration in East Africa, Canadian independent Tanganyika Oil Co. of Vancouver, B.C., will drill two wildcats in Tanzania to evaluate the hydrocarbon potential of the coastal Jurassic Mandawa salt basin. Mita-1, spudded around Oct. 1, will be drilled to about 7,000 ft, East Lika-1 will be drilled in early December 1996 to approximately 6,000 ft. The two wells will test different structures and play concepts. The paper describes the exploration history, source rock potential, hydrocarbon shows, potential reservoir, and the prospects.

  8. Melting of Uranium Metal Powders with Residual Salts

    SciTech Connect (OSTI)

    Jin-Mok Hur; Dae-Seung Kang; Chung-Seok Seo

    2007-07-01

    The Advanced Spent Fuel Conditioning Process (ACP) of the Korea Atomic Energy Research Institute focuses on the conditioning of Pressurized Water Reactor spent oxide nuclear fuel. After the oxide reduction step of the ACP, the resultant metal powders containing {approx} 30 wt% residual LiCl-Li{sub 2}O should be melted for a consolidation of the fine metal powders. In this study, we investigated the melting behaviors of uranium metal powders considering the effects of a LiCl-Li{sub 2}O residual salt. (authors)

  9. Dilute acid/metal salt hydrolysis of lignocellulosics

    DOE Patents [OSTI]

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  10. Low-melting point inorganic nitrate salt heat transfer fluid

    DOE Patents [OSTI]

    Bradshaw, Robert W.; Brosseau, Douglas A.

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  11. Acoustical, morphological and optical properties of oral rehydration salts (ORS)

    SciTech Connect (OSTI)

    George, Preetha Mary E-mail: jayakumars030@gmail.com; Divya, P.; Jayakumar, S. E-mail: jayakumars030@gmail.com; Subhashree, N. S.; Ahmed, M. Anees

    2015-06-24

    Ultrasonic velocity, density and viscosity were measured in different concentrations of oral rehydration salts (ORS) at room temperature 303 k. From the experimental data other related thermodynamic parameters, viz adiabatic compressibility, intermolecular free length, acoustic impedence, relaxation time are calculated. The experimental data were discussed in the light of molecular interaction existing in the liquid mixtures. The results have been discussed in terms of solute-solvent interaction between the components. Structural characterization is important for development of new material. The morphology, structure and grain size of the samples are investigated by SEM. The optical properties of the sample have been studied using UV Visible spectroscopy.

  12. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    SciTech Connect (OSTI)

    Poirier, M; Thomas Peters, T; Fernando Fondeur, F; Samuel Fink, S

    2008-10-28

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached {approx}10 psi while processing {approx}1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective

  13. Method for removing semiconductor layers from salt substrates

    DOE Patents [OSTI]

    Shuskus, Alexander J.; Cowher, Melvyn E.

    1985-08-27

    A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.

  14. Concentration and precipitation of NaCl and KCl from salt cake leach solutions by electrodialysis

    SciTech Connect (OSTI)

    Sreenivasarao, K; Patsiogiannis, F.; Hryn, J.N.

    1997-02-09

    Electrodialysis was investigated for cost-effective recovery of salt from salt cake leach solutions. (Salt cake is a waste stream generated by the aluminum industry during treatment of aluminum drosses and scrap.) We used a pilot-scale electrodialysis stack of 5 membrane pairs, each with an effective area of 0.02 m{sup 2}. The diluate stream contained synthetic NaCl, KCl,mixtures of NaCl and KCl, and actual salt cake leach solutions (mainly NaCl and KCl, with small amounts of MgCl{sub 2}). We concentrated and precipitated NaCl and KCl salts from the concentrate steam when the initial diluate stream concentration was 21.5 to 28.8 wt% NaCl and KCl. We found that water transferring through the membranes was a significant factor in overall efficiency of salt recovery by electrodialysis.

  15. Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013

    SciTech Connect (OSTI)

    Jonemann, M.

    2013-05-01

    Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

  16. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOE Patents [OSTI]

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  17. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOE Patents [OSTI]

    Lewis, Michele A.; Johnson, Terry R.

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  18. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOE Patents [OSTI]

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  19. Effect of hydrotropic salts on phase relationships involving hydrocarbons, water, and alcohols

    SciTech Connect (OSTI)

    Ho, P.C.; Kraus, K.A.

    1980-01-01

    Hydrotropic salts, which can increase the solubility of organic materials in aqueous solutions, are useful to tertiary oil recovery. We have examined effects on solubility of hydrocarbons in water (with and without alcohols) through addition of inorganic hydrotropic salts, such as perchlorates, thiocyanates, and iodides - high in the usual Hofmeister series - and of organic salts such as short chain alkyl benzene sulfonates and other salts based on substituted benzene derivatives. Although the inorganic salts are relatively ineffective in increasing solubility of hydrocarbons in water, many of the organic salts are excellent hydrotropic agents for hydrocarbons. We have examined the phase relationships for several series of aromatic salts such as sulfonates, carboxylates and hydroxycarboxylates, as a function of alkyl-carbon substitution in three-component (hydrocarbon, salt, water) and in four-component (hydrocarbon, salt, alcohol, water) systems. We have also examined miscibility relationships for a given hydrotropic salt as the chain length of alkanes and alkyl benzenes is systematically varied. While miscibilities decrease with increase in chain length of the hydrocarbon, the hydrotropic properties in these systems increase rapidly with the number of alkyl carbons on the benzene ring of the salts and they are relatively insensitive to the type of charged group (sulfonate vs carboxylate) attached to the benzene ring. However, there were significant increases in hydrotropy as one goes from equally substituted sulfonates or carboxylates to salicylates. A number of salts have been identified which have much greater hydrotropic properties for hydrocarbons than such well-known hydrotropic materials as toluene and xylene sulfonates.

  20. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOE Patents [OSTI]

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  1. Section 3116 Waste Determination for Salt Disposal at the Savannah River

    Office of Environmental Management (EM)

    Site, signed by Secretary of Energy, Samuel W. Bodman | Department of Energy Section 3116 Waste Determination for Salt Disposal at the Savannah River Site, signed by Secretary of Energy, Samuel W. Bodman Section 3116 Waste Determination for Salt Disposal at the Savannah River Site, signed by Secretary of Energy, Samuel W. Bodman Section 3116 Waste Determination for Salt Disposal at the Savannah River Site, signed by Secretary of Energy, Samuel W. Bodman (188.91 KB) More Documents &

  2. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

  3. DOE - Office of Legacy Management -- Tatum Salt Dome Test Site - MS 01

    Office of Legacy Management (LM)

    Tatum Salt Dome Test Site - MS 01 Site ID (CSD Index Number): MS.01 Site Name: Tatum Salt Dome Test Site Site Summary: Site Link: http://www.lm.doe.gov/salmon/Sites.aspx External Site Link: Alternate Name(s): Tatum Salt Dome Test Site Alternate Name Documents: Location: Salmon, Mississippi Location Documents: Historical Operations (describe contaminants): Underground nuclear test site Historical Operations Documents: Eligibility Determination: Remediated by DOE Eligibility Determination

  4. US/German Workshop on Salt Repository Research, Design and Operation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    following information: We have obtained the necessary DOE and Sandia approvals to start planning the 7 th USGerman Workshop on Salt Repository Research, Design, and Operation to...

  5. ,"U.S. Natural Gas Salt Underground Storage Activity-Withdraw...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5450us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Withdraw (MMcf)" ...

  6. ,"U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5460us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)" ...

  7. ,"U.S. Natural Gas Salt Underground Storage Activity-Injects...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5440us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" ...

  8. ,"U.S. Natural Gas Non-Salt Underground Storage - Working Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Non-Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","2...dnavnghistn5510us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  9. ,"U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5460us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)" ...

  10. ,"U.S. Natural Gas Salt Underground Storage Activity-Injects...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5440us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" ...

  11. ,"U.S. Natural Gas Salt Underground Storage Activity-Withdraw...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5450us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Withdraw (MMcf)" ...

  12. Hazard evaluation for cutting tank 241-A-101 salt well casing

    SciTech Connect (OSTI)

    Board, B.D.

    1997-01-10

    This document identifies the hazards of using an abrasive water jet to add perforations to the salt well screen in tank 241-A-101.

  13. A Study of Novel Hexavalent Phosphazene Salts as Draw Solutes in Forward Osmosis

    SciTech Connect (OSTI)

    Mark L. Stone; Aaron D. Wilson; Mason K. Harrup; Frederick F. Stewart

    2013-03-01

    Two novel multi-valent salts based on phosphazene chemistry have been synthesized and characterized as forward osmosis (FO) draw solutes. Commercially obtained hexachlorocyclotriphosphazene was reacted with the sodium salt of 4-ethylhydroxybenzoate to yield hexa(4-ethylcarboxylatophenoxy)phosphazene. Hydrolysis, followed by and neutralization with NaOH or LiOH, of the resulting acidic moieties yielded water soluble sodium and lithium phosphazene salts, respectively. Degrees of dissociation were determined through osmometry over the range of 0.05-0.5 m, giving degrees of 3.08-4.95 per mole, suggesting a high osmotic potential. The Li salt was found to be more ionized in solution than the sodium salt, and this was reflected in FO experiments where the Li salt gave higher initial fluxes (~ 7 L/m2h) as compared to the sodium salt (~6 L/m2h) at identical 0.07 m draw solution concentrations at 30 °C. Longer term experiments revealed no detectable degradation of the salts; however some hydrolysis of the cellulose acetate membrane was observed, presumably due to the pH of the phosphazene salt draw solution (pH = ~8).

  14. 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) Exploration Activity Details...

  15. Voluntary Protection Program Onsite Review, Salt Waste Processing Facility Construction Project- February 2013

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Salt Waste Processing Facility Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  16. Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details...

  17. Project Profile: Long-Shafted Molten Salt Pump | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Shafted Molten Salt Pump Project Profile: Long-Shafted Molten Salt Pump Pratt Whitney Rocketdyne logo Pratt & Whitney Rocketdyne (PWR), under the CSP R&D FOA, is validating the manufacturability of a large-scale molten salt receiver panel and then confirming its operation in prototypic solar flux. This work is an important step in reducing the LCOE from a central receiver solar power plant. Approach Image of PWR's design for an advanced molten salt receiver panel for a large

  18. QER SECOND INSTALLMENT REGIONAL MEETING--SALT LAKE CITY, UT | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SALT LAKE CITY, UT QER SECOND INSTALLMENT REGIONAL MEETING--SALT LAKE CITY, UT MEETING DATE AND LOCATION Monday, April 25, 2016 Doors open: 8:00 AM; Program begins: 8:30 AM Western Electricity Coordinating Council 155 North 400 West, Suite 200 Salt Lake City, UT 84103 Watch the April 25th Salt Lake City regional meeting here. MEETING INFORMATION The Quadrennial Energy Review Task Force will host a public stakeholder meeting on the second installment of the Quadrennial Energy Review

  19. Process for improving the energy density of feedstocks using formate salts

    DOE Patents [OSTI]

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  20. Proceedings of 3rd US/German Workshop on Salt Repository Research, Design, and Operation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The report provides summary and materials from the third U.S./German Workshop on Salt Repository Research, Design and Operation (held in New Mexico, October 2012).