Powered by Deep Web Technologies
Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heat kernel of non-minimal gauge field kinetic operators on Moyal plane  

E-Print Network (OSTI)

We generalize the Endo formula originally developed for the computation of the heat kernel asymptotic expansion for non-minimal operators in commutative gauge theories to the noncommutative case. In this way, the first three non-zero heat trace coefficients of the non-minimal U(N) gauge field kinetic operator on the Moyal plane taken in an arbitrary background are calculated. We show that the non-planar part of the heat trace asymptotics is determined by U(1) sector of the gauge model. The non-planar or mixed heat kernel coefficients are shown to be gauge-fixing dependent in any dimension of space-time. In the case of the degenerate deformation parameter the lowest mixed coefficients in the heat expansion produce non-local gauge-fixing dependent singularities of the one-loop effective action that destroy the renormalizability of the U(N) model at one-loop level. The twisted-gauge transformation approach is discussed.

Alexei Strelchenko

2006-08-18T23:59:59.000Z

2

Heat Transfer Operators Associated with Quantum Operations  

E-Print Network (OSTI)

Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this article is the investigation of the relation between the HTOs and the associated quantum operations. Since, any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This article is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.

Ç. Aksak; S. Turgut

2011-04-14T23:59:59.000Z

3

Field Operations Program  

NLE Websites -- All DOE Office Websites (Extended Search)

688 688 May 1999 Field Operations Program Activities Status Report Fiscal Years 1997 through mid-1999 J. E. Francfort D. V. O'Hara L. A. Slezak DOE/ID-10688 Field Operations Program Activities Status Report Fiscal Years 1997 through mid-1999 J. E. Francfort 1 D. V. O'Hara 2 L. A. Slezak 2 Published May 1999 Idaho National Engineering and Environmental Laboratory Automotive Systems and Technology Department Lockheed Martin Idaho Technologies Company Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Idaho Operations Office 1 INEEL/Lockheed Martin Idaho Technologies Co. 2 U.S. Department of Energy iii EXECUTIVE SUMMARY The Field Operations Program is an electric vehicle testing and evaluation program sponsored by U.S. Department of Energy and managed by the Idaho National Engineering and Environmental

4

Heat pipes for use in a magnetic field  

DOE Patents (OSTI)

A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

Werner, R.W.; Hoffman, M.A.

1983-07-19T23:59:59.000Z

5

Heat kernel asymptotics for magnetic Schrödinger operators  

SciTech Connect

We explicitly construct parametrices for magnetic Schrödinger operators on R{sup d} and prove that they provide a complete small-t expansion for the corresponding heat kernel, both on and off the diagonal.

Bolte, Jens, E-mail: jens.bolte@rhul.ac.uk [Department of Mathematics, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom)] [Department of Mathematics, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Keppeler, Stefan, E-mail: stefan.keppeler@uni-tuebingen.de [Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)] [Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

2013-11-15T23:59:59.000Z

6

Renewable Combined Heat and Power Dairy Operations  

E-Print Network (OSTI)

horsepower Guascor model SFGLD-560 biogas-fired lean burn internal combustion (IC) engine and generator set and modify the existing biogas toelectricity combined heat and power (CHP) system operated at Fiscalini bacteria to remove hydrogen sulfide presented in the biogas. Source: Fiscalini Farms Term: March 2011

7

Operating and Maintaining Your Heat Pump | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operating and Maintaining Your Heat Pump Operating and Maintaining Your Heat Pump Operating and Maintaining Your Heat Pump June 24, 2012 - 3:22pm Addthis Changing filters regularly is an important part of maintaining a heat pump system. | Photo courtesy of ©iStockphoto/BanksPhotos Changing filters regularly is an important part of maintaining a heat pump system. | Photo courtesy of ©iStockphoto/BanksPhotos What does this mean for me? Learn to operate and maintain your heat pump system properly to maximize energy and money savings. You can do many operational and maintenance tasks yourself. Proper operation of your heat pump will save energy. Do not set back the heat pump's thermostat if it causes the backup heating to come on -- backup heating systems are usually more expensive to operate. Continuous indoor

8

TEMPERED OPERATORS AND THE HEAT KERNEL AND COMPLEX POWERS OF ELLIPTIC PSEUDODIFFERENTIAL OPERATORS  

E-Print Network (OSTI)

TEMPERED OPERATORS AND THE HEAT KERNEL AND COMPLEX POWERS OF ELLIPTIC PSEUDODIFFERENTIAL OPERATORS operator and complex powers of b-pseudodi#27;erential operators, as the heat operator and complex powers are the Laplace and Mellin transforms, respectively, of the resolvent. The heat operator and complex powers

Loya, Paul

9

Control and optimal operation of simple heat pump cycles  

E-Print Network (OSTI)

Control and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd Skogestad in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined

Skogestad, Sigurd

10

Hot Water Heating System Operation and Energy Conservation  

E-Print Network (OSTI)

Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

Shao, Z.; Chen, H.; Wei, P.

2006-01-01T23:59:59.000Z

11

Optimization of the Heating System Operation  

E-Print Network (OSTI)

on the basis of the variation of outdoor temperature, and in this way, the heating system can be optimized....

Xu, W.; Mao, S.

2006-01-01T23:59:59.000Z

12

Measurement of flow field and local heat transfer distribution on a scraped heat exchanger crystalliser surface  

E-Print Network (OSTI)

Measurement of flow field and local heat transfer distribution on a scraped heat exchanger geometry the flow field influence on the local heat transfer distribution on an evenly cooled scraped heat loss heat loss to the surroundings stst stainless steel plate lc thermo-chromic liquid crystal

Boyer, Edmond

13

Near-field radiative heat transfer for structured surfaces  

E-Print Network (OSTI)

We apply an analytical approach for determining the near-field radiative heat transfer between a metallic nanosphere and a planar semi-infinite medium with some given surface structure. This approach is based on a perturbative expansion, and evaluated to first order in the surface profile. With the help of numerical results obtained for some simple model geometries we discuss typical signatures that should be obtainable with a near-field scanning thermal microscope operated in either constant-height or constant-distance mode.

Svend-Age Biehs; Oliver Huth; Felix Rüting

2011-03-15T23:59:59.000Z

14

Project Profile: High Operating Temperature Liquid Metal Heat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800C. By allowing higher...

15

Project Profile: High Operating Temperature Liquid Metal Heat Transfer Fluids  

Energy.gov (U.S. Department of Energy (DOE))

The University of California, Los Angeles (UCLA), along with partners at the University of California, Berkeley, and Yale University, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800°C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall cost of electricity production.

16

Information operations with an excitable field  

Science Journals Connector (OSTI)

It is well established that a traveling wave can be generated on an excitable field, which is described with a pair of partial differential equations for an activator and inhibitor. In the present paper, we use a numerical simulation to show that the traveling wave, or signaling pulse, can be transmitted from an excitable field to an opposing excitable field via an intervening passive diffusion field in a characteristic manner depending on the spatial geometry of the excitable fields. Using such characteristics, it is possible to design various kinds of logic gates together with a time-sequential memory device. Thus, these functions can perform time-sensitive operations in the absence of any controlling clock. It may be possible to accomplish these computations with excitable fields in an actual system, or to create a “field computer” composed of electronic active and passive units.

Ikuko Motoike and Kenichi Yoshikawa

1999-05-01T23:59:59.000Z

17

Field Monitoring Protocol: Heat Pump Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

SHR Sensible heat ratio T&RH Temperature and relative humidity TC Thermocouple UA Heat loss coefficient v Table of Contents List of Figures ......

18

Field Measurements of Heating System Efficiency in Nine Electrically-Heated Manufactured Homes.  

SciTech Connect

This report presents the results of field measurements of heating efficiency performed on nine manufactured homes sited in the Pacific Northwest. The testing procedure collects real-time data on heating system energy use and heating zone temperatures, allowing direct calculation of heating system efficiency.

Davis, Bob; Siegel, J.; Palmiter, L.; Baylon, D.

1996-07-01T23:59:59.000Z

19

Field Operations Program Activities Status Report  

SciTech Connect

The Field Operations Program is an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed by the Idaho National Engineering and Environmental Laboratory. The Program's goals are to evaluate electric vehicles in real-world applications and environments, support electric vehicle technology advancement, develop infrastructure elements necessary to support significant electric vehicle use, support increased use of electric vehicles in federal fleets, and increase overall awareness and acceptance of electric vehicles. This report covers Program activities from fiscal year 1997 through mid-fiscal year 1999. The Field Operations Program succeeded the Site Operator Program, which ended in September 1996. Electric vehicle testing conducted by the Program includes baseline performance testing (EV America testing), accelerated reliability (life-cycle) testing, and fleet testing. The baseline performance parameters include accelerations, braking, range, energy efficiency, and charging time. The Program collects accelerated reliability and fleet operations data on electric vehicles operated by the Program's Qualified Vehicle Testing (QVT) partners. The Program's QVT partners have over 3 million miles of electric vehicle operating experience.

J. E. Francfort; D. V. O'Hara; L. A. Slezak

1999-05-01T23:59:59.000Z

20

E-Print Network 3.0 - as-operated heat loss Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

operated heat loss Search Powered by Explorit Topic List Advanced Search Sample search results for: as-operated heat loss Page: << < 1 2 3 4 5 > >> 1 Factsheet on Summer Heat Gain...

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The field test and optimization of a solar assisted heat pump system for space heating in extremely cold area  

Science Journals Connector (OSTI)

Abstract As a kind of sustainable energy source, solar energy is becoming highly valued. Especially in extremely cold areas, the amount of energy consumed for space heating is huge, and the conventional coal heating has polluted the environment seriously, therefore solar heating is significant on both energy and environment conservation. In this study, a solar assisted heat pump (SAHP) system was investigated for space heating under extremely cold climatic condition. The system principle and operation modes was presented, and then the project profile and design procedure were introduced, and finally the system performance was evaluated by field test on typical winter days and modeling via TRNSYS simulation environment. The results show that the solar collector efficiency was 51%, and the solar fraction can reach 66% in December. Economic analysis was also performed and the heating expenses for the present SAHP system was 18 RMB/m2. Finally, the temperatures of solar energy for both direct heating and storage and only for direct heating (T1A and T1B) were simulated and optimized, which have important significance on the operation time of different operation modes.

Huifang Liu; Yiqiang Jiang; Yang Yao

2014-01-01T23:59:59.000Z

22

Wireless Roadside Inspection Field Operations.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Operational Test (FOT) Field Operational Test (FOT) Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he U.S. Department of Transportation (DOT) Federal Motor Carrier Safety Administration (FMCSA) has commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the status of the vehicles and their drivers. It is hypothesized that

23

Electron Cyclotron Heating in a Non-Uniform Magnetic Field  

E-Print Network (OSTI)

Electron Cyclotron Heating in a Non-Uniform Magnetic Field by J.e. Sprott December 1968 Presented pulse. IN1RODUCTION Most previous theories of electron cyclotron resonance heating have dealt primarily will outline a simple theoretical model which can be used to estimate the electron cyclotron heating rate

Sprott, Julien Clinton

24

The nuclear heated steam reformer — Design and semitechnical operating experiences  

Science Journals Connector (OSTI)

Good operating experiences of the EVA I- and EVA II-plant have been described. Therin the comparison of the different catalyst concepts has been given. Further the behaviour of the bundle of EVA II plant by isolation of individual reformer tubes as well as the performance of the bundle under transient conditions have been explained. Different design concepts for a nuclear heated steam reformer based on the concentric tubes and baffles have been given. Main points of studies are constructional details, thermohydraulic of the bundle and stress analysis. It can be shown that the present standard of knowledge allows the application of the steam reformer for coal refinement with nuclear heat.

J. Singh; H.F. Niessen; R. Harth; H. Fedders; H. Reutler; W. Panknin; W.D. Müller; H.G. Harms

1984-01-01T23:59:59.000Z

25

High Operating Temperature Liquid Metal Heat Transfer Fluids  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet describes a UCLA-led solar project to investigate high operating temperature liquid metal heat transfer fluids, funded by the SunShot initiative. The project team is using a combination of modeling along with a variety of property measurement and validation studies to demonstrate that the metal alloys identified can meet all the needs of a concentrating solar power plant. A successful candidate fluid would allow for the reduction of the levelized cost of energy by increasing the operating temperature for the CSP plant power cycle, which would increase thermal-to-electric conversion efficiency.

26

Operation of the CAPRICE electron cyclotron resonance ion source applying frequency tuning and double frequency heating  

SciTech Connect

The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.

Maimone, F. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Universita degli Studi di Catania, D.M.F.C.I, Viale A. Doria 6, 95125 Catania (Italy); Tinschert, K.; Lang, R.; Maeder, J.; Rossbach, J.; Spaedtke, P. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Celona, L. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy)

2012-02-15T23:59:59.000Z

27

Modulation of near-field heat transfer between two gratings  

E-Print Network (OSTI)

We present a theoretical study of near-field heat transfer between two uniaxial anisotropic planar structures. We investigate how the distance and relative orientation (with respect to their optical axes) between the objects affect the heat flux. In particular, we show that by changing the angle between the optical axes it is possible in certain cases to modulate the net heat flux up to 90% at room temperature, and discuss possible applications of such a strong effect.

Svend-Age Biehs; Felipe S. S. Rosa; Philippe Ben-Abdallah

2011-05-18T23:59:59.000Z

28

Field Operations Management .:. Lawrence Berkeley National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Home OCFO Financial Calendar Home OCFO Financial Calendar Quicklinks: A-Z Index for the OCFO Berkeley Lab Home Contact Us: By Group Contact Us: By Subject Contact Us: Full Listing Employment Financial Systems Modernization (F$M) Fiscal Close Forms: By Group Forms: Full Listing Glossary OCFO EH&S OCFO HR OCFO Home Policies Signature Authority ---------------------------------- UCOP University of California DOE CFO U.S. Department of Energy --------------------------------- Cost Accounting Standards DOE Accounting Handbook Federal Accounting Standards Generally Accepted Accounting Principles OMB Circular Regulations & Procedures Manual (RPM) UC Accounting Manual UC/DOE Prime Contract (Contract 31) CFO Departments: Budget Office Business Systems Analysis Conference Services Controller's Office Field Operations Management Financial Policy & Assurance Procurement & Property Office of Sponsored Projects & Industry Partnerships Training Travel Office

29

Interagency Field Test Evaluates Co-operation of Turbines and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Interagency Field Test Evaluates Co-operation of Turbines and Radar Interagency Field Test Evaluates Co-operation of Turbines and Radar May 1, 2012 - 2:56pm Addthis The Department...

30

Control and optimal operation of simple heat pump cycles Jrgen B. Jensen and Sigurd Skogestad  

E-Print Network (OSTI)

Control and optimal operation of simple heat pump cycles Jørgen B. Jensen and Sigurd Skogestad cycle. Keywords: Operation, heat pump cycle, cyclic process, charge, self-optimizing control 1. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (re- frigerator, A

Skogestad, Sigurd

31

EAST ion cyclotron resonance heating system for long pulse operation  

Science Journals Connector (OSTI)

Abstract Radio frequency (RF) power in the ion cyclotron range of frequencies (ICRF) is one of the primary auxiliary heating techniques for Experimental Advanced Superconducting Tokamak (EAST). The ICRF system for EAST has been developed to support long-pulse high-? advanced tokamak fusion physics experiments. The ICRF system is capable of delivering 12 MW 1000-s RF power to the plasma through two antennas. The phasing between current straps of the antennas can be adjusted to optimize the RF power spectrum. The main technical features of the ICRF system are described. Each of the 8 ICRF transmitters has been successfully tested to 1.5 MW for a wide range of frequency (25–70 MHz) on a dummy load. Part of the ICRF system was in operation during the EAST 2012 spring experimental campaign and a maximum power of 800 kW (at 27 MHz) lasting for 30 s has been coupled for long pulse H mode operation.

Y.P. Zhao; X.J. Zhang; Y.Z. Mao; S. Yuan; D.Y. Xue; X. Deng; L. Wang; S.Q. Ju; Y. Cheng; C.M. Qin; G. Chen; Y. Lin; J.G. Li; B.N. Wan; Y.T. Song; F. Braun; R. Kumazawa; S. Wukitch

2014-01-01T23:59:59.000Z

32

Conduct of Operations Assessment Field Handbook  

Office of Environmental Management (EM)

may be questioned on areas (as applicable to their position) such as: Facility fundamentals topics: heat transfer, fluid flow, and thermodynamics; electrical science;...

33

Thermal analysis of an innovative heat pump operated desalination plant  

SciTech Connect

Sea and brackish water desalination can contribute to solve the problem of fresh water shortage in many and regions of the world. Nowadays most of the installed desalination plants employ distillation processes, like Multistage Flash (MSF), Multi effect Distillation (MED) and Vapor Compression (VC). VC process is called Mechanical Vapor Compression (MVC) when it employs a mechanical compressor, while it is called Thermal Compression when it employs a steam-ejector compressor. In this paper a new distillation plant for the treatment of sea water for drinking water purposes is presented. The most innovative feature of this system is the use of a heat pump as part of the desalting unit. The use of the heat pump in the proposed system enables desalting water evaporation and steam condensation at the same temperature, unlike conventional VC desalting systems where a steam compression stage is necessary. A thermal analysis of the heat pump-operated desalination (HPD) plant and a comparison between the HPD and a conventional MVC plant is presented, in order to determine the main advantages and disadvantages of the new system.

Site, V.D. [National Research Council of Italy, Rome (Italy)

1995-12-31T23:59:59.000Z

34

Heat Kernel for Fractional Diffusion Operators with Perturbations  

E-Print Network (OSTI)

Let $L$ be an elliptic differential operator on a complete connected Riemannian manifold $M$ such that the associated heat kernel has two-sided Gaussian bounds as well as a Gaussian type gradient estimate. Let $L^{(\\aa)}$ be the $\\aa$-stable subordination of $L$ for $\\aa\\in (1,2).$ We found some classes $\\mathbb K_\\aa^{\\gg,\\bb} (\\bb,\\gg\\in [0,\\aa))$ of time-space functions containing the Kato class, such that for any measurable $b: [0,\\infty)\\times M\\to TM$ and $c: [0,\\infty)\\times M\\to M$ with $|b|, c\\in \\mathbb K_\\aa^{1,1},$ the operator $$L_{b,c}^{(\\aa)}(t,x):= L^{(\\aa)}(x)+ +c(t,x),\\ \\ (t,x)\\in [0,\\infty)\\times M$$ has a unique heat kernel $p_{b,c}^{(\\aa)}(t,x;s,y), 0\\le s1$, where $\\rr$ is the Riemannian distance. The estimate of $\

Feng-Yu Wang; Xicheng Zhang

2012-04-23T23:59:59.000Z

35

SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

High Operating Temperature Liquid High Operating Temperature Liquid Metal Heat Transfer Fluids to someone by E-mail Share SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Facebook Tweet about SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Twitter Bookmark SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Google Bookmark SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Delicious Rank SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Digg Find More places to share SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards

36

Influence of the non-linearity of the collision operator on ion cyclotron resonance heating  

Science Journals Connector (OSTI)

The distribution function of ions heated in the ion cyclotron range of frequencies is obtained by solving the Fokker–Planck equation. For non-minority heating scenarios, the full non-linear Coulomb collision operator must be used in this equation. A method of resolution accounting for the complexity of this operator is presented. We consider a plasma immersed in a homogeneous magnetic field. The adopted method of resolution is based on an expansion of the distribution function in a series of Legendre polynomials. Results of the corresponding code non-linear Fokker–Planck in two-dimensional velocity space (NLFP-2D) are discussed for experimentally relevant JET-like parameters. The convergence of the Legendre expansion has been tested and the importance of the non-linear effects has been shown. Three different regimes, characterized by different modes of indirect ion heating and depending on the absorbed RF power density as well as the minority concentration, were identified. The NLFP-2D code has been used to study the validity of the Maxwellian approximation of the self-collision operator. One finds that this model is only correct in a very limited range of parameters, and leads mostly to an overestimation of the indirect ion heating.

F Louche

2004-01-01T23:59:59.000Z

37

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH  

E-Print Network (OSTI)

00149 -1- 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH R-1234yf Sorina Mortada, Ph.D. student, Center for Energy and Processes Abstract: Significant improvements in energy performance of air-to-air heat pumps are the major reason

Paris-Sud XI, Université de

38

Dynamic optimization of heated oil pipeline operation using PSO–DE algorithm  

Science Journals Connector (OSTI)

Abstract Crude oil, with relatively high viscosity, freezing-point and content of wax, is usually transported by heated oil pipelines (HOP) containing many pumping and heating stations. There are many different selections of operation parameters or values of pumps and heating furnaces, but all these different “selections” can satisfy output task and safety requirements. The power and fuel cost of pumping and heating account for 1–3% of the total energy consumption. For the energy saving purpose, it is necessary to optimize the HOP operations. In this paper a dynamic model of HOP was proposed and used to calculate the soil temperature field outside HOP, and then both the spatial and temporal distributions of pressure and temperature of field inside HOP. Using this calculation method and its results, an optimization model is established aiming at minimizing energy cost of running HOP, with outlet temperatures of each heating station, on–off states of each pump, and their head matrix of delivery as the optimization variables. Then a mixed algorithm combining differential evolution algorithm with particle swarm optimization algorithm is used to solve this model. The optimization results are applied to Rizhao–Yizheng digital long distance HOP (375 km). Research shows that: verified by real time data acquired by the SCADA, the relative error of the dynamic model’s result is 4.042%, much less than that of the steady-state model’s result (22.67%). The optimized operation scheme can save 17.59% of energy cost for oil transportation task of 2640 m3/h. Energy saving effect is remarkable.

Ming Zhou; Yu Zhang; Shijiu Jin

2015-01-01T23:59:59.000Z

39

Sample heating in near-field scanning optical microscopy  

E-Print Network (OSTI)

Heating near the aperture of aluminumcoated,fiber opticnear-field scanning optical microscopy probes was studied as a function of input and output powers. Using the shear-force feedback method, near-field probes were positioned nanometers above a...

Erickson, Elizabeth S.; Dunn, Robert C.

2005-10-05T23:59:59.000Z

40

7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily.  

E-Print Network (OSTI)

7-47 7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily. HP Wnet,in QH QL TL TH Analysis The maximum heat pump coefficient of performance would occur if the heat pump were completely reversible, 5.7 K026K300 K300 COP maxHP, LH H TT

Bahrami, Majid

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Methods for providing heat to electric operated LNG plant.  

E-Print Network (OSTI)

??Hammerfest LNG plant, located at Melkøya outside Hammerfest, is supplied with heat and power from an on-site combined heat and power (CHP-) plant. This natural… (more)

Tangås, Cecilie Magrethe

2010-01-01T23:59:59.000Z

42

Field synergy principle analysis for reducing natural convection heat loss of a solar cavity receiver  

Science Journals Connector (OSTI)

Abstract Due to the operating temperature from 900 K to 1300 K produced by the concentrating ratio over 2000 in solar parabolic dish-engine system, the natural convection heat loss driven by the buoyancy force of air contributes an important role in the energy loss of cavity receiver. 3-D numerical simulations were performed and the results are analyzed from the novel viewpoint of field synergy principle (FSP) in order to study the heat transfer and fluid flow characteristics in natural convection heat loss of cavity receiver. The effects of geometric parameters, including the inclination angle, aperture size, aperture position and cavity geometric shape on the natural convection heat loss of cavity receiver were examined. The FSP analysis on the simulation results demonstrates that FSP can well explain the reduction mechanism for natural convection heat loss of cavity receiver because the smaller inner production of velocity vector and temperature gradient always corresponds to the lower Nusselt number occurred in the cases with lager inclination angle, smaller aperture size, lower aperture position and frustum-cylinder cavity, respectively. Therefore, the reducing natural convection heat loss attributes to the weakening synergy between velocity vector and temperature gradient. In addition, the local heat transfer performance is studied by the presented distributions of heat transferred via fluid motion, where more interesting natural convection heat loss characteristics of cavity receiver and the detailed explanations were provided. The results of this work offer benefits for the development of theory and technique about reducing natural convection heat loss of cavity receiver.

Yuqiang Li; Gang Liu; Zhenghua Rao; Shengming Liao

2015-01-01T23:59:59.000Z

43

Field application of a chemical heat and nitrogen generating system  

SciTech Connect

Heat is often required to stimulate production in wells with recurrent histories of paraffin deposition and plugging. A chemical system which produces heat and nitrogen at a predetermined well depth is proposed as an alternative to the traditional hot oil and steam generation treatments. The system is described briefly and case histories are given for 3 wells in California and 5 wells in Wyoming. The field results indicate that heat produced by the nitrogen generating system effectively stimulates production from paraffin plugged wells. The heat and nitrogen generating system further shows increased production cycle lengths over those which result from hot oil or paraffin solvent treatments. Beneficial effects of including a paraffin inhibitor in the treatment design are discussed, along with other potential applications for the heat produced by this system.

Mitchell, T.I.; Collesi, J.B.; Donovan, S.C.; McSpadden, H.W.

1984-04-01T23:59:59.000Z

44

Heat pulse propagation in chaotic 3-dimensional magnetic fields  

E-Print Network (OSTI)

Heat pulse propagation in $3$-D chaotic magnetic fields is studied by solving the parallel heat transport equation using a Lagrangian-Green's function (LG) method. The LG method provides an efficient and accurate technique that circumvents limitations of finite elements and finite difference methods. The main two problems addressed are: (i) The dependence of the radial transport on the magnetic field stochasticity (controlled by the amplitude of the perturbation, $\\epsilon$); and (ii) The role of reversed shear configurations on pulse propagation. In all the cases considered there are no magnetic flux surfaces. However, radial transport is observed to depend strongly on $\\epsilon$ due to the presence of high-order magnetic islands and Cantori that act as quasi-transport barriers that preclude the radial penetration of heat pulses within physically relevant time scale. The dependence of the magnetic field connection length, $\\ell_B$, on $\\epsilon$ is studied in detail. The decay rate of the temperature maximum...

del-Castillo-Negrete, D

2014-01-01T23:59:59.000Z

45

Degrees of freedom and optimal operation of simple heat pump cycles  

E-Print Network (OSTI)

Degrees of freedom and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined as COPh = Qh

Skogestad, Sigurd

46

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network (OSTI)

solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

47

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

2011-01-01T23:59:59.000Z

48

Improving Heating System Operations Using Water Re-Circulation  

E-Print Network (OSTI)

In order to solve the imbalance problem of a heating system, brought about by consumer demand and regulation, and save the electricity energy consumed by a circulation pump, a water mixing and pressure difference control heating system is proposed...

Li, F.; Han, J.

2006-01-01T23:59:59.000Z

49

The Hardy inequality and the heat equation with magnetic field in any dimension  

E-Print Network (OSTI)

In the Euclidean space of any dimension d, we consider the heat semigroup generated by the magnetic Schroedinger operator from which an inverse-square potential is subtracted in order to make the operator critical in the magnetic-free case. Assuming that the magnetic field is compactly supported, we show that the polynomial large-time behaviour of the heat semigroup is determined by the eigenvalue problem for a magnetic Schroedinger operator on the (d-1)-dimensional sphere whose vector potential reflects the behaviour of the magnetic field at the space infinity. From the spectral problem on the sphere, we deduce that in d=2 there is an improvement of the decay rate of the heat semigroup by a polynomial factor with power proportional to the distance of the total magnetic flux to the discrete set of flux quanta, while there is no extra polynomial decay rate in higher dimensions. To prove the results, we establish new magnetic Hardy-type inequalities for the Schroedinger operator and develop the method of self-similar variables and weighted Sobolev spaces for the associated heat equation.

Cristian Cazacu; David Krejcirik

2014-09-23T23:59:59.000Z

50

Near-field heat transfer between gold nanoparticle arrays  

SciTech Connect

The radiative heat transfer between gold nanoparticle layers is presented using the coupled dipole method. Gold nanoparticles are modelled as effective electric and magnetic dipoles interacting via electromagnetic fluctuations. The effect of higher-order multipoles is implemented in the expression of electric polarizability to calculate the interactions at short distances. Our findings show that the near-field radiation reduces as the radius of the nanoparticles is increased. Also, the magnetic dipole contribution to the heat exchange becomes more important for larger particles. When one layer is displayed in parallel with respect to the other layer, the near-field heat transfer exhibits oscillatory-like features due to the influence of the individual nanostructures. Further details about the effect of the nanoparticles size are also discussed.

Phan, Anh D., E-mail: anhphan@mail.usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 10000 (Viet Nam); Phan, The-Long, E-mail: ptlong2512@yahoo.com [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Woods, Lilia M. [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

2013-12-07T23:59:59.000Z

51

Numerical Study of Convective Heat Transfer in Flat Tube Heat Exchangers Operating in Self-Sustained Oscillatory Flow Regimes  

E-Print Network (OSTI)

Laminar, two-dimensional, constant-property numerical simulations of flat tube heat exchanger devices operating in flow regimes in which self-sustained oscillations occur were performed. The unsteady flow regimes were transition flow regimes...

Fullerton, Tracy

2012-02-14T23:59:59.000Z

52

Inverse bremsstrahlung heating rate for dense plasmas in laser fields  

SciTech Connect

We report a theoretical analysis of inverse bremsstrahlung heating rate in the eikonal approximation. The present analysis is performed for a dense plasma using the screened electron-ion interaction potential for the ion charge state Z{sub i} = 1 and for both the weak and strong plasma screening cases. We have also compared the eikonal results with the first Born approximation (FBA) [M. Moll et al., New J. Phys. 14, 065010 (2012)] calculation. We find that the magnitudes of inverse bremsstrahlung heating rate within the eikonal approximation (EA) are larger than the FBA values in the weak screening case (? = 0.03 a.u.) in a wide range of field strength for three different initial electron momenta (2, 3, and 4 a.u.). But for strong screening case (? = 0.3 a.u.), the heating rates predicted by the two approximations do not differ much after reaching their maximum values. Furthermore, the individual contribution of photoemission and photoabsorption processes to heating rate is analysed for both the weak and strong screening cases. We find that the single photoemission and photoabsorption rates are the same throughout the field strength while the multiphoton absorption process dominates over the multiphoton emission process beyond the field strength ? 4×10{sup 8} V/cm. The present study of the dependence of heating rate on the screening parameter ranging from 0.01 to 20 shows that whereas the heating rate predicted by the EA is greater than the FBA up to the screening parameter ? = 0.3 a.u., the two approximation methods yield results which are nearly identical beyond the above value.

Dey, R. [D-203, Samruddhi Residency, Motera, Ahmedabad-380009, Gujarat (India)] [D-203, Samruddhi Residency, Motera, Ahmedabad-380009, Gujarat (India); Roy, A. C. [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math 711202, West Bengal (India)] [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math 711202, West Bengal (India)

2013-07-15T23:59:59.000Z

53

Heat pulse propagation in chaotic 3-dimensional magnetic fields  

E-Print Network (OSTI)

Heat pulse propagation in $3$-D chaotic magnetic fields is studied by solving the parallel heat transport equation using a Lagrangian-Green's function (LG) method. The LG method provides an efficient and accurate technique that circumvents limitations of finite elements and finite difference methods. The main two problems addressed are: (i) The dependence of the radial transport on the magnetic field stochasticity (controlled by the amplitude of the perturbation, $\\epsilon$); and (ii) The role of reversed shear configurations on pulse propagation. In all the cases considered there are no magnetic flux surfaces. However, radial transport is observed to depend strongly on $\\epsilon$ due to the presence of high-order magnetic islands and Cantori that act as quasi-transport barriers that preclude the radial penetration of heat pulses within physically relevant time scale. The dependence of the magnetic field connection length, $\\ell_B$, on $\\epsilon$ is studied in detail. The decay rate of the temperature maximum, $\\langle T \\rangle_{max}(t)$, the time delay of the temperature response as function of the radius, $\\tau$, and the radial heat flux $\\langle {{\\bf q}\\cdot {\\hat e}_\\psi} \\rangle$, are also studied as functions of the magnetic field stochasticity and $\\ell_B$. In all cases, the scaling of $\\langle T \\rangle_{max}$ with $t$ transitions from sub-diffusive, $\\langle T \\rangle_{max} \\sim t^{-1/4}$, at short times ($\\chi_\\parallel t 10^5$). A strong dependence on $\\epsilon$ is also observed on $\\tau$ and $\\langle {{\\bf q}\\cdot {\\hat e}_\\psi} \\rangle$. The radial propagation of pulses in fully chaotic fields considerably slows down in the shear reversal region and, as a result, $\\tau$, in reversed shear configurations is an order of magnitude longer than the one in monotonic $q$-profiles.

D. del-Castillo-Negrete; D. Blazevski

2014-09-10T23:59:59.000Z

54

Heat-and-Run: Leveraging SMT and CMP to Manage Power Density Through the Operating System  

E-Print Network (OSTI)

Heat-and-Run: Leveraging SMT and CMP to Manage Power Density Through the Operating System Mohamed and thermal ability of packages to dissipate heat. Power den- sity is characterized by localized chip hot Performance, Reliability Keywords Power density, heat, CMP, SMT, migration 1 INTRODUCTION Power

Vijaykumar, T. N.

55

Optimal Operation of closed cycles for heating and Jrgen B. Jensen Sigurd Skogestad  

E-Print Network (OSTI)

super-heating, pressure, liquid level or valve set-point. Unlike open systems the initial charge applications have also merged together to give a system able to operate in both heating and cooling mode indicates that 33% of the gained heat is addet as electricity. In industrial processes, especially

Skogestad, Sigurd

56

Influence of the pulsating electric field on the ECR heating in a nonuniform magnetic field  

SciTech Connect

According to a computer simulation, the randomized pulsating electric field can strongly influence the ECR plasma heating in a nonuniform magnetic field. It has been found out that the electron energy spectrum is shifted to the high energy region. The obtained effect is intended to be used in the ECR sources for effective X-ray generation.

Balmashnov, A. A., E-mail: abalmashnov@sci.pfu.edu.ru; Umnov, A. M. [People's Friendship University of Russia (Russian Federation)

2011-12-15T23:59:59.000Z

57

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

1996-06-11T23:59:59.000Z

58

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

1996-01-01T23:59:59.000Z

59

Performance of Horizontal Field Earth-Coupled Heat Pumps  

E-Print Network (OSTI)

An alternative to traditional methods of residential heating and cooling is the heat pump. However, heat pumps which use the outside air as a heat source/sink become inefficient during the periods of highest demand. Another possible heat source...

Abbott, C. A.

1986-01-01T23:59:59.000Z

60

Experimental performance analysis of a solar assisted ground source heat pump system under different heating operation modes  

Science Journals Connector (OSTI)

Abstract This paper presents an experimental study on the influence of operation modes on the heating performance of a solar assisted ground source heat pump system (SAGSHPS). Through experiments conducted in January, the characteristics of the SAGSHPS were investigated under different heating operation modes. The results indicate that the solar thermal could be used to accelerate the soil recovery when the heat pump unit is turned off, but the duration of solar use to recharge boreholes should be optimized according to the water temperature in the solar heat storage water tank to avoid unnecessary power consumption of the circulation pump. In addition, the solar heat storage water tank is beneficial for the stable operation of the SAGSHPS. The volumetric flow rate in the water tank has a significant impact on the electricity consumption of the SAGSHPS. From comprehensive analysis of the integral effect of the SAGSHPS under different modes, the mode in which the water tank is connected with the ground heat exchangers (GHES) in series is the recommended mode for the SAGSHPS in the coldest month in Dalian.

Lanhua Dai; Sufen Li; Lin DuanMu; Xiangli Li; Yan Shang; Ming Dong

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids  

SciTech Connect

An experimental study was performed to investigate the operation characteristics of a cylindrical miniature grooved heat pipe using aqueous CuO nanofluid as the working fluid at some steady cooling conditions. The experiments were carried out under both the steady operation process and the unsteady startup process. The experiment results show that substituting the nanofluid for water as the working fluid can apparently improve the thermal performance of the heat pipe for steady operation. The total heat resistance and the maximum heat removal capacity of the heat pipe using nanofluids can maximally reduce by 50% and increase by 40% compared with that of the heat pipe using water, respectively. For unsteady startup process, substituting the nanofluid for water as the working fluid, cannot only improve the thermal performance, but also reduce significantly the startup time. (author)

Wang, Guo-Shan; Song, Bin; Liu, Zhen-Hua [School of Mechanical Engineering, Shanghai Jiaotong University, 200240 Shanghai (China)

2010-11-15T23:59:59.000Z

62

Qubit-Programmable Operations on Quantum Light Fields  

E-Print Network (OSTI)

Engineering quantum operations is one of the main abilities we need for developing quantum technologies and designing new fundamental tests. Here we propose a scheme for realising a controlled operation acting on a travelling quantum field, whose functioning is determined by an input qubit. This study introduces new concepts and methods in the interface of continuous- and discrete-variable quantum optical systems.

Marco Barbieri; Nicolò Spagnolo; Franck Ferreyrol; Rémi Blandino; Brian J. Smith; Rosa Tualle-Brouri

2014-12-01T23:59:59.000Z

63

Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters

64

Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant  

E-Print Network (OSTI)

Heating Water Suuply Chilled Water Return Heating Water Return To User New System ESL-IC-08-10-57 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 2 attract attention due..., R6 450 1, 1 ESL-IC-08-10-57 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 3 (one office building and one building with hotel rooms and leisure facilities) since November...

Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

65

Field Performance of Heat Pump Water Heaters in the Northeast, Massachusetts and Rhode Island (Fact Sheet)  

SciTech Connect

Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring, A.O. Smith Voltex, and Stiebel Eltron Accelera 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

Not Available

2013-12-01T23:59:59.000Z

66

Heat Kernel Coefficients for Two-Dimensional Schrodinger Operators  

E-Print Network (OSTI)

In this note, we compute the Hadamard coefficients of (algebraically) integrable Schrodinger operators in two dimensions. These operators first appeared in [BL] and [B] in connection with Huygens' principle, and our result completes, in a sense, the investigation initiated in those papers.

Yuri Berest; Tim Cramer; Farkhod Eshmatov

2007-10-26T23:59:59.000Z

67

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network (OSTI)

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Svend-Age Biehs

2011-03-15T23:59:59.000Z

68

High Operating Temperature Liquid Metal Heat Transfer Fluids  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Metal Liquid Metal Heat Transfer Fluids UCLA, UCB, Yale DE-EE0005941 | April 15, 2013 | Ju 1.1 Thermochemistry modeling * Continue CALPHAD based calculations to search for optimal ternary alloy compositions. * Initiate development of liquid density models. 1.2 Combinatorial synthesis and characterization * Pipe-Liquid interaction of compositional library * More alloys, alloy additions and effect on liquidus temperatures * Iteratively optimize the compositions. 1.3 Corrosion characterization and mitigation * Tune static corrosion testing systems for testing over an extended period of time. * Perform analysis of the micro mechanical testing on the oxide layers. 1.4 Heat transfer characterization and modeling * Complete the construction of the flow loop and perform experiments to measure

69

Parallel heat transport in integrable and chaotic magnetic fields  

SciTech Connect

The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

Castillo-Negrete, D. del; Chacon, L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)

2012-05-15T23:59:59.000Z

70

Parallel heat transport in integrable and chaotic magnetic fields  

SciTech Connect

The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly chal- lenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), , and the perpendicular, , conductivities ( / may exceed 1010 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green s function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geom- etry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island chain), weakly chaotic (devil s staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local closures, is non-diffusive, thus casting doubts on the appropriateness of the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

Del-Castillo-Negrete, Diego B [ORNL; Chacon, Luis [ORNL

2012-01-01T23:59:59.000Z

71

Heating, Current Drive, Operations and Diagnostics Issues Understand implications of reduced repetition rate, is it adequate for the  

E-Print Network (OSTI)

Heating, Current Drive, Operations and Diagnostics Issues Operations · Understand implications of ECRH to improve startup. Heating · ICRF is the base line heating system, compare with NBI and ECRH withstand the anticipated heat loads? Diagnostics · Capability of beam diagnostics for J(r), E(r), etc

72

Performance of an experimental ground-coupled heat pump system for heating, cooling and domestic hot-water operation  

Science Journals Connector (OSTI)

Abstract The ground-coupled heat pump (GCHP) system is a type of renewable energy technology providing space heating and cooling as well as domestic hot water. However, experimental studies on GCHP systems are still insufficient. This paper first presents an energy-operational optimisation device for a GCHP system involving insertion of a buffer tank between the heat pump unit and fan coil units and consumer supply using quantitative adjustment with a variable speed circulating pump. Then, the experimental measurements are used to test the performance of the GCHP system in different operating modes. The main performance parameters (energy efficiency and CO2 emissions) are obtained for one month of operation using both classical and optimised adjustment of the GCHP system, and a comparative analysis of these performances is performed. In addition, using TRNSYS (Transient Systems Simulation) software, two simulation models of thermal energy consumption in heating, cooling and domestic hot-water operation are developed. Finally, the simulations obtained using TRNSYS are analysed and compared to experimental data, resulting in good agreement and thus the simulation models are validated.

Calin Sebarchievici; Ioan Sarbu

2015-01-01T23:59:59.000Z

73

Automated particulate sampler field test model operations guide  

SciTech Connect

The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.

Bowyer, S.M.; Miley, H.S.

1996-10-01T23:59:59.000Z

74

Stochastic Mean Field Model of Heat Engine partitioned by Fluctuating Piston  

E-Print Network (OSTI)

We propose a stochastic mean field model of heat engine partitioned by a finite-mass piston. The time evolution equations for the density and the temperature of the enclosed gas are proposed, taking into account the stochastic equation of motion of the piston, and the energy conservation for the gas. Though the heat cycle consisting of finite-time heating and cooling processes is under strong non-equilibrium situations, i. e., the ratio of temperatures of two reservoirs is large, we analyze the efficiency and the power, and derive the semi-analytical expression for the efficiency. We find that the obtained efficiency at the maximum power operation is close to the Chambadal-Novikov-Curzon-Ahlborn (CNCA) efficiency, if the piston is sufficiently heavy and elastic for collisions with particles, even when the system is far from equilibrium. However, the extra heat due to the finiteness of the piston-mass or its inelasticity lowers the efficiency from the CNCA efficiency. The results of our stochastic mean field model are consistent with those for our event driven molecular dynamics simulation.

Tomohiko G. Sano; Hisao Hayakawa

2014-12-15T23:59:59.000Z

75

VAPOR COMPRESSION HEAT PUMP SYSTEM FIELD TESTS AT THE TECH COMPLEX  

E-Print Network (OSTI)

323 CHAPTER 17 VAPOR COMPRESSION HEAT PUMP SYSTEM FIELD TESTS AT THE TECH COMPLEX \\B E Van D for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series

Oak Ridge National Laboratory

76

The influence of a magnetic field on turbulent heat transfer of a high Prandtl number fluid  

E-Print Network (OSTI)

The influence of a magnetic field on turbulent heat transfer of a high Prandtl number fluid H magnetic field on the local and average heat transfer of an electrically conducting, turbulent fluid flow with high Prandtl number was studied experimentally. The mechanism of heat transfer modification due

Abdou, Mohamed

77

Remote control of ion channels and neurons through magnetic-field heating of nanoparticles  

E-Print Network (OSTI)

Remote control of ion channels and neurons through magnetic-field heating of nanoparticles Heng. Here, we show an approach based on radio-frequency magnetic-field heating of nanoparticles to remotely targeted to specific proteins on the plasma membrane of cells expressing TRPV1, and heated by a radio

Ferkey, Denise

78

Fuel Requirements and Energy Savings Tips for Field Operations  

E-Print Network (OSTI)

of gasoline than diesel fuel to perform the same field operation because diesel engines are more fuel efficient than gasoline engines. FUEL CONSERVATION METHODS Farmers can consider numerous measures to reduce Matching implement size to tractor size can result in fuel savings. In general, if implements are matched

Goodman, Robert M.

79

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network (OSTI)

was used to calculate the PWC of the system for annual operating hours of 8760 and the same is compared with the electric based vapour compression chiller (VCRS) of same capacity. The life cycle cost (LCC) of waste heat operated absorption chiller...

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

80

Remote arctic drilling operations in Russia, case history of Ardalin field operations, Timan Pechora Basin  

SciTech Connect

In developing the Ardalin field, the Polar Lights Company merged Russian and western expertise to conduct drilling operations in a hostile and ecologically sensitive arctic tundra environment. The field is located above the Arctic Circle in northern Russia. The nearest Russian road system is over 60km away and the nearest railhead is 240 km from the field. Three Russian rigs were constructed with selected western upgrades, twelve development wells were drilled, and three existing Russian wells were worked over within a 24 month period. Operations were supported with a snow road in the winter season and Russian helicopter in the summer season. All materials for one year`s worth of drilling had to be transported to the field prior to break-up (end of trucking activities on the snow roads). Services and equipment were sourced from both inside and outside of the Commonwealth of Independent States (CIS). Temperatures in winter reached -45{degrees}C. The field is located in one of the most ecologically sensitive areas in the world, and numerous precautions were taken for the protection of the environment. Russian operating philosophies were successfully merged with western practices. This paper will focus on the operational criteria initiated and infrastructure system that evolved to support this project.

Reyna, E.M.; Nicholson, S.; Brady, S.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A detailed MILP optimization model for combined cooling, heat and power system operation planning  

Science Journals Connector (OSTI)

Abstract A detailed optimization model is presented for planning the short-term operation of combined cooling, heat and power (CCHP) energy systems. The purpose is, given the design of a cogeneration system, to determine an operating schedule that minimizes the total operating and maintenance costs minus the revenue due to the electricity sold to the grid, while taking into account time-varying loads, tariffs and ambient conditions. The model considers the simultaneous use of different prime movers (generating electricity and heat), boilers, compression heat pumps and chillers, and absorption chillers to satisfy given electricity, heat and cooling demands. Heat and cooling load can be stored in storage tanks. Units can have one or two operative variables, highly nonlinear performance curves describing their off-design behavior, and limitations or penalizations affecting their start-up/shut-down operations. To exploit the effectiveness of state-of-the-art Mixed Integer Linear Program (MILP) solvers, the resulting Mixed Integer Nonlinear Programming (MINLP) model is converted into a MILP by appropriate piecewise linear approximation of the nonlinear performance curves. The model, written in the AMPL modeling language, has been tested on several plant test cases. The computational results are discussed in terms of the quality of the solutions, the linearization accuracy and the computational time.

Aldo Bischi; Leonardo Taccari; Emanuele Martelli; Edoardo Amaldi; Giampaolo Manzolini; Paolo Silva; Stefano Campanari; Ennio Macchi

2014-01-01T23:59:59.000Z

82

Optimal Operation of a Waste Incineration Plant for District Heating Johannes Jaschke, Helge Smedsrud, Sigurd Skogestad*, Henrik Manum  

E-Print Network (OSTI)

Optimal Operation of a Waste Incineration Plant for District Heating Johannes J¨aschke, Helge@chemeng.ntnu.no off-line. This systematic approach is here applied to a waste incineration plant for district heating. In district heating networks, operators usually wish to ob- tain the lowest possible return temperature

Skogestad, Sigurd

83

Mailing Addresses and Information Numbers for Operations, Field, and Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Energy.gov » Mailing Addresses and Information Numbers for About Energy.gov » Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Name Telephone Number U.S. Department of Energy Ames Site Office 111 TASF, Iowa State University Ames, Iowa 50011 515-294-9557 U.S. Department of Energy Argonne Site Office 9800 S. Cass Avenue Argonne, IL 60439 630-252-2000 U.S. Department of Energy Berkeley Site Office Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 510-486-5784 U.S. Department of Energy Bonneville Power Administration P.O. Box 3621 905 NE 11th Avenue Portland, OR 97232 Bonneville Power Administration General and Regional Offices 503-230-3000 U.S. Department of Energy Brookhaven Site Office Upton, NY 11973 631-344-5050

84

High Magnetic Field Processing - A Heat-Free Heat Treating Method  

SciTech Connect

The High and Thermal Magnetic Processing/Electro-magnetic Acoustic Transducer (HTMP/EMAT) technology has been shown to be an enabling disruptive materials processing technology, that can achieve significant improvements in microstructure and consequently material performance beyond that achievable through conventional processing, and will lead to the next generation of advanced performance structural and functional materials. HTMP exposure increased the reaction kinetics enabling refinement of microstructural features such as finer martensite lath size, and finer, more copious, homogeneous dispersions of strengthening carbides leading to combined strength and toughness improvements in bainitic steels. When induction heating is applied in a high magnetic field environment, the induction heating coil is configured so that high intensity acoustic/ultrasonic treatment occurs naturally. The configuration results in a highly effective electromagnetic acoustical transducer (EMAT). HTMP combined with applying high-field EMAT, produce a non-contact ultrasonic treatment that can be used to process metal alloys in either the liquid state resulting in significant microstructural changes over conventional processing. Proof-of-principle experiments on cast irons resulted in homogeneous microstructures in small castings along with improved casting surface appearance. The experiment showed that by exposing liquid metal to the non-contact acoustic/ultrasonic processing technology developed using HMFP/EMAT wrought-like microstructures were developed in cast components. This Energy Intensive Processes (EIP) project sponsored by the DOE EERE Advanced Manufacturing Office (AMO) demonstrated the following: (1) The reduction of retained austenite in high carbon/high alloy steels with an ambient temperature HTMP process, replacing either a cryogenic or double tempering thermal process normally employed to accomplish retained austenite transformation. HTMP can be described as a 'heat-free', heat treating technology. Lower residual stresses in HTMP treated materials are anticipated since no thermal strains are involved in inducing the transformation of retained austenite to martensite in high alloy steel. (2) The simultaneous increase of 12% in yield strength and 22% in impact energy in a bainitic alloy using HTMP processing. This is a major breakthrough in materials processing for the next generation of structural materials since conventionally processed materials show a reduction in impact toughness with an increase in yield strength. HTMP is a new paradigm to beneficially increase both yield strength and impact energy absorption simultaneously. (3) HTMP processing refined both the martensite lath population and the carbide dispersion in a bainitic steel alloy during Gausstempering. The refinement was believed to be responsible for the simultaneous increase in strength and toughness. Hence, HTMP significantly impacts nucleation and growth phenomenon. (4) HTMP processing developed comparable ultimate tensile strength and twice the impact energy in a lower cost, lower alloy content ({approx}8% alloy content) steel, compared to highly alloyed, (31% alloy elements involving Ni, Co, and Mo) 250-grade margining steel. Future low-cost HTMP alloys appear viable that will exceed the structural performance of highly alloyed materials that are conventionally processed. This economic benefit will enable U.S. industry to reduce cost (better more competitive worldwide) while maintaining or exceeding current performance. (5) EMAT processed cast iron exhibits significantly higher hardness (by 51% for a 9T condition) than a no-field processed sample. (6) EMAT produced microstructures in cast iron resulted in an unique graphite nodule morphology, a modified pearlite content, and unique carbide types, that formed during solidification and cooling. (7) EMAT processed nanoparticle dispersions in Mg resulted in a very fine, unagglomerated distribution of the nanoparticles in the magnesium matrix. This provides a breakthrough technology to make the next generation of

Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Wilgen, John B [ORNL; Kenik, Edward A [ORNL; Parish, Chad M [ORNL; Rios, Orlando [ORNL; Rogers, Hiram [ORNL; Manuel, Michele [University of Florida, Gainesville; Kisner, Roger A [ORNL; Watkins, Thomas R [ORNL; Murphy, Bart L [ORNL

2012-08-01T23:59:59.000Z

85

ION HEATING WITH RF FIELDS NEAR THE ION CYCLOTRON FREQUENCY J. D. Barter, J. C. Sprott  

E-Print Network (OSTI)

ION HEATING WITH RF FIELDS NEAR THE ION CYCLOTRON FREQUENCY by J. D. Barter, J. C. Sprott November. Our experiments of the past year, however, indicate that ion cyclotron resonance heating transmitted without consent of the author and major professor. #12;For several years we have been heating ions

Sprott, Julien Clinton

86

Effect of External Magnetic Fields on the Operation of RF Cavities  

SciTech Connect

Recent experiments have shown severe surface damage and a reduction of the maximum accelerating gradient for an rf cavity that is operating under external magnetic fields. This implies that serious problems may occur in lattices where rf cavities and external magnetic fields coexist, such as those of the proposed neutrino factory and muon collider. Although existing data suggest that this magnetic field dependent breakdown is associated with the emission of electrons from locally enhanced field regions on the cavity surface, the mechanism that drives this effect is not yet well understood. Here, we show that such field emitted electrons are accelerated by the cavity and focused by the magnetic field to the other side of the cavity where they heat its surface. We show that if the magnetic field is strong, significant surface deformation can occur that eventually could limit the accelerating gradient of the cavity. Results of our model are compared to the existing experimental data from an 805 MHz cavity. The geometry of the pillbox cavity in our case is more complicated, and the analysis depends on the electron energies, focused dimensions, and angle of impact, but damage may reasonably be expected with similar cyclical heating above 40 C. However, it is not yet known what the mechanism is for such surface damage to cause a cavity to breakdown. One possibility is that if electrons are focused on a location with a high surface gradient, then the local damage will generate new asperities with higher FN enhancement factors, thus initiating breakdown. While our preliminary analysis offers some quantification on the effects of the magnetic fields on the cavity's operation, other theoretical issues were not addressed. For instance, emission from secondary electrons was disregarded, the asperity was placed on axis, the magnetic field was assumed as uniform, the thermal-diffusion calculation ignored the shape of the rise time, and adopted an approximate calculation. On the theoretical level, it will be interesting to pursue additional simulations exploring these effects in detail. Experimentally, there is a clear need for more well-designed experiments to study, systematically, the effect of external fields on the cavity's operation.

Stratakis, D.; Berg, J.; Gallardo, J.C.; Palmer, R. B.

2010-12-01T23:59:59.000Z

87

Operational Performance Results of an Innovative Solar Thermal Cooling and Heating Plant  

Science Journals Connector (OSTI)

Solar thermal cooling and heating plants with single-effect sorption chillers/heat pumps promise primary energy savings compared to electric vapor compression chiller systems. Yet, the need of auxiliary electric a nd fossil energy for the operation and backup of the thermal cooling system possibly worsen the primary energy balance. An auspicious approach to overcome this problem is the application of a more efficient multi -stage sorption chiller with flexible operational modes. A pilot installation of that innovative solar thermal heating and cooling plant comprising a two stage absorption chiller/heat pump is presented. Beginning with the motivation and the system concept, a detailed analysis of the 2011/2012 cooling and heating periods is shown. The influence of the different system components – especially the absorption chiller – on the overall system performance is analyzed and a comparison to data from a detailed dynamic model is carried out. Recommendations for the improvement with respect to efficiency and economic aspects are given based on the installation process and the operational experience gained in the last 1 ½ years.

Manuel Riepl; Felix Loistl; Richard Gurtner; Martin Helm; Christian Schweigler

2012-01-01T23:59:59.000Z

88

Entirely passive heat-pipe apparatus capable of operating against gravity  

DOE Patents (OSTI)

The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

Koenig, D.R.

1981-02-11T23:59:59.000Z

89

The Onset of Ion Heating During Magnetic Reconnection with a Strong Guide Field  

E-Print Network (OSTI)

The onset of the acceleration of ions during magnetic reconnection is explored via particle-in-cell simulations in the limit of a strong ambient guide field that self-consistently and simultaneously follow the motions of protons and $\\alpha$ particles. Heating parallel to the local magnetic field during reconnection with a guide field is strongly reduced compared with the reconnection of anti-parallel magnetic fields. The dominant heating of thermal ions during guide field reconnection results from pickup behavior of ions during their entry into reconnection exhausts and dominantly produces heating perpendicular rather than parallel to the local magnetic field. Pickup behavior requires that the ion transit time across the exhaust boundary (with a transverse scale of the order of the ion sound Larmor radius) be short compared with the ion cyclotron period. This translates into a threshold in the strength of reconnecting magnetic field that favors the heating of ions with high mass-to-charge. A simulation with ...

Drake, J F

2014-01-01T23:59:59.000Z

90

Exposure to transmission line electric fields during farming operations  

SciTech Connect

This paper describes an analysis of exposure to transmission line electric fields during typical farming operations. This analysis makes use of experimentally determined ''activity factors'' and time budget information for typical farms as compiled by the U.S. Department of Agriculture. A detailed exposure assessment for 18 ''typical farms'' (as defined by USDA) is provided for a base case 345 kV design. Exposure estimates for transmission lines ranging from 115-765 kV are provided for a representative farm.

Silva, M.; Huber, D.

1985-09-01T23:59:59.000Z

91

SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

High Operating Temperature Liquid Metal Heat Transfer Fluids High Operating Temperature Liquid Metal Heat Transfer Fluids UCLA logo University of California Berkeley logo Yale logo Four graphics in a grid that represent the sputtering technique being used in this project. Combinatorial screening and high throughput characterization of materials will be used to identify, develop, and demonstrate metal alloys that meet the MURI HOT Fluids targets suitable for CSP applications. The University of California, Los Angeles, the University of California, Berkeley, and Yale University The University of California, Los Angeles (UCLA), along with partners at the University of California, Berkeley, and Yale University, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800°C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall cost of electricity production.

92

Ion Heating in the Field-Reversed Configuration by Rotating Magnetic Fields near the Ion-Cyclotron Resonance  

Science Journals Connector (OSTI)

The trajectories of ions confined in a field-reversed configuration (FRC) equilibrium magnetic geometry and heated with a small-amplitude, odd-parity rotating magnetic field (RMF) have been studied with a Hamiltonian computer code. When the RMF frequency is in the ion-cyclotron range, explosive heating occurs. Higher-energy ions are found to have betatron-type orbits, preferentially localized near the FRC's midplane. These results are relevant to a compact magnetic-fusion-reactor design.

Samuel A. Cohen and Alan H. Glasser

2000-12-11T23:59:59.000Z

93

ARM - Field Campaign - Radiative Heating in Underexplored Bands...  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsRadiative Heating in Underexplored Bands Campaign (RHUBC) Campaign Links RHUBC Website ARM Data Discovery Browse Data Comments? We would love to hear from you Send us...

94

Field Monitoring Protocol: Mini-Split Heat Pumps  

SciTech Connect

The report provides a detailed method for accurately measuring and monitoring performance of a residential Mini-Split Heat Pump. It will be used in high-performance retrofit applications, and as part of DOE's Building America residential research program.

Christensen, D.; Fang, X.; Tomerlin, J.; Winkler, J.; Hancock, E.

2011-03-01T23:59:59.000Z

95

Onset and saturation of ion heating by odd-parity rotating-magnetic-fields in a field-reversed configuration  

E-Print Network (OSTI)

Heating of figure-8 ions by odd-parity rotating magnetic fields ($RMF_o$) applied to an elongated field-reversed configuration (FRC) is investigated. The largest energy gain occurs at resonances ($s \\equiv \\omega_R/ \\omega$) of the $RMF_o$ frequency, $\\omega_R$, with the figure-8 orbital frequency, $\\omega$, and is proportional to $s^2$ for $s-even$ resonances and to $s$ for $s-odd$ resonances. The threshold for the transition from regular to stochastic orbits explains both the onset and saturation of heating. The FRC magnetic geometry lowers the threshold for heating below that in the tokamak by an order of magnitude.

A. S. Landsman; S. A. Cohen; A. H. Glasser

2011-01-25T23:59:59.000Z

96

Field Measurement of Heating System in a Hotel Building in Harbin  

E-Print Network (OSTI)

heating energy consumption in winter under operational conditions, and presents an stimation index of the performance of an exchanger, pump and motor. Analysis of device running conditions based on testing data is conducted. Results show that low stream...

Zhao, T.; Zhang, J.; Li, Y.

2006-01-01T23:59:59.000Z

97

Neutron field parameter measurements on the JET tokamak by means of super-heated fluid detectors  

E-Print Network (OSTI)

Neutron field parameter measurements on the JET tokamak by means of super-heated fluid detectors M OF SCIENTIFIC INSTRUMENTS 83, 10E124 (2012) Neutron field parameter measurements on the JET tokamak by means 2 August 2012) The neutron field parameters (fluence and energy distribution) at a specific location

98

Mass Operator and Gauge Field Theory with Five-variable Field Functions  

E-Print Network (OSTI)

To investigate the mass generating problem without Higgs mechanism we present a model in which a new scalar gauge coupling is naturally introduced. Because of the existence of production and annihilation for particles in quantum field theory, we extend the number of independent variables from conventional four space-time dimensions to five ones in order to describe all degrees of freedom for field functions while the conventional space-time is still retained to be the background. The potential fifth variable is nothing but the proper time of particles. In response, a mass operator $(\\hat{m}=-i\\hbar \\frac{\\partial}{\\partial\\tau})$ should be introduced. After that, the lagrangian for free fermion fields in terms of five independent variables and mass operator is written down. By applying the gauge principle, three kinds of vector gauge couplings and one kind of scalar gauge coupling are naturally introduced. In the current scenario, the mass spectrum for all fundamental particles is accounted for in principle by solving the eigenvalue of mass operator under the function of all kinds of interactions. Moreover, there no any auxiliary mechanism including spontaneous symmetry breaking get involved in the model. Therefore, traditional problems in the standard model such as the vacuum energy problem are removed from our model, as well as the hierarchy problem on the mass spectrum for fundamental particles.

ChiYi Chen

2014-04-08T23:59:59.000Z

99

Effect of Joule heating on orientation of spheroidal particle in alternating electric field  

E-Print Network (OSTI)

Effect of Joule heating on orientation of spheroidal particle in alternating electric field Yu electric conductivities. We show that the rate of Joule heating of the particle depends on the orientation electric conductivity in the system. The frequen- cies 1 and 2 are determined by biquadratic equation see

Elperin, Tov

100

Effect of electric field on heat transfer performance of automobile radiator at low frontal air velocity  

Science Journals Connector (OSTI)

The effect of electric field on the performance of automobile radiator is investigated in this work. In this experiment, a louvered fin and flat tube automobile radiator was mounted in a wind tunnel and there was heat exchange between a hot water stream circulating inside the tube and a cold air stream flowing through the external surface. The electric field was supplied on the airside of the heat exchanger and its supply voltage was adjusted from 0 kV to 12 kV. From the experiment, it was found that the unit with electric field pronounced better heat transfer rate, especially at low frontal velocity of air. The correlations for predicting the air-side heat transfer coefficient of the automobile radiator, with and without electric field, at low frontal air velocity were also developed and the predicted results agreed very well with the experimental data.

S. Vithayasai; T. Kiatsiriroat; A. Nuntaphan

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Heat Transfer between Two Nanoparticles Through Near Field Interaction  

Science Journals Connector (OSTI)

We introduce a thermal conductance by using the fluctuation-dissipation theorem to analyze the heat transfer between two nanoparticles separated by a submicron distance. Using either a molecular dynamics technique or a model based on the Coulomb interaction between fluctuating dipoles, we derive the thermal conductance. Both models agree for distances larger than a few diameters. For separation distances smaller than the particle diameter, we find a transition regime characterized by a thermal conductance larger than the contact conductance.

Gilberto Domingues; Sebastian Volz; Karl Joulain; Jean-Jacques Greffet

2005-03-02T23:59:59.000Z

102

Parametric sensitivity study of operating and design variables in wellbore heat exchangers  

Science Journals Connector (OSTI)

A numerical study was conducted to evaluate the potential for using Wellbore Heat Exchangers (WBHX) to extract heat for use in electricity generation. Variables studied included operational parameters such as wellbore geometries, working fluid properties, circulation rates, and regional properties including basal heat flux and formation rock type. Energy extraction is strongly affected by fluid residence time, heat transfer contact area, and formation thermal properties. Water appears to be the most appropriate working fluid. The effects of tubing properties and casing lengths are of second-order. On the basis of a sensitivity study, a Best Case model was simulated, and results compared against the geothermal fluid requirements of existing power generation plants that use low-temperature geothermal fluids. Even assuming ideal work conversion to electricity, a WBHX cannot supply sufficient energy to generate 200 kWe at the onset of pseudo-steady-state (PSS) conditions. Using realistic conversion efficiencies it is unlikely that the system would be able to generate 50 kWe at the onset of PSS.

Gopi Nalla; G. Michael Shook; Gregory L. Mines; K. Kit Bloomfield

2005-01-01T23:59:59.000Z

103

Field Operations Organization | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Operations Organization Field Operations Organization Deputy Director for Field Operations Deputy Director Home Mission & Functions Deputy Director Biography Organization Organization Chart .pdf file (77KB) Field Offices Laboratory Policy and Evaluation (LPE) Safety, Security and Infrastructure (SSI) Oversight Operations Improvement Committee Contact Information Deputy Director for Field Operations U.S. Department of Energy SC-3/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5434 F: (202) 586-4120 E: sc.science@science.doe.gov Field Operations Organization Print Text Size: A A A RSS Feeds FeedbackShare Page Field Operations is led by Deputy Director Joseph McBrearty and consists of three major elements - Site Offices, a Support Center, and Headquarters

104

South Fence Road -- Phase 1 field operations summary  

SciTech Connect

The South Fence Road (SFR) project is part of the Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) task. The SWHC task has as its objective the reduction of uncertainty about the rate and direction of groundwater flow in the SNL/NM/Kirtland Air Force Base (KAFB) area. The SFR project area is located along the southern boundary of SNL/KAFB. This project area was selected to provide site-specific information related to geology and groundwater hydrology within the Hubbell Spring/Tijeras/Sandia fault complex. Specific objectives included determining the depth to the Santa Fe Group/bedrock contact, the depth to the water table, and the hydrogeologic complexities related to faulting. This report is a basic data report from the first phase of field operations associated with the drilling, logging, completion, and development of South Fence Road Wells SFR-1D and SFR-1S, SFR-2, SFR-3D and SFR-3S, and SFR-4. These test/monitoring wells were installed as part of Sandia National Laboratories, New Mexico, Environmental Restoration Project.

McCord, J.P. [INTERA, Inc., Albuquerque, NM (United States); Neel, D. [GRAM, Inc., Albuquerque, NM (United States)

1996-03-01T23:59:59.000Z

105

EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

106

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

SciTech Connect

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

107

Optimal Planning and Scheduling of Offshore Oil Field Infrastructure Investment and Operations  

Science Journals Connector (OSTI)

Optimal Planning and Scheduling of Offshore Oil Field Infrastructure Investment and Operations ... A multiperiod mixed-integer linear programming (MILP) model formulation is presented for the planning and scheduling of investment and operation in offshore oil field facilities. ... An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure ...

R. R. Iyer; I. E. Grossmann; S. Vasantharajan; A. S. Cullick

1998-03-13T23:59:59.000Z

108

THE CFB SUMMERSIDE PROJECT INITIAL OPERATING EXPERIENCE WITH 18 TPH AFBC HEATING BOILERS  

Science Journals Connector (OSTI)

ABSTRACT Initial operating experience with Canada's first commercial FBC boiler plant, located at CFB Summerside, PEI, is described. The plant, consisting of two boilers rated at 18,000 kg/h of steam at MCR, operating at 965 kPa saturated steam, is designed for high-sulphur coal with supplementary firing of wood chips. The boilers were operated intermittently from December 1982 until May 1983, and in May one boiler was subjected to an acceptance test campaign of about two weeks, during which it performed satisfactorily, at loads ranging from 110% MCR to the maximum design turndown ratio of 4.5:1. Assessment of its performance in terms of efficiency and emissions awaits completion of laboratory analyses and data reduction. Careful control of limestone sizing is required to avoid the problems with cold fluidization which were encountered during commissioning. Also, high moisture and fines in the coal caused significant problems in the materials handling system. Some erosion of boiler tubes in the bed zone was observed. The affected areas were covered with a thin layer of hard refractory to prevent further deterioration. This does not appear to have a detrimental effect on steam output. Further work remains to be done, but it appears likely that during the next heating season both boilers will be fully commissioned and all requirements for acceptance will be met. KEYWORDS Fluidized-bed combustion, coal combustion, boiler operation.

V.V. Razbin; F.D. Friedrich

1984-01-01T23:59:59.000Z

109

Transition of the radial electric field by electron cyclotron heating in the CHS heliotron/torsatron  

Science Journals Connector (OSTI)

The transition of a radial electric field from a negative to a positive value is observed in the compact helical system when the electron loss is sufficiently enhanced by the superposition of the off-axis second harmonic electron cyclotron heating on the neutral beam heated plasmas. Existence of the threshold for the enhanced particle flux required to cause the transition is experimentally certified. The observed threshold is compared with a theoretical prediction.

H. Idei; K. Ida; H. Sanuki; H. Yamada; H. Iguchi; S. Kubo; R. Akiyama; H. Arimoto; M. Fujiwara; M. Hosokawa; K. Matsuoka; S. Morita; K. Nishimura; K. Ohkubo; S. Okamura; S. Sakakibara; C. Takahashi; Y. Takita; K. Tsumori; I. Yamada

1993-10-04T23:59:59.000Z

110

Influence of roughness on near-field heat transfer between two plates  

E-Print Network (OSTI)

The surface roughness correction to the near-field heat transfer between two rough bulk materials is discussed by using second-order perturbation theory. The results allow for estimating the impact of surface roughness to the heat transfer in recent experiments between two plates and between a microsphere and a plate (using the Derjaguin approximation). Furthermore, we show that the proximity approximation for describing rough surfaces is valid for distances much smaller than the correlation length of the surface roughness even if the heat transfer is dominated by the coupling of surface modes.

Svend-Age Biehs; Jean-Jacques Greffet

2011-03-11T23:59:59.000Z

111

Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm  

SciTech Connect

Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

2011-06-01T23:59:59.000Z

112

Heat Flux Calculation and Problem of Flaking of Boron Carbide Coatings on the Faraday Screen of the ICRH Antennas During Tore Supra High Power, Long Pulse Operation  

SciTech Connect

Reliable and repetitive high power and long pulse tokamak operation is strongly dependant of the ability to secure the Plasma Facing Components (PFCs). In Tore Supra, a network of 7 infrared (IR) video cameras is routinely used to prevent PFCs overheating and damage in selected regions. Real time feedback control and offline analysis are essential for basic protection and understanding of abnormal thermal events. One important limitation detected by the IR real time feed-back loop during high power RF operation (injected power of 9.5 MW over 26 s and 12 MW over 10 s have been achieved respectively in 2006 and 2008) is due to the interaction between fast ions which increase the power flux density and flaking of the boron carbide coatings on the Faraday screen box of the ICRH antennas. An IR-based experimental procedure is proposed in order to detect new flakes during plasma operation. The thermal response of the B4C coating is studied with and without flaking during plasma operation. The experimental heat flux deposited by fast ion losses on the Faraday screen is calculated for high (3.8 T) and low magnetic field (2 T) during high RF power operation (with fundamental hydrogen minority and second harmonic ICRH heating schemes respectively). The paper addresses both thermal science issues applied to machine protection and limitation due to fast ions issues during high RF power, long pulse operation. Safety margin to critical heat flux and number of fatigue cycles under heat load are presented in the paper.

Corre, Y. [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance] [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Lipa, M. [CEA IRFM, St. Paul-lez-Durance, France] [CEA IRFM, St. Paul-lez-Durance, France; Agarici, G. [Fusion for Energy (F4E), Barcelona, Spain] [Fusion for Energy (F4E), Barcelona, Spain; Basiuk, V. [CEA IRFM, St. Paul-lez-Durance, France] [CEA IRFM, St. Paul-lez-Durance, France; Colas, L. [French Atomic Energy Commission (CEA)] [French Atomic Energy Commission (CEA); Courtois, X. [CEA, St. Paul Les Durance, France] [CEA, St. Paul Les Durance, France; Dumont, R. J. [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance] [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Ekedahl, A. [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM)] [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Gardarein, J. L. [University of Aix, Marseille, France] [University of Aix, Marseille, France; Klepper, C Christopher [ORNL] [ORNL; Martin, V. [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM)] [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Moncada, V. [CEA, St. Paul Les Durance, France] [CEA, St. Paul Les Durance, France; Portafaix, C. [CEA, St. Paul Les Durance, France] [CEA, St. Paul Les Durance, France; Rigollet, F. [University of Aix, Marseille, France] [University of Aix, Marseille, France; Tawizgant, R. [CEA, St. Paul Les Durance, France] [CEA, St. Paul Les Durance, France; Travere, J. M. [CEA, St. Paul Les Durance, France] [CEA, St. Paul Les Durance, France; Valliez, K. [CEA, St. Paul Les Durance, France] [CEA, St. Paul Les Durance, France

2011-01-01T23:59:59.000Z

113

Vapor compression heat pump system field tests at the tech complex  

Science Journals Connector (OSTI)

The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES) solar assisted heat pumps (SAHP) both parallel and series two conventional air?to?air heat pumps an air?to?air heat pump with desuperheater water heater and horizontal coil and multiple shallow vertical coil ground?coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However a cursory examination revealed that the ACES had the best performance however its high cost makes it unlikely that it will achieve wide?spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

Van D. Baxter

1985-01-01T23:59:59.000Z

114

Graphene-assisted near-field radiative heat transfer between corrugated polar materials  

SciTech Connect

Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

Liu, X. L.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2014-06-23T23:59:59.000Z

115

Effects of different operating conditions of Gonen geothermal district heating system on its annual performance  

Science Journals Connector (OSTI)

Abstract In this paper, the effects of different operating conditions of the Gonen geothermal district heating system (GDHS) on its annual energy and exergy performance are investigated. The system parameters such as temperature, pressure and flow rate are monitored by using fixed and portable measuring instruments over a one-year period. Thus the main differences in the annual system operation are detected. The measurements show that the Gonen GDHS has six different operating cases depending on the outside temperature throughout the year. The energy and exergy analysis of the system is carried out for each case using the actual system parameters at the corresponding reference temperatures, which are 3.86, 7.1, 8.88, 11.83, 15.26 and 20.4 °C. The highest and lowest energy (57.32%, 35.64%) and exergy (55.76%, 41.42%) efficiencies of the overall system are calculated at the reference temperatures of 15.26 °C and 3.86 °C, respectively. Besides, taking the six case-based energy and exergy analyses into account, the annual average energy and exergy efficiencies are determined to be 45.24% and 47.33%, respectively.

Asiye Aslan; Bedri Yüksel; Tu?rul Akyol

2014-01-01T23:59:59.000Z

116

Mathematical description of a boiler house operating jointly with a wind power plant and heat storage  

Science Journals Connector (OSTI)

A heat supply system is considered that contains, along with a boiler house, a wind power plant and heat storage. Methodical approaches for determining ... modes of the heat storage jointly with the wind power plant

A. V. Bezhan; V. A. Minin

2011-11-01T23:59:59.000Z

117

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

118

Energy efficient operation strategy design for the combined cooling, heating and power system.  

E-Print Network (OSTI)

??Combined cooling, heating and power (CCHP) systems are known as trigeneration systems, designed to provide electricity, cooling and heating simultaneously. The CCHP system has become… (more)

Liu, Mingxi

2012-01-01T23:59:59.000Z

119

Numerical Study on the Operating Performance of an Indirect Expansion Solar Assisted Multifunctional Heat Pump in Water Heating Mode  

Science Journals Connector (OSTI)

An indirect expansion solar assisted multifunctional heat pump (IE-SAMHP) is ... SAMHP consists of an all-glass evacuated-tube solar collector system, a compressor, two air-...

Ji Jie; Jiang Aiguo; Yang Jichun; Pei Gang…

2009-01-01T23:59:59.000Z

120

Near-Field Radiative Heat Transfer between Metamaterials coated with Silicon Carbide Film  

E-Print Network (OSTI)

In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC.By careful tuning of the optical properties of metamaterial it is possible to excite electrical and magnetic resonance for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

Basu, Soumyadipta; Wang, Liping

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Steady state heat transfer experimental studies of LHC superconducting cables operating in cryogenic environment of superfluid helium  

E-Print Network (OSTI)

The heat management is a basic and fundamental aspect of the superconducting magnets used in the CERN Large Hadron Collider. Indeed, the coil temperature must be kept below the critical value, despite the heat which can be generated or deposited in the magnet during the normal operations. Therefore, this thesis work aims at determining the heating power which can be extracted from the superconducting cables of the LHC, specially through their electrical insulation which represents the main thermal barrier. An experimental measurement campaign in superfluid helium bath was performed on several samples reproducting the main LHC magnets. The heating power was generated in the sample by Joule heating and the temperature increase was measured by means of Cernox bare chip and thermocouples. An innovative instrumentation technique which also includes the in-situ calibration of the thermocouples was developed. A thorough uncertainty analysis on the overall measurement chain concluded the experimental setup. The prese...

Santandrea, Dario; Tuccillo, Raffaele;; Granieri, Pier Paolo.

122

Enhancing Building Operations Through Automated Diagnostics: Field Test Results  

E-Print Network (OSTI)

. Details of Field Test Sites Location Building Type Number of AHU Type of AHU Typical Schedule (military time) Richland Office/Lab 6 VAV 0 to 24 Richland Office 3 CAV 6 to 18 Denver Office 3 VAV 0 to 24 San Francisco Hotel 6.... Pratt, R.G., N.N. Bauman, and S. Katipamula. 2003. ?New Technology Demonstration of the Whole-Building Diagnostician at the Federal Aviation Administration-Denver Airport.? PNNL- 14157, Pacific Northwest National Laboratory, Richland, Washington...

Katipamula, S.; Brambley, M. R.; Bauman, N.; Pratt, R. G.

2003-01-01T23:59:59.000Z

123

A Simple Control Scheme for Near-optimal Operation of Parallel Heat Exchanger Systems  

E-Print Network (OSTI)

. In the chemical and process industries, large amounts of energy can be saved by using heat recovery in heat exchanger networks, which transfer energy in form of heat Corresponding author: email: skoge@ntnu.no, phone exchanger networks for saving energy and costs has led to a large body of research, and most

Skogestad, Sigurd

124

Convective heat transfer in an annular porous layer with centrifugal force field  

SciTech Connect

The present study deals with natural convection in an annular porous layer under the influence of a centrifugal force field. It is assumed that the outer boundary is heated by a constant heat flux, while the inner boundary is perfectly insulated. The problem is formulated in terms of Darcy-Boussinesq equations and solved using analytical and numerical techniques. An analytical solution for the flow and heat transfer variables, based on a concentric flow assumption, is obtained in terms of the Rayleigh number and the radius ratio. Finite amplitude results are verified by a numerical approach. Predicted thresholds in terms of critical Rayleigh numbers are verified by a linear stability analysis. Results obtained from the numerical approach indicate the existence of multiple solutions differing by the number of cells involved.

Aboubi, K.; Robillard, L.; Bilgen, E. [Univ. of Montreal, Quebec (Canada). Dept. of Mechanical Engineering

1995-09-01T23:59:59.000Z

125

Near-field heat transfer between a nanoparticle and a rough surface  

E-Print Network (OSTI)

In this work we focus on the surface roughness correction to the near-field radiative heat transfer between a nanoparticle and a material with a rough surface utilizing a direct perturbation theory up to second order in the surface profile. We discuss the different distance regimes for the local density of states above the rough material and the heat flux analytically and numerically. We show that the heat transfer rate is larger than that corresponding to a flat surface at short distances. At larger distances it can become smaller due to surface polariton scattering by the rough surface. For distances much smaller than the correlation length of the surface profile, we show that the results converge to a proximity approximation, whereas in the opposite limit the rough surface can be replaced by an equivalent surface layer.

Svend-Age Biehs; Jean-Jacques Greffet

2011-03-11T23:59:59.000Z

126

In-field remediation of tons of heavy metal-rich waste by Joule heating vitrification  

Science Journals Connector (OSTI)

An in-field remediation method of tons of Pb and Zn-rich ceramic waste based on Joule heating vitrification is presented. The progressive heating up to about 1850 °C led to the complete melting of the waste material and the rapid cooling of the melt formed a monolithic glass of 55 tons. The obtained glass was chemically and morphologically homogeneous and immobilized the heavy metals and non-volatile inorganic compounds. The occurrence of crystalline phases such as zircon and cordierite was observed in the lowermost part of the monolith due to the different cooling rate. Leaching tests showed that the vitrified monolith presented a high chemical resistance and metal ions were immobilized into the glass matrix. The presented in-field vitrification process was highly effective in the remediation of tons of heavy metal-rich materials and can be exploited further for remediation of large amounts of soils and asbestos-based materials.

Francesco Dellisanti; Piermaria L. Rossi; Giovanni Valdrè

2009-01-01T23:59:59.000Z

127

Time-dependent Maxwell field operators and field energy density for an atom near a conducting wall  

E-Print Network (OSTI)

We consider the time evolution of the electric and magnetic field operators for a two-level atom, interacting with the electromagnetic field, placed near an infinite perfectly conducting wall. We solve iteratively the Heisenberg equations for the field operators and obtain the electric and magnetic energy density operators around the atom (valid for any initial state). Then we explicitly evaluate them for an initial state with the atom in its bare ground state and the field in the vacuum state. We show that the results can be physically interpreted as the superposition of the fields propagating directly from the atom and the fields reflected on the wall. Relativistic causality in the field propagation is discussed. Finally we apply these results to the calculation of the dynamical Casimir-Polder interaction energy in the far zone between two atoms when a boundary condition such as a conducting wall is present. Magnetic contributions to the interatomic Casimir-Polder interaction in the presence of the wall are also considered. We show that, in the limit of large times, the known results of the stationary case are recovered.

R. Vasile; R. Messina; R. Passante

2009-03-18T23:59:59.000Z

128

Regional Field Verification -- Operational Results from Four Small Wind Turbines in the Pacific Northwest: Preprint  

SciTech Connect

This paper describes four small wind turbines installed in the Pacific Northwest under DOE/NREL's Regional Field Verification Program between 2003 and 2004 and summarizes operational data from each site.

Sinclair, K.; Raker, J.

2006-08-01T23:59:59.000Z

129

7-122 A solar pond power plant operates by absorbing heat from the hot region near the bottom, and rejecting waste heat to the cold region near the top. The maximum thermal efficiency that the power plant  

E-Print Network (OSTI)

calculated above. 7-123 A Carnot heat engine cycle is executed in a closed system with a fixed mass of steam can have is to be determined. Analysis The highest thermal efficiency a heat engine operating between transfer. Therefore, the maximum efficiency of the actual heat engine will be lower than the value

Bahrami, Majid

130

Annual Operating Characteristics of Solar Central Water Heater System Assisted by Heat Pump  

Science Journals Connector (OSTI)

The solar central water heater (SCWH) could supply ... massive users effectively and reliably. A SCWH assisted by heat pump (SCWHP) was proposed...

Wei Hu; Zhaolin Gu; Shiyu Feng; Xiufeng Gao…

2009-01-01T23:59:59.000Z

131

Scaling of Anode Sheath Voltage Fall with the Operational Parameters in Applied-Field MPD  

E-Print Network (OSTI)

Scaling of Anode Sheath Voltage Fall with the Operational Parameters in Applied-Field MPD Thrusters (EPPDyL) Princeton University, Princeton, NJ, 08544, USA Scaling laws for the anode sheath voltage fall in applied-field MPD thrusters are derived in order to better understand the physics behind anode sheath

Choueiri, Edgar

132

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

SciTech Connect

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

133

Comparison between a spray column and a sieve tray column operating as liquid-liquid heat exchangers  

SciTech Connect

The performance of a spray column and a sieve tray column was compared as a liquid-liquid heat exchanger. In carrying out these studies a 15.2 cm (6.0 in.) diameter column, 183 cm (6.0 ft) tall was utilized. The performance of the spray column as a heat exchanger was shown to correlate with the model of Letan-Kehat which has as a basis that the heat transfer is dominated by the wakeshedding characteristics of the drops over much of the column length. This model defines several hydrodynamic zones along the column of which the wake formation zone at the bottom appears to have the most efficient heat transfer. The column was also operated with four perforated plates spaced two column diameters apart in order to take advantage of the wake formation zone heat transfer. The plates induce coalescence of the dispersed phase and reformation of the drops, and thus cause a repetition of the wake formation zone. It is shown that the overall volumetric heat transfer coefficient in a perforated plate column is increased by a minimum of eleven percent over that in a spray column. A hydrodynamic model that predicts the performance of a perforated plate column is suggested.

Keller, A.; Jacobs, H.R.; Boehm, R.F.

1980-12-01T23:59:59.000Z

134

TURBULENT HEAT TRANSPORT IN TWO-AND THREE-DIMENSIONAL TEMPERATURE FIELDS  

E-Print Network (OSTI)

tJ ,.I and the fluid heat transfer characteristics. As [13]Introduction Most fluid flows and heat transfer processes ofproportion of fluid dynamic and heat transfer researchers

Samaraweera, D.S.A.

2011-01-01T23:59:59.000Z

135

Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators  

E-Print Network (OSTI)

We present a complete list of the independent dimension-7 operators that are constructed using the Standard Model degrees of freedom and are invariant under the Standard Model gauge group. This list contains only 20 independent operators; far fewer than the 63 operators available at dimension 6. All of these dimension-7 operators contain fermions and violate lepton number, and 7 of the 20 violate baryon number as well. This result extends the Standard Model Effective Field Theory (SMEFT) and allows a more detailed exploration of the structure and properties of possible deformations from the Standard Model Lagrangian.

Landon Lehman

2014-12-26T23:59:59.000Z

136

Design and Operational Planning of Energy Networks Based on Combined Heat and Power Units  

Science Journals Connector (OSTI)

For each time period and sector, big-M constraints 13 model the heat (generated by the energy generator installed in the sector) transferred to the heat storage tank of the sector (Q?sit). ... Heat and electricity demand data for the reference case have been taken from the Milton Keynes Energy Park data set provided by the U.K. Energy Research Centre Energy Data Centre. ... Cardoso, G.; Stadler, M.; Siddiqui, A.; Marnay, C.; Deforest, N.; Barbosa-Póvoa, A.; Ferrão, P.Microgrid reliability modeling and battery scheduling using stochastic linear programming Electric Power Syst. ...

Nikolaos E. Koltsaklis; Georgios M. Kopanos; Michael C. Georgiadis

2014-03-05T23:59:59.000Z

137

A phase-field method for 3D simulation of two-phase heat transfer , H. Babaee a  

E-Print Network (OSTI)

the efficiency of the new method in simulating 3D multi-phase convective heat transfer on stationary gridsA phase-field method for 3D simulation of two-phase heat transfer X. Zheng a , H. Babaee a , S Keywords: Spectral element Non-moving grid Cahn­Hilliard equation Large thermal conductivity ratio a b

Dong, Suchuan "Steven"

138

Electric field noise above surfaces: a model for heating rate scaling law in ion traps  

E-Print Network (OSTI)

We present a model for the scaling laws of the electric field noise spectral density as a function of the distance, $d$, above a conducting surface. Our analytical approach models the patch potentials by introducing a correlation length, $\\zeta$, of the electric potential on the surface. The predicted scaling laws are in excellent agreement with two different classes of experiments (cold trapped ions and cantilevers), that span at least four orders of magnitude of $d$. According to this model, heating rate in miniature ion traps could be greatly reduced by proper material engineering.

Romain Dubessy; Thomas Coudreau; Luca Guidoni

2008-12-17T23:59:59.000Z

139

Heat Sweep Analysis of Thermal Breakthrough at Los Humeros and La Primavera Fields, Mexico  

SciTech Connect

Early evaluation of the potential for geothermal breakthrough of reinjected fluids in newly developed geothermal fields can be obtained with the SGP one-dimensional heat sweep model. The model was used to estimate fluid cooldown from wells selected for the first wellhead generating units to be installed at the Los Humeros and La Primavera geothermal fields in Mexico, based on staff-compiled geometric and geologic data, thermal properties of the reservoir rock, and expected production conditions. Geometric considerations were evaluated with respect to known and postulated fault zones and return flow angle of the reinjected fluid. The results show the range of parameter values that affect the rate of thermal breakthrough to an abandonment temperature of 170 ºC corresponding to the minimum inlet pressure to the CFE 5-MW wellhead generator units. 9 figs., 4 tabs., 11 refs.

Kruger, P.; Lam, S.; Molinar, R.; Aragon, A.

1987-01-20T23:59:59.000Z

140

Modification of divertor heat and article flux profiles with applied 3D fields in NSTX H-mode plasmas  

SciTech Connect

Externally imposed non-axisymmetric magnetic perurbations are observed to alter divertor heat and particle flux profiles in the National Spherical Torus Experiment (NSTX). The divertor profiles are foud to have a modust level of multiple local peaks, characteristic of strike poimt splitting or the "magnetis lob" structure, even before the application of the 3D fields in some (but not all) NSTX discharges. This is thought to be due to the intrinsic error fields. The applied 3D fields augmented the intrinsic strike point splitting, making the ampliture of local peaks, and valleys larger in the divertor profile and striations at the divertor surface brighter. The measured heat flux profile shows that the radial location and spacing of the strations are qualitativel consistent witth a vacuum field tracing calcultion. 3D field application did not change the peak divertor heat and particle fluxes at the toroidal location of measurement. Spatial characteristics of the observed patterns are also reported in the paper.

Ahn, Joon-Wook [Oak Ridge National Laboratory (ORNL); Canik, John [ORNL; Soukhanovskii, V. A. [Lawrence Livermore National Laboratory (LLNL); Maingi, Rajesh [ORNL; Battaglia, D. J. [Oak Ridge National Laboratory (ORNL)

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Design parameters for fuel batteries operating in a zero G field  

Science Journals Connector (OSTI)

Some design parameters of a hydrazine—oxygen fuel battery operating in a zero G field are described in a digital computer programming treatment. The power balance for a battery employing a gas-producing electrode and an electrolyte pump is treated; optimum power densities and flow rates are established.

A.P. Hardt; H.M. Cota; J.L. Fick; T. Katan

1963-01-01T23:59:59.000Z

142

header for SPIE use Human-robot interaction for field operation of an autonomous helicopter  

E-Print Network (OSTI)

header for SPIE use Human-robot interaction for field operation of an autonomous helicopter Henry L , Stanford University Durand Building, Room 250, Stanford, C 94305 ABSTRACT The robustness of autonomous describes the current human-robot interaction for the Stanford HUMMINGBIRD autonomous helicopter

143

Deputy Director for Field Operations Homepage | U.S. DOE Office of Science  

Office of Science (SC) Website

Home Home Deputy Director for Field Operations Deputy Director Home Mission & Functions Deputy Director Biography Organization Oversight Operations Improvement Committee Contact Information Deputy Director for Field Operations U.S. Department of Energy SC-3/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5434 F: (202) 586-4120 E: sc.science@science.doe.gov Print Text Size: A A A Subscribe FeedbackShare Page The DOE laboratory system is the most comprehensive research system of its kind in the world, and constitutes a critical strategic scientific and technical resource. The Office of Science has responsibility for 10 of the 17 DOE laboratories, helping to ensure they deliver exceptional scientific productivity benefiting the taxpayer. Each laboratory is

144

Spectrally enhancing near-field radiative heat transfer by exciting magnetic polariton in SiC gratings  

E-Print Network (OSTI)

In the present work, we theoretically demonstrate, for the first time, that near field radiative transport between 1D periodic grating microstructures separated by subwavelength vacuum gaps can be significantly enhanced by exciting magnetic resonance or polariton. Fluctuational electrodynamics that incorporates scattering matrix theory with rigorous coupled wave analysis is employed to exactly calculate the near field radiative heat flux between two SiC gratings. Besides the well known coupled surface phonon polaritons (SPhP), an additional spectral radiative heat flux peak, which is due to magnetic polariton, is found within the phonon absorption band of SiC. The mechanisms, behaviors and interplays between magnetic polariton, coupled SPhP, single interface SPhP, and Wood's anomaly in the near field radiative transport are elucidated in detail. The findings will open up a new way to control near field radiative heat transfer by magnetic resonance with micro or nanostructured metamaterials.

Yang, Yue

2015-01-01T23:59:59.000Z

145

Experimental and thermodynamical analyses of the diesel exhaust vortex generator heat exchanger for optimizing its operating condition  

Science Journals Connector (OSTI)

Abstract In this research, a vortex generator heat exchanger is used to recover exergy from the exhaust of an OM314 diesel engine. Twenty vortex generators with 30° angle of attack are used to increase the heat recovery as well as the low back pressure in the exhaust. The experiments are prepared for five engine loads (0, 20, 40, 60 and 80% of full load), two exhaust gases amount (50 and 100%) and four water mass flow rates (50, 40, 30 and 20 g/s). After a thermodynamical analysis on the obtained data, an optimization study based on Central Composite Design (CCD) is performed due to complex effect of engine loads and water mass flow rates on exergy recovery and irreversibility to reach the best operating condition.

M. Hatami; D.D. Ganji; M. Gorji-Bandpy

2015-01-01T23:59:59.000Z

146

Improving central heating plant performance at the defense construction supply center (DCSC): Advanced operation and maintenance methods. Final report  

SciTech Connect

A 1987 air pollution emissions test done by the U.S. Army Environmental Hygiene Agency (USAEHA) identified several problems with the central heating plant (CHP) at the Defense Construction Supply Center (DCSC), Columbus, OH. Though DCSC repaired the specified problems, improved coal specifications, and tried to reduce air infiltration, CHP performance remained at unacceptable levels. Consequently, DCSC contracted the U.S. Army Construction Engineering Research Laboratories (USACERL) to apply advanced operation and maintenance procedures to improve its combustion system. This study employed a system-wide approach to evaluate the CHP 5 fuel storage, combustion, heat distribution, and the control of air emissions. Many short-term improvements to the CHP were identified and tested. Subsequent combustion and air emissions tests revealed that the recommended improvements successfully increased CHP efficiency. Long-term improvements were also recommended to help maintain the short-term improvements.

Savoie, M.J.; Standerfer, J.; Schmidt, C.M.; Gostich, J.; Mignacca, J.

1994-11-01T23:59:59.000Z

147

Validation of a black-box heat pump simulation model by means of field test results from five installations  

Science Journals Connector (OSTI)

Abstract In the residential sector, heat pumps are applied for domestic hot water and space heating. Simulations are widely used for general research in the field of heat pumps and to some extend to plan such installations. The advantages are low expenditure of time and costs compared to laboratory or field tests. Validation of simulation models is mandatory to guarantee a sufficient quality. In the presented paper, the field monitoring results of five ground-source installations are utilised for the validation of a black-box heat pump model. The model is similar to TRNSYS Type 201, but implemented in IDA ICE and then modified to handle the difficulties caused by non-standard mass flow and rampant polynomials. As overall result, deviations between 1% and 32% regarding modelled and measured efficiency are seen on monthly basis. The overall result appears as convincing, taking into account typical inaccuracies of laboratory and field tests as well as tolerances during heat pump production. As a side effect, the influence of standby consumption was quantified. For the five presented installations, standby amounts to fractions between 2 and 5% of the annual electricity consumption of the heat pump units.

Jörn Ruschenburg; Tomislav ?uti?; Sebastian Herkel

2014-01-01T23:59:59.000Z

148

Method and apparatus for operating a self-starting air heating system  

DOE Patents (OSTI)

A self-starting, fuel fired, air heating system including a fuel burner fired vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser and heating the air. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with a method and apparatus which on start-up prevents the vapor generator's vapor output from being conducted to the turbine until a predetermined pressure differential has been achieved. However, after the vapor flow is once permitted, it cannot again be prevented until after the fuel burner has been shut off and restarted.

Heinrich, Charles E. (Mentor, OH)

1983-12-06T23:59:59.000Z

149

Thermionic converter with differentially heated cesium-oxygen source and method of operation  

SciTech Connect

A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

Rasor, Ned S. (Cupertino, CA); Riley, David R. (West Newton, PA); Murray, Christopher S. (Bethel Park, PA); Geller, Clint B. (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

150

Thermionic converter with differentially heated cesium-oxygen source and method of operation  

SciTech Connect

A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided, wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

Rasor, N.S.; Riley, D.R.; Murray, C.S.; Geller, C.B.

1998-12-01T23:59:59.000Z

151

Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model  

SciTech Connect

Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

Sharma, Chandan; Raustad, Richard

2013-06-01T23:59:59.000Z

152

Exponential quadratic operators and evolution of bosonic systems coupled to a heat bath  

SciTech Connect

Using exponential quadratic operators, we present a general framework for studying the exact dynamics of system-bath interaction in which the Hamiltonian is described by the quadratic form of bosonic operators. To demonstrate the versatility of the approach, we study how the environment affects the squeezing of quadrature components of the system. We further propose that the squeezing can be enhanced when parity kicks are applied to the system.

Ni Xiaotong [Department of Physics and the Key Laboratory of Atomic and Nanosciences, Ministry of Education, Tsinghua University, Beijing 100084 (China); Liu Yuxi [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084 (China); Kwek, L. C. [Center for Quantum Technologies, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore and National Institute of Education and Institute of Advanced Studies, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Wang Xiangbin [Department of Physics and the Key Laboratory of Atomic and Nanosciences, Ministry of Education, Tsinghua University, Beijing 100084 (China); Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084 (China)

2010-06-15T23:59:59.000Z

153

ICRF heating at JET: From operations with a metallic wall to the long term perspective of a DT campaign  

SciTech Connect

The first series of experiments with the ITER-like wall (ILW) will start mid-2011 with D plasmas and will continue through 2012-13 with H, {sup 4}He and D plasmas, and up to 2014-15, when a DT campaign is proposed. In this paper, the previous experience at JET is reviewed to set the scene for the future challenges of ICRF operation including change in the ICRF coupling, W impurity production and evaluation of localized power loads due the RF sheaths. development in a Beryllium/Tungsten environment of ICRF heating schemes for the non activated and the DT phases of ITER.

Mayoral, M.-L.; Graham, M.; Jacquet, Ph.; Monakhov, I.; Riccardo, V. [Euratom/CCFE Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Eriksson, L.-G. [European Commission, Brussels, B-1049 (Belgium); Lerche, E.; Van Eester, D. [LPP-ERM/KMS, Association Euratom-'Belgian State' (Belgium)

2011-12-23T23:59:59.000Z

154

RELAP5/MOD3 simulation of the loss of residual heat removal during midloop operation experiment conducted at the ROSA-IV/ Large Scale Test Facility  

E-Print Network (OSTI)

The modeling of the complex thermal hydraulics Of reactor systems involves the use Of experimental test systems as well as numerical codes. A simulation of the loss of residual heat removal (RHR) during midloop operations was performed using...

Banerjee, Sibashis Sanatkumar

2012-06-07T23:59:59.000Z

155

Parallel heat flux and flow acceleration in open field line plasmas with magnetic trapping  

SciTech Connect

The magnetic field strength modulation in a tokamak scrape-off layer (SOL) provides both flux expansion next to the divertor plates and magnetic trapping in a large portion of the SOL. Previously, we have focused on a flux expander with long mean-free-path, motivated by the high temperature and low density edge anticipated for an absorbing boundary enabled by liquid lithium surfaces. Here, the effects of magnetic trapping and a marginal collisionality on parallel heat flux and parallel flow acceleration are examined. The various transport mechanisms are captured by kinetic simulations in a simple but representative mirror-expander geometry. The observed parallel flow acceleration is interpreted and elucidated with a modified Chew-Goldberger-Low model that retains temperature anisotropy and finite collisionality.

Guo, Zehua; Tang, Xian-Zhu; McDevitt, Chris [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-10-15T23:59:59.000Z

156

Expert Meeting Report: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploring the Disconnect Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems M. Hoeschele and E. Weitzel Alliance for Residential Building Innovation (ARBI) May 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

157

Quantum field theory in curved spacetime, the operator product expansion, and dark energy  

E-Print Network (OSTI)

To make sense of quantum field theory in an arbitrary (globally hyperbolic) curved spacetime, the theory must be formulated in a local and covariant manner in terms of locally measureable field observables. Since a generic curved spacetime does not possess symmetries or a unique notion of a vacuum state, the theory also must be formulated in a manner that does not require symmetries or a preferred notion of a ``vacuum state'' and ``particles''. We propose such a formulation of quantum field theory, wherein the operator product expansion (OPE) of the quantum fields is elevated to a fundamental status, and the quantum field theory is viewed as being defined by its OPE. Since the OPE coefficients may be better behaved than any quantities having to do with states, we suggest that it may be possible to perturbatively construct the OPE coefficients--and, thus, the quantum field theory. By contrast, ground/vacuum states--in spacetimes, such as Minkowski spacetime, where they may be defined--cannot vary analytically with the parameters of the theory. We argue that this implies that composite fields may acquire nonvanishing vacuum state expectation values due to nonperturbative effects. We speculate that this could account for the existence of a nonvanishing vacuum expectation value of the stress-energy tensor of a quantum field occurring at a scale much smaller than the natural scales of the theory.

S. Hollands; R. M. Wald

2008-05-22T23:59:59.000Z

158

A new high performance field reversed configuration operating regime in the C-2 device  

SciTech Connect

Large field reversed configurations (FRCs) are produced in the C-2 device by combining dynamic formation and merging processes. The good confinement of these FRCs must be further improved to achieve sustainment with neutral beam (NB) injection and pellet fuelling. A plasma gun is installed at one end of the C-2 device to attempt electric field control of the FRC edge layer. The gun inward radial electric field counters the usual FRC spin-up and mitigates the n = 2 rotational instability without applying quadrupole magnetic fields. Better plasma centering is also obtained, presumably from line-tying to the gun electrodes. The combined effects of the plasma gun and of neutral beam injection lead to the high performance FRC operating regime, with FRC lifetimes up to 3 ms and with FRC confinement times improved by factors 2 to 4.

Tuszewski, M.; Smirnov, A.; Thompson, M. C.; Barnes, D.; Binderbauer, M. W.; Brown, R.; Bui, D. Q.; Clary, R.; Conroy, K. D.; Deng, B. H.; Dettrick, S. A.; Douglass, J. D.; Garate, E.; Glass, F. J.; Gota, H.; Guo, H.Y.; Gupta, D.; Gupta, S.; Kinley, J. S.; Knapp, K. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); and others

2012-05-15T23:59:59.000Z

159

Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams  

E-Print Network (OSTI)

from 13 to 15 million BTU per hour for fired boiler efficiencies of 80% to 70% respectively. The savings represents 85 to 90% of the energy entering the waste heat boiler. Equiva lent furnace efficiency increases from 25% to over 60% on high fire... Fired Boiler Efficiency 0.70 0.75 0.80 Energy Savings Furnace Efficiency Corresponding Peak Fuel Equivalent at High (1) . Savi ngs Fire on Melt 4453 kw (15.1x10 6 BTU/hr) 69% 4156 kw (14.1x10 6 BTU/hr) 66% 3896 kw (13.3x10 6 BTU/hr) 63% (1...

Kreeger, A. H.

160

Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems  

E-Print Network (OSTI)

panel system are given by its energy (the consumption of gas for heating, electricity for pumps Temperature Radiant Heating Systems Milorad Boji1*, Dragan Cvetkovi1 , Jasmina Skerli1 , Danijela Nikoli1, wall heating, floor heating, ceiling heating, EnergyPlus SUMMARY Low temperature heating panel systems

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A comparative study on conventional and advanced exergetic analyses of geothermal district heating systems based on actual operational data  

Science Journals Connector (OSTI)

This paper comparatively evaluates exergy destructions of a geothermal district heating system (GDHS) using both conventional and advanced exergetic analysis methods to identify the potential for improvement and the interactions among the components. As a real case study, the Afyon GDHS in Afyonkarahisar, Turkey, is considered based on actual operational data. For the first time, advanced exergetic analysis is applied to the GDHSs, in which the exergy destruction rate within each component is split into unavoidable/avoidable and endogenous/exogenous parts. The results indicate that the interconnections among all the components are not very strong. Thus, one should focus on how to reduce the internal inefficiency (destruction) rates of the components. The highest priority for improvement in the advanced exergetic analysis is in the re-injection pump (PM-IX), while it is the heat exchanger (HEX-III) in the conventional analysis. In addition, there is a substantial influence on the overall system as the total avoidable exergy destruction rate of the heat exchanger (HEX-V) has the highest value. On the overall system basis, the value for the conventional exergetic efficiency is determined to be 29.29% while that for the modified exergetic efficiency is calculated to be 34.46% through improving the overall components.

Arif Hepbasli; Ali Keçeba?

2013-01-01T23:59:59.000Z

162

Development of thermoacoustic engine operating by waste heat from cooking stove  

Science Journals Connector (OSTI)

There are about 1.5 billion people worldwide use biomass as their primary form of energy in household cooking[1]. They do not have access to electricity and are too remote to benefit from grid electrical supply. In many rural communities stoves are made without technical advancements mostly using open fires cooking stoves which have been proven to be extremely low efficiency and about 93% of the energy generated is lost during cooking. The cooking is done inside a dwelling and creates significant health hazard to the family members and pollution to environment. SCORE (www.score.uk.com) is an international collaboration research project to design and build a low-cost high efficiency woodstove that uses about half amount of the wood of an open wood fire and uses the waste heat of the stove to power a thermoacoustic engine (TAE) to produce electricity for applications such as LED lighting charging mobile phones or charging a 12V battery. This paper reviews on the development of two types of the thermoacoustic engine powered by waste heat from cooking stove which is either using Propane gas or burning of wood as a cooking energy to produce an acceptable amount of electricity for the use of rural communities.

2012-01-01T23:59:59.000Z

163

Operation and performance of a 350 kW (100 RT) single-effect/double-lift absorption chiller in a district heating network  

SciTech Connect

The efficiency of combined heat, power, and cold production in total energy systems could be improved significantly if absorption chillers were available that could be driven with limited mass flows of low-temperature hot water. In the case of district heat-driven air conditioning, for example, currently available standard absorption chillers are often not applied because they cannot provide the low hot water return temperature and the specific cooling capacity per unit hot water mass flow that are required by many district heating networks. Above all, a drastic increase in the size of the machine (total heat exchanger area) due to low driving temperature differences if of concern in low-temperature applications. A new type of multistage lithium bromide/water absorption chiller has been developed for the summertime operating conditions of district heating networks. It provides large cooling of the district heating water (some 30 K) and large cooling capacity per unit hot water mass flow. Two pilot plants of this novel absorption chiller were designed within the framework of a joint project sponsored by the German Federal Ministry of Education, Science, Research and Technology (BMBF), a consortium of 15 district heating utilities, and two manufacturers. The plants have been operated since summer 1996 in the district heating networks of Berlin and Duesseldorf. This paper describes the concept, installation, and control strategy of the two pilot plants, and it surveys the performance and operating experience of the plants under varying practical conditions.

Schweigler, C.J.; Preissner, M.; Demmel, S.; Hellmann, H.M.; Ziegler, F.F. [ZAE Bayern, Garching/Munich (Germany)

1998-10-01T23:59:59.000Z

164

NEUTRAL BEAM HEATING OF A REVERSED-FIELD PINCH IN THE MADISON  

NLE Websites -- All DOE Office Websites (Extended Search)

PPCD plasmas. Fast ion diffusion is crucial in driving a flatter heating profile to limit heat conduction- losses. Measured core T e is only possible with significant mid-radius...

165

Improving the Operating Efficiency of Packaged Air Conditioners and Heat Pumps  

SciTech Connect

This article discusses several control strategies that can significantly reduce energy consumption associated with packaged rooftop units RTUs). Although all of the considered strategies are widely used in built-up air-handing units, they are not commonly used in existing RTUs. Both simulation and field evaluations show that adding these control strategies to existing RTUs can reduce their energy consumption by between 30% and 60%.

Katipamula, Srinivas; Wang, Weimin; Vowles, Mira

2014-03-10T23:59:59.000Z

166

EXPERIMENTAL INVESTIGATION OF TURBULENT HEAT TRANSFER OF HIGH PRANDTL NUMBER FLUID FLOW UNDER STRONG MAGNETIC FIELD  

E-Print Network (OSTI)

EXPERIMENTAL INVESTIGATION OF TURBULENT HEAT TRANSFER OF HIGH PRANDTL NUMBER FLUID FLOW UNDER to the heat transfer characteristic: Flibe is a high Prandtl number fluid. For high Prandtl number fluid, there is a severe limitation of temperature window due to its high melting point. The turbulent heat transfer is

Abdou, Mohamed

167

Ultra hard x rays from krypton clusters heated by intense laser fields R. C. Issac,a)  

E-Print Network (OSTI)

drives a fast ignition wave.15 Prop- erties of the cluster media as well as the incident laser paUltra hard x rays from krypton clusters heated by intense laser fields R. C. Issac,a) G. Vieux, B of ultrashort laser pulses with krypton clusters at intensity up to 1.3 1018 Wcm 2 has been investigated

Strathclyde, University of

168

Commissioning Process and Operational Improvement in the District Heating and Cooling-APCBC  

E-Print Network (OSTI)

-09-25 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 18 Energy simulation In case of the variable cooling water flow system, the cooling water outlet temperature should be a parameter...,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000 13,000 2012/10/072012/10/28 2012/11/18 2012/12/09 2012/12/30 2/24 ? 3/2 C o n su m ed e le ct ri ci ty p er h ea t u n it [ k W h /G J ] Variable water flow control Cooling tower fun Chilled...

Takase,T.; Takada,O; Shima,K.; Moriya, M.; Shimoda,Y.

2014-01-01T23:59:59.000Z

169

Standard practice for in situ examination of ferromagnetic Heat-Exchanger tubes using remote field testing  

E-Print Network (OSTI)

1.1 This practice describes procedures to be followed during remote field examination of installed ferromagnetic heat-exchanger tubing for baseline and service-induced discontinuities. 1.2 This practice is intended for use on ferromagnetic tubes with outside diameters from 0.500 to 2.000 in. [12.70 to 50.80 mm], with wall thicknesses in the range from 0.028 to 0.134 in. [0.71 to 3.40 mm]. 1.3 This practice does not establish tube acceptance criteria; the tube acceptance criteria must be specified by the using parties. 1.4 Units—The values stated in either inch-pound units or SI units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this practice to establ...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

170

Rational analysis of mass, momentum, and heat transfer phenomena in liquid storage tanks under realistic operating conditions: 1. Basic formulation  

SciTech Connect

This paper presents a computer code that analyses the performance of storage tanks using water as the working fluid. The new aspects of the authors work include the following items: (a) the transient Navier-Stokes equations are expressed in two-dimensional Cartesian and cylindrical coordinates, under the assumption of the Boussinesq approximation, (b) the effective viscosity and thermal diffusivity are evaluated by using a simplified form of the Deardorff turbulence model, (c) the energy equation is solved over a domain which includes the tank and a large portion of the surrounding soil, (d) some properly defined source terms have been introduced in the governing equations to describe inlet/outlet devices inside the tank, and localized friction losses, and (e) the boundary conditions are time-dependent to correctly describe the daily heat exchanges between tank, solar collectors and heat pumps for space conditioning. The Finite Differences (FD) technique and an improved formulation of the Marker and Cell (MAC) method are used to solve the conservation equations. Comparisons with literature studies indicate discrepancies between 0.02 and 0.5%. The results of several tests simulating realistic operating conditions will be shown in the second part of the paper.

Parrini, F.; Vitale, S.; Alabiso, M. (ENEL-Italian National Electricity Board-CRTN, Milan (Italy)); Castellano, L. (MATEC S.r.l., Milan (Italy))

1992-08-01T23:59:59.000Z

171

operations center  

National Nuclear Security Administration (NNSA)

1%2A en Operations Center http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorismoperationscenter

field field-type-text field-field-page-name">...

172

Limited field investigation report for the 100-DR-1 Operable Unit  

SciTech Connect

This limited field investigation (LFI) report summarizes the data collection and analysis activities conducted during the 100-DR-1 Source Operable Unite LFI and the associated qualitative risk assessment (QRA), and makes recommendations on the continued candidacy of high-priority sites for interim remedial measures (IRM). The results and recommendations presented in this report are generally independent of future land use scenarios. The 100-DR-1 Operable Unit is one of four operable units associated with the 100 D/DR Area at the Hanford Site. The 100-DR-1 Operable Unit encompasses approximately 1.5 km{sup 2} (0.59 mi{sup 2}) and is located immediately adjacent to the Columbia River shoreline. In general, it contains waste facilities associated with the original plant facilities constructed to support D Reactor facilities, as well as cooling water retention basin systems for both D and DR Reactors. The 100-DR-1 LFI began the investigative phase of the remedial investigation for a select number of high-priority sites. The LFI was performed to provide additional data needed to support selection, design and implementation of IRM, if needed. The LFI included data compilation, nonintrusive investigations, intrusive investigations, summarization of 100 Area aggregate studies, and data evaluation.

Not Available

1994-06-01T23:59:59.000Z

173

Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field  

SciTech Connect

Experimental investigation is conducted to get insight into convective heat transfer features of the aqueous magnetic fluid flow over a fine wire under the influence of an external magnetic field. The convective heat transfer coefficient of the aqueous magnetic fluid flow around the heated wire is measured in both the uniform magnetic field and the magnetic field gradient. The effects of the external magnetic field strength and its orientation on the thermal behaviors of the magnetic fluids are analyzed. The experimental results show that the external magnetic field is a vital factor that affects the convective heat transfer performances of the magnetic fluids and the control of heat transfer processes of a magnetic fluid flow can be possible by applying an external magnetic field. (author)

Li, Qiang; Xuan, Yimin [School of Power Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094 (China)

2009-04-15T23:59:59.000Z

174

Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables.

NONE

1996-08-01T23:59:59.000Z

175

Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)  

SciTech Connect

This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

Not Available

2014-05-01T23:59:59.000Z

176

Evaluation of enhanced recovery operations in Smackover fields of southwest Alabama. Draft topical report on Subtasks 5 and 6  

SciTech Connect

This report contains detailed geologic and engineering information on enhanced-recovery techniques used in unitized Smackover fields in Alabama. The report also makes recommendations on the applicability of these enhanced-recovery techniques to fields that are not now undergoing enhanced recovery. Eleven Smackover fields in Alabama have been unitized. Three fields were unitized specifically to allow the drilling of a strategically placed well to recover uncontacted oil. Two fields in Alabama are undergoing waterflood projects. Five fields are undergoing gas-injection programs to increase the ultimate recovery of hydrocarbons. Silas and Choctaw Ridge fields were unitized but no enhanced-recovery operations have been implemented.

Hall, D.R.

1992-06-01T23:59:59.000Z

177

Building America Expert Meeting: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

Water heating represents a major residential energy end use, especially in highly efficient homes where space conditioning loads and energy use has been significantly reduced. Future efforts to reduce water heating energy use requires the development of an improved understanding of equipment performance, as well as recognizing system interactions related to the distribution system and the fixture use characteristics. By bringing together a group of water heating experts, we hope to advance the shared knowledge on key water heating performance issues and identify additional data needs that will further this critical research area.

178

Flow fields and heat transfer of liquid falling film on horizontal cylinders.  

E-Print Network (OSTI)

??A liquid film flowing over horizontal cylinders is of great importance as a high rate of heat transfer exists between the falling liquid film and… (more)

Jafar, Farial A

2011-01-01T23:59:59.000Z

179

A phase-field method for 3D simulation of two-phase heat transfer  

E-Print Network (OSTI)

stationary grids, different modes of heat transfer (e.g. convection/conduction), as well as its ... flow systems with sharp-interface models, moving-grid methods.

X. Zheng

2014-12-04T23:59:59.000Z

180

Hot Nanotubes: Stable Heating of Individual Multiwall Carbon Nanotubes to 2000 K Induced by the Field-Emission Current  

Science Journals Connector (OSTI)

Field emission (FE) electron spectroscopy from an individual multiwalled carbon nanotube (MWNT) is used to measure quantitatively stable temperatures at the apex, TA, of up to 2000 K induced by FE currents ?1 ?A. The high TA is due to Joule heating along the length of the MWNT. These measurements also give directly the resistance of the individual MWNT which is shown to decrease with temperature, and explain the phenomenon of FE-induced light emission which was observed simultaneously. The heating permits thermal desorption of the MWNT and, hence, excellent current stability.

S. T. Purcell, P. Vincent, C. Journet, and Vu Thien Binh

2002-02-20T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thermal comfort, skin temperature distribution, and sensible heat loss distribution in the sitting posture in various asymmetric radiant fields  

Science Journals Connector (OSTI)

This study aimed at investigating the thermal comfort for the whole body as well as for certain local areas, skin temperatures, and sensible heat losses in various asymmetric radiant fields. Human subject experiments were conducted to assess the overall comfort sensation and local discomfort, and local skin temperatures were measured. Through thermal manikin experiments, we discovered a new method for the precise measurement of the local sensible heat loss in nonuniform thermal environments. The local sensible heat losses were measured by the use of a thermal manikin that had the same local skin temperatures as the human subjects. The experimental conditions consisted of the anterior–posterior, right–left, and up–down asymmetric thermal environments created by radiation panels. A total of 35 thermal environmental conditions were created ranging from 25.5 to 30.5 °C for air temperature, from 11.5 to 44.5 °C for surface temperature of radiation panels, from 40% RH to 50% RH for humidity, and less than 0.05 m/s for inlet air velocity to the climatic chamber. The local skin temperature changed depending on the environmental thermal nonuniformity, even if the mean skin temperature remained almost the same. It is essential to use the skin temperature distribution as well as mean skin temperature for expressing thermal comfort in nonuniform environments. The local sensible heat loss changed depending on the environmental thermal nonuniformity, even if the mean sensible heat loss remained almost the same. The relationship between the local skin temperature and local sensible heat loss cannot be depicted by a simple line; instead, it varies depending on the environmental thermal nonuniformity. The local heat discomfort in the head area was dependent on both the local skin temperature and local sensible heat loss. However, the local cold discomfort in the foot area was related only to the local skin temperature.

Tomonori Sakoi; Kazuyo Tsuzuki; Shinsuke Kato; Ryozo Ooka; Doosam Song; Shengwei Zhu

2007-01-01T23:59:59.000Z

182

Conformal field theories at non-zero temperature: operator product expansions, Monte Carlo, and holography  

E-Print Network (OSTI)

We compute the non-zero temperature conductivity of conserved flavor currents in conformal field theories (CFTs) in 2+1 spacetime dimensions. At frequencies much greater than the temperature, $\\hbar\\omega>> k_B T$, the $\\omega$ dependence can be computed from the operator product expansion (OPE) between the currents and operators which acquire a non-zero expectation value at T > 0. Such results are found to be in excellent agreement with quantum Monte Carlo studies of the O(2) Wilson-Fisher CFT. Results for the conductivity and other observables are also obtained in vector 1/N expansions. We match these large $\\omega$ results to the corresponding correlators of holographic representations of the CFT: the holographic approach then allows us to extrapolate to small $\\hbar \\omega/(k_B T)$. Other holographic studies implicitly only used the OPE between the currents and the energy-momentum tensor, and this yields the correct leading large $\\omega$ behavior for a large class of CFTs. However, for the Wilson-Fisher CFT a relevant "thermal" operator must also be considered, and then consistency with the Monte Carlo results is obtained without a previously needed ad hoc rescaling of the T value. We also establish sum rules obeyed by the conductivity of a wide class of CFTs.

Emanuel Katz; Subir Sachdev; Erik S. Sorensen; William Witczak-Krempa

2014-09-12T23:59:59.000Z

183

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

NONE

1998-03-01T23:59:59.000Z

184

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

Not Available

1994-07-08T23:59:59.000Z

185

Heat transfer and heat exchangers reference handbook  

SciTech Connect

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

186

Engineering the unitary charge-conjugation operator of quantum field theory for particle-antiparticle using trapped ions and light fields in cavity QED  

E-Print Network (OSTI)

We present a method to engineer the unitary charge conjugation operator, as given by quantum field theory, in the highly controlled context of quantum optics, thus allowing one to simulate the creation of charged particles with well-defined momenta simultaneously with their respective antiparticles. Our method relies on trapped ions driven by a laser field and interacting with a single mode of a light field in a high Q cavity.

N. G. de Almeida

2014-01-22T23:59:59.000Z

187

A Modified Analytical Method for Simulating Cyclic Operation of Vertical U-Tube Ground-Coupled Heat Pumps  

E-Print Network (OSTI)

A modified analytical model is presented which discretizes the ground-coupled heat exchanger of a ground-coupled heat pump and utilized a separate cylindrical source solution for each element. First law expressions are utilized for each element...

Dobson, M. K.; O'Neal, D. L.; Aldred, W.

1994-01-01T23:59:59.000Z

188

Field Performance of a Ground-Coupled Heat Pump in Abilene, Texas  

E-Print Network (OSTI)

U-tube groundcoupled heat pump was installed in guest officer's quarters of Dyess Air Force Base in Abilene, Texas in December 1989. Monitored variables included: water temperature entering and leaving the condenser, temperature and relative...

Dobson, M.; O'Neal, D. L.; Aldred, W.; Margo, R.

1994-01-01T23:59:59.000Z

189

Heat Production of Free Fermions Subjected to Electric Fields in Disordered Media  

E-Print Network (OSTI)

Siqueira Pedra C. Kurig March 21, 2013 Abstract Electric resistance in conducting media is related to heat two species is modeled by perfectly elastic random collisions. This quite elementary model explains

190

Effects of heat transfer on peristaltic motion of Oldroyd fluid in the presence of inclined magnetic field  

Science Journals Connector (OSTI)

Abstract In this study the peristaltic motion of Oldroyd fluid in an asymmetric channel is investigated. Mathematical analysis has been carried out in the presence of an inclined magnetic field. Heat transfer is also taken into account. The physical problem is first modeled and then the analytical solutions of coupled equations are developed by regular perturbation method. Assumptions of long wavelength approximation are used. Effects of inclined magnetic field on the axial velocity and temperature are presented. Physical features of pertinent parameters such as wave number ?, Reynolds number Re , Weissenberg number Wi, Prandtl number Pr and Hartmann number M are also discussed graphically at the end of the paper.

A. Afsar Khan; R. Ellahi; M. Mudassar Gulzar; Mohsen Sheikholeslami

2014-01-01T23:59:59.000Z

191

Membrane Heating in Living Tissues Exposed to Nonthermal Pulsed EM Fields  

E-Print Network (OSTI)

A bio tissue model consisting of multilayer spherical cells including four nested radial domains (nucleus, nuclear membrane, cytoplasm and plasma membrane) is worked out to derive the cell heating dynamics in presence of membrane capacitance dispersion under pulsed electromagnetic exposure. Two possible cases of frequency-dependent membrana models are discussed: plasma and nuclear membranes are dispersive, only the nuclear memebrane is dispersive . In both models an high localized heating of the membranes occurs, without significant temperature rise in the cytoplasm and nucleoplasm.

Pierro, V; Croce, R P; Pinto, I M

2014-01-01T23:59:59.000Z

192

Field operations plan for permeability testing in the WIPP-site underground facility  

SciTech Connect

This Field Operations Plan (FOP) describes the objectives, design, equipment, and methodology for permeability tests to be conducted in boreholes drilled from the underground facility currently under construction at the 655-meter depth level at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico into relatively undisturbed portions of the Salado formation. The WIPP is a U. S. Department of Energy research and development facility designed to demonstrate safe disposal of transuranic radioactive wastes resulting from the United States`s defense programs. The testing described in this FOP will be conducted by INTERA Technologies, Inc., under contract to the Earth Sciences Division of Sandia National Laboratories (SNL). The testing program is part of the WIPP-site Hydrogeologic Characterization and Plugging and Sealing programs being conducted by SNL`s Earth Sciences and Experimental Programs Divisions, respectively.

Saulnier, G.J. Jr. [Intera Technologies, Inc., Austin, TX (United States)

1988-08-09T23:59:59.000Z

193

Field operations plan for permeability testing in the WIPP-site underground facility  

SciTech Connect

This Field Operations Plan (FOP) describes the objectives, design, equipment, and methodology for permeability tests to be conducted in boreholes drilled from the underground facility currently under construction at the 655-meter depth level at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico into relatively undisturbed portions of the Salado formation. The WIPP is a U. S. Department of Energy research and development facility designed to demonstrate safe disposal of transuranic radioactive wastes resulting from the United States's defense programs. The testing described in this FOP will be conducted by INTERA Technologies, Inc., under contract to the Earth Sciences Division of Sandia National Laboratories (SNL). The testing program is part of the WIPP-site Hydrogeologic Characterization and Plugging and Sealing programs being conducted by SNL's Earth Sciences and Experimental Programs Divisions, respectively.

Saulnier, G.J. Jr. (Intera Technologies, Inc., Austin, TX (United States))

1988-08-09T23:59:59.000Z

194

A DISTILLATION PLANT WITH AN INDIRECT HEAT PUMP FOR EXPERIMENTAL STUDIES OF OPERATION FORM, DYNAMICS AND CONTROL  

Science Journals Connector (OSTI)

ABSTRACT A 19 sieve tray pilot plant distillation column has been designed and erected at Instituttet for Kemiteknik, The Technical University of Denmark. The plant utilizes a heat pump to recirculate the energy from the condenser to the reboiler. The column is equipped with exchangeable trays, in order to be run in either a conventional continuous or a periodic cycling mode. The purpose of the process system is to perform: Control studies of conventional continuous distillation and of periodic cycling distillation. Comparative studies of the two operation forms with respect to separation efficiency and energy efficiency. Two types of distillation separations will be investigated: First a binary distillation using methanol and isopropanol, with the primary purpose of evaluating the properties of the separation process, using a thermodynamically simple system. Later an azeotropic distillation separating isopropanol and water using toluen as entrainer. This system is used as an example of a thermodynamically more demanding distillation. In this paper the the column and heatpump set-up is described and results from steady state and transient experiments are shown and discussed.

L. Hallager; B. Toftegård; K. Clement; S.B. Jørgensen

1988-01-01T23:59:59.000Z

195

Conformal field theories at non-zero temperature: operator product expansions, Monte Carlo, and holography  

E-Print Network (OSTI)

We compute the non-zero temperature conductivity of conserved flavor currents in conformal field theories (CFTs) in 2+1 spacetime dimensions. At frequencies much greater than the temperature, $\\hbar\\omega>> k_B T$, the $\\omega$ dependence can be computed from the operator product expansion (OPE) between the currents and operators which acquire a non-zero expectation value at T > 0. Such results are found to be in excellent agreement with quantum Monte Carlo studies of the O(2) Wilson-Fisher CFT. Results for the conductivity and other observables are also obtained in vector 1/N expansions. We match these large $\\omega$ results to the corresponding correlators of holographic representations of the CFT: the holographic approach then allows us to extrapolate to small $\\hbar \\omega/(k_B T)$. Other holographic studies implicitly only used the OPE between the currents and the energy-momentum tensor, and this yields the correct leading large $\\omega$ behavior for a large class of CFTs. However, for the Wilson-Fisher ...

Katz, Emanuel; Sorensen, Erik S; Witczak-Krempa, William

2014-01-01T23:59:59.000Z

196

Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report  

SciTech Connect

This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.

J. Francfort (INEEL); J. Argueta; M. Wehrey (Southern California Edison); D. Karner; L. Tyree (Electric Transportation Applications)

1999-07-01T23:59:59.000Z

197

Operation of {sup 3}He Proportional Chambers in High Gamma Radiation Fields  

SciTech Connect

Operation of {sup 3}He proportional chambers with irradiated fissile materials is limited because of the sensitivity of these chambers to gamma ray events. The optimum performance of these chambers is achieved with proper selection of an additive gas to the chambers and with proper choice of preamplifier and linear amplifier time constants. The counting efficiency of a 4-atm, {sup 3}He-CO2 chamber is improved from 35% to 43% in a 200 R/hr gamma radiation field by decreasing the linear amplifier time constant. Likewise, the counting efficiency of a 1-atm, {sup 3}He-CF4 is improved from 11% to 14% in a 200 R/hr gamma radiation field by decreasing the linear amplifier time constant. The 4-atm, {sup 3}He-CO2 1-in.-OD chamber has a higher efficiency than the 1-atm, {sup 3}He-CF4 1-in.-OD chamber although the energy resolution of the 3 He-CF4 chamber is better than that for the {sup 3}He-CO2 chamber.

Hill, N.W.; Miller, V.C.; Valentine, T.E.; Williams, J.A.

1999-09-01T23:59:59.000Z

198

Water and Space Heating Heat Pumps  

E-Print Network (OSTI)

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

199

Electron Heat Transport Measured in a Stochastic Magnetic Field T. M. Biewer,* C. B. Forest,  

E-Print Network (OSTI)

where magnetic islands overlap and field lines are stochastic. The measurements show that (1 magnetic flux surfaces. When flux surfaces exist, magnetic field lines and hence particle orbits are small, the magnetic field lines break into chains of magnetic islands at mode-rational sur- faces where

Biewer, Theodore

200

Building America Technology Solutions for New and Existing Homes: Field Performance of Heat Pump Water Heaters in the Northeast (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, the Consortium for Advanced Residential Buildings evaluated three newly released heat pump water heater products in order to provide publicly available field data on these products.

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Field dependences of magnetization and specific-heat coefficient in a nearly magnetic system: Liquid /sup 3/He and strong Pauli paramagnets  

SciTech Connect

We analytically derive the first-order magnetic-field dependences of the magnetization M and of the coefficient ..gamma.. of the specific heat, in a nearly magnetic paramagnet, at low temperature.

Beal-Monod, M.T.; Daniel, E.

1983-04-01T23:59:59.000Z

202

Optimization of the design and mode of operation of a QD laser for reducing the heat-to-bitrate ratio  

SciTech Connect

Heat dissipation under the high-speed modulation of quantum dot edge-emitting lasers is considered. It is shown that, for a given laser diode, there is a bias current at which the heat-to-bitrate ratio is minimized. Moreover, there exists a certain optimal optical loss of the laser cavity at which the lowest heat-to-bitrate ratio is provided for any design of edge-emitting lasers that can be fabricated from an epitaxial structure. The heat-to-bitrate ratio and the corresponding bitrate are numerically calculated and analytical expressions are derived. It is demonstrated that the heat-to-bitrate ratio of quantum dot edge-emitting lasers can be less than 0.4 pJ/bit at a bitrate exceeding 10 Gbit/s.

Zhukov, A. E., E-mail: zhukale@gmail.com; Savelyev, A. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Maximov, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kryzhanovskaya, N. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Gordeev, N. Yu.; Shernyakov, Yu. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Payusov, A. S.; Nadtochiy, A. M.; Zubov, F. I.; Korenev, V. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)

2013-08-15T23:59:59.000Z

203

Near-Field Sediment Resuspension Measurement and Modeling for Cutter Suction Dredging Operations  

E-Print Network (OSTI)

The sediment resuspension and turbidity created during dredging operations is both an economical and environmental issue. The movement of sediment plumes created from dredging operations has been predicted with numerical modeling, however, these far...

Henriksen, John Christopher

2011-02-22T23:59:59.000Z

204

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

205

Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions  

SciTech Connect

This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heat during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.

Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

206

Interagency Field Test Evaluates Co-operation of Turbines and Radar  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy and federal agency partners recently completed the first in a series of three radar technology field tests and demonstrations. The Interagency Field Test and Evaluation of...

207

Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit  

Science Journals Connector (OSTI)

Abstract The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented.

Yang Wang; Fu-Yun Zhao; Jens Kuckelkorn; Di Liu; Li-Qun Liu; Xiao-Chuan Pan

2014-01-01T23:59:59.000Z

208

Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56?MHz planar coil inductively coupled argon discharge  

SciTech Connect

The axial and radial magnetic field profiles in a 13.56?MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

Jayapalan, Kanesh K., E-mail: kane-karnage@yahoo.com; Chin, Oi-Hoong, E-mail: ohchin@um.edu.my [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)] [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2014-04-15T23:59:59.000Z

209

Regional Field Verification Project--Operational Results from Four Small Wind Turbines (Poster)  

SciTech Connect

A poster describing two years of operating data for four Bergey, 10-kW wind turbines on different host sites in the Pacific Northwest.

Sinclair, K.; Raker, J.

2006-06-01T23:59:59.000Z

210

Travinfo Field Operational Test Traveler Information Center (TIC) Study (technology Evaluation Element) Implementation Plan  

E-Print Network (OSTI)

Phase I & 11) 2. Review TRWIASG TIC documentation 3.TIC site visits 4. Conduct discussions with operators PhaseInformation Center (TIC) Study (Technology Evaluation

Miller, Mark; Hall, Randolph

1995-01-01T23:59:59.000Z

211

International Microwave Power Institute 127 ANALYSIS OF OPERATIONAL REGIMES  

E-Print Network (OSTI)

for microwave heating. KEY WORDS: Electric field, dissipated power, micro- wave power, model, permittivity heating systems oper ating at 915 MHz is a standard feature protecting the magnetron from reflections LOAD E. Eves and V. Yakovlev Reflections, electric field and dissipated power of a 915 MHz water load

Yakovlev, Vadim

212

Bubble dynamics and boiling heat transfer : a study in the absence and in the presence of electric fields.  

E-Print Network (OSTI)

??Since boiling heat transfer affords a very effective means to transfer heat, it is implemented in numerous technologies and industries ranging from large power generation… (more)

Siedel, Samuel

2012-01-01T23:59:59.000Z

213

Theory of high-power cyclotron-resonance heating in an inhomogeneous magnetic field  

Science Journals Connector (OSTI)

Wave-energy absorption of a plasma due to cyclotron harmonic resonance is evaluated analytically and by a simulation. The static magnetic field is characterized with B??B=0, and a longitudinal wave is supposed to propagate across the magnetic field. In the calculation an orbit modification of the cyclotron motion of particles is taken into account. It is found that the absorption for the fundamental harmonic resonance (m=1) is depressed from that of the conventional linear theory while the absorptions for m?2 are enhanced, where m is the harmonic number. The enhancement is significant when k?t?1 (k the perpendicular wave number and ?t the gyroradius of the thermal particle) and when the interaction time between the plasma particles and the wave exceeds a critical value that is obtainable analytically. For all m and k?t, there appear peaks or saturations in the time evolution of the absorbed energy.

Ryo Sugihara and Yuichi Ogawa

1992-03-15T23:59:59.000Z

214

Estimation of heat and chemical fluxes from a seafloor hydrothermal vent field using radon measurements  

Science Journals Connector (OSTI)

... exists at about 200 m above the depth of the vent field12'13. Distinct excess radon levels have been observed at Endeavour both in vent water and in the effluent plume ... vent water and in the effluent plume up to 17 km from the ridge axis14.Radon is a chemically inert gas with a radioactive half life of 3.85 days. ...

N. D. Rosenberg; J. E. Lupton; D. Kadko; R. Collier; M. D. Lilley; H. Pak

1988-08-18T23:59:59.000Z

215

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

Brayton Point Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of the impacts of future mercury regulations to Brayton Point Unit 1, including performance, estimated cost, and operation data. This unit has variable (29-75%) native mercury removal, thus it was important to understand the impacts of process variables and activated carbon on mercury capture. The team responsible for executing this program included: (1) Plant and PG&E National Energy Group corporate personnel; (2) Electric Power Research Institute (EPRI); (3) United States Department of Energy National Energy Technology Laboratory (DOE/NETL); (4) ADA-ES, Inc.; (5) NORIT Americas, Inc.; (6) Apogee Scientific, Inc.; (7) TRC Environmental Corporation; (8) URS Corporation; (9) Quinapoxet Solutions; (10) Energy and Environmental Strategies (EES); and (11) Reaction Engineering International (REI). The technical support of all of these entities came together to make this program achieve its goals. Overall, the objectives of this field test program were to determine the impact of activated carbon injection on mercury control and balance-of-plant processes on Brayton Point Unit 1. Brayton Point Unit 1 is a 250-MW unit that fires a low-sulfur eastern bituminous coal. Particulate control is achieved by two electrostatic precipitators (ESPs) in series. The full-scale tests were conducted on one-half of the flue gas stream (nominally 125 MW). Mercury control sorbents were injected in between the two ESPs. The residence time from the injection grid to the second ESP was approximately 0.5 seconds. In preparation for the full-scale tests, 12 different sorbents were evaluated in a slipstream of flue gas via a packed-bed field test apparatus for mercury adsorption. Results from these tests were used to determine the five carbon-based sorbents that were tested at full-scale. Conditions of interest that were varied included SO{sub 3} conditioning on/off, injection concentrations, and distribution spray patterns. The original test plan called for parametric testing of NORIT FGD carbon at 1, 3, and 10 lbs/MMacf. These injection concentrations were estimated based on results from the Pleasant Prairie tests that showed no additional mercury removal when injection concentrations were increased above 10 lbs/MMacf. The Brayton Point parametric test data indicated that higher injection concentrations would achieve higher removal efficiencies and should be tested. The test plan was altered to include testing at 20 lbs/MMacf. The first test at this higher rate showed very high removal across the second ESP (>80%). Unlike the ''ceiling'' phenomenon witnessed at Pleasant Prairie, increasing sorbent injection concentration resulted in further capture of vapor-phase mercury. The final phase of field-testing was a 10-day period of continuous injection of NORIT FGD carbon. During the first five days, the injection concentration was held at 10 lbs/MMacf, followed by nominally five days of testing at an injection concentration of 20 lbs/MMacf. The mercury removal, as measured by the semi-continuous emission monitors (S-CEM), varied between 78% and 95% during the 10 lbs/MMacf period and increased to >97% when the injection concentration was increased to 20 lbs/MMacf. During the long-term testing period, mercury measurements following EPA's draft Ontario Hydro method were conducted by TRC Environmental Corporation at both 10 and 20 lbs/MMacf test conditions. The Ontario Hydro data showed that the particulate mercury removal was similar between the two conditions of 10 or 20 lbs/MMacf and removal efficiencies were greater than 99%. Elemental mercury was not detected in any samples, so no conclusions as to its removal can be drawn. Removal of oxidized mercury, on the other hand, increased from 68% to 93% with the higher injection concentration. These removal rates agreed well with the S-CEM results.

Michael D. Durham

2005-03-17T23:59:59.000Z

216

Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation  

SciTech Connect

Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

Clark, Thomas M [Principal Investigator; Erlach, Celeste [Communications Mgr.

2014-12-30T23:59:59.000Z

217

Radio frequency ion source operated with field effect transistor based radio frequency system  

SciTech Connect

Characteristics of radio frequency (RF) plasma production are investigated using a field effect transistor inverter power supply as an RF wave source. With the frequency of around 0.3 MHz, an electron density over 10{sup 18} m{sup -3} is produced in argon plasma. Although lower densities are obtained in hydrogen plasma, it drastically increased up to 5x10{sup 18} m{sup -3} with an axial magnetic field of around 100 G applied in the driver region. Effects of the magnetic field and gas pressure are investigated in the RF produced plasma with the frequency of several hundred kilohertz.

Ando, A.; Komuro, A.; Matsuno, T. [Department of Electrical Engineering, Tohoku University, Sendai 980-8759 (Japan); Tsumori, K.; Takeiri, Y. [National Institute for Fusion Science, Toki 509-5292 (Japan)

2010-02-15T23:59:59.000Z

218

Audit of Departmental Integrated Standardized Core Accounting System (DISCAS) Operations at Selected Field Sites, AP-FS-97-02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AUDIT OF DEPARTMENTAL INTEGRATED STANDARDIZED CORE ACCOUNTING SYSTEM (DISCAS) OPERATIONS AT SELECTED FIELD SITES The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. Therefore, this report will be available electronically through the Internet five to seven days after publication at the following alternative addresses: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP vm1.hqadmin.doe.gov

219

LoanSTAR Monitoring and Analysis Program: Presentation Summary of the State Capitol Complex Building Operation and Maintenance Field Test  

E-Print Network (OSTI)

requests, only 58% to 95% of AHUs identified in earlier report were shut off S. F. Austin Whole Building Electricity & Chilled Water Consumption Over 600 kW reduction when AHUs and lights turned off L.B. Johnson Whole Building Electricity & Chilled Water...LoanSTAR Monitoring and Analysis Program Presentation Summary of the State Capitol Complex Building Operation and Maintenance Field Test Presented to the State Purchasing and General Services Commission By the Monitoring Analysis Task E Dr. W. D...

Turner, W. D.; Houcek, J. K.; Liu, M.; Claridge, D. E.

1993-01-01T23:59:59.000Z

220

Multi-criteria Operation Strategies of Power-to-Heat-Systems in Virtual Power Plants with a High Penetration of Renewable Energies  

Science Journals Connector (OSTI)

Abstract The integration of renewable energy into the existing energy supply system is a core challenge regarding the successful realization of the German “Energiewende”. One concept to integrate decentralized regenerative power generators is a virtual power plant that operates many small facilities as one power plant. Essential parts of the concept are controllable loads and generators to reduce the impact of volatile energy resource – like wind power stations – on operational planning. Power-to-Heat-Systems (P2H) are one possible technology that can be used to a limited extent as a controllable load. The P2H-system as a component of virtual power plants is capable of supplying flexibility due to various possible operation strategies. This flexibility can either be used for ancillary services (primary, secondary and tertiary ancillary services), to provide schedule energy or for balancing group management. This paper presents a modeling approach for P2H systems as a component of virtual power plants with a high share of renewable energies. The operation strategies are evaluated with respect to economic and technical aspects and uncertainties in generation and load. The operation strategies of P2H systems are shown with regard to market integration of renewable energies within a virtual power plant and the provision of ancillary services.

Torsten Sowa; Stefan Krengel; Simon Koopmann; Johannes Nowak

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Burning mill sludge in a fluidized-bed incinerator and waste-heat-recovery system; Ten years of successful operation  

SciTech Connect

This paper reports on burning mill sludge in a fluidized-bed incinerator and waste-heat-recovery system. In the late 1970s, the Lielahti sulfite mill of G.A. Serlachius Corp. (now Metsa Serla Oy) began investigating alternative methods of sludge disposal. The mill had an annual capacity of 100,000 tons of bleached pulp, generated 80,000 tons of by-product lignin sulfonates, and specialized in dissolving pulps. Because of the end product's high quality requirements, the mill had a low pulp yield and high losses in the form of both dissolved and suspended solids.

Nickull, O. (Metsa Serla, Oy (FI)); Lehtonen, O. (Tampella Ltd., Tampere (FI)); Mullen, J. (Tampella Keeler, Williamsport, PA (US))

1991-03-01T23:59:59.000Z

222

Two-sided estimates on Dirichlet heat kernels for time-dependent parabolic operators with singular drifts  

E-Print Network (OSTI)

, -domain in Rd , where d 1 and (0, 1]. Our operator is L + µ · x, where L is a time-dependent uniformly Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2011-0009685) 2Panki Kim is supported by Basic Science Research Program through the National Re- search Foundation of Korea(NRF) grant

Kim, Panki

223

Application of microwave heating to ceramic processing: Design and initial operation of a 2.45-GHz single-mode furnace  

SciTech Connect

High-power microwave and millimeter-wave sources are currently being applied to ceramic processing studies at the Naval Research Laboratory (NRL). A single-mode cavity microwave furnace, operating in the TE{sub 103} mode at 2.45 GHz, is operational and is being used to investigate sintering of nanocrystalline ceramics. This paper reports the design of the 2.45-GHz furnace and its use in initial microwave sintering experiments on nanocrystalline alumina and titania compacts. The high purity Al{sub 2}O{sub 3} and TiO{sub 2} nanocrystalline powders used in the sintering experiments were prepared by the sol-gel method. These powders were first uniaxially pressed to 14 MPa, cold isostatically pressed (CIP`ed) to various pressures {ge}420 MPa, and finally sectioned into wafers. The density of the green compacts was 30 to 38% theoretical density (TD). The compacts were placed in insulating fiberboard caskets which were sufficiently lossy to provide hybrid heating at room temperature. The compacts were heated in the microwave furnace for up to three hours at temperatures {ge}1720 C. The temperature of the workpiece was monitored using an optical pyrometer. Final densities up to 80% TD have been obtained to date for Al{sub 2}O{sub 3} and up to 52% TD for TiO{sub 2}. The sintered compacts were characterized by X-ray diffraction and by scanning electron microscopy (SEM) to determine the phase and grain size.

Fliflet, A.W. [Naval Research Lab., Washington, DC (United States)] [Naval Research Lab., Washington, DC (United States); Bruce, R.W.; Kinkead, A.K. [Sachs/Freeman Associates Inc., Landover, MD (United States)] [and others] [Sachs/Freeman Associates Inc., Landover, MD (United States); and others

1996-06-01T23:59:59.000Z

224

Energy Conservation and Efficiency Improvement for the Electric Motors Operating in U.S. Oil Fields  

E-Print Network (OSTI)

energy use in the U.S. is comparable to all auto energy use. Electric motors are the largest users of energy in all mineral extraction activities. In oil fields, electric motors drive the pumping units used for lifting the oil and water to the surface...

Ula, S.; Cain, W.; Nichols, T.

225

Quantum field theoretic properties of Lorentz-violating operators of nonrenormalizable dimension in the fermion sector  

E-Print Network (OSTI)

In the current paper the properties of a quantum field theory based on certain sets of Lorentz-violating coefficients in the nonminimal fermion sector of the Standard-Model Extension are analyzed. In particular, three families of coefficients are considered, where two of them are CPT-even and the third is CPT-odd. As a first step the modified fermion dispersion relations are obtained. Then the positive- and negative-energy solutions of the modified Dirac equation and the fermion propagator are derived. These are used to demonstrate the validity of the optical theorem at tree-level, which provides a cross-check for the results obtained. Furthermore unitarity is examined and seems to be valid for the first set of CPT-even coefficients. However for the remaining sets certain issues with unitarity are found. The article demonstrates that the adapted quantum field theoretical methods at tree-level work for the nonminimal, Lorentz-violating framework considered. Besides, the quantum field theory based on the first family of CPT-even coefficients is most likely well-behaved at lowest order perturbation theory. The results are important for future phenomenological investigations carried out in the context of field theory, e.g., the computation of decay rates and cross sections at tree-level.

M. Schreck

2014-09-04T23:59:59.000Z

226

Frequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs: A Computational Approach for Arbitrary Geometries and Materials  

E-Print Network (OSTI)

of energy from a hot to a cold body is well known to be enhanced (even exceeding the black- body limit) whenFrequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 3 Department

Soljaèiæ, Marin

227

Applications Tests of Commercial Heat Pump Water Heaters  

E-Print Network (OSTI)

Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

Oshinski, J. N..; Abrams, D. W.

1987-01-01T23:59:59.000Z

228

Requirements for Computer Based-Procedures for Nuclear Power Plant Field Operators Results from a Qualitative Study  

SciTech Connect

Although computer-based procedures (CBPs) have been investigated as a way to enhance operator performance on procedural tasks in the nuclear industry for almost thirty years, they are not currently widely deployed at United States utilities. One of the barriers to the wide scale deployment of CBPs is the lack of operational experience with CBPs that could serve as a sound basis for justifying the use of CBPs for nuclear utilities. Utilities are hesitant to adopt CBPs because of concern over potential costs of implementation, and concern over regulatory approval. Regulators require a sound technical basis for the use of any procedure at the utilities; without operating experience to support the use CBPs, it is difficult to establish such a technical basis. In an effort to begin the process of developing a technical basis for CBPs, researchers at Idaho National Laboratory are partnering with industry to explore CBPs with the objective of defining requirements for CBPs and developing an industry-wide vision and path forward for the use of CBPs. This paper describes the results from a qualitative study aimed at defining requirements for CBPs to be used by field operators and maintenance technicians.

Katya Le Blanc; Johanna Oxstrand

2012-05-01T23:59:59.000Z

229

Synchronized operation by field programmable gate array based signal controller for the Thomson scattering diagnostic system in KSTAR  

SciTech Connect

The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.

Lee, W. R.; Park, M. K.; Lee, J. H. [National Fusion Research Institute, Gwahangno 113, Daejeon 305-333 (Korea, Republic of); Kim, H. S. [Chungnam National University, Daehak-ro 99, Daejeon 305-764 (Korea, Republic of); Kim, K. H. [Seed Core Co., Ltd., Daehak-ro 99, Daejeon 305-764 (Korea, Republic of)

2012-09-15T23:59:59.000Z

230

Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols  

SciTech Connect

Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

Carroll, Herbert B.; Johnson, William I.

1999-04-27T23:59:59.000Z

231

Naval Petroleum Reserve No. 3 (NPR-3), Teapot Dome Field, Wyoming: Case history of the in situ combustion pilot operation  

SciTech Connect

Naval Petroleum Reserve No. 3 (NPR-3) is a federally owned oil field that has been in operation since 1922 and has produced more than 15 million barrels of oil since full production began in 1976. The Shannon sandstone is the shallowest and most productive of nine producing formations at NPR-3. Since only 5% of the Shannon`s estimated 144 million bbl of original oil in place (OOIP) was estimated to be recoverable by primary means, studies were undertaken in 1978 to determine the most suitable enhanced oil recovery (EOR) method which would merit a pilot test and could ultimately lead to a fieldwide application.

Sarathi, P.S.; Olsen, D.K.; Williams, C.R.

1995-02-01T23:59:59.000Z

232

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

233

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

234

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network (OSTI)

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

235

Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.  

SciTech Connect

This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific recommendations are presented relative to the application of the technique, including ways to mitigate and manage potential sources of error.

He, Hongbo (University of New Mexico, Albuquerque, NM); Vorobieff, Peter V. (University of New Mexico, Albuquerque, NM); Menicucci, David (University of New Mexico, Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Carlson, Jeffrey J.

2012-06-01T23:59:59.000Z

236

Electron cyclotron resonance plasma heating in the CERA-RX facility under a randomly pulsating electric field  

Science Journals Connector (OSTI)

The results of the numerical simulation of the electron cyclotron resonance (ECR) heating of plasma particles in the CERA-RX...

A. A. Balmashnov; S. P. Stepina; A. M. Umnov

2012-12-01T23:59:59.000Z

237

field  

National Nuclear Security Administration (NNSA)

9%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

field field-type-text field-field-page-name">

238

Dirac point and transconductance of top-gated graphene field-effect transistors operating at elevated temperature  

SciTech Connect

Top-gated graphene field-effect transistors (GFETs) have been fabricated using bilayer epitaxial graphene grown on the Si-face of 4H-SiC substrates by thermal decomposition of silicon carbide in high vacuum. Graphene films were characterized by Raman spectroscopy, Atomic Force Microscopy, Scanning Tunnelling Microscopy, and Hall measurements to estimate graphene thickness, morphology, and charge transport properties. A 27?nm thick Al{sub 2}O{sub 3} gate dielectric was grown by atomic layer deposition with an e-beam evaporated Al seed layer. Electrical characterization of the GFETs has been performed at operating temperatures up to 100?°C limited by deterioration of the gate dielectric performance at higher temperatures. Devices displayed stable operation with the gate oxide dielectric strength exceeding 4.5 MV/cm at 100?°C. Significant shifting of the charge neutrality point and an increase of the peak transconductance were observed in the GFETs as the operating temperature was elevated from room temperature to 100?°C.

Hopf, T.; Vassilevski, K. V., E-mail: k.vasilevskiy@ncl.ac.uk; Escobedo-Cousin, E.; King, P. J.; Wright, N. G.; O'Neill, A. G.; Horsfall, A. B.; Goss, J. P. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Wells, G. H.; Hunt, M. R. C. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

2014-10-21T23:59:59.000Z

239

Spectral Functions of Singular Operators  

E-Print Network (OSTI)

The asymptotic expansion of the heat-kernel for small values of its argument has been studied in many different cases and has been applied to 1-loop calculations in Quantum Field Theory. In this thesis we consider this asymptotic behavior for certain singular differential operators which can be related to quantum fields on manifolds with conical singularities. Our main result is that, due to the existence of this singularity and of infinitely many boundary conditions of physical relevance related to the admissible behavior of the fields on the singular point, the heat-kernel has an "unusual" asymptotic expansion. We describe examples where the heat-kernel admits an asymptotic expansion in powers of its argument whose exponents depend on "external" parameters. As far as we know, this kind of asymptotics had not been found and therefore its physical consequences are still unexplored.

Pablo Pisani

2014-10-28T23:59:59.000Z

240

Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs  

E-Print Network (OSTI)

An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

Huang, Y.; Sun, D.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

Michael D. Durham

2003-05-01T23:59:59.000Z

242

3D slicing of radiogenic heat production in Bahariya Formation, Tut oil field, North-Western Desert, Egypt  

Science Journals Connector (OSTI)

A 3D block of radiogenic heat production was constructed from the subsurface total gamma ray logs of Bahariya Formation, Western Desert, Egypt. The studied rocks possess a range of radiogenic heat production varying from 0.21 ?Wm?3 to 2.2 ?Wm?3. Sandstone rocks of Bahariya Formation have higher radiogenic heat production than the average for crustal sedimentary rocks. The high values of density log of Bahariya Formation indicate the presence of iron oxides which contribute the uranium radioactive ores that increase the radiogenic heat production of these rocks. The average radiogenic heat production produced from the study area is calculated as 6.3 kW. The histogram and cumulative frequency analyses illustrate that the range from 0.8 to 1.2 ?Wm?3 is about 45.3% of radiogenic heat production values. The 3D slicing of the reservoir shows that the southeastern and northeastern parts of the study area have higher radiogenic heat production than other parts.

I.M. Al-Alfy; M.A. Nabih

2013-01-01T23:59:59.000Z

243

Experimental techniques for measuring temperature and velocity fields to improve the use and validation of building heat transfer models  

SciTech Connect

When modeling thermal performance of building components and envelopes, researchers have traditionally relied on average surface heat-transfer coefficients that often do not accurately represent surface heat-transfer phenomena at any specific point on the component being evaluated. The authors have developed new experimental techniques that measure localized surface heat-flow phenomena resulting from convection. The data gathered using these new experimental procedures can be used to calculate local film coefficients and validate complex models of room and building envelope heat flows. These new techniques use a computer-controlled traversing system to measure both temperatures and air velocities in the boundary layer near the surface of a building component, in conjunction with current methods that rely on infrared (IR) thermography to measure surface temperatures. Measured data gathered using these new experimental procedures are presented here for two specimens: (1) a Calibrated Transfer Standard (CTS) that approximates a constant-heat-flux, flat plate; and (2) a dual-glazed, low-emittance (low-e), wood-frame window. The specimens were tested under steady-state heat flow conditions in laboratory thermal chambers. Air temperature and mean velocity data are presented with high spatial resolution (0.25- to 25-mm density). Local surface heat-transfer film coefficients are derived from the experimental data by means of a method that calculates heat flux using a linear equation for air temperature in the inner region of the boundary layer. Local values for convection surface heat-transfer rate vary from 1 to 4.5 W/m{sup 2} {center_dot} K. Data for air velocity show that convection in the warm-side thermal chamber is mixed forced/natural, but local velocity maximums occur from 4 to 8 mm from the window glazing.

Griffith, Brent; Turler, Daniel; Goudey, Howdy; Arasteh, Dariush

1998-04-01T23:59:59.000Z

244

Critical Heat Flux -CHF in Liquid Metal in Presence of a Magnetic Field with Particular Reference to Fusion Reactor Project  

Science Journals Connector (OSTI)

Knowledge of the critical heat flux q??crit is a cornerstone of reactor design fission, but as will demonstrate also in fusion reactors. This quantity cannot be deduced directly,...

F. J. Arias

2010-04-01T23:59:59.000Z

245

Environmentally Friendly Systems: Earth Heat Pump System with Vertical Pipes for Heat Extraction for Domestic Heating and Cooling  

Science Journals Connector (OSTI)

Geothermal heat pumps (GSHPs), or direct expansion (DX) ground source heat pumps, are highly efficient renewable energy technology, ... the earth, groundwater or surface water as heat sources when operating in heating

Saffa Riffat; Siddig Omer; Abdeen Omer

2014-01-01T23:59:59.000Z

246

The Homopolar Pulse Billet Heating Process  

E-Print Network (OSTI)

The use of homopolar generators operated in the pulse mode to heat forging billets offers several possible advantages over present heating methods. Because heating is uniform throughout the entire cross section, billets can safely be heated...

Keith, R. E.; Weldon, W. F.

1982-01-01T23:59:59.000Z

247

PLASMA HEATING AND L OSSES IN TOROIDAL MULTIPOLE FIELDS C. J. Armentrout, J. D. Barter, R. A. Breun, A. J. Cavallo,  

E-Print Network (OSTI)

injection and heated by electron and ion cyclotron resonance heat ing and ohmic heating. Electron cyclotron agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies. ¥'\\ #12;.. .. , .. 1. PLASMA HEATING Electron Cyclotron Resonance Heating: ECRH has been a standard means

Sprott, Julien Clinton

248

Electron Cyclotron Heating in RFP plasmas  

SciTech Connect

Reversed field pinches (RFP) plasmas are typically overdense ({omega}{sub pe}>{omega}{sub ce}) and thus not suitable for conventional electron cyclotron (EC) heating and current drive. In recent high plasma current discharges (I{sub p}>1.5 MA), however, the RFX-mod device was operated in underdense conditions ({omega}{sub pe}<{omega}{sub ce}) for the first time in an RFP. Thus, it is now possible to envisage heating the RFP plasma core by conventional EC at the 2nd harmonic, in the ordinary or extraordinary mode. We present a preliminary study of EC-heating feasibility in RFX-mod with the use of beam-tracing and full-wave codes. Although not competitive - as a heating system - with multi-MW Ohmic heating in an RFP, EC might be useful for perturbative transport studies, even at moderate power (hundreds of kW), and, more generally, for applications requiring localized power deposition.

Bilato, R.; Poli, E. [MPI fuer Plasmaphysik-Euratom Association Boltzmannstr. 2, D-85748 Garching (Germany); Volpe, F. [Department of Engineering Physics, University of Wisconsin, Madison, WI (United States); Koehn, A. [Institut fuer Plasmaforschung, Universitaet Stuttgart-Stuttgart (Germany); Cavazzana, R.; Paccagnella, R. [Consorzio RFX-Associazione EURATOM-ENEA sulla fusione-Padova (Italy); Farina, D. [IFP-CNR, EURATOM-ENEA-CNR Association-Milano (Italy)

2009-11-26T23:59:59.000Z

249

Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy  

E-Print Network (OSTI)

polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to ?55–60°C as output powers reach ?50nW. At higher output powers, the sample...

Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.

2007-04-07T23:59:59.000Z

250

HEAT RECOVERY FROM WASTE WATER BY MEANS OF A RECUPERATIVE HEAT EXCHANGER AND A HEAT PUMP  

Science Journals Connector (OSTI)

ABSTRACT The useful heat of warm waste water is generally transferred to cold water using a recuperative heat exchanger. Depending on its design, the heat exchanger is able to utilise up to 90% of the waste heat potential available. The electric energy needed to operate such a system is more than compensated for by an approximately 50-fold gain of useful heat. To increase substantially the waste heat potential available and the amount of heat recovered, the system for recuperative heat exchange can be complemented by a heat pump. Such a heat recovery system on the basis of waste water is being operated in a public indoor swimming pool. Here the recuperative heat exchanger accounts for about 60%, the heat pump for about 40% of the toal heat reclaimed. The system consumes only 1 kWh of electric energy to supply 8 kWh of useful heat. In this way the useful heat of 8 kWh is compensated for by the low consumption of primary energy of 2.8 kWh. Due to the installation of an automatic cleaning device, the heat transfer surfaces on the waste water side avoid deposits so that the troublesome maintenance work required in other cases on the heat exchangers is not required. KEYWORDS Shower drain water, recuperative heat recovery, heat recovery by means of a heat pump, combination of both types of heat recovery, automatic cleaning device for the heat exchangers, ratio of useful heat supply vs. electric energy consumption, economic consideration.

K. Biasin; F.D. Heidt

1988-01-01T23:59:59.000Z

251

Heat Treating Apparatus  

DOE Patents (OSTI)

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

252

JOURNAL DE PHYSIQUE Colloque C4, supplment au n 4, Tome 40, avril 1979, page C4-138 Superconducting critical field and low temperature heat capacity of ameri-  

E-Print Network (OSTI)

on the superconductor americium yield an electronic heat capacity coefficient of y = 2 ±2 mJ/mole · K2 and a critical. Introduction. -- The element americium has recently been shown to be a superconductor [1]. Since general to measure the criti- cal field (HJ and electronic heat capacity coefficient (·y) of americium. These two

Paris-Sud XI, Université de

253

Simulations of heating and electron energy distributions in optical field ionized plasmas Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BZ, United Kingdom  

E-Print Network (OSTI)

Simulations of heating and electron energy distributions in optical field ionized plasmas T is important. The consequences that the calculated energy distributions have on three-body recombination rates extent 7­9 . In calculating the magnitude of the collisional heating the electron energy distribution

Ditmire, Todd

254

[Waste water heat recovery system  

SciTech Connect

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

255

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

256

Reduction of Ion Thermal Diffusivity Associated with the Transition of the Radial Electric Field in Neutral-Beam-Heated Plasmas in the Large Helical Device  

Science Journals Connector (OSTI)

Recent large helical device experiments revealed that the transition from ion root to electron root occurred for the first time in neutral-beam-heated discharges, where no nonthermal electrons exist. The measured values of the radial electric field were found to be in qualitative agreement with those estimated by neoclassical theory. A clear reduction of ion thermal diffusivity was observed after the mode transition from ion root to electron root as predicted by neoclassical theory when the neoclassical ion loss is more dominant than the anomalous ion loss.

K. Ida et al.

2001-06-04T23:59:59.000Z

257

Heat Transfer Guest Editorial  

E-Print Network (OSTI)

Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

Kandlikar, Satish

258

Acoustic Heating Peter Ulmschneider  

E-Print Network (OSTI)

Acoustic Heating Peter Ulmschneider lnstitut fiir Theoretische Astrophysik der Universitat waves are a viable and prevalent heating mechanism both in early- and in late-type stars. Acoustic heating appears to be a dominant mechanism for situations where magnetic fields are weak or absent

Ulmschneider, Peter

259

Field Study of Performance, Comfort, and Sizing of Two Variable-Speed Heat Pumps Installed in a Single 2-Story Residence  

SciTech Connect

With the recent advancements in the application of variable-speed (VS) compressors to residential HVAC systems, opportunities are now available to size heat pumps (HPs) to more effectively meet heating and cooling loads in many of the climate zones in the US with limited use of inefficient resistance heat. This is in contrast to sizing guidance for traditional single-speed HPs that limits the ability to oversize with regard to cooling loads, because of risks of poor dehumidification during the cooling season and increased cycling losses. VS-drive HPs can often run at 30-40% of their rated cooling capacity to reduce cycling losses, and can adjust fan speed to provide better indoor humidity control. Detailed air-side performance data was collected on two VS-drive heat pumps installed in a single unoccupied research house in Knoxville, TN, a mixed-humid climate. One system provided space conditioning for the upstairs, while the other unit provided space conditioning for the downstairs. Occupancy was simulated by operating the lights, shower, appliances, other plug loads, etc. to simulate the sensible and latent loads imposed on the building space by internal electric loads and human occupants according to the Building America Research Benchmark (2008). The seasonal efficiency and energy use of the units are calculated. Annual energy use is compared to that of the single speed minimum efficiency HPs tested in the same house previously. Sizing of the units relative to the measured building load and manual J design load calculations is examined. The impact of the unit sizing with regards to indoor comfort is also evaluated.

Munk, Jeffrey D [ORNL; Odukomaiya, Adewale O [ORNL; Gehl, Anthony C [ORNL; Jackson, Roderick K [ORNL

2014-01-01T23:59:59.000Z

260

Iterated finite-orbit Monte Carlo simulations with full-wave fields for modeling tokamak ion cyclotron resonance frequency wave heating experiments  

SciTech Connect

The five-dimensional finite-orbit Monte Carlo code ORBIT-RF[M. Choi et al., Phys. Plasmas 12, 1 (2005)] is successfully coupled with the two-dimensional full-wave code all-orders spectral algorithm (AORSA) [E. F. Jaeger et al., Phys. Plasmas 13, 056101 (2006)] in a self-consistent way to achieve improved predictive modeling for ion cyclotron resonance frequency (ICRF) wave heating experiments in present fusion devices and future ITER [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)]. The ORBIT-RF/AORSA simulations reproduce fast-ion spectra and spatial profiles qualitatively consistent with fast ion D-alpha [W. W. Heidbrink et al., Plasma Phys. Controlled Fusion 49, 1457 (2007)] spectroscopic data in both DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)] high harmonic ICRF heating experiments. This work verifies that both finite-orbit width effect of fast-ion due to its drift motion along the torus and iterations between fast-ion distribution and wave fields are important in modeling ICRF heating experiments.

Choi, M.; Chan, V. S.; Lao, L. L.; Pinsker, R. I. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Green, D.; Berry, L. A.; Jaeger, F.; Park, J. M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Heidbrink, W. W.; Liu, D.; Podesta, M. [University of California-Irvine, Irvine, California 92697 (United States); Harvey, R. [CompX, P.O. Box 2672, Del Mar, California 92014-5672 (United States); Smithe, D. N. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Bonoli, P. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2010-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Challenge # 3 ? Operational Issues  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Potential for a renewable heating oil substitution Challenge 3 - Operational Issues What are the most significant barriers to overcome in each market segment? Fernando Preto The...

262

Design and testing of an electron cyclotron resonance heating ion source for use in high field compact superconducting cyclotrons  

E-Print Network (OSTI)

The main goal of this project is to evaluate the feasibility of axial injection of a high brightness beam from an Electron Cyclotron Resonance ion source into a high magnetic field cyclotron. Axial injection from an ion ...

Artz, Mark E

2012-01-01T23:59:59.000Z

263

Flow and heat transfer in porous micro heat sink for thermal management of high power LEDs  

Science Journals Connector (OSTI)

A novel porous micro heat sink system is presented for thermal management of high power LEDs, which has high heat transport capability. The operational principle and heat transfer characteristics of porous micro heat sink are analyzed. Numerical model ... Keywords: Heat dissipation, High heat flux, High power LEDs, Porous media, Porous micro heat sink

Z. M. Wan; J. Liu; K. L. Su; X. H. Hu; S. S. M

2011-05-01T23:59:59.000Z

264

Solar powered induction motor-driven water pump operating on a desert well, simulation and field tests  

Science Journals Connector (OSTI)

A photovoltaic-powered water pumping system, employing an induction motor pump, capable of supplying a daily average of 50 m3 at 37-m head has been developed. The system was installed on a desert well in Jordan, where: the average solar radiation amount to 5.5 kW h/m3/day, to provide the Bedouins living in the well area with drinking water. A mathematical model to enable testing the system performance by computer simulation was developed. This model allows the representation of motor torque in function of speed (and slip) at different supply frequencies, as well as the flow rate and efficiency of the system in function of supply frequency and pumping head. Prior to its installation on the desert well, the system performance, in accordance with frequency and head, was thoroughly tested in the laboratory. As illustrated in this paper, simulation and laboratory testing results are well matched. At constant pumping head, the flow rate is proportional to the supply frequency of the motor. At constant flow rate, the pumping head is proportional to the supply frequency squared only in the range below the peak efficiency of the pump. For higher flow rate values, a special algorithm based on the experimental results could be developed. Higher system efficiency is achievable at higher frequency. It is advisable to operate the motor pump at the nominal frequency, flow rate and head corresponding to maximum efficiency. Long-term field testing of the system shows that it is reliable and has an overall efficiency exceeding 3%, which is comparable to the highest efficiencies reported elsewhere for solar powered pumps.

Abdel-Karim Daud; Marwan M. Mahmoud

2005-01-01T23:59:59.000Z

265

SUPERGLASS. Engineering field tests - Phase 3. Production, market planning, and product evaluation for a high-thermal-performance insulating glass design utilizing HEAT MIRROR transparent insulation. Final report  

SciTech Connect

HEAT MIRROR transparent window insulation consists of a clear polyester film two mils (.002'') thick with a thin, clear low-emissivity (.15) coating deposited on one side by state-of-the-art vacuum deposition processes. This neutral-colored invisible coating reflects long-wave infrared energy (heat). When mounted by being stretched with a 1/2'' air-gap on each side of the film, the resulting unit reduces heat loss by 60% compared to dual insulating glass. Southwall Corporation produces HEAT MIRROR transparent insulation and markets it to manufacturers of sealed insulating glass (I.G.) units and window and building manufacturers who make their own I.G. These companies build and sell the SUPERGLASS sealed glazing units. Units made and installed in buildings by six customers were visited. These units were located in many geographic regions, including the Pacific Northwest, Rocky Mountains, New England, Southeast, and West Coast. As much as could be obtained of their history was recorded, as was their current condition and performance. These units had been in place from two weeks to over a year. All of the units were performing thermally very well, as measured by taking temperature profiles through them and through adjacent conventional I.G. units. Some units had minor visual defects (attributed to I.G. assembly techniques) which are discussed in detail. Overall occupant acceptance was enthusiastically positive. In addition to saving energy, without compromise of optical quality or appearance, the product makes rooms with large glazing areas comfortable to be in in cold weather. All defects observed were present when built; there appears to be no in-field degradation of quality at this time.

Tilford, C L

1982-11-01T23:59:59.000Z

266

Heat pump having improved defrost system  

DOE Patents (OSTI)

A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

Chen, F.C.; Mei, V.C.; Murphy, R.W.

1998-12-08T23:59:59.000Z

267

Indoor air environment and night cooling energy efficiency of a southern German passive public school building operated by the heat recovery air conditioning unit  

Science Journals Connector (OSTI)

Abstract The recently built school building has adopted a novel heat recovery air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification have been numerically investigated concerning the effects of the heat flow flux of passive cooling within the ceiling concrete in the classroom due to night ventilation in summer which could result in cooling energy storage. Numerical results indicate that the promotion of passive cooling can simultaneously decrease the volume averaged indoor temperatures and the non-uniformity of indoor thermal distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air-cooling unit decreases with the increasing temperatures of exhaust air and the heat flux value for passive cooling within the classroom ceiling concrete. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented.

Yang Wang; Fu-Yun Zhao; Jens Kuckelkorn; Xiao-Hong Li; Han-Qing Wang

2014-01-01T23:59:59.000Z

268

Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt  

SciTech Connect

The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

2014-09-26T23:59:59.000Z

269

Determining the maximal capacity of a combined-cycle plant operating with afterburning of fuel in the gas conduit upstream of the heat-recovery boiler  

Science Journals Connector (OSTI)

The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from ... electric and therma...

V. M. Borovkov; N. M. Osmanova

2011-01-01T23:59:59.000Z

270

Intercomparison of Sensible Heat Flux from Large Aperture Scintillometer and Eddy Covariance Methods: Field Experiment over a Homogeneous Semi-arid Region  

E-Print Network (OSTI)

of satellite remote sensing sensible heat-?ux estimates dueremote sensing algorithms. A typical approach identi?es spectral bands particularly sensitive to surface heat ?

Zeweldi, Dawit A.; Gebremichael, Mekonnen; Wang, Junming; Sammis, Theodore; Kleissl, Jan; Miller, David

2010-01-01T23:59:59.000Z

271

Complex Compound Chemical Heat Pumps  

E-Print Network (OSTI)

industrial heat pumps. The main emphasis was directed towards a conceptual temperature amplifier bench scale prototype design, which allows for the conversion to heat amplifier operation by the mere exchange of adsorbent working fluid component without...

Rockenfeller, U.; Langeliers, J.; Horn, G.

272

Heat Pipes: An Industrial Application  

E-Print Network (OSTI)

This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

Murray, F.

1984-01-01T23:59:59.000Z

273

Polarization operator in the 2+1 dimensional quantum electrodynamics with a nonzero fermion density in a constant uniform magnetic field  

E-Print Network (OSTI)

The polarization operator (tensor) for planar charged fermions in constant uniform magnetic field is calculated in the one-loop approximation of the 2+1 dimensional quantum electrodynamics (QED$_{2+1}$) with a nonzero fermion density. We construct the Green function of the Dirac equation with a constant uniform external magnetic field in the QED$_{2+1}$ at the finite chemical potential, find the imaginary part of this Green function and then obtain the polarization tensor related to the combined contribution from real particles occupying the finite number of energy levels and magnetic field. We expect that some physical effects under consideration seem to be likely to be revealed in a monolayer graphene sample in the presence of external constant uniform magnetic field $B$ perpendicular to it.

V. R. Khalilov; I. V. Mamsurov

2015-01-27T23:59:59.000Z

274

Influence of the operational parameters on the performance of polymer electrolyte membrane fuel cells with different flow fields  

Science Journals Connector (OSTI)

Before entering the cell, the reactant gases were humidified by passing through water contained in temperature-controlled metal bottles. The operational parameters of the cell,...22]. Except where indicated, the ...

A. de Souza; E. R. Gonzalez

2003-09-01T23:59:59.000Z

275

An experimental–numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser  

Science Journals Connector (OSTI)

Abstract High-power direct diode laser (HPDDL) cladding offers several advantages in the laser surface modification and repair of high-value parts. The wider beam and uniform energy distribution in the direct diode laser provide a smooth heating and cooling cycle during the cladding process. Subsequently, lower dimensional distortion and thermally-induced stress occur during the process. In this paper, temperature evolution and molten pool dimensions as well as stress-and-strain fields were studied by utilizing experimental and numerical methods. A three-dimensional (3D) transient uncoupled thermo-elastic–plastic model was developed to simulate a thermal process during the single- and multi-track laser cladding and the thermally-induced residual stress in the laser cladding. The effect of latent heat and phase transformations are considered in the thermal analysis. The numerical results were validated by experimentally-measured values, and the maximum prediction error was 3.5%. The experimental results were collected by in-situ monitoring techniques (e.g., thermocouples and a high-speed CCD camera). The level of residual stresses at the cladded surfaces were measured by an X-ray diffractometer. In addition, the effect of scanning speed on the thermal and stress evolution was quantitatively discussed.

Parisa Farahmand; Radovan Kovacevic

2014-01-01T23:59:59.000Z

276

Superfund record of decison (EPA Region 3): Aberdeen Proving Ground (Edgewood Area), J-field soil operable unit, Aberdeen Proving Ground, MD, September 27, 1996  

SciTech Connect

This Operable Unit (OU) consists of two main burn pits (the Northern Main Burn Pit and Southern Main Burn Pit). It also includes the Pushout Area, which consists of the O-ethyl-S-(2-iisoprop ylaminoethyl)methyl phosphonothiolate (VX) Burn Pit, the Mustard Burn Pit, and the Liquid Smoke Disposal Pit. This decision document addresses the actions to be taken toward remediating the principal threats provided by high levels of arsenic, lead, and PCBs at the J-Field SOU: (1) the removal of isolated hot spots of contamination from the SOU followed by (2) the construction of a Protective Soil Blanket (PSB) over the J-Field SOU.

NONE

1996-10-01T23:59:59.000Z

277

Position-dependent photon operators in the quantization of the electromagnetic field in dielectrics at local thermal equilibrium  

E-Print Network (OSTI)

It has very recently been suggested that asymmetric coupling of electromagnetic fields to thermal reservoirs under nonequilibrium conditions can produce unexpected oscillatory behavior in the local photon statistics in layered structures. Better understanding of the predicted phenomena could enable useful applications related to thermometry, noise filtering, and enhancing optical interactions. In this work we briefly review the field quantization and study the local steady state temperature distributions in optical cavities formed of lossless and lossy media to show that also local field temperatures exhibit oscillations that depend on position as well as the photon energy.

Mikko Partanen; Teppo Häyrynen; Jani Oksanen; Jukka Tulkki

2014-12-02T23:59:59.000Z

278

Tips: Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Tips: Heat Pumps June 24, 2013 - 5:48pm Addthis Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps are the most efficient form of electric heating in moderate climates. Because they move heat rather than generate heat, heat pumps can provide equivalent space conditioning at as little as one quarter of the cost of operating conventional heating or cooling appliances. A heat pump does double duty as a central air conditioner by collecting the heat inside your house and pumping it outside. There are three types of heat pumps: air-to-air, water source, and geothermal. They collect heat from the air, water, or ground outside your

279

Convective Heat Transfer and Fluid Dynamics in Heat Exchanger Applications  

Science Journals Connector (OSTI)

This article concerns the local structure of flow and temperature fields as well as overall heat transfer coefficients and pressure drops in flow passages of relevance for heat exchangers. Results from investi...

Bengt Sundén

1999-01-01T23:59:59.000Z

280

Heat kernel expansion in the covariant perturbation theory  

E-Print Network (OSTI)

Working within the framework of the covariant perturbation theory, we obtain the coincidence limit of the heat kernel of an elliptic second order differential operator that is applicable to a large class of quantum field theories. The basis of tensor invariants of the curvatures of a gravity and gauge field background, to the second order, is derived, and the form factors acting on them are obtained in two integral representations. The results are verified by the functional trace operation, by the short proper time (Schwinger-DeWitt) expansions, as well as by the computation of the Green function for the two-dimensional scalar field model.

Yuri V. Gusev

2008-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Experience with solar systems for heating swimming pools in Germany  

SciTech Connect

The results of the demonstration programme [open quotes]Efficient Use of Energy in Swimming Pool Construction[close quotes] has had a positive effect on the dissipation of solar systems for swimming pools. Infrared measurements show how a homogeneous flow can be achieved in the absorber field. The fact that solar systems are acceptable can be clearly in evidence that the behaviour of visitors to purely solar-heated pools with variable water temperature does not differ in principle from conventionally-heated pools with constant temperature. Economic considerations of the operation show that swimming pool solar systems are competitive with conventional heating systems.

Croy, R.; Peuser, F.A. (Zentralstelle fuer Solartechnik, Hilden (Germany))

1994-07-01T23:59:59.000Z

282

FEMP--Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heat pump-like an air conditioner or refrigera- heat pump-like an air conditioner or refrigera- tor-moves heat from one place to another. In the summer, a geothermal heat pump (GHP) operating in a cooling mode lowers indoor temperatures by transferring heat from inside a building to the ground outside or below it. Unlike an air condition- er, though, a heat pump's process can be reversed. In the winter, a GHP extracts heat from the ground and transfers it inside. Also, the GHP can use waste heat from summer air-conditioning to provide virtually free hot-water heating. The energy value of the heat moved is typically more than three times the electricity used in the transfer process. GHPs are efficient and require no backup heat because the earth stays at a relatively moderate temperature throughout the year.

283

Sorption heat engines  

E-Print Network (OSTI)

For a simple free energy generating device - driven by thermal cycling and based on alternating adsorption and desorption - that has not been explicitly recognized as heat engine the name sorption heat engine is proposed. The mechanism is generally applicable to the fields of physics, chemistry, geology, and possibly, if relevant to the origin of life, biology. Four kinds of sorption heat engines are distinguished depending on the occurrence of changes in composition of the adsorbent or adsorbate during the thermal cycle.

Muller, A W J; Muller, Anthonie W. J.; Schulze-Makuch, Dirk

2005-01-01T23:59:59.000Z

284

Influence of steam injection and hot gas bypass on the performance and operation of a combined heat and power system using a recuperative cycle gas turbine  

Science Journals Connector (OSTI)

The influence of steam injection and hot gas bypass on the performance and operation of ... power (CHP) system using a recuperative cycle gas turbine was investigated. A full off-design analysis ... in steam gene...

Soo Young Kang; Jeong Ho Kim; Tong Seop Kim

2013-08-01T23:59:59.000Z

285

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

SciTech Connect

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

287

Electron Heat Transport Measured  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Transport Measured in a Stochastic Magnetic Field T. M. Biewer, * C. B. Forest, J. K. Anderson, G. Fiksel, B. Hudson, S. C. Prager, J. S. Sarff, and J. C. Wright...

288

Use of oil-emulsion mud in the Sivells Bend Field: Gas and gas condensate operations for the independent producer.  

E-Print Network (OSTI)

during drilling operations. Early in thc life of the Sivells Bend ficl&1, it became apparent that it would follow thc typical pattern of other Straivn saml fiiel&ls, 2nd in an effort to effect l&atter &veil completions, it ivas dcculcd to iisc... of the drilling crews toward its use, It was more difficult to keep the equipment clean, it increase&1 their work to some degree aml it ivas g something nelv. Hoivcver, after thc first few wells, the crews hsd become more familiar with its use...

Echols, Walter Harlan

1954-01-01T23:59:59.000Z

289

The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations  

SciTech Connect

The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and give a summary of the missions conducted.

Wood, R.; Springston, S.; Mechoso, C. R.; Bretherton, C. S.; A.Weller, R.; Huebert, B.; Straneo, F.; Albrecht, B. A.; Coe, H.; Allen, G.; Vaughan, G.; Daum, P.; Fairall, C.; Chand, D.; Klenner, L. G.; Garreaud, R.; Grados, C.; Covert, D. S.; Bates, T. S.; Krejci, R.; Russell, L. M.; Szoeke, S. d.; Brewer, A.; Yuter, S. E.; Chaigneau, A.; Toniazzo, T.; Minnis, P.; Palikonda, R.; Abel, S. J.; Brown, W. O. J.; Williams, S.; Fochesatto, J.; Brioude, J.; Bower, K. N

2011-01-21T23:59:59.000Z

290

Passive heat transfer means for nuclear reactors  

DOE Patents (OSTI)

An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

Burelbach, James P. (Glen Ellyn, IL)

1984-01-01T23:59:59.000Z

291

Steady State Thermoelectric Field-Reversed Configurations  

Science Journals Connector (OSTI)

It is shown that the cross-field thermoelectric force of magnetized plasmas can maintain field-reversed configurations against resistive diffusion, resulting in a steady state device attractive for thermonuclear fusion. If a peaked radial temperature profile is maintained, the thermoelectric force is in the opposite direction to the usual resistive friction, thus maintaining the field configuration. The field maintenance is tantamount to dynamo action, operating even in two dimensions. We show that a steady state device can be made by simply heating the O-point: no external electric fields or particle sources are needed. The feasibility of this scheme for fusion is discussed.

A. B. Hassam; R. M. Kulsrud; R. J. Goldston; H. Ji; M. Yamada

1999-10-11T23:59:59.000Z

292

Refrigerant charge management in a heat pump water heater  

DOE Patents (OSTI)

Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

Chen, Jie; Hampton, Justin W.

2014-06-24T23:59:59.000Z

293

Geothermal Heat Pumps- Heating Mode  

Energy.gov (U.S. Department of Energy (DOE))

In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

294

Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings  

E-Print Network (OSTI)

Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings Redouane) 141-149" DOI : 10.1016/j.enbuild.2013.12.047 #12;ABSTRACT In several situations, a heat pump occur. Unlike a reversible heat pump that works alternatively in heating or cooling, a HPS operates

Paris-Sud XI, Université de

295

E-Print Network 3.0 - absorption-sorption heat pumps Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

296

E-Print Network 3.0 - absorption-type heat pumps Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

297

Rational analysis of mass, momentum, and heat transfer phenomena in liquid storage tanks under realistic operating conditions: 2. Application to a feasibility study  

Science Journals Connector (OSTI)

This is the second part of a two-part paper that deals with modelling the thermal performances of storage tanks of liquid water coupled with solar-assisted heatpump systems. The computer code THESTA, described in detail in the first part, has been applied to compare configurations which differ from one another in the distribution and thickness of the insulating panels. These numerical experiments show very clearly the capability of the code in simulating realistic operating conditions. The validity of the present release is also discussed. The results obtained have been assumed to be a reliable theoretical support to the definition of the features of the storage device of a pilot plant.

F. Parrini; S. Vitale; L. Castellano

1992-01-01T23:59:59.000Z

298

Heat extraction in fractured hydrothermal reservoirs: Final report  

SciTech Connect

The main objective of the Heat Extraction Project has been the development of means to estimate the thermal behavior of geothermal fluids from fractured hydrothermal resources based on production of mixed reservoir fluids from heat sweep by reinjected brine and resource fluid cooled by drawdown and infiltrating waters. Several reports and publications, listed in the concluding section of this report, resulted from the application of the SGP heat sweep model to achieve this objective. The Heat Extraction Project made major advances in the development of the 1-D Heat Sweep Model and its application in geothermal fields in several countries. Heat sweep joint studies are underway for reinjection evaluation at the Los Azufres, Los Humeros, and La Primavera fields in Mexico, for the 500 t/h reinjection test for the redevelopment program at Wairakei, New Zealand, for two hot water supply recirculation systems to be developed in the USSR, and for the phase 2 test at the Hot Dry Rock project at Fenton Hill, New Mexico. Advances were also made in the cooperative studies with CFE at Los Azufres on the evaluation of the effects of early operation of small wellhead generators on the reservoirs of potentially large geothermal fields. 9 refs., 5 figs.

Kruger, P.

1988-06-30T23:59:59.000Z

299

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power Systems for Boiler Owners and Operators Guide to Combined Heat and Power Systems for Boiler Owners and Operators This guide presents useful information for...

300

Heat storage with CREDA  

SciTech Connect

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Environmental Impact Statement (EIS) for the Transfer of the Heat Source / Radioisotope Themoelectric Generator Assembly and Test Operations From the Mound Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

031 031 Federal Register / Vol. 63, No. 191 / Friday, October 2, 1998 / Notices SUPPLEMENTARY INFORMATION: The package listing contains the following information: (1) Title of the information collection package; (2) current OMB control number; (3) type of respondents; (4) estimated number of responses annually; (5) estimated total burden hours, annually, including recordkeeping hours required to provide the information; (6) purpose; and (7) number of collections. Package Title: Legal. Current OMB No.: 1910-0800. Type of Respondents: DOE management and operating contractors, and offsite contractors. Estimated Number of Responses: 2,719. Estimated Total Burden Hours: 21,052. Purpose: This information is required by the Department to ensure that legal resources and requirements are

302

On the asymmetric distribution of heat loss from the Earth’s interior  

Science Journals Connector (OSTI)

Mean heat flows and heat Josses of the Northern and Southern hemispheres ... degree 12 spherical harmonic representation of the global heat flow field (Pollacket al., 1993). Mean heat flows and heat losses of 0° ...

Yang Wang; Jiyang Wang; Zongji Ma

1998-09-01T23:59:59.000Z

303

Advances in induction heating  

SciTech Connect

Electric induction heating, in situ, can distill (underground) high-heat-value (HHV) gas, coal tar, bitumen, and shale oil. This technique permits potentially lower cost exploitation of the solid fossil fuels: coal, oil shale, tar sand, and heavy oil. The products, when brought to the surface in gaseous form and processed, yield chemical feedstocks, natural gas, and petroleum. Residual coke can be converted, in situ, to low-heat-value (LHV) gas by a conventional water-gas process. LHV can be burned at the surface to generate electricity at low cost. The major cost of the installation will have been paid for by the HHV gas and tar distilled from the coal. There are 2 mechanisms of heating by electric induction. One uses displacement currents induced from an electric field. The other uses eddy currents induced by a magnetic field.

Not Available

1980-06-16T23:59:59.000Z

304

Heat transfer and combustion characteristics of a burner with a rotary regenerative heat exchanger  

SciTech Connect

The authors have developed a Rotary Regenerative Combustion (RRX) System, which is coupled with a compact high efficiency regenerative air heat exchanger and a combustion burner. This system contributes to saving energy of fuel firing industrial furnaces and decreases NO{sub x} emission. This technology can be considered as a solution of greenhouse problem. This paper, discusses a compact high efficiency regenerative air heat exchanger in comparison with the existing types of regenerative burners and reverse firing with high momentum fuel jet (with motive fluid) in the furnace. This burner is compact in size, with high fuel efficiency, low NOx emission, easy to operate, and reliable, based on the results of field tests and commercial operations. The authors can say that the RRX system is a regenerative burner of the second generation.

Hirose, Yasuo; Kaji, Hitoshi; Arai, Norio

1998-07-01T23:59:59.000Z

305

Microchannel heat sink assembly  

DOE Patents (OSTI)

The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

Bonde, W.L.; Contolini, R.J.

1992-03-24T23:59:59.000Z

306

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

307

Advanced Variable Speed Air-Source Integrated Heat Pump | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Heat Pump prototype system and field test site near Knoxville, TN Credit: Oak Ridge National Lab Advanced variable-speed Air Source Integrated Heat Pump prototype...

308

Enhanced Joule Heating in Umbral Dots  

E-Print Network (OSTI)

We present a study of magnetic profiles of umbral dots (UDs) and its consequences on the Joule heating mechanisms. Hamedivafa (2003) studied Joule heating using vertical component of magnetic field. In this paper UDs magnetic profile has been investigated including the new azimuthal component of magnetic field which might explain the relatively larger enhancement of Joule heating causing more brightness near circumference of UD.

Chandan Joshi; Lokesh Bharti; S. N. A. Jaaffrey

2007-05-08T23:59:59.000Z

309

Intrinsically irreversible heat engine  

DOE Patents (OSTI)

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-01-01T23:59:59.000Z

310

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

311

Solar Heating and Cooling  

Science Journals Connector (OSTI)

...radiation during good weather are not very high, and...Atmospheric Administration weather ser-vice measures total...largely to experi-mental operation of 3-ton LiBr-H2O...a million solar water heaters are in use in these countries...air House heating load Cold air return 'S T~rgeo...

John A. Duffie; William A. Beckman

1976-01-16T23:59:59.000Z

312

Experimental study on heat transfer characteristics of internal heat exchangers for CO2 system under cooling condition  

Science Journals Connector (OSTI)

This paper presents the heat transfer characteristics of the internal heat exchanger (IHX) for CO2 heat pump system. The influence on the IHX length, the mass flow rate, the shape of IHX, the operating condition,...

Young Chul Kwon; Dae Hoon Kim; Jae Heon Lee…

2009-03-01T23:59:59.000Z

313

Industrial Heat Pump Design Options  

E-Print Network (OSTI)

There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

Gilbert, J. S.

314

Connecting the second exhaust-heat boiler to the operating first one under the conditions of flow circuits of combined-cycle plants with two gas-turbine units and one steam turbine  

Science Journals Connector (OSTI)

Problems arising with connecting the second exhaust-heat boiler to the first exhaust-heat boiler under load in the case of flow circuits of combined-cycle plants of type PGU-450 are considered. Similar problem...

Yu. A. Radin; I. A. Grishin; T. S. Kontorovich…

2006-03-01T23:59:59.000Z

315

Heat transfer through a thin film on a horizontal plate at high vacuum  

E-Print Network (OSTI)

on the theory for the operation of this type of fractionator, but no heat transfer data can be found for engineering design purposes. The data that are available were taken at pressures many times greater than the 1 mm. of mercury operating pressure now... being used. It is hoped that this study of heat transfer coefficients for boiling liquids below 5 mm. of mercury will furnish in? formation of value in this field of high vacuum. The effect of film thickness and types of boilin that were encountered...

Moore, Calvin Edward

2012-06-07T23:59:59.000Z

316

Latent heat of nuclear matter  

E-Print Network (OSTI)

We study the latent heat of the liquid-gas phase transition in symmetric nuclear matter using self-consistent mean-field calculations with a few Skyrme forces. The temperature dependence of the latent heat is rather independent of the mean-field parametrization and can be characterized by a few parameters. At low temperatures, the latent heat tends to the saturation energy. Near the critical point, the latent heat goes to zero with a well-determined mean-field critical exponent. A maximum value of the latent heat in the range l ~ 25-30 MeV is found at intermediate temperatures, which might have experimental relevance. All these features can be explained from very basic principles.

Arianna Carbone; Artur Polls; Arnau Rios; Isaac Vidaña

2010-12-10T23:59:59.000Z

317

ARM - SGP Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Operations SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Operations Routine Operations SGP central facility offices. SGP central facility offices. The overwhelming majority of the measurements with the highest priority, on which the existing experimental designs are based, are regular routine observations, as specified in the ARM Program Plan, 1990 (U.S. Department of Energy 1990). Scientifically and logistically, routine operations also serve as the basis and background for all nonroutine operations, including

318

Microchannel Heat Exchangers with Carbon Dioxide  

SciTech Connect

The objective of the present study was to determine the performance of CO{sub 2} microchannel evaporators and gas coolers in operational conditions representing those of residential heat pumps. A set of breadboard prototype microchannel evaporators and gas coolers was developed and tested. The refrigerant in the heat exchangers followed a counter cross-flow path with respect to the airflow direction. The test conditions corresponded to the typical operating conditions of residential heat pumps. In addition, a second set of commercial microchannel evaporators and gas coolers was tested for a less comprehensive range of operating conditions. The test results were reduced and a comprehensive data analysis, including comparison with the previous studies in this field, was performed. Capacity and pressure drop of the evaporator and gas cooler for the range of parameters studied were analyzed and are documented in this report. A gas cooler performance prediction model based on non-dimensional parameters was also developed and results are discussed as well. In addition, in the present study, experiments were conducted to evaluate capacities and pressure drops for sub-critical CO{sub 2} flow boiling and transcritical CO{sub 2} gas cooling in microchannel heat exchangers. An extensive review of the literature failed to indicate any previous systematic study in this area, suggesting a lack of fundamental understanding of the phenomena and a lack of comprehensive data that would quantify the performance potential of CO{sub 2} microchannel heat exchangers for the application at hand. All experimental tests were successfully conducted with an energy balance within {+-}3%. The only exceptions to this were experiments at very low saturation temperatures (-23 C), where energy balances were as high as 10%. In the case of evaporators, it was found that a lower saturation temperature (especially when moisture condensation occurs) improves the overall heat transfer coefficient significantly. However, under such conditions, air side pressure drop also increases when moisture condensation occurs. An increase in airflow rate also increases the overall heat transfer coefficient. Air side pressure drop mainly depends on airflow rate. For the gas cooler, a significant portion of the heat transfer occurred in the first heat exchanger module on the refrigerant inlet side. The temperature and pressure of CO{sub 2} significantly affect the heat transfer and fluid flow characteristics due to some important properties (such as specific heat, density, and viscosity). In the transcritical region, performance of CO{sub 2} strongly depends on the operating temperature and pressure. Semi-empirical models were developed for predictions of CO{sub 2} evaporator and gas cooler system capacities. The evaporator model introduced two new factors to account for the effects of air-side moisture condensate and refrigerant outlet superheat. The model agreed with the experimental results within {+-}13%. The gas cooler model, based on non-dimensional parameters, successfully predicted the experimental results within {+-}20%. Recommendations for future work on this project include redesigning headers and/or introducing flow mixers to avoid flow mal-distribution problems, devising new defrosting techniques, and improving numerical models. These recommendations are described in more detail at the end of this report.

Zhao, Y.; Ohadi, M.M.; Radermacher, R.

2001-09-15T23:59:59.000Z

319

Implications of Heat Flow Studies for Geothermal Energy Prospects  

Science Journals Connector (OSTI)

There is a close interrelation between the phenomena of heat generation, storage of heat, transport of heat and the temperature field in the crust. For evaluating the geothermal energy potential of a given area t...

O. Kappelmeyer

1979-01-01T23:59:59.000Z

320

The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes  

E-Print Network (OSTI)

At slightly supercritical pressure and in the neighborhood of the pseudo-critical temperature (defined as the temperature corresponding to the peak in specific heat at the operating pressure), the heat transfer coefficient ...

Shiralkar, B. S.

1968-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system  

Science Journals Connector (OSTI)

A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system.

H.D. Fu; G. Pei; J. Ji; H. Long; T. Zhang; T.T. Chow

2012-01-01T23:59:59.000Z

322

Heat Stroke  

NLE Websites -- All DOE Office Websites (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms â–  High body temperature â–  Confusion â–  Loss of coordination â–  Hot, dry skin or profuse sweating â–  Throbbing headache â–  Seizures, coma First Aid â–  Request immediate medical assistance. â–  Move the worker to a cool, shaded area. â–  Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms â–  Rapid heart beat â–  Heavy sweating â–  Extreme weakness or fatigue â– 

323

Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems  

E-Print Network (OSTI)

Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems David Erickson microfluidic/biochip systems must have the ability to rapidly reject this heat to the surroundings. Generally it is the ability to dissipate this heat that limits the strength of the applied electric field and thus the maximum

Erickson, David

324

Electrohydrodynamically enhanced condensation heat transfer  

E-Print Network (OSTI)

In a condenser the thickness of the liquid condensate film covering the cooled surface constitutes a resistance to the heat transfer. By establishing a non uniform electric field in the vicinity of the condensation surface the extraction of liquid...

Wawzyniak, Markus

2012-06-07T23:59:59.000Z

325

ENERGY ABSORBER HEAT PUMP SYSTEM TO SUPPLEMENT HEAT RECOVERY SYSTEMS IN AN INDOOR SWIMMING POOL  

Science Journals Connector (OSTI)

ABSTRACT Compared with convontional indoor swimming pools with traditional plant engineering, the Schwalmtal indoor swimming pool has a final energy consumption of just 40%. This low consumption is achieved by improved insulation of the building's enveloping surface, through the operation of systems for the recovery of heat from drain water and waste air as well as by the operation of a heat pump system to gain ambient heat. The decentralised heat recovery systems met between 40 and 80% of the heat requirements in the supply areas where they were used. The electric heat pump system, which is operated in the bivalent mode in parallel to a heating boiler, could generate 75% of the heat provided by the central heating circuit to meet the residual heat requirements. The report illustrates the structure of the residual heat requirements of the central heating circuit. A description is given of the measured coefficients of performance of the brine/water heat pump connected by a brine circuit with two different energy absorber types - energy stack and energy roof. Finally, the ambient energy gained with the absorbers is broken down into the various kinds of heat gains from radiation, convection, condensation etc. KEYWORDS Energy absorber; energy stack; energy roof; heat pump; heat recovery systems; indoor swimming pool; energy engineering concept.

K. Leisen

1988-01-01T23:59:59.000Z

326

Operational Demonstration Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operational Demonstration Program Operational Demonstration Program Operational Demonstration Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Buying & Making Electricity Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Water Heating Wind Maximum Rebate $500,000 Program Info Funding Source CEFIA Start Date 2005 State Connecticut Program Type Industry Recruitment/Support Rebate Amount $150,000 - $500,000 Provider Clean Energy Finance and Investment Authority This program is currently closed. Applications were due in February 2012.

327

Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus  

SciTech Connect

The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

2013-09-30T23:59:59.000Z

328

Phase field study of the tip operating state of a freely growing dendrite against convection using a novel parallel multigrid approach  

Science Journals Connector (OSTI)

Alloy dendrite growth during solidification with coupled thermal-solute-convection fields has been studied by phase field modeling and simulation. The coupled transport equations were solved using a novel parallel-multigrid numerical approach with high ... Keywords: Dendrite formation, Parallel computing, Phase-field method, Solidification microstructure

Z. Guo; J. Mi; S. Xiong; P. S. Grant

2014-01-01T23:59:59.000Z

329

Operations Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Standards BPA Operations Information (OPI) Transmission Services operates and plans for regional and national system needs. Transmission Services coordinates system operation and...

330

Solid state radiative heat pump  

DOE Patents (OSTI)

A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, P.H.

1984-09-28T23:59:59.000Z

331

Development of an integrated building load and ground source heat pump model to assess heat pump and ground loop design and performance in a commercial office building.  

E-Print Network (OSTI)

??Ground source heat pumps (GSHPs) offer an efficient method for cooling and heating buildings, reducing energy usage and operating cost. In hot, arid regions such… (more)

Blair, Jacob Dale

2014-01-01T23:59:59.000Z

332

[Waste water heat recovery system]. Final report, September 30, 1992  

SciTech Connect

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

333

Multidisciplinary University Research Initiative: High Operating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

University Research Initiative (MURI) to develop high-operating temperature heat-transfer fluids for concentrating solar power (CSP) applications. The following...

334

Process Heating Assessment and Survey Tool  

Energy.gov (U.S. Department of Energy (DOE))

The Process Heating Assessment and Survey Tool (PHAST) introduces methods to improve thermal efficiency of heating equipment. This tool helps industrial users survey process heating equipment that consumes fuel, steam, or electricity, and identifies the most energy-intensive equipment. The tool can be used to perform a heat balance that identifies major areas of energy use under various operating conditions and test "what-if" scenarios for various options to reduce energy use.

335

Heat balance for two commercial broiler barns with solar preheated ventilation air  

Science Journals Connector (OSTI)

In temperate climatic zones, solar air heaters can reduce heating loads, and increase winter ventilation rates thereby improving inside air quality and livestock performance without additional fuel input. A heat balance was carried out to measure bird heat production under field conditions on two commercial broiler barns to evaluate the impact of solar heated ventilation air on bird performance, and identify strategies to reduce winter heating load. Located 40 km east of Montreal, Canada, the experimental broiler barns were identically built with three floors housing 6500 birds per floor in an all-in all-out fashion. Equipped with solar air pre-heaters over their fresh air inlets, the barns were instrumented to monitor inlet, inside and outside air conditions, ventilation rate and heating system operating time. The effects on bird performance were observed from November 2007 to March 2009 by alternating their operation between the barns. The measured sensible and total heat productions of 4.5 W and 8.4 W, respectively, for 1 kg birds corresponded to laboratory measured values. Bird performance was not affected by the solar air pre-heaters which increased the ventilation rate above normal during only 20% of the daytime period. Room air temperature stratification resulted in 20–40 kW of heat losses during the winter, representing 25% of the total natural gas heat load. Because inside air moved directly to the fans, large and rapid increases in ventilation inlet air temperature, produced by the solar air pre-heaters, resulted in further heat losses equivalent to 15% of the solar energy recovered. Sustainable energy management in livestock barns requiring heating should incorporate an air mixing system to eliminate air temperature stratification and improve fan flows.

Sébastien Cordeau; Suzelle Barrington

2010-01-01T23:59:59.000Z

336

Heating System Specification Specification of Heating System  

E-Print Network (OSTI)

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

337

Heat transfer and fluid flow characteristics of microchannels with internal longitudinal fins.  

E-Print Network (OSTI)

??Electronic components generate large amount of heat during their operation, which requires to be dissipated. Over the past decade, internal heat generation levels have exponentially… (more)

Foong, Andrew Jun Li

2009-01-01T23:59:59.000Z

338

Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

operate a conventional electric heat pump system, fuel is first converted to energy at a power plant where the waste heat is typically discharged to the environment. Electrical...

339

Deceleration of Alpha Particles in the Solar Wind by Instabilities and the Rotational Force: Implications for Heating, Azimuthal Flow, and the Parker Spiral Magnetic Field  

E-Print Network (OSTI)

Protons and alpha particles in the fast solar wind are only weakly collisional and exhibit a number of non-equilibrium features, including relative drifts between particle species. Two non-collisional mechanisms have been proposed for limiting differential flow between alpha particles and protons: plasma instabilities and the rotational force. Both mechanisms decelerate the alpha particles. In this paper, we derive an analytic expression for the rate $Q_{\\mathrm{flow}}$ at which energy is released by alpha-particle deceleration, accounting for azimuthal flow and conservation of total momentum. We find that $Q_{\\mathrm{flow}} > 0 $ at $r r_{\\mathrm{crit}}$. We compare the value of $Q_{\\mathrm{flow}}$ at $r< r_{\\mathrm{crit}}$ with empirical heating rates for protons and alpha particles, denoted $Q_{\\mathrm{p}}$ and $Q_{\\alpha}$, deduced from in-situ measurements of fast-wind streams from the Helios and Ulysses spacecraft. We find that $Q_{\\mathrm{flow}}$ exceeds $Q_{\\alpha}$ at $r < 1\\,\\mathrm{AU}$, $Q_{...

Verscharen, Daniel; Bourouaine, Sofiane; Hollweg, Joseph V

2014-01-01T23:59:59.000Z

340

Experimental Study on Energy Efficiency of Heat-source Tower Heat Pump Units in Winter Condition  

Science Journals Connector (OSTI)

Building energy consumption in China has been increasing rapidly. And a small increase in the operation efficiency of the air-conditioning system can substantially decrease it. In this paper a new type heat pump is developed to improve the performance ... Keywords: Heat-source tower, Heat pump, Seasonal energy efficiency ratio(SEER), Hermal properties

Li Nianping; Zhang Wenjie; Wang Lijie; Liu Qiuke; Hu Jinhua

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

heat pump | OpenEI  

Open Energy Info (EERE)

heat pump heat pump Dataset Summary Description View 2010 energy efficiency data from AeroSys Inc, Coaire, Cold Point, First Operations, LG Electronics, Nordyne, and Quietside manufacturers. Data includes cooling capacity, cooling performance, heating capacity, and heating performance. Spreadsheet was created by combining the tables in pdf files that are included in the zip file. Source Energy Applicance Data - United States Federal Trade Commission, www.ftc.gov Date Released Unknown Date Updated Unknown Keywords air conditioner central air conditioner efficiency efficient energy heat pump Data application/vnd.ms-excel icon 2010_CentralAC_All.xls (xls, 82.4 KiB) application/zip icon 2010CentralAirConditioner.zip (zip, 398.2 KiB) Quality Metrics Level of Review Some Review

342

Northeast Home Heating Oil Reserve  

Gasoline and Diesel Fuel Update (EIA)

Northeast Home Heating Oil Reserve Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy Information Administration publications, such as the Weekly Petroleum Status Report, Petroleum Supply Monthly, and This Week In Petroleum. Northeast Home Heating Oil Reserve Terminal Operator Location (Thousand Barrels) Hess Corp. Groton, CT 500*

343

Minimal universal quantum heat machine  

E-Print Network (OSTI)

In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting that is permanently, weakly, coupled to two spectrally-separated heat baths at different temperatures. The equation of motion allows to compute the stationary power and heat currents in the machine consistently with the second-law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump) depending on the modulation rate. In both modes of operation the maximal Carnot efficiency is reached at zero power. We study the conditions for finite-time optimal performance for several variants of the model. Possible realizations of the model are discussed.

David Gelbwaser-Klimovsky; Robert Alicki; Gershon Kurizki

2012-09-06T23:59:59.000Z

344

Enhanced heat transfer for thermionic power modules  

SciTech Connect

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

345

Heat Pump Water Heating Modeling in EnergyPlus  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Water Heater Modeling Heat Pump Water Heater Modeling in EnergyPlus Building America Residential Energy Efficiency Stakeholder Meeting Eric Wilson Craig Christensen March 1, 2012 2 Modeling Issues Results Motivation Heat Pump Water Heater Modeling... 3 Gap: Existing analysis tools cannot accurately model HPWHs with reasonable runtime. 4 What have we achieved so far? Laboratory Evaluations 14 x Field Monitoring 5 Closing the Gap Laboratory Evaluations 6 sec timestep hourly timestep 14 x Field Monitoring CARB 6 Why is modeling important? * Performance varies: Can't just use EF * System interaction o HPWH affects building heating and cooling o Space conditions affect HPWH performance 7 Modeling Goals * Manage Risks o Accuracy o Run time o Occupant satisfaction * Flexibility to explore the effects of:

346

Heat exchanger with ceramic elements  

DOE Patents (OSTI)

An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

Corey, John A. (North Troy, NY)

1986-01-01T23:59:59.000Z

347

Building Blocks of Tropical Diabatic Heating  

SciTech Connect

Rotated EOF analyses are used to study the composition and variability of large-scale tropical diabatic heating profiles estimated from eight field campaigns. The results show that the profiles are composed of a pair of building blocks. These are the stratiform heating with peak heating near 400hpa and a cooling peak near 700hPa and convective heating with a heating maximum near 700hPa. Variations in the contributions of these building blocks account for the evolution of the large-scale heating profile. Instantaneous top (bottom) heavy large scale heating profiles associated with excess of stratiform (convective) heating evolve towards a stationary mean profile due to exponential decay of the excess stratiform (convective) heating.

Hagos, Samson M.

2010-07-01T23:59:59.000Z

348

SciDAC Center for Simulation of Wave-Plasma Interactions - Iterated Finite-Orbit Monte Carlo Simulations with Full-Wave Fields for Modeling Tokamak ICRF Wave Heating Experiments - Final Report  

SciTech Connect

This final report describes the work performed under U.S. Department of Energy Cooperative Agreement DE-FC02-08ER54954 for the period April 1, 2011 through March 31, 2013. The goal of this project was to perform iterated finite-orbit Monte Carlo simulations with full-wall fields for modeling tokamak ICRF wave heating experiments. In year 1, the finite-orbit Monte-Carlo code ORBIT-RF and its iteration algorithms with the full-wave code AORSA were improved to enable systematical study of the factors responsible for the discrepancy in the simulated and the measured fast-ion FIDA signals in the DIII-D and NSTX ICRF fast-wave (FW) experiments. In year 2, ORBIT-RF was coupled to the TORIC full-wave code for a comparative study of ORBIT-RF/TORIC and ORBIT-RF/AORSA results in FW experiments.

Choi, Myunghee [Retired] [Retired; Chan, Vincent S. [General Atomics] [General Atomics

2014-02-28T23:59:59.000Z

349

Natural Zeolites in Solar Energy Heating, Cooling, and Energy Storage  

Science Journals Connector (OSTI)

...thereby reducing the energy consumption by almost half. The concept...heat, or any type of fossil fuel. This heat pump has two operating...of the internal combustion engine as the heat source for the...utilizing the waste heat of the engine with a 60 sec cycling time...

Dimiter I. Tchernev

350

Definition: Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Pumps Pumps Jump to: navigation, search Dictionary.png Ground Source Heat Pumps A Ground Source Heat Pump is a central building heating and/or cooling system that takes advantage of the relatively constant year-round ground temperature to pump heat to or from the ground.[1][2][3] View on Wikipedia Wikipedia Definition A geothermal heat pump or ground source heat pump (GSHP) is a central heating and/or cooling system that pumps heat to or from the ground. It uses the earth as a heat source (in the winter) or a heat sink (in the summer). This design takes advantage of the moderate temperatures in the ground to boost efficiency and reduce the operational costs of heating and cooling systems, and may be combined with solar heating to form a geosolar system with even greater efficiency. Ground source heat pumps

351

Influence of the longitudinal magnetic field in the accelerating gap on the limiting parameters of a plasma electron source operating in the forevacuum pressure range  

Science Journals Connector (OSTI)

Results are presented from experimental studies of the influence of the longitudinal magnetic field in the accelerating gap on the emission current, accelerating voltage, and maximum gas pressure in a plasma electron

I. S. Zhirkov; V. A. Burdovitsin; E. M. Oks

2007-09-01T23:59:59.000Z

352

Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System  

E-Print Network (OSTI)

This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project...

Qian, J.; Sun, D.; Li, X.; Li, G.

2006-01-01T23:59:59.000Z

353

Field evaluation of cofiring gas with coal for quantifying operational benefits and emissions trim in a utility boiler. Volume 2. Topical report, 1989-1990  

SciTech Connect

The volume consists of 14 appendixes to accompany volume 1 of the report, and covers the following test data: analysis of coal, fylash, and bottom ash samples; cleanliness factors; slagging observation record sheets; stack opacity measurements; stack sulphur dioxide and nitrogen oxides measurements; total coal flow; fuel gas flow; furnace exit gas temperature; percent oxygen at economizer outlet; percent excess air; bulk steam temperatures at secondary superheater and reheater outlets; secondary superheater and reheater tube outlet leg temperatures; unit heat rate; and models used for data interpretation.

Clark, K.J.; Torbov, T.S.; Impey, R.J.; Hara, K.G.; Burnett, T.D.

1993-02-01T23:59:59.000Z

354

Finding of No Significant Impact for the I'SOT Canby District Heating Project, Modoc County, California Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coiorado 80401-3393 Coiorado 80401-3393 March 7, 2003 DOEEA-1460 FINDING OF NO SIGNIFICANT IMPACT For the IN SEARCH OF TRUTH CANBY DISTRICT HEATING PROJECT CANBY, MODOC COUNTY, CALIFORNIA AGENCY: U.S. Department of Energy, Golden Field Office ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) conducted an Environmental ,4ssessment (EA) of the In Search of Truth (I'SOT) Canby District Heating Project, Modoc County, California, to evaluate potential environmental impacts of project construction and operations for three years. DOE would provide partial fundin g, through its National Renewable Energy Laboratory (NREL), to I'SOT for the development and field verification of a small-scale, geothermal district heating system. Local district heating projects have the potential for widespread

355

EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

573-S1: Proposed Renewable Fuel Heat Plant Improvements at the 573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO DOE's Golden Field Office has prepared a draft Supplemental Environmental Assessment (SEA) for proposed improvements to the Renewable Fuel Heat Plant (RFHP) at the National Renewable Energy Laboratory's South Table Mountain site. The SEA analyzes the potential environmental impacts associated with the proposed improvements tot he RFHP consisting of construction and operation of an onsite woodchip fuel storage silo and an expansion of woodchip fuel sources to a regional scale.

356

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

357

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

358

Geothermal district heating systems  

SciTech Connect

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

359

ICRF scenarios for ITER's half-field phase  

SciTech Connect

The non-active operation phase of ITER will be done in H and {sup 4}He plasmas at half the nominal magnetic field, B{sub 0} = 2.65T. At this field and for the given frequency range of the ICRF system (f = 40-55MHz), three ICRF heating scenarios are available a priori: (i) Fundamental ICRH of majority H plasmas at f{approx_equal}40MHz,(ii) second harmonic (N= 2) {sup 3}He ICRH in H plasmas at f{approx_equal}53MHz and (iii) fundamental minority H heating in {sup 4}He plasmas at f{approx_equal}40MHz. While the latter is expected to perform well for not too large H concentrations, the heating scenarios available for the Hydrogen plasmas are less robust. Recent JET experiments performed in similar conditions to those expected in ITER's half-field phase confirmed the low performance of these two scenarios and numerical simulations have shown that the situation is not much improved in ITER, mainly because of the rather modest plasma temperature and density expected in its initial operation phase. A summary of the main experimental results obtained at JET followed by numerical predictions for ITER's half-field ICRF heating scenarios will be presented.

Lerche, E.; Van Eester, D.; Ongena, J. [LPP-ERM/KMS, Association Euratom-'Belgian State', TEC Partner, Brussels (Belgium); Mayoral, M.-L.; Giroud, C.; Jacquet, P.; Kiptily, V. [Euratom-CCFE Fusion Association, Culham Science Centre (United Kingdom); Johnson, T.; Hellsten, T. [Fusion Plasma Physics, Association Euratom-VR, KTH, Stockholm (Sweden); Bilato, R. [IPP (MPI)-Euratom Association, Garching (Germany); Czarnecka, A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Dumont, R. [CEA (IRFM)-Euratom Association, Saint-Paul-lez-Durance (France); Krasilnikov, A. [SRC RF Troitsk Institute for Innovating and Fusion Research, Troitsk (Russian Federation); Maslov, M. [Centre de Recherches en Physique des Plasmas, Association EURATOM - Suisse, Lausanne (Switzerland); Vdovin, V. [RNC Kurchatov Institute, Nuclear Fusion Institute, Moscow (Russian Federation)

2011-12-23T23:59:59.000Z

360

Designing, testing, and analyzing coupled, flux transformer heat  

E-Print Network (OSTI)

of identical effective length, this research shows that sufficient heat can be transferred across the system to work effectively in situations where the single heat pie will fail to operate. The thermal resistance in the condenser and evaporator sections need...

Renzi, Kimberly Irene

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Case study of underground pipe ground coupled heat pump system  

Science Journals Connector (OSTI)

Aiming to give some advices on the ground coupled heat pump system design in Sichuan Province, China, a typical ground source heat pump (GSHP) system in Sichuan Province was tested in a whole operational year,...

Min Zheng ??; Bai-yi Li ???; Zheng-yong Qiao ???

2012-03-01T23:59:59.000Z

362

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

363

A new cascade-type heat conversion system  

SciTech Connect

Various heat conversion systems have different operating temperatures. This paper shows how, in a solar energy system some of the waste heat from a thermophotovoltaic arrangement can be made to operate a thermionic power generator. The waste heat of the thermionic power generator can then be made to operate an alkali-metal thermal electric converter, and the waste heat from the alkali-metal thermal electric converter as well as the rest of the waste heat of the thermophotovoltaic system can be made to operate a methane reformation system. Stored heat from the methane reformation system can be made to operate the system at night. The overall system efficiency of the example shown is 42.6%. As a prime source of heat a nuclear pile or burning hydrogen may be used.

Newman, E. [Twenty-First Century Power Co., Northridge, CA (United States)

1996-12-31T23:59:59.000Z

364

HEATING AND COOLING PROTOSTELLAR DISKS  

SciTech Connect

We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

2011-05-10T23:59:59.000Z

365

Use the drop-down search menus and operators (AND, OR, NOT) to customize your search. Search by topic, author, journal title, publication year, and other fields.  

E-Print Network (OSTI)

by topic, author, journal title, publication year, and other fields. Topic Enter your search words, joined, and subject terms; choose Title from the drop-down search menu to restrict your search to document titles only for the most comprehensive search. 1.To find all articles by Francis Harry Compton Crick, click , enter Crick F

California at Berkeley, University of

366

Integrated solar heating unit  

SciTech Connect

This patent describes an integral solar heating unit with an integral solar collector and hot water storage system, the unit comprising: (a) a housing; (b) a flat plate solar collector panel mounted in the housing and having a generally horizontal upper edge and an uninsulated, open back surface; (c) a cylindrical hot water tank operatively connected to the solar collector panel and mounted in the housing generally parallel to and adjacent to the upper edge; (d) the housing comprising a hood around the tank a pair of side skirts extending down at the sides of the panel. The hood and side skirts terminate at lower edges which together substantially define a plane such that upon placing the heating unit on a generally planar surface, the housing substantially encapsulates the collector panel and hot water tank in a substantially enclosed air space; (e) the collector including longitudinally extended U-shaped collector tubes and a glazed window to pass radiation through to the collector tubes, and a first cold water manifold connected to the tubes for delivering fresh water thereto and a second hot water manifold connected to the tubes to remove heated water therefrom. The manifolds are adjacent and at least somewhat above and in direct thermal contact with the tank; and, (f) the skirts and hood lapping around the collector panel, exposing only the glazed window, such that everything else in the heating unit is enclosed by the housing such that heat emanating from the uninsulated, open back face of the collector and tank is captured and retained by the housing to warm the manifolds.

Larkin, W.J.

1987-01-20T23:59:59.000Z

367

Semicausal operations are semilocalizable  

E-Print Network (OSTI)

We prove a conjecture by DiVincenzo, which in the terminology of Preskill et al. [quant-ph/0102043] states that ``semicausal operations are semilocalizable''. That is, we show that any operation on the combined system of Alice and Bob, which does not allow Bob to send messages to Alice, can be represented as an operation by Alice, transmitting a quantum particle to Bob, and a local operation by Bob. The proof is based on the uniqueness of the Stinespring representation for a completely positive map. We sketch some of the problems in transferring these concepts to the context of relativistic quantum field theory.

Eggeling, T; Werner, R F

2002-01-01T23:59:59.000Z

368

E-Print Network 3.0 - additional direct heat Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

HEAT PUMP SYSTEM FIELD TESTS AT THE TECH COMPLEX Summary: .2, an additional 43% loss. Heat losses observed at the compressorheat exchangers, a necessary condition......

369

Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe  

SciTech Connect

The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

Skupinski, R.C.; Tower, L.K.; Madi, F.J.; Brusk, K.D.

1993-04-01T23:59:59.000Z

370

New and Existing Buildings Heating and Cooling Opportunities: Dedicated Heat Recovery Chiller  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Langfitt Langfitt U S Department of State Overseas Buildings Operations Mechanical Engineering Division *Engineers are working Harder AND Smarter *New Energy Economy *Heating Is Where The Opportunity Is  39% of total US energy goes into non-residential buildings.  Gas for heating is about 60% of energy used in a building  Gas for heating is at least 25% of total energy used in the US. Heat Generation System Heat Disposal System What's Wrong With This Picture? Keep the heat IN the system Don't run main plant equipment until necessary ! Less rejected heat Less gas consumption High Temp >160F with conventional boilers Hydronic heating... condensing style modular boilers. The entire heating system... designed for low temperature water, recommend maximum temperature of 135ºF.

371

Heating systems for heating subsurface formations  

DOE Patents (OSTI)

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

372

Light weight and economical exhaust heat exchanger for waste heat recovery using mixed radiant and convective heat transfer  

Energy.gov (U.S. Department of Energy (DOE))

A hybrid heat exchanger is designed to keep highly stressed materials around the working fluid at a moderate temperature so that it can operate at higher working fluid pressure.

373

DCO Operations Interesting Statistics  

E-Print Network (OSTI)

DCO Operations Interesting Statistics 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 Chart by: HANDS DOWN SOFTWARE, www.handsdownsoftware.com 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0 is annotated with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE

374

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

375

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

376

Heat transport system, method and material  

DOE Patents (OSTI)

A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

Musinski, D.L.

1987-04-28T23:59:59.000Z

377

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners...

378

Magnetohydrodynamic power generation, electromagnetic pumps, heat pipes, and thermionic convertors  

SciTech Connect

The basic principles of operation, components, and design of MHD generators, electromagnetic pumps, heat pipes and thermionic converters are described. 66 references. (WHK)

Pierson, E.S.; Bonyhady, K.A.; Dunn, P.F.; Nathenson, R.D.; Uherka, K.L.

1984-01-01T23:59:59.000Z

379

Mapping Geothermal Heat Flow and Existing Plants | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

resources make up most of the current geothermal operating plants in the United States. Power generation comes from drawing heat from the fluid found naturally deep below the...

380

Enhanced Building Operation Using "Operation Diagnostics" - A Case Study  

E-Print Network (OSTI)

the utility into hot water. They are lo- cated in a central heating plant room in the basement. The distribution system maintains static heating (of- fices south-west and offices north-east), heating coils of the AHU’s, as well as central domestic hot... the dynamic operation of systems regarding reduced energy con- sumption and/or improved comfort. Available Data Base and Data Quality Data from the BAS has been recorded since Spring 2004. Due to limited capacity of the network only 160 of the 3200...

Baumann, O.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Segmented heat exchanger  

DOE Patents (OSTI)

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

382

Fabric composite heat pipe technology development  

SciTech Connect

Testing has been performed on a variety of fabric composite technology feasibility issues. These include an evaluation of the effective radiation heat transfer rate from a heated metallic surface covered by a ceramic fabric with the intent of determining the effective emissivity'' of the combination of materials, studies of the wicking properties of ceramic fabrics, and the construction of fabric composite heat pipes to test their working properties under both steady state and transient conditions. Results of these experiments shown that fabric composite combinations have greatly enhanced effective emissivities'' resulting from the increases surface area of the fabric, ceramic fabrics can work very well as the wick for heat pipes, ceramic fabric heat pipes have been demonstrated to operate under typical space conditions, and large mass reductions are possible by using fabric composite heat pipes for heat rejection radiator systems.

Klein, A.C.; Gulshan-Ara, Z.; Kiestler, W.; Snuggerud, R.; Marks, T.S. (Department of Nuclear Engineering, Oregon State University, Corvallis, Oregon 97331 (United States))

1993-01-10T23:59:59.000Z

383

Standard Test Method for Measuring Heat Flux Using Flush-Mounted Insert Temperature-Gradient Gages  

E-Print Network (OSTI)

1.1 This test method describes the measurement of the net heat flux normal to a surface using gages inserted flush with the surface. The geometry is the same as heat-flux gages covered by Test Method E 511, but the measurement principle is different. The gages covered by this standard all use a measurement of the temperature gradient normal to the surface to determine the heat that is exchanged to or from the surface. Although in a majority of cases the net heat flux is to the surface, the gages operate by the same principles for heat transfer in either direction. 1.2 This general test method is quite broad in its field of application, size and construction. Two different gage types that are commercially available are described in detail in later sections as examples. A summary of common heat-flux gages is given by Diller (1). Applications include both radiation and convection heat transfer. The gages used for aerospace applications are generally small (0.155 to 1.27 cm diameter), have a fast time response ...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

384

Cab Heating and Cooling  

SciTech Connect

Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

Damman, Dennis

2005-10-31T23:59:59.000Z

385

NUMERICAL SIMULATION OF HEAT TRANSFER AND PRESSURE DROP IN PLATE HEAT EXCHANGERS USING FLUENT AS CFD TOOL.  

E-Print Network (OSTI)

??Corrugated walls are commonly used as passive devices for heat and mass transfer enhancement, being most effective in applications operated at transitional and turbulent Reynolds… (more)

EGEREGOR, DAFE

2008-01-01T23:59:59.000Z

386

OPERATIONS (OPS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPS) OPS) OBJECTIVE OPS.1 The formality and discipline of operations is adequate to conduct work safely and programs are in place to maintain this formality and discipline. (CR 13) Scope: The Conduct of Operations Program was evaluated during the recent KE Basin FTS ORR and was found to be adequately implemented. Based on this result and the subsequent program enhancements, the scope of the review is to be limited to the SWS operating and maintenance evolutions. Criteria * Programmatic elements of conduct of operations are in place for SWS operations. (DOE Order 5480.19) * The SWS operations personnel adequately demonstrate the principles of conduct of operations requirements during the shift performance period. (DOE Order 5480.19)

387

High Power Operation of the JLab IR FEL Driver Accelerator  

SciTech Connect

Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

Kevin Beard; Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Christopher Gould; Albert Grippo; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; J. Hovater; Kevin Jordan; John Klopf; Rui Li; Steven Moore; George Neil; Benard Poelker; Thomas Powers; Joseph Preble; Robert Rimmer; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Gwyn Williams; Shukui Zhang

2007-08-01T23:59:59.000Z

388

DOE limited standard: Operations assessments  

SciTech Connect

Purpose of this standard is to provide DOE Field Element assessors with a guide for conducting operations assessments, and provide DOE Field Element managers with the criteria of the EM Operations Assessment Program. Sections 6.1 to 6.21 provide examples of how to assess specific areas; the general techniques of operations assessments (Section 5) may be applied to other areas of health and safety (e.g. fire protection, criticality safety, quality assurance, occupational safety, etc.).

NONE

1996-05-01T23:59:59.000Z

389

Effects of reduced voltage on the operation and efficiency of electric systems. Volume 3. Field tests in a northern utility service area. Final report  

SciTech Connect

Volume 3 of this three-volume report for RP1419-1 describes the tests on selected residential, commercial, and small industry areas of the Detroit Edison Company system and the statistical analysis performed on the test data gathered. The purpose of the field testing was to provide data to analyze changes in energy consumption due to changes in feeder voltage levels. Detroit Edison was chosen to represent a winter peaking load area. Original intent was to present these results simultaneously with results from a summer peaking load area, Texas Electric Service Company (TESCO). Unavoidable delays retarded the Detroit study results to this Volume 3. TESCO results were reported in Volume 1, and the Distribution System Analysis and Simulation (DSAS) program for these studies was presented in Volume 2 in the form of a User's Manual.

Chen, M.S.; Shoults, R.R.

1985-07-01T23:59:59.000Z

390

Holographic Heat Engines  

E-Print Network (OSTI)

It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

Clifford V. Johnson

2014-09-04T23:59:59.000Z

391

Heat transfer in channels with porous inserts during forced fluid flow  

Science Journals Connector (OSTI)

General analytic expressions are obtained to calculate heat transfer and temperature fields in a plane channel ... allowance for the effective thermal conductivity of the heat carrier and the distribution of heat

A. A. Plakseev; V. V. Kharitonov

1989-01-01T23:59:59.000Z

392

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-01-29T23:59:59.000Z

393

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-06-04T23:59:59.000Z

394

Operation of the ORNL High Particle Flux Helicon Plasma Source  

SciTech Connect

A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes {Gamma}{sub p}10{sup 23} m{sup -3} s{sup -1}, and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of {approx}10 MW/m{sup 2}. An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to {approx}0.15 T. Maximum densities of 3x10{sup 19} m{sup -3} in He and 2.5x10{sup 19} m{sup -3} in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.

Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Chen, G. C.; Owen, L. W.; Sparks, D. O. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6169 (United States)

2011-12-23T23:59:59.000Z

395

Operation of the ORNL High Particle Flux Helicon Plasma Source  

SciTech Connect

A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.

Goulding, Richard Howell [ORNL; Biewer, Theodore M [ORNL; Caughman, John B [ORNL; Chen, Guangye [ORNL; Owen, Larry W [ORNL; Sparks, Dennis O [ORNL

2011-01-01T23:59:59.000Z

396

THE STORAGE OF HEAT AND ELECTRICITY  

Science Journals Connector (OSTI)

...repressurized gas fields, or gas-filled underground cavities. Natural gas can even be transported...gravel in connection with solar heating of dwellings...dry ice, and liquefied gases. The durations of time...steam on its way to a turbine. Sensible heat in recuperators...

Bertrand A. Landry

1961-01-01T23:59:59.000Z

397

emergency operations  

National Nuclear Security Administration (NNSA)

0%2A en Forrestal Watch Office http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorismoperationscenterforrestalwatchoffice

field...

398

Computer Modeling VRF Heat Pumps in Commercial Buildings using EnergyPlus  

SciTech Connect

Variable Refrigerant Flow (VRF) heat pumps are increasingly used in commercial buildings in the United States. Monitored energy use of field installations have shown, in some cases, savings exceeding 30% compared to conventional heating, ventilating, and air-conditioning (HVAC) systems. A simulation study was conducted to identify the installation or operational characteristics that lead to energy savings for VRF systems. The study used the Department of Energy EnergyPlus? building simulation software and four reference building models. Computer simulations were performed in eight U.S. climate zones. The baseline reference HVAC system incorporated packaged single-zone direct-expansion cooling with gas heating (PSZ-AC) or variable-air-volume systems (VAV with reheat). An alternate baseline HVAC system using a heat pump (PSZ-HP) was included for some buildings to directly compare gas and electric heating results. These baseline systems were compared to a VRF heat pump model to identify differences in energy use. VRF systems combine multiple indoor units with one or more outdoor unit(s). These systems move refrigerant between the outdoor and indoor units which eliminates the need for duct work in most cases. Since many applications install duct work in unconditioned spaces, this leads to installation differences between VRF systems and conventional HVAC systems. To characterize installation differences, a duct heat gain model was included to identify the energy impacts of installing ducts in unconditioned spaces. The configuration of variable refrigerant flow heat pumps will ultimately eliminate or significantly reduce energy use due to duct heat transfer. Fan energy is also studied to identify savings associated with non-ducted VRF terminal units. VRF systems incorporate a variable-speed compressor which may lead to operational differences compared to single-speed compression systems. To characterize operational differences, the computer model performance curves used to simulate cooling operation are also evaluated. The information in this paper is intended to provide a relative difference in system energy use and compare various installation practices that can impact performance. Comparative results of VRF versus conventional HVAC systems include energy use differences due to duct location, differences in fan energy when ducts are eliminated, and differences associated with electric versus fossil fuel type heating systems.

Raustad, Richard

2013-06-01T23:59:59.000Z

399

Industrial heat pumps - types and costs  

SciTech Connect

Confusion about energy savings and economics is preventing many potentially beneficial applications for industrial heat pumps. The variety of heat pumps available and the lack of a standard rating system cause some of this confusion. The authors illustrate how a simple categorization based on coefficient of performance (COP) can compare the cost of recovering waste energy with heat pumps. After evaluating examples in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs, they compare heat pumps from the various categories on the basis of economics. 6 references, 6 figures, 1 table.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-08-01T23:59:59.000Z

400

Quantifying Combined Heat and Power (CHP) activity  

Science Journals Connector (OSTI)

In CHP plants without heat rejection facilities power, output is complementary to the recovery of heat, and all activity is cogeneration. CHP plants with heat rejection facilities can operate a mix of cogeneration and condensing activities. Quantifying the energy flows of both activities properly requires knowledge of the design power-to-heat ratios of the CHP processes (steam and gas turbines, combustion engines). The ratios may be multiple, non-linear or extend into the virtual domain of the production possibility sets of the plants. Quantifying cogeneration in CCGT plants reveals a definition conflict but consistent solutions are available.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Heat and Power Production from Straw  

Science Journals Connector (OSTI)

The fact that from 1990 the burning of straw in the fields is no longer permitted has accelerated the development of efficient and reliable Danish heat and power plants using straw.

Lars Ravn-Jensen

1988-01-01T23:59:59.000Z

402

Condensing Heat Exchangers Optimize Steam Boilers  

E-Print Network (OSTI)

The development of fluorocarbon resin covered tubes has advanced to the point where full scale marketing in connection with condensing heat exchangers has begun. Field installations show simple paybacks of one to one and a half years with resulting...

Sullivan, B.; Sullivan, P. A.

1983-01-01T23:59:59.000Z

403

Magnetically multiplexed heating of single domain nanoparticles  

E-Print Network (OSTI)

Selective hysteretic heating of multiple collocated types of single domain magnetic nanoparticles (SDMNPs) by alternating magnetic fields (AMFs) may offer a useful tool for biomedical applications. The possibility of ...

Romero, G.

404

Multimode parametric instability during electron cyclotron heating  

Science Journals Connector (OSTI)

A study is made of the generation of electron Bernstein waves in the interaction of a microwave field with a magnetized plasma during electron cyclotron heating. Parametric resonance accompanied by simultaneous c...

Yu. R. Alanakyan; A. A. Ivanov; A. A. Luk’yanov…

2000-04-01T23:59:59.000Z

405

Magnetic Relativistic Schrödinger Operators and \\\\Imaginary-time Path Integrals  

E-Print Network (OSTI)

Three magnetic relativistic Schr\\"odinger operators corresponding to the classical relativistic Hamiltonian symbol with magnetic vector and electric scalar potentials are considered, dependent on how to quantize the kinetic energy term $\\sqrt{(\\xi-A(x))^2 +m^2}$. We discuss their difference in general and their coincidence in the case of constant magnetic fields, and also study whether they are covariant under gauge transformation. Then results are reviewed on path integral representations for their respective imaginary-time relativistic Schr\\"odinger equations, i.e. heat equations, by means of the probability path space measure related to the L\\'evy process concerned.

Takashi Ichinose

2014-03-24T23:59:59.000Z

406

Design of chemical reactors of the heat exchanger type  

E-Print Network (OSTI)

Operating Profile - Example I 23 , 53 Heat Rate Comparison - Example I Operating Profile - Example 2 Operating Profile - Example 3 Operating Profile - Example 4 Equations (113) and (114) at 790 Reactor Profile - Exan piss 5 and 6 Heat of Reaction.... simple inathematical function of time. While his work was a step forward, it is not directly applicable to the problem of reactor design. Hougen and Watsor. (3), and recently Fair and Rase (4), illustra- ted an exact non-machine method of reactor...

McBeth, Lloyd Theodore

2012-06-07T23:59:59.000Z

407

SPEAR Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Interface 1113 N. Kurita J. Langton Vacuum TSP's 1120 J. Corbett A. Terebilo MATLAB Applications - Basics 1121 F. Rafael Booster Kicker Upgrade, Operation Manual 1121...

408

Floatable solar heat modules  

SciTech Connect

A floating solar heat module for swimming pools comprises a solid surface for conducting heat from the sun's rays to the water and further includes a solid heat storage member for continual heating even during the night. A float is included to maintain the solar heat module on the surface of the pool. The solid heat storage medium is a rolled metal disk which is sandwiched between top and bottom heat conducting plates, the top plate receiving the heat of the sun's rays through a transparent top panel and the bottom plate transferring the heat conducted through the top plate and rolled disk to the water.

Ricks, J.W.

1981-09-29T23:59:59.000Z

409

Magnetic field stabilization by temperature control of an azimuthally varying field cyclotron magnet  

SciTech Connect

A magnetic field drift, gradual decrease of the order of 10{sup -4} in several tens of hours, was observed with the beam intensity decrease in an operation of an azimuthally varying field (AVF) cyclotron. From our experimental results, we show that the temperature increase of the magnet iron by the heat transfer from the excitation coils can induce such change of the magnetic field as to deteriorate the beam quality. The temperature control of the magnet iron was realized by thermal isolation between the main coil and the yoke and by precise control of the cooling water temperature of the trim coils attached to the pole surfaces in order to prevent temperature change of the magnet iron. The magnetic field stability of {+-}5x10{sup -6} and the beam intensity stability of {+-}2% have been achieved by this temperature control.

Okumura, S.; Arakawa, K.; Fukuda, M.; Nakamura, Y.; Yokota, W.; Ishimoto, T.; Kurashima, S.; Ishibori, I.; Nara, T.; Agematsu, T.; Sano, M.; Tachikawa, T. [Japan Atomic Energy Research Institute (JAERI), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Sumitomo Heavy Industries, Ltd. (SHI), 5-2 Soubiraki, Niihama, Ehime 792-8588 (Japan)

2005-03-01T23:59:59.000Z

410

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project |  

Open Energy Info (EERE)

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title BSU GHP District Heating and Cooling System (PHASE I) Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description The Project will result in the construction of the largest ground source geothermal-based closed loop GHP heating and cooling system in America. Phase I of the Project began with the design, competitive bidding, and contract award for the drilling and "looping" of 1,800 boreholes in sports fields and parking lots on the north side of campus. The components of the entire Project include: (1) 4,100 four hundred feet deep boreholes spread over about 25 acres of sport fields and parking lots (Phase I will involve 1,800 boreholes spread over about 8 acres); (2) Each Phase will require a district energy station (about 9,000 sq. feet) that will each contain (A) two 2,500 ton heat pump chillers (which can produce 150 degree (F) water for heating purposes and 42 degree (F) water for cooling purposes); and (B) a variety of water pumps, electrical and other control systems; (3) a closed loop piping system that continuously circulates about 20,000 gallons of water (no anti-freeze) per minute through the boreholes, energy stations, a (two pipe) hot water loop and a (two pipe) chilled water loop (no water is drawn from the aquifer at any point in the operation); and (4) hot/chilled water-to-air heat exchangers in each of the buildings.

411

Thermoeconomic Analysis of a Solar Heat-Pump System  

E-Print Network (OSTI)

This paper introduces a solar energy heat-pump system and analyzes the thermoeconomics. The results show that the solar energy heat-pump system can be operated in different modes and used for room heating in winter and cooling in summer and...

Gao, Y.; Wang, S.

2006-01-01T23:59:59.000Z

412

Methods for microwave heat treatment of manufactured components  

DOE Patents (OSTI)

An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

Ripley, Edward B. (Knoxville, TN)

2010-08-03T23:59:59.000Z

413

Heat Pump for High School Heat Recovery  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-1 Heat Pump for High School Bathroom Heat Recovery Kunrong Huang Hanqing Wang Xiangjiang Zhou Associate professor Professor Professor School...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

414

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

415

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

416

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

417

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

418

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

419

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

420

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Waste Heat Management Options for Improving Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

422

Guide to Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Heat Pumps Work Using a heat exchanger, a geothermal heat pump can move heat from one space to another. In summer, the geothermal heat pump extracts heat from a building...

423

Ion Heating in the Dense Plasma Focus  

Science Journals Connector (OSTI)

The collapse phase of a dense plasma focus gun operating in deuterium was studied using streak photography and time resolved x?ray and neutron measuring techniques. The streak photographs showing the radial motion of the luminous front at various axial positions indicate a collapsing luminous front at the time of the current collapse followed by an expanding front and a recompression. The luminosity then disappears for a period of several hundred nanoseconds during which time the neutrons are emitted. Estimates of shock heating and magnetic compressional heating were made from the streak pictures and a calculation of plasma heating due to viscous forces arising from axial motion of the plasma was carried out. The effects of shock heating magnetic compressional heating and viscous heating are shown to be sufficient to produce an ion temperature of several kilovolts.

A. J. Toepfer; D. R. Smith; E. H. Beckner

1971-01-01T23:59:59.000Z

424

Heat recovery and the economizer for HVAC systems  

SciTech Connect

This articles examines why a combined heat reclaim/economizer system with priority to heat reclaim operation is most likely to result in the least annual total HVAC energy. PC-based, hour-by-hour simulation programs evaluate annual HVAC energy requirements when using combined operation of heat reclaim and economizer cycle, while giving priority to operation of either one. These simulation programs also enable the design engineer to select the most viable heat reclaim and/or economizer system for any given type of HVAC system serving the building internal load level, building geographical location and other building/system variables.

Anantapantula, V.S. (Emerson Electric Co., St. Louis, MO (United States). Alco Controls Div.); Sauer, H.J. Jr. (Univ. of Missouri, Rolla, MO (United States))

1994-11-01T23:59:59.000Z

425

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste  

Science Journals Connector (OSTI)

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste ... Dilution of hydrogen rich fuels resulting from coal or heavy hydrocarbon gasification processes with nitrogen prior to the entrance of the gas turbines may be desirable in precombustion carbon capture and storage (CCS) routes, in order to ensure safe operations of gas turbines. ...

Jhuma Sadhukhan; Kok Siew Ng; Nilay Shah; Howard J. Simons

2009-09-15T23:59:59.000Z

426

A solid?state solar?powered heat transfer device  

Science Journals Connector (OSTI)

A solar?powered solid?state heat transferdevice capable of operating in either a refrigeration or a heat?pump mode is proposed. The device’s operation is based on the combined utilization of the photovoltaic and Peltier effects.

Milivoj Beli?; Joel I. Gersten

1979-01-01T23:59:59.000Z

427

Woven heat exchanger  

DOE Patents (OSTI)

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

428

The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report  

SciTech Connect

This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

Hughes, P.J.; Shonder, J.A.

1998-03-01T23:59:59.000Z

429

Evaluation of a fluidized-bed waste-heat recovery system. A technical case study  

SciTech Connect

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R&D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R&D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA`s Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

430

Evaluation of a fluidized-bed waste-heat recovery system  

SciTech Connect

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA's Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

431

Warren Estates-Manzanita Estates Reno, Nevada residential geothermal district heating system  

SciTech Connect

Warren Estates-Manzanita Estates is the largest privately-owned and operated residential geothermal district heating system in the State of Nevada. The system has operated for ten years and presently services 95 homes. Geothermal energy is used to heat homes, domestic water, spas, swimming pools, and greenhouses. Four homes have installed driveway deicing systems using geothermal energy. This paper briefly describes the geothermal resource, wells, system engineering, operation, applications, and economics. The accompanying posters illustrate the geothermal area, system design, and various applications. The resource is part of the Moana geothermal field, located in southwest Reno. Excluding the Warren-Manzanita Estates, the well-known Moana field supports nearly 300 geothermal wells that supply fluids to individual residences, several motels, a garden nursery, a few churches, and a municipal swimming pool. The Warren-Manzanita Estates is ideally suited for residential district space heating because the resource is shallow, moderate-temperature, and chemically benign. The primary reservoir rock is the Kate Peak andesite, a Tertiary volcanic lahar that has excellent permeability within the narrow fault zones that bisect the property. The Kate Peak formation is overlain by impermeable Tertiary lake sediments and alluvium. Two production wells, each about 240 m deep, are completed near the center of the residential development at the intersection of two fault zones. Geothermal fluids are pumped at a rate of 15 to 25 l/s (260-400 gpm) from one of two wells at a temperature of 95{degrees}C (202{degrees}F) to two flat-plate heat exchangers. The heat exchangers transfer energy from the geothermal fluids to a second fluid, much like a binary geothermal power plant.

McKay, F.; McKay, G.; McKay, S.; Flynn, T. [McKay Pump and Drilling, Reno, NV (United States)

1995-12-31T23:59:59.000Z

432

Towards Intelligent District Heating.  

E-Print Network (OSTI)

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to… (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

433

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

434

ARM - Heat Index Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative...

435

Optimal operation of simple vapour compression cycles  

E-Print Network (OSTI)

to a high temperature level. The first application, in 1834, was cooling to produce ice for storage of food for heating and cooling are widely used in many applications and their power ranges from less than 1 k to operate in both heating and cooling mode. A schematic drawing of a simple cycle is shown in Figure 1

Skogestad, Sigurd

436

Heat flux solarimeter  

SciTech Connect

The solarimeter presented in this work is easy to assemble. It is calibrated and its performance is validated by means of Hottel's method. Finally, the curves obtained with this solarimeter are compared to the ones obtained with a commercial solarimeter. This device is based on the evaluation of the heat flow in a metal rod. In consequence, measurements are not affected by ambient temperature variations. On the other hand, there is a linear relationship between the temperatures measured at the rod ends and the incident radiation, as can be concluded both from the theory of its operation and the calibration lines obtained. The results obtained from the global irradiance measurements in the area of Los Polvorines (Buenos Aires Province), together with a preliminary evaluation of the solarimeter's response time, are presented in this work. (author)

Sartarelli, A.; Vera, S.; Cyrulies, E. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Echarri, R. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Samson, I. [INTEC (Instituto Tecnologico Santo Domingo), Santo Domingo (Dominican Republic)

2010-12-15T23:59:59.000Z

437

A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade  

SciTech Connect

The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

Taylor, Gary [PPPL

2014-04-01T23:59:59.000Z

438

Confortable Performance: Retro-Commissioning Building Operations  

E-Print Network (OSTI)

troubleshooting ? New controls strategies ? Equipment schedule optimization ? Comfort improvements 7 ESL-IC-13-10-07 Proceedings of the 13th International Conference for Enhanced Building Operations, Montreal, Quebec, October 8-11, 2013 Tools ? Actuator... Operations, Montreal, Quebec, October 8-11, 2013 Example 1 ? Problem ? Monday morning ?too cold? complaints ? Solution ? Heating system start-up on Sunday at 2:00pm ? RCx Investigation ? Tenant MAU running 24x7 with no heat (space temperature...

Botan, L.

2013-01-01T23:59:59.000Z

439

Design operators  

E-Print Network (OSTI)

Design operators is a thesis that investigates the nature and characteristics of the design process by examining the interaction of computation with architectural design. The effects of the introduction of these media in ...

Dritsas, Stylianos, 1978-

2004-01-01T23:59:59.000Z

440

Business Operations  

Office of Energy Efficiency and Renewable Energy (EERE)

The Office of Business Operations is the central organization for all Office of Energy Efficiency and Renewable Energy (EERE) business products, processes, and systems. The three main offices of...

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Operating Costs  

Directives, Delegations, and Requirements

This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

1997-03-28T23:59:59.000Z

442

Experimental study of an air-source heat pump for simultaneous heating and cooling Part 1: Basic concepts and performance verification  

E-Print Network (OSTI)

manufacturer. The operation of the high pressure control system, the transitions between heating, cooling, heating and cooling energies using the same electric energy input at the compressor. Chua et al. [31 Experimental study of an air-source heat pump for simultaneous heating and cooling ­ Part 1

Boyer, Edmond

443

HVAC Radial Air Bearing Heat Exchangers Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radial Air Bearing Heat Exchangers Radial Air Bearing Heat Exchangers Research Project HVAC Radial Air Bearing Heat Exchangers Research Project The U.S. Department of Energy is currently conducting research into heating, ventilation, and air conditioning (HVAC) radial air bearing heat exchangers. Rotary air bearing heat exchanger technology simultaneously solves four long standing problems of conventional "fan-plus-finned-heat-sink" heat exchangers. Project Description This project seeks to design, fabricate, and test successive generations of prototype radial air bearing heat exchanger devices based on lessons learned and further insights into device optimization, computational fluid dynamic studies for parametric optimization and determination of scaling laws, and laboratory measurement of flow field and heat transfer

444

Chapter 8: Plasma operation and control  

Science Journals Connector (OSTI)

The ITER plasma control system has the same functional scope as the control systems in present tokamaks. These are plasma operation scenario sequencing, plasma basic control (magnetic and kinetic), plasma advanced control (control of RWMs, NTMs, ELMs, error fields, etc) and plasma fast shutdown. This chapter considers only plasma initiation and plasma basic control. This chapter describes the progress achieved in these areas in the tokamak experiments since the ITER Physics Basis (1999 Nucl. Fusion 39 2577) was written and the results of assessment of ITER to provide the plasma initiation and basic control. This assessment was done for the present ITER design (15?MA machine) at a more detailed level than it was done for the ITER design 1998 (21?MA machine) described in the ITER Physics Basis (1999 Nucl. Fusion 39 2577). The experiments on plasma initiation performed in DIII-D and JT-60U, as well as the theoretical studies performed for ITER, have demonstrated that, within specified assumptions on the plasma confinement and the impurity influx, ITER can produce plasma initiation in a low toroidal electric field (0.3?V?m?1), if it is assisted by about 2?MW of ECRF heating. The plasma basic control includes control of the plasma current, position and shape—the plasma magnetic control, as well as control of other plasma global parameters or their profiles—the plasma performance control. The magnetic control is based on more reliable and simpler models of the control objects than those available at present for the plasma kinetic control. Moreover the real time diagnostics used for the magnetic control in many cases are more precise than those used for the kinetic control. Because of these reasons, the plasma magnetic control was developed for modern tokamaks and assessed for ITER better than the kinetic control. However, significant progress has been achieved in the plasma performance control during the last few years. Although the physics basis of plasma operation and control is similar in ITER and present tokamaks, there is a principal qualitative difference. To minimize its cost, ITER has been designed with small margins in many plasma and engineering parameters. These small margins result in a significantly narrower operational space compared with present tokamaks. Furthermore, ITER operation is expensive and component damage resulting from purely operational errors might lead to a high and avoidable repair cost. These factors make it judicious to use validated plasma diagnostics and employ simulators to 'pre-test' the combined ITER operation and control systems. Understanding of how to do this type of pre-test validation is now developed in present day experiments. This research push should provide us with fully functional simulators before the first ITER operation.

Y. Gribov; D. Humphreys; K. Kajiwara; E.A. Lazarus; J.B. Lister; T. Ozeki; A. Portone; M. Shimada; A.C.C. Sips; J.C. Wesley

2007-01-01T23:59:59.000Z

445

Hybrid simulation of electron cyclotron resonance heating  

Science Journals Connector (OSTI)

Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

T. Ropponen; O. Tarvainen; P. Suominen; T.K. Koponen; T. Kalvas; H. Koivisto

2008-01-01T23:59:59.000Z

446

Operational Area Monitoring Plan  

Office of Legacy Management (LM)

' ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan for the DOE Field Office, Nevada (DOEINV) nuclear and non- nuclear testing activities associated with the Nevada Test Site (NTS). These Operational Area Monitoring Plans are prepared by various DOE support contractors, NTS user organizations, and federal or state agencies supporting DOE NTS operations. These plans and the parent

447

Heat pump associations, alliances, and allies  

SciTech Connect

Associations, Alliances, and Allies, a seminar and workshop sponsored by the Electric Power Research Institute, was held in Memphis, Tennessee, April 10--11, 1991. The focus of the meeting was relationships forged between electric utilities and trade allies that sell residential heat pumps. one hundred and seven representatives of electric utilities, dealer/contractors, manufacturers, and consultants attended. Electric utility trade ally programs run the gamut from coop advertising to heat pump association to elaborate technician training programs. All utility participants recognize the important programs, since it is the trade ally who sells, installs, and services heat pumps, while it is the electric utility who gets blamed if the heat pumps fail to operate properly or are inefficient. Heat pumps are efficient and effective, but their efficiency and effectiveness depends critically upon the quality of installation and maintenance. A utility can thus help to ensure satisfied customers and can also help to achieve its own load shape objectives by working closely with its trade allies, the dealers, contractors, manufacturers, and distributors. Attendees spent the morning sessions of the two day meeting in plenary sessions, hearing about utility and dealer heat pump programs and issues. Afternoon roundtable discussions provided structured forums to discuss: Advertising; Heat pump association startup and operation; Rebates and incentives; Technician training school and centers; Installation inspection and dealer qualification; and Heat pump association training. These proceedings report on the papers presented in the morning plenary sessions and summarize the main points discussed in the afternoon workshops.

Not Available

1992-09-01T23:59:59.000Z

448

Working on new gas turbine cycle for heat pump drive  

E-Print Network (OSTI)

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

449

Calculations of Ion Heating by ECRH J. C. Sprott  

E-Print Network (OSTI)

a magnetic gradient where e lectron cyclotron resonance heating occurs. The electrons g ain perpendicular e cyclotron resonance heating. The electron density then increases in the reg ion of small magnetic fieldCalculations of Ion Heating by ECRH by J. C. Sprott January, 1970 Plasma Studies University

Sprott, Julien Clinton

450

THEORY AND SIIVIULATION OF CYCIDTRON HEATING IN A LINEAR OCIUPOLE  

E-Print Network (OSTI)

conductivity model is used to calculate the cyclotron heating rate (electron or ion) in an arbitrary non been used to calculate the cyclotron heating rate for plasmas in various magnetic field configurations. This paper presents a method of calculating cyclotron heating rates that is based on integration of the local

Sprott, Julien Clinton

451

Combined Flue Gas Heat Recovery and Pollution Control Systems  

E-Print Network (OSTI)

in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

Zbikowski, T.

1979-01-01T23:59:59.000Z

452

Performance analysis of reciprocating regenerative magnetic heat pumping. Final report  

SciTech Connect

Transient flow phenomena in the regenerator tube of reciprocating magnetic heat pumps have been studied numerically and experimentally. In the numerical study, two approaches were taken: (1) solving the energy balance equations for fluid through a porous bed directly and (2) solving the Navier-Stokes equations with a buoyancy force term in the momentum equation. A flow thermal mixing problem was found in both approaches because of the piston-like motion of the regenerator tube that hinders the development of the temperature. The numerical study results show that a 45 K temperature span can be reached in 10 minutes of charge time through the use of a 7-Tesla magnetic field. Using the second numerical approach, temperature stratification in the regenerator fluid column was clearly indicated through temperature rasters. The study also calculates regenerator efficiency and energy delivery rates when heating load and cooling load are applied. Piecewise variation of the regenerator tube moving speed has been used in the present numerical study to control the mass flow rate, reduce thermal mixing of the flow and thus the regenerative losses. The gadolinium`s adiabatic temperature has been measured under 6.5 Tesla of magnet field and different of operating temperatures ranging from 285 K to 320 K. Three regenerative heat pumping tests have also been conducted based on the Reynolds number of the regenerator tube flow, namely Re=300, Re=450, and Re=750 without loads. Maximum temperature span are 12 & 11 K and 9 K for the case of Re=300, Re=450 and Re=750, respectively. Experimental data are in good agreement with the numerical calculation results, and have been used to calibrate the numerical results and to develop a design database for reciprocating-type room-temperature magnetic heat pumps.

Chen, D.T. [Oak Ridge Associated Universities, Inc., TN (United States); Murphy, R.W.; Mei, V.C.; Chen, F.C.; Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States)

1994-02-01T23:59:59.000Z

453

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

454

Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry  

SciTech Connect

We present a method for visually and quantitatively investigating the heat dissipation process of plate-fin heat sinks by using digital holographic interferometry. A series of phase change maps reflecting the temperature distribution and variation trend of the air field surrounding heat sink during the heat dissipation process are numerically reconstructed based on double-exposure holographic interferometry. According to the phase unwrapping algorithm and the derived relationship between temperature and phase change of the detection beam, the full-field temperature distributions are quantitatively obtained with a reasonably high measurement accuracy. And then the impact of heat sink's channel width on the heat dissipation performance in the case of natural convection is analyzed. In addition, a comparison between simulation and experiment results is given to verify the reliability of this method. The experiment results certify the feasibility and validity of the presented method in full-field, dynamical, and quantitative measurement of the air field temperature distribution, which provides a basis for analyzing the heat dissipation performance of plate-fin heat sinks.

Wu, Bingjing; Zhao, Jianlin, E-mail: jlzhao@nwpu.edu.cn; Wang, Jun; Di, Jianglei; Chen, Xin; Liu, Junjiang [Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072 (China)

2013-11-21T23:59:59.000Z

455

Thulium-170 heat source  

SciTech Connect

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

456

Thulium-170 heat source  

DOE Patents (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

457

FS: heat pump water heaters | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Food Service » Install a heat pump Food Service » Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specificat Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specification The Food Service team developed a Commercial Heat Pump Water Heater Specification that can be used to reduce water heating energy by 70%. An older, electric resistance water heater (operated in a building with a hot water demand of 500 gallons a day) can cost more than $3,500 each year

458

Ductless, Mini-Split Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ductless, Mini-Split Heat Pumps Ductless, Mini-Split Heat Pumps Ductless, Mini-Split Heat Pumps June 24, 2012 - 4:19pm Addthis What does this mean for me? You can take advantage of the fact that -- unlike earlier versions -- newer models of ductless mini-split heat pumps operate effectively in cold temperatures. If you are building an addition or doing a major remodel and your home does not have heating and cooling ducts, a ductless mini-split heat pump may be a cost-effective, energy-efficient choice. Ductless, mini-split-system heat pumps (mini splits) make good retrofit add-ons to houses with "non-ducted" heating systems, such as hydronic (hot water heat), radiant panels, and space heaters (wood, kerosene, propane). They can also be a good choice for room additions where extending or

459

Cooling and Clusters: When Is Heating Needed?  

E-Print Network (OSTI)

There are (at least) two unsolved problems concerning the current state of the thermal gas in clusters of galaxies. The first is identifying the source of the heating which offsets cooling in the centers of clusters with short cooling times (the ``cooling flow'' problem). The second is understanding the mechanism which boosts the entropy in cluster and group gas. Since both of these problems involve an unknown source of heating it is tempting to identify them with the same process, particular since AGN heating is observed to be operating at some level in a sample of well-observed ``cooling flow'' clusters. Here we show, using numerical simulations of cluster formation, that much of the gas ending up in clusters cools at high redshift and so the heating is also needed at high-redshift, well before the cluster forms. This indicates that the same process operating to solve the cooling flow problem may not also resolve the cluster entropy problem.

Greg L. Bryan; G. Mark Voit

2005-02-22T23:59:59.000Z

460

BOREAS Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Study Area Operations/Thompson Airport (NSA-Ops) Study Area Operations/Thompson Airport (NSA-Ops) NSA Operations (NSA-Ops) The Keewatin Air Hanger: site of BOREAS Ops 1994 Dr. Piers Sellers working in Ops, 1994 BOREAS "Air Force" The NASA C-130 The University of Wyoming King Air The NASA Helicopter The NRC Twin Otter The NCAR Electra The Ontario Chieftain Back to the BOREAS Photo Page Index Other Sites: NSA Photos ||NSA-BP Photos | NSA-Fen Photos | NSA-OA Photos | NSA-OBS Photos | NSA-OJP Photos | NSA-UBS Photos | NSA-YJP Photos | NSA-Ops Photos SSA Photos || SSA-Airport Photos | SSA-Fen Photos | SSA-Mix Photos | SSA-OA Photos | SSA-OBS Photos | SSA-OJP Photos | SSA-YA Photos | SSA-YJP Photos | SSA-Ops Photos | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data Citation || Rate Us || Help |

Note: This page contains sample records for the topic "field operations heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

SSA Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Operations (SSA-Ops) Area Operations (SSA-Ops) "BOREAS Ops" was located at the Snodrifters Lodge, in Candle Lake, Saskatchewan. Radiosonde balloon launch at Ops The NASA Helicopter lands at Ops A meeting at the Snodrifter's Lodge Release of a radiosonde at the SSA operations center in Candle Lake. Back to the BOREAS Photo Page Index Other Sites: NSA Photos ||NSA-BP Photos | NSA-Fen Photos | NSA-OA Photos | NSA-OBS Photos | NSA-OJP Photos | NSA-UBS Photos | NSA-YJP Photos | NSA-Ops Photos SSA Photos || SSA-Airport Photos | SSA-Fen Photos | SSA-Mix Photos | SSA-OA Photos | SSA-OBS Photos | SSA-OJP Photos | SSA-YA Photos | SSA-YJP Photos | SSA-Ops Photos | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data Citation || Rate Us || Help | User Services - Tel: +1 (865) 241-3952 or E-mail: uso@daac.ornl.gov

462

Steam management in composite mature steam floods, Midway Sunset field  

SciTech Connect

Vogel noted that oil production rates in many steam floods are not predictable from steam injection rates and must be estimated on some other basis. He presented a conservative method, based on simple models assuming instantaneous steam overlay, to calculate heat requirements once the oil rate is known. By more accurately describing the reservoir being flooded and the steam flood process, Vogel`s method was refined resulting in significant steam savings for SWEPI`s leasehold in the northern part of the Midway Sunset field. Analytical expressions are presented for (1) the heat required to support a steam chest descending into an oil column, (2) the heating of a cap or base rock already partially heated by an adjacent steam flood and (3) the heating of a cap or base rock which is exposed to a uniformly growing steam zone. A method is also described to operate a mature steam flood at a constant oil steam ratio while scavenging some heat stored in the steam zone.

Dorp, J.J. van; Roach, R.H.

1995-12-31T23:59:59.000Z

463

Thermoelectric heat exchange element  

DOE Patents (OSTI)

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

464

An Experimental Study of Upward and Downward Flow of Supercritical Carbon Dioxide in a Straight Pipe Heat Exchanger with Constant Wall Heat Flux  

E-Print Network (OSTI)

An experimental analysis was conducted on a single circular tube heat exchanger using supercritical carbon dioxide as the working fluid. The heat exchanger was operated in two different orientations: vertically upward and downward. The experimental...

Umrigar, Eric Dara

2014-05-01T23:59:59.000Z

465

Electromagnetic Heating Methods for Heavy Oil Reservoirs  

SciTech Connect

The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations.

Sahni, A.; Kumar, M.; Knapp, R.B.

2000-05-01T23:59:59.000Z

466

Heat Integrate Heat Engines in Process Plants  

E-Print Network (OSTI)

and refrigeration systems. In many instances these real heat engines may appear as a complex process consisting of flash vessels, heat exchangers, compressors, furnaces, etc. See Figure 18a, which shows a simplified diagram of a "steam Rankine cycle." How... and rejection profiles of the real machine. For example, the heat acceptance and re jection profiles for the steam Rankine cycle shown in Figure 18a have been drawn on T,H coordinates in Figure 18b. Thus providing we know the heat acceptance and rejection...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

467

Transparent heat-spreader for optoelectronic applications  

DOE Patents (OSTI)

An optoelectronic cooling system is equally applicable to an LED collimator or a photovoltaic solar concentrator. A transparent fluid conveys heat from the optoelectronic chip to a hollow cover over the system aperture. The cooling system can keep a solar concentrator chip at the same temperature as found for a one-sun flat-plate solar cell. Natural convection or forced circulation can operate to convey heat from the chip to the cover.

Minano, Juan Carlos; Benitez, Pablo

2014-11-04T23:59:59.000Z

468

###Operating Principles published 411.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of operating principles with S-system models Yun Lee 1 , Po-Wei Chen 1 , Eberhard O. Voit ⇑ The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Drive, Suite 4103, Atlanta, GA 30332-0535, United States a r t i c l e i n f o Article history: Available online 4 March 2011 Keywords: Biochemical Systems Theory Design principle Heat stress Operating principle S-system Trehalose a b s t r a c t Operating principles address general questions regarding the response dynamics of biological systems as we observe or hypothesize them, in comparison to a priori equally valid alternatives. In analogy to design principles, the question arises: Why are some operating strategies encountered more frequently than others and in what sense might they be superior? It is at this point impossible to study operation prin- ciples in complete generality,

469

Heating and cooling of municipal buildings with waste heat from ground water  

SciTech Connect

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

470

Substation Operation  

Science Journals Connector (OSTI)

... THIS book is intended to help the workman to understand the principles of substation operation. It is a good attempt at giving somewhat advanced technical knowledge in such ... ." We are told not to use water to put out a fire at a substation before the station has been made completely " dead." The reason given for this ...

1925-08-01T23:59:59.000Z

471

Radiative heat transfer in 2D Dirac materials  

E-Print Network (OSTI)

We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene. Neglecting spatial dispersion, we derive both numerically and analytically the short-distance asymptotics of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. We argue that this scaling law for the near-field heat transfer is generic for any two-dimensional systems.

Pablo Rodriguez-Lopez; Wang-Kong Tse; Diego A. R. Dalvit

2014-10-16T23:59:59.000Z

472

Buffalo district heating system design and construction  

SciTech Connect

This report addresses the introduction of district heating in Buffalo, NY from feasibility study to implementation. The reemergence of district heating in the US and associated advantages are reviewed. Advanced piping technology which has enabled district heating to compete economically with alternative technologies is summarized. Identification and analysis of the customer heat load considered in downtown Buffalo for the pilot system and future expansion is discussed. Various options for initiating construction of a district heating system were considered as exemplified by the configuration for the pilot system which was selected to serve five downtown buildings. A conceptual plan is presented which permits the system to expand in an economically viable manner. The report concludes with an economic analysis which simulates the operation and expansion of the system. 4 figs., 8 tabs.

Oliker, I.

1987-11-01T23:59:59.000Z

473

Ground Source Integrated Heat Pump (GS-IHP) Development  

SciTech Connect

Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Res