Powered by Deep Web Technologies
Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Field Verification of Distributed Renewable Generation, Volume 1: Renewable Energy Field Test Concepts  

Science Conference Proceedings (OSTI)

This report describes field verification of distributed renewable generation and focuses on renewable energy field test concepts.

2003-03-25T23:59:59.000Z

2

Map Data: Renewable Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Production Map Data: Renewable Production renewprod2009.csv More Documents & Publications Map Data: Total Production Map Data: State Consumption Directory of Potential...

3

Enhanced Renewable Methane Production System | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

4

Renewable Energy Products LLC | Open Energy Information  

Open Energy Info (EERE)

Products LLC Jump to: navigation, search Name Renewable Energy Products, LLC Place Santa Fe Springs, California Zip 90670 Product Own and operate a biodiesel production facility in...

5

Renewable Energy Production By State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Production By State Renewable Energy Production By State Renewable Energy Production By State Click on a state for more information. Addthis Browse By Topic TOPICS...

6

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

Complexity of Renewable Energy Production in the Countrysidea shift to renewable energy production. Even if politicaldifficulties. Renewable energy production as a new economic

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

7

Community Based Renewable Energy Production Incentive (Pilot...  

Open Energy Info (EERE)

History Share this page on Facebook icon Twitter icon Community Based Renewable Energy Production Incentive (Pilot Program) (Maine) This is the approved revision of this...

8

Renewable Energy Production Tax Credits (Corporate) (Iowa) |...  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Renewable Energy Production Tax Credits (Corporate) (Iowa) This is the approved revision of this...

9

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

development of local renewable energy strategies: The casesin Germany to support renewable energies. Published masterThe Social Complexity of Renewable Energy Production in the

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

10

Alternative Fuels Data Center: Renewable Fuel Production Facility Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Production Facility Tax Credit

11

Renewable Energy Production Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Incentive Production Incentive Renewable Energy Production Incentive < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Savings Category Bioenergy Maximum Rebate None Program Info State Minnesota Program Type Performance-Based Incentive Rebate Amount 1.0¢-1.5¢/kWh Other undetermined incentive for on farm biogas ''not'' used to produce electricity Provider Minnesota Department of Commerce Supported by the state's Renewable Development Fund, Minnesota offers a payment of 1.5¢ per kilowatt-hour (kWh) for on-farm biogas facilities. Previously, this incentive also offered payments to wind and hydroelectric facilities, but no new incentives are being offered for these technologies. Hydro Facility Eligibility Generally, the incentive is available to hydro facilities located at the

12

Renewable hydrogen production by photosynthetic water splitting  

SciTech Connect

This mission-oriented research project is focused on the production of renewable hydrogen. The authors have demonstrated that certain unicellular green algae are capable of sustained simultaneous photoproduction of hydrogen and oxygen by light-activated photosynthetic water splitting. It is the goal of this project to develop a practical chemical engineering system for the development of an economic process that can be used to produce renewable hydrogen. There are several fundamental problems that need to be solved before the application of this scientific knowledge can be applied to the development a practical process: (I) maximizing net thermodynamic conversion efficiency of light energy into hydrogen energy, (2) development of oxygen-sensitive hydrogenase-containing mutants, and (3) development of bioreactors that can be used in a real-world chemical engineering process. The authors are addressing each of these problems here at ORNL and in collaboration with their research colleagues at the National Renewable Energy Laboratory, the University of California, Berkeley, and the University of Hawaii. This year the authors have focused on item 1 above. In particular, they have focused on the question of how many light reactions are required to split water to molecular hydrogen and oxygen.

Greenbaum, E.; Lee, J.W.

1998-06-01T23:59:59.000Z

13

Renewable hydrogen production for fossil fuel processing  

DOE Green Energy (OSTI)

The objective of this mission-oriented research program is the production of renewable hydrogen for fossil fuel processing. This program will build upon promising results that have been obtained in the Chemical Technology Division of Oak Ridge National Laboratory on the utilization of intact microalgae for photosynthetic water splitting. In this process, specially adapted algae are used to perform the light-activated cleavage of water into its elemental constituents, molecular hydrogen and oxygen. The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of their hydrogen-producing capability. These are: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the original development of an evacuated photobiological reactor for real-world engineering applications; (6) the potential for using modern methods of molecular biology and genetic engineering to maximize hydrogen production. The significance of each of these points in the context of a practical system for hydrogen production is discussed. This program will be enhanced by collaborative research between Oak Ridge National Laboratory and senior faculty members at Duke University, the University of Chicago, and Iowa State University. The special contribution that these organizations and faculty members will make is access to strains and mutants of unicellular algae that will potentially have useful properties for hydrogen production by microalgal water splitting.

Greenbaum, E.

1994-09-01T23:59:59.000Z

14

Renewable Energy Production Tax Credit (Personal) (Iowa) | Open...  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Renewable Energy Production Tax Credit (Personal) (Iowa) This is the approved revision of this page,...

15

DOE Hydrogen Analysis Repository: Hydrogen Production from Renewables...  

NLE Websites -- All DOE Office Websites (Extended Search)

at the 1998 DOE Hydrogen Program Review. Keywords: Technoeconomic analysis; hydrogen production; costs; hydrogen storage; renewable Purpose To determine technical and economic...

16

Table 10.1 Renewable Energy Production and Consumption by ...  

U.S. Energy Information Administration (EIA)

1 Production equals consumption for all renewable energy sources except biofuels. 9 Wood and wood-derived fuels. 2 Total biomass inputs to the ...

17

Community Based Renewable Energy Production Incentive (Pilot...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

eligible for incentives, a generating facility must be 51% locally owned, use renewable energy resources (solar, wind, hydro, certain biomass, fuel cells, and tidal), be no...

18

On Deep-Water Renewals in Indian Arm, British Columbia: Sensitivity to the Production of Turbulent Kinetic Energy Caused by Horizontal Variations in the Flow Field  

Science Conference Proceedings (OSTI)

A two-dimensional (i.e., laterally averaged) numerical model of the circulation in Burrard Inlet and Indian Arm near British Columbia, Canada, is used to examine the sensitivity of deep-water renewal events in Indian Arm to the turbulent mixing ...

Michael W. Stacey; S. Pond

2005-05-01T23:59:59.000Z

19

General Renewable Energy-Productive Uses and Development Impact | Open  

Open Energy Info (EERE)

General Renewable Energy-Productive Uses and Development Impact General Renewable Energy-Productive Uses and Development Impact Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy-Productive Uses and Development Impact Agency/Company /Organization: World Bank Sector: Energy Topics: Implementation, Co-benefits assessment, - Energy Access Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: General Renewable Energy-Productive Uses and Development Impact[1] Resources Productive Uses Productive Uses of Energy for Rural Development, R. Anil Cabraal, Douglas F. Barnes, and Sachin G. Agarwal, Annual Rev. Environ. Resour. 2005. 30:117-44. Millennium Development Goals: Status 2004, United Nations Energy and Gender Bioenergy-Based Productive Use Platforms for Rural Economic

20

Renewable Energy Production Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Production Tax Credit (Personal) Renewable Energy Production Tax Credit (Personal) Renewable Energy Production Tax Credit (Personal) < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Wind and biomass: First 400,000 MWh annually for 10 years (i.e. 4,000,000/year) Solar electric: First 200,000 MWh annually for 10 years (annual amount varies) Statewide cap: 2,000,000 MWh plus an additional 500,000 MWh for solar electric Program Info Start Date 1/1/2008 State New Mexico Program Type Personal Tax Credit Rebate Amount 0.01/kWh for wind and biomass 0.027/kWh (average) for solar (see below) Provider New Mexico Energy, Minerals and Natural Resources Department Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Renewable Hydrogen Production Using Sugars and Sugar Alcohols (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Group Meeting Working Group Meeting 11/06/2007 Renewable Hydrogen Production Using Renewable Hydrogen Production Using Sugars and Sugar Alcohols Sugars and Sugar Alcohols * * Problem: Problem: Need Need to develop renewable to develop renewable hydrogen production technologies using hydrogen production technologies using diverse diverse feedstocks feedstocks 10 15 20 CH 4 : C 6 H 14 ln(P) * * Description: Description: The BioForming The BioForming TM TM process uses process uses aqueous phase reforming to cost effectively aqueous phase reforming to cost effectively produce hydrogen from a range of feedstocks, produce hydrogen from a range of feedstocks, including glycerol and sugars. The key including glycerol and sugars. The key breakthrough is a proprietary catalyst that breakthrough is a proprietary catalyst that

22

Renewable Energy Production Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Production Tax Credit (Corporate) Renewable Energy Production Tax Credit (Corporate) Renewable Energy Production Tax Credit (Corporate) < Back Eligibility Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Wind and biomass: First 400,000 MWh annually for 10 years (i.e. 4,000,000/year) Solar electric: First 200,000 MWh annually for 10 years (annual amount varies) Statewide cap: 2,000,000 MWh plus an additional 500,000 MWh for solar electric Program Info Start Date 7/1/2002 State New Mexico Program Type Corporate Tax Credit Rebate Amount 0.01/kWh for wind and biomass 0.027/kWh (average) for solar (see below) Provider New Mexico Energy, Minerals and Natural Resources Department Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit

23

Renewable Energy Production Tax Credit (Florida) | Open Energy...  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Renewable Energy Production Tax Credit (Florida) This is the approved revision of this page, as well...

24

Energy Department Policy on Acquiring Tribal Renewable Energy Products  

Energy.gov (U.S. Department of Energy (DOE))

As part of the Department of Energys efforts to support tribal renewable energy production, Secretary Steven Chu has issued a policy statement and guidance to give preference to Indian Tribes when...

25

Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

DOE Green Energy (OSTI)

To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

2005-09-01T23:59:59.000Z

26

Request for Information Renewable Energy Generation/Production Shreveport  

Open Energy Info (EERE)

Request for Information Renewable Energy Generation/Production Shreveport Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Home > Groups > Renewable Energy RFPs Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 pv land use Solar solar land use Solar Power The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. The Authority is particularly interested in solar photovoltaic generation but other technically and economically feasible technologies may also be included. A study by NREL estimates the annual capacity factor of fixed tilt covered parking at 15.3% and for one-axis tracking at 19.4%. Specifically, the

27

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable  

E-Print Network (OSTI)

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable fuels be used annually by 2022, which allows continued

28

Renewable Energy Production Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Energy Production Tax Credit Renewable Energy Production Tax Credit < Back Eligibility Commercial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Wind Maximum Rebate No maximum specified for individual projects. Maximum of $1 million per corporation. Maximum of $5 million for state FY 2012-13 and $10 million for state for FY 2013-14 until FY 2016-2017. Program Info Start Date 7/1/2012 Expiration Date 6/30/2016 State Florida Program Type Corporate Tax Credit Rebate Amount $0.01/kWh Provider Florida Department of Revenue In June 2006, [http://archive.flsenate.gov/cgi-bin/View_Page.pl?File=sb0888er.html&Dire... S.B. 888] established a renewable energy production tax credit to encourage

29

Renewable Electricity Production Tax Credit (PTC) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Electricity Production Tax Credit (PTC) Renewable Electricity Production Tax Credit (PTC) < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Home Weatherization Wind Program Info Program Type Corporate Tax Credit Rebate Amount 2.3¢/kWh for wind, geothermal, closed-loop biomass; 1.1¢/kWh for other eligible technologies. Generally applies to first 10 years of operation. Provider U.S. Internal Revenue Service '''''Note: The American Recovery and Reinvestment Act of 2009 allows taxpayers eligible for the federal renewable electricity production tax credit (PTC) to take the federal business energy investment tax credit (ITC) instead of taking the PTC for new installations.'''''

30

Bio-hydrogen production from renewable organic wastes  

DOE Green Energy (OSTI)

Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

Shihwu Sung

2004-04-30T23:59:59.000Z

31

Renewable Energy Production Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Renewable Energy Production Tax Credit (Corporate) < Back Eligibility Commercial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate 2 million per year Program Info Start Date 12/31/2010 Expiration Date 12/31/2020 State Arizona Program Type Corporate Tax Credit Rebate Amount Wind and Biomass: 0.01/kWh, paid for 10 years Solar: Varies by year (see below), paid for 10 years Provider Arizona Department of Revenue '''''Note: this tax credit is only available for systems installed on or after December 31, 2010, and before January 1, 2021.''''' [http://www.azleg.gov/FormatDocument.asp?inDoc=/legtext/49leg/2r/bills/sb... Senate Bill 1254] of 2010 created a tax credit for electricity produced by certain renewable resources. Qualified renewable energy systems installed

32

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

the development of local renewable energy strategies: Theof energy by local, renewable sources. Refrences Altvater,in Germany to support renewable energies. Published master

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

33

Renewable Energy Production Tax Credits (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Credits (Corporate) Credits (Corporate) Renewable Energy Production Tax Credits (Corporate) < Back Eligibility Agricultural Commercial Industrial Institutional Rural Electric Cooperative Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Maximum Rebate 1.5¢/kWh (IA Code § 476C) Program Info Start Date 06/15/2005 State Iowa Program Type Corporate Tax Credit Rebate Amount 1.5¢/kWh (IA Code § 476C) or 1.0¢/kWh (IA Code § 476B) for 10 years after facility begins producing energy Provider Iowa Utilities Board In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify for only one of the two

34

Renewable Energy Production Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Credit (Personal) Credit (Personal) Renewable Energy Production Tax Credit (Personal) < Back Eligibility Agricultural Commercial Industrial Institutional Residential Rural Electric Cooperative Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Maximum Rebate 1.5¢/kWh (IA Code § 476C) Program Info Start Date 06/15/2005 State Iowa Program Type Personal Tax Credit Rebate Amount 1.5¢/kWh (IA Code § 476C) or 1.0¢/kWh (IA Code § 476B) for 10 years after facility begins producing energy Provider Iowa Utilities Board In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify for only one of the two

35

Promotion of Renewable Energies for Water Production through Desalination 56th Annual NM Water Conf., New Water New Energy: A Conference Linking Desalination and Renewable Energy  

E-Print Network (OSTI)

Promotion of Renewable Energies for Water Production through Desalination 56th Annual NM Water Conf., New Water New Energy: A Conference Linking Desalination and Renewable Energy 11 Promotion of Renewable with is ProDes (Promotion of Renewable Energy for Water production through Desalination), which brought

Johnson, Eric E.

36

An Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of Hydrogen An Analysis of Hydrogen Production from Renewable Electricity Sources Preprint J.I. Levene, M.K. Mann, R. Margolis, and A. Milbrandt National Renewable Energy Laboratory Prepared for ISES 2005 Solar World Congress Orlando, Florida August 6-12, 2005 Conference Paper NREL/CP-560-37612 September 2005 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

37

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

the transition from non-renewable to renewable energy in arenewable energy region/village. Interviews were made with relevant stakeholders such as professional and non-

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

38

Renewable Energy Permitting Barriers in Hawaii: Experience from the Field  

Science Conference Proceedings (OSTI)

This white paper presents a summary of the solicited input from permitting agencies and renewable energy developers on the permitting process in Hawaii to provide stakeholders in Hawaii, particularly those involved in permitting, with information on current permitting barriers that renewable energy developers are experiencing.

Busche, S.; Donnelly, C.; Atkins, D.; Fields, R.; Black, C.

2013-03-01T23:59:59.000Z

39

Community Based Renewable Energy Production Incentive (Pilot Program)  

Energy.gov (U.S. Department of Energy (DOE))

In June 2009, Maine established the Community-based Renewable Energy Pilot Program. As the name suggests, this program is intended to encourage the development of locally owned, in-state renewable...

40

Table 10.1 Renewable Energy Production and Consumption by Source ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review September 2013 137 Table 10.1 Renewable Energy Production and Consumption by Source

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Williston basin. Milestone test renews interest in Red Wing Creek field's meteor crater  

SciTech Connect

New drilling in the vicinity of Red Wing Creek field in McKenzie County, North Dakota has renewed interest in an area that has intrigued geologists for a number of years. Red Wing Creek was discovered in 1972 by True Oil Co. and has demonstrated better per-acre oil recovery than any other oil field in the Williston Basin. Fully developed several years ago, the field produces from what has been described as the central peak of an astrobleme, within a meteor crater. The current test by Milestone Petroleum Inc. is permitted to 14,200 ft and is being drilled on the rim of the crater, in SW SW 35-148n-101w, approx. a mile south of Red Wing production. The primary objective is the Ordovician Red River; but plans call for drilling deeper, through the Winnipeg, to below the Mississippian sediments that produce at Red Wing Creek field. At least 3 unsuccessful Red River tests have been drilled in or near the field in earlier years, but not in the area where Milestone is drilling. Production at Red Wing has come from porosity zones in a Mississippian oil column that measured 2600 ft in the original well; the better wells are in the heart of the field, on a rebound cone in the center of the crater.

Rountree, R.

1983-04-01T23:59:59.000Z

42

Renewable utility-scale electricity production differs by fuel ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... For non-hydro renewables, the 2011 generation share ranges from less than 1% in Alaska, Ohio, Alabama, and Kentucky, ...

43

Nuclear-renewables energy system for hydrogen and electricity production  

E-Print Network (OSTI)

Climate change concerns and expensive oil call for a different mix of energy technologies. Nuclear and renewables attract attention because of their ability to produce electricity while cutting carbon emissions. However ...

Haratyk, Geoffrey

2011-01-01T23:59:59.000Z

44

EVermont Renewable Hydrogen Production and Transportation Fueling System  

DOE Green Energy (OSTI)

A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

Garabedian, Harold T.

2008-03-30T23:59:59.000Z

45

Hawkeye Renewables formerly Midwest Renewables | Open Energy...  

Open Energy Info (EERE)

(formerly Midwest Renewables) Place Iowa Falls, Iowa Zip 50126 Product Midwest bioethanol producer References Hawkeye Renewables (formerly Midwest Renewables)1 LinkedIn...

46

Made with Renewable Energy: How and Why Companies are Labeling Consumer Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Made with Renewable Energy: Made with Renewable Energy: How and Why Companies are Labeling Consumer Products Deborah Baker Brannan, Jenny Heeter, and Lori Bird Technical Report NREL/TP-6A20-53764 March 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Made with Renewable Energy: How and Why Companies are Labeling Consumer Products Deborah Baker Brannan, Jenny Heeter, and Lori Bird Prepared under Task No. SAO9.3110 Technical Report NREL/TP-6A20-53764

47

Nuclear-Renewables Energy System for Hydrogen and Electricity Production  

Science Conference Proceedings (OSTI)

Technical Paper / Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Nuclear Hydrogen Production

Geoffrey Haratyk; Charles W. Forsberg

48

Potential for Hydrogen Production from Key Renewable Resources in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential for Hydrogen Production Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Technical Report NREL/TP-640-41134 February 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Prepared under Task No. H278.2100 Technical Report NREL/TP-640-41134 February 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

49

Production Hydraulic Packer Field Test  

Science Conference Proceedings (OSTI)

In October 1999, the Rocky Mountain Oilfield Testing Center and Halliburton Energy Services cooperated on a field test of Halliburton's new Production Hydraulic Packer technology on Well 46-TPX-10 at Naval Petroleum Reserve No. 3 near Casper, WY. Performance of the packer was evaluated in set and unset operations. The packer's ability to seal the annulus between the casing and tubing was hydraulically tested and the results were recorded.

Schneller, Tricia; Salas, Jose

2000-06-30T23:59:59.000Z

50

Renewable Energy Production By State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Recovery Act Field Projects DOE Recovery Act Field Projects DOE National Laboratories DOE National Laboratories eGallon eGallon...

51

Made with Renewable Energy: How and Why Companies are Labeling Consumer Products  

Science Conference Proceedings (OSTI)

Green marketing--a marketing strategy highlighting the environmental attributes of a product, often through the use of labels or logos--dates back to the 1970s. It did not proliferate until the 1990s, however, when extensive market research identified a rapidly growing group of consumers with a heightened concern for the environment. This group expressed not only a preference for green products but also a willingness to pay a premium for such products. The response was a surge in green marketing that lasted through the early 1990s. This report discusses the experience of companies that communicate to consumers that their products are 'made with renewable energy.' For this report, representatives from 20 companies were interviewed and asked to discuss their experiences marketing products produced using renewable energy. The first half of this report provides an overview of the type of companies that have labeled products or advertised them as being made with renewable energy. It also highlights the avenues companies use to describe their use of renewable energy. The second half of the report focuses on the motivations for making on-product claims about the use of renewable energy and the challenges in doing so.

Baker Brannan, D.; Heeter, J.; Bird, L.

2012-03-01T23:59:59.000Z

52

Renewable Energy Production By State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Per Person Solar Energy Potential Solar Energy Potential 2009 Total Energy Production by State 2009 Total Energy Production by State 2009 Energy Consumption Per Person...

53

PPC Renewables | Open Energy Information  

Open Energy Info (EERE)

Twitter icon PPC Renewables Jump to: navigation, search Name PPC Renewables Place Greece Sector Renewable Energy Product The renewables division of Public Power Corp. of...

54

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind to Hydrogen Project: Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Hydrogen Technologies and Systems Center Todd Ramsden, Kevin Harrison, Darlene Steward November 16, 2009 NREL/PR-560-47432 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL Wind2H2 RD&D Project * The National Renewable Energy Laboratory in partnership with Xcel Energy and DOE has designed, operates, and continues to perform testing on the wind-to-hydrogen (Wind2H2) project at the National Wind Technology Center in Boulder * The Wind2H2 project integrates wind turbines, PV arrays and electrolyzers to produce from renewable energy

55

Renewable Hydrogen Production at Hickam Air Force Base  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production at Hickam Air Force Base November 2009 Hawaii Center for Advanced Transportation Technologies *&1; Established by the High Technology Development Corporation (a...

56

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Supply Disposition Ending Stocks; Field Production Renewable Fuels & Oxygenate Plant New Production Refinery & Blender Net Production Imports Net Receipts

57

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Supply Disposition Ending Stocks; Field Production Renewable Fuels & Oxygenate Plant Net Production Refinery & Blender Net Production Imports Net Receipts

58

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Supply Disposition Ending Stocks; Field Production Renewable Fuels & Oxygenate Plant New Production Refinery & Blender Net Production Imports ...

59

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

in one case. Biomass or Biogas plants for electricityand heat production 24 Biogas plants use manure and energythat they do not run on biogas but biological waste or wood.

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

60

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

cheap oil and abundant fossil energy 1 is coming to an end (the local monopolist of fossil energy production 32 was ableregion since spending for fossil energy imports are reduced.

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities  

E-Print Network (OSTI)

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

62

Advanced Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Jump to: navigation, search Name Advanced Renewable Energy Place Italy Sector Biomass, Renewable Energy, Wind energy Product Advanced Renewable Energy Ltd combines...

63

Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems  

SciTech Connect

The increased use of intermittent renewable power in the United States is forcing utilities to manage increasingly complex supply and demand interactions. This paper evaluates biomass pathways for hydrogen production and how they can be integrated with renewable resources to improve the efficiency, reliability, dispatchability, and cost of other renewable technologies. Two hybrid concepts were analyzed that involve co-production of gaseous hydrogen and electric power from thermochemical biorefineries. Both of the concepts analyzed share the basic idea of combining intermittent wind-generated electricity with a biomass gasification plant. The systems were studied in detail for process feasibility and economic performance. The best performing system was estimated to produce hydrogen at a cost of $1.67/kg. The proposed hybrid systems seek to either fill energy shortfalls by supplying hydrogen to a peaking natural gas turbine or to absorb excess renewable power during low-demand hours. Direct leveling of intermittent renewable electricity production is accomplished with either an indirectly heated biomass gasifier, or a directly heated biomass gasifier. The indirect gasification concepts studied were found to be cost competitive in cases where value is placed on controlling carbon emissions. A carbon tax in the range of $26-40 per metric ton of CO{sub 2} equivalent (CO{sub 2}e) emission makes the systems studied cost competitive with steam methane reforming (SMR) to produce hydrogen. However, some additional value must be placed on energy peaking or sinking for these plants to be economically viable. The direct gasification concept studied replaces the air separation unit (ASU) with an electrolyzer bank and is unlikely to be cost competitive in the near future. High electrolyzer costs and wind power requirements make the hybridization difficult to justify economically without downsizing the system. Based on a direct replacement of the ASU with electrolyzers, hydrogen can be produced for $0.27 premium per kilogram. Additionally, if a non-renewable, grid-mix electricity is used, the hybrid system is found to be a net CO{sub 2}e emitter.

Dean, J.; Braun, R.; Penev, M.; Kinchin, C.; Munoz, D.

2010-01-01T23:59:59.000Z

64

Renewable Energy Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Resources, Inc. Renewable Energy Resources, Inc. Place Las Vegas, Nevada Sector Hydro, Renewable Energy, Solar, Wind energy Product Renewable Energy is a privately-held consultancy with proprietary technology in the solar, wind and hydro fields. References Renewable Energy Resources, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Resources, Inc. is a company located in Las Vegas, Nevada . References ↑ "Renewable Energy Resources, Inc." rated format, with renewable energy as its base, insuring a successful project throughout construction and commissioning. |Number of employees= |Coordinates= |References=Renewable Energy Resources, Inc.[1] }}

65

Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources  

DOE Green Energy (OSTI)

This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

Donaldson, T.L.; Culberson, O.L.

1983-06-01T23:59:59.000Z

66

Area Solar energy production BACKGROUND -All renewable energies, except for geothermal and tidal, derive their energy from the sun. By harnessing the power of  

E-Print Network (OSTI)

Area Solar energy production ­ BACKGROUND - All renewable energies installations. Advantages: · A renewable form of energy - "Locks up" carbon, except for geothermal and tidal, derive their energy from the sun

Keinan, Alon

67

Pair Production in Rotating Electric Fields  

E-Print Network (OSTI)

We explore Schwinger pair production in rotating time-dependent electric fields using the real-time DHW formalism. We determine the time evolution of the Wigner function as well as asymptotic particle distributions neglecting back-reactions on the electric field. Whereas qualitative features can be understood in terms of effective Keldysh parameters, the field rotation leaves characteristic imprints in the momentum distribution that can be interpreted in terms of interference and multiphoton effects. These phenomena may seed characteristic features of QED cascades created in the antinodes of a high-intensity standing wave laser field.

Blinne, Alexander

2013-01-01T23:59:59.000Z

68

Pair Production in Rotating Electric Fields  

E-Print Network (OSTI)

We explore Schwinger pair production in rotating time-dependent electric fields using the real-time DHW formalism. We determine the time evolution of the Wigner function as well as asymptotic particle distributions neglecting back-reactions on the electric field. Whereas qualitative features can be understood in terms of effective Keldysh parameters, the field rotation leaves characteristic imprints in the momentum distribution that can be interpreted in terms of interference and multiphoton effects. These phenomena may seed characteristic features of QED cascades created in the antinodes of a high-intensity standing wave laser field.

Alexander Blinne; Holger Gies

2013-11-07T23:59:59.000Z

69

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

of locational renewable energy production in each renewableto total renewable energy production, although accountingproduction data from the 2006 data set of the National Renewable Energy

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

70

World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard  

Science Conference Proceedings (OSTI)

This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

Sastri, B.; Lee, A.

2008-09-15T23:59:59.000Z

71

Renewable Choice Energy | Open Energy Information  

Open Energy Info (EERE)

Choice Energy Jump to: navigation, search Name Renewable Choice Energy Place Boulder, Colorado Zip 80301 Sector Carbon, Renewable Energy Product Renewable Choice Energy is a...

72

Renewable Energy Engineering LLC | Open Energy Information  

Open Energy Info (EERE)

Engineering LLC Jump to: navigation, search Name Renewable Energy Engineering, LLC Place Newberg, Oregon Zip 22700 Sector Renewable Energy Product Oregon-based renewable energy...

73

American Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Jump to: navigation, search Name American Renewable Energy Place Evanston, Illinois Zip 60202 Sector Geothermal energy, Renewable Energy, Solar Product American...

74

Superior Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Superior Renewable Energy LLC Jump to: navigation, search Name Superior Renewable Energy LLC Place Houston, Texas Zip 77002 Sector Renewable Energy, Wind energy Product An...

75

Encore Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Encore Renewable Energy LLC Jump to: navigation, search Name Encore Renewable Energy, LLC Place Santa Barbara, California Zip 93111 Sector Renewable Energy Product National...

76

Renewable Powertech Inc | Open Energy Information  

Open Energy Info (EERE)

Powertech Inc Jump to: navigation, search Name Renewable Powertech Inc Place Las Vegas, Nevada Sector Efficiency, Renewable Energy Product Las Vegas-based renewable energy...

77

Whites Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Whites Renewable Energy Jump to: navigation, search Name Whites Renewable Energy Place United Kingdom Zip YO8 8EF Sector Biomass, Renewable Energy Product UK based company...

78

Review of International Experience with Renewable Energy Obligation Support Mechanisms  

E-Print Network (OSTI)

electricity production from renewable energy (approx. 15-25electricity production from renewable energy sources andthe production of electricity from renewable energy sources

Wiser, R.

2005-01-01T23:59:59.000Z

79

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)  

DOE Green Energy (OSTI)

Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

Ramsden, T.; Harrison, K.; Steward, D.

2009-11-16T23:59:59.000Z

80

Wind Energy and Production of Hydrogen and Electricity -- Opportunities for Renewable Hydrogen: Preprint  

DOE Green Energy (OSTI)

An assessment of options for wind/hydrogen/electricity systems at both central and distributed scales provides insight into opportunities for renewable hydrogen.

Levene, J.; Kroposki, B.; Sverdrup, G.

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Impacts of renewable fuel regulation and production on agriculture, energy, and welfare.  

E-Print Network (OSTI)

??The purpose of this dissertation is to study the impact of U.S. federal renewable fuel regulations on energy and agriculture commodity markets and welfare. We (more)

Mcphail, Lihong Lu

2010-01-01T23:59:59.000Z

82

The Treatment of Renewable Energy Certificates, Emissions Allowances, and Green Power Programs in State Renewables Portfolio Standards  

E-Print Network (OSTI)

benefits from renewable energy production accrue to thefinance the production of renewable energy to meet portfolioUnit of Production definition: One Renewable Energy Credit

Holt, Edward A.; Wiser, Ryan H.

2007-01-01T23:59:59.000Z

83

Redwood Renewables | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Redwood Renewables Sector Solar Product Developing integrated solar roofing projects References Redwood Renewables1 LinkedIn Connections...

84

Schoeller Renewables | Open Energy Information  

Open Energy Info (EERE)

Schoeller Renewables Jump to: navigation, search Name Schoeller Renewables Place Germany Sector Solar, Wind energy Product Germany-based subsidiary of Schoeller Industries that...

85

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

SciTech Connect

ABSTRACT The Texas Panhandle is regarded as the ??Cattle Feeding Capital of the World?, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO??s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco??the primary source of potable water for Waco??s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 ?? Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 ?? Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and Califor

John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

2012-05-03T23:59:59.000Z

86

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

SciTech Connect

The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling beh

Kalyan Annamalai, John M. Sweeten, Brent W. Auvermann, Saqib Mukhtar, Sergio Caperada Cady R. Engler, Wyatte Harman Reddy JN Robert Deotte

2012-05-03T23:59:59.000Z

87

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

Science Conference Proceedings (OSTI)

The Texas Panhandle is regarded as the â??Cattle Feeding Capital of the Worldâ?, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFOâ??s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Wacoâ??the primary source of potable water for Wacoâ??s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 â?? Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 â?? Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys a

John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

2012-05-02T23:59:59.000Z

88

Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint  

DOE Green Energy (OSTI)

Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

2004-05-01T23:59:59.000Z

89

A Phenomenological Study of the Metal-Oxide Interface: The Role of Catalysis in Hydrogen Production from Renewable Resources  

SciTech Connect

The truth about Cats: The metal-oxide interface of a Pd-Rh/CeO{sub 2} catalyst was studied in the context of developing active, selective and durable solid catalytic materials for the production of hydrogen from renewables. The presence of a stable contact between finely dispersed transition-metal clusters (Pd and Rh) on the nanoparticles of the CeO{sub 2} support leads to a highly active and stable catalyst for the steam reforming of ethanol.

Idriss, H.; Llorca, J; Chan, S; Blackford, M; Pas, S; Hill, A; Alamgir, F; Rettew, R; Petersburg, C; Barteau, M

2008-01-01T23:59:59.000Z

90

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

estimated costs of renewable energy production of potentialreduction. Production cost reductions in renewable energyproduction (DOE (2008)). Table 3: Federal Renewable Energy

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

91

Field Testing of Automated Demand Response for Integration of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products Title Field Testing of Automated...

92

Renewable energy and telecommunications  

E-Print Network (OSTI)

Renewable energy and telecommunications Case study: Energy Systems Week When AK Erlang first used fossil fuels and switch to renewable energy sources. But the unlikely convergence of the two fields lay to be able to deal with. "If we integrate renewable energies, such as wind power, in the electricity grid

93

Alaska's renewable energy potential.  

SciTech Connect

This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

Not Available

2009-02-01T23:59:59.000Z

94

Bison Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Bison Renewable Energy LLC Place Minneapolis, Minnesota Zip 55401 Product Developing biogas production facilities. References Bison Renewable Energy LLC1 LinkedIn Connections...

95

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

3.6,Focus:RenewableEnergy forHydrogenProductioninFocus:RenewableEnergyfor PowerProductionandHybrid

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

96

Careers in Renewable Energy  

DOE Green Energy (OSTI)

This publication describes the job opportunities, technologies, and market for each of the major renewable energy fields (wind power, solar power, bioenergy, geothermal energy, and hydropower).

Waggoner, T.

2001-01-15T23:59:59.000Z

97

Renewable energy for domestic electricity production and prediction of short-time electric consumption  

Science Conference Proceedings (OSTI)

Modern interest in renewable energy development is linked to concerns about exhaustion of fossil fuels and environmental, social and political risks of extensive use of fossil fuels and nuclear energy. It is a form of energy development with a focus ... Keywords: Kohonen Self-Organizing Maps, Photovoltaic Solar Cells, Short-Time Electric Consumption, Time Series, Windmills

Stphane Grieu; Frdrik Thiery; Adama Traor; Monique Polit

2007-06-01T23:59:59.000Z

98

Biodiesel Production from Algal Blooms: A Step towards Renewable Energy Generation & Measurement  

Science Conference Proceedings (OSTI)

Usage of Bio-energy is becoming more and more prominent due to the peak oil crisis. Bio-energy is the energy which can be synthesized using methods and raw material which are available in nature and are derived from the biological sources. They are referred ... Keywords: Bio-Diesel, Octane Number, Ph Measurement, Renewable Energy Generation, Trans-Esterification

Shabana Urooj, Athar Hussain, Narayani Srivastava

2012-07-01T23:59:59.000Z

99

Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy1354608000000Renewable EnergySome of these resources are LANL-only and will require Remote Access.No Renewable Energy Some of these resources are...

100

Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency  

E-Print Network (OSTI)

MWh of incremental renewable energy production provides, onincremental renewable energy production exceeds 10 billion

Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy The WIPP Site Holds Promise as an Ideal Source of Renewable Energy Encompassing 16 square miles of open Chihuahuan desert with abundant sunshine and minimal surface roughness, the WIPP site is ideal for either solar- or wind-generated electricity production, demonstration or testing. In fact, WIPP is striving to take advantage of its abundance of sunshine and wind. The Department of Energy's Office of Environmental Management has created what is being called the Energy Park Initiative (EPI). This initiative's goal is to convert DOE facilities into assets by focusing on providing solutions for renewable energy technologies. WIPP, which has always been a DOE leader in terms of safety, has set the additional goal of trying to become the first DOE site operating with 100 percent clean energy. A team, consisting of representatives from CBFO, WTS, Sandia National Laboratories, Los Alamos National Laboratory, New Mexico State University, Texas Tech, the Carlsbad community and area utilities, have come up with several potential solutions. Members of the team are continuing to look into these solutions.

102

RMOTC - Field Information - Wells and Production  

NLE Websites -- All DOE Office Websites (Extended Search)

& Production Facilities Wells Pumpjack at RMOTC Partners may test in RMOTC's large inventory of cased, uncased, vertical, high-angle, and horizontal wells. Cased and open-hole...

103

Federal Energy Management Program: Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy to someone by E-mail Share Federal Energy Management Program: Renewable Energy on Facebook Tweet about Federal Energy Management Program: Renewable Energy on Twitter Bookmark Federal Energy Management Program: Renewable Energy on Google Bookmark Federal Energy Management Program: Renewable Energy on Delicious Rank Federal Energy Management Program: Renewable Energy on Digg Find More places to share Federal Energy Management Program: Renewable Energy on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation Project Assistance Resource Maps & Screening Tools Purchasing Renewable Power Case Studies Training Working Group Contacts

104

Production Tax Credit for Renewable Electricity Generation (released in AEO2005)  

Reports and Publications (EIA)

In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the Federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10-percent Federal tax credit on new investment in capital-intensive wind and solar generation technologies.

Information Center

2005-04-01T23:59:59.000Z

105

Production of sugarcane and tropical grasses as renewable energy source. Third annual report, 1979-1980  

DOE Green Energy (OSTI)

Research continued on tropical grasses from Saccharum and related genera as sources of intensively-propagated fiber and fermentable solids. Candidate screening for short-rotation grasses was expanded to include six sorghum x Sudan grass hybrids developed by the Dekalb Company. Sugacane and napier grass yield trends in year 3 include: (1) Increased yields with delay of harvest frequency; (2) lack of response to close spacing; (3) a superiority of napier grass over sugarcane when harvested at intervals of six months or less; and (4) a general superiority of the sugarcane variety NCo 310 over varieties PR 980 and PR 64-1791. Delayed tasseling of a wild, early-flowering S. spontaneum hybrid enabled three crosses to be made in December using commercial hybrids as female parents. Approximately 1000 seedlings were produced. The first field-scale minimum tillage experiment was completed. Sordan 77 produced 2.23 OD tons/acre/10 weeks, with winter growing conditions and a total moisture input of 4.75 inches. Mechanization trials included successful planting of napier grass with a sugarcane planter, and the mowing, solar-drying, and round--baling of napier grass aged three to six months. Production-cost and energy-balance studies were initiated during year 3 using first-ratoon data for intensively propagated sugarcane. Preliminary cost estimates for energy cane (sugarcane managed for total biomass rather than sucrose) were in the order of $25.46/OD ton, or about $1.70/mm Btus.

Not Available

1980-01-01T23:59:59.000Z

106

Conergy Renewable Services GmbH | Open Energy Information  

Open Energy Info (EERE)

Conergy Renewable Services GmbH Jump to: navigation, search Name Conergy Renewable Services GmbH Place Hamburg, Germany Zip 20537 Sector Renewable Energy, Services Product Provides...

107

Mulilo Renewable Energy Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

Mulilo Renewable Energy Pty Ltd Jump to: navigation, search Name Mulilo Renewable Energy Pty (Ltd) Place Cape Town, South Africa Zip 7525 Sector Renewable Energy Product Cape...

108

Ocean Renewable Power Company LLC | Open Energy Information  

Open Energy Info (EERE)

Ocean Renewable Power Company LLC Jump to: navigation, search Name Ocean Renewable Power Company LLC Place Portland, Maine Zip 4101 Sector Ocean, Renewable Energy Product Ocean...

109

American Council on Renewable Energy ACORE | Open Energy Information  

Open Energy Info (EERE)

on Renewable Energy ACORE Jump to: navigation, search Name American Council on Renewable Energy (ACORE) Place Washington, Washington, DC Zip 20006 Sector Renewable Energy Product...

110

Renewable Energy Across the 50 United States and Related Factors.  

E-Print Network (OSTI)

??Renewable energy production replaces diminishing non-renewable energy sources including fossil fuels. Major sources of renewable energy include biofuels, geothermal, hydroelectric, solar thermal and photovoltaic, wind, (more)

Christenson, Cynthia Brit

2013-01-01T23:59:59.000Z

111

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

which provides a renewable energy production incentive toonly renewable energy small power production facilities haveor a renewable-energy-fired small power production facility.

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

112

Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard  

E-Print Network (OSTI)

to fa- cilitate renewable energy production growth in theat pro- moting renewable energy production in the memberof significant renewable energy production in the U.S. also

Lunt, Robin J.

2007-01-01T23:59:59.000Z

113

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

RenewableEnergy forHydrogenProductioninCalifornia UndergraduateStudies:CaliforniaPolytechnicState

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

114

Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE))

Renewable energy leveraged from natural, renewable resources delivers electricity, heating, cooling, and other applications to Federal facilities and fleets. By using renewable energy, Federal agencies increase national security, conserve natural resources, and meet regulatory requirements and goals.

115

BMT Renewables Ltd | Open Energy Information  

Open Energy Info (EERE)

United Kingdom Zip TW11 8LZ Sector Renewable Energy Product Engineering, design and risk management support to the renewable energy sector, covering planning, installation and...

116

PNE Renewable Solutions JV | Open Energy Information  

Open Energy Info (EERE)

Renewable Solutions JV Jump to: navigation, search Name PNE & Renewable Solutions JV Place Delaware Sector Wind energy Product Delaware-based limited liability company and JV...

117

Renewable Generation Inc | Open Energy Information  

Open Energy Info (EERE)

Renewable Generation Inc Jump to: navigation, search Name Renewable Generation Inc Place Austin, Texas Sector Wind energy Product Developer of utility-scale wind projects....

118

Gigha Renewable Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Gigha Renewable Energy Ltd Jump to: navigation, search Name Gigha Renewable Energy Ltd Place Isle of Gigha, Scotland, United Kingdom Sector Wind energy Product Developer of the...

119

Renewable NRG LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name Renewable NRG LLC Place Woodstock, New York Zip 12498 Product Small manufacturing company located in New York. References Renewable NRG LLC1...

120

Renewable Power Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Power Systems, LLC Place Averill Park, New York Zip 12018 Sector Solar Product Albany, New York-based solar systems installer. References Renewable Power Systems, LLC1...

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Calgren Renewable Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Fuels LLC Place Newport Beach, California Zip 92660 Product Developer of bio-ethanol plants in US, particularly California. References Calgren Renewable Fuels LLC1...

122

Crown Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy LLC Jump to: navigation, search Name Crown Renewable Energy LLC Place Union City, California Zip 94587 Product Buys monosilicon PV cells from JingAo. References...

123

Tersus Asian Renewables | Open Energy Information  

Open Energy Info (EERE)

Product Tersus Asian Renewables is focusing on investments in wind, biomass and clean coal, principally in China and India. References Tersus Asian Renewables1 LinkedIn...

124

RDC Falck Renewables JV | Open Energy Information  

Open Energy Info (EERE)

JV Place United Kingdom Sector Renewable Energy, Wind energy Product RDC created a joint venture with Falck Renewables Ltd (FRL) to develop a portfolio of wind energy projects...

125

BEE Renewable Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Product Investment company, prioritising operation in the renewable energy industry. Coordinates 47.99854, 7.849655 Loading map... "minzoom":false,"mappi...

126

Matrix Product States for Lattice Field Theories  

E-Print Network (OSTI)

The term Tensor Network States (TNS) refers to a number of families of states that represent different ans\\"atze for the efficient description of the state of a quantum many-body system. Matrix Product States (MPS) are one particular case of TNS, and have become the most precise tool for the numerical study of one dimensional quantum many-body systems, as the basis of the Density Matrix Renormalization Group method. Lattice Gauge Theories (LGT), in their Hamiltonian version, offer a challenging scenario for these techniques. While the dimensions and sizes of the systems amenable to TNS studies are still far from those achievable by 4-dimensional LGT tools, Tensor Networks can be readily used for problems which more standard techniques, such as Markov chain Monte Carlo simulations, cannot easily tackle. Examples of such problems are the presence of a chemical potential or out-of-equilibrium dynamics. We have explored the performance of Matrix Product States in the case of the Schwinger model, as a widely used ...

Bauls, Mari Carmen; Cirac, J Ignacio; Jansen, Karl; Saito, Hana

2013-01-01T23:59:59.000Z

127

Succinic Acid-A Model Building Block for Chemical Production from Renewable Resources  

Science Conference Proceedings (OSTI)

One of the major considerations for the development of new technologies that can be utilized in a corn wet mill for the production of new chemical products is the concept of platform building blocks. This concept is based on the fact that a single building block has the potential to create a significant number of final products. Succinic acid represents a building block that can be used as a starting material for producing a large number of commodity and specialty chemicals.

Werpy, Todd A.; Frye, John G.; Holladay, John E.

2006-04-01T23:59:59.000Z

128

A GIS decision support system for regional forest management to assess biomass availability for renewable energy production  

Science Conference Proceedings (OSTI)

Currently, the use of a mix of renewable and traditional energy sources is deemed to help in solving increasing energy demands and environmental issues, thus making it particularly important to assess the availability of renewable energy sources. In ... Keywords: Bioenergy, Decision support system, Environmental sustainability, Forest residues, GIS, Harvesting techniques modelling, Renewable energy

Pietro Zambelli; Chiara Lora; Raffaele Spinelli; Clara Tattoni; Alfonso Vitti; Paolo Zatelli; Marco Ciolli

2012-12-01T23:59:59.000Z

129

Texas Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 932,350: 908,217: 882,911 ...

130

Oklahoma Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Oklahoma Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 12,139: 12,268: 13,290: 11,905: 13,000: 12,891 ...

131

Texas Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

View History: Monthly ... Download Data (XLS File) Texas Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981 ...

132

California Field Production of Crude Oil (Thousand Barrels per ...  

U.S. Energy Information Administration (EIA)

California Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 977: 981: 984: 985: 1,007: 1,012 ...

133

Federal Offshore PADD 5 Field Production of Crude Oil (Thousand ...  

U.S. Energy Information Administration (EIA)

Federal Offshore PADD 5 Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 874: 800: 883: 984: 1,586: 1,748 ...

134

U.S. Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1850's: 2: 1860's: 500: 2,114 ...

135

California Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

California Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 30,297: 27,455: 30,515: 29,540: 31,203: 30,366 ...

136

California Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

California Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 365,370: 373,176 ...

137

North Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

North Dakota Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 45,424: 47,271 ...

138

Texas Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: ...

139

Ohio Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 13,551: 14,571: 14,971 ...

140

Alaska Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Alaska Field Production of Crude Oil (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 198: 193: 191 ...

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Montana Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Montana Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 78: 84: 84: 83: 85: 86: 84: 85: 84: 88 ...

142

Colorado Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Colorado Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 81: 81: 82: 83: 81: 82: 81: 80: 82: 89 ...

143

Colorado Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Colorado Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 30,303: 30,545: 29,050 ...

144

Michigan Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Michigan Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 32,665: 31,462: 31,736 ...

145

South Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

South Dakota Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 973: 1,158: 1,172 ...

146

New Mexico Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

New Mexico Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 6,286: 5,593: 6,105: 5,902: ...

147

Tax Credits for Home Energy Improvements: If You Buy an Energy-Efficient Product or Renewable Energy System for Your Home, You May be Eligible for a Federal Tax Credit (Fact Sheet)  

Science Conference Proceedings (OSTI)

This two-page fact sheet provides an overview of 2010 federal tax credits for energy efficient products or renewable energy systems in the home.

Not Available

2010-05-01T23:59:59.000Z

148

Productivity index and field behavior: a case study  

E-Print Network (OSTI)

This study is an investigation of different factors' phics. influence on the productivity index and its behavior. The objectives of this research are (1) to develop an overview of how different factors influence the productivity index', and (2) to explain the irrational behavior of the productivity index in a case study presented. The problem has its origin in a field in north Africa, where irrational behavior of the productivity index (PI) has made it difficult to forecast the field performance. By irrational behavior we meant that the PI ants the opposite of what is expected. Normally we think PI will increase when the production oil rate of the field increases, at the same pressure drawdown. Or for the same well, PI should be constant over time. In some wells in this particular field we can see the P1 increase as production oil rate decreases and vice versa. Numerical simulation was used to simulate the influence different factors had on the productivity index, and to match wellness PI's with calculated PI's from field data in the case study. An overview of which factors can cause the P1 to go in unexpected directions is presented. Finally the theory obtained about the PI behavior is linked to the case study, and the E6incon-ect'' behavior of the PI is explained. It was shown that transient flow and two-phase flow are the two main reasons for the productivity index to decrease as production oil rate increases. It was also shown that dual porosity, non-Darcy flow, permeability changes, formation compressibility, and skin affect the length of the transient flow period and the magnitude of the difference between transient PI and pseudo steady state (PSS) PI. The behavior of the PI in the field case presented is explained by the transient flow effect and bad test data.

Jensen, Marianne

1998-01-01T23:59:59.000Z

149

Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming. National Renewable Energy Laboratory  

E-Print Network (OSTI)

Contract No. DE-AC36-99-GO10337NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at

Pamela L. Spath; Margaret K. Mann; Pamela L. Spath; Margaret K. Mann

2000-01-01T23:59:59.000Z

150

Using contingent valuation to explore willingness to pay for renewable energy: A comparison of collective and voluntary payment vehicles  

E-Print Network (OSTI)

surcharge, renewable energy production in the United Statessurcharge, renewable energy production in the United Statessurcharge, renewable energy production in the United States

Wiser, Ryan H.

2002-01-01T23:59:59.000Z

151

Using Contingent Valuation to Explore Willingness to Pay for Renewable Energy: A Comparison of Collective and Voluntary Payment Vehicles  

E-Print Network (OSTI)

surcharge, renewable energy production in the United Statessurcharge, renewable energy production in the United Statessurcharge, renewable energy production in the United States

Wiser, Ryan H.

2005-01-01T23:59:59.000Z

152

Using Contingent Valuation to Explore Willingness to Pay for Renewable Energy: A Comparison of Collective and Voluntary Payment Vehicles  

E-Print Network (OSTI)

this surcharge, renewable energy production in the Unitedthis surcharge, renewable energy production in the Unitedthis surcharge, renewable energy production in the United

Wiser, Ryan H.

2005-01-01T23:59:59.000Z

153

Production of Hydrogen from Peanut Shells The goal of this project is the production of renewable hydrogen from agricultural  

E-Print Network (OSTI)

to existing methane reforming technologies. The hydrogen produced will be blended with CNG and used to power activated carbon. The vapor by-products from the first step can be steam reformed into hydrogen. NREL has developed the technology for bio- oil to hydrogen via catalytic steam reforming and shift conversion

154

Federal Energy Management Program: Renewable Energy Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Contacts to someone by E-mail Share Federal Energy Management Program: Renewable Energy Contacts on Facebook Tweet about Federal Energy Management Program: Renewable Energy Contacts on Twitter Bookmark Federal Energy Management Program: Renewable Energy Contacts on Google Bookmark Federal Energy Management Program: Renewable Energy Contacts on Delicious Rank Federal Energy Management Program: Renewable Energy Contacts on Digg Find More places to share Federal Energy Management Program: Renewable Energy Contacts on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation Project Assistance Resource Maps & Screening Tools Purchasing Renewable Power

155

Renewable Fuels Module  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

Chris Namovicz

2013-07-03T23:59:59.000Z

156

Production of Hydrogen for Clean and Renewable Source of Energy for Fuel Cell Vehicles  

Science Conference Proceedings (OSTI)

This was a two-year project that had two major components: 1) the demonstration of a PV-electrolysis system that has separate PV system and electrolysis unit and the hydrogen generated is to be used to power a fuel cell based vehicle; 2) the development of technologies for generation of hydrogen through photoelectrochemical process and bio-mass derived resources. Development under this project could lead to the achievement of DOE technical target related to PEC hydrogen production at low cost. The PEC part of the project is focused on the development of photoelectrochemical hydrogen generation devices and systems using thin-film silicon based solar cells. Two approaches are taken for the development of efficient and durable photoelectrochemical cells; 1) An immersion-type photoelectrochemical cells (Task 3) where the photoelectrode is immersed in electrolyte, and 2) A substrate-type photoelectrochemical cell (Task 2) where the photoelectrode is not in direct contact with electrolyte. Four tasks are being carried out: Task 1: Design and analysis of DC voltage regulation system for direct PV-to-electrolyzer power feed Task 2: Development of advanced materials for substrate-type PEC cells Task 3: Development of advanced materials for immersion-type PEC cells Task 4: Hydrogen production through conversion of biomass-derived wastes

Deng, Xunming; Ingler, William B, Jr.; Abraham, Martin; Castellano, Felix; Coleman, Maria; Collins, Robert; Compaan, Alvin; Giolando, Dean; Jayatissa, Ahalapitiya. H.; Stuart, Thomas; Vonderembse, Mark

2008-10-31T23:59:59.000Z

157

Renewable Portfolio Standard MARK JACCARD  

E-Print Network (OSTI)

Renewable Portfolio Standard MARK JACCARD Simon Fraser University Vancouver, British Columbia feed-in tariff An offer by government or a utility to purchase electricity from renewables producers at a fixed price, regardless of the producers' costs of production. green (renewables) certificate

158

Renewable Energy  

U.S. Energy Information Administration (EIA)

Renewable energy sources including biomass, hydropower, geothermal, wind, and solar provide 8% of the energy used in the United States.

159

Characterization of Field Leachates at Coal Combustion Product Management Sites  

Science Conference Proceedings (OSTI)

A large amount of laboratory-generated leachate data has been produced over the last two decades to estimatecoal combustion product (CCP) leachate concentrations, and a variety of leaching methods have been used. No one method, however, has been shown to accurately represent field leaching conditions. In fact, little work has been performed to systematically evaluate field-generated leachates representative of a range of coal types, combustion systems, and management methods, and only limited work has be...

2006-12-14T23:59:59.000Z

160

Energy Department Policy on Acquiring Tribal Renewable Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Policy on Acquiring Tribal Renewable Energy Products Energy Department Policy on Acquiring Tribal Renewable Energy Products As part of the Department of Energy's...

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

Renewable Energy Production .Benefits and Renewable Energy Production One source ofauspicious source of renewable energy production from such

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

162

NREL Launches Collaborative Resource for Field Test Best Practices (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic portal documents and shares state-of-the-art Dynamic portal documents and shares state-of-the-art residential field test tools and techniques. Field testing is a science and an art-a tricky process that develops through a lot of trial and error. Researchers in the Advanced Residential Buildings group at the National Renewable Energy Labora- tory (NREL) regularly conduct field experiments and long-term monitoring in occupied and unoc- cupied houses throughout the United States. The goal is to capture real-world performance of energy- efficient systems, in support of the U.S. Department of Energy's Build- ing America program. In addition to the technical challenges of making accurate field measurements, NREL researchers realized another problem: the vast body of field test know-how based on years of collective experience is currently scattered throughout the

163

Renewable Capital | Open Energy Information  

Open Energy Info (EERE)

Capital Jump to: navigation, search Name Renewable Capital Place Las Vegas, Nevada Zip 89109 Sector Solar Product Investment vehicle of Ed Stevenson, founder of Solar Integrated...

164

Catalyst Renewables | Open Energy Information  

Open Energy Info (EERE)

Zip 75204 Product Pursue projects with low technical risk, stable fuel supply and prices, and long-term power purchase agreements References Catalyst Renewables1 LinkedIn...

165

Utah Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Utah Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,150: 2,170: 2,150: 2,160: 2,150: 2,160: 2,150 ...

166

Texas Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,600: 2,593: 2,604: 2,578: 2,577: 2,568 ...

167

North Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

North Dakota Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 3,787: 3,493: 3,790: 3,805: 3,974: 3,839 ...

168

Ohio Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 1,148: 1,036: 1,148: 1,111: 1,148: 1,111: 1,148 ...

169

Colorado Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Colorado Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,506: 2,255: 2,527: 2,478: 2,498: 2,445: 2,523 ...

170

U.S. Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1920: 34,008: 33,193: 36,171: 34,945: 36,622: 36,663 ...

171

Michigan Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Michigan Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,827: 2,493: 2,807: 2,720: 2,763: 2,682: 2,779 ...

172

Comparison of Permian basin giant oil fields with giant oil fields of other U. S. productive areas  

SciTech Connect

Covering over 40 million ac, the Permian basin is the fourth largest of the 28 productive areas containing giant fields. The 56 giant fields in the basin compare with the total of 264 giant oil fields in 27 other productive areas. Cumulative production figures of 18 billion bbl from the giant fields in the Permian basin are the largest cumulative production figures from giant fields in any of the productive areas. An estimated 1.9 billion bbl of remaining reserves in giant fields rank the basin third among these areas and the 19.9 billion bbl total reserves in giant fields in the basin are the largest total reserves in giant fields in any of the productive areas. The 1990 production figures from giant fields place the basin second in production among areas with giant fields. However, converting these figures to by-basin averages for the giant fields places the Permian basin 12th in field size among the areas with giant fields. Based on average reserves per well, the basin ranks 18th. Average 1990 production per giant field place the basin seventh and the average 1990 production per well in giant fields place the Permian basin 14th among the areas with giant fields.

Haeberle, F.R. (Consultant Geologist, Dallas, TX (United States))

1992-04-01T23:59:59.000Z

173

Analytical approaches to photobiological hydrogen production in unicellular green algae  

E-Print Network (OSTI)

photosynthesis in renewable energy production. This articlebe applied in renewable energy production. In addition, the

Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

2009-01-01T23:59:59.000Z

174

Holographic Photon Production with Magnetic Field in Anisotropic Plasmas  

E-Print Network (OSTI)

We investigate the thermal photon production from constant magnetic field in a strongly coupled and anisotropic plasma via the gauge/gravity duality. The dual geometry with pressure anisotropy is generated from the axion-dilaton gravity action introduced by Mateos and Trancancelli and the magnetic field is coupled to fundamental matters(quarks) through the D3/D7 embeddings. We find that the photon spectra with different quark mass are enhanced at large frequency when the photons are emitted parallel to the anisotropic direction with larger pressure or perpendicular to the magnetic field. However, in the opposite conditions for the emitted directions, the spectra approximately saturate isotropic results in the absence of magnetic field. On the other hand, a resonance emerges at moderate frequency for the photon spectrum with heavy quarks when the photons move perpendicular to the magnetic field. The resonance is more robust when the photons are polarized along the magnetic field. On the contrary, in the presence of pressure anisotropy, the resonance will be suppressed. There exist competing effects of magnetic field and pressure anisotropy on meson melting in the strongly coupled super Yang-Mills plasma, while we argue that the suppression led by anisotropy may not be applied to the quark gluon plasma.

Shang-Yu Wu; Di-Lun Yang

2013-05-23T23:59:59.000Z

175

Renewable Energy Research Activities in Mexico  

Science Conference Proceedings (OSTI)

... Out line ? Scientometrics ? Analysis of renewable energy topics ... "OCEANIC ENERGY") ... It seems we reach the saturation production in RE themes. ...

2013-10-31T23:59:59.000Z

176

Renewable RFI (Generic)  

Open Energy Info (EERE)

for Information for Information Renewable Energy Generation/Production Shreveport Airport Authority SHV AND DTN Shreveport, LA The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. The Authority is particularly interested in solar photovoltaic generation but other technically and economically feasible technologies may also be included. The Airport Authority will provide airport land, at both Shreveport Regional (SHV) and Shreveport Downtown Airports (DTN), for a renewable energy generation system, or systems, to be developed, constructed, owned, operated and maintained by a private entity under a lease agreement for fair market value of the land (currently appraised at

177

Renewable Polymers  

Science Conference Proceedings (OSTI)

... the amounts of natural resources and energy they consume and the wastes they produce. However, the adoption of renewable polymeric materials ...

2012-10-02T23:59:59.000Z

178

Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE))

Learn how the Energy Department's investments in clean, renewable energy technologies -- including wind, solar and geothermal sources -- are helping strengthen the American economy.

179

TVA Melton Hill Dam Sustainable Recreation Area: Analysis of Field Data from Renewable and Energy Efficiency Technologies  

Science Conference Proceedings (OSTI)

This report describes the culmination of activities, analyses, and results from EPRI's evaluation of TVA's Sustainable Recreation Area at Melton Hill Dam in East Tennessee. The recreation area includes renewable energy generation, energy and water efficiency, and other environmentally-driven enhancements throughout the area's visitor and campground facilities.EPRI has collected time-series data from a specific subset of technologies to evaluate energy and related performance ...

2013-11-19T23:59:59.000Z

180

Trident pair production in a constant crossed field  

E-Print Network (OSTI)

For the trident process in a constant crossed field, we isolate the one-step mechanism involving a virtual intermediate photon from the two-step mechanism involving a real photon. The one-step process is found to be measurable combining currently-available electron beams with few-cycle laser pulses. The two-step process differs appreciably in magnitude and dynamics from integrating the product of sub-steps over photon lightfront momentum, challenging numerical simulation efforts.

King, B

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Renewable Energy Powers Renewable Energy Lab, Employees  

NLE Websites -- All DOE Office Websites (Extended Search)

Powers Renewable Energy Lab, Employees The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) does more than just research renewable energy. It runs on...

182

Green Power Network: Renewable Energy Certificates (RECs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Retail Products Table of Retail Products Table of Commercial Certificate Marketers List of REC Marketers REC Prices National Renewable Energy Certificate Tracking Systems Map Carbon Offsets State Policies Renewable Energy Certificates (RECs) Renewable energy certificates (RECs), also known as renewable energy credits, green certificates, green tags, or tradable renewable certificates, represent the environmental attributes of the power produced from renewable energy projects and are sold separate from commodity electricity. Customers can buy green certificates whether or not they have access to green power through their local utility or a competitive electricity marketer. And they can purchase green certificates without having to switch electricity suppliers. Table of Retail Products

183

Steamflood production mechanism in an edge pattern Duri field, Indonesia  

E-Print Network (OSTI)

The Duri field, located in Riau Province in Central Sumatra, Indonesia, is currently the site of the largest steamflood project in the world. Roughly half of the field is being flooded in eight project areas. Low oil rate has been encountered in the edge pattern in Duri field. The source of the problem is believed to be the poor steamflood efficiency due to water coning and steam possibly injected into water zone. Evidences for poor steamflood efficiency are a high Steam-oil Ratio and low wellhead temperature. A reservoir simulation study was performed to model the production mechanism in a typical edge pattern of Duri field. A history-match model was developed using a three- dimensional, black-oil, thermal reservoir simulator. A simple pattern-element, layer-cake model was used. Reservoir properties, except permeability and porosity, from the previous model were used and an excellent match of six years of historical performance was obtained by making minor changes in the water relative permeability data. From the result, it can be explained that there are two mechanisms happening to the steam flow in the reservoir. Gravity segregation tends to move steam upward, and least-resistance-flow-path (LRFP) tends to move steam downward due to water cone formed by the producers. LRFP is dominant in the beginning of the steamflood. Water temperature is lower than that of steam, causing even more flow downward to the water zone. Once temperature equilibrium is reached in the OWC, gravity override starts to take over the role. A horizontal well seems to be a good choice to improve the sweep efficiency, because of better contact between wellborn and pay-zone, resulting in lower pressure drawdown for the same production rate. Sensitivity analysis shows the best horizontal section is perpendicular to the reservoir dip. An experimental design using two-level factorial design was performed to find out what variables are influencing the cumulative production, discounted cumulative production and project life for drilling horizontal well in the situation as in Duri field. Correlations to estimate those quantities were developed using linear regression method. It is no surprise that the oil volume and discount factor are the variables that determine those quantities.

Yuwono, Ipung Punto

1999-01-01T23:59:59.000Z

184

Astonfield Renewable Resources Ltd ARRL | Open Energy Information  

Open Energy Info (EERE)

Astonfield Renewable Resources Ltd ARRL Jump to: navigation, search Name Astonfield Renewable Resources Ltd. (ARRL) Place New York, New York Zip 10017 Sector Biomass, Solar Product...

185

Midwest Renewable Energy Projects LLC | Open Energy Information  

Open Energy Info (EERE)

Projects LLC Jump to: navigation, search Name Midwest Renewable Energy Projects LLC Place Florida Zip FL 33408 Sector Renewable Energy, Wind energy Product MRE Projects LLC is a...

186

DOE Hydrogen Analysis Repository: Hydrogen from Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen from Renewable Energy Project Summary Full Title: H2 Production Infrastructure Analysis - Task 3: Hydrogen From Renewable Energy Sources: Pathway to 10 Quads for...

187

S R Renewable Energy Ltd SRREL | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Ltd SRREL Jump to: navigation, search Name S.R. Renewable Energy Ltd. (SRREL) Place Hyderabad, Andhra Pradesh, India Zip 500 026 Sector Biomass Product...

188

Soham Renewable Energy P Ltd | Open Energy Information  

Open Energy Info (EERE)

Name Soham Renewable Energy (P) Ltd Place Bangalore, Karnataka, India Zip 560001 Sector Hydro, Renewable Energy, Wind energy Product Bangalore-based firm generating power using...

189

Renewable Energy Network of Entrepreneurs in Western New York RENEW NY |  

Open Energy Info (EERE)

Network of Entrepreneurs in Western New York RENEW NY Network of Entrepreneurs in Western New York RENEW NY Jump to: navigation, search Name Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY) Place Rochester, New York Zip 14623 Sector Renewable Energy Product US-based incubator fund, Renewable Energy Network of Entrepreneurs in Western New York, helps early stage renewable energy companies to start and grow in Western New York. References Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY) is a company located in Rochester, New York . References ↑ "Renewable Energy Network of Entrepreneurs in Western New York

190

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

Hydrogen Production, National Renewable Energy Laboratory,Production Using Concentrated Solar Energy, National Renewablethe production of hydrogen from renewable energy sources. In

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

191

Renewable Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. U.S. Dependence on...

192

Strategic Renewal  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewal Renewal of the Advanced Photon Source Proposal for Approval to Proceed with Conceptual Design (CD-0) Submitted to the US Department of Energy Office of Basic Energy Sciences May 31, 2009 Advanced Photon Source A BS t R AC t This document proposes a coordinated upgrade of the accelerator, beamlines, and enabling technical infrastructure that will equip future users of the Advanced Photon Source (APS) to address key

193

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

This is the first quarterly Technical Report for the period October-December, 2003. A kick-off meeting was held with NETL administrators and scientists at Morgantown, WV, on December 2, 2002. The purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During this first quarterly reporting period, five Graduate Research Assistants were recruited, an MOA was drafted between Virginia Tech and three industry cooperators, preliminary field locations for controlled studies were located, and a preliminary analysis of a carbon inventory of forest sites on mined land was made.

Dr. James A. Burger

2002-02-04T23:59:59.000Z

194

The Treatment of Renewable Energy Certificates, Emissions Allowances, and Green Power Programs in State Renewables Portfolio Standards  

E-Print Network (OSTI)

program. New Mexico rules state: renewable energy soldenergy production accrue to the public at large (legislation) New Mexico: Mexico: Legislation passed in March 2007 defines a renewable energy

Holt, Edward A.; Wiser, Ryan H.

2007-01-01T23:59:59.000Z

195

Federal Energy Management Program: Renewable Energy Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy Working Group to someone by E-mail Share Federal Energy Management Program: Renewable Energy Working Group on Facebook Tweet about Federal Energy Management Program: Renewable Energy Working Group on Twitter Bookmark Federal Energy Management Program: Renewable Energy Working Group on Google Bookmark Federal Energy Management Program: Renewable Energy Working Group on Delicious Rank Federal Energy Management Program: Renewable Energy Working Group on Digg Find More places to share Federal Energy Management Program: Renewable Energy Working Group on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation Project Assistance Resource Maps & Screening Tools

196

Federal Energy Management Program: Renewable Energy Project Assistance  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy Project Assistance to someone by E-mail Share Federal Energy Management Program: Renewable Energy Project Assistance on Facebook Tweet about Federal Energy Management Program: Renewable Energy Project Assistance on Twitter Bookmark Federal Energy Management Program: Renewable Energy Project Assistance on Google Bookmark Federal Energy Management Program: Renewable Energy Project Assistance on Delicious Rank Federal Energy Management Program: Renewable Energy Project Assistance on Digg Find More places to share Federal Energy Management Program: Renewable Energy Project Assistance on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation

197

Bio Renewables Group | Open Energy Information  

Open Energy Info (EERE)

Name Bio-Renewables Group Place United Kingdom Zip CB6 2BA Sector Biomass, Renewable Energy Product Specialist in bio-energy consultancy, research and project development related...

198

Estimating exergy renewability for sustainability assessment of corn ethanol  

Science Conference Proceedings (OSTI)

Although distinction between renewable and non-renewable energy resources has important political ramifications, in reality all practical energy production chains use a combination of resources that are renewable to different ...

Christopher D. Cummings; Thomas P. Seager

2008-05-01T23:59:59.000Z

199

Renewable Energy Certificates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Certificates Renewable Energy Certificates Renewable Energy Certificates October 16, 2013 - 5:15pm Addthis Image of a red balloon reading 'Electricity' plus a green balloon reading 'REC' equals a purple balloon reading 'Renewable Power' Components of a Renewable Energy Certificate Two separate products exist from electricity produced by renewable energy projects that can be sold together or treated separately. One is the actual electrons produced, which can either be transferred through the power grid to provide power to utility customers or used off-grid or at a customer site. Although they are not common in the market, Federal renewable energy policy recognizes renewable energy certificates (RECs) from thermal renewable energy projects. For thermal RECs the energy product is British

200

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

202

Renewable energy in commercial buildings  

E-Print Network (OSTI)

Dynamic life cycle assessment (LCA) of renewable energytechnologies, Renewable energy. [6] REN21 Renewable Energy Policy Network. 2005. Renewables

Scarpa, Massimiliano; Schiavon, Stefano; Zecchin, Roberto

2008-01-01T23:59:59.000Z

203

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

E-Print Network (OSTI)

12 Table 3. Renewable Energy Production Required forTable Table 3. Renewable Energy Production Required forEnergy Consumption Renewable Energy Production B kWH Year In

Budhraja, Vikram

2008-01-01T23:59:59.000Z

204

Federal Energy Management Program: Federal Requirements for Renewable  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Federal Requirements for Renewable Energy to someone by E-mail Share Federal Energy Management Program: Federal Requirements for Renewable Energy on Facebook Tweet about Federal Energy Management Program: Federal Requirements for Renewable Energy on Twitter Bookmark Federal Energy Management Program: Federal Requirements for Renewable Energy on Google Bookmark Federal Energy Management Program: Federal Requirements for Renewable Energy on Delicious Rank Federal Energy Management Program: Federal Requirements for Renewable Energy on Digg Find More places to share Federal Energy Management Program: Federal Requirements for Renewable Energy on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

205

Natural Innovative Renewable Energy formerly Northwest Iowa Renewable  

Open Energy Info (EERE)

Innovative Renewable Energy formerly Northwest Iowa Renewable Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name Natural Innovative Renewable Energy (formerly Northwest Iowa Renewable Energy) Place Akron, Iowa Zip 51001 Sector Renewable Energy Product Natural Innovative Renewable Energy, formerly Northwest Iowa Renewable Energy, is a development stage limited liability company that plans to construct a 60m gallon (227m litre) per year beef tallow biodiesel plant in South Sioux City, Nebraska. Coordinates 40.15731°, -76.204844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15731,"lon":-76.204844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Renewable Energy RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

Request for Proposal October 15, 2003 Renewable Energy Today For a Cleaner Tomorrow Biomass Group, LLC - Renewable Energy Request for Proposal, October 15, 2003 Renewable Energy...

207

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During the reporting period (October-December 2004) we completed the validation of a forest productivity classification model for mined land. A coefficient of determination (R{sup 2}) of 0.68 confirms the model's ability to predict SI based on a selection of mine soil properties. To determine carbon sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio (Figure 1), West Virginia (Figure 2), and Virginia (Figure 3). The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). For hybrid poplar, total plant biomass differences increased significantly with the intensity of silvicultural input. Root, stem, and foliage biomass also increased with the level of silvicultural intensity. Financial feasibility analyses of reforestation on mined lands previously reclaimed to grassland have been completed for conversion to white pine and mixed hardwood species. Examination of potential policy instruments for promoting financial feasibility also have been completed, including lump sum payments at time of conversion, annual payments through the life of the stand, and payments based on carbon sequestration that provide both minimal profitability and fully offset initial reforestation outlays. We have compiled a database containing mine permit information obtained from permitting agencies in Virginia, West Virginia, Pennsylvania, Ohio, and Kentucky. Due to differences and irregularities in permitting procedures between states, we found it necessary to utilize an alternative method to determine mined land acreages in the Appalachian region. We have initiated a proof of concept study, focused in the State of Ohio, to determine the feasibility of using images from the Landsat Thematic Mapper (TM) and/or Enhanced Thematic Mapper Plus (ETM+) to accurately identify mined lands.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2005-02-15T23:59:59.000Z

208

Renewable Power and Light | Open Energy Information  

Open Energy Info (EERE)

and Light and Light Jump to: navigation, search Name Renewable Power and Light Place London, Greater London, United Kingdom Zip W1 J5P2 Sector Biofuels, Renewable Energy Product Renewable Power and Light intend to become a power producer generating from renewable sources with renewable technologies, in particluar with regard to biofuels. References Renewable Power and Light[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Power and Light is a company located in London, Greater London, United Kingdom . References ↑ "Renewable Power and Light" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Power_and_Light&oldid=350347"

209

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

210

Alyra Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Alyra Renewable Energy Alyra Renewable Energy Jump to: navigation, search Name Alyra Renewable Energy Place Northampton, Massachusetts Zip 10600 Sector Renewable Energy, Services Product Massachusetts-based provider of financial advisory services exclusively to the renewable energy sector. The firm specializes in M&A/cross-border joint venture advisory and structured tax equity/project finance advisory. References Alyra Renewable Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alyra Renewable Energy is a company located in Northampton, Massachusetts . References ↑ "Alyra Renewable Energy" Retrieved from "http://en.openei.org/w/index.php?title=Alyra_Renewable_Energy&oldid=342082

211

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Soil samples were collected from each plot to characterize the sites prior to treatment. Baseline soil carbon was determined for each of the eighty-one plots. Fertility analysis of soil samples was completed and these data were used to prepare fertilizer prescriptions and the pre-designated plots were fertilized. We also evaluated economic-based policy instruments that are designed to mitigate the reforestation burden borne by the owner of reclaimed mined land. Results suggest that although profitability of reforestation of these previously reclaimed mine lands may be achievable on better sites under lower interest rates, substantial payments would be required to reach ''profitability'' under many conditions.

J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2004-08-04T23:59:59.000Z

212

Excess water production diagnosis in oil fields using ensemble classifiers.  

E-Print Network (OSTI)

??In hydrocarbon production, more often than not, oil is produced commingled with water. As long as the water production rate is below the economic level (more)

Rabiei, Minou

2011-01-01T23:59:59.000Z

213

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable Energy Office Valerie Hall Deputy Director Efficiency, Renewables, and Demand Analysis Division #12;These

214

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Tree survival, height and diameter were measured after the first growing season. There were significant treatment and treatment x site interactions. A STELLA{reg_sign}-based model helped us develop insight as to whether it is possible to differentiate the permanent SOC from the C contained in the labile forms of SOM. The model can be used for predicting the amount of C sequestered on mine lands, and the amount of C that is expected to reside in the mine soil for more than 1,000 years. Based on our work, it appears that substantial carbon payments to landowners would be required to reach ''profitability'' under present circumstances. However, even though the payments that we examine could generate non-negative LEVs, there is no guarantee that the payments will actually cause landowners to reforest in practice. It is landowner utility associated with forestland profitability that will be the determining factor in actual conversion--utility that likely would include cash flow timing, amenities, and even the credit position of the landowner.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2004-11-29T23:59:59.000Z

215

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. Regression models of chemical and physical soil properties were created in order to estimate the SOC content down the soil profile. Soil organic carbon concentration and volumetric percent of the fines decreased exponentially down the soil profile. The results indicated that one-third of the total SOC content on mined lands was found in the surface 0-13 cm soil layer, and more than two-thirds of it was located in the 0-53 cm soil profile. A relative estimate of soil density may be best in broad-scale mine soil mapping since actual D{sub b} values are often inaccurate and difficult to obtain in rocky mine soils. Carbon sequestration potential is also a function of silvicultural practices used for reforestation success. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Relative to carbon value, our analysis this quarter shows that although short-rotation hardwood management on reclaimed surface mined lands may have higher LEVs than traditional long-rotation hardwood management, it is only profitable in a limited set of circumstances.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2005-12-01T23:59:59.000Z

216

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on these sites, we developed a cost-effective method for partitioning total soil carbon to pedogenic carbon and geogenic carbon in mine soils. We are in the process of evaluating the accuracy and precision of the proposed carbon partitioning technique for which we are designing an experiment with carefully constructed mine soil samples. In a second effort, as part of a mined land reforestation project for carbon sequestration in southwestern Virginia we implemented the first phase of the carbon monitoring protocol that was recently delivered to DOE.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2005-06-08T23:59:59.000Z

217

Renewable Energy 101 (Presentation)  

SciTech Connect

Presentation given at the 2012 Department of Homeland Security Renewable Energy Roundtable as an introduction to renewable technologies and applications.

Walker, A.

2012-03-01T23:59:59.000Z

218

Renewable Energy Group REG | Open Energy Information  

Open Energy Info (EERE)

Group REG Jump to: navigation, search Name Renewable Energy Group (REG) Place Ames, Iowa Zip 50010 Product Iowa-based designer and builder of turnkey biodiesel plants. References...

219

Dale Renewables Consulting | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Dale Renewables Consulting Place California Sector Solar Product PV marketing and installation firm, merged with Solar Power Inc in January...

220

Renewable Fuels Limited RFL | Open Energy Information  

Open Energy Info (EERE)

RFL Jump to: navigation, search Name Renewable Fuels Limited (RFL) Place York, United Kingdom Zip YO19 6ET Sector Biomass Product Supplies various biomass fuels and offers...

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Renewable Development Company RDC | Open Energy Information  

Open Energy Info (EERE)

Development Company RDC Jump to: navigation, search Name Renewable Development Company (RDC) Place Mold, United Kingdom Zip CH7 4ED Sector Wind energy Product Wind farm developer...

222

Renewable Energy Technology Center | Open Energy Information  

Open Energy Info (EERE)

Technology Center Jump to: navigation, search Name Renewable Energy Technology Center Place Hamburg, Hamburg, Germany Zip D-22335 Sector Wind energy Product RETC, a JV formed which...

223

EREC: Energy Efficiency and Renewable Energy Clearinghouse  

NLE Websites -- All DOE Office Websites (Extended Search)

EREC: Energy Efficiency and Renewable Energy Clearinghouse If you have questions about: Passive solar home design Energy-efficient appliances Biofuels production Home heating...

224

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

a common framework. 3.1 Production and Cost Representationsthe duality between production and costs, such productivitycost reduction. Production cost reductions in renewable

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

225

Rivertop Renewables | Open Energy Information  

Open Energy Info (EERE)

Rivertop Renewables Rivertop Renewables Jump to: navigation, search Name Rivertop Renewables Place Missoula, Montana Zip P.O. Box 8165 Sector Renewable Energy Product Montana based startup focused on creating bioproducts from renewable plant sugars. Coordinates 46.87278°, -113.996234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.87278,"lon":-113.996234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Alteris Renewables | Open Energy Information  

Open Energy Info (EERE)

Alteris Renewables Alteris Renewables Jump to: navigation, search Logo: Alteris Renewables Name Alteris Renewables Address 523 Danbury Rd Place Wilton, Connecticut Zip 06897 Sector Solar Product Renewable energy systems integrator Number of employees 51-200 Website http://www.alterisinc.com/inde Coordinates 41.227489°, -73.425272° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.227489,"lon":-73.425272,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Whirlwind Renewables | Open Energy Information  

Open Energy Info (EERE)

Whirlwind Renewables Whirlwind Renewables Jump to: navigation, search Name Whirlwind Renewables Place Huddersfield, England, United Kingdom Sector Renewable Energy, Wind energy Product Whirlwind Renewables Limited is a Yorkshire based independent wind energy business that specialises in the development of small onshore wind farms in the UK. Coordinates 53.646955°, -1.782684° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.646955,"lon":-1.782684,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Type: Renewal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 INCITE Awards 1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National Laboratory Machine (Allocation): IBM Blue Gene/P (10,000,000 processor hours) Research Summary: This project uses high-quality electronic structure theory, statistical mechanical methods, and

229

KP Renewables Plc | Open Energy Information  

Open Energy Info (EERE)

Plc Plc Jump to: navigation, search Name KP Renewables Plc Place Brentford, Middlesex, Greater London, United Kingdom Zip TW8 9JJ Sector Renewable Energy, Wind energy Product KP is a renewable energy project developer. KP raises funding for small renewable generating projects, especially using wind and waste as fuel and then acts as PPA arranger and power producer. References KP Renewables Plc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. KP Renewables Plc is a company located in Brentford, Middlesex, Greater London, United Kingdom . References ↑ "KP Renewables Plc" Retrieved from "http://en.openei.org/w/index.php?title=KP_Renewables_Plc&oldid=348173

230

Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field  

DOE Green Energy (OSTI)

A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant.

Steven Enedy

2001-12-14T23:59:59.000Z

231

Electron-Positron Pair Production in Space- or Time-Dependent Electric Fields  

E-Print Network (OSTI)

Treating the production of electron and positron pairs by a strong electric field from the vacuum as a quantum tunneling process we derive, in semiclassical approximation, a general expression for the pair production rate in a $z$-dependent electric field $E(z)$ pointing in the $z$-direction. We also allow for a smoothly varying magnetic field parallel to $E(z)$. The result is applied to a confined field $E(z)\

Kleinert, Hagen; Xue, She-Sheng

2008-01-01T23:59:59.000Z

232

Electron-Positron Pair Production in Space- or Time-Dependent Electric Fields  

E-Print Network (OSTI)

Treating the production of electron and positron pairs by a strong electric field from the vacuum as a quantum tunneling process we derive, in semiclassical approximation, a general expression for the pair production rate in a $z$-dependent electric field $E(z)$ pointing in the $z$-direction. We also allow for a smoothly varying magnetic field parallel to $E(z)$. The result is applied to a confined field $E(z)\

Hagen Kleinert; Remo Ruffini; She-Sheng Xue

2008-07-06T23:59:59.000Z

233

U.S. Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) U.S. Field Production of Crude Oil (Thousand Barrels per Day) ... Crude Oil Supply and Disposition;

234

Federal Energy Management Program: Renewable Energy Project Planning and  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy Project Planning and Implementation to someone by E-mail Share Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Facebook Tweet about Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Twitter Bookmark Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Google Bookmark Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Delicious Rank Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Digg Find More places to share Federal Energy Management Program: Renewable Energy Project Planning and Implementation on AddThis.com... Energy-Efficient Products

235

Production of Materials with Superior Properties Utilizing High Magnetic Field  

Processing materials in a magnetic field is an innovative and revolutionary means to change materials and structural properties by tailoring the ...

236

Production of sugarcane and tropical grasses as a renewable energy source. Second quarterly report; year 2, 1978-1979  

DOE Green Energy (OSTI)

Research centered on greenhouse screening of candidate grasses coupled with field-plot studies on varieties, optimal nitrogen and seeding rates, variable row spacing, and frequency of harvest. Candidate grasses were identified for short-rotation crops having potentially greater versatility than Sordan 70A (earlier maturatoon greater tolerance to moisture stress). Field-plot studies were performed on the optimization of N-fertilization and seeding rates for Sordan 70A. Field-plot data were recorded on sugarcane and napier grass responses to harvest frequency and row spacing. These results underscore a superiority of first-ratoon yields over plant-crop yields, of napier grass over sugarcane (up to 4 months), and delayed harvests over frequent harvests. Breeding tests were successful in producing F/sub 1/ seedlings from crosses between an unknown and early-tasseling wild S. spontaneum hybrid and late-tasseling commercial sugarcane hybrids.

Alexander, A.G.; Garcia, M.; Gonzalex-Molina, C.; Ortez-Velez, J.

1979-01-01T23:59:59.000Z

237

Increasing Well Productivity in Gas Condensate Wells in Qatar's North Field  

E-Print Network (OSTI)

Condensate blockage negatively impacts large natural gas condensate reservoirs all over the world; examples include Arun Field in Indonesia, Karachaganak Field in Kazakhstan, Cupiagua Field in Colombia,Shtokmanovskoye Field in Russian Barents Sea, and North Field in Qatar. The main focus of this thesis is to evaluate condensate blockage problems in the North Field, Qatar, and then propose solutions to increase well productivity in these gas condensate wells. The first step of the study involved gathering North Field reservoir data from previously published papers. A commercial simulator was then used to carry out numerical reservoir simulation of fluid flow in the North Field. Once an accurate model was obtained, the following three solutions to increasing productivity in the North Field are presented; namely wettability alteration, horizontal wells, and reduced Non Darcy flow. Results of this study show that wettability alteration can increase well productivity in the North Field by adding significant value to a single well. Horizontal wells can successfully increase well productivity in the North Field because they have a smaller pressure drawdown (compared to vertical wells). Horizontal wells delay condensate formation, and increase the well productivity index by reducing condensate blockage in the near wellbore region. Non Darcy flow effects were found to be negligible in multilateral wells due to a decrease in fluid velocity. Therefore, drilling multilateral wells decreases gas velocity around the wellbore, decreases Non Darcy flow effects to a negligible level, and increases well productivity in the North Field.

Miller, Nathan

2009-12-01T23:59:59.000Z

238

Renewable Fuels Consulting | Open Energy Information  

Open Energy Info (EERE)

Consulting Consulting Jump to: navigation, search Name Renewable Fuels Consulting Place Mason City, Iowa Sector Renewable Energy Product RFC specializes in providing technical solutions to renewable energy production plants. References Renewable Fuels Consulting[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Fuels Consulting is a company located in Mason City, Iowa . References ↑ "Renewable Fuels Consulting" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Fuels_Consulting&oldid=350341" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

239

Renewable Energy Group Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Renewable Energy Group Inc Place Ames, Iowa Zip 50010 Sector Renewable Energy Product Iowa-based holding company operated under the auspices of biodiesel production company Renewable Energy Group. References Renewable Energy Group Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Group Inc is a company located in Ames, Iowa . References ↑ "Renewable Energy Group Inc" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Group_Inc&oldid=350324" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

240

MULTIVARIATE PRODUCTION OPTIMIZATION OF A NATURAL GAS FIELD.  

E-Print Network (OSTI)

??Any production well is drilled and completed for the extraction of oil or gas from itsoriginal location in the reservoir to the stock tank or (more)

Nago, Annick

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Renewable Project Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Overview Project Overview Federal Utility Partnership Working Group 5/6/09 Chandra Shah, NREL 303-384-7557, chandra.shah@nrel.gov National Renewable Energy Laboratory Innovation for Our Energy Future Presentation Overview Federal and utility renewable requirements Power Purchase Agreements (PPA) Western Area Power Administration Federal Renewable Program UESC and renewables * Participating in utility renewable programs - Opportunity Announcement process Renewable projects implemented using appropriations National Renewable Energy Laboratory Innovation for Our Energy Future Biomass Resource

242

Demonstration of Security Benefits of Renewable Generation at FE Warren Air Force Base  

DOE Green Energy (OSTI)

Report detailing field demonstration of security benefits of renewable generation at FE Warren Air Force Base.

Warwick, William M.; Myers, Kurt; Seifert, Gary

2010-12-31T23:59:59.000Z

243

Federal Renewable Energy Guidance to EPACT 2005  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Renewable Energy Guidance to EPACT 2005 David McAndrew FUPWG Sandestin Requirement Guidance Overview The guidance outlines the following: - Authority - Requirement - Definition of the renewable energy technologies & products - Requirements for qualifying renewable energy projects or purchases - How agencies renewable energy purchase toward energy reduction requirements will gradually phase out Authority The authority for this guidance is based on Section 203, FEDERAL PURCHASE REQUIREMENT of the Energy Policy Act of 2005 (42 U.S.C. 15852) and Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management (72 FR 3919; January 24, 2007), and the instructions and guidance distributed by the Chairman of the Council for Environmental

244

Field Evidence Supporting Quantitative Predictions of Secondary Ice Production Rates  

Science Conference Proceedings (OSTI)

Field observations from three different areas in the United States are used to determine the rates of appearance of ice particles in cumulus clouds. Those rates are compared to predictions obtained using the laboratory studies of the Hallett-...

Raymond L. Harris-Hobbs; William A. Cooper

1987-04-01T23:59:59.000Z

245

Guide to Purchasing Green Power: Renewable Electricity, Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates and On-Site Renewable Generation Title Guide to Purchasing Green Power: Renewable Electricity,...

246

DOE Tribal Renewable Energy Series Webinar: Renewable Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tribal Renewable Energy Series Webinar: Renewable Energy Market Update DOE Tribal Renewable Energy Series Webinar: Renewable Energy Market Update January 29, 2014 11:00AM EST...

247

The National Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

National Renewable National Renewable Energy Laboratory's (NREL) Alternative Fuels Utilization Program, which is widely known for its alternative fuel vehicle (AFV) emissions information, is also doing much to bring better alternative fuel vehicles to the field. Many of the AFVs of tomor- row will include components developed through NREL's research, which is sponsored by the U.S. Department of Energy (DOE). Most of NREL's projects involve ethanol, methanol, natural gas, biodiesel, and propane, but researchers are also working on future fuels such as hydrogen and dimethyl ether. In this issue of AFDC Update, we highlight a few of these projects. Up-to-date fact sheets are available on line through the AFDC World Wide Web (WWW) site at: http://www. afdc.doe.gov/fuelutil/engoptim.html.

248

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

temporally-dependent renewable energy production profiles,renewable energy offsets natural gas-fired electricity production.renewable energy to be more labor-intensive than conventional forms of electricity production (

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

249

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

Jonathan Aggett

2003-12-15T23:59:59.000Z

250

Non-commutative Field Theory, Translational Invariant Products and Ultraviolet/Infrared Mixing  

E-Print Network (OSTI)

We review the Moyal and Wick-Voros products, and more in general the translation invariant non-commutative products, and apply them to classical and quantum field theory. We investigate phi^4 field theories calculating their Green's functions up to one-loop for the two- and four-point cases. We also review the connections of these theories with Drinfeld twists.

Galluccio, Salvatore

2010-01-01T23:59:59.000Z

251

Industrial Applications of Renewable Resources  

Science Conference Proceedings (OSTI)

Archive of Industrial Applications of Renewable Resources Industrial Applications of Renewable Resources Cincinnati, Ohio, USA Industrial Applications of Renewable Resources ...

252

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

State Legislature enacted, and the Governor signed, SB 5101, which provides a renewable energy production

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

253

A study of production/injection data from slim holes and production wells at the Oguni Geothermal Field, Japan  

DOE Green Energy (OSTI)

Production and injection data from slim holes and large-diameter wells at the Oguni Geothermal Field, Japan, were examined in an effort to establish relationships (1) between productivity of large-diameter wells and slim holes, (2) between injectivity and productivity indices and (3) between productivity index and borehole diameter. The production data from Oguni boreholes imply that the mass production from large-diameter wells may be estimated based on data from slim holes. Test data from both large- and small-diameter boreholes indicate that to first order the productivity and the injectivity indices are equal. Somewhat surprisingly, the productivity index was found to be a strong function of borehole diameter; the cause for this phenomenon is not understood at this time.

Garg, S.K.; Combs, J.; Abe, M.

1996-03-01T23:59:59.000Z

254

Reservoir enhancement on the impermeable margins of productive geothermal fields  

DOE Green Energy (OSTI)

This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos national Laboratory (LANL). The overall goal of the project was to evaluate the performance of Los Alamos technology in selected geothermal fields, to adapt the technology to the existing industry infrastructure where necessary, and to facilitate its application through demonstration and communication. The primary specific objective was to identify, collaborate, and partner with geothermal energy- producing companies in an evaluation of the application of Los Alamos microseismic mapping technology for locating fracture permeability in producing geothermal fields.

Goff, S.; Gardner, J.; Dreesen, D.; Whitney, E.

1997-01-01T23:59:59.000Z

255

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION Jeffrey D. Byron B.B. Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE Mark

256

REN21 Renewables Interactive Map | Open Energy Information  

Open Energy Info (EERE)

REN21 Renewables Interactive Map REN21 Renewables Interactive Map (Redirected from REN21's Renewables Interactive Map) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: REN21's Renewables Interactive Map Agency/Company /Organization: Renewable Energy Policy Network for the 21st Century (REN21) Sector: Energy Focus Area: Renewable Energy Topics: Market analysis, Policies/deployment programs, Resource assessment Resource Type: Dataset, Maps Website: www.map.ren21.net/ References: Renewables Interactive Map[1] The REN21 Renewables Interactive Map provides information on renewable energy policies, expansion targets, current shares, installed capacity, current production, future scenarios, and policy pledges. References ↑ "Renewables Interactive Map" Retrieved from "http://en.openei.org/w/index.php?title=REN21_Renewables_Interactive_Map&oldid=383282"

257

Alpha Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Renewable Energy Jump to: navigation, search Name Alpha Renewable Energy Place Atlanta, Georgia Sector Biomass Product Manufacturer of biomass wood gas stoves and standalone power generators for rural areas. References Alpha Renewable Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alpha Renewable Energy is a company located in Atlanta, Georgia . References ↑ "Alpha Renewable Energy" Retrieved from "http://en.openei.org/w/index.php?title=Alpha_Renewable_Energy&oldid=342033" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

258

Solterra Renewable Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Solterra Renewable Technologies Inc Solterra Renewable Technologies Inc Jump to: navigation, search Name Solterra Renewable Technologies Inc. Place Tempe, Arizona Sector Solar Product Solterra is a technology development firm focused on thin-film quantum dot solar cells. References Solterra Renewable Technologies Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solterra Renewable Technologies Inc. is a company located in Tempe, Arizona . References ↑ "Solterra Renewable Technologies Inc." Retrieved from "http://en.openei.org/w/index.php?title=Solterra_Renewable_Technologies_Inc&oldid=351521" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

259

Renewable Resource Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Resource Standard Renewable Resource Standard Renewable Resource Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Montana Program Type Renewables Portfolio Standard Provider Montana Public Service Commission Montana's renewable portfolio standard (RPS), enacted in April 2005 as part of the Montana Renewable Power Production and Rural Economic Development Act, requires public utilities and competitive electricity suppliers to obtain a percentage of their retail electricity sales from eligible renewable resources according to the following schedule: * 5% for compliance years 2008-2009 (1/1/2008 - 12/31/2009) * 10% for compliance years 2010-2014 (1/1/2010 - 12/31/2014)

260

PI Renewables Ltd | Open Energy Information  

Open Energy Info (EERE)

PI Renewables Ltd PI Renewables Ltd Jump to: navigation, search Name PI Renewables Ltd Place Livingston, United Kingdom Zip EH55 8QL Sector Hydro, Wind energy Product Builds, owns and operates wind, LFG and small hydro assets in the UK market. Mistral LP invested USD 0.9m in the company in August 2004. References PI Renewables Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PI Renewables Ltd is a company located in Livingston, United Kingdom . References ↑ "PI Renewables Ltd" Retrieved from "http://en.openei.org/w/index.php?title=PI_Renewables_Ltd&oldid=349739" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Colorado Renewable Resource Cooperative | Open Energy Information  

Open Energy Info (EERE)

Colorado Renewable Resource Cooperative Colorado Renewable Resource Cooperative Jump to: navigation, search Name Colorado Renewable Resource Cooperative Place Colorado Sector Biomass Product Colorado-based cooperative and forestry producer, that targets the use of woody biomass to generate heat or electricity. References Colorado Renewable Resource Cooperative[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Colorado Renewable Resource Cooperative is a company located in Colorado . References ↑ "Colorado Renewable Resource Cooperative" Retrieved from "http://en.openei.org/w/index.php?title=Colorado_Renewable_Resource_Cooperative&oldid=343780" Categories: Clean Energy Organizations

262

Renewable Energy Loan Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Loan Programs Title Renewable Energy Loan Programs Publication Type Case Study Year of Publication 2002 Authors Bolinger, Mark, and Kevin Porter Secondary Title...

263

Renewable Energy Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

applying our expertise in chemical and materials science to provide innovations in renewable energy generation, storage, and use. 4 08 FACT SHEET Renewable Energy Innovations 4...

264

EIA Energy Kids - Renewable  

U.S. Energy Information Administration (EIA)

Renewable energy sources including biomass, hydropower, geothermal, wind, and solar provide 8% of the energy used in the United States. Most renewable energy goes to ...

265

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))

1992-07-01T23:59:59.000Z

266

Production of sugarcane and tropical grasses as a renewable energy source. Third quarterly report, December 1, 1980-February 28, 1981  

DOE Green Energy (OSTI)

Research continued on tropical grasses from Saccharum and related genera as sources of intensively-propagated fiber and fermentable solids. Greenhouse-level screening for short- and intermediate-rotation grasses included further trials with legume species as potential nitrogen sources for the tropical grasses. Yields from four indigenous legumes were appreciably higher when planted in spring (May) than when planted in autumn (November). Initial data were recorded from second generation energy cane studies established during 1980. Controlled variables include varieties, harvest interval, and nitrogen input. Yield data at 6 months indicate high but essentially equal growth rates among all varieties and N-variables. This is attributed to the use of a land rotavator during seedbed preparation - the first such application of this implement on Lajas Valley soils. Total green weights were in the order of 50 to 60 tons/acre, and millable stem weights ranged from 33 to 37 tons/acre, at the 6-months harvest. Dry matter yields ranged from 8 to 11 tons/acre. Juice quality values indicated a minimal sugar content at this stage of maturity. Fiber values ranged from 7 to 14%. Field-scale studies were continued at the Hatillo demonstration site on the humid north coast and in the semi-arid Lajas Valley. For the 6-months harvest at Hatillo, total green weights for all treatments averaged 38.4 tons/acre. Variety US 67-22-2 produced 50.2 tons/acre. Millable cane yields averaged 25.3 tons/acre for all treatments and 34.7 tons/acre for variety US 67-22.2.

Alexander, A.G.

1981-01-01T23:59:59.000Z

267

NETL: News Release - DOE Project Revives Oil Production in Abandoned Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

4 , 2006 4 , 2006 DOE Project Revives Oil Production in Abandoned Fields on Osage Tribal Lands Novel Oil Recovery Technique Developed Under DOE's Native American Initiative WASHINGTON, DC - A technology developed with U.S. Department of Energy funding has revived oil production in two abandoned oilfields on Osage Indian tribal lands in northeastern Oklahoma, and demonstrated a technology that could add billions of barrels of additional domestic oil production in declining fields. Production has jumped from zero to more than 100 barrels of oil per day in the two Osage County, Okla., fields, one of which is more than 100 years old. The technology was successfully pilot-tested in the century-old field, and using the knowledge gained, the technology was applied to a neighboring field with comparable success. This suggests that such approaches could revitalize thousands of other seemingly depleted oilfields across America's Midcontinent region.

268

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 PADD 1 1,525 1,439 2,394 2,918 2,821 2,687 1981-2013 East Coast 1993-2008 Appalachian No. 1 1,525 1,439 2,394 2,918 2,821 2,687 1993-2013 PADD 2 12,892 13,208 13,331 13,524 15,204 15,230 1981-2013 Ind., Ill. and Ky. 1,975 1,690 2,171 1,877 2,630 2,746 1993-2013

269

Nonperturbative enhancement of heavy quark-pair production in a strong SU(2) color field  

Science Conference Proceedings (OSTI)

Nonperturbative charm and bottom quark-pair production is investigated in the early stage of heavy-ion collisions. The time-dependent study is based on a kinetic description of fermion-pair production in strong non-Abelian fields. We introduce a time-dependent chromo-electric external field with a pulselike time evolution to simulate the overlap of two colliding heavy ions. The calculations is performed in a SU(2) color model with finite current quark masses. Yields of heavy quark pairs are compared to the ones of light and strange quark pairs. We show that the small inverse duration time of the field pulse determines the efficiency of the quark-pair production. The expected suppression for heavy quark production, as follows from the Schwinger formula for a constant field, is not seen, but rather an enhanced heavy quark production appears at ultrarelativistic energies.

Levai, Peter; Skokov, Vladimir [KFKI RMKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, Budapest 1525 (Hungary); Gesellschaft fuer Schwerionenforschung mbH, Planckstr. 1, D-64291 Darmstadt (Germany)

2010-10-01T23:59:59.000Z

270

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystems Services  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During this quarter we worked on methodologies for analyzing carbon in mine soils. A unique property of mine soils is the presence of coal and carboniferous rock particles that are present in mine soils in various sizes, quantities, and qualities. There is no existing method in the literature that may be of use for quantitative estimation of soil organic carbon (SOC) in mine soils that can successfully differentiate between pedogenic and geogenic carbon forms. In this report we present a detailed description of a 16-step method for measuring SOC in mine soils designed for and tested on a total of 30 different mine soil mixtures representing a wide spectrum of mine soils in the hard-rock region of the Appalachian coalfield. The proposed method is a combination of chemical procedure for carbonates removal, a thermal procedure for pedogenic C removal, and elemental C analysis procedure at 900 C. Our methodology provides a means to correct for the carbon loss from the more volatile constituents of coal fragments in the mine soil samples and another correction factor for the protected organic matter that can also remain unoxidized following thermal pretreatment. The correction factors for coal and soil material-specific SOM were based on carbon content loss from coal and SOM determined by a parallel thermal oxidation analysis of pure ground coal fragments retrieved from the same mined site as the soil samples and of coal-free soil rock fragments of sandstone and siltstone origin.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2006-04-30T23:59:59.000Z

271

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. [National Renewable Energy Lab., Golden, CO (United States); Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States)

1992-07-01T23:59:59.000Z

272

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration potential of forests growing on 14 mined sites in a seven-state region in the Midwestern and Eastern Coalfields. Carbon contents of these forests were compared to adjacent forests on non-mined land. The study was installed as a 3 x 3 factorial in a random complete block design with three replications at each location. The treatments include three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Soil samples were collected from each plot to characterize the sites prior to treatment. Analysis of soil samples was completed and these data are being used to prepare fertilizer prescriptions. Fertilizer prescripts will be developed for each site. Fertilizer will be applied during the second quarter 2004. Data are included as appendices in this report. As part of our economic analysis of mined land reforestation, we focused on the implications of a shift in reforestation burden from the landowner to the mine operator. Results suggest that the reforestation of mined lands as part of the mining operation creates a viable and profitable forest enterprise for landowners with greater potential for carbon sequestration.

J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2004-06-04T23:59:59.000Z

273

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2003-12-18T23:59:59.000Z

274

Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

1992-07-01T23:59:59.000Z

275

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: solar land use Type Term Title Author Replies Last Post sort icon Blog entry solar land use Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2 Dec 2013 - 11:06 Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT

276

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: Solar Type Term Title Author Replies Last Post sort icon Blog entry Solar Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2 Dec 2013 - 11:06 Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT

277

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: pv land use Type Term Title Author Replies Last Post sort icon Blog entry pv land use Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2 Dec 2013 - 11:06 Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT

278

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: Solar Power Type Term Title Author Replies Last Post sort icon Blog entry Solar Power Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2 Dec 2013 - 11:06 Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT

279

renewables | OpenEI  

Open Energy Info (EERE)

renewables renewables Dataset Summary Description No description given. Source World Bank Date Released Unknown Date Updated Unknown Keywords coal energy imports energy production energy use fossil fuels Fuel global Hydroelectric international nuclear oil renewables statistical statistics world bank Data application/zip icon Data in XML Format (zip, 1 MiB) application/zip icon Data in Excel Format (zip, 1.3 MiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1970 - 2007 License License Other or unspecified, see optional comment below Comment Summary of Usage Terms ---------------------- You are free to copy, distribute, adapt, display or include the data in other products for commercial and noncommercial purposes at no cost subject to certain limitations summarized below. You must include attribution for the data you use in the manner indicated in the metadata included with the data. You must not claim or imply that The World Bank endorses your use of the data by or use The World Bank's logo(s) or trademark(s) in conjunction with such use. Other parties may have ownership interests in some of the materials contained on The World Bank Web site. For example, we maintain a list of some specific data within the Datasets that you may not redistribute or reuse without first contacting the original content provider, as well as information regarding how to contact the original content provider. Before incorporating any data in other products, please check the list: Terms of use: Restricted Data. The World Bank makes no warranties with respect to the data and you agree The World Bank shall not be liable to you in connection with your use of the data. Links ----- Summary of Terms: http://data.worldbank.org/summary-terms-of-use Detailed Usage Terms: http://www.worldbank.org/terms-datasets

280

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report we present data that show the spatial distribution of carbon in mine soils. Soil carbon data from deep soil pits from grassland minelands located in Ohio, Virginia, and West Virginia were analyzed to determine the vertical distribution and variability of soil organic carbon (SOC) down to a 2-m depth. Regression analyses were used to describe and model the distribution by soil depth of C(wt%), BD{sub fines}(g cm{sup -3}), and fines (vol%) in mine soils. The volume of excavated mine soil samples was transformed in terms of costs of digging and sampling, including sample collection and preparation, and C(wt%) analysis, in order to determine the maximum cost-effective depth (MCD) for carbon inventorying on the mined sites analyzed. Based on the horizontal variation of SOC(g m{sup -2}), we determined the sampling intensity required to achieve a desired accuracy of the amount of sequestered SOC(g m{sup -2}) at certain probability levels. The MCD and sampling intensity measurements were used to determine the minimum detectable difference (MDD) of SOC(g m{sup -2}) between two consecutive carbon inventories. We also proposed a method to determine the minimum number of years before a future C inventory event is carried out so that the measured SOC(g m{sup -2}) differences were greater than MDD. We used geostatistical analyses procedures to determine spatial dependence predictability of surface SOC(g m{sup -2}) data on the minelands analyzed. Kriging techniques were used to create surface SOC(g m{sup -2}) maps for the sites in Ohio and West Virginia. The average C sequestration rate in the surface soil layer for the Ohio (age 9) sites was estimated at 124 g C m{sup -2} yr{sup -1}, and it was estimated at 107 g C m{sup -2} yr{sup -1} for the West Virginia sites (age 4). Because of the young age of the Virginia sites, 0.2 and 1 year old, we came to a decision that C sequestration rates would be inappropriate at this stage of their development, as these soils are expected to change with time.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2006-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"Natural Gas Plant Field Production: Natural Gas Liquids "  

U.S. Energy Information Administration (EIA) Indexed Site

Field Production: Natural Gas Liquids " Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_gp_a_epl0_fpf_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_a_epl0_fpf_mbbl_m.htm" ,"Source:","Energy Information Administration"

282

What product might a renewal of Heavy IonFusion development offerthat competes with methane microbes and hydrogen HTGRs  

DOE Green Energy (OSTI)

In 1994 a Fusion Technology journal publication by Logan, Moir and Hoffman described how exploiting unusually-strong economy-of-scale for large (8 GWe-scale) multi-unit HIF plants sharing a driver and target factory among several low cost molten salt fusion chambers {at} < $40M per 2.4 GW fusion each (Fig. 1), could produce electricity below 3 cts/kWehr, even lower than similar multi-unit fission plants. The fusion electric plant could cost $12.5 B for 7.5 GWe and produce hydrogen fuel by electrolysis at prices competitive with gasoline-powered hybrids getting fuel from oil at $20$/bbl. At $60/bbl oil, the fusion plant can cost $35B and compete {at} 10% APR financing. Given massive and still-increasing world demand for transportation fuel even with oil climbing above $60/bbl, large HIF plants producing both low cost electricity and hydrogen could be more relevant to motivate new R&D funding for HIF development in the next few years. Three major challenges to get there: (1) NIF ignition in indirect drive geometry for liquid chambers, (2) a modular accelerator to enable a one-module IRE < $100 M, (3) compatible HIF target, driver and chamber allowing a small driver {at}< $500 M cost for a >100MWe net power DEMO. This scoping study, at a very preliminary conceptual level, attempts to identify how we might meet the last two great challenges taking advantage of several recent ideas and advances which motivate reconsideration of modular HIF drivers: >60X longitudinal compression of neutralized ion beams using a variable waveform induction module in NDCX down to 2 nanosecond bunches, the proof-of-principle demonstration of fast optical-gated solid state SiC switches by George Caporaso's group at LLNL (see George's RPIA06 paper), and recent work by Ed Lee, John Barnard and Hong Qin on methods for time-dependent correction of chromatic focusing errors in neutralized beams with up to 10 % {Delta}v/v velocity tilt, allowing 5 or more bunches, and shorter bunches, and possibly < 1 mm radius focal spot targets. We seek multi-pulsing with neutralized compression and focusing to enable higher peak power capability and the ability to create nearly arbitrary composite ''picket fence'' pulse shapes can be used to innovate HIF target designs for lower driver energy, and at the same time, reduce unit driver cost per joule for given driver energy, and reduce development time. For example, Debbie Callahan has explored close-coupled HIF targets with adequate gains > 40 that would need higher peak beam intensities in order to reduce total driver energy below 1 MJ. In principle, both PLIA and induction accelerators might benefit from multiple short bunches (see June 24, 2005 talk by Logan on multi-pulsing in PLIA accelerators for IFE), although the PLIA approach, because of fixed circuit wave velocities at any z, requires imaginative work-arounds to handle the different bunch velocities required. George's RPIA06 paper also describes a different type of radial line induction linac that might be considered, but its unclear how the required pulse-to-pulse variable waveforms can be obtained with such pulselines. This initial MathCad analysis explores multi-pulsing in modular solenoid induction linacs (concept shown in Figure 1) considering high-q ECR sources, basic induction acceleration limits assuming affordable agile waveforms, transverse and longitudinal bunch confinement constraints, models to optimize bunch lengths, solenoid fields, core radial builds and switching. Figure 2 below illustrates one linac module for a driver example (not yet optimized) consisting of 40 linacs (20 at each end). Necessarily, this first look invokes many new ideas, but could they potentially meet the above challenges?

Logan, Grant; Lee, Ed; Yu, Simon; Briggs, Dick; Barnard, John; Friedman, Alex; Qin, Hong; Waldron, Will; Leitner, Mattaheus; Kwan, Joe; Henestroza, Enrique; Caporaso, George; Meier, Wayne; Tabak, Max; Callahan, Debbie; Moir, Ralph; Peterson, Per

2006-04-19T23:59:59.000Z

283

Fermion production by a dependent of time electric field in de Sitter universe  

E-Print Network (OSTI)

Fermion production by the electric field of a charge on de Sitter expanding universe is analyzed. The amplitude and probability of pair production are computed. We obtain from our calculations that the modulus of the momentum is no longer conserved and that there are probabilities for production processes where the helicity is no longer conserved. The rate of pair production in an electric field is found to be important in the early universe when the expansion factor was large comparatively with the particle mass.

Cosmin Crucean

2013-02-06T23:59:59.000Z

284

Phi-Meson Production at RHIC, Strong Color Fields and Intrinsic Transverse Momenta  

E-Print Network (OSTI)

We investigate the effects of strong color fields and of the associated enhanced intrinsic transverse momenta on the phi-meson production in ultrarelativistic heavy ion collisions at RHIC. The observed consequences include a change of the spectral slopes, varying particle ratios, and also modified mean transverse momenta. In particular, the composition of the production processes of phi mesons, that is, direct production vs. coalescence-like production, depends strongly on the strength of the color fields and intrinsic transverse momenta and thus represents a sensitive probe for their measurement.

Sven Soff; Srikumar Kesavan; Jorgen Randrup; Horst Stocker; Nu Xu

2004-04-02T23:59:59.000Z

285

Running in place : renewal portfolio standards and climate change  

E-Print Network (OSTI)

Renewable portfolio standards ("RPS") have spread widely as states have made an effort to promote electricity production from renewable energy sources, granting privileged market access to eligible technologies and resources. ...

Hogan, Michael T. (Michael Thomas)

2008-01-01T23:59:59.000Z

286

National Renewable Energy Laboratory  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

287

Alternative/Renewable Energy  

Science Conference Proceedings (OSTI)

Alternative/Renewable Energy. Building Integration with Smart Grid. Building Integration with Smart Grid Project. Embedded ...

2010-10-05T23:59:59.000Z

288

Innovation, renewable energy, and state investment: Case studies of leading clean energy funds  

E-Print Network (OSTI)

www.irlgov.ie/tec/energy/renewable/ EugeneDillon@dpe.ie2002. Utility-Scale Renewable Energy Projects: A Survey ofProduction Increases 36%. Renewable Energy World, Vol. 5 (

Wiser, Ryan; Bolinger, Mark; Milford, Lewis; Porter, Kevin; Clark, Roger

2002-01-01T23:59:59.000Z

289

Marine renewable energy: potential benefits to biodiversity? An urgent call for research  

E-Print Network (OSTI)

Marine renewable energy: potential benefits to biodiversity? An urgent call for research Richard 1 Centre for Ecology and Conservation and Peninsula Research Institute for Marine Renewable Energy driver. In response, many governments have initiated programmes of energy production from renewable

Exeter, University of

290

Renewable Energy Evaluation Tools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RENEWABLE ENERGY RENEWABLE ENERGY EVALUATION TOOLS Andy Walker, PhD PE Principal Engineer, NREL Renewable Energy Round Table May 2, 2012 2 TECHNICAL ASSESSMENT AND SCREENING TOOLS WE USE IN OUR PROJECTS Campus/Base Assessments INFRASTRUCTURE BUILDINGS ASSESSMENT RENEWABLE SUPPLY SIDE VEHICLES & TOOLS Campus/Base Assessments INFRASTRUCTURE BUILDINGS ASSESSMENT RENEWABLE SUPPLY SIDE VEHICLES & TOOLS 9 9 Renewable Energy Technologies Photovoltaics Daylighting Biomass Heat/Power Concentrating Solar Heat/Power Solar Vent Air Preheat Solar Water Heating Wind Power Ground Source Heat Pump Landfill Gas 10 10 Renewable Energy Resources Geographical Information System (GIS) Datasets * NREL Datasets (http://www.nrel.gov/gis/) - solar radiation 10x10 km grid

291

Federal Offshore--Gulf of Mexico Field Production of Crude Oil ...  

U.S. Energy Information Administration (EIA)

Federal Offshore--Gulf of Mexico Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

292

Federal Offshore--Gulf of Mexico Field Production of Crude Oil ...  

U.S. Energy Information Administration (EIA)

Federal Offshore--Gulf of Mexico Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 22,166: 20,084: 22,467 ...

293

REN21 Renewables Interactive Map | Open Energy Information  

Open Energy Info (EERE)

REN21 Renewables Interactive Map REN21 Renewables Interactive Map Jump to: navigation, search Tool Summary LAUNCH TOOL Name: REN21's Renewables Interactive Map Agency/Company /Organization: Renewable Energy Policy Network for the 21st Century (REN21) Sector: Energy Focus Area: Renewable Energy Topics: Market analysis, Policies/deployment programs, Resource assessment Resource Type: Dataset, Maps Website: www.map.ren21.net/ References: Renewables Interactive Map[1] The REN21 Renewables Interactive Map provides information on renewable energy policies, expansion targets, current shares, installed capacity, current production, future scenarios, and policy pledges. References ↑ "Renewables Interactive Map" Retrieved from "http://en.openei.org/w/index.php?title=REN21_Renewables_Interactive_Map&oldid=383282"

294

2010 Renewable Energy Data Book (Book), Energy Efficiency & Renewable...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

(2010) 11.3% Nuclear 3.3% Hydropower 7.6% Non-Hydro Renewables 29.2% Coal 33.1% Natural Gas 15.6% Crude Oil U.S. Energy Production (2010): 74.9 Quadrillion Btu U.S. Non-Hydro...

295

RENEWABLES PORTFOLIO STANDARD 2005 PROCUREMENT VERIFICATION  

E-Print Network (OSTI)

.44 If biogas is generated in Sacramento and used in LA, is this a viable pathway to meet biogas may be transported to a hydrogen production facility for the purposes of this solicitation the top where "renewable electricity" and "biogas/renewable feedstock" are required in the application

296

Renewable energy 1998: Issues and trends  

SciTech Connect

This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

NONE

1999-03-01T23:59:59.000Z

297

Enhanced Renewable Methane Production System  

treatment that enhances the heating value of biogas, delivering a gas that is close to pipeline quality. This system offers

298

Renewable Energy Certificate Program  

Science Conference Proceedings (OSTI)

This project was primarily to develop and implement a curriculum which will train undergraduate and graduate students at the University seeking a degree as well as training for enrollees in a special certification program to prepare individuals to be employed in a broad range of occupations in the field of renewable energy and energy conservation. Curriculum development was by teams of Saint Francis University Faculty in the Business Administration and Science Departments and industry experts. Students seeking undergraduate and graduate degrees are able to enroll in courses offered within these departments which will combine theory and hands-on training in the various elements of wind power development. For example, the business department curriculum areas include economic modeling, finance, contracting, etc. The science areas include meteorology, energy conversion and projection, species identification, habitat protection, field data collection and analysis, etc.

Gwendolyn S. Andersen

2012-07-17T23:59:59.000Z

299

Current Renewable Energy Technologies and Future Projections  

SciTech Connect

The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

2007-05-01T23:59:59.000Z

300

Renewable Energy | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Group Renewable Energy Group The Renewable Energy Group's missions is to support the Sustainable Energy Technologies Department by developing solutions to key issues facing the deployment, grid integration, and life-cycle assessment of renewable energy technologies in the United States. Group members perform research, systems-level modeling, engineering studies and field testing within several of the most promising renewable energy areas for the U.S., including solar photovoltaics, wind energy and biofuels. The research, modeling and studies address key issues related to energy transmission and integration of renewable energy systems into the current grid and future smart grids. They utilize broad collaborations across the Laboratory directorates and departments, including Basic Energy

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Peak production in an oil depletion model with triangular field profiles  

E-Print Network (OSTI)

Peak production in an oil depletion model with triangular field profiles Dudley Stark School;1 Introduction M. King Hubbert [5] used curve fitting to predict that the peak of oil produc- tion in the U.S.A. would occur between 1965 and 1970. Oil production in the U.S.A. actually peaked in 1970 and has been

Stark, Dudley

302

Property:RenewableFuelStandard/RenewableBiofuel | Open Energy Information  

Open Energy Info (EERE)

RenewableBiofuel RenewableBiofuel Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/RenewableBiofuel" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 12.6 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 13.2 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 13.8 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 14.4 + Renewable Fuel Standard Schedule + 9 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 10.5 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 12 +

303

Renew Services Ltd | Open Energy Information  

Open Energy Info (EERE)

Services Ltd Services Ltd Jump to: navigation, search Name Renew Services Ltd Place Fife, Scotland, United Kingdom Sector Wind energy Product A new co-operative formed to develop and fund sustainable energy solutions for the benefit of the community. Having started out in Fife, Renew is now exploring projects across Scotland, mostly in community combined heat and power (CHP) and wind. References Renew Services Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renew Services Ltd is a company located in Fife, Scotland, United Kingdom . References ↑ "Renew Services Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Renew_Services_Ltd&oldid=350299

304

NorthWinds Renewables | Open Energy Information  

Open Energy Info (EERE)

NorthWinds Renewables NorthWinds Renewables Jump to: navigation, search Name NorthWinds Renewables Place Harrison, New York Zip 10528 Sector Renewable Energy, Wind energy Product NorthWinds Renewables is an independent merchant banking firm focused exclusively on serving the renewable energy industry. Coordinates 35.10917°, -85.143009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.10917,"lon":-85.143009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Community Renewable Energy Deployment Success Stories: Financing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Deployment Success Stories: Financing Renewable Energy Projects Webinar Community Renewable Energy Deployment Success Stories: Financing Renewable Energy...

306

Role of Renewable Energy Certificates in Developing New Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Certificates in Developing New Renewable Energy Projects Edward Holt Ed Holt & Associates, Inc. Jenny Sumner and Lori Bird National Renewable Energy Laboratory...

307

Renewable energy annual 1996  

DOE Green Energy (OSTI)

This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

NONE

1997-03-01T23:59:59.000Z

308

American Renewable Fuels | Open Energy Information  

Open Energy Info (EERE)

American Renewable Fuels American Renewable Fuels Place Dallas, Texas Zip TX 75201 Sector Renewable Energy Product Developer of commercial scale renewable fuels production plants and subsidiary of Australian Renewable Fuels Pty Ltd (ARF). Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Crimson Renewable Energy LP | Open Energy Information  

Open Energy Info (EERE)

Crimson Renewable Energy LP Crimson Renewable Energy LP Jump to: navigation, search Name Crimson Renewable Energy LP Place Denver, Colorado Zip 80202 Sector Biomass, Renewable Energy Product Focused on biodiesel production and conversion of waste biomass into renewable bio-gas. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Renewable Alternatives LLC | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Renewable Alternatives LLC Jump to: navigation, search Name Renewable Alternatives LLC Place Columbia, Missouri Zip 65211 Product Focused on the research, development and commercialization of products that are an alternative to petroleum-based feedstock materials. References Renewable Alternatives LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Alternatives LLC is a company located in Columbia, Missouri . References ↑ "Renewable Alternatives LLC"

311

Algasol Renewables SL | Open Energy Information  

Open Energy Info (EERE)

Algasol Renewables SL Algasol Renewables SL Jump to: navigation, search Name Algasol Renewables SL Place Baleares, Spain Zip E-07121 Sector Renewable Energy Product Newly started technology firm that will seek to use the photosynthetic capabilities of algae to generate renewable energy and other products. Coordinates 39.613529°, 2.91156° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.613529,"lon":2.91156,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

DOE Recovery Field Projects and State Memos | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Total Energy Production by State 2009 Total...

313

DOE Recovery Act Field Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Total Energy Production by State 2009 Total...

314

Imperium Renewables | Open Energy Information  

Open Energy Info (EERE)

Imperium Renewables Imperium Renewables Jump to: navigation, search Name Imperium Renewables Place Seattle, Washington Zip 98101 Product Seattle-based biodiesel producer. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Iberdrola Renewables | Open Energy Information  

Open Energy Info (EERE)

Renewables Renewables Address 1125 NW Couch Street Place Portland, Oregon Zip 97209 Sector Wind energy Product Renewable energy generation Website http://www.iberdrolarenewables Coordinates 45.524005°, -122.683679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.524005,"lon":-122.683679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

TCI Renewables | Open Energy Information  

Open Energy Info (EERE)

TCI Renewables TCI Renewables Jump to: navigation, search Name TCI Renewables Place Belfast, United Kingdom Zip BT5 6QR Sector Biomass, Wind energy Product The company has been formed to focus on wind farm development, construction and ownership but is also interested in biomass developments. Coordinates 54.595295°, -5.934524° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.595295,"lon":-5.934524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Photon Science for Renewable Energy  

E-Print Network (OSTI)

Photon Science for renewable Energy at Light-Sourceour planet. The quest for renewable, nonpolluting sources ofa global revolution in renewable and carbon- neutral energy

Hussain, Zahid

2010-01-01T23:59:59.000Z

318

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Renewable Energy Technologies Renewable energy...

319

Renewable Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Renewable Energy October 7, 2013 - 9:16am Addthis Renewable energy increases energy security, creates jobs, and powers our clean energy economy. Renewable energy increases...

320

Renewable Devices Ltd | Open Energy Information  

Open Energy Info (EERE)

Devices Ltd Jump to: navigation, search Name Renewable Devices Ltd Place Edinburgh, Scotland, United Kingdom Zip EH26 0PH Sector Wind energy Product Holding company for a micro...

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Beyond Diesel - Renewable Diesel  

DOE Green Energy (OSTI)

CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

Not Available

2002-07-01T23:59:59.000Z

322

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

323

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

324

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

325

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

326

Bro Dyfi Community Renewables Ltd | Open Energy Information  

Open Energy Info (EERE)

Bro Dyfi Community Renewables Ltd Bro Dyfi Community Renewables Ltd Jump to: navigation, search Name Bro Dyfi Community Renewables Ltd Place Bro Dyfi, Wales, United Kingdom Sector Renewable Energy, Wind energy Product Bro Dyfi Community Renewables Ltd was formed in 2001 to create opportunities for the local community to benefit more from the use of the wind and clean sources of power. References Bro Dyfi Community Renewables Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bro Dyfi Community Renewables Ltd is a company located in Bro Dyfi, Wales, United Kingdom . References ↑ "Bro Dyfi Community Renewables Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Bro_Dyfi_Community_Renewables_Ltd&oldid=343053

327

Missouri Valley Renewable Energy MOVRE | Open Energy Information  

Open Energy Info (EERE)

Valley Renewable Energy MOVRE Valley Renewable Energy MOVRE Jump to: navigation, search Name Missouri Valley Renewable Energy (MOVRE) Place Saint Louis, Missouri Zip 63105 Sector Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product An energy efficiency solutions company focused on renewable DP for farms, including wind, solar and hydro power. The company was absorbed by Farmergy Inc. in January 2007. References Missouri Valley Renewable Energy (MOVRE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Missouri Valley Renewable Energy (MOVRE) is a company located in Saint Louis, Missouri . References ↑ "Missouri Valley Renewable Energy (MOVRE)" Retrieved from "http://en.openei.org/w/index.php?title=Missouri_Valley_Renewable_Energy_MOVRE&oldid=348873"

328

FRV USA formerly Fotowatio Renewable Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

FRV USA formerly Fotowatio Renewable Ventures LLC FRV USA formerly Fotowatio Renewable Ventures LLC Jump to: navigation, search Name FRV USA (formerly Fotowatio Renewable Ventures LLC) Place San Francisco, California Zip 94104 Sector Renewable Energy Product A wholly-owned subsidiary of FRV which manages and operates renewable energy assets in the US. References FRV USA (formerly Fotowatio Renewable Ventures LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. FRV USA (formerly Fotowatio Renewable Ventures LLC) is a company located in San Francisco, California . References ↑ "FRV USA (formerly Fotowatio Renewable Ventures LLC)" Retrieved from "http://en.openei.org/w/index.php?title=FRV_USA_formerly_Fotowatio_Renewable_Ventures_LLC&oldid=345517"

329

US National Renewable Energy Laboratory NREL | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Laboratory NREL Renewable Energy Laboratory NREL Jump to: navigation, search Name US National Renewable Energy Laboratory (NREL) Place Golden, Colorado Zip 80401-3393 Sector Renewable Energy Product Colorado-based research institute funded by the Department of Energy and focused on renewable energy. References US National Renewable Energy Laboratory (NREL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US National Renewable Energy Laboratory (NREL) is a company located in Golden, Colorado . References ↑ "US National Renewable Energy Laboratory (NREL)" Retrieved from "http://en.openei.org/w/index.php?title=US_National_Renewable_Energy_Laboratory_NREL&oldid=352618

330

CEZ Obnovitelne zdroje sro Renewable Resources | Open Energy Information  

Open Energy Info (EERE)

CEZ Obnovitelne zdroje sro Renewable Resources CEZ Obnovitelne zdroje sro Renewable Resources Jump to: navigation, search Name CEZ Obnovitelne zdroje sro (Renewable Resources) Place Prague 4, Czech Republic Zip 140 53 Sector Biomass, Renewable Energy Product Subsidiary of CEZ Group that is focused on energy generation from renewable resources, except for combustion of biomass with coal. References CEZ Obnovitelne zdroje sro (Renewable Resources)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CEZ Obnovitelne zdroje sro (Renewable Resources) is a company located in Prague 4, Czech Republic . References ↑ "[ CEZ Obnovitelne zdroje sro (Renewable Resources)]" Retrieved from "http://en.openei.org/w/index.php?title=CEZ_Obnovitelne_zdroje_sro_Renewable_Resources&oldid=343432"

331

Renewable Energy Strategies for Sustainable Development Henrik Lund*  

E-Print Network (OSTI)

Renewable Energy Strategies for Sustainable Development Henrik Lund* Department of Development of renewable energy (wind, solar, wave and biomass) in the making of strategies for a sustainable development improvements in the energy production, and replacement of fossil fuels by various sources of renewable energy

Hansen, René Rydhof

332

National Renewable Energy Laboratory  

National Renewable Energy Laboratory Technology Transfer Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration

333

Renewable Fuels Module  

Annual Energy Outlook 2012 (EIA)

The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics,...

334

Renewable Fuels Module This  

Gasoline and Diesel Fuel Update (EIA)

The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics,...

335

Renewable Energy Engineering  

E-Print Network (OSTI)

MSc in Renewable Energy Engineering School of Engineering www.cranfield.ac.uk/soe/renewableenergy #12;Postgraduate study Cranfield University 2 School of Engineering MSc in Renewable Energy Engineering Renewable Energy Engineering MSc in Climate change, growing world populations and limited fossil

336

Renewable Energy Technology Guide  

Science Conference Proceedings (OSTI)

First published in 2000 as the Renewable Energy Technical Assessment GuideTAG-RE, the Electric Power Research Institute's (EPRI's) annual Renewable Energy Technology Guide provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. These technologies include wind, solar photovoltaic (PV), solar thermal, biomass, municipal solid waste, geothermal, and emerging ocean energy conversion technologies.

2011-12-22T23:59:59.000Z

337

Energy Efficiency & Renewable Energy  

E-Print Network (OSTI)

Energy Efficiency & Renewable Energy 2009 WIND TECHNOLOGIES MARKET REPORT AUGUST 2010 #12;2009 Wind Associates) Suzanne Tegen (National Renewable Energy Laboratory) Table of Contents Acknowledgments' Association); Ed DeMeo (Renewable Energy Consulting Services, Inc.); Mike O'Sullivan (NextEra Energy Resources

338

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes the details of purchasing green power. Discussion covers topics like renewable electricity, renewable energy certificates, and on-site renewable generation.

339

COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM  

E-Print Network (OSTI)

COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK Fourth Edition Manager Renewable Energy Office G. William Pennington Acting Deputy Director Efficiency and Renewable of how the Energy Commission's Renewable Energy Program is administered and outlines terms

340

2008 NORTHEAST RENEWABLE ENERGY CONFERENCE  

E-Print Network (OSTI)

2008 NORTHEAST RENEWABLE ENERGY CONFERENCE Penn Stater Conference Center State College, Pennsylvania AUGUST 26 - 28, 2008 Renewable Energy ­ It's on everyone's mind. The 2008 Northeast Renewable renewable energy and energy efficiency research, demonstrations, and university

Andrews, Anne M.

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Renewable Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Renewable Energy Calibration Facilities Ecosystem Management Team Environmental Justice Environmental Management System NEPA Long-Term Surveillance - Operations...

342

Electron-Positron Pair Production in Structured Pulses of Electric Fields  

E-Print Network (OSTI)

The non-perturbative electron-positron pair production in time-dependent electric fields is investigated. The quantum kinetic formalism is employed in order to calculate the electron density for various field configurations. The corresponding set of first order, ordinary differential equations is analyzed and numerically solved. The focus of this study lies on the dynamically assisted Schwinger effect in pulsed electric fields with at least two different time scales. Furthermore, interference effects arising in setups with multiple pulses are examined and first results for an optimization of the particle number yield by pulse-shaping are given.

Christian Kohlfrst

2012-12-04T23:59:59.000Z

343

Renewable energy annual 1995  

DOE Green Energy (OSTI)

The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

NONE

1995-12-01T23:59:59.000Z

344

THE THE RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE THE RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD A Practical Guide A Practical Guide Nancy Rader Scott Hempling Prepared for the National Association of Regulatory Utility Commissioners February 2001 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Referenced herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise, does

345

Response to several FOIA requests - Renewable Energy. | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37514000.pdf Impediments to Conventional Energy Production, February 12, 2001 Response to several FOIA requests - Renewable Energy. More Documents & Publications Response to...

346

Renewable Devices Swift Turbine Ltd | Open Energy Information  

Open Energy Info (EERE)

Devices Swift Turbine Ltd Jump to: navigation, search Name Renewable Devices Swift Turbine Ltd Place Edinburgh, Scotland, United Kingdom Zip EH26 0PH Sector Wind energy Product...

347

Midwest Renewable Energy Services LLC | Open Energy Information  

Open Energy Info (EERE)

Midwest Renewable Energy Services LLC Place Florida Zip FL 33408 Sector Services, Wind energy Product MRE Services provides scheduling services to deliver a substantial portion of...

348

Renewable Energy Asia Group Ltd REA | Open Energy Information  

Open Energy Info (EERE)

Asia Group Ltd REA Jump to: navigation, search Name Renewable Energy Asia Group Ltd (REA) Place China Sector Wind energy Product Singaporean wind turbine component and system...

349

Global Renewable Power International Global RPI | Open Energy...  

Open Energy Info (EERE)

RPI) Place Spain Sector Wind energy Product Spain-based developer of wind projects in Poland, Croatia and Chile. References Global Renewable Power International (Global RPI)1...

350

Midwest Renewable Energy Corporation Partners LLC | Open Energy...  

Open Energy Info (EERE)

Wind energy Product Iberdrola subsidiary that develops wind farms in Midwest USA and Canada. References Midwest Renewable Energy Corporation Partners LLC1 LinkedIn Connections...

351

Suez Renewable Energy North America | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Suez Renewable Energy North America Place Texas Sector Biomass, Hydro, Solar, Wind energy Product Developer of wind generation projects as well as...

352

Psm Nature Power Service Management Formerly Umweltkontor Renewable...  

Open Energy Info (EERE)

Umweltkontor Renewable Energy AG) Place Erkelenz, Germany Zip 41812 Sector Biofuels, Hydro, Solar, Wind energy Product Founded as a wind project developer, expanded into...

353

The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD  

Energy.gov (U.S. Department of Energy (DOE))

The broader goal of the RPS is to achieve various benefits associated with renewable energy. These benefits relate to the environment, resource diversity, technology advancement, and in-state...

354

EDF Energy Renewables | Open Energy Information  

Open Energy Info (EERE)

EDF Energy Renewables EDF Energy Renewables Jump to: navigation, search Name EDF Energy Renewables Place London, England, United Kingdom Zip WC2R 0PT Sector Renewable Energy, Wind energy Product UK-based renewable energy arm of EDF Energy, developing wind projects in the UK. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Renewable Spirits LLC | Open Energy Information  

Open Energy Info (EERE)

Spirits LLC Spirits LLC Jump to: navigation, search Name Renewable Spirits LLC Place Delray Beach, Florida Zip 33446 Product Focused on developing citrus waste into ethanol. References Renewable Spirits LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Spirits LLC is a company located in Delray Beach, Florida . References ↑ "Renewable Spirits LLC" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Spirits_LLC&oldid=350353" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

356

Standard Renewable Energy SRE | Open Energy Information  

Open Energy Info (EERE)

Standard Renewable Energy SRE Standard Renewable Energy SRE Jump to: navigation, search Name Standard Renewable Energy (SRE) Place Houston, Texas Zip 77007 Sector Renewable Energy, Services Product Houston-based provider of Distributed Energy Services Company (DESCO) for renewable energy services. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Grounded Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Grounded Renewable Energy Grounded Renewable Energy Jump to: navigation, search Name Grounded Renewable Energy Place Carbondale, Colorado Zip 81623 Sector Renewable Energy, Solar Product Grounded Renewable Energy designs turn-key solar systems for homes and businesses in Colorado. Coordinates 41.573959°, -75.501361° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.573959,"lon":-75.501361,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Elevance Renewable Sciences Inc | Open Energy Information  

Open Energy Info (EERE)

Elevance Renewable Sciences Inc Elevance Renewable Sciences Inc Jump to: navigation, search Name Elevance Renewable Sciences Inc Place Bolingbrook, Illinois Zip 60440 Sector Biofuels, Renewable Energy Product Illinois-based developer of biofuels and renewable chemicals from plant-based oils and animal fats. Coordinates 41.698175°, -88.081199° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.698175,"lon":-88.081199,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Renewable Energy Providers | Open Energy Information  

Open Energy Info (EERE)

Providers Providers Jump to: navigation, search Name Renewable Energy Providers Place Redding, California Zip 96001 Sector Biomass Product The wholly owned subsidiary of this corporation, Blue Lake Power, has signed a 10-year agreement to provide 11MW of biomass energy to Southern California utility San Diego Gas & Electric. References Renewable Energy Providers[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Providers is a company located in Redding, California . References ↑ "Renewable Energy Providers" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Providers&oldid=350332" Categories: Clean Energy Organizations

360

The Treatment of Renewable Energy Certificates, Emissions Allowances, and Green Power Programs in State Renewables Portfolio Standards  

E-Print Network (OSTI)

Energy Certificates, Emissions Allowances, and Green PowerEnergy Certificates, Emissions Allowances, and Green PowerIn a green power product with 50% renewable energy, for

Holt, Edward A.; Wiser, Ryan H.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Guide to Integrating Renewable Energy in Federal Construction: Renewable  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Project Funding to someone by E-mail Renewable Energy Project Funding to someone by E-mail Share Guide to Integrating Renewable Energy in Federal Construction: Renewable Energy Project Funding on Facebook Tweet about Guide to Integrating Renewable Energy in Federal Construction: Renewable Energy Project Funding on Twitter Bookmark Guide to Integrating Renewable Energy in Federal Construction: Renewable Energy Project Funding on Google Bookmark Guide to Integrating Renewable Energy in Federal Construction: Renewable Energy Project Funding on Delicious Rank Guide to Integrating Renewable Energy in Federal Construction: Renewable Energy Project Funding on Digg Find More places to share Guide to Integrating Renewable Energy in Federal Construction: Renewable Energy Project Funding on AddThis.com...

362

Renewable energy opportunities in China  

Science Conference Proceedings (OSTI)

Rapid growth in economic development coupled with the absence of an electric grid in large areas of rural China have created a need for new energy sources both in urban centers and the rural countryside. Electric capacity expansion plans call for increased use of coal?fired steam turbines for electricity production that will contribute to increased concerns over environmental pollution. China is rich in renewable energy resources

William L. Wallace; Y. Simon Tsuo

1996-01-01T23:59:59.000Z

363

Indian Renewable Energy Development Agency Limited IREDA | Open Energy  

Open Energy Info (EERE)

Indian Renewable Energy Development Agency Limited IREDA Indian Renewable Energy Development Agency Limited IREDA Jump to: navigation, search Name Indian Renewable Energy Development Agency Limited (IREDA) Place New Delhi, Delhi (NCT), India Zip 110003 Sector Efficiency, Renewable Energy Product Focused on promoting, developing and extending financial assistance for renewable energy and energy efficiency/conservation projects in India. References Indian Renewable Energy Development Agency Limited (IREDA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Indian Renewable Energy Development Agency Limited (IREDA) is a company located in New Delhi, Delhi (NCT), India . References ↑ "Indian Renewable Energy Development Agency Limited (IREDA)"

364

Renewables Portfolio Standards: What Are We Learning? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables Portfolio Standards: What Are We Learning? Renewables Portfolio Standards: What Are We Learning? Renewables Portfolio Standards: What Are We Learning? Renewables Portfolio Standards: 13 states have enacted RPS policies, which obligate suppliers to deliver a certain amount of renewable energy. Renewable Energy Funds: 15 states have set-aside funds to financially support renewable energy sources. Green Power Markets: Utility green pricing programs, competitive green power markets, and REC marketers have all emerged. Tax Incentives: Federal production tax credit for wind, investment tax credit for solar and geothermal, and accelerated depreciation, as well as state tax incentives, all help spur development. Economics: Some forms of renewable energy, especially with tax incentives, can compete on cost alone (e.g., wind at ~2-4 cents/kWh).

365

Assumptions to the Annual Energy Outlook 2002 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).117 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

366

Assumptions to the Annual Energy Outlook 2001 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

367

EIA - Assumptions to the Annual Energy Outlook 2009 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2009 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind1. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy.

368

Beijing Zhongneng United Renewable Energy Investment Co Ltd | Open Energy  

Open Energy Info (EERE)

Zhongneng United Renewable Energy Investment Co Ltd Zhongneng United Renewable Energy Investment Co Ltd Jump to: navigation, search Name Beijing Zhongneng United Renewable Energy Investment Co Ltd Place Beijing Municipality, China Sector Hydro, Renewable Energy, Solar, Wind energy Product A renewable power projects developer in China, mainly focused on wind, hydro and solar power. References Beijing Zhongneng United Renewable Energy Investment Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Beijing Zhongneng United Renewable Energy Investment Co Ltd is a company located in Beijing Municipality, China . References ↑ "Beijing Zhongneng United Renewable Energy Investment Co Ltd" Retrieved from

369

Power marketing and renewable energy  

SciTech Connect

Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

Fang, J.M.

1997-09-01T23:59:59.000Z

370

Hydrogen from renewable resources research  

DOE Green Energy (OSTI)

In 1986 the Hawaii Natural Energy Institute (HNEI) and the Florida Solar Energy Center (FSEC) were contracted by the Solar Energy Research Institute (SERI) to conduct an assessment of hydrogen production technologies and economic feasibilities of the production and use of hydrogen from renewable resources. In the 1989/90 period all monies were directed toward research and development with an emphasis on integration of tasks, focusing on two important issues, production and storage. The current year's efforts consisted of four tasks, one task containing three subtasks: Hydrogen Production by Gasification of Glucose and Wet Biomass in Supercritical Water; Photoelectrochemical Production of Hydrogen; Photoemission and Photoluminescence Studies of Catalyzed Photoelectrode Surfaces for Hydrogen Production; Solar Energy Chemical Conversion by Means of Photoelectrochemical (PEC) Methods Using Coated Silicon Electrodes; Assessment of Impedance Spectroscopy Methods for Evaluation of Semiconductor-Electrolyte Interfaces; Solar Energy Conversion with Cyanobacteria; Nonclassical Polyhydride Metal Complexes as Hydrogen Storage Materials. 61 refs., 22 figs., 11 tabs.

Takahashi, P.K.; McKinley, K.R.

1990-07-01T23:59:59.000Z

371

Green functions and dimensional reduction of quantum fields on product manifolds  

E-Print Network (OSTI)

We discuss Euclidean Green functions on product manifolds P=NxM. We show that if M is compact then the Euclidean field on P can be approximated by its zero mode which is a Euclidean field on N. We estimate the remainder of this approximation. We show that for large distances on N the remainder is small. If P=R^{D-1}xS^{beta}, where S^{beta} is a circle of radius beta, then the result reduces to the well-known approximation of the D dimensional finite temperature quantum field theory to D-1 dimensional one in the high temperature limit. Analytic continuation of Euclidean fields is discussed briefly.

Haba, Z

2007-01-01T23:59:59.000Z

372

Characterization of gas condensate reservoirs using pressure transient and production data - Santa Barbara Field, Monagas, Venezuela  

E-Print Network (OSTI)

This thesis presents a field case history of the integrated analysis and interpretation developed using all of the available petrophysical, production, and well test data from the condensate zone of Block A, Santa Barbara Field (Monagas, Venezuela). The reservoir units in Santa Barbara Field present substantial structural and fluid complexity, which, in turn, presents broad challenges for assessment and optimization of well performance behavior. Approximately 60 well tests have been performed in the gas condensate sections within Santa Barbara Field, and the analysis and interpretation of this data suggests the existence of condensate banking and layered reservoir behavior, as well as "well interference" effects. We demonstrate and discuss analysis and interpretation techniques that can be utilized for wells that exhibit condensate banking, layered reservoir behavior, and well interference effects (where all of these phenomena are observed in the well performance data taken from Block A in Santa Barbara Field). We have established that the layered reservoir model (no crossflow), coupled with the model for a two-zone radial composite reservoir, is an appropriate reservoir model for the analysis and interpretation of well performance data (i.e., well test and production data) taken from wells in Santa Barbara Field. It is of particular importance to note our success in using the "well interference" approach to analyze and interpret well test data taken from several wells in Santa Barbara Field. While it is premature to make broad conclusions, it can be noted that well interference effects (interference between production wells) could be (and probably is) a major influence on the production performance of Santa Barbara Field. In addition, our well test analysis approach corroborates the use of the Correa and Ramey (variable rate) plotting function for the analysis of drillstem test (DST) data. In summary, we are able to use our integrated analysis developed for Block A (Santa Barbara Field) estimate areal distributions of "flow" properties (porosity, effective permeability, and skin factor), as well as "volumetric" properties (original gas-in-place, gas reserves, and reservoir drainage area (all on a "per-well" basis)).

Medina Tarrazzi, Trina Mercedes

2003-01-01T23:59:59.000Z

373

The renewable electric plant information system  

DOE Green Energy (OSTI)

This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

Sinclair, K.

1995-12-01T23:59:59.000Z

374

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

Energy Laboratory Renewable Hydrogen Website http://www.nrel.gov/hydrogen/proj_production_ delivery.html Iowa State

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

375

Biodiesel and Other Renewable Diesel Fuels  

DOE Green Energy (OSTI)

Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

Not Available

2006-11-01T23:59:59.000Z

376

Columbia- Renewables Portfolio Standard  

Energy.gov (U.S. Department of Energy (DOE))

In November 2004, voters in Columbia, Missouri approved a proposal to adopt a local renewables portfolio standard (RPS).* The initiative requires the city's municipal utility, Columbia Water &...

377

Renewables Portfolio Standard Overview  

DOE Green Energy (OSTI)

A Renewables Portfolio Standard (RPS) is a requirement on electric utilities and other electric suppliers to supply a minimum percentage or amount of their load with eligible sources of renewable energy. The RPS has become increasingly popular because of its benefits and the public benefits of renewable energy. A well-designed state RPS can effectively deliver a renewable energy supply and associated benefits, at a low cost or even with consumer savings. This fact sheet provides an overview of an effective RPS design.

Not Available

2005-02-01T23:59:59.000Z

378

Renewable Energy: An Overview  

DOE Green Energy (OSTI)

This fact sheet provides an introduction to renewable energy technologies: hydropower, bioenergy, geothermal energy, solar energy, wind energy, hydrogen, and ocean energy.

Tromly, K.

2001-03-14T23:59:59.000Z

379

10. Renewable Energy  

U.S. Energy Information Administration (EIA)

Hydroelectric Powerb Otherc Renewable Energy a See Table 10.1 for definition. b Conventional hydroelectric power. c Geothermal, solar/PV, and wind.

380

Renewable Energy Economic Development  

E-Print Network (OSTI)

: · Renewable energy / Smart grid · Electric/hybrid vehicles 38 Proprietary & Confidential Global utility ­ Who Are We? · Industry leader in planning, architecture, engineering, procurement, construction

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Particle production in strong electromagnetic fields in relativistic heavy-ion collisions  

E-Print Network (OSTI)

I review the origin and properties of electromagnetic fields produced in heavy ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches eB\\sim(m_\\pi)^2 at RHIC and eB\\sim10 (m_\\pi)^2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma exists as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J/Psi dissociation via Lorentz ionization mechanism and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.

Kirill Tuchin

2013-01-01T23:59:59.000Z

382

Renewable Hydrogen Generation and Fueling Project  

Science Conference Proceedings (OSTI)

In its efforts to promote hydrogen as an alternative transportation fuel, the New York Power Authority (NYPA) is implementing a renewable hydrogen fueling demonstration project. The project involves hydrogen production by electrolysis using NYPA's large renewable hydropower generating resources. An earlier EPRI report (1014383) provides background and results from a preliminary engineering and feasibility study. This report provides an update on the project and the refueling station bid and procurement p...

2008-03-27T23:59:59.000Z

383

New Acid Stimulation Treatment to Sustain Production - Los Angeles Downtown Oil Field  

Science Conference Proceedings (OSTI)

Hydrochloric acid stimulation was successfully used on several wells in the Los Angeles Downtown Field, in the past. The decline rates after stimulation were relatively high and generally within six months to a year, production rates have returned to their prestimulation rates. The wells in Los Angeles Downtown Field have strong scale producing tendencies and many wells are treated for scale control. Four wells were carefully selected that are representative of wells that had a tendency to form calcium carbonate scale and had shown substantial decline over the last few years.

Russell, Richard C.

2003-03-10T23:59:59.000Z

384

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

Hand, M.

2012-10-01T23:59:59.000Z

385

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

Hand, M. M.

2012-08-01T23:59:59.000Z

386

Renewable Energy in Alaska  

SciTech Connect

This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

Not Available

2013-03-01T23:59:59.000Z

387

Renewable Energy Technology Characterizations  

Science Conference Proceedings (OSTI)

Renewable energy technologies span the range from developmental to commercially available. Some can make significant contributions now to electricity supply with zero or reduced environmental emissions. This report describes the technical and economic status of the major emerging renewable options and offers projections for their future performance and cost.

1997-12-30T23:59:59.000Z

388

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

Mai, T.

2012-08-01T23:59:59.000Z

389

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

Mai, T.

2012-08-01T23:59:59.000Z

390

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

Hand, M.; Mai, T.

2012-08-01T23:59:59.000Z

391

Energy Conservation Renewable Energy  

E-Print Network (OSTI)

Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

Delgado, Mauricio

392

California Integrated Renewable Energy Systems Report California Renewable Energy Collaborative  

E-Print Network (OSTI)

1 California Integrated Renewable Energy Systems Report California Renewable Energy Collaborative UC Davis Energy Institute University of California I Shields Avenue Davis, California 95616 California Renewable Energy Center: Vision and Development Metrics Principal Author: Gerald Braun CREC

Islam, M. Saif

393

Saskatchewan Renewable Diesel Program (Saskatchewan, Canada)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Diesel Program (Saskatchewan, Canada) Saskatchewan Renewable Diesel Program (Saskatchewan, Canada) Eligibility Agricultural Maximum Rebate 40 million litres of renewable...

394

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

Scale Renewable Energy Integration . . . . . . . . . . .Impacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

395

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

Renewable energy spillage, operating costs and capacityfocused on renewable energy utilization, cost of operationssystem operating costs, renewable energy utilization,

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

396

Pacific Biodiesel: Renewable and Sustainable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting Meeting April 20-21, 2011 Pacific Biodiesel, Inc. Kelly King, VP Renewable and Sustainable The Pacific Biodiesel Ohana  A fuel for any diesel engine  Non-toxic and Biodegradable  Non-flammable  100% renewable / recycled  Superior lubrication  Low emissions  Ultra Low Sulfur (15 ppm)  Meets or exceeds ASTM D6751 What is Biodiesel? What biodiesel is not: * Biodiesel is not vegetable oil that has simply been filtered * Biodiesel is not a fuel that requires costly modifications to your diesel engine * Biodiesel itself does not contain any fossil fuel product (although it can be mixed with petroleum diesel at any percentage rate) * Biodiesel does not involve gasification, micro-waves or pyrolysis * Not made from starchy feedstock (ethanol)

397

Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 167 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the

398

Renewable Fuels Module This  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Module Fuels Module This page inTenTionally lefT blank 175 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve

399

Analysis and optimization of gas pipeline networks and surface production facilities for the Waskom Field--Harrison County, Texas  

E-Print Network (OSTI)

This research has developed a computer simulation of the production facilities model of the Waskom Field in order to analyze existing and future production methods. The Waskom Field, located in East Texas, is a redeveloped reservoir sequence that produces primarily natural gas with minor amounts of oil and gas-condensate from the Upper and Lower Cotton Valley Sands as well as Sands in the Travis Peak sequence. The present gas production at Waskom Field averages about 12,000 Mcf/D. We have used data and the current production history to create a model of the surface production facilities, and we will simulate field performance by using a computer simulation package. In particular, all of the field facilities as well as the production history are included in these simulation Surface facilities for the Waskom field include pipelines of varying, sizes, separators, compressors, valves, and production manifolds. After creating and verifying the field model, we determined that the field possesses greater compressor capabilities than it requires. A simulation was performed where by the rental compressor in the Reuben Pierce lease was removed. The computer simulation showed that we can lower the last line pressure to 200 psig from 450 psig (which the operator was eventually able to negotiate) and the remaining compressors can sufficiently compress all of the gas currently produced in the field. Our few additional recommendations are to clean the separators, remove dual separator layouts, and remove several constricting valves that were identified from the simulation.

Pang, Jason Ui-Yong

1995-01-01T23:59:59.000Z

400

RenewablesRenewables Challenges and opportunities  

E-Print Network (OSTI)

proposition, ready to be finalised and presented to investors. #12;Marine renewables Offshore windOffshore wind Tid lTidal Wave #12;Offshore wind ­ market size #12;Offshore Wind Costs per MW Current Offshore Wind Capital Cost O&M Annual Cost Component % of Cost £m/MW Wind Turbine 44% 1.3 Component % of Cost £m

Strathclyde, University of

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Innovative Renewable Energy formerly Northwest Iowa Renewable...  

Open Energy Info (EERE)

Search Page Edit with form History Facebook icon Twitter icon Natural Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name...

402

Who Owns Renewable Energy Certificates?  

E-Print Network (OSTI)

Who Owns Renewable Energy Certificates? Edward Holt, RyanME 04079 edholt@igc.org Renewable energy certificates (RECs)convey the attributes of a renewable energy generator and

Holt, Edward; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

403

STAFF REPORT RENEWABLE POWER IN  

E-Print Network (OSTI)

, landfill gas, levelized cost, local government, natural gas, permitting, Public Interest Energy Research, cogeneration, competitive renewable energy zones, Desert Renewable Energy Conservation Plan, digester gas, financing, geothermal, greenhouse gas emissions, renewable integration, interconnection, land use planning

404

Renewables for TransportationTransportation  

E-Print Network (OSTI)

thermal biomass Tank to Wheel Example renewable fuel options: Biofuels biogas Process heat/steam: Solar)) Biofuels, biogas Renewable electricity Renewable H2 sequestration (CCS)) Electricity: solar PV, wind

California at Davis, University of

405

Categorical Exclusion Determinations: Golden Field Office | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2009 3, 2009 CX-000211: Categorical Exclusion Determination Wyoming Residential Renewable Energy Grants CX(s) Applied: B5.1 Date: 11/23/2009 Location(s): Wyoming Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 19, 2009 CX-000196: Categorical Exclusion Determination Alternative Crops and Biofuels Production CX(s) Applied: A9 Date: 11/19/2009 Location(s): Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 19, 2009 CX-000197: Categorical Exclusion Determination University Of South Dakota Catalysis Group for Alternative Energy CX(s) Applied: B3.6 Date: 11/19/2009 Location(s): Vermillion, South Dakota Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 18, 2009 CX-000191: Categorical Exclusion Determination

406

Renewable Energy & Energy Efficiency Partnership (REEEP) Digital Library |  

Open Energy Info (EERE)

Renewable Energy & Energy Efficiency Partnership (REEEP) Digital Library Renewable Energy & Energy Efficiency Partnership (REEEP) Digital Library Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy and Energy Efficiency Partnership (REEEP) Digital Library Agency/Company /Organization: Renewable Energy and Energy Efficiency Partnership Sector: Energy Focus Area: Energy Efficiency Resource Type: Training materials Website: toolkits.reeep.org/ References: Renewable Energy & Energy Efficiency Partnership (REEEP) Digital Library[1] Logo: Renewable Energy and Energy Efficiency Partnership (REEEP) Digital Library The REEEP digital library offers an array of information in the field of Renewable Energy and Energy Efficiency. These range from policy papers and case studies to presentations that are produced by REEEP funded projects

407

Renewable Energy Training and Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Training and Education Renewable Energy Training and Education Renewable Energy Training and Education October 16, 2013 - 5:17pm Addthis Multiple resources exist to train Federal agency personnel to integrate renewable energy into Federal new construction or major renovation projects. Even if the agency is outsourcing renewable energy expertise, in-house staff members still need to have knowledge of the implemented technologies and how they interact with other systems. A number of colleges and universities across the country are adding courses and developing programs in various renewable energy fields. Renewable energy training courses and seminars are also available through workshops, hands-on training, and certification. There are also courses designed to provide the knowledge necessary to gain North American Board of Certified

408

Financing Renewable Energy - No Pain, No Gain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

newresourcebank.com newresourcebank.com Financing Renewable Energy "No Pain, No Gain" New Resource Bank: A Radical Idea Our mission is to promote sustainable living in our community with everything we do. Where Does Your Money Spend The Night? 9/4/2012 2 Renewable Energy Projects Anaerobic Manure Digester This anaerobic manure digester improves manure management and sustainability for partner dairies while generating renewable electricity for sale to a local public utility. Anaerobic digestion is a natural process that converts a portion of the organic carbon in manure (and other waste streams) into methane and carbon dioxide. o Production of renewable energy (Biogas) o Carbon offsets o Reduction of greenhouse gas emissions o Potential pathogen reduction in manure

409

Advanced Renewables LLC | Open Energy Information  

Open Energy Info (EERE)

Renewables LLC Renewables LLC Place Philadelphia, Pennsylvania Zip PA 19118 Sector Renewable Energy Product A renewable energy company focused on building a portfolio of assets in North America. Coordinates 39.95227°, -75.162369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.95227,"lon":-75.162369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply Rosborne318 Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Posted by: Rosborne318 2 Dec 2013 - 11:06 The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. Tags: pv land use, Solar, solar land use, Solar Power LShapton Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT Posted by: LShapton 28 Aug 2013 - 15:09 Portland General Electric has issued an RFP for marketing and supply for

411

Solectria Renewables LLC | Open Energy Information  

Open Energy Info (EERE)

Solectria Renewables LLC Solectria Renewables LLC Jump to: navigation, search Name Solectria Renewables LLC Address 360 Merrimack Street Place Lawrence, Massachusetts Zip 01843 Sector Solar Product Power electronics and system for renewable energy power generation Website http://www.solren.com/ Coordinates 42.70371°, -71.142444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.70371,"lon":-71.142444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Emerald Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Name Emerald Renewable Energy Name Emerald Renewable Energy Place Minneapolis, Minnesota Zip 55401-2374 Sector Renewable Energy Product A privately held limited liability company formed by agribusiness giant Cargill to develop and invest in renewable energy projects in the US. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Development of a Renewable Hydrogen Energy Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Renewable Development of a Renewable Hydrogen Energy Station Edward C. Heydorn - Air Products and Chemicals, Inc. Pinakin Patel - FuelCell Energy, Inc. Fred Jahnke - FuelCell Energy, Inc. "Delivering Renewable Hydrogen - A Focus on Near-Term Applications" Palm Springs, CA 16 November 2009 Presentation Outline * Hydrogen Energy Station Technology Overview * Process Description * Performance and Economic Parameters * Proposed Demonstration on Renewable Feedstock * Status of Shop Validation Test * Conclusion 2 Objectives * Determine the economic and technical viability of a hydrogen energy station designed to co-produce power and hydrogen Utilize technology development roadmap to provide deliverables and go/no-go decision

414

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term Content Group Activity By term Q & A Feeds pv land use (1) Solar (1) solar land use (1) Solar Power (1) Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT Group members (21) Managers: Graham7781 Recent members: Rosborne318 Fishntinsean Andrew Truitt Brion Navendranp LShapton Lucintel Amelia Gdavis Jim.leyshon Martinschutz Jveytia Epaul Lichter Benjaminpeters

415

Partnership for Renewables | Open Energy Information  

Open Energy Info (EERE)

Partnership for Renewables Partnership for Renewables Place London, United Kingdom Zip WC2A 2AZ Sector Renewable Energy Product Organisation aiming to develop small-scale renewable energy projects on public sector land. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Renewable Energy Development Institute REDI | Open Energy Information  

Open Energy Info (EERE)

Development Institute REDI Development Institute REDI Jump to: navigation, search Name Renewable Energy Development Institute (REDI) Place Willits, California Zip 95490 Sector Renewable Energy Product An US nonprofit 501c3 charitable, educational and scientific corporation started in 1989 with the primary goal of promoting the use of renewable energy and clean air transportation technologies. References Renewable Energy Development Institute (REDI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Development Institute (REDI) is a company located in Willits, California . References ↑ "Renewable Energy Development Institute (REDI)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Development_Institute_REDI&oldid=350320"

417

Transmark Renewables Green Giraffe JV | Open Energy Information  

Open Energy Info (EERE)

Transmark Renewables Green Giraffe JV Transmark Renewables Green Giraffe JV Jump to: navigation, search Name Transmark Renewables & Green Giraffe JV Place Netherlands Sector Solar, Wind energy Product Netherland-based JV, wind and solar project developer. References Transmark Renewables & Green Giraffe JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Transmark Renewables & Green Giraffe JV is a company located in Netherlands . References ↑ "[ Transmark Renewables & Green Giraffe JV]" Retrieved from "http://en.openei.org/w/index.php?title=Transmark_Renewables_Green_Giraffe_JV&oldid=352373" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

418

Powered by Renewables formerly Nevada Wind | Open Energy Information  

Open Energy Info (EERE)

formerly Nevada Wind formerly Nevada Wind Jump to: navigation, search Name Powered by Renewables (formerly Nevada Wind) Place Las Vegas, Nevada Zip 89102 Sector Renewable Energy Product PBR develops, manages and sells utility-scale renewable energy projects. References Powered by Renewables (formerly Nevada Wind)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Powered by Renewables (formerly Nevada Wind) is a company located in Las Vegas, Nevada . References ↑ "Powered by Renewables (formerly Nevada Wind)" Retrieved from "http://en.openei.org/w/index.php?title=Powered_by_Renewables_formerly_Nevada_Wind&oldid=349890" Categories: Clean Energy Organizations Companies

419

Synergy Renewable Energy Pvt Ltd SREPL | Open Energy Information  

Open Energy Info (EERE)

Synergy Renewable Energy Pvt Ltd SREPL Synergy Renewable Energy Pvt Ltd SREPL Jump to: navigation, search Name Synergy Renewable Energy Pvt. Ltd (SREPL) Place Kolkatta, West Bengal, India Zip 700020 Sector Solar Product Kolkatta-based manufacturer of Energy saver, solar water heating systems, solar cookers, solar home lighting, street lighting systems, solar lamps, solar photo voltaic modules. References Synergy Renewable Energy Pvt. Ltd (SREPL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Synergy Renewable Energy Pvt. Ltd (SREPL) is a company located in Kolkatta, West Bengal, India . References ↑ "[ Synergy Renewable Energy Pvt. Ltd (SREPL)]" Retrieved from "http://en.openei.org/w/index.php?title=Synergy_Renewable_Energy_Pvt_Ltd_SREPL&oldid=351982"

420

Allco Renewable Energy Group Limited LLC | Open Energy Information  

Open Energy Info (EERE)

Allco Renewable Energy Group Limited LLC Allco Renewable Energy Group Limited LLC Jump to: navigation, search Name Allco Renewable Energy Group Limited, LLC Place New York, New York Zip 10005 Sector Biomass, Solar, Wind energy Product A New York City-based wind, solar, and biomass project developer that no longer has any direct ties to Allco Finance Group of Australia or its subsidiaries. References Allco Renewable Energy Group Limited, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Allco Renewable Energy Group Limited, LLC is a company located in New York, New York . References ↑ "Allco Renewable Energy Group Limited, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Allco_Renewable_Energy_Group_Limited_LLC&oldid=3420

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Technological Institute of Renewable Energy ITER | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy ITER Renewable Energy ITER Jump to: navigation, search Name Technological Institute of Renewable Energy (ITER) Place Santa Cruz de Tenerife, Spain Zip 38611 Sector Solar, Wind energy Product Spain-based, technological research and development institute focused on the solar and wind sectors. References Technological Institute of Renewable Energy (ITER)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Technological Institute of Renewable Energy (ITER) is a company located in Santa Cruz de Tenerife, Spain . References ↑ "Technological Institute of Renewable Energy (ITER)" Retrieved from "http://en.openei.org/w/index.php?title=Technological_Institute_of_Renewable_Energy_ITER&oldid=352069

422

BPRe Biopower Renewable Energy Inc | Open Energy Information  

Open Energy Info (EERE)

BPRe Biopower Renewable Energy Inc BPRe Biopower Renewable Energy Inc Jump to: navigation, search Name BPRe Biopower Renewable Energy Inc. Place Bad Nauheim, Hessen, Germany Zip 61231 Sector Biomass Product BPRe focusses on electricity generation from biomass. With its partners the company is active throughout the value chain. BPRe's headquarter is in Oregon, Aloha; the operating office in Germany. References BPRe Biopower Renewable Energy Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. BPRe Biopower Renewable Energy Inc. is a company located in Bad Nauheim, Hessen, Germany . References ↑ "BPRe Biopower Renewable Energy Inc." Retrieved from "http://en.openei.org/w/index.php?title=BPRe_Biopower_Renewable_Energy_Inc&oldid=342998"

423

Renewable Energy Association UK REA | Open Energy Information  

Open Energy Info (EERE)

UK REA UK REA Jump to: navigation, search Name Renewable Energy Association UK (REA) Place London, United Kingdom Zip SW1Y 4AR Sector Renewable Energy Product Trade association open to all companies involved in the UK renewable energy industry. References Renewable Energy Association UK (REA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Association UK (REA) is a company located in London, United Kingdom . References ↑ "Renewable Energy Association UK (REA)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Association_UK_REA&oldid=350314" Categories: Clean Energy Organizations Companies Organizations Stubs

424

Mulk Renewable Energy Aditya Solar Power Industries JV | Open Energy  

Open Energy Info (EERE)

Mulk Renewable Energy Aditya Solar Power Industries JV Mulk Renewable Energy Aditya Solar Power Industries JV Jump to: navigation, search Name Mulk Renewable Energy & Aditya Solar Power Industries JV Place United Arab Emirates Sector Solar Product UAE-based company that is developing a 200MW solar thermal plant in Sharjah. References Mulk Renewable Energy & Aditya Solar Power Industries JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mulk Renewable Energy & Aditya Solar Power Industries JV is a company located in United Arab Emirates . References ↑ "Mulk Renewable Energy & Aditya Solar Power Industries JV" Retrieved from "http://en.openei.org/w/index.php?title=Mulk_Renewable_Energy_Aditya_Solar_Power_Industries_JV&oldid=348970"

425

Saran Renewable Energy Ltd SRE | Open Energy Information  

Open Energy Info (EERE)

Saran Renewable Energy Ltd SRE Saran Renewable Energy Ltd SRE Jump to: navigation, search Name Saran Renewable Energy Ltd. (SRE) Place Saran, Bihar, India Zip 841301 Sector Biomass Product Bihar-based biomass project developer. Plans to expand into electricity trade and retail distribution. References Saran Renewable Energy Ltd. (SRE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Saran Renewable Energy Ltd. (SRE) is a company located in Saran, Bihar, India . References ↑ "Saran Renewable Energy Ltd. (SRE)" Retrieved from "http://en.openei.org/w/index.php?title=Saran_Renewable_Energy_Ltd_SRE&oldid=350624" Categories: Clean Energy Organizations Companies Organizations

426

Alteris Renewables Inc formerly Solar Works Inc | Open Energy Information  

Open Energy Info (EERE)

Solar Works Inc Solar Works Inc Jump to: navigation, search Name Alteris Renewables, Inc. (formerly Solar Works Inc) Place Wilton, Connecticut Sector Renewable Energy, Solar Product Connecticut-based renewable energy systems integrator and project developer formed through the merger between Solar Works and SolarWrights. References Alteris Renewables, Inc. (formerly Solar Works Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alteris Renewables, Inc. (formerly Solar Works Inc) is a company located in Wilton, Connecticut . References ↑ "Alteris Renewables, Inc. (formerly Solar Works Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Alteris_Renewables_Inc_formerly_Solar_Works_Inc&oldid=342052

427

SeaEnergy PLC formerly Seaenergy Renewables | Open Energy Information  

Open Energy Info (EERE)

SeaEnergy PLC formerly Seaenergy Renewables SeaEnergy PLC formerly Seaenergy Renewables Jump to: navigation, search Name SeaEnergy PLC (formerly Seaenergy Renewables) Place United Kingdom Sector Wind energy Product Subsidiary of Aberdeen based energy investment firm Ramco Energy Plc, set up to develop, own and operate offshore wind farms. References SeaEnergy PLC (formerly Seaenergy Renewables)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SeaEnergy PLC (formerly Seaenergy Renewables) is a company located in United Kingdom . References ↑ "SeaEnergy PLC (formerly Seaenergy Renewables)" Retrieved from "http://en.openei.org/w/index.php?title=SeaEnergy_PLC_formerly_Seaenergy_Renewables&oldid=35070

428

West Clare Renewable Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Ltd Renewable Energy Ltd Jump to: navigation, search Name West Clare Renewable Energy Ltd Place United Kingdom Sector Wind energy Product A wind project developer established to build the Mount Callan wind farm in County Clare Ireland. References West Clare Renewable Energy Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. West Clare Renewable Energy Ltd is a company located in United Kingdom . References ↑ "West Clare Renewable Energy Ltd" Retrieved from "http://en.openei.org/w/index.php?title=West_Clare_Renewable_Energy_Ltd&oldid=352997" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

429

Programs in Renewable Energy  

DOE Green Energy (OSTI)

Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The US Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10% of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet. 48 figs., 4 tabs.

Not Available

1990-01-01T23:59:59.000Z

430

Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming  

SciTech Connect

The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO{sub 2} flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

Jackson, S.

1993-03-01T23:59:59.000Z

431

Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming  

SciTech Connect

The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO[sub 2] flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

Jackson, S.

1993-03-01T23:59:59.000Z

432

Seasonal Production and Emission of Methane from Rice Fields, Final Report  

DOE Green Energy (OSTI)

B 139 - Methane (CH4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning. The global emissions from these sources are still not well known. In the middle 1980s there were few available data on methane emissions from rice fields leading to estimates of a global source between 100-280 Tg/yr. Extensive worldwide research during the last decade has shown that the global emissions from rice fields are more likely to be in the range of 30-80Tg/yr. While this work has led to a substantial reduction in the estimated emissions, the uncertainty is still quite large, and seriously affects our ability to include methane in integrated assessments for future climate change and environmental management.China dominated estimates of methane emissions from rice fields because it was, and is, the largest producer of rice, and major increases in rice production had taken place in the country over the last several decades. This report summarizes the work in Sichuan Province, China, in each of the following areas: the design of the experiment; the main results on methane emissions from rice fields, delineating the factors controlling emissions; production of methane in the soil; a survey of water management practices in sample of counties in Sichuan province; and results of ambient measurements including data from the background continental site. B139

Khalil, M. Aslam K.; Rasmussen,Reinhold A.

2002-12-03T23:59:59.000Z

433

Renewable Fuels | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Renewable Fuels Jump to: navigation, search TODO: Add description List of Renewable Fuels...

434

Renewable Funding | Open Energy Information  

Open Energy Info (EERE)

Funding Jump to: navigation, search Name Renewable Funding Place Oakland, CA Website https:www.renewfund.com References Renewable Funding1 Information About Partnership with...

435

Renewable Analytics | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Renewable Analytics Jump to: navigation, search Name Renewable Analytics Place San Francisco,...

436

First Renewables | Open Energy Information  

Open Energy Info (EERE)

development projects, ranging from wind to biomass using a variety of renewable fuel sources. Absorbed into EPR in 2002. References First Renewables1 LinkedIn Connections...

437

Western Renewable Energy Zones (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes recent developments and trends pertaining to competitive renewable energy zones, transmission planning and the integration of renewable generation resources.

Hein, J.

2011-06-01T23:59:59.000Z

438

EERE: Renewable Electricity Generation - Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy Search Search Search Help | A-Z Subject Index EERE Geothermal Renewable Electricity Generation EERE plays a key role in advancing America's "all...

439

Nautilus Renewables | Open Energy Information  

Open Energy Info (EERE)

based private equity and investment banking firm, in order to break into the renewable energy and waste management markets. References Nautilus Renewables1 LinkedIn...

440

Renewable Electricity Generation (Fact Sheet)  

DOE Green Energy (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Renewable Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Sources Renewable Energy Renewable Energy Watch as these fourth grade students go from learning about electricity to making their own electricity...

442

SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT, MOCANE-LAVERNE FIELD, OKLAHOMA  

Science Conference Proceedings (OSTI)

In 1996, Advanced Resources International (ARI) began performing R&D targeted at enhancing production and reserves from natural gas fields. The impetus for the effort was a series of field R&D projects in the early-to-mid 1990's, in eastern coalbed methane and gas shales plays, where well remediation and production enhancement had been successfully demonstrated. As a first step in the R&D effort, an assessment was made of the potential for restimulation to provide meaningful reserve additions to the U.S. gas resource base, and what technologies were needed to do so. That work concluded that: (1) A significant resource base did exist via restimulation (multiples of Tcf). (2) The greatest opportunities existed in non-conventional plays where completion practices were (relatively) complex and technology advancement was rapid. (3) Accurate candidate selection is the greatest single factor that contributes to a successful restimulation program. With these findings, a field-oriented program targeted at tight sand formations was initiated to develop and demonstrate successful candidate recognition technology. In that program, which concluded in 2001, nine wells were restimulated in the Green River, Piceance and East Texas basins, which in total added 2.9 Bcf of reserves at an average cost of $0.26/Mcf. In addition, it was found that in complex and heterogeneous reservoirs (such as tight sand formations), candidate selection procedures should involve a combination of fundamental engineering and advanced pattern recognition approaches, and that simple statistical methods for identifying candidate wells are not effective. In mid-2000, the U.S. Department of Energy (DOE) awarded ARI an R&D contract to determine if the methods employed in that project could also be applied to stripper gas wells. In addition, the ability of those approaches to identify more general production enhancement opportunities (beyond only restimulation), such as via artificial lift and compression, was also sought. A key challenge in this effort was that, whereas the earlier work suggested that better (producing) wells tended to make better restimulation candidates, stripper wells are by definition low-volume producers (either due to low pressure, low permeability, or both). Nevertheless, the potential application of this technology was believed to hold promise for enhancing production for the thousands of stripper gas wells that exist in the U.S. today. The overall procedure for the project was to select a field test site, apply the candidate recognition methodology to select wells for remediation, remediate them, and gauge project success based on the field results. This report summarizes the activities and results of that project.

Scott Reeves; Buckley Walsh

2003-08-01T23:59:59.000Z

443

Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design  

Science Conference Proceedings (OSTI)

A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

Kia, Kaveh Kazemi [Department of Electrical and Computer Engineering, Islamic Azad University of Bonab, Bonab (Iran, Islamic Republic of); Bonabi, Fahimeh [Department of Engineering, Islamic Azad University of Bonab, Bonab (Iran, Islamic Republic of)

2012-12-15T23:59:59.000Z

444

NREL: State and Local Activities - Renewable Portfolio Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Portfolio Standards Renewable Portfolio Standards A renewable portfolio standard (RPS) is a regulatory mandate to increase production of energy from renewable sources such as wind, solar, biomass and other alternatives to fossil and nuclear electric generation. It's also known as a renewable electricity standard. Background An RPS is most successful in driving renewable energy projects when combined with the federal production tax credit. States often design them to drive a particular technology by providing "carve out" provisions that mandate a certain percentage of electricity generated comes from a particular technology (e.g. solar or biomass). States can choose to apply the RPS requirement to all its utilities or only the investor owned utilities. States can also define what technologies are eligible to count

445

Energy Department Issues Tribal Renewable Energy Purchase Guidance and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Issues Tribal Renewable Energy Purchase Guidance Energy Department Issues Tribal Renewable Energy Purchase Guidance and Project Development Resources Energy Department Issues Tribal Renewable Energy Purchase Guidance and Project Development Resources December 5, 2012 - 4:40pm Addthis News Media Contact (202) 586-4940 WASHINGTON - At the White House Tribal Nations Conference today, the Energy Department announced two new initiatives aimed at driving increased energy production and sustainable economic development in Indian Country. As part of the Energy Department's efforts to support Tribal renewable energy production, Energy Secretary Steven Chu issued a policy statement and guidance that gives preference to Indian tribes when its facilities contract to purchase renewable energy products or by products, based on

446

Renewable Energy Finance Workshop  

Open Energy Info (EERE)

Agenda - December 10 Agenda - December 10 th , 2012 Renewable Energy Finance Workshop 12:00 - 12:15 WELCOME AND INTRODUCTIONS- Richard Kauffman 12:15 - 12:25 PRESIDENTIAL PRIORITIES - Jon Powers & Rick Duke 12:25 - 12:35 INDUSTRY OVERVIEW - Lisa Jacobson & John Stanton Presentation of common themes and emerging trends from industry members. 12:35 - 1:00 MAJOR BARRIERS TO SECURITIZATION - Richard Kauffman & Trevor D'Olier-Lees Facilitated discussion on barriers to renewable energy deployment, such as data and standardized contracts. 1:00 - 1:20 BREAK 1:20 - 2:00 DATA AND RENEWABLE ENERGY RESOURCES - Ian Kalin & Chris Lohmann Open data, tools and programs that seek to support renewable energy financing. 2:00-2:20 BREAK

447

National Renewable Energy Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

RENEWABLE ENERGY RENEWABLE ENERGY AND ENERGY EFFICIENCY SCIENCE PROJECTS 1 SCIENCE PROECTS IN RENEWABLE ENERGY AND ENERGY EFFICIENCY A guide for Secondary School Teachers Authors and Acknowledgements: This second edition was produced at the National Renewable Energy Laboratory (NREL), through the laboratory's Office of Education Programs, under the leadership of the Manager, Dr. Cynthia Howell and guidance of the Program Coordinators, Matt Kuhn and Linda Lung. The contents are the result of contributions by a select group of teacher researchers that were invited to NREL as part of the Department of Energy's Teacher Research Programs. During the summers between 2003 and 2007, fifty four secondary pre-service and experienced teachers came to NREL to do real research in

448

Renewable Electricity Generation  

Energy.gov (U.S. Department of Energy (DOE))

Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems....

449

Custom Renewable Energy Projects  

Energy.gov (U.S. Department of Energy (DOE))

Energy Trust of Oregon offers cash incentives and project development assistance for renewable energy projects that are 20 megawatts (MW) or less in capacity. These custom incentives are part of...

450

APS Renewal White Paper  

NLE Websites -- All DOE Office Websites (Extended Search)

| 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed APS Renewal White Paper NOVEMBER 21, 2008 Bookmark and Share The white paper prepared for the...

451

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Per Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Energy Consumption Per Person...

452

Polarization Effects In The Charged Lepton Pair Production By A Neutrino (Antineutrino) In A Magnetic Field  

Science Conference Proceedings (OSTI)

The probability of the process of the charged lepton pair production by a neutrino (an antineutrino) with allowance for the longitudinal and transverse polarizations of the charged leptons in a magnetic field is presented. The dependence of the probability of the process on the spin variables of the charged leptons and on the azimuthal and polar angles of the initial and final neutrinos (antineutrinos) are investigated. It is shown that the probability of the process is sensitive to the spin variables of the charged leptons and to the direction of the neutrino (antineutrino) momentum. It is determined that the neutrino (antineutrino) energy and momentum loss through the production of a charged lepton pair happens asymmetrically.

Huseynov, Vali A. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan); Laboratory of Physical Research, Nakhchivan Division of Azerbaijan National Academy of Sciences, AZ 7000, Nakhchivan (Azerbaijan); Ahmad, Ali S. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan)

2007-06-13T23:59:59.000Z

453

Reasons for production decline in the diatomite, Belridge oil field: a rock mechanics view  

SciTech Connect

This work summarized research conducted on diatomite cores from the Belridge oil field in Kern County. The study was undertaken to try to explain the rapid decline in oil production in diatomite wells. Characterization of the rock showed that the rock was composed principally of amorphous opaline silica diatoms with only a trace of crystoballite quartz or chert quartz. Physical properties tests showed the diatomite to be of low strength and plastic. Finally, it was established that long-term creep of diatomite into a propped fracture proceeds at a rate of approximately 6 x 10-5 in./day, a phenomenon which may be a primary cause of rapid production declines. The testing program also revealed a matrix stength for the formation of calculated 1325 PSI, a value to consider when depleting the reservoir. This also may help to explain the phase transformation of opal ct at calculated 2000 to 2500 ft depth.

Strickland, F.G.

1982-01-01T23:59:59.000Z

454

Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables.

1996-08-01T23:59:59.000Z

455

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

Hand, M. M.

2012-08-01T23:59:59.000Z

456

Thermal Scout Pinpoints Hard-to-Find Problems in CSP Fields (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

receiver survey system uses an infrared camera, receiver survey system uses an infrared camera, GPS technology, and computer software to rapidly analyze concentrating solar power fields and locate defective receivers. In a parabolic trough concentrating solar power (CSP) system, collectors reflect the sun's rays onto long, tubular receivers that convert the sunlight into heat that is used to gener- ate electricity. The long-term performance of these receivers-designed to minimize heat loss to the environment while absorbing as much sunlight as possible-is critical for high efficiency and sustained performance. Traditionally, locating problems with receivers has been a costly, time-consuming, and labor- intensive effort, often requiring manual inspection of tens of thousands of receiver tubes. In most cases, operators must assess the entire output of a plant and roughly estimate the

457

High Performance Buildings - Alternative/Renewable Energy  

Science Conference Proceedings (OSTI)

... Buildings - Alternative/Renewable Energy. High Performance Buildings - Alternative/Renewable Energy Information at NIST. ...

2010-09-23T23:59:59.000Z

458

Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy,  

E-Print Network (OSTI)

of Energy Efficiency, Renewable Energy, and Small-Scale Cogeneration from electricity generation. Renewable energy, energy efficiency, and energy, where performance is measured relative to three objectives: energy production

459

Renewable energy perspectives in the  

E-Print Network (OSTI)

Renewable energy perspectives in the mediterranean countries - the Mediterranean Solar Plan Dr 600 800 1000 1200 1400 1990 2009 CS2030 PS2030 Mtoe Renewables & Waste Hydro Nuclear Gas Oil Coal #12 - hydro Renewables Hydro Nuclear Gas Oil Coal 2009 2030 PS2030 CS #12;RENEWABLE ELECTRICITY GENERATION 0

Canet, Léonie

460

2008 Renewable Energy Data Book  

DOE Green Energy (OSTI)

This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

Not Available

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

RENEWABLE ENERGY RESEARCH August 2010  

E-Print Network (OSTI)

RENEWABLE ENERGY RESEARCH August 2010 CERTS Smart Grid Demonstration with Renewable Energy Integration PIER Renewable Energy Research The Issue Researchers at the Santa Rita Jail, in Dublin, California will be demonstated. This demonstration will enable future applications under a Renewable-Based Energy Secure

462

Approaching Injury and Violence Prevention through Public Health Policy: A Window of Opportunity to Renew Our Focus  

E-Print Network (OSTI)

Public Health Policy: A Window of Opportunity to Renew Ourconsequences. We have a window of opportunity for the field

Degutis, Linda C

2011-01-01T23:59:59.000Z

463

XL Renewables Inc | Open Energy Information  

Open Energy Info (EERE)

XL Renewables Inc XL Renewables Inc Jump to: navigation, search Name XL Renewables Inc Place Phoenix, Arizona Zip 85009 Product Arizona based biorefinery developer, also involved in the diary production business. Coordinates 33.44826°, -112.075774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.44826,"lon":-112.075774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

The Influence of Stratification and Nonlocal Turbulent Production on Estuarine Turbulence: An Assessment of Turbulence Closure with Field Observations  

Science Conference Proceedings (OSTI)

Field observations of turbulent kinetic energy (TKE), dissipation rate ?, and turbulent length scale demonstrate the impact of both density stratification and nonlocal turbulent production on turbulent momentum flux. The data were collected in a ...

Malcolm E. Scully; W. Rocky Geyer; John H. Trowbridge

2011-01-01T23:59:59.000Z

465

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network (OSTI)

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field, Colombia. Experimental and simulation studies were conducted to achieve these objectives. The experimental study consisted of injecting reconstituted gas into a cell containing sand and "live" San Francisco oil. Experimental runs were made with injection of (i) the two field gases and their 50-50 mixture, (ii) the two field gases enriched with propane, and (iii) WAG with the two field gases enriched with propane. Produced oil volume, density, and viscosity; and produced gas volume and composition were measured and analyzed. A 1D 7-component compositional simulation model of the laboratory injection cell and its contents was developed. After a satisfactory history-match of the results of a WAG run, the prediction runs were made using the gas that gave the highest oil recovery in the experiments, (5:100 mass ratio of propane:Balcon gas). Oil production results from simulation were obtained for a range of WAG cycles and gas injection rate. The main results of the study may be summarized as follows. For all cases studied, the lowest oil recovery is obtained with injection of San Francisco gas, (60% of original oil-in-place OOIP), and the highest oil recovery (84% OOIP) is obtained with a WAG 7.5-7.5 (cycle of 7.5 minutes water injection followed by 7.5 minutes of gas injection at 872 ml/min). This approximately corresponds to WAG 20-20 in the field (20 days water injection followed by 20 days gas injection at 6.8 MMSCF/D). Results clearly indicate increase in oil recovery with volume of the gas injected. Lastly, of the three injection schemes studied, WAG injection with propane-enriched gas gives the highest oil recovery. This study is based on the one-dimensional displacement of oil. The three-dimensional aspects and other reservoir complexities that adversely affect oil recovery in reality have not been considered. A 3D reservoir simulation study is therefore recommended together with an economic evaluation of the cases before any decision can be made to implement any of the gas or WAG injection schemes.

Rueda Silva, Carlos Fernando

2003-01-01T23:59:59.000Z

466

Renewable Energy Applications for Rural Development in China  

DOE Green Energy (OSTI)

This paper provides a description of current work to promote and support the developing market for renewable (RE) and energy efficiency (EE) technologies in China. Since the signing of the US/China Protocol for Cooperation in the Fields of Energy Efficiency and Renewable Energy Technology Development and Utilization in 1995, NREL has helped to promote RE and EE technologies, specifically rural energy, wind energy, geothermal energy, and renewable energy business development, in addition to more general policy and planning support. This paper focuses on NREL's work in support of the $240 million Township Electrification Program, which is providing power to over 1000 rural communities using renewable based energy sources.

Ku, J.; Baring-Gould, E. I.; Stroup, K.

2005-01-01T23:59:59.000Z

467

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

1994-07-08T23:59:59.000Z

468

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

1998-03-01T23:59:59.000Z

469

http://www.ogj.com/articles/print/volume-111/issue-9/drilling-production/barnett-study-determines-full-field-reserves.html BARNETT SHALE MODEL-2 (Conclusion): Barnett study  

E-Print Network (OSTI)

-production/barnett-study-determines-full-field-reserves.html BARNETT SHALE MODEL-2 (Conclusion): Barnett study determines full-field reserves, production forecast John shale integrates engineering, geology, and economics into a numerical model that allows f or scenario

Patzek, Tadeusz W.

470

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

471

Renewable and nuclear heresies  

E-Print Network (OSTI)

Abstract: Renewables are not green. To reach the scale at which they would contribute importantly to meeting global energy demand, renewable sources of energy, such as wind, water and biomass, cause serious environmental harm. Measuring renewables in watts per square metre that each source could produce smashes these environmental idols. Nuclear energy is green. However, in order to grow, the nuclear industry must extend out of its niche in baseload electric power generation, form alliances with the methane industry to introduce more hydrogen into energy markets, and start making hydrogen itself. Technologies succeed when economies of scale form part of their conditions of evolution. Like computers, to grow larger, the energy system must now shrink in size and cost. Considered in watts per square metre, nuclear has astronomical advantages over its competitors.

Jesse H. Ausubel

2011-01-01T23:59:59.000Z

472

Renewable & Alternative Fuels - U.S. Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Renewable & Alternative Fuels Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative Transportation Fuels All Renewable & Alternative Fuels Data Reports Analysis & Projections Most Requested Alternative Fuels Capacity and Generation Consumption Environment Industry Characteristics Prices Production Projections Renewable Energy Type All Reports Don't miss: EIA's Alternative Fuel Vehicle Data. Including two interactive data viewers that provide custom data views of Alternative Fuel Vehicle data for both User & Fuel Data and Supplier Data. EIA's latest Short-Term Energy Outlook for renewables › chart showing U.S. renewable energy supply Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly.

473

Renewable Energy Institute International REII | Open Energy Information  

Open Energy Info (EERE)

Institute International REII Institute International REII Jump to: navigation, search Name Renewable Energy Institute International (REII) Place McClellan, California Zip 95652 Sector Renewable Energy Product California-based non-profit that supports research, development, demonstration, and deployment programmes on renewable energy and alternative fuels in collaboration with government, industry, academia, institutes and non-government organizations. References Renewable Energy Institute International (REII)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Institute International (REII) is a company located in McClellan, California . References ↑ "Renewable Energy Institute International (REII)"

474

Chinese Renewable Energy Society CRES formerly Chinese Solar Energy Society  

Open Energy Info (EERE)

CRES formerly Chinese Solar Energy Society CRES formerly Chinese Solar Energy Society Jump to: navigation, search Name Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy Society) Place Beijing, Beijing Municipality, China Sector Renewable Energy, Solar Product National academic association in renewable energy industry, formerly China Solar Energy society. References Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy Society)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy Society) is a company located in Beijing, Beijing Municipality, China . References ↑ "Chinese Renewable Energy Society (CRES) (formerly Chinese

475

Renewable Energy Development Group Ltd RED | Open Energy Information  

Open Energy Info (EERE)

RED RED Jump to: navigation, search Name Renewable Energy Development Group Ltd (RED) Place Edinburgh, United Kingdom Zip EH1 2DP Sector Biomass, Hydro, Wind energy Product Developer of wind farms. It is also active in the development of other types of renewably powered electricity generation including hydro-electric and biomass power projects. References Renewable Energy Development Group Ltd (RED)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Development Group Ltd (RED) is a company located in Edinburgh, United Kingdom . References ↑ "Renewable Energy Development Group Ltd (RED)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Development_Group_Ltd_RED&oldid=350319

476

Renewable energy and utility regulation  

DOE Green Energy (OSTI)

This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC`S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

Not Available

1991-04-10T23:59:59.000Z

477

Renewable energy and utility regulation  

DOE Green Energy (OSTI)

This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC'S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

Not Available

1991-04-10T23:59:59.000Z

478

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

DeMeo, E.

2012-08-01T23:59:59.000Z

479

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

Mai, T.

2012-08-01T23:59:59.000Z

480

,"U.S. Natural Gas Plant Field Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1981" Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_gp_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:17:57 AM" "Back to Contents","Data 1: U.S. Natural Gas Plant Field Production" "Sourcekey","MNGFPUS1","MPPFPUS1","MLPFPUS1","METFPUS1","MPRFPUS1","MBNFPUS1","MBIFPUS1"

Note: This page contains sample records for the topic "field production renewable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

,"U.S. Natural Gas Plant Field Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1981" Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_gp_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:17:57 AM" "Back to Contents","Data 1: U.S. Natural Gas Plant Field Production" "Sourcekey","MNGFPUS1","MPPFPUS1","MLPFPUS1","METFPUS1","MPRFPUS1","MBNFPUS1","MBIFPUS1"

482

Cationically polymerizable monomers derived from renewable sources  

DOE Green Energy (OSTI)

The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

Crivello, J.V.

1992-10-01T23:59:59.000Z

483

Rapid field testing of low-emittance coated glazings for product verification  

Science Conference Proceedings (OSTI)

This paper analyzes prospects for developing a test device suitable for field verification of the types of low-emittance (low-e) coatings present on high-performance window products. Test devices are currently available that can simply detect the presence of low-e coatings and that can measure other important characteristics of high-performance windows, such as the thickness of glazing layers or the gap in dual glazings. However, no devices have yet been developed that can measure gas concentrations or distinguish among types of coatings. This paper presents two optical methods for verification of low-e coatings. The first method uses a portable, fiber-optic spectrometer to characterize spectral reflectances from 650 to 1,100 nm for selected surfaces within an insulated glazing unit (IGU). The second method uses an infrared-light-emitting diode and a phototransistor to evaluate the aggregate normal reflectance of an IGU at 940 nm. Both methods measure reflectance in the near (solar) infrared spectrum and are useful for distinguishing between regular and spectrally selective low-e coatings. The infrared-diode/phototransistor method appears promising for use in a low-cost, hand-held field test device.

Griffith, Brent; Kohler, Christian; Goudey, Howdy; Turler, Daniel; Arasteh, Dariush

1998-02-01T23:59:59.000Z

484

Reservoir characterization helping to sustain oil production in Thailand's Sirikit Field  

SciTech Connect

Sirikit field is located in the Phitsanulok basin of Thailand's north-central plains. The main reservoir sequence is some 400 m thick and comprises thin interbedded fluvio-lacustrine clay and sandstones. Initial oil volumes after exploration and appraisal drilling in 1981-1984 were estimated at some 180 million bbl. However, further development/appraisal drilling and the following up of new opportunities allowed a better delineation of the reservoirs, resulting in an increased STOIIP and recovery. Total in-place oil volumes were increased to 791 million bbl and the expectation of ultimate recovery to 133 million bbl. To date, 131 wells have been drilled, 65 MMstb have been produced, and production stands at 23,000 bbl/day. Extensive reservoir studies were among the techniques and methods used to assess whether water injection would be a viable further development option. A reservoir geological model was set up through (1) core studies, (2) a detailed sand correlation, and (3) reservoir quality mapping. This model showed that despite considerable heterogeneity most sands are continuous. Reservoir simulation indicated that water injection is viable in the north-central part of the field and that it will increase the Sirikit field reserves by 12 million; this is now part of Thai Shell's reserves portfolio. Injection will start in 1994. New up-to-date seismic and mapping techniques (still) using the old 3-D seismic data acquired in 1983 are being used for further reservoir delineation. This work is expected to result in a further reserve increase.

Shaafsma, C.E.; Phuthithammakul, S. (Thai Shell Exploration and Production Co. Ltd., Bangkok (Thailand))

1994-07-01T23:59:59.000Z

485

Reasons for production decline in the diatomite, Belridge oil field: a rock mechanics view  

Science Conference Proceedings (OSTI)

This paper summarizes research conducted on diatomite cores from the Belridge oil field in Kern County, CA. The study was undertaken to explain the rapid decline in oil production in diatomite wells by investigating three of six possible reasons. Characterization of the rock indicated that the rock was composed of principally amorphous opaline silica diatoms with only a trace of crystoballite quartz or chert quartz. Physical properties tests showed the diatomite to be of very low strength and plastic. It was established that longterm creep of diatomite into a propped fracture proceeds at a rate of approximately 1.5 microns/D (1.5 ..mu..m/d), a phenomenon that may contribute to rapid production declines. Also revealed was a matrix strength for the formation of about 1,325 psi (9136 kPa), a critical value to consider when depleting the reservoir. This also may help to explain the phase transformation to Opal CT around 2,000to 2,500-ft (610- to 762-m) depth.

Strickland, F.G.

1985-03-01T23:59:59.000Z

486

Renewable Energy Business Partnerships in China: Renewable Energy in China  

DOE Green Energy (OSTI)

China has rich potential for renewable energy development including wind energy, solar, biomass, hydropower, and geothermal. Fact sheet describes Chinas policy for attracting foreign investment, Chinas tax policy, import duties, currency exchange, and renewable joint ventures in China.

Not Available

2004-04-01T23:59:59.000Z

487

Renewable Energy Policy in China: Overview; Renewable Energy in China  

DOE Green Energy (OSTI)

China has rich potential for renewable energy development including wind energy, solar, biomass, hydropower, and geothermal. Fact sheet describes Chinas policy for developing renewable energy, policy objectives, subsidies, tax incentives, custom duties, and contact information.

Not Available

2004-04-01T23:59:59.000Z

488

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

489

INFORMATION FOR RENEWABLE ENERGY  

E-Print Network (OSTI)

to be 150 GW of wind power by 2020 and 20 GW of solar PV by 2020. The official targets in the 2007 RE Medium wind capacity before 2020. 8 New renewables account for biomass, solar, small hydro and wind power announced yet), to include a wind power target of 150 GW and a solar PV target of 20 GW by 2020

490

Renewables for Energy Conservation  

E-Print Network (OSTI)

) Massflowrate(kg/h) Hot Water Usage Patterns Selected #12;Monthly variation in energy requirement for electricalRenewables for Energy Conservation Rangan Banerjee Energy Systems Engineering IIT Bombay National Conference on "Energy Efficiency", Pune , 28th June2005 #12;ENERGY FLOW DIAGRAM PRIMARY ENERGY ENERGY

Banerjee, Rangan

491

Renewable Energy for Microenterprise  

DOE Green Energy (OSTI)

This guide provides readers with a broad understanding of the potential benefits that current renewable energy technologies can offer rural microenterprises. It also introduces the institutional approaches that have been developed to make RE technologies accessible to microentrepreneurs and the challenges that these entrepreneurs have encountered.

Allderdice, A.; Rogers, J.H.

2000-11-28T23:59:59.000Z

492

Offshore Renewable Energy Solutions  

E-Print Network (OSTI)

and sustainable energy supply. The UK is uniquely placed to harness its natural resources ­ wind, wave and tidalOffshore Renewable Energy Solutions #12;Cefas: meeting complex requirements The Centre science centre, Cefas provides a bridge between government and industry. We have unprecedented links

493

Energy Efficiency & Renewable Energy  

E-Print Network (OSTI)

's buildings and will provide hot water. Table 7: Summary of UTC Power 2009 Projects Source: Fuel Cells 2000Energy Efficiency & Renewable Energy 2009 FUEL CELL MARKET REPORT NOVEMBER 2010 #12;Authors was the result of hard work and valuable contributions from government staff and the fuel cell industry

494

EIA Renewable Energy- The Role of Renewable Energy Consumption in ...  

U.S. Energy Information Administration (EIA)

Pie graph and bar graph showing the percentage of renewable energy consumption in the Nation's overall energy supply

495

EIA Renewable Energy- Renewable Portfolio Standards by State  

U.S. Energy Information Administration (EIA)

Source: North Carolina Solar Center, Database of State Incentives for Renewable Energy (DSIRE) website: http://www.dsireusa.org ...

496

Utility Scale Renewables: Renewable and Efficiency Technology Integration (Presentation)  

Science Conference Proceedings (OSTI)

PowerPoint presentation given by Dave Mooney at the NREL Industry Forum on renewable and efficiency technology integration.

Mooney, D.

2009-11-04T23:59:59.000Z

497

RWE npower renewables | Open Energy Information  

Open Energy Info (EERE)

npower renewables npower renewables Jump to: navigation, search Name RWE npower renewables Place Wiltshire, England, United Kingdom Zip SN5 6PB Sector Hydro, Wind energy Product Develops wind generating assets in the UK which are then sold to Zephyr Investments. Operates a number of hydro plants in Scotland and Wales. Coordinates 51.324131°, -1.9257° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.324131,"lon":-1.9257,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

498

Pathfinder Renewable Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Pathfinder Renewable Wind Energy Pathfinder Renewable Wind Energy Jump to: navigation, search Name Pathfinder Renewable Wind Energy Place Casper, Wyoming Zip 82601 Sector Wind energy Product Wyoming-based wind project developer. Coordinates 42.850095°, -106.327734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.850095,"lon":-106.327734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

499

Eolian Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Eolian Renewable Energy LLC Eolian Renewable Energy LLC Jump to: navigation, search Name Eolian Renewable Energy LLC Place Portsmouth, New Hampshire Zip 3801 Sector Solar, Wind energy Product New Hampshire-based clean energy project developer, with focus on community wind and solar. Coordinates 36.832642°, -76.297715° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.832642,"lon":-76.297715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

500

Alderney Renewable Energy ARE | Open Energy Information  

Open Energy Info (EERE)

Alderney Renewable Energy ARE Alderney Renewable Energy ARE Jump to: navigation, search Name Alderney Renewable Energy (ARE) Place Alderney, Channel Islands, United Kingdom Zip GY9 3XY Product AREl develops Alderneyâ€(tm)s marine resource, including tidal and wave power. Coordinates 49.72303°, -2.20238° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.72303,"lon":-2.20238,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}