National Library of Energy BETA

Sample records for field measurements alkalinity

  1. Surfactant-enhanced alkaline flooding field project. Annual report

    SciTech Connect (OSTI)

    French, T.R.; Josephson, C.B.

    1993-12-01

    The Tucker sand from Hepler field, Crawford County, Kansas, was characterized using routine and advanced analytical methods. The characterization is part of a chemical flooding pilot test to be conducted in the field, which is classified as a DOE Class I (fluvial-dominated delta) reservoir. Routine and advanced methods of characterization were compared. Traditional wireline logs indicate that the reservoir is vertically compartmentalized on the foot scale. Routine core analysis, X-ray computed tomography (CT), minipermeameter measurement, and petrographic analysis indicate that compartmentalization and lamination extend to the microscale. An idealized model of how the reservoir is probably structured (complex layering with small compartments) is presented. There was good agreement among the several methods used for characterization, and advanced characterization methods adequately explained the coreflood and tracer tests conducted with short core plugs. Tracer and chemical flooding tests were conducted in short core plugs while monitoring with CT to establish flow patterns and to monitor oil saturations in different zones of the core plugs. Channeling of injected fluids occurred in laboratory experiments because, on core plug scale, permeability streaks extended the full length of the core plugs. A graphic example of how channeling in field core plugs can affect oil recovery during chemical injection is presented. The small scale of compartmentalization indicated by plugs of the Tucker sand may actually help improve sweep between wells. The success of field-scale waterflooding and the fluid flow patterns observed in highly heterogeneous outcrop samples are reasons to expect that reservoir flow patterns are different from those observed with short core plugs, and better sweep efficiency may be obtained in the field than has been observed in laboratory floods conducted with short core plugs.

  2. Measurements of magnetic field alignment

    SciTech Connect (OSTI)

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  3. Field Calibration Facilities for Environmental Measurement of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and ... Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and ...

  4. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect (OSTI)

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-04-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  5. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect (OSTI)

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-03-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  6. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and it`s application to mature Minnelusa waterfloods. Annual technical report, January 1993--December 1993

    SciTech Connect (OSTI)

    Pitts, M.J.

    1995-02-01

    The combination of an interfacial tension agent and a mobility control agent has the potential to produce additional oil beyond a waterflood. The West Kiehl alkaline-surfactant-polymer project is the most advanced application of this chemical enhanced oil recovery technique. The West Kiehl alkaline-surfactant-polymer flood was initiated in September 1987 as a secondary application after primary recovery. A preliminary analysis of the West Kiehl alkaline-surfactant-polymer flood indicates that incremental oil of 20% of the original stock tank oil in place will be produced above waterflooding. The cost of the incremental oil will be less than $2.50 per incremental barrel. A statistical analysis of approximately 120 Minnelusa oil fields in the Powder River Basin indicates that the original stock tank oil in place exceeds one billion barrels. If the enhanced oil recovery technology implemented at West Kiehl field could be successfully applied to these fields, the potential incremental oil recovery would approach 200 million barrels. This project (1) evaluates the geological deposition environment of West Kiehl and adjacent Minneluse sand reservoirs; (2) compares the production performance results of the best geologic and reservoir performance analogs and select two fields for future study; (3) compares the two best field analogs to the west Kiehl field using numerical simulation; (4) predict results of applying the enhancement technology on two mature Minneluse waterflood analog units using engineering and numerical simulation; (5) predict waterflood and polymer flood performance of the West Kiehl field using numerical simulation.

  7. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and it`s application to mature Minnelusa waterfloods. Technical progress report for the period of April--June, 1994

    SciTech Connect (OSTI)

    Pitts, M.J.

    1994-09-01

    The objective of this study of the West Kiehl is to (1) quantify the incremental oil produced from the West Kiehl alkaline-surfactant-polymer project by classical engineering and numerical simulation techniques, (2) quantify the effect of chemical slug volume on incremental oil in the two swept areas of the field, (3) determine the economics of the application of the alkaline-surfactant-polymer technology, (4) forecast the results of injecting an alkaline--surfactant-polymer solution to mature waterfloods and polymer floods, and (5) provide the basis for independent operators to book additional oil reserves by using the alkaline-surfactant-polymer technology. This report will document the numerical simulation waterflood, polymer flood, alkaline-surfactant flood and alkaline-surfactant-polymer flood predictions from the West Kiehl and Prairie Creek South fields.

  8. ARM - Field Campaign - Experimental Measurement Campaign: Planetary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boundary layer Instrumentation Assessment - XPIA govCampaignsExperimental Measurement Campaign: Planetary boundary layer Instrumentation Assessment - XPIA Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Experimental Measurement Campaign: Planetary boundary layer Instrumentation Assessment - XPIA 2015.03.01 - 2015.04.20 Lead Scientist : Rob Newsom For data sets, see

  9. Direct synchrotron x-ray measurements of local strain fields...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Direct synchrotron x-ray measurements of local strain fields in ... September 3, 2016 Title: Direct synchrotron x-ray measurements of local strain fields in ...

  10. Alkaline Waterflooding Demonstration Project, Ranger Zone, Long Beach Unit, Wilmington Field, California. Fourth annual report, June 1979-May 1980. Volume 3. Appendices II-XVII

    SciTech Connect (OSTI)

    Carmichael, J.D.

    1981-03-01

    Volume 3 contains Appendices II through XVII: mixing instructions for sodium orthosilicate; oil displacement studies using THUMS C-331 crude oil and extracted reservoir core material from well B-110; clay mineral analysis of B-827-A cores; sieve analysis of 4 Fo sand samples from B-110-IA and 4 Fo sand samples from B-827-A; core record; delayed secondary caustic consumption tests; long-term alkaline consumption in reservoir sands; demulsification study for THUMS Long Beach Company, Island White; operating plans and instructions for DOE injection demonstration project, alkaline injection; caustic pilot-produced water test graphs; well test irregularities (6/1/79-5/31/80); alkaline flood pump changes (6/1/79-5/31/80); monthly DOE pilot chemical waterflood injection reports (preflush injection, alkaline-salt injection, and alkaline injection without salt); and caustic safety procedures-alkaline chemicals.

  11. Field Emission Measurements from Niobium Electrodes

    SciTech Connect (OSTI)

    M. BastaniNejad, P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R. Mammei, M. Poelker

    2011-03-01

    Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.

  12. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect (OSTI)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses

  13. Rapid Field Measurement of Dissolved Inorganic Carbon Based on...

    Office of Scientific and Technical Information (OSTI)

    of Dissolved Inorganic Carbon Based on COsub 2 Analysis Citation Details In-Document Search Title: Rapid Field Measurement of Dissolved Inorganic Carbon Based on COsub 2 ...

  14. Internal field, density & temperature measurements in MTF plasmas...

    Office of Scientific and Technical Information (OSTI)

    Title: Internal field, density & temperature measurements in MTF plasmas using Pulsed Polarimetry final report Authors: Smith, Roger J. Publication Date: 2014-08-11 OSTI ...

  15. Alkaline solution absorption of carbon dioxide method and apparatus...

    Office of Scientific and Technical Information (OSTI)

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline ... Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; PH VALUE; MEASURING ...

  16. Magnetic field measurements via visible spectroscopy on the Z machine

    SciTech Connect (OSTI)

    Gomez, M. R. Hansen, S. B.; Peterson, K. J.; Bliss, D. E.; Carlson, A. L.; Lamppa, D. C.; Rochau, G. A.; Schroen, D. G.

    2014-11-15

    Sandia's Z Machine uses its high current to magnetically implode targets relevant to inertial confinement fusion. Since target performance is highly dependent on the applied drive field, measuring magnetic field at the target is essential for accurate simulations. Recently, the magnetic field at the target was measured through splitting of the sodium 3s-3p doublet at 5890 and 5896 Å. Spectroscopic dopants were applied to the exterior of the target, and spectral lines were observed in absorption. Magnetic fields in excess of 200 T were measured, corresponding to drive currents of approximately 5 MA early in the pulse.

  17. Anodes for alkaline electrolysis

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  18. Reducing fuel consumption on the field, by continuously measuring fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    quality on electronically fuel injected engines. | Department of Energy fuel consumption on the field, by continuously measuring fuel quality on electronically fuel injected engines. Reducing fuel consumption on the field, by continuously measuring fuel quality on electronically fuel injected engines. Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-03_flot.pdf (270.06 KB) More Documents &

  19. Field quality measurements of a 2-Tesla transmission line magnet

    SciTech Connect (OSTI)

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  20. Auditory evoked field measurement using magneto-impedance sensors

    SciTech Connect (OSTI)

    Wang, K. Tajima, S.; Song, D.; Uchiyama, T.; Hamada, N.; Cai, C.

    2015-05-07

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  1. High-frequency electric field measurement using a toroidal antenna

    DOE Patents [OSTI]

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  2. ETA-HTP09 - Measurement and Evaluation of Magnetic Fields (EMF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement and Evaluation of Magnetic Fields (EMF) and Electromagnetic Radiation (EMI) ... 3 6. Magnetic Field and Electromagnetic Radiation 6.1 Magnetic Field Measurement Procedure ...

  3. Estimating of pulsed electric fields using optical measurements.

    SciTech Connect (OSTI)

    Flanagan, Timothy McGuire; Chantler, Gary R.

    2013-09-01

    We performed optical electric field measurements ion nanosecond time scales using the electrooptic crystal beta barium borate (BBO). Tests were based on a preliminary bench top design intended to be a proofofprinciple stepping stone towards a modulardesign optical Efield diagnostic that has no metal in the interrogated environment. The long term goal is to field a modular version of the diagnostic in experiments on large scale xray source facilities, or similarly harsh environments.

  4. Near field optical probe for critical dimension measurements

    DOE Patents [OSTI]

    Stallard, B.R.; Kaushik, S.

    1999-05-18

    A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below is disclosed. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations. 8 figs.

  5. Doppler lidar for measurement of atmospheric wind fields

    SciTech Connect (OSTI)

    Menzies, R.T. )

    1991-01-01

    Measurements of wind fields in the earth's troposphere with daily global coverage is widely considered as a significant advance for forecasting and transport studies. For optimal use by NWP (Numerical Weather Prediction) models the horizontal and vertical resolutions should be approximately 100 km and 1 km, respectively. For boundary layer studies vertical resolution of a few hundred meters seems essential. Earth-orbiting Doppler lidar has a unique capability to measure global winds in the troposphere with the high vertical resolution required. The lidar approach depends on transmission of pulses with high spectral purity and backscattering from the atmospheric aerosol particles or layered clouds to provide a return signal. Recent field measurement campaigns using NASA research aircraft have resulted in collection of aerosol and cloud data which can be used to optimize the Doppler lidar instrument design and measurement strategy. 5 refs.

  6. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  7. Calculated and measured fields in superferric wiggler magnets

    SciTech Connect (OSTI)

    Blum, E.B.; Solomon, L.

    1995-02-01

    Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peak on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.

  8. High-frequency electric field measurement using a toroidal antenna

    SciTech Connect (OSTI)

    Lee, K.H.

    1997-01-01

    In this paper the author describes an innovative method of measuring high-frequency electric fields using a toroid. For typical geophysical applications the new sensor will detect electric fields for a wide range of spectrum starting from 1.0 MHz. This window, in particular the lower frequency range between 1.0 to 100 MHz, has not been used for existing electromagnetic or radar systems to detect small objects in the upper few meters of the ground. Ground penetrating radar (GPR) can be used successfully in this depth range if the ground is resistive but most soils are, in fact, conductive (0.01 to 1.0 S/m) rendering GPR inefficient. Other factors controlling the resolution of GPR system for small objects is the spatial averaging inherent in the electric dipole antenna and the scattering caused by soil inhomogeneities of dimensions comparable to the wavelength (and antenna size). For maximum resolution it is desirable to use the highest frequencies but the scattering is large and target identification is poor. Time-varying magnetic fields induce an emf (voltage) in a toroid. The electric field at the center of the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroid one can easily and accurately determine the electric field. The new sensor will greatly simplify the cumbersome procedure involved with GPR measurements with its center frequency less than 100 MHz. The overall size of the toroidal sensor can be as small as a few inches. It is this size advantage that will not only allow easy fabrication and deployment of multi-component devices either on the surface or in a borehole, but it will render greatly improved resolution over conventional systems.

  9. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    SciTech Connect (OSTI)

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  10. Verifying a Simplified Fuel Oil Field Measurement Protocol

    SciTech Connect (OSTI)

    Henderson, Hugh; Dentz, Jordan; Doty, Chris

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  11. The IMCA: A field instrument for uranium enrichment measurements

    SciTech Connect (OSTI)

    Gardner, G.H.; Koskelo, M.; Moeslinger, M.; Mayer, R.L. II; McGinnis, B.R.; Wishard, B.

    1996-12-31

    The IMCA (Inspection Multi-Channel Analyzer) is a portable gamma-ray spectrometer designed to measure the enrichment of uranium either in a laboratory or in the field. The IMCA consists of a Canberra InSpector Multi-Channel Analyzer, sodium iodide or a planar germanium detector, and special application software. The system possesses a high degree of automation. The IMCA uses the uranium enrichment meter principle, and is designed to meet the International Atomic Energy Agency (IAEA) requirements for the verification of enriched uranium materials. The IMCA is available with MGA plutonium isotopic analysis software or MGAU uranium analysis software as well. In this paper, the authors present a detailed description of the hardware and software of the IMCA system, as well as results from preliminary measurements testing compliance of IMCA with IAEA requirements using uranium standards and UF6 cylinders. Measurements performed on UF6 cylinders in the field under variable environmental conditions (temperatures ranging from 0 to 35 C) have shown that good results can be achieved. The enrichment of UF6 contained in the cylinder is determined by using calibration constants generated from an instrument calibration, using traceable uranium oxide standards, performed in the laboratory under controlled environmental conditions. The IMCA software is designed to make the necessary matrix and container corrections to ensure that accurate results are achieved in the field.

  12. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    SciTech Connect (OSTI)

    Velas, K. M.; Milroy, R. D.

    2014-01-15

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub θ}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.

  13. System having unmodulated flux locked loop for measuring magnetic fields

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2006-08-15

    A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.

  14. Measuring the complex field scattered by single submicron particles

    SciTech Connect (OSTI)

    Potenza, Marco A. C. Sanvito, Tiziano

    2015-11-15

    We describe a method for simultaneous measurements of the real and imaginary parts of the field scattered by single nanoparticles illuminated by a laser beam, exploiting a self-reference interferometric scheme relying on the fundamentals of the Optical Theorem. Results obtained with calibrated spheres of different materials are compared to the expected values obtained through a simplified analytical model without any free parameters, and the method is applied to a highly polydisperse water suspension of Poly(D,L-lactide-co-glycolide) nanoparticles. Advantages with respect to existing methods and possible applications are discussed.

  15. Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (June 1994)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (June 1994)

  16. Far-field measurements of short-wavelength surface plasmons

    SciTech Connect (OSTI)

    Blau, Yochai; Gjonaj, Bergin; David, Asaf; Dolev, Shimon; Shterman, Doron; Bartal, Guy

    2015-03-23

    We present direct far-field measurements of short-wavelength surface plasmon polaritons (SPP) by conventional optics means. Plasmonic wavelength as short as 231 nm was observed for 532 nm illumination on a Ag−Si{sub 3}N{sub 4} platform, demonstrating the capability to characterize SPPs well below the optical diffraction limit. This is done by scaling a sub-wavelength interferometric pattern to a far-field resolvable periodicity. These subwavelength patterns are obtained by coupling light into counter-propagating SPP waves to create a standing-wave pattern of half the SPP wavelength periodicity. Such patterns are mapped by a scattering slit, tilted at an angle so as to increase the periodicity of the intensity pattern along it to more than the free-space wavelength, making it resolvable by diffraction limited optics. The simplicity of the method as well as its large dynamic range of measurable wavelengths make it an optimal technique to characterize the properties of plasmonic devices and high-index dielectric waveguides, to improve their design accuracy and enhance their functionality.

  17. Alkaline solution absorption of carbon dioxide method and apparatus...

    Office of Scientific and Technical Information (OSTI)

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline ... can be calculated using a correlation of hydroxide or pH to adsorption fraction. ...

  18. Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field

    DOE Patents [OSTI]

    Takahashi, Hironori

    2004-02-10

    A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.

  19. A poloidal field measurement technique: Pitch angle measurements via injected He/sup +/ ions

    SciTech Connect (OSTI)

    Jobes, F.C.

    1989-07-01

    The poloidal field of a tokamak can be determined by observing the light emitted by He/sup +/ ions injected into the plasma by a perpendicular He/sup 0/ beam. These ions will orbit in small circles located where the neutral atom became ionized, and they will remain there for a few microseconds. During this time, some of these ions will also emit light at various spectral lines. The observed spectrum of any of these lines will have a peculiar and very wide shape, and it will be offset (Doppler shifted) with respect to the natural line location. The location and width of the spectral pattern provide independent information about the components of the poloidal field which are parallel and perpendicular to the beam velocity, and this information is local to the point where the light is emitted. For a horizontal beam, these components are b/sub x/ and b/sub y/, respectively. The difference in Doppler shift between two measurement points above one another (at the top and bottom of the beam) is directly proportional to /delta/b/sub x/, which in turn is proportional to the transform on that flux surface. Thus, this technique provides a means to measure directly local values of q(r). Simulation studies indicate that accurate measurements can be made in milliseconds. 6 refs., 8 figs.

  20. Reducing fuel consumption on the field, by continuously measuring...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation On Board Fuel Quality ...

  1. ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsARM Airborne Carbon Measurements (ARM-ACME) ARM Data Discovery Browse Data Related Campaigns ARM Airborne Carbon Measurements (ARM-ACME VI) 2015.10.01, Biraud, AAF ARM...

  2. Los Alamos Field Office Installs Additional Safety Measure to Drums

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – EM’s Los Alamos Field Office and contractor Los Alamos National Security, LLC (LANS) recently completed installation of high efficiency particulate air (HEPA) filtration systems to remediated nitrate salt (RNS) drums.

  3. ARM - Field Campaign - Measurement of Aerosols, Radiation and Clouds over

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Southern Ocean (MARCUS: Ice Nucleating Particle Measurements) Ocean (MARCUS: Ice Nucleating Particle Measurements) Related Campaigns Measurement of Aerosols, Radiation and Clouds over the Southern Oceans (MARCUS) 2017.09.01, McFarquhar, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Measurement of Aerosols, Radiation and Clouds over the Southern Ocean (MARCUS: Ice Nucleating Particle Measurements) 2017.09.01 - 2018.04.30

  4. Measuring bi-directional current through a field-effect transistor by virtue of drain-to-source voltage measurement

    DOE Patents [OSTI]

    Turner, Steven Richard

    2006-12-26

    A method and apparatus for measuring current, and particularly bi-directional current, in a field-effect transistor (FET) using drain-to-source voltage measurements. The drain-to-source voltage of the FET is measured and amplified. This signal is then compensated for variations in the temperature of the FET, which affects the impedance of the FET when it is switched on. The output is a signal representative of the direction of the flow of current through the field-effect transistor and the level of the current through the field-effect transistor. Preferably, the measurement only occurs when the FET is switched on.

  5. Electromagnetic Near Field Measurements of Two Critical Assemblies

    SciTech Connect (OSTI)

    Goettee, Jeffrey David

    2015-11-03

    The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.

  6. Rapid Field Measurement of Dissolved Inorganic Carbon Based on...

    Office of Scientific and Technical Information (OSTI)

    Dissolved inorganic carbon (DIC) is commonly measured in water and is an important parameter for understanding carbonate equilibrium, carbon cycling, and water-rock interaction. ...

  7. Hazard surveillance for workplace magnetic fields. 1: Walkaround sampling method for measuring ambient field magnitude; 2: Field characteristics from waveform measurements

    SciTech Connect (OSTI)

    Methner, M.M.; Bowman, J.D.

    1998-03-01

    Recent epidemiologic research has suggested that exposure to extremely low frequency (ELF) magnetic fields (MF) may be associated with leukemia, brain cancer, spontaneous abortions, and Alzheimer`s disease. A walkaround sampling method for measuring ambient ELF-MF levels was developed for use in conducting occupational hazard surveillance. This survey was designed to determine the range of MF levels at different industrial facilities so they could be categorized by MF levels and identified for possible subsequent personal exposure assessments. Industries were selected based on their annual electric power consumption in accordance with the hypothesis that large power consumers would have higher ambient MFs when compared with lower power consumers. Sixty-two facilities within thirteen 2-digit Standard Industrial Classifications (SIC) were selected based on their willingness to participate. A traditional industrial hygiene walkaround survey was conducted to identify MF sources, with a special emphasis on work stations.

  8. ARM - Field Campaign - Radon Measurements of Atmospheric Mixing (RAMIX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008) govCampaignsRadon Measurements of Atmospheric Mixing (RAMIX 2008) ARM Data Discovery Browse Data Related Campaigns Radon Measurements of Atmospheric Mixing (RAMIX) 2006.11.01, Fischer, SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Radon Measurements of Atmospheric Mixing (RAMIX 2008) 2008.04.01 - 2009.03.31 Lead Scientist : Marc Fischer For data sets, see below. Abstract At present, uncertainty in vertical mixing

  9. ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 submitted) in the past four years. We will continue our airborne study of atmospheric composition and carbon cycling in the SGP. The goals of this measurement program are to...

  10. ARM - Field Campaign - Semi-Continuous OCEC Particulate Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Campaign : Semi-Continuous OCEC Particulate Measurement 2013.06.01 - 2013.11.27 Lead Scientist : Robert Cary For data sets, see below. Abstract The Sunset Laboratory...

  11. Meteorological field measurements at potential and actual wind turbine sites

    SciTech Connect (OSTI)

    Renne, D.S.; Sandusky, W.F.; Hadley, D.L.

    1982-09-01

    An overview of experiences gained in a meteorological measurement program conducted at a number of locations around the United States for the purpose of site evaluation for wind energy utilization is provided. The evolution of the measurement program from its inception in 1976 to the present day is discussed. Some of the major accomplishments and areas for improvement are outlined. Some conclusions on research using data from this program are presented.

  12. NREL: Measurements and Characterization - Field Emission Auger Electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy with Scanning Auger Microscopy Field Emission Auger Electron Spectroscopy with Scanning Auger Microscopy In Auger electron spectroscopy (AES), we bombard a sample surface with a focused beam of high-energy (2- to 10-kV) electrons. The incident electrons lose energy to the sample atoms, generating Auger electrons that have discrete kinetic energies characteristic of the emitting atoms. This technique is particularly useful for determining the elemental composition of the surface

  13. Using impedance measurements for detecting pathogens trapped in an electric field

    DOE Patents [OSTI]

    Miles, Robin R.

    2004-07-20

    Impedance measurements between the electrodes in an electric field is utilized to detect the presence of pathogens trapped in the electric field. Since particles trapped in a field using the dielectiphoretic force changes the impedance between the electrodes by changing the dielectric material between the electrodes, the degree of particle trapping can be determined by measuring the impedance. This measurement is used to determine if sufficient pathogen have been collected to analyze further or potentially to identify the pathogen.

  14. Alkaline solution absorption of carbon dioxide method and apparatus

    DOE Patents [OSTI]

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  15. Idaho field experiment 1981. Volume 2: measurement data

    SciTech Connect (OSTI)

    Start, G E; Sagendorf, J F; Ackermann, G R; Cate, J H; Hukari, N F; Dickson, C R

    1984-04-01

    The 1981 Idaho Field Experiment was conducted in southeastern Idaho over the upper Snake River Plain. Nine test-day case studies were conducted between July 15 and 30, 1981. Releases of SF/sub 6/ gaseous tracer were made for 8-hour periods from 46m above ground. Tracer was sampled hourly, for 12 sequential hours, at about 100 locations within an area 24km square. Also, a single total integrated sample of about 30 hours duration was collected at approximately 100 sites within an area 48 by 72km square (using 6km spacings). Extensive tower profiles of meteorology at the release point were collected. RAWINSONDES, RABALS and PIBALS were collected at 3 to 5 sites. Horizontal, low-altitude winds were monitored using the INEL MESONET. SF/sub 6/ tracer plume releases were marked with co-located oil fog releases and bi-hourly sequential launches of tetroon pairs. Aerial LIDAR observations of the oil fog plume and airborne samples of SF/sub 6/ were collected. High altitude aerial photographs of daytime plumes were collected. Volume II lists the data in tabular form or cites the special supplemental reports by other participating contractors. While the primary user file and the data archive are maintained on 9 track/1600 cpi magnetic tapes, listings of the individual values are provided for the user who either cannot utilize the tapes or wishes to preview the data. The accuracies and quality of these data are described.

  16. Nucleotide sequences encoding a thermostable alkaline protease

    DOE Patents [OSTI]

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  17. Nucleotide sequences encoding a thermostable alkaline protease

    DOE Patents [OSTI]

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  18. A practical and theoretical definition of very small field size for radiotherapy output factor measurements

    SciTech Connect (OSTI)

    Charles, P. H. Crowe, S. B.; Langton, C. M.; Trapp, J. V.; Cranmer-Sargison, G.; Thwaites, D. I.; Kairn, T.; Knight, R. T.; Kenny, J.

    2014-04-15

    Purpose: This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods: A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. Results: According to the practical definition established in this project, field sizes ?15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ?12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ?12 mm. Source occlusion also caused a large change in OPF for field sizes ?8 mm. Based on the results of this study, field sizes ?12 mm were considered to be theoretically very small for 6 MV beams

  19. Technical Note: Response measurement for select radiation detectors in magnetic fields

    SciTech Connect (OSTI)

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear acceleratormagnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  20. Development of alkaline fuel cells.

    SciTech Connect (OSTI)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  1. EMF Rapid Program Engineering Projects, Project 1, Development of Recommendations for Guidelines for Field Source Measurement

    SciTech Connect (OSTI)

    Electric Research and Management, Inc.

    1997-03-11

    The goal of this project is to develop a protocol for measuring the electric and magnetic fields around sources. Data from these measurements may help direct future biological effects research by better defining the complexity of magnetic and electric fields to which humanity is exposed, as well asprovide the basis for rigorous field exposure analysis and risk assessment once the relationship between field exposure and biological response. is better understood. The data base also should have sufficient spatial and temporal characteristics to guide electric and magnetic field management. The goal of Task A is to construct a set of characteristics that would be ideal to have for guiding and interpreting biological studies and for focusing any future effort at field management. This ideal set will then be quantified and reduced according to the availability (or possible development of) instrumentation to measure the desired characteristics. Factors that also will be used to define pragmatic data sets will be the cost of collecting the data, the cost of developing an adequate data base, and the needed precision in measuring specific characteristics. A field, electric or magnetic, will always be ,some function of time and space. The first step in this section of the protocol development will be to determine what span of time and what portion of space are required to quantify the electric and magnetic fields around sources such as appliances and electrical apparatus. Constraints on time will be set by examining measurement limitations and biological data requirements.

  2. Effect of magnetic fields on the Kondo insulator CeRhSb: Magnetoresistance and high-field heat capacity measurements

    SciTech Connect (OSTI)

    Malik, S.K.; Menon, L.; Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1997-05-01

    The compound CeRhSb is a mixed valent Ce-based compound which shows a gap in the electronic density of states at low temperatures. The gap manifests by a rise in electrical resistivity{emdash}below about 8 K from which the gap energy is estimated to be about 4 K. We have carried out heat capacity measurements on this compound in various applied fields up to 9.85 T. The magnetic contribution to the heat capacity, {Delta}C, is found to have a maximum in {Delta}C/T vs T at 10 K, below which {Delta}C/T is linear with T. This is attributed to the fact that below this temperature, in the gapped state, the electronic density of states decreases linearly with decreasing temperature. On application of a magnetic field, the electronic specific heat coefficient {gamma} in the gapped state increases by {approximately}4mJ/molK{sup 2}. The maximum in {Delta}C/T vs T is observed in all fields, which shifts to lower temperatures {approximately}1K at 5.32 T and raises again at 9.85 T to about the same values as at H=0T. This suggests that the gap exists for all fields up to 9.85 T. Above 10 K, in the mixed-valent state, {Delta}C/T vs T decreases with increasing temperature in zero field. There is hardly any effect of application of field in the mixed-valent state. We have also carried out magnetoresistance measurements on CeRhSb up to fields of 5.5 T at 2, 4.5, 10, 20, and 30 K. The magnetoresistance in CeRhSb is positive at temperatures of 4.5 K and above, in applied fields up to 5.5 T. At 5.5 T, the magnetoresistance is maximum at 4.5 K (6{percent}) and decreases with increasing temperature. The observation of the maximum is consistent with the observation of a maximum in {Delta}C/T vs T and is due to a change in the density of states. At a temperature of 2 K, a negative magnetoresistance is observed for magnetic fields greater than {approximately}3.5T which suggests reduction in the gap. {copyright} {ital 1997} {ital The American Physical Society}

  3. Electric field measurement in microwave discharge ion thruster with electro-optic probe

    SciTech Connect (OSTI)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Koizumi, Hiroyuki; Togo, Hiroyoshi; Kuninaka, Hitoshi

    2012-12-15

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  4. Hanle effect as candidate for measuring magnetic fields in laboratory plasmas

    SciTech Connect (OSTI)

    Presura, R.

    2012-10-15

    Weak or turbulent magnetic fields are generally difficult to measure in laboratory plasmas. A new technique to address this problem may be based on the Hanle effect, used for magnetic field measurements in solar and stellar atmospheres. The effect consists in the modification of the polarization state of the resonance-line scattered radiation. It applies for magnetic field strengths for which the shift of magnetic sublevels remains comparable to the natural width of the sublevels. Experimental configurations and parameter ranges of applicability of a Hanle effect-based diagnostics technique are discussed.

  5. Instantaneous spatially local projective measurements are consistent in a relativistic quantum field

    SciTech Connect (OSTI)

    Lin, Shih-Yuin

    2012-12-15

    Suppose the postulate of measurement in quantum mechanics can be extended to quantum field theory; then a local projective measurement at some moment on an object locally coupled with a relativistic quantum field will result in a projection or collapse of the wavefunctional of the combined system defined on the whole time-slice associated with the very moment of the measurement, if the relevant degrees of freedom have nonzero correlations. This implies that the wavefunctionals in the same Hamiltonian system but defined in different reference frames would collapse on different time-slices passing through the same local event where the measurement was done. Are these post-measurement states consistent with each other? We illustrate that the quantum states of the Raine-Sciama-Grove detector-field system started with the same initial Gaussian state defined on the same initial time-slice, then collapsed by the measurements on the pointlike detectors on different time-slices in different frames, will evolve to the same state of the combined system up to a coordinate transformation when compared on the same final time-slice. Such consistency is guaranteed by the spatial locality of interactions and the general covariance in a relativistic system, together with the spatial locality of measurements and the linearity of quantum dynamics in its quantum theory. - Highlights: Black-Right-Pointing-Pointer Spatially local quantum measurements in detector-field models are studied. Black-Right-Pointing-Pointer Local quantum measurement collapses the wavefunctional on the whole time-slice. Black-Right-Pointing-Pointer In different frames wavefunctionals of a field would collapse on different time-slices. Black-Right-Pointing-Pointer States collapsed by the same measurement will be consistent on the same final slice.

  6. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  7. Method of determining pH by the alkaline absorption of carbon dioxide

    DOE Patents [OSTI]

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  8. Alkaline and alkaline earth metal phosphate halides and phosphors

    SciTech Connect (OSTI)

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  9. Field calibration facilities for environmental measurement of radium, thorium, and potassium. Second edition

    SciTech Connect (OSTI)

    Steele, W.D.; George, D.C.

    1986-08-01

    A key component of Technical Measurements Center support is the development, identification, standardization, and maintenance of calibration facilities for environmental radioelement measurements. This report describes calibration facilities located at Grand Junction, Colorado, and at six secondary sites. These facilities are available to contractors for the calibration of radiometric field instrumentation for in-situ measurements of radium, thorium, and potassium. All of the calibration facilities described herein were constructed by the Department of Energy and its predecessor agencies for use in annual uranium-reserve determinations. The use of these facilities for the calibration of radiometric field instruments used in remedial action is made possible by the commonality of the radiometric measurement technique for uranium and for radium. The use of these facilities will standardize remedial action measurements in a cost-effective manner.

  10. Measurements of field decay and snapback effect on Tevatron dipole and quadrupole magnets

    SciTech Connect (OSTI)

    Velev, G.V.; Ambrosio, G.; Annala, G.; Bauer, P.; Carcagno, R.; DiMarco, J.; Glass, H.; Hanft, R.; Kephart, R.; Lamm, M.; Martens, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2005-05-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility (MTF) to understand dynamic effects in Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field ''snapback'' during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 6s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.

  11. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  12. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:www.nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  13. High Field Magnetization measurements of uranium dioxide single crystals (P08358- E003-PF)

    SciTech Connect (OSTI)

    Gofryk, K.; Harrison, N.; Jaime, M.

    2014-12-01

    Our preliminary high field magnetic measurements of UO2 are consistent with a complex nature of the magnetic ordering in this material, compatible with the previously proposed non-collinear 3-k magnetic structure. Further extensive magnetic studies on well-oriented (<100 > and <111>) UO2 crystals are planned to address the puzzling behavior of UO2 in both antiferromagnetic and paramagnetic states at high fields.

  14. AC field measurements of Fermilab Booster correctors using a rotating coil system

    SciTech Connect (OSTI)

    Velev, G.V.; DiMarco, J.; Harding, D.J.; Kashikhin, V.; Lamm, M.; Makulski, A.; Orris, D.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2006-07-01

    The first prototype of a new corrector package for the Fermilab Booster Synchrotron is presently in production. This water-cooled package includes normal and skew dipole, quadrupole and sextupole elements to control orbit, tune and chromaticity of the beam over the full range of Booster energies (0.4-8 GeV). These correctors operate at the 15 Hz excitation cycle of the main synchrotron magnets, but must also make more rapid excursions, in some cases even switching polarity in approximately 1 ms at transition crossing. To measure the dynamic field changes during operation, a new method based on a relatively slow rotating coil system is proposed. The method pieces together the measured voltages from successive current cycles to reconstruct the field harmonics. This paper describes the method and presents initial field quality measurements from a Tevatron corrector.

  15. Separatrix radius measurement of field-reversed configuration plasma in FRX-L

    SciTech Connect (OSTI)

    Zhang, S.Y.; Tejero, E.M.; Taccetti, J.M.; Wurden, G.A.; Intrator, T.P.; Waganaar, W.J.; Perkins, R.

    2004-10-01

    Magnetic pickup coils and single turn flux loops are installed on the FRX-L device. The combination of the two measurements provides the excluded flux radius that approximates the separatrix radius of the field-reversed configuration (FRC) plasma. Arrays of similar probes are used to map out local magnetic field dynamics beyond both ends of the theta-coil confinement region to help understand the effects of cusp locations on flux trapping during the FRC formation process. Details on the probe design and system calibrations are presented. The overall system calibration of excluded flux radius measurement is examined by replacing FRC plasma with a known radius aluminum conductor cylinder.

  16. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  17. Measurement of pulsed-power-driven magnetic fields via proton deflectometry

    SciTech Connect (OSTI)

    Mariscal, D.; McGuffey, C.; Valenzuela, J.; Beg, F. N.; Wei, M. S.; Chittenden, J. P.; Niasse, N.; Presura, R.; Haque, S.; Wallace, M.; Arias, A.; Covington, A.; Sawada, H.; Wiewior, P.

    2014-12-01

    Measuring magnetic field and current distribution in Z-pinch plasma systems is crucial to the validation of Z-pinch theory. In this letter, the demonstration of proton deflectometry to pulsed-power-driven loads at the mega-amp scale is presented, which is capable of making more detailed field maps in high-density regions of plasmas. In this method, a laser-driven, broad-spectrum, MeV-energy proton beam is directed through a pulsed-power-driven plasma system, and the resulting deflections are measured to examine configuration of magnetic fields and to infer the currents that support them. The technique was first demonstrated on simple short-circuit loads, and the results are in excellent agreement with numerical simulations providing reliable estimates of the field and current configurations. It was then applied to a more complex—radial foil—plasma load. The measurements show unexpected proton deflections that exhibit the complexity of the plasma load and that with further analysis will reveal details about the current and magnetic field topology in this complex configuration.

  18. Recommendations for Guidelines for Environment-Specific Magnetic-Field Measurements, Rapid Program Engineering Project #2

    SciTech Connect (OSTI)

    Electric Research and Management, Inc.; IIT Research Institute; Magnetic Measurements; Survey Research Center, University of California; T. Dan Bracken, Inc.

    1997-03-11

    The purpose of this project was to document widely applicable methods for characterizing the magnetic fields in a given environment, recognizing the many sources co-existing within that space. The guidelines are designed to allow the reader to follow an efficient process to (1) plan the goals and requirements of a magnetic-field study, (2) develop a study structure and protocol, and (3) document and carry out the plan. These guidelines take the reader first through the process of developing a basic study strategy, then through planning and performing the data collection. Last, the critical factors of data management, analysis reporting, and quality assurance are discussed. The guidelines are structured to allow the researcher to develop a protocol that responds to specific site and project needs. The Research and Public Information Dissemination Program (RAPID) is based on exposure to magnetic fields and the potential health effects. Therefore, the most important focus for these magnetic-field measurement guidelines is relevance to exposure. The assumed objective of an environment-specific measurement is to characterize the environment (given a set of occupants and magnetic-field sources) so that information about the exposure of the occupants may be inferred. Ideally, the researcher seeks to obtain complete or "perfect" information about these magnetic fields, so that personal exposure might also be modeled perfectly. However, complete data collection is not feasible. In fact, it has been made more difficult as the research field has moved to expand the list of field parameters measured, increasing the cost and complexity of performing a measurement and analyzing the data. The guidelines address this issue by guiding the user to design a measurement protocol that will gather the most exposure-relevant information based on the locations of people in relation to the sources. We suggest that the "microenvironment" become the base unit of area in a study, with

  19. Test Results of the AC Field Measurements of Fermilab Booster Corrector Magnets

    SciTech Connect (OSTI)

    DiMarco, E.Joseph; Harding, D.J.; Kashikhin, V.S.; Kotelnikov, S.K.; Lamm, M.J.; Makulski, A.; Nehring, R.; Orris, D.F.; Schlabach, P.; Sylvester, C.; Tartaglia, Michael Albert; /Fermilab

    2008-06-25

    Multi-element corrector magnets are being produced at Fermilab that enable correction of orbits and tunes through the entire cycle of the Booster, not just at injection. The corrector package includes six different corrector elements--normal and skew orientations of dipole, quadrupole, and sextupole--each independently powered. The magnets have been tested during typical AC ramping cycles at 15Hz using a fixed coil system to measure the dynamic field strength and field quality. The fixed coil is comprised of an array of inductive pick-up coils around the perimeter of a cylinder which are sampled simultaneously at 100 kHz with 24-bit ADC's. The performance of the measurement system and a summary of the field results are presented and discussed.

  20. Influence of alkaline co-contaminants on technetium mobility...

    Office of Scientific and Technical Information (OSTI)

    Influence of alkaline co-contaminants on technetium mobility in vadose zone sediments Citation Details In-Document Search Title: Influence of alkaline co-contaminants on technetium ...

  1. Magnetite solubility and phase stability in alkaline media at...

    Office of Scientific and Technical Information (OSTI)

    stability in alkaline media at elevated temperatures Citation Details In-Document Search Title: Magnetite solubility and phase stability in alkaline media at elevated ...

  2. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  3. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  4. Process for extracting technetium from alkaline solutions

    DOE Patents [OSTI]

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  5. Measurement of rapidly varying electric fields through parity oscillations in the Rydberg states of hydrogenic atoms

    SciTech Connect (OSTI)

    Shafer-Ray, N.E.; Zare, R.N.

    1996-12-01

    Oscillations are shown to exist in the inversion symmetry of the electronic wave function of a hydrogenic atom coherently excited to a Rydberg state by a short pulse of laser radiation in a uniform electric field. The dependence of these oscillations on field strength is shown to scale as {ital n}{sup 2} where {ital n} is the principal quantum number. The possibility of using these oscillations to measure electric signals on picosecond timescales (terahertz frequencies) is suggested. {copyright} {ital 1996 American Institute of Physics.}

  6. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect (OSTI)

    Lynn, Alan G. Gilmore, Mark

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10{sup 4} T (100 Megagauss) over small volumes (∼10{sup −10}m{sup 3}) at high plasma densities (∼10{sup 28}m{sup −3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  7. Field measurements to support IAEA procedures development for fuel assembly and fuel rod active length verification

    SciTech Connect (OSTI)

    Belew, W.L.; Cooley, J.N.; Whitaker, J.M.

    1992-07-17

    The activities performed in verification of reactor fuel rods and assemblies by International Atomic Energy Agency (IAEA) safeguards inspectors include measurements of the length of the enriched uranium sections in fuel assemblies and fuel rods. These measurements are normally made with the IAEA hand-held gamma monitor (HM-4) on fuel elements containing only enriched uranium. Many fuel rods currently in use contain natural uranium end sections and several different [sup 235]U enrichment zones. To support development of standard procedures for IAEA nondestructive assay (NDA) measurements, a field measurement campaign was carried out to evaluate the FM-4 measurements and to investigate the feasibility of extending the HM-4 measurements to fuel rods and assemblies containing both natural and enriched uranium sections. The results show that the enriched fuel length can be measured to within [plus minus] 1 to 2 cm in the presence of natural uranium sections and to within [plus minus] 0.5 = when only enriched uranium is present. Based on the results from these measurements, a standard procedure, Measurement of Active Fuel Length in Fuel Assemblies and Fuel Rods Using the HM-4,'' has been drafted for review by the IAEA.

  8. Field measurements to support IAEA procedures development for fuel assembly and fuel rod active length verification

    SciTech Connect (OSTI)

    Belew, W.L.; Cooley, J.N.; Whitaker, J.M.

    1992-07-17

    The activities performed in verification of reactor fuel rods and assemblies by International Atomic Energy Agency (IAEA) safeguards inspectors include measurements of the length of the enriched uranium sections in fuel assemblies and fuel rods. These measurements are normally made with the IAEA hand-held gamma monitor (HM-4) on fuel elements containing only enriched uranium. Many fuel rods currently in use contain natural uranium end sections and several different {sup 235}U enrichment zones. To support development of standard procedures for IAEA nondestructive assay (NDA) measurements, a field measurement campaign was carried out to evaluate the FM-4 measurements and to investigate the feasibility of extending the HM-4 measurements to fuel rods and assemblies containing both natural and enriched uranium sections. The results show that the enriched fuel length can be measured to within {plus_minus} 1 to 2 cm in the presence of natural uranium sections and to within {plus_minus} 0.5 = when only enriched uranium is present. Based on the results from these measurements, a standard procedure, ``Measurement of Active Fuel Length in Fuel Assemblies and Fuel Rods Using the HM-4,`` has been drafted for review by the IAEA.

  9. Summary of Field Measurement on UF6 Cylinders Using Electro-Mechanically Cooled Systems

    SciTech Connect (OSTI)

    McGinnis, Brent R; Smith, Steven E; Solodov, Alexander A; Whitaker, J Michael; Morgan, James B; MayerII, Richard L.; Montgomery, J. Brent

    2009-01-01

    Measurement of the enrichment of solid state UF6 stored within large metal cylinders is a task commonly performed by plant operators and inspectors. The measurement technologies typically used range from low-resolution, high-efficiency sodium iodide detectors to high-resolution, moderate-efficiency high-purity germanium (HPGe) detectors. The technology used and methods deployed are dependent upon the material being measured, environmental conditions, time constraints, and measurement-precision requirements. Operators and inspectors typically use specially designed, HPGe detectors that are cooled with liquid nitrogen in situations where high-resolution measurements are required. However, the requirement for periodically refilling the system with liquid nitrogen makes remote usage cumbersome and slow. The task of cooling the detector reduces the available time for the inspector to perform other safeguards activities while on site. If the inspector has to reduce the count time for each selected cylinder to ensure that all preselected cylinders are measured during the inspection, the resulting measurement uncertainties may be increased, making it more difficult to detect and verify potential discrepancies in the operator's declarations. However, recent advances in electromechanically cooled HPGe detectors may provide the inspector with an improved verification tool by eliminating the need for liquid nitrogen. This report provides a summary of test results for field measurements performed using electromechanically cooled HPGe detectors on depleted, natural, and low-enriched uranium cylinders. The results of the study provide valuable information to inspectors and operators regarding the capabilities and limitations of electromechanically cooled systems based on true field-measurement conditions.

  10. Steel characteristics measurement system using Barkhausen jump sum rate and magnetic field intensity and method of using same

    DOE Patents [OSTI]

    Kohn, Gabriel; Hicho, George; Swartzendruber, Lydon

    1997-01-01

    A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment.

  11. Steel characteristics measurement system using Barkhausen jump sum rate and magnetic field intensity and method of using same

    DOE Patents [OSTI]

    Kohn, G.; Hicho, G.; Swartzendruber, L.

    1997-04-08

    A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment. 7 figs.

  12. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested

  13. 2011 Alkaline Membrane Fuel Cell Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report and presentations from a workshop on alkaline membrane fuel cells (AMFCs) held May 8–9, 2011, before the 2011 Hydrogen and Fuel Cells Annual Merit Review, at Crystal Gateway Marriott in Arlington, Virginia.

  14. Measurements of the Ion Species of Cathodic Arc Plasma in an Axial Magnetic Field

    SciTech Connect (OSTI)

    Oks, Efim; Anders, Andre

    2010-10-19

    Metal and gas ion species and their charge state distributions were measured for pulsed copper cathodic arcs in argon background gas in the presence of an axial magnetic field. It was found that changing the cathode position relative to anode and ion extraction system as well as increasing the gas pressure did not much affect the arc burning voltage and the related power dissipation. However, the burning voltage and power dissipation greatly increased as the magnetic field strength was increased. The fraction of metal ions and the mean ion charge state were reduced as the discharge length was increased. The observations can be explained by the combination of charge exchange collisions and electron impact ionization. They confirm that previously published data on characteristic material-dependent charge state distributions (e.g., Anders and Yushkov, J. Appl. Phys., Vol. 91, pp. 4824-4832, 2002) are not universal but valid for high vacuum conditions and the specifics of the applied magnetic fields.

  15. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties

    SciTech Connect (OSTI)

    Imaki, Masaharu; Kobayashi, Takao

    2005-10-01

    An ultraviolet incoherent Doppler lidar that incorporates the high-spectral-resolution (HSR) technique has been developed for measuring the wind field and aerosol optical properties in the troposphere. An injection seeded and tripled Nd:YAG laser at an ultraviolet wavelength of 355 nm was used in the lidar system. The HRS technique can resolve the aerosol Mie backscatter and the molecular Rayleigh backscatter to derive the signal components. By detecting the Mie backscatter, a great increase in the Doppler filter sensitivity was realized compared to the conventional incoherent Doppler lidars that detected the Rayleigh backscatter. The wind velocity distribution in a two-dimensional cross section was measured. By using the HSR technique, multifunction and absolute value measurements were realized for aerosol extinction, and volume backscatter coefficients; the laser beam transmittance, the lidar ratio, and the backscatter ratio are derived from these measurements.

  16. ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM-ACME V)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    V) Campaign Links Science Plan Images Field Campaign Report ARM Data Discovery Browse Data Related Campaigns ARM Airborne Carbon Measurements (ARM-ACME) 2008.10.01, Biraud, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Airborne Carbon Measurements (ARM-ACME V) 2015.06.01 - 2015.09.15 Lead Scientist : Sebastien Biraud For data sets, see below. Abstract The ARM Aerial Facility Gulfstream-159 will alternate between four flights

  17. 2016 Alkaline Membrane Fuel Cell Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheraton Grand Phoenix, 340 N. 3 rd St, Phoenix, AZ 85004 Rooms: Estrella (Main), Ahwatukee A and B (Breakouts) Organized by National Renewable Energy Laboratory and Los Alamos National Laboratory Sponsored by U.S. Department of Energy Fuel Cell Technologies Office OBJECTIVE: The Alkaline Membrane Fuel Cell Workshop will share information and identify the current status and the research and development needs for Alkaline Membrane Fuel Cell (AMFC) technology. The goals, building on prior workshop

  18. Alkaline tolerant dextranase from streptomyces anulatus

    DOE Patents [OSTI]

    Decker, Stephen R. (Berthoud, CO); Adney, William S. (Golden, CO); Vinzant, Todd B. (Golden, CO); Himmel, Michael E. (Littleton, CO)

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  19. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic fluctuation-induced particle flux "invited... a... W. X. Ding, D. L. Brower, and T. Y. Yates Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA ͑Presented 13 May 2008; received 12 May 2008; accepted 16 May 2008; published online 31 October 2008͒ Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial

  20. Final Report for ARM Project Measuring 4-D Water Vapor Fields with GPS

    SciTech Connect (OSTI)

    Braun, John

    2006-02-06

    Water vapor is a primary element in the Earth’s climate system. Atmospheric water vapor is central to cloud processes, radiation transfer, and the hydrological cycle. Using funding from Department of Energy (DOE) grant DE-FG03-02ER63327, the University Corporation for Atmospheric Research (UCAR) developed new observational techniques to measure atmospheric water vapor and applied these techniques to measure four dimensional water vapor fields throughout the United States Southern Great Plains region. This report summarizes the development of a new observation from ground based Global Positioning System (GPS) stations called Slant Water Vapor (SW) and it’s utilization in retrieving four dimensional water vapor fields. The SW observation represents the integrated amount of water vapor between a GPS station and a transmitting satellite. SW observations provide improved temporal and spatial sampling of the atmosphere when compared to column-integrated quantities such as preciptitable water vapor (PW). Under funding from the DOE Atmospheric Radiation Measurement (ARM) program, GPS networks in the Southern Great Plains (SGP) region were deployed to retrieve SW to improve the characterization of water vapor throughout the region. These observations were used to estimate four dimensional water vapor fields using tomographic approaches and through assimilation into the MM5 numerical weather model.

  1. MAGNETIC FIELD STRUCTURE OF THE LARGE MAGELLANIC CLOUD FROM FARADAY ROTATION MEASURES OF DIFFUSE POLARIZED EMISSION

    SciTech Connect (OSTI)

    Mao, S. A.; McClure-Griffiths, N. M.; McConnell, D.; Gaensler, B. M.; Haverkorn, M.; Beck, R.; Wolleben, M.; Stanimirovic, S.; Dickey, J. M.; Staveley-Smith, L.

    2012-11-01

    We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large-scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction toward the Small Magellanic Cloud (SMC). We suggest that tidal interactions between the SMC and the LMC in the past 10{sup 9} years are likely to have shaped the magnetic field in these filaments.

  2. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  3. Turbine-scale wind field measurements using dual-Doppler lidar

    SciTech Connect (OSTI)

    Newsom, Rob K.; Berg, Larry K.; Shaw, William J.; Fischer, Marc

    2015-02-01

    Spatially resolved measurements of micro-scale winds are retrieved using scanning dual-Doppler lidar, and validated against independent in situ wind measurements. Data for this study were obtained during a month-long field campaign conducted at a site in north-central Oklahoma in November of 2010. Observational platforms include one heavily instrumented 60-m meteorological tower and two scanning coherent Doppler lidars. The lidars were configured to perform coordinated dual-Doppler scans surrounding the 60-m tower, and the resulting radial velocity observations were processed to retrieve the 3-component velocity vector field on surfaces defined by the intersecting scan planes. Raw radial velocity measurements from the lidars were calibrated by direct comparison to a sonic anemometer located at the 60 m level on the tower. Wind retrievals were performed using both calibrated and uncalibrated measurements, and validated against the 60-m sonic anemometer observations. Retrievals using uncalibrated radial velocity data show a significant slow bias in the wind speed of about 14%; whereas the retrievals using the calibrated data show a much smaller slow bias of 1.2%. Retrievals using either the calibrated or uncalibrated data exhibit negligible bias in the wind direction (<0.2o), and excellent correlation in the wind speeds (>0.96).

  4. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    SciTech Connect (OSTI)

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.

  5. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  6. 2006 Alkaline Membrane Fuel Cell Workshop Final Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 06 Alkaline Membrane Fuel Cell Workshop Final Report 2006 Alkaline Membrane Fuel Cell Workshop Final Report Workshop report from the Alkaline Membrane Fuel Cell Workshop held December 11-13, 2006, in Phoenix, Arizona. This report highlights specific aspects of the workshop and reports on general consensus (and dissent) of the joint session. The findings and key recommendations of individual breakout groups from the Alkaline Membrane Fuel Cell Workshop are also reported. 2006 Alkaline

  7. 2011 Alkaline Membrane Fuel Cell Workshop Final Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alkaline Membrane Fuel Cell Workshop Final Report 2011 Alkaline Membrane Fuel Cell Workshop Final Report Report from the Alkaline Membrane Fuel Cell Workshop held May 8-9, 2011, in Arlington, Virginia. The body of the report focuses on the discussion that occurred within breakout sessions. The Executive Summary presents a few select highlights from each session. 2011 Alkaline Membrane Fuel Cell Workshop Final Report (629.13 KB) More Documents & Publications 2011 Alkaline Membrane

  8. A highly stable DC power supply for precision magnetic field measurements and other purposes

    SciTech Connect (OSTI)

    Ino, Takashi

    2012-04-15

    A homogeneous magnetic field is essential for the {sup 3}He neutron spin filter used to polarize neutron beams and analyze neutron spins in neutron scattering. The required spatial uniformity of the magnetic field is on the order of 10{sup -4}/cm or less. To measure such uniformity, one needs a DC current source with a current stability much better than 10{sup -4}. However, laboratory DC power supplies, which are commonly used in many {sup 3}He neutron spin filters, do not have such stabilities. To attain a highly stable current with a common laboratory DC power supply for every {sup 3}He neutron spin filter, a simple feedback circuit has been developed to keep the output current stable up to 10{sup -6}. Such a highly stable current or voltage from a common laboratory DC power supply can also be used for various other research applications.

  9. Multi-channel Doppler backscattering measurements in the C-2 field reversed configuration

    SciTech Connect (OSTI)

    Schmitz, L. Peebles, W. A.; Ruskov, E.; Deng, B. H.; Gota, H.; Gupta, D.; Tuszewski, M.; Douglass, J.; Binderbauer, M.; Tajima, T.

    2014-11-15

    A versatile heterodyne Doppler Backscattering (DBS) system is used to measure density fluctuation levels (in the wavenumber range kρ{sub s} ≤ 50), and the toroidal E × B flow velocity in the C-2 Field-Reversed Configuration (FRC). Six tunable frequencies in three waveguide bands (26 GHz ≤ f ≤ 90 GHz) are launched using monostatic beam optics, via a quasi-optical beam combiner/polarizer and an adjustable parabolic focusing mirror (inside the vacuum enclosure) achieving Gaussian beam spot sizes of 3–5.5 cm at the X/O-mode cutoff. The DBS system covers plasma densities of 0.8 × 10{sup 13} ≤ n{sub e} ≤ 1 × 10{sup 14} cm{sup −3}, and provides access to the FRC core (up to the field null) and across the FRC separatrix into the scrape-off layer plasma.

  10. Measuring linac photon beam energy through EPID image analysis of physically wedged fields

    SciTech Connect (OSTI)

    Dawoud, S. M. Weston, S. J.; Bond, I.; Ward, G. C.; Rixham, P. A.; Mason, J.; Huckle, A.; Sykes, J. R.

    2014-02-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful tools for measuring several parameters of interest in linac quality assurance (QA). However, a method for measuring linac photon beam energy using EPIDs has not previously been reported. In this report, such a method is devised and tested, based on fitting a second order polynomial to the profiles of physically wedged beams, where the metric of interest is the second order coefficientα. The relationship between α and the beam quality index [percentage depth dose at 10 cm depth (PDD{sub 10})] is examined to produce a suitable calibration curve between these two parameters. Methods: Measurements were taken in a water-tank for beams with a range of energies representative of the local QA tolerances about the nominal value 6 MV. In each case, the beam quality was found in terms of PDD{sub 10} for 100 × 100 mm{sup 2} square fields. EPID images of 200 × 200 mm{sup 2} wedged fields were then taken for each beam and the wedge profile was fitted in MATLAB 2010b (The MathWorks, Inc., Natick, MA). α was then plotted against PDD{sub 10} and fitted with a linear relation to produce the calibration curve. The uncertainty in α was evaluated by taking five repeat EPID images of the wedged field for a beam of 6 MV nominal energy. The consistency of measuring α was found by taking repeat measurements on a single linac over a three month period. The method was also tested at 10 MV by repeating the water-tank crosscalibration for a range of energies centered approximately about a 10 MV nominal value. Finally, the calibration curve from the test linac and that from a separate clinical machine were compared to test consistency of the method across machines in a matched fleet. Results: The relationship betweenα and PDD{sub 10} was found to be strongly linear (R{sup 2} = 0.979) while the uncertainty in α was found to be negligible compared to that associated with measuring PDD{sub 10} in the water-tank (

  11. A configurable component-based software system for magnetic field measurements

    SciTech Connect (OSTI)

    Nogiec, J.M.; DiMarco, J.; Kotelnikov, S.; Trombly-Freytag, K.; Walbridge, D.; Tartaglia, M.; /Fermilab

    2005-09-01

    A new software system to test accelerator magnets has been developed at Fermilab. The magnetic measurement technique involved employs a single stretched wire to measure alignment parameters and magnetic field strength. The software for the system is built on top of a flexible component-based framework, which allows for easy reconfiguration and runtime modification. Various user interface, data acquisition, analysis, and data persistence components can be configured to form different measurement systems that are tailored to specific requirements (e.g., involving magnet type or test stand). The system can also be configured with various measurement sequences or tests, each of them controlled by a dedicated script. It is capable of working interactively as well as executing a preselected sequence of tests. Each test can be parameterized to fit the specific magnet type or test stand requirements. The system has been designed with portability in mind and is capable of working on various platforms, such as Linux, Solaris, and Windows. It can be configured to use a local data acquisition subsystem or a remote data acquisition computer, such as a VME processor running VxWorks. All hardware-oriented components have been developed with a simulation option that allows for running and testing measurements in the absence of data acquisition hardware.

  12. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  13. Measurement of the three-dimensional tip region flow field in an axial compressor

    SciTech Connect (OSTI)

    Stauter, R.C. )

    1993-07-01

    A two-color, five-beam LDV system has been configured to make simultaneous three-component velocity measurements of the flow field in a two-stage axial compressor model. The system has been used to make time-resolved measurements both between compressor blade rows and within the rotating blade passages in an axial compressor. The data show the nature and behavior of the complex, three-dimensional flow phenomena present in the tip region of a compressor as the convect downstream. In particular, the nature of the tip leakage vortex is apparent, being manifested by high blockage as well as the expected vortical motion. The data indicate that the radial flows associated with the tip leakage vortex begin to decrease while within the rotor passage, and that they temporarily increase aft of the passage.

  14. Field measurement of the interactions between heat pumps and attic duct systems in residential buildings

    SciTech Connect (OSTI)

    Modera, M.P.; Jump, D.A.

    1994-11-01

    Research efforts to improve residential heat-pump performance have tended to focus on laboratory and theoretical studies of the machine itself, with some limited field research having been focused on in-situ performance and installation issues. One issue that has received surprisingly little attention is the interaction between the heat pump and the duct system to which it is connected. This paper presents the results of a field study that addresses this interaction. Field performance measurements before and after sealing and insulating the duct systems were made on three heat pumps. From the pre-retrofit data it was found that reductions in heat-pump capacity due to low outdoor temperatures and/or coil frosting are accompanied by lower duct-system energy delivery efficiencies. The conduction loss reductions, and thus the delivery temperature improvements, due to adding duct insulation were found to vary widely depending on the length of the particular duct section, the thermal mass of that duct section, and the cycling characteristics of the heat-pump. In addition, it was found that the use of strip-heat back-up decreased after the retrofits, and that heat-pump cycling increased dramatically after the retrofits, which respectively increase and decrease savings due to the retrofits. Finally, normalized energy use for the three systems which were operated consistently pre- and post-retrofit showed an average reduction of 19% after retrofit, which corresponds to a chance in overall distribution-system efficiency of 24%.

  15. Dynamic density field measurements of an explosively driven ????? phase transition in iron

    SciTech Connect (OSTI)

    Hull, L. M.; Gray, G. T.; Warthen, B. J.

    2014-07-28

    We provide a unique set of observations of the behavior of the ??? phase transition under a complex axially symmetric loading path created by sweeping a detonation wave along the end surface of a cylindrical sample. The primary data sets are the measured mass density distributions acquired at 5 independent times during the sweep of the detonation along the surface. Shocked regions and boundaries are measured, as well as regions and boundaries of elevated density (presumed to be the ??phase iron). The formation and dynamics of these regions were captured and are available for comparisons to material descriptions. We also applied 16 Photon Doppler Velocimetry probes to capture the free surface velocity along a discrete set of radially distributed points in order to compare and correlate the density measurements with previous shock wave studies. The velocimetry data are in nearly exact agreement with previous shock wave studies of the ??? phase transition, the density distributions, while generally in agreement with expectations evolved from the shock wave studies, show that the epsilon phase is generated in regions of high shear stress but at hydrostatic stresses below the typically quoted 13?GPa value. The density field measurements are particularly useful for observing the effects of the forward and reverse transformation kinetics, as well as the reverse transformation hysteresis.

  16. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOE Patents [OSTI]

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  17. Method of determining pH by the alkaline absorption of carbon dioxide

    DOE Patents [OSTI]

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  18. Pipelines subject to slow landslide movements: Structural modeling vs field measurement

    SciTech Connect (OSTI)

    Bruschi, R.; Glavina, S.; Spinazze, M.; Tomassini, D.; Bonanni, S.; Cuscuna, S.

    1996-12-01

    In recent years finite element techniques have been increasingly used to investigate the behavior of buried pipelines subject to soil movements. The use of these tools provides a rational basis for the definition of minimum wall thickness requirements in landslide crossings. Furthermore the design of mitigation measures or monitoring systems which control the development of undesirable strains in the pipe wall over time, requires a detailed structural modeling. The scope of this paper is to discuss the use of dedicated structural modeling with relevant calibration to field measurements. The strain measurements used were regularly gathered from pipe sections, in two different sites over a period of time long enough to record changes of axial strain due to soil movement. Detailed structural modeling of pipeline layout in both sites and for operating conditions, is applied. Numerical simulations show the influence of the distribution of soil movement acting on the pipeline with regards to the state of strain which can be developed in certain locations. The role of soil nature and direction of relative movements in the definition of loads transferred to the pipeline, is also discussed.

  19. Negative Electrode For An Alkaline Cell

    DOE Patents [OSTI]

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  20. Tomographic imaging system for measuring impurity line emission in a field-reversed configuration

    SciTech Connect (OSTI)

    Roche, T.; Heidbrink, W. W.; McWilliams, R.; Bolte, N.; Garate, E.; Wessel, F.

    2012-10-15

    A 16 chord optical tomography system has been developed and implemented in the flux coil generated-field reversed configuration (FRC). The chords are arranged in two fans of eight, which cover {approx}35% of the vessel area at the midplane. Each illuminate separate photomultiplier tubes (PMTs) which are fitted with narrow band-pass filters. In this case, filters are centered at 434.8 nm to measure emission from singly ionized argon. PMT crosstalk is negligible. Background noise due to electron radiation and H{sub {gamma}} line radiation is <10% of argon emission. The spatial resolution of the reconstruction is 1.5 cm. Argon is introduced using a puff valve and tube designed to impart the gas into the system as the FRC is forming. Reconstruction of experimental data results in time-dependent, 2D emissivity profiles of the impurity ions. Analysis of these data show radial, cross-field diffusion to be in the range of 10-10{sup 3} m{sup 2}/s during FRC equilibrium.

  1. Urban Dispersion Program MSG05 Field Study: Summary of Tracer and Meteorological Measurements

    SciTech Connect (OSTI)

    Allwine, K Jerry; Flaherty, Julia E.

    2006-08-09

    The Urban Dispersion Program is a multi-year project, funded by the U.S. Department of Homeland Security, to better understand the flow and dispersion of airborne contaminants through and around the deep street canyons of New York City. The first tracer and meteorological field study was a limited study conducted during March 2005 near the Madison Square Garden in midtown Manhattan. Six safe, inert, gaseous perfluorocarbon tracers were released simultaneously at five street-level locations during two experimental days. In addition to collecting tracer data, meteorological data were also collected. Brookhaven National Laboratory conducted the bulk of the tracer and meteorological field efforts with Pacific Northwest National Laboratory and Stevens Institute of Technology assisting by measuring the vertical profile of winds. The Environmental Protection Agency worked with Brookhaven National Laboratory in accomplishing the personal exposure component of the study. This report presents some results from this analysis. In general, different release locations showed vastly different plume footprints for tracer materials, and the situation was made very complex with upwind and/or crosswind transport of tracer near street-level for the different release locations. Overall wind speeds and directions upwind and over the city were generally constant throughout each of the two experimental periods.

  2. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    SciTech Connect (OSTI)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-07-01

    The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field.

  3. Corrective measures technology for shallow land burial at arid sites: field studies of biointrusion barriers and erosion control

    SciTech Connect (OSTI)

    Nyhan, J.W.; Hakonson, T.E.; Lopez, E.A.

    1986-03-01

    The field research program involving corrective measures technologies for arid shallow land burial (SLB) sites is described. Results of field testing of a biointrusion barrier installed at a close-out waste disposal site (Area B) at Los Alamos are presented. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments were measured, and the interaction between erosion control and subsurface water dynamics is discussed relative to waste management.

  4. 2016 Alkaline Membrane Fuel Cell Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Alkaline Membrane Fuel Cell Workshop 2016 Alkaline Membrane Fuel Cell Workshop The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and Los Alamos National Laboratory (LANL) hosted the Alkaline Membrane Fuel Cell Workshop on April 1, 2016, in Phoenix, Arizona. Sponsored by the DOE Fuel Cell Technologies Office, the workshop brought together experts to share information and identify the current status and research and development needs for alkaline membrane fuel

  5. Temperature and field induced strain measurements in single crystal Gd5Si2Ge2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-03-29

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of –8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of –8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Furthermore,more » using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.« less

  6. FARADAY ROTATION MEASURE DUE TO THE INTERGALACTIC MAGNETIC FIELD. II. THE COSMOLOGICAL CONTRIBUTION

    SciTech Connect (OSTI)

    Akahori, Takuya; Ryu, Dongsu E-mail: ryu@canopus.cnu.ac.kr

    2011-09-10

    We investigate the Faraday rotation measure (RM) due to the intergalactic magnetic field (IGMF) through the cosmic web up to cosmological distances, using a model IGMF based on turbulence dynamo in the large-scale structure of the universe. By stacking the IGMF and gas density data up to redshift z = 5 and taking account of the redshift distribution of polarized background radio sources against which the RM is measured, we simulate the sky map of the RM. The contribution from galaxy clusters is subtracted from the map, based on several different criteria of X-ray brightness and temperature. Our findings are as follows. The distribution of RM for radio sources of different redshifts shows that the rms value increases with redshift and saturates for z {approx}> 1. The saturated value is RM{sub rms} {approx} several rad m{sup -2}. The probability distribution function of |RM| follows the lognormal distribution. The power spectrum has a broad plateau over the angular scale of {approx}1{sup 0}-0.{sup 0}1 with a peak around {approx}0.{sup 0}15. The second-order structure function has a flat profile in the angular separation of {approx}> 0.{sup 0}2. Our results could provide useful insights for surveys to explore the IGMF with the Square Kilometer Array (SKA) and upcoming SKA pathfinders.

  7. Atmospheric Radiation Measurement (ARM) Data from Manacapuru, Brazil for the Green Ocean Amazon (GOAMAZON) Field Campaign

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Amazon rain forest in Brazil is the largest broadleaf forest in the world, covering 7 million square kilometers of the Amazon Basin in South America. It represents over half of the planet’s remaining rain forests, and comprises the most biodiverse tract of tropical rain forest on the planet. Due to the sheer size of the Amazon rain forest, the area has a strong impact on the climate in the Southern Hemisphere. To understand the intricacies of the natural state of the Amazon rain forest, the Green Ocean Amazon, or GOAMAZON, field campaign is a two-year scientific collaboration among U.S. and Brazilian research organizations. They are conducting a variety of different experiments with dozens of measurement tools, using both ground and aerial instrumentation, including the ARM Aerial Facility's G-1 aircraft. For more information on the holistic view of the campaign, see the Department of Energy’s GOAMAZON website. As a critical component of GOAMAZON, the ARM Mobile Facility (AMF) will obtain measurements near Manacapuru, south of Manaus, Brazil, from January to December 2014. The city of Manaus, with a population of 3 million, uses high-sulfur oil as their primary source of electricity. The AMF site is situated to measure the atmospheric extremes of a pristine atmosphere and the nearby cities’ pollution plume, as it regularly intersects with the site. Along with other instrument systems located at the Manacapuru site, this deployment will enable scientists to study how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity.

  8. Atmospheric Radiation Measurement (ARM) Data from Manacapuru, Brazil for the Green Ocean Amazon (GOAMAZON) Field Campaign

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Amazon rain forest in Brazil is the largest broadleaf forest in the world, covering 7 million square kilometers of the Amazon Basin in South America. It represents over half of the planets remaining rain forests, and comprises the most biodiverse tract of tropical rain forest on the planet. Due to the sheer size of the Amazon rain forest, the area has a strong impact on the climate in the Southern Hemisphere. To understand the intricacies of the natural state of the Amazon rain forest, the Green Ocean Amazon, or GOAMAZON, field campaign is a two-year scientific collaboration among U.S. and Brazilian research organizations. They are conducting a variety of different experiments with dozens of measurement tools, using both ground and aerial instrumentation, including the ARM Aerial Facility's G-1 aircraft. For more information on the holistic view of the campaign, see the Department of Energys GOAMAZON website. As a critical component of GOAMAZON, the ARM Mobile Facility (AMF) will obtain measurements near Manacapuru, south of Manaus, Brazil, from January to December 2014. The city of Manaus, with a population of 3 million, uses high-sulfur oil as their primary source of electricity. The AMF site is situated to measure the atmospheric extremes of a pristine atmosphere and the nearby cities pollution plume, as it regularly intersects with the site. Along with other instrument systems located at the Manacapuru site, this deployment will enable scientists to study how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity.

  9. Electrocatalysis in Alkaline Electrolytes - Research Overview

    Office of Environmental Management (EM)

    Sanjeev Mukerjee Nagappan Ramaswamy, Qinggang He, Daniel Abbott, and Michael Bates Department of Chemistry and Chemical Biology Northeastern University, Boston, MA 02115 Electrocatalysis in Alkaline Electrolytes - Research Overview AMFC Workshop Seminar - May 8, 2011 Acidic pH Alkaline pH 1e - + 1H + C H H 3 C Pt OH OH 2 CH 3 CH 2 OH Pt 1e - + 1H + Pt C O H 3 C Pt C O H 3 C H OH 2 Pt O H Pt O C O H 3 C + H H C O H 3 C O Pt 1e - + 1H + -H 2 at low coord Pt Pt CH x Pt C O CO 2 Pt 2OH 111 sites O H

  10. Self-propelled in-tube shuttle and control system for automated measurements of magnetic field alignment

    SciTech Connect (OSTI)

    Boroski, W.N.; Nicol, T.H. ); Pidcoe, S.V. . Space Systems Div.); Zink, R.A. )

    1990-03-01

    A magnetic field alignment gauge is used to measure the field angle as a function of axial position in each of the magnets for the Superconducting Super Collider (SSC). Present measurements are made by manually pushing the through the magnet bore tube and stopping at intervals to record field measurements. Gauge location is controlled through graduation marks and alignment pins on the push rods. Field measurements are recorded on a logging multimeter with tape output. Described is a computerized control system being developed to replace the manual procedure for field alignment measurements. The automated system employs a pneumatic walking device to move the measurement gauge through the bore tube. Movement of the device, called the Self-Propelled In-Tube Shuttle (SPITS), is accomplished through an integral, gas driven, double-acting cylinder. The motion of the SPITS is transferred to the bore tube by means of a pair of controlled, retractable support feet. Control of the SPITS is accomplished through an RS-422 interface from an IBM-compatible computer to a series of solenoid-actuated air valves. Direction of SPITS travel is determined by the air-valve sequence, and is managed through the control software. Precise axial position of the gauge within the magnet is returned to the control system through an optically-encoded digital position transducer attached to the shuttle. Discussed is the performance of the transport device and control system during preliminary testing of the first prototype shuttle. 1 ref., 7 figs.

  11. Alkaline earth cation extraction from acid solution

    DOE Patents [OSTI]

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  12. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  13. Laser measurement of H{sup -} ions in a field-effect-transistor based radio frequency ion source

    SciTech Connect (OSTI)

    Tanaka, N.; Matsuno, T.; Funaoi, T.; Ando, A.; Tauchi, Y.; Nakano, H.; Tsumori, K.; Takeiri, Y.

    2012-02-15

    Hydrogen negative ion density measurements are required to clarify the characteristics of negative ion production and ion source performance. Both of laser photodetachment and cavity ring down (CRD) measurements have been implemented to a field-effect-transistor based radio-frequency ion source. The density ratio of negative hydrogen ions to electrons was successfully measured by laser photodetachment and effect of magnetic filter field on negative ion density was confirmed. The calculated CRD signal showed that CRD mirrors with >99.990% reflectivity are required and loss of reflectivity due to cesium contamination should be minimized.

  14. Radio-frequency measurements of UNiX compounds (X= Al, Ga, Ge) in high magnetic fields

    SciTech Connect (OSTI)

    Mielke, Charles H; Mcdonald, David R; Zapf, Vivien; Altarawneh, Moaz M; Lacerda, Alex H; Adak, Sourav; Karunakar, Kothapalli; Nakotte, Heinrich; Chang, S; Alsmadi, A M; Alyones, S

    2009-01-01

    We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X=Al, Ga, Ge) in magnetic fields up to 60 T and at temperatures between 1.4 to {approx}60 K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (TDO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency {Delta}f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in {Delta}f. The results of our skin-depth measurements were compared with previously published B-T phase diagrams for these three compounds.

  15. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    DOE Patents [OSTI]

    Jesse, Stephen [Knoxville, TN; Geohegan, David B. [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  16. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  17. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    DOE Patents [OSTI]

    Woolley, R.D.

    1998-09-08

    A method and apparatus are disclosed for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators. 6 figs.

  18. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    DOE Patents [OSTI]

    Woolley, Robert D.

    1998-01-01

    A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

  19. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    SciTech Connect (OSTI)

    Ruiz-Santaquiteria, C.; Fernandez-Jimenez, A.; Palomo, A.

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  20. Arrangement for measuring the field angle of a magnetic field as a function of axial position within a magnet bore tube

    DOE Patents [OSTI]

    Pidcoe, Stephen V.; Zink, Roger A.; Boroski, William N.; McCaw, William R.

    1993-01-01

    An arrangement for measuring the field angle of a magnetic field as a function of axial position within a magnet bore tube of a magnet such as is used with the Superconducting Super Collider (SSC). The arrangement includes a magnetic field alignment gauge that is carried through the magnet bore tube by a positioning shuttle in predetermined increments. The positioning shuttle includes an extensible body assembly which is actuated by an internal piston arrangement. A pair of spaced inflatable cuffs are carried by the body assembly and are selectively actuated in cooperation with pressurizing of the piston to selectively drive the positioning shuttle in an axial direction. Control of the shuttle is provided by programmed electronic computer means located exteriorly of the bore tube and which controls valves provided pressurized fluid to the inflatable cuss and the piston arrangement.

  1. Attempt to measure magnetic hyperfine fields in metallic thin wires under spin Hall conditions using synchrotron-radiation Mssbauer spectroscopy

    SciTech Connect (OSTI)

    Mibu, K. Tanaka, M. A.; Mitsui, T.; Masuda, R.; Kitao, S.; Kobayashi, Y.; Seto, M.; Yoda, Y.

    2015-05-07

    Measurement of the magnetic hyperfine fields in metallic thin wires under spin Hall conditions was attempted using the emerging technique, synchrotron-radiation Mssbauer spectroscopy. A Mssbauer probe layer of {sup 57}Fe (0.2?nm), {sup 57}Fe (0.6?nm), or {sup 119}Sn (0.6?nm) was embedded as an electron spin detector near the surfaces of V, Au, Pt, and {sup 56}Fe wires. The magnitudes of the magnetic hyperfine fields at the {sup 57}Fe and {sup 119}Sn nuclear sites that could be enhanced by non-equilibrium conduction-electron spin polarization were measured both without and with the application of an electric current along the wire. Changes in the Mssbauer spectra were not clearly observed, indicating that the magnetic hyperfine field induced by non-equilibrium spin polarization is smaller than the detection limit at least for the measured systems and conditions.

  2. Magnetotransport measurements of current induced effective fields in Ta/CoFeB/MgO

    SciTech Connect (OSTI)

    Zhang, Chaoliang; Yamanouchi, Michihiko Ikeda, Shoji; Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 ; Sato, Hideo; Fukami, Shunsuke; Matsukura, Fumihiro; Ohno, Hideo; Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577; WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577

    2013-12-23

    We evaluate current-induced effective magnetic fields in perpendicularly magnetized Ta/CoFeB/MgO structures from the external magnetic field angle dependence of the Hall resistance. We confirm the presence of two components of effective fields. The dependence of their magnitudes on Ta thickness implies that both components are related to the spin current in Ta layer generated by the spin Hall effect.

  3. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  4. Field test and evaluation of the IAEA coincidence collar for the measurement of unirradiated BWR fuel assemblies

    SciTech Connect (OSTI)

    Menlove, H.O.; Keddar, A.

    1982-12-01

    The neutron coincidence counter has been field tested and evaluated for the measurement of boiling-water-reactor (BWR) fuel assemblies at the ASEA-ATOM Fuel Fabrication Facility. The system measures the /sup 235/U content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The /sup 238/U content is measured in the passive mode without the AmLi neutron interrogatioin source. The field tests included both standard production movable fuel rods to investigate enrichment and absorber variations. Results gave a response standard deviation of 0.9% for the active case and 2.1% for the passive case in 1000-s measurement times. 10 figures, 2 tables.

  5. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    core velocity fluctuations and the dynamo in a reversed-field pinch * D. J. Den Hartog, †,a) J. T. Chapman, b) D. Craig, G. Fiksel, P. W. Fontana, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 ͑Received 16 November 1998; accepted 20 January 1999͒ Plasma flow velocity fluctuations have been directly measured in the high-temperature magnetically confined plasma in the Madison Symmetric Torus ͑MST͒

  6. Temperature measurement of axisymmetric flames under the influence of magnetic field using Talbot interferometry

    SciTech Connect (OSTI)

    Agarwal, Shilpi E-mail: manojklakra@gmail.com Kumar, Manoj E-mail: manojklakra@gmail.com Shakher, Chandra E-mail: manojklakra@gmail.com

    2014-10-15

    Combustion process control is related with ecological improvement and the problem of energy efficiency; hence it has a wide interest at both economical and scientific levels. Application of a magnetic field is one of the most promising methods of combustion control. The presence of magnetic field induces the changes in flame behavior. The effect of uniform magnetic field developed by permanent magnet is studied by Talbot interferometry using circular gratings. Experimental results show a small decrease in flame temperature and increase in flame dimensions.

  7. Measuring response of extruded scintillator to UV LED in magnetic field

    SciTech Connect (OSTI)

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Tartaglia, M.; Zutshi, V.; /Northern Illinois U.

    2005-05-01

    The experimental results on the performance of the extruded scintillator and WLS fiber, and various LEDs in the magnetic fields of 1.8T and 2.3T respectively, are reported. The methodic used is being described.

  8. Direct, spectroscopic measurement of electric fields in a plasma-RF antenna interaction region in Tore Supra

    SciTech Connect (OSTI)

    Klepper, C Christopher; Hillis, Donald Lee; Isler, Ralph C; Hillairet, J.; Martin, E. H.; Colas, L.; Ekedahl, A.; Goniche, M.; Lotte, Ph.; Colledani, G.; Martin, V.; Panayotis, Stephanie; Pegourie, B.; Harris, Jeffrey H

    2013-01-01

    Balmer-series spectral line profiles of deuterium emission near a lower-hybrid (3.7 GHz) wave, high power (1-4 MW) launcher were measured with high-spectral resolution in the Tore Supra tokamak and fitted to an atomic physics model which includes both Zeeman and dynamic Stark effects. The magnetic field is static and the electric field is assumed to be monochromatic at 3.7 GHz. The determined strength and direction of the high-frequency electric field is found to be in good agreement with the results of a simulation that computes the propagation of these lower hybrid waves into the plasma in the region around the launch antenna and specifically in the region of estimated peak emission contributing to the measurement. This agreement indicates feasibility for the use of dynamic Stark effect spectroscopy to study interaction at the plasma antenna interactions in a fusion plasma environment. (C) 2013 Elsevier B. V. All rights reserved.

  9. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less

  10. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    SciTech Connect (OSTI)

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulating internal strain fields in BMGs for the purpose of ductility enhancement.

  11. Method of measuring the dc electric field and other tokamak parameters

    DOE Patents [OSTI]

    Fisch, Nathaniel J.; Kirtz, Arnold H.

    1992-01-01

    A method including externally imposing an impulsive momentum-space flux to perturb hot tokamak electrons thereby producing a transient synchrotron radiation signal, in frequency-time space, and the inference, using very fast algorithms, of plasma parameters including the effective ion charge state Z.sub.eff, the direction of the magnetic field, and the position and width in velocity space of the impulsive momentum-space flux, and, in particular, the dc toroidal electric field.

  12. Alkaline Membrane Fuel Cell Workshop Welcome and OverviewInnovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation at the AMFC Workshop, May 8, 2011, Arlington, VA. PDF icon amfc050811pivovar.pdf More Documents & Publications Anion Exchange Membranes for Fuel Cells 2006 Alkaline ...

  13. OSTIblog Articles in the alkaline membrane cells Topic | OSTI...

    Office of Scientific and Technical Information (OSTI)

    alkaline membrane cells Topic Fine tuning fuel cells by Kathy Chambers 14 Jun, 2012 in Products and Content 4314 ballardfuelcellcaption.jpg Fine tuning fuel cells Read more ...

  14. Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A.; Fleming, P.; Wright, A.; Slinger, C.; Medley, J.; Harris, M.

    2014-12-01

    This paper describes field tests of a light detection and ranging (lidar) device placed forward looking on the nacelle of a wind turbine and used as a wind direction measurement to directly control the yaw position of a wind turbine. Conventionally, a wind turbine controls its yaw direction using a nacelle-mounted wind vane. If there is a bias in the measurement from the nacelle-mounted wind vane, a reduction in power production will be observed. This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a measurement of the wind could be made upstream of the wind turbine where the wind is not being influenced by the rotor's wake or induction zone. Field tests were conducted with the lidar measured yaw system and the nacelle wind vane measured yaw system. Results show that a lidar can be used to effectively measure the yaw error of the wind turbine, and for this experiment, they also showed an improvement in power capture because of reduced yaw misalignment when compared to the nacelle wind vane measured yaw system.

  15. Relative output factor and beam profile measurements of small radiation fields with an L-alanine/K-Band EPR minidosimeter

    SciTech Connect (OSTI)

    Chen Abrego, Felipe; Calcina, Carmen Sandra Guzman; Almeida, Adelaide de; Almeida, Carlos Eduardo de; Baffa, Oswaldo

    2007-05-15

    The performance of an L-alanine dosimeter with millimeter dimensions was evaluated for dosimetry in small radiation fields. Relative output factor (ROF) measurements were made for 0.5x0.5, 1x1, 3x3, 5x5, 10x10 cm{sup 2} square fields and for 5-, 10-, 20-, 40-mm-diam circular fields. In beam profile (BP) measurements, only 1x1, 3x3, 5x5 cm{sup 2} square fields and 10-, 20-, 40-mm-diam circular fields were used. For square and circular field irradiations, Varian/Clinac 2100, and a Siemens/Mevatron 6 MV linear accelerators were used, respectively. For a batch of 800 L-alanine minidosimeters (miniALAs) the average mass was 4.3{+-}0.5 (1{sigma}) mg, the diameter was 1.22{+-}0.07 (1{sigma}) mm, and the length was 3.5{+-}0.2 (1{sigma}) mm. A K-Band (24 GHz) electron paramagnetic resonance (EPR) spectrometer was used for recording the spectrum of irradiated and nonirradiated miniALAs. To evaluate the performance of the miniALAs, their ROF and BP results were compared with those of other types of detectors, such as an ionization chamber (PTW 0.125 cc), a miniTLD (LiF: Mg,Cu,P), and Kodak/X-Omat V radiographic film. Compared to other dosimeters, the ROF results for miniALA show differences of up to 3% for the smallest fields and 7% for the largest ones. These differences were within the miniALA experimental uncertainty ({approx}5-6% at 1{sigma}). For BP measurements, the maximum penumbra width difference observed between miniALA and film (10%-90% width) was less than 1 mm for square fields and within 1-2 mm for circular fields. These penumbra width results indicate that the spatial resolution of the miniALA is comparable to that of radiographic film and its dimensions are adequate for the field sizes used in this experiment. The K-Band EPR spectrometer provided adequate sensitivity for assessment of miniALAs with doses of the order of tens of Grays, making this dosimetry system (K-Band/miniALA) a potential candidate for use in radiosurgery dosimetry.

  16. Field measurements of frost penetration into a landfill cover that uses a paper sludge barrier

    SciTech Connect (OSTI)

    Moo-Young, H.K.; LaPlante, C.; Zimmie, T.F.; Quiroz, J.

    1999-07-01

    Frost penetration is a major environmental concern in landfill design. Freezing and thawing cycles may deteriorate the permeability of the liner or cap. In this study, the depth of frost penetration into a landfill cover that uses paper sludge as the impermeable barrier (the Hubbardston landfill in Massachusetts) was measured using a frost measurement system. A thermistor probe measured the temperature at various depths. Although temperature measurements are important, soil resistivity measurements are required to accurately predict the freezing level, since soil resistivity increases greatly upon freezing. A conductivity probe measured the half-bridge voltage between conductivity rings and a ground rod. Data were collected in data loggers. The data collected from 1992--1996 showed that the frost level did not penetrate the paper sludge capping layer. Heavy snow cover throughout the winters decreased the depth of frost penetration by insulating the landfill. The high water content in the sludge also contributed to the lack of freezing.

  17. ARM - Field Campaign - ARM Airborne Carbon Measurements IV (ARM-ACME IV)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsARM Airborne Carbon Measurements IV (ARM-ACME IV) Campaign Links Final Campaign Report ARM Data Discovery Browse Data Related Campaigns ARM Airborne Carbon Measurements (ARM-ACME) 2008.10.01, Biraud, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Airborne Carbon Measurements IV (ARM-ACME IV) 2013.10.01 - 2015.09.30 Lead Scientist : Sebastien Biraud For data sets, see below. Abstract ARM ACME observations and

  18. Lift, drag and flow-field measurements around a small ornithopter

    SciTech Connect (OSTI)

    Balakumar, B J; Chavez - Alarcon, Ramiro; Shu, Fangjun

    2011-01-12

    The aerodynamics of a flight-worthy, radio controlled ornithopter is investigated using a combination of Particle-Image Velocimetry (PIV), load cell measurements, and high-speed photography of smoke visualizations. The lift and thrust forces of the ornithopter are measured at various flow speeds, flapping frequencies and angles of attack to characterize the flight performance. These direct force measurements are then compared with forces estimated using control volume analysis on PIV data. High-speed photography of smoke streaks is used to visualize the evolution of leading edge vortices, and to qualitatively infer the effect of wing deformation on the net downwash. Vortical structures in the wake are compared to previous studies on root flapping, and direct measurements of flapping efficiency are used to argue that the current ornithopter operates sub-optimally in converting the input energy into propulsive work.

  19. ETA-UTP009 - Measurement and Evaluation of Magnetic Fields (EMF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Three Speed Test 6.5 Measurement of Electromagnetic Radiation 6.6 Determination of Radio ... This procedure shall collect test data as specified in the requirement of this procedure. ...

  20. Removal of plutonium and americium from alkaline waste solutions

    DOE Patents [OSTI]

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  1. High-field de Haas{endash}van Alphen measurements in Pd

    SciTech Connect (OSTI)

    Vuillemin, J.J. [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States)] [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); Harrison, N. [National High Magnetic Field Laboratory, Los Alamos National Laboratory, LANL, Los Alamos, New Mexico 87545 (United States)] [National High Magnetic Field Laboratory, Los Alamos National Laboratory, LANL, Los Alamos, New Mexico 87545 (United States); Goodrich, R.G. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)] [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    1999-05-01

    The de Haas{endash}van Alphen (dHvA) effect in 99.999{percent} pure palladium has been observed in pulsed fields up to 60 T directed along [100]. We report a dHvA frequency of 73.5 kT with a cyclotron effective mass=12.5m{sub 0}. Such a frequency is not reported previously but is predicted by band theory for the open hole sheet of the Fermi surface. We also observe strong harmonic content near 50 T for the electron sheet and this is interpreted in terms of a field-dependent {ital g} factor. {copyright} {ital 1999} {ital The American Physical Society}

  2. Modeling magnetic fields from a DC power cable buried beneath San Francisco Bay based on empirical measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kavet, Robert; Wyman, Megan T.; Klimley, A. Peter; Carretero, Luis

    2016-02-25

    Here, the Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable’s path; these included the Sanmore » Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia- Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable’s contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured

  3. Use of Remote Technology in the Surface Water Environmental Monitoring Program at SRS Reducing Measurements in the Field - 13336

    SciTech Connect (OSTI)

    Eddy, T.; Terry, B.; Meyer, A.; Hall, J.; Allen, P.; Hughey, D.; Hartley, T.

    2013-07-01

    There are a wide range of sensor and remote technology applications available for use in environmental monitoring programs. Each application has its own set of limitations and can be challenging when attempting to utilize it under diverse environmental field conditions. The Savannah River Site Environmental Monitoring Program has implemented several remote sensing and surface water flow technologies that have increased the quality of the data while reducing the number of field measurements. Implementation of this technology reduced the field time for personnel that commute across the Savannah River Site (SRS) over a span of 310 square miles. The wireless surface water flow technology allows for immediate notification of changing field conditions or equipment failure thus reducing data-loss or erroneous field data and improving data-quality. This wireless flow technology uses the stage-to-flow methodology coupled with implementation of a robust highly accurate Acoustic Doppler Profiler system for measuring discharge under various field conditions. Savings for implementation of the wireless flow application and Flowlink{sup R} technology equates to approximately 1175 hours annually for the radiological liquid effluent and surveillance programs. The SonTek River Suveyor and Flowtracker technologies are utilized for calibration of the wireless flow monitoring devices in the site streams and validation of effluent flows at the SRS. Implementation of similar wireless devices is also planned in the National Pollutant Discharge Elimination System (NPDES) Storm-water Monitoring Program. SRS personnel have been developing a unique flow actuator device. This device activates an ISCO{sup TM} automated sampler under flowing conditions at storm-water outfall locations across the site. This technology is unique in that it was designed to be used under field conditions with rapid changes in flow and sedimentation where traditional actuators have been unsuccessful in tripping the

  4. The effect of E{sub r} on MSE measurements of q, a new technique for measuring E{sub r}, and a test of the neoclassical electric field

    SciTech Connect (OSTI)

    Zarnstorff, M.C.; Synakowski, E.J.; Levinton, F.M.; Batha, S.H.

    1996-10-01

    Previous analysis of motional-Stark Effect (MSE) data to measure the q-profile ignored contributions from the plasma electric field. The MSE measurements are shown to be sensitive to the electric field and require significant corrections for plasmas with large rotation velocities or pressure gradients. MSE measurements from rotating plasmas on the Tokamak Fusion Test Reactor (TFTR) confirm the significance of these corrections and verify their magnitude. Several attractive configurations are considered for future MSE-based diagnostics for measuring the plasma radial electric field. MSE data from TFTR is analyzed to determine the change in the radial electric field between two plasmas. The measured electric field quantitatively agrees with the predictions of neoclassical theory. These results confirm the utility of a MSE electric field measurement.

  5. Durable Airtightness in Single-Family Dwellings: Field Measurements and Analysis

    SciTech Connect (OSTI)

    Chan, Wanyu; Walker, Iain; Sherman, Max

    2015-06-01

    Durability of the building envelope is important to new homes that are increasingly built with improved levels of airtightness. It is also important to weatherized homes such that energy savings from retrofit measures, such as air sealing, are persistent. This paper presents a comparison of air leakage measurements collected in November 2013 through March 2014, with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007-2008. The purpose of the comparison is to determine if there are changes to the airtightness of building envelopes over time. The air leakage increased in all but one of the new homes, with a mean increase of about 25%. A regression analysis was performed to describe the relationship between prior and current measurements in terms of normalized leakage (NL).

  6. Measurement of the high-field Q drop in the TM010 and TE011 modes in a niobium cavity

    SciTech Connect (OSTI)

    Gianluigi Ciovati; Peter Kneisel

    2006-04-01

    In the last few years superconducting radio-frequency (rf) cavities made of high-purity (residual resistivity ratio>200) niobium achieved accelerating gradients close to the theoretical limits. An obstacle towards achieving reproducibly higher fields is represented by ''anomalous'' losses causing a sharp degradation of the cavity quality factor when the peak surface magnetic field (Bp) is above about 90 mT, in the absence of field emission. This effect, called ''Q drop'' has been measured in many laboratories with single- and multicell cavities mainly in the gigahertz range. In addition, a low-temperature (100-140 C) ''in situ'' baking of the cavity was found to be beneficial in reducing the Q drop. In order to gain some understanding of the nature of these losses, a single-cell cavity has been tested in the TM010 and TE011 modes at 2 K. The feature of the TE011 mode is to have zero electric field on the cavity surface, so that electric field effects can be excluded as a source for the Q drop. This article will present some of the experimental results for different cavity treatments and will compare them with existing models.

  7. Measurement and verification protocols -- Facts and fiction, news from the field

    SciTech Connect (OSTI)

    Schiller, S.R.; Kromer, J.S.

    1998-07-01

    This paper provides descriptions of the 1997 International Performance Measurement and Verification Protocol (IPMVP), the 1996 Federal Energy Management Program's (FEMP) Measurement Verification Guidelines, and the draft ASHRAE 13-P Measurement of Energy and Demand Savings Guideline. These protocols and guidelines are establishing a framework for measurement and verification (M and V) activities throughout the world. The M and V protocols are also being used by the energy performance contracting industry as an educational tool and as the starting point for program specific M and V guidelines. Beyond descriptions of the documents the paper covers how the documents are being sued and the perspective of various user groups--such as government entities, utilities, private companies, and energy services companies. The protocols were designed around four main M and V options to allow flexibility in their application to different types of projects. However, this intentional flexibility has caused confusion among some users who are now required to select the appropriate option, method, level or rigor, and accuracy for their projects. Eventually though, as the protocols are more widely used and more documentation is available on M and V costs and accuracy the industry will become more comfortable selecting the best option and applying the M and V protocols in a more consistent manner for different types of projects and programs.

  8. Field measurement of moisture-buffering model inputs for residential buildings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Woods, Jason; Winkler, Jon

    2016-02-05

    Moisture adsorption and desorption in building materials impact indoor humidity. This effect should be included in building-energy simulations, particularly when humidity is being investigated or controlled. Several models can calculate this moisture-buffering effect, but accurate ones require model inputs that are not always known to the user of the building-energy simulation. This research developed an empirical method to extract whole-house model inputs for the effective moisture penetration depth (EMPD) model. The experimental approach was to subject the materials in the house to a square-wave relative-humidity profile, measure all of the moisture-transfer terms (e.g., infiltration, air-conditioner condensate), and calculate the onlymore » unmeasured term—the moisture sorption into the materials. We validated this method with laboratory measurements, which we used to measure the EMPD model inputs of two houses. After deriving these inputs, we measured the humidity of the same houses during tests with realistic latent and sensible loads and demonstrated the accuracy of this approach. Furthermore, these results show that the EMPD model, when given reasonable inputs, is an accurate moisture-buffering model.« less

  9. A comparison of ion beam measurements by retarding field energy analyzer and laser induced fluorescence in helicon plasma devices

    SciTech Connect (OSTI)

    Gulbrandsen, N. Fredriksen, Å.; Carr, J.; Scime, E.

    2015-03-15

    Both Laser-Induced Fluorescence (LIF) and Retarding Field Energy Analyzers (RFEA) have been applied to the investigation of beams formed in inductively coupled helicon plasmas. While the LIF technique provides a direct measurement of the velocity distribution in the plasma, the RFEA measures ion flux as a function of a retarding potential. In this paper, we present a method to compare the two techniques, by converting the LIF velocity distribution to an equivalent of a RFEA measurement. We applied this method to compare new LIF and RFEA measurements in two different experiments; the Hot Helicon Experiment (HELIX) - Large Experiment on Instabilities and Anisotropies (LEIA) at West Virginia University and Njord at University of Tromsø. We find good agreement between beam energies of the two methods. In agreement with earlier observations, the RFEA is found to measure ion beams with densities too low for the LIF to resolve. In addition, we present measurements of the axial development of the ion beam in both experiments. Beam densities drop exponentially with distance from the source, both in LIF and RFEA measurements. The effective quenching cross section from LIF in LEIA is found to be σ{sub b,*}=4×10{sup −19} m{sup 2}, and the effective beam collisional cross sections by RFEA in Njord to be σ{sub b}=1.7×10{sup −18} m{sup 2}.

  10. Atmospheric Radiation Measurement (ARM) Data from Field Campaigns or Intensive Operational Periods (IOP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ARM Climate Research Facility users regularly conduct field campaigns to augment routine data acquisitions and to test and validate new instruments. Any field campaign which is proposed, planned, and implemented at one or more research sites is referred to as an intensive operational period (IOP). IOPs are held using the fixed and mobile sites; Southern Great Plains, North Slope of Alaska, Tropical Western Pacific, ARM Mobile Facility (AMF), and Aerial Vehicles Program (AVP). [Taken from http://www.arm.gov/science/fc.stm] Users may search with the specialized interface or browse campaigns/IOPs in table format. Browsing allows users to see the start date of the IOP, the status (Past, In Progress, etc.), the duration, the Principal Investigator, and the research site, along with the title of the campaign/IOP. Clicking on the title leads to a descriptive summary of the campaign, names of co-investigators, contact information, links to related websites, and a link to available data in the ARM Archive. Users will be requested to create a password, but the data files are free for viewing and downloading. The URL to go directly to the ARM Archive, bypassing the information pages, is http://www.archive.arm.gov/. The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  11. A compact high-performance low-field NMR apparatus for measurements on fluids at very high pressures and temperatures

    SciTech Connect (OSTI)

    Freedman, R.; Anand, V. Ganesan, K.; Tabrizi, P.; Torres, R.; Grant, B.; Catina, D.; Ryan, D.; Borman, C.; Krueckl, C.

    2014-02-15

    We discuss an innovative new high-performance apparatus for performing low-field Nuclear Magnetic Resonance (NMR) relaxation times and diffusion measurements on fluids at very high pressures and high temperatures. The apparatus sensor design and electronics specifications allow for dual deployment either in a fluid sampling well logging tool or in a laboratory. The sensor and electronics were designed to function in both environments. This paper discusses the use of the apparatus in a laboratory environment. The operating temperature and pressure limits, and the signal-to-noise ratio (SNR) of the new system exceed by a very wide margin what is currently possible. This major breakthrough was made possible by a revolutionary new sensor design that breaks many of the rules of conventional high pressure NMR sensor design. A metallic sample holder capable of operating at high pressures and temperatures is provided to contain the fluid under study. The sample holder has been successfully tested for operation up to 36 Kpsi. A solenoid coil wound on a slotted titanium frame sits inside the metallic sample holder and serves as an antenna to transmit RF pulses and receive NMR signals. The metal sample holder is sandwiched between a pair of gradient coils which provide a linear field gradient for pulsed field gradient diffusion measurements. The assembly sits in the bore of a low-gradient permanent magnet. The system can operate over a wide frequency range without the need for tuning the antenna to the Larmor frequency. The SNR measured on a water sample at room temperature is more than 15 times greater than that of the commercial low-field system in our laboratory. Thus, the new system provides for data acquisition more than 200 times faster than was previously possible. Laboratory NMR measurements of relaxations times and diffusion coefficients performed at pressures up to 25 Kpsi and at temperatures up to 175?C with crude oils enlivened with dissolved hydrocarbon gases

  12. Assessment of cover systems at the Grand Junction, Colorado, uranium mill tailings pile: 1987 field measurements

    SciTech Connect (OSTI)

    Gee, G.W.; Campbell, M.D.; Freeman, H.D.; Cline, J.F.

    1989-02-01

    Four Pacific Northwest Laboratory (PNL) scientists and a technician conducted an onsite evaluation of radon gas exhalation, water content profiles, and plant and animal intrusion for a series of cover systems located on the uranium mill tailings pile at Grand Junction, Colorado. These six plots were sampled extensively down to the radon control layer (e.g., asphalt or wet clay) for soil moisture content and permeability. Radon gas emission through the surface was measured. Soil samples were collected and analyzed in the lab for particle-size distribution, particle density, bulk density, and ambient water content. Prairie dog burrows were excavated to discover the extent to which they penetrated the barriers. Plant type, density, and cover characteristics were measured.

  13. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models

    SciTech Connect (OSTI)

    Di Bella, Gaetano; Di Trapani, Daniele; Viviani, Gaspare

    2011-08-15

    Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

  14. Soft x-ray measurement of internal tearing mode structure in a reversed-field pinch

    SciTech Connect (OSTI)

    Chartas, G.; Hokin, S.

    1991-09-16

    The structure of internally resonant tearing modes has been studied in the Madison Symmetric Torus reversed-field pinch with a soft x-ray detector system consisting of an imaging array at one toroidal location and several detectors at different toroidal locations. The toroidal mode numbers of m = 1 structures are in the range n = {minus}5, {minus}6, {minus}7. The modes propagate with phase velocity v = 1--6 {times} 10{sup 6} cm/s, larger than the diamagnetic drift velocity v{sub d} {approximately} 5 {times} 10{sup 5} cm/s. Phase locking between modes with different n in manifested as a beating of soft x-ray signals which is found to be strongest near the resonant surfaces of the modes (r/a = 0.1 -- 0.5). 15 refs., 5 figs.

  15. Determining the U-value of a wall from field measurements of heat flux and surface temperatures

    SciTech Connect (OSTI)

    Modera, M.P.; Sherman, M.H.; Sonderegger, R.C.

    1986-05-01

    Thermal conductances (U-values) and thermal resistances (R-values) are discussed throughout the literature as the appropriate parameters for characterizing heat transfer through walls. Because the quoted numbers are usually determined from the handbook values of material properties, they have several drawbacks: (1) they do not take into account degradation effects, (2) they ignore construction irregularities, and (3) they do not take into account multi-dimensional heat flow. This paper examines the use of field measurements of heat flow and surface temperatures to determine the U-values of walls. The effects of thermal mass on measurements of wall U-values are described in detail, using two data interpretation techniques to estimate the U-values of insulated and uninsulated cavity walls, with and without brick facing. The errors in U-value estimation are determined by comparison with an analytical model of wall thermal performance. For each wall, the error in the U-value determination is plotted as a function of test length for several typical weather conditions. For walls with low thermal mass, such as an fiberglass-insulated cavity wall, it appears that, under favorable test conditions, a 6-hour measurement is adequate to measure the U-value within about 10% uncertainty. For masonary walls, the measurement time required is considerably longer than 6 hours. It is shown that for masonry walls, and in general, the optimal measurement time is a multiple of 24 hours due to the effects of diurnal weather fluctuations.

  16. SU-E-T-586: Field Size Dependence of Output Factor for Uniform Scanning Proton Beams: A Comparison of TPS Calculation, Measurement and Monte Carlo Simulation

    SciTech Connect (OSTI)

    Zheng, Y; Singh, H; Islam, M

    2014-06-01

    Purpose: Output dependence on field size for uniform scanning beams, and the accuracy of treatment planning system (TPS) calculation are not well studied. The purpose of this work is to investigate the dependence of output on field size for uniform scanning beams and compare it among TPS calculation, measurements and Monte Carlo simulations. Methods: Field size dependence was studied using various field sizes between 2.5 cm diameter to 10 cm diameter. The field size factor was studied for a number of proton range and modulation combinations based on output at the center of spread out Bragg peak normalized to a 10 cm diameter field. Three methods were used and compared in this study: 1) TPS calculation, 2) ionization chamber measurement, and 3) Monte Carlos simulation. The XiO TPS (Electa, St. Louis) was used to calculate the output factor using a pencil beam algorithm; a pinpoint ionization chamber was used for measurements; and the Fluka code was used for Monte Carlo simulations. Results: The field size factor varied with proton beam parameters, such as range, modulation, and calibration depth, and could decrease over 10% from a 10 cm to 3 cm diameter field for a large range proton beam. The XiO TPS predicted the field size factor relatively well at large field size, but could differ from measurements by 5% or more for small field and large range beams. Monte Carlo simulations predicted the field size factor within 1.5% of measurements. Conclusion: Output factor can vary largely with field size, and needs to be accounted for accurate proton beam delivery. This is especially important for small field beams such as in stereotactic proton therapy, where the field size dependence is large and TPS calculation is inaccurate. Measurements or Monte Carlo simulations are recommended for output determination for such cases.

  17. Process for treating alkaline wastes for vitrification

    DOE Patents [OSTI]

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  18. Process for treating alkaline wastes for vitrification

    DOE Patents [OSTI]

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  19. Process for treating alkaline wastes for vitrification

    DOE Patents [OSTI]

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  20. High pressure annular two-phase flow in a narrow duct. Part 1: Local measurements in the droplet field, and Part 2: Three-field modeling

    SciTech Connect (OSTI)

    Trabold, T.A.; Kumar, R.

    1999-07-01

    In Part 1, detailed measurements were made in a high pressure, adiabatic (boiled at the inlet) annular flow in a narrow, high aspect ratio duct using a gamma densitometer, hot-film anemometer and high-speed video photography. Measurements of void fraction, droplet frequency, velocity, drop size, and interfacial area concentration have been made to support the three field computational capability. An important aspect of this testing is the use of a modeling fluid (R-134a) in a vertical duct which permits visual access in annular flow. This modeling fluid accurately simulates the low liquid-to-vapor density ratio of steam-water flows at high pressures. These measurements have been taken in a narrow duct of hydraulic diameter 4.85 mm, and a cross-section aspect ratio of 22.5. However, the flow displays profiles of various shapes not only in the narrow dimension, but also in the width dimension. In particular, the shape of the droplet profiles depends on the entrained droplet flux from the edges in the vapor core. The average diameter from these profiles compare well with the models developed in the literature. Interfacial area concentration for these low density ratio flows is higher than the highest concentration reported for air-water flows. Video records show that along with the bow-shaped waves, three-dimensional {lambda}-shaped waves appear in annular flows for high flow rates. Part 2 outlines the development of a three-field modeling approach in annular flow and the predictive capability of an analysis code. Models have been developed here or adapted from the literature for the thin film near the wall as well as the droplets in the vapor core, and have been locally applied in a fully developed, two-phase adiabatic boiling annular flow in a duct heated at the inlet at high pressure. Numerical results have been obtained using these models that are required for the closure of the continuity and momentum equations. The two-dimensional predictions are compared with

  1. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOE Patents [OSTI]

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  2. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOE Patents [OSTI]

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  3. Cropland Field Monitoring: MMV Page 1 Montana Cropland Enrolled Farm Fields Carbon Sequestration Field Sampling, Measurement, Monitoring, and Verification: Application of Visible-Near Infrared Diffuse Reflectance Spectroscopy (VNIR) and Laser-induced Breakdown Spectroscopy (LIBS)

    SciTech Connect (OSTI)

    Lee Spangler; Ross Bricklemyer; David Brown

    2012-03-15

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laboratory based soil characterization typically requires significant soil processing, which is time and resource intensive. This severely limits application for large-region soil characterization. Thus, development of rapid and accurate methods for characterizing soils are needed to map soil properties for precision agriculture applications, improve regional and global soil carbon (C) stock and flux estimates and efficiently map sub-surface metal contamination, among others. The greatest gains for efficient soil characterization will come from collecting soil data in situ, thus minimizing soil sample transportation, processing, and lab-based measurement costs. Visible and near-infrared diffuse reflectance spectroscopy (VisNIR) and laser-induced breakdown spectroscopy (LIBS) are two complementary, yet fundamentally different spectroscopic techniques that have the potential to meet this need. These sensors have the potential to be mounted on a soil penetrometer and deployed for rapid soil profile characterization at field and landscape scales. Details of sensor interaction, efficient data management, and appropriate statistical analysis techniques for model calibrations are first needed. In situ or on-the-go VisNIR spectroscopy has been proposed as a rapid and inexpensive tool for intensively mapping soil texture and organic carbon (SOC). While lab-based VisNIR has been established as a viable technique for estimating various soil properties, few experiments have compared the predictive accuracy of on-the-go and lab-based VisNIR. Eight north central Montana wheat fields were intensively interrogated using on-the-go and lab-based VisNIR. Lab-based spectral data consistently provided more accurate predictions than on-the-go data. However, neither in situ

  4. Method Evaluation And Field Sample Measurements For The Rate Of Movement Of The Oxidation Front In Saltstone

    SciTech Connect (OSTI)

    Almond, P. M.; Kaplan, D. I.; Langton, C. A.; Stefanko, D. B.; Spencer, W. A.; Hatfield, A.; Arai, Y.

    2012-08-23

    The objective of this work was to develop and evaluate a series of methods and validate their capability to measure differences in oxidized versus reduced saltstone. Validated methods were then applied to samples cured under field conditions to simulate Performance Assessment (PA) needs for the Saltstone Disposal Facility (SDF). Four analytical approaches were evaluated using laboratory-cured saltstone samples. These methods were X-ray absorption spectroscopy (XAS), diffuse reflectance spectroscopy (DRS), chemical redox indicators, and thin-section leaching methods. XAS and thin-section leaching methods were validated as viable methods for studying oxidation movement in saltstone. Each method used samples that were spiked with chromium (Cr) as a tracer for oxidation of the saltstone. The two methods were subsequently applied to field-cured samples containing chromium to characterize the oxidation state of chromium as a function of distance from the exposed air/cementitious material surface.

  5. Development of three-wavelength CCD image pyrometer used for the temperature field measurements of continuous casting billets

    SciTech Connect (OSTI)

    Xie, Zhi; Bai, Haicheng [State Key Laboratory of Synthetical Automation for Process Industries, School of Information Science and Engineering, Northeastern University, Shenyang 110819 (China)] [State Key Laboratory of Synthetical Automation for Process Industries, School of Information Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2014-02-15

    This paper develops an imaging based three-color pyrometer for the monitoring of temperature distribution in a continuous casting billet. A novel optical device, together with an embedded electronic system, is designed to sequentially collect a dark image and three thermal images with specified wavelengths on a same monochromatic charge-coupled-device (CCD). The three thermal images provide the basis for the determination of target temperature, while the dark image is used to online eliminate the dark noise of CCD with a differential method. This image pyrometer is not only independent of target emissivity but also overcomes the dissimilarity of measuring accuracy between the micro-sensors of CCD resulted from the non-uniformity of pixels intensity response and the vignetting of optical system. Furthermore, a precise two-color temperature field measuring model on the CCD pyrometer is established, based on which a self-adaptive light-integration mechanism is presented. Compared with the traditional fixed light-integration method, the measuring range of the pyrometer is greatly extended and its sensitivity in low temperature segment is improved. The test results in a steel factory demonstrate that the pyrometer is capable of meeting the requirement of surface temperature measurements about casting billets. Reliability and accuracy of measurement results are also discussed herein.

  6. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Y.; Collins, D. M.; Tarleton, E.; Hofmann, F.; Tischler, J.; Liu, W.; Xu, R.; Wilkinson, A. J.; Britton, T. B.

    2015-06-24

    The interaction between dislocation pile-ups and grain boundaries gives rise to heterogeneous stress distributions when a structural metal is subjected to mechanical loading. Such stress heterogeneity leads to preferential sites for damage nucleation and therefore is intrinsically linked to the strength and ductility of polycrystalline metals. To date the majority of conclusions have been drawn from 2D experimental investigations at the sample surface, allowing only incomplete observations. Our purpose here is to significantly advance the understanding of such problems by providing quantitative measurements of the effects of dislocation pile up and grain boundary interactions in 3D. This is accomplished throughmore » the application of differential aperture X-ray Laue micro-diffraction (DAXM) and high angular resolution electron backscatter diffraction (HR-EBSD) techniques. Our analysis demonstrates a similar strain characterization capability between DAXM and HR-EBSD and the variation of stress intensity in 3D reveals that different parts of the same grain boundary may have different strengths in resisting slip transfer, likely due to the local grain boundary curvature.« less

  7. Development of neutron measurement in high gamma field using new nuclear emulsion

    SciTech Connect (OSTI)

    Kawarabayashi, J.; Ishihara, K.; Takagi, K.; Tomita, H.; Iguchi, T.; Naka, T.; Morishima, K.; Maeda, S.

    2011-07-01

    To precisely measure the neutron emissions from a spent fuel assembly of a fast breeder reactor, we formed nuclear emulsions based on a non-sensitized Oscillation Project with Emulsion tracking Apparatus (OPERA) film with AgBr grain sizes of 60, 90, and 160 nm. The efficiency for {sup 252}Cf neutron detection of the new emulsion was calculated to be 0.7 x 10{sup -4}, which corresponded to an energy range from 0.3 to 2 MeV and was consistent with a preliminary estimate based on experimental results. The sensitivity of the new emulsion was also experimentally estimated by irradiating with 565 keV and 14 MeV neutrons. The emulsion with an AgBr grain size of 60 nm had the lowest sensitivity among the above three emulsions but was still sensitive enough to detect protons. Furthermore, the experimental data suggested that there was a threshold linear energy transfer of 15 keV/{mu}m for the new emulsion, below which no silver clusters developed. Further development of nuclear emulsion with an AgBr grain size of a few tens of nanometers will be the next stage of the present study. (authors)

  8. Alkaline Membrane Fuel Cell Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A workshop on alkaline membrane fuel cells (AMFC) was held May 8-9, 2011, before the 2011 Hydrogen and Fuel Cells Annual Merit Review, at Crystal Gateway Marriott in Arlington, ...

  9. Advanced Catalysts and MEAs for Reversible Alkaline Membrane Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts and MEAs for Reversible Alkaline Membrane Fuel Cells Hui Xu (PI) Giner Inc Newton, MA This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Catalyst Work Group Meeting June 8, 2015 2 Barriers Addressed * Activity (catalyst; MEA) * Durability (catalyst; MEA) * Cost (catalyst; MEA) Technical Targets * Design and develop ORR/OER bi-functional oxide catalysts * Integrate ORR/OER bifunctional oxide catalysts and alkaline membranes to

  10. Solvent Extraction of Tc and Cs from Alkaline Nitrate Wastes

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bonnesen, Peter V.; Delmau, Laetitia H.; Haverlock, T J.; Sachleben, R A.; Leonard, R A.; Conner, C; Lumetta, Gregg J. ); M. Cox, M. Hidalgo, and M. Valiente

    2001-01-01

    This paper summarizes progress at three collaborating U.S. national laboratories on the extraction of the fission products 99Tc and 137Cs from alkaline high-level wastes. Efficient economical processes for Tc and Cs extraction (SRTALK and alkaline-side CSEX, respectively) have been developed, and testing has progressed through batch tests on actual wastes and continuous counter-current centrifugal-contactor tests on simulants.

  11. Solvent Extraction of Tc and Cs from Alkaline Nitrate Wastes

    SciTech Connect (OSTI)

    Bonnesen, P.V.; Conner, C.; Delmau, L.H.; Haverlock, T.J.; Leonard, R.A.; Lumetta, G.J.; Moyer, B.A.; Sachleben, R.A.

    1999-07-11

    This paper summarizes progress at three collaborating US national laboratories on the extraction of the fission products {sup 99}Tc and {sup 137}Cs from alkaline high-level wastes (HLW). Efficient, economical processes for Tc and Cs extraction (SRTALK and alkaline-side CSEX, respectively) have been developed, and testing has progressed through batch tests on actual wastes and continuous countercurrent centrifugal-contactor tests on simulants.

  12. 2011 Alkaline Membrane Fuel Cell Workshop Final Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Alkaline Membrane Fuel Cell Workshop Final Report B. Pivovar National Renewable Energy Laboratory Proceedings from the Alkaline Membrane Fuel Cell Workshop Arlington, Virginia May 8-9, 2011 Workshop Proceedings NREL/BK-5600-54297 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401

  13. Oxidation of methanol on single crystal platinum electrodes in alkaline solution

    SciTech Connect (OSTI)

    Tripkovic, A.V.; Marinkovic, N.; Adzic, R.R.

    1995-10-01

    Methanol oxidation has been studied on three low-index single crystal Pt electrodes and four stepped surfaces, vicinal to the (111) and (100) orientations in alkaline solutions. Considering the onset of the reaction, it appears that the activity decreases in the sequence Pt(100), Pt(110) and Pt(111). This can also be inferred from the quasi-steady-state measurements. The current peaks, observed at different potentials, show the highest activity of Pt(111). The steps cause increase of the surface activity, but are prone to a fast poisoning. The reaction involves a formation of a small amount of CO on Pt(100) but a negligible amount on Pt(111). This was inferred from the in situ FTIR measurements. Two different reaction mechanisms were identified for the Pt(111) and Pt(100). The data clearly show that a large difference of the activity of Pt for methanol oxidation in acid and alkaline solutions originates in a smaller or negligible poisoning effects in alkaline solutions.

  14. Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors: Automated measurement development for full field digital mammography

    SciTech Connect (OSTI)

    Fowler, E. E.; Sellers, T. A.; Lu, B.; Heine, J. J.

    2013-11-15

    Purpose: The Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors are used for standardized mammographic reporting and are assessed visually. This reporting is clinically relevant because breast composition can impact mammographic sensitivity and is a breast cancer risk factor. New techniques are presented and evaluated for generating automated BI-RADS breast composition descriptors using both raw and calibrated full field digital mammography (FFDM) image data.Methods: A matched case-control dataset with FFDM images was used to develop three automated measures for the BI-RADS breast composition descriptors. Histograms of each calibrated mammogram in the percent glandular (pg) representation were processed to create the new BR{sub pg} measure. Two previously validated measures of breast density derived from calibrated and raw mammograms were converted to the new BR{sub vc} and BR{sub vr} measures, respectively. These three measures were compared with the radiologist-reported BI-RADS compositions assessments from the patient records. The authors used two optimization strategies with differential evolution to create these measures: method-1 used breast cancer status; and method-2 matched the reported BI-RADS descriptors. Weighted kappa (?) analysis was used to assess the agreement between the new measures and the reported measures. Each measure's association with breast cancer was evaluated with odds ratios (ORs) adjusted for body mass index, breast area, and menopausal status. ORs were estimated as per unit increase with 95% confidence intervals.Results: The three BI-RADS measures generated by method-1 had ? between 0.250.34. These measures were significantly associated with breast cancer status in the adjusted models: (a) OR = 1.87 (1.34, 2.59) for BR{sub pg}; (b) OR = 1.93 (1.36, 2.74) for BR{sub vc}; and (c) OR = 1.37 (1.05, 1.80) for BR{sub vr}. The measures generated by method-2 had ? between 0.420.45. Two of these measures were

  15. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    SciTech Connect (OSTI)

    Famiano, M.A.

    1997-07-07

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time ({approximately}1 {micro}s to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, {sup 137}Cs gamma rays, and electrons from a {sup 90}Sr/{sup 90}Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired.

  16. Advanced alkaline water electrolysis. Task 2 summary report. Model for alkaline water electrolysis systems

    SciTech Connect (OSTI)

    Yaffe, M.R.; Murray, J.N.

    1980-04-01

    Task 2 involved the establishment of an engineering and economic model for the evaluation of various options in water electrolysis. The mode, verification of the specific coding and four case studies are described. The model was tested by evaluation of a nearly commercial technology, i.e., an 80-kW alkaline electrolyte system, operating at 60/sup 0/C, which delivers approximately 255 SLM, hydrogen for applications such as electrical generation cooling or semiconductor manufacturing. The calculated cost of hydrogen from this installed non-optimized case system with an initial cost to the customer of $87,000 was $6.99/Kg H/sub 2/ ($1.67/100 SCF) on a 20-yr levelized basis using 2.5 cents/kWh power costs. This compares favorably to a levelized average merchant hydrogen cost value of $9.11/Kg H/sub 2/ ($2.17/100 SCF) calculated using the same program.

  17. Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells

    SciTech Connect (OSTI)

    Li, NW; Leng, YJ; Hickner, MA; Wang, CY

    2013-07-10

    To produce an anion-conductive and durable polymer electrolyte for alkaline fuel cell applications, a series of quaternized poly(2,6-dimethyl phenylene oxide)s containing long alkyl side chains pendant to the nitrogen-centered cation were synthesized using a Menshutkin reaction to form comb-shaped structures. The pendant alkyl chains were responsible for the development of highly conductive ionic domains, as confirmed by small-angle X-ray scattering (SAXS). The comb-shaped polymers having one alkyl side chain showed higher hydroxide conductivities than those with benzyltrimethyl ammonium moieties or structures with more than one alkyl side chain per cationic site. The highest conductivity was observed for comb-shaped polymers with benzyldimethylhexadecyl ammonium cations. The chemical stabilities of the comb-shaped membranes were evaluated under severe, accelerated-aging conditions, and degradation was observed by measuring IEC and ion conductivity changes during aging. The comb-shaped membranes retained their high ion conductivity in 1 M NaOH at 80 degrees C for 2000 h. These cationic polymers were employed as ionomers in catalyst layers for alkaline fuel cells. The results indicated that the C-16 alkyl side chain ionomer had a slightly better initial performance, despite its low IEC value, but very poor durability in the fuel cell. In contrast, 90% of the initial performance was retained for the alkaline fuel cell with electrodes containing the C-6 side chain after 60 h of fuel cell operation.

  18. POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING

    SciTech Connect (OSTI)

    Douglas Arnell; Malcolm Pitts; Jie Qi

    2004-11-01

    A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals in these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical

  19. Alternating current field measurement (ACFM): A new technique for the NDT of process plant and piping components

    SciTech Connect (OSTI)

    Raine, G.A.; Monahan, C.C.

    1996-12-31

    This paper describes a new electromagnetic-based NDT technology that is suitable for inspecting process plant and pipework fabricated from some of the more advanced materials, in addition to the traditional carbon steels. The name given to this new NDT technique is Alternating Current Field Measurement, or ACFM. ACFM is an extremely versatile NDT tool with a wide range of practical applications. A major advantage of ACFM over conventional NDT systems is that no calibration is required; crack detection and sizing is based on a theoretical interpretation of the measured signals. The technique is non-contacting and can be used on a wide range of electrically conductive materials (e.g., carbon steel, stainless steel, duplex steel, monel, inconel, aluminum, nickel, titanium, carbon reinforced plastics) without the need for extensive surface cleaning or removal of protective coatings. The flaws may be surface, sub-surface or remote face, depending on the material, and the probes can be designed to suppress signals from features that are not cracks (e.g., corrosion, undercuts, heat-affected zones, etc.), thus overcoming many of the problems associated with other electromagnetic systems and minimizing the probability of spurious indications.

  20. Upper critical field and Kondo effects in Fe(Te0.9Se0.1) thin films by pulsed field measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Salamon, Myron B.; Cornell, Nicholas; Jaime, Marcelo; Balakirev, Fedor F.; Zakhidov, Anvar; Huang, Jijie; Wang, Haiyan

    2016-02-10

    The transition temperatures of epitaxial films of Fe(Te0:9Se0:1) are remarkably insensitive to applied magnetic field, leading to predictions of upper critical fields Bc2(T = 0) in excess of 100 T. Using pulsed magnetic fields, we find Bc2(0) to be on the order of 45 T, similar to values in bulk material and still in excess of the paramagnetic limit. The same films show strong magnetoresistance in fields above Bc2(T), consistent with the observed Kondo minimum seen above Tc. Fits to the temperature dependence in the context of the WHH model, using the experimental value of the Maki parameter, require anmore » effective spin-orbit relaxation parameter of order unity. Lastly, we suggest that Kondo localization plays a similar role to spin-orbit pair breaking in making WHH fits to the data.« less

  1. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic field induced by a turbulent flow of liquid metal a... M. D. Nornberg, E. J. Spence, R. D. Kendrick, C. M. Jacobson, and C. B. Forest b͒ Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 ͑Received 28 October 2005; accepted 20 January 2006; published online 8 May 2006͒ Initial results from the Madison Dynamo Experiment provide details of the inductive response of a turbulent flow of liquid sodium to an applied magnetic field. The

  2. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect (OSTI)

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  3. Alkaline Anion Exchange Membrane Fuel Cells (AEM-FC) Status

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alkaline Anion Exchange Membrane Fuel Cells (AEM-FC) Status Dario R. Dekel Associate Professor Wolfson Department of Chemical Engineering Grand Technion Energy Program (GTEP) Technion - Israel Institute of Technology dario@technion.ac.il 2016 Alkaline Membrane Fuel Cell Workshop Sheraton Grand Phoenix Phoenix, AZ - April 1, 2016 Early days in AEM-FC 153mm 78mm 51mm 4mg/cm 2 PtRu, 4mg/cm 2 Pt black, RH=100%, H 2 / O 2  0.8V @80mA/cm 2 (130mW/cm 2 ) Dario R. Dekel Varcoe et al., Chem. Mater.

  4. Behavior of actinide ions during sludge washing of alkaline radioactive.

    SciTech Connect (OSTI)

    Bond, A. H.; Nash, K. L.; Gelis, A. V.; Jensen, M. P.; Sullivan, J. C.; Rao, L.

    1999-11-15

    It is difficult to accurately predict actinide behavior during the alkaline leaching of Hanford's radioactive sludges due to the diverse chemical and radiolytic conditions existing in these wastes. The results of Pu dissolution during experimental washing of sludge simulants from the BiPO{sub 4} Redox, and PUREX processes shows that {le} 2.l% Pu is dissolved during contact with alkaline media, but up to 65.5% Pu may be dissolved in acidic media. The dissolution of Cr, Fe, Nd, and Mn has also been observed, and the results of solid state, radioanalytical, and spectroscopic investigations are detailed.

  5. New topics in coherent anti-stokes raman scattering gas-phase diagnostics : femtosecond rotational CARS and electric-field measurements.

    SciTech Connect (OSTI)

    Lempert, Walter R.; Barnat, Edward V.; Kearney, Sean Patrick; Serrano, Justin Raymond

    2010-07-01

    We discuss two recent diagnostic-development efforts in our laboratory: femtosecond pure-rotational Coherent anti-Stokes Raman scattering (CARS) for thermometry and species detection in nitrogen and air, and nanosecond vibrational CARS measurements of electric fields in air. Transient pure-rotational fs-CARS data show the evolution of the rotational Raman polarization in nitrogen and air over the first 20 ps after impulsive pump/Stokes excitation. The Raman-resonant signal strength at long time delays is large, and we additionally observe large time separation between the fs-CARS signatures of nitrogen and oxygen, so that the pure-rotational approach to fs-CARS has promise for simultaneous species and temperature measurements with suppressed nonresonant background. Nanosecond vibrational CARS of nitrogen for electric-field measurements is also demonstrated. In the presence of an electric field, a dipole is induced in the otherwise nonpolar nitrogen molecule, which can be probed with the introduction of strong collinear pump and Stokes fields, resulting in CARS signal radiation in the infrared. The electric-field diagnostic is demonstrated in air, where the strength of the coherent infrared emission and sensitivity our field measurements is quantified, and the scaling of the infrared signal with field strength is verified.

  6. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    SciTech Connect (OSTI)

    Yokelson, Robert J.; Burling, Ian R.; Gilman, Jessica; Warneke, Carsten; Stockwell, Chelsea E.; de Gouw, Joost A.; Akagi, Sheryl; Urbanski, Shawn; Veres, Patrick; Roberts, James M.; Kuster, W. C.; Reardon, James; Griffith, David WT; Johnson, Timothy J.; Hosseini, SeyedEhsan; Miller, J. Wayne; Cocker, David R.; Jung, H.; Weise, David

    2013-01-07

    Vegetative fuels commonly consumed in prescribed fires were collected from five locations in the southeastern and southwestern U.S. and burned in a series of 77 fires at the U.S. Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. An additional 152 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. As phase II of this study, we conducted airborne and ground-based sampling of the emissions from real prescribed fires mostly in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These extensive field measurements of emission factors (EF) for temperate biomass burning are useful both for modeling and to examine the representativeness of our lab fire EF. The lab/field EF ratio for the pine understory fuels was not statistically different from one, on average. However, our lab EF for smoldering compounds emitted by burning the semi

  7. Soft x-ray measurement of the toroidal pinch experiment RX reversed field pinch plasma using transition edge sensor calorimeter

    SciTech Connect (OSTI)

    Shinozaki, Keisuke; Hoshino, Akio; Ishisaki, Yoshitaka; Morita, Umeyo; Ohashi, Takaya; Mihara, Tatehiro; Mitsuda, Kazuhisa; Tanaka, Keiichi; Yagi, Yasuyuki; Koguchi, Haruhisa; Hirano, Yoichi; Sakakita, Hajime

    2006-04-15

    A superconductive transition edge sensor (TES) calorimeter is for the first time applied for the diagnostics of the reversed field pinch plasma produced in the toroidal pinch experiment RX (TPE-RX), and the instrumental system is fully described. The first result from the soft x-ray spectroscopy in 0.2-3 keV with an energy resolution {approx}50 eV are also presented. The TES calorimeter is made of a thin bilayer film of titanium and gold with a transition temperature of 151 mK and its best energy resolution at our laboratory is 6.4 eV, while it was significantly degraded by about a factor of eight during the plasma operation. The TES microcalorimeter was installed in a portable adiabatic demagnetization refrigerator (ADR), which is originally designed for a rocket experiment. The detector box is carefully designed to shield the strong magnetic field produced by the ADR and TPE-RX. The ADR was directly connected to TPE-RX with a vacuum duct in the sideway configuration, and cooled down to 125 mK stabilized with an accuracy of 10 {mu}K rms using an improved proportional, integral, and derivative (PID) control method. Thin aluminized Toray Lumirror or Parylene-N films were used for the IR to UV blocking filters of the incident x-ray window to allow soft x-rays coming into the detector with good efficiency. TPE-RX was operated with the plasma current of I{sub p}=220 kA, and the wave forms of the TES output for every plasma shot lasting {approx}80 ms were obtained with a digital oscilloscope. The wave forms were analyzed with the optimal filtering method, and x-ray signals were extracted. A total of 3472 counts of x-ray signals were detected for 210 plasma shots during the flat-top phase of t=35-70 ms. Combined with the data measured with a lithium drifted silicon detector in the 1.3-8 keV range, spectral features are investigated using a spectral fitting package XSPEC. The obtained spectrum is well explained by thermal plasma emission, although an impurity iron-L line

  8. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    current profile dynamics in the Madison Symmetric Torus S. D. Terry, a) D. L. Brower, and W. X. Ding Electrical Engineering Department, University of California, Los Angeles, California 90095 J. K. Anderson, T. M. Biewer, B. E. Chapman, D. Craig, C. B. Forest, R. O'Connell, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 ͑Received 26 August 2003; accepted 20 November 2003͒ The current profile and core magnetic field fluctuation amplitudes

  9. Microsoft Word - S06596_GW.doc

    Office of Legacy Management (LM)

    Field Measurements Alkalinity c mgL -- -- -- -- -- -- -- -- -- -- -- -- -- Alkalinity b mgL 196 130 263 218 196 98 145 202...

  10. Microsoft Word - Appendix C SW Samples.doc

    Office of Legacy Management (LM)

    Field Measurements Alkalinity c mgL -- -- -- -- -- -- -- -- -- -- -- -- -- Alkalinity b mgL 196 130 263 218 196 98 145 202...

  11. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fast electron distribution using a flexible, high time resolution hard x-ray spectrometer R. O'Connell, D. J. Den Hartog, and C. B. Forest University of Wisconsin-Madison, Madison, Wisconsin 53706 R. W. Harvey CompX, California ͑Presented on 10 July 2002͒ A 16 spatial channel hard x-ray ͑HXR͒ diagnostic using solid state CdZnTe detectors ͑active area 10 mmϫ10 mmϫ2 mm, 50 mmϫ20 mmϫ20 mm packaged͒ has recently been installed on the Madison Symmetric Torus ͑MST͒ reversed field pinch to

  12. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radial profile of magnetic field in the Gas-Dynamic Trap using a motional Stark effect diagnostic P. A. Bagryansky, P. P. Deichuli, A. A. Ivanov, S. A. Korepanov, A. A. Lizunov, S. V. Murakhtin, and V. Ya. Savkin Budker Institute of Nuclear Physics, 11 Academician Lavrentiev prospect, Novosibirsk 630090, Russia D. J. Den Hartog a) and G. Fiksel Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 ͑Presented on 8 July 2002͒ We have implemented a spectral motional

  13. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pinch a... A. Kuritsyn, 1,2,b͒ G. Fiksel, 1,2 A. F. Almagri, 1,2 D. L. Brower, 2,3 W. X. Ding, 2,3 M. C. Miller, 1,2 V. V. Mirnov, 1,2 S. C. Prager, 1,2 and J. S. Sarff 1,2 1 Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA 2 Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

  14. Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MHD Dynamo in the Quasi-Single-Helicity Reversed-Field Pinch P. Piovesan, 1 D. Craig, 2 L. Marrelli, 1 S. Cappello, 1 and P. Martin 1,3 1 Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti,4 35127 Padova, Italy 2 Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA 3 Department of Physics, University of Padova, Padova, Italy (Received 7 May 2004; published 29 November 2004) The first experimental study of the MHD dynamo in a

  15. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Induced, Charged Current, Charged Pion Production by Michael Joseph Wilking B.Ch.E., University of Minnesota, 2001 M.S., University of Colorado, 2007 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2009 This thesis entitled: Measurement of Neutrino Induced, Charged Current, Charged Pion Production written by Michael Joseph Wilking has been

  16. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 H( 7 Be, 8 B)γ cross section by Ryan P. Fitzgerald A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics & Astronomy. Chapel Hill 2005 Approved: A. E. Champagne, Advisor J. C. Blackmon, Reader C. Iliadis, Reader ABSTRACT Ryan P. Fitzgerald: Measurement of the 1 H( 7 Be, 8 B)γ cross section (Under the Direction of A. E. Champagne) The fusion

  17. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interpretation of micro benchmark and application energy use on the Cray XC30 Brian Austin, and Nicholas J. Wright ⇤ August 29, 2014 Abstract Understanding patterns of application energy use is key to reaching future HPC e ciency goals. We have measured the sensitivity of en- ergy use to CPU frequency for several microbenchmarks and applications on a Cray XC30. First order fits to the performance and power data are su cient to describe the energy used by these applications. Exam- ination of

  18. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronegative Contaminants and Drift Electron Lifetime in the MicroBooNE Experiment The MicroBooNE Collaboration May 19, 2016 Abstract High-purity liquid argon is critical for the operation of a liquid argon time projec- tion chamber (LArTPC). At MicroBooNE, we have achieved an electron drift lifetime of at least 6 ms without evacuation of the detector vessel. Measurements of the elec- tronegative contaminants oxygen and water are described and shown as the gas and liquid argon stages of

  19. Measurements of the Radiated Fields and Conducted Current Leakage from the Pulsed Power Systems in the National Ignition Facility at LLNL

    SciTech Connect (OSTI)

    Anderson, R A; Clancy, T J; Fulkerson, S; Petersen, D; Pendelton, D; Hulsey, S; Ullery, G; Tuck, J; Polk, M; Kamm, R; Newton, M; Moore, W B; Arnold, P; Ollis, C; Hinz, A; Robb, C; Fornes, J; Watson, J

    2003-07-31

    An important pulsed power system consideration is that they inherently generate fields and currents that can cause interference in other subsystems and diagnostics. Good pulsed power design, grounding and isolation practices can help mitigate these unwanted signals. During the laser commissioning shots for the NIF Early Light milestone at LLNL, measurements were made of the radiated field and conducted currents caused by the Power Conditioning System (PCS) modules with flash lamp load and the Plasma Electrode Pockels Cell (PEPC) driver. The measurements were made in the capacitor bay, laser bay, control room and target bay. The field measurements were made with B-dot and E-dot probes with bandwidth of about 100MHz. The current measurements were made with a clamp on probe with a bandwidth of about 20 MHz. The results of these measurements show fields and currents in the NIF Facility well below that required for interference with other subsystems. Currents on the target chamber from the pulsed power systems are well below the background noise currents.

  20. Note: Fiber optic transport probe for Hall measurements under light and magnetic field at low temperatures: Case study of a two dimensional electron gas

    SciTech Connect (OSTI)

    Bhadauria, P. P. S.; Gupta, Anurag; Kumar, Pramod; Dogra, Anjana; Budhani, R. C.

    2015-05-15

    A fiber optic based probe is designed and developed for electrical transport measurements in presence of quasi-monochromatic (360–800 nm) light, varying temperature (T = 1.8–300 K), and magnetic field (B = 0–7 T). The probe is tested for the resistivity and Hall measurements performed on a LaAlO{sub 3}–SrTiO{sub 3} heterointerface system with a conducting two dimensional electron gas.

  1. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    SciTech Connect (OSTI)

    Choe, Yoong-Kee; Henson, Neil J.; Kim, Yu Seung

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  2. Calcium Hexa Aluminate Linings for Alkaline Environments - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Calcium Hexa Aluminate Linings for Alkaline Environments Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA new composition of calcium hexa aluminate developed at ORNL is a highly effective chemical barrier against corrosive materials inside storage, process, and transport vessel containers. The CA6 composition protects containers from the critical

  3. 2006 Alkaline Membrane Fuel Cell Workshop Final Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alkaline Membrane Fuel Cell Workshop Final Report Workshop held December 11-13, 2006 Embassy Suites Hotel-Phoenix Airport, Phoenix, AZ, USA Sponsored by Army Research Office (ARO) Principal Investigator Bryan Pivovar Fuel Cell Team Leader Los Alamos National Laboratory PO Box 1663, MS D429 Los Alamos, NM 87545 Organizing Committee Peter Fedkiw, North Carolina State University/ARO Robert Mantz, ARO Bryan Pivovar, Los Alamos National Laboratory Break-out Group Chairs Thomas Zawodzinski, Case

  4. Aluminum-Alkaline Metal-Metal Composite Conductor - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Aluminum-Alkaline Metal-Metal Composite Conductor Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Iowa State University and Ames Laboratory researchers have developed a high strength, lightweight aluminum wire for high-voltage power transmission with reduced electrical resistance for overhead electrical lines. Description

  5. Aluminum-Alkaline Metal-Metal Composite Conductor - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Aluminum-Alkaline Metal-Metal Composite Conductor Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Researchers have developed a high strength, lightweight aluminum wire for high-voltage power transmission with reduced electrical resistance for overhead electrical lines. High-voltage electric power transmission cables based on pure

  6. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOE Patents [OSTI]

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  7. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    SciTech Connect (OSTI)

    Koukoulas, Triantafillos Piper, Ben

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  8. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick Vane; Muylaert, Koenraad; Hewson, John C.

    2015-08-20

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potential measurementsmore » suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.« less

  9. Measurement of haplotypic variation in Xanthomonas oryzae pv. oryzae within a single field by rep-PCR and RFLP analyses

    SciTech Connect (OSTI)

    Vera Cruz, C.M.; Leach, J.E.; Ardales, E.Y.; Talag, J.

    1996-12-01

    The haplotypic variation of Xanthomonas oryzae pv. oryzae in a farmer;s field that had endemic bacterial blight in the Philippines was evaluated at a single time. The genomic structure of the field population was analyzed by repetitive sequence-based polymerase chain reaction with oligonucleotide primers corresponding to interspersed repeated sequences in prokaryotic genomes and restriction fragment length polymorphism (RFLP) with the insertion sequence IS1113. The techniques and specific probes and primers were selected because they grouped consistently into the same lineages a set of 30 selected X. oryzae pv. oryzae strains that represented the four distinct RFLP lineages found in the Philippines did. Strains (155) were systematically collected from a field planted to rice cv. Sinandomeng, which is susceptible to the indigenous pathogen population. Two of the four Philippine lineages, B and C, which included race 2 and races 3 and 9, respectively, were detected in the field. Lineage C was the predominant population (74.8%). The haplotypic diversities of 10 of the 25 blocks were significantly greater than the total haplotypic diversity of the collection in the entire field; however, between individual blocks the haplotypic diversities were not significantly different. Haplo-types from both lineages were distributed randomly across the field. Analysis of genetic diversity at the microgeographic scale provided insights into the finer scale of variation of X. oryzae pv. oryzae, which are useful in designing experiments to study effects of host resistance on the population structure of the bacterial blight pathogen. 46 refs., 4 figs., 2 tabs.

  10. Searching for magnetic fields in 11 Wolf-Rayet stars: Analysis of circular polarization measurements from ESPaDOnS

    SciTech Connect (OSTI)

    De la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J.; Collaboration: MiMeS Collaboration

    2014-02-01

    With recent detections of magnetic fields in some of their progenitor O stars, combined with known strong fields in their possible descendant neutron stars, it is natural to search for magnetic fields in Wolf-Rayet (WR) stars, despite the problems associated with the presence of winds enhanced by an order of magnitude over those of O stars. We continue our search among a sample of 11 bright WR stars following our introductory study in a previous paper of WR6 = EZ CMa using the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope, most of them in all four Stokes parameters. This sample includes six WN stars and five WC stars encompassing a range of spectral subclasses. Six are medium/long-period binaries and three show corotating interaction regions. We report no definite detections of a magnetic field in the winds in which the lines form (which is about the same distance from the center of the star as it is from the surface of the progenitor O star) for any of the eleven stars. Possible reasons and their implications are discussed. Nonetheless, the data show evidence supporting marginal detections for WR134, WR137, and WR138. According to the Bayesian analysis, the most probable field intensities are B {sub wind} ∼ 200, 130, and 80 G, respectively, with a 95.4% probability that the magnetic fields present in the observable parts of their stellar wind, if stronger, does not exceed B{sub wind}{sup max}∼1900 G, ∼1500 G, and ∼1500 G, respectively. In the case of non-detections, we report an average field strength upper limit of B{sub wind}{sup max}∼500 G.

  11. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J.; Fountain, Mackenzie; Ralph, John; Hodge, David B.; Hegg, Eric L.

    2016-02-09

    Background: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Results: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10more » h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. In conclusion: This study demonstrated that the fed

  12. Investigations Into the Nature of Alkaline Soluble, Non-Pertechnetate Technetium

    SciTech Connect (OSTI)

    Rapko, Brian M.; Bryan, Samuel A.; Chatterjee, Sayandev; Edwards, Matthew K.; Levitskaia, Tatiana G.; Peterson, James M.; Peterson, Reid A.; Sinkov, Sergey I.

    2013-11-14

    This report summarizes work accomplished in fiscal year (FY) 2013, exploring the chemistry of a low-valence technetium(I) species, [Tc(CO)3(H2O)3]+, a compound of interest due to its implication in the speciation of alkaline-soluble technetium in several Hanford tank waste supernatants. Various aspects of FY 2013s work were sponsored both by Washington River Protection Solutions and the U.S. Department of Energys Office of River Protection; because of this commonality, both sponsors work is summarized in this report. There were three tasks in this FY 2013 study. The first task involved examining the speciation of [(CO)3Tc(H2O)3]+ in alkaline solution by 99Tc nuclear magnetic resonance spectroscopy. The second task involved the purchase and installation of a microcalorimeter suitable to study the binding affinity of [(CO)3Tc(H2O)3]+ with various inorganic and organic compounds relevant to Hanford tank wastes, although the actual measure of such binding affinities is scheduled to occur in future FYs. The third task involved examining the chemical reactivity of [(CO)3Tc(H2O)3]+ as relevant to the development of a [(CO)3Tc(H2O)3]+ spectroelectrochemical sensor based on fluorescence spectroscopy.

  13. Measuring the strong electrostatic and magnetic fields with proton radiography for ultra-high intensity laser channeling on fast ignition

    SciTech Connect (OSTI)

    Uematsu, Y.; Iwawaki, T.; Habara, H. Tanaka, K. A.; Ivancic, S.; Theobald, W.; Lei, A. L.

    2014-11-15

    In order to investigate the intense laser propagation and channel formation in dense plasma, we conducted an experiment with proton deflectometry on the OMEGA EP Laser facility. The proton image was analyzed by tracing the trajectory of mono-energetic protons, which provides understanding the electric and magnetic fields that were generated around the channel. The estimated field strengths (E ∼ 10{sup 11} V/m and B ∼ 10{sup 8} G) agree with the predictions from 2D-Particle-in-cell (PIC) simulations, indicating the feasibility of the proton deflectometry technique for over-critical density plasma.

  14. Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T

    SciTech Connect (OSTI)

    Zhang, Xiaotong; Liu, Jiaen; Van de Moortele, Pierre-Francois; Schmitter, Sebastian; He, Bin

    2014-12-15

    Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate the feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.

  15. Apparatus and procedure to characterize the surface quality of conductors by measuring the rate of cathode emission as a function of surface electric field strength

    DOE Patents [OSTI]

    Mestayer, Mac; Christo, Steve; Taylor, Mark

    2014-10-21

    A device and method for characterizing quality of a conducting surface. The device including a gaseous ionizing chamber having centrally located inside the chamber a conducting sample to be tested to which a negative potential is applied, a plurality of anode or "sense" wires spaced regularly about the central test wire, a plurality of "field wires" at a negative potential are spaced regularly around the sense, and a plurality of "guard wires" at a positive potential are spaced regularly around the field wires in the chamber. The method utilizing the device to measure emission currents from the conductor.

  16. Direct measurement of the characteristic three-body electron attachment time in the atmospheric air in direct current electric field

    SciTech Connect (OSTI)

    Shutov, A. V.; Smetanin, I. V.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Ustinovskii, N. N.; Zvorykin, V. D.

    2013-07-15

    We report the results of theoretical and experimental study of the characteristic time for three-body attachment of electrons produced by 100 fs UV laser pulse in the atmosphere air in the external DC electric field ranged from 0.2 to 10 kV/cm.

  17. Measurements of 222Rn, 220Rn, and CO Emissions in Natural CO2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity

    SciTech Connect (OSTI)

    Kaszuba, John; Sims, Kenneth

    2014-09-30

    An integrated field-laboratory program evaluated the use of radon and CO2 flux measurements to constrain source and timescale of CO2 fluxes in environments proximate to CO2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensure 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or “tool” was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO2-bearing environments. The field program also identified issues with radon and CO2-flux measurements in soil gases at a natural CO2 analog. A systematic survey of radon and CO2 flux in soil gases at the LaBarge CO2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO2 flux may not be a robust method for monitoring the integrity of a CO2 storage reservoir. The field program was also not able to correlate radon and CO2 flux in the CO2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined correction factors for measuring radon in CO2-rich environments. A graduate student earned a Master of Science degree for this part of the field program; she is currently employed with a

  18. Fast pyrobolometers for measurements of plasma heat fluxes and radiation losses in the MST Reversed Field Pinch

    SciTech Connect (OSTI)

    Fiksel, G.; Frank, J.; Holly, D.

    1993-01-07

    Two types of fast bolometers are described for the plasma energy transport study in the Madison Symmetric Torus plasma confinement device. Both types use pyrocrystals of LiTaO[sub 3] or LiNbO[sub 3] as the sensors. One type is used for measurements of the radiated heat losses and is situated at the vacuum shell inner surface. Another type is insertable in the plasma and measures the plasma particle heat flux. The frequency response of the bolometers is measured to be in the 150--200 kHz range. The range of the measured power fluxes is 0.1 W/cm[sup 2] 10 kW/cm[sup 2] and can be adjusted by changing the size of the entrance aperture. The lower limit is determined by the amplifier noise and the frequency bandwidth, the higher limit by destruction of the bolometer sensor.

  19. Fast pyrobolometers for measurements of plasma heat fluxes and radiation losses in the MST Reversed Field Pinch

    SciTech Connect (OSTI)

    Fiksel, G.; Frank, J.; Holly, D.

    1993-01-07

    Two types of fast bolometers are described for the plasma energy transport study in the Madison Symmetric Torus plasma confinement device. Both types use pyrocrystals of LiTaO{sub 3} or LiNbO{sub 3} as the sensors. One type is used for measurements of the radiated heat losses and is situated at the vacuum shell inner surface. Another type is insertable in the plasma and measures the plasma particle heat flux. The frequency response of the bolometers is measured to be in the 150--200 kHz range. The range of the measured power fluxes is 0.1 W/cm{sup 2} 10 kW/cm{sup 2} and can be adjusted by changing the size of the entrance aperture. The lower limit is determined by the amplifier noise and the frequency bandwidth, the higher limit by destruction of the bolometer sensor.

  20. Temperature dependent low-field measurements of the magnetocaloric ΔT with sub-mK resolution in small volume and thin film samples

    SciTech Connect (OSTI)

    Döntgen, J.; Rudolph, J.; Gottschall, T.; Gutfleisch, O.; Salomon, S.; Ludwig, A.; Hägele, D.

    2015-01-19

    We present temperature dependent ΔT measurements of the magnetocaloric effect in a thin film sample of Gd, employing magnetomodulation and detection of thermal radiation. A bulk sample of the metamagnetic material LaFe{sub 11.05}Co{sub 0.91}Si{sub 1.04} shows a strong broadening of the ΔT peak for increasing field amplitudes between 4 and 45 mT. Bulk Gd in comparison shows only a weak broadening. All investigated samples exhibit a clear quadratic dependence of ΔT on the external field H{sub ext} at the ΔT peak maximum, contrary to earlier predictions. An analytic expression is derived that interpolates between the H{sub ext}{sup 2}-behavior at low and the well-known H{sub ext}{sup 2/3}-behavior at high fields.

  1. Current collapse imaging of Schottky gate AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation measurement

    SciTech Connect (OSTI)

    Katsuno, Takashi Ishikawa, Tsuyoshi; Ueda, Hiroyuki; Uesugi, Tsutomu; Manaka, Takaaki; Iwamoto, Mitsumasa

    2014-06-23

    Two-dimensional current collapse imaging of a Schottky gate AlGaN/GaN high electron mobility transistor device was achieved by optical electric field-induced second-harmonic generation (EFISHG) measurements. EFISHG measurements can detect the electric field produced by carriers trapped in the on-state of the device, which leads to current collapse. Immediately after (e.g., 1, 100, or 800 μs) the completion of drain-stress voltage (200 V) in the off-state, the second-harmonic (SH) signals appeared within 2 μm from the gate edge on the drain electrode. The SH signal intensity became weak with time, which suggests that the trapped carriers are emitted from the trap sites. The SH signal location supports the well-known virtual gate model for current collapse.

  2. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x

  3. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-29

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the

  4. 2011 Alkaline Membrane Fuel Cell Workshop Final Report

    SciTech Connect (OSTI)

    Pivovar, B.

    2012-02-01

    A workshop addressing the current state-of-the-art in alkaline membrane fuel cells (AMFCs) was held May 8-9, 2011, at the Crystal Gateway Marriott in Arlington, Virginia. This workshop was the second of its kind, with the first being held December 11-13, 2006, in Phoenix, Arizona. The 2011 workshop and associated workshop report were created to assess the current state of AMFC technology (taking into account recent advances), investigate the performance potential of AMFC systems across all possible power ranges and applications, and identify the key research needs for commercial competitiveness in a variety of areas.

  5. Measurements and modeling of the impact of weak magnetic fields on the plasma properties of a planar slot antenna driven plasma source

    SciTech Connect (OSTI)

    Yoshikawa, Jun Susa, Yoshio; Ventzek, Peter L. G.

    2015-05-15

    The radial line slot antenna plasma source is a type of surface wave plasma source driven by a planar slot antenna. Microwave power is transmitted through a slot antenna structure and dielectric window to a plasma characterized by a generation zone adjacent to the window and a diffusion zone that contacts a substrate. The diffusion zone is characterized by a very low electron temperature. This renders the source useful for soft etch applications and thin film deposition processes requiring low ion energy. Another property of the diffusion zone is that the plasma density tends to decrease from the axis to the walls under the action of ambipolar diffusion at distances far from where the plasma is generated. A previous simulation study [Yoshikawa and. Ventzek, J. Vac. Sci. Technol. A 31, 031306 (2013)] predicted that the anisotropy in transport parameters due to weak static magnetic fields less than 50 G could be leveraged to manipulate the plasma profile in the radial direction. These simulations motivated experimental tests in which weak magnetic fields were applied to a radial line slot antenna source. Plasma absorption probe measurements of electron density and etch rate showed that the magnetic fields remote from the wafer were able to manipulate both parameters. A summary of these results is presented in this paper. Argon plasma simulation trends are compared with experimental plasma and etch rate measurements. A test of the impact of magnetic fields on charge up damage showed no perceptible negative effect.

  6. A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martin G. De Kauwe; Serbin, Shawn P.; Lin, Yan -Shih; Wright, Ian J.; Medlyn, Belinda E.; Crous, Kristine Y.; Ellsworth, David S.; Maire, Vincent; Prentice, I. Colin; Atkin, Owen K.; et al

    2015-12-31

    Here, simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (Vcmax). Estimating this parameter using A–Ci curves (net photosynthesis, A, vs intercellular CO2 concentration, Ci) is laborious, which limits availability of Vcmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (Asat) measurements, from which Vcmax can be extracted using a ‘one-point method’.

  7. Measurement of magnetic turbulence structure and nonlinear mode coupling of tearing fluctuations in the Madison Symmetric Torus reversed field pinch edge

    SciTech Connect (OSTI)

    Assadi, S.

    1994-01-01

    Linear and nonlinear magnetohydrodynamic (MHD) stability of current-driven modes are studied in the MST reversed field pinch. Measured low frequency (f < 35 kHz) magnetic fluctuations are consistent with the global resistive tearing instabilities predicted by 3-D MHD simulations. At frequencies above 35 kHz, the magnetic fluctuations were detected to be localized and externally resonant. Discrete dynamo events, ``sawtooth oscillations,`` have been observed in the experimental RFP plasmas. This phenomenon causes the plasma to become unstable to m = 1 tearing modes. The modes that may be important in different phases of these oscillations are identified. These results then assist in nonlinear studies and also help to interpret the spectral broadening of the measured data during a discrete dynamo event. Three-wave nonlinear coupling of spectral Fourier modes is measured in the MST by applying bispectral analysis to magnetic fluctuations measured at the plasma edge at 64 toroidal locations and 16 poloidal locations, permitting observation of coupling over 8 poloidal and 32 toroidal modes. Comparison to bispectra predicted by resistive MHD computation indicates reasonably good agreement. However, during the crash phase of the sawtooth oscillation the nonlinear coupling is strongly enhanced, concomitant with a broadened k-spectrum. During the sawtooth formation the plasma is undergoing a pure diffusive process. The dynamo only occurs during the sawtooth crash. High frequency activity prior to a sawtooth crash is caused by nonlinear frequency (small-scale) mode coupling. Growth rate and coupling coefficients of toroidal mode spectra are calculated by statistical modeling. Temporal evolution of edge toroidal mode spectra has been predicted by transfer function analysis. The driving sources of electrostatic fields are different than for the magnetic fields. The characteristics of tearing modes can be altered by external field errors and addition of impurities to the plasma.

  8. In-field Calibration of a Fast Neutron Collar for the Measurement of Fresh PWR Fuel Assemblies

    SciTech Connect (OSTI)

    Swinhoe, Martyn Thomas; De Baere, Paul

    2015-04-17

    A new neutron collar has been designed for the measurement of fresh LEU fuel assemblies. This collar uses “fast mode” measurement to reduce the effect of burnable poison rods on the assay and thus reduce the dependence on the operator’s declaration. The new collar design reduces effect of poison rods considerably. Instead of 12 pins of 5.2% Gd causing a 20.4% effect, as in the standard thermal mode collar, they only cause a 3.2% effect in the new collar. However it has higher efficiency so that reasonably precise measurements can be made in 25 minutes, rather than the 1 hour of previous collars. The new collar is fully compatible with the use of the standard data collection and analysis code INCC. This report describes the calibration that was made with a mock-up assembly at Los Alamos National Laboratory and with actual assemblies at the AREVA Fuel fabrication Plant in Lingen, Germany.

  9. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    SciTech Connect (OSTI)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  10. Spin-lattice coupling in uranium dioxide probed by magnetostriction measurements at high magnetic fields (P08358-E001-PF)

    SciTech Connect (OSTI)

    Gofryk, K.; Jaime, M.

    2014-12-01

    Our preliminary magnetostriction measurements have already shown a strong interplay of lattice dynamic and magnetism in both antiferromagnetic and paramagnetic states, and give unambiguous evidence of strong spin- phonon coupling in uranium dioxide. Further studies are planned to address the puzzling behavior of UO2 in magnetic and paramagnetic states and details of the spin-phonon coupling.

  11. Measuring features of the fluence at the far field of a CO/sub 2/ pulsed laser: an issue study with suggestions on how to do it

    SciTech Connect (OSTI)

    Johnson, E.G. Jr.; Phelan, R.J. Jr.; Boyle, D.R.

    1980-04-01

    This study examines the problems for measuring the energy density incident on targets where the energy is from a pulse of high energy at CO2 wavelengths and where the targets are located at the far field. The analysis considers two targets--first, a ground-based target for testing and calibration of the measurement systems and second, a drone towed behind an airplane from which the energy distribution information is telemetered to the ground station. Although certain design limits are assumed, the results are general and therefore specific data about the laser sources is not supplied. This study traces each stage of the measurement system from the reception of the incident laser pulse on the drone to the pulse-coded transmission of the sampled data to a ground-based computer.

  12. Measurement of cross-field power loss due to rovibrationally excited H{sub 2} in a detached hydrogen divertor plasma simulator

    SciTech Connect (OSTI)

    Hollmann, E.M.; Pigarov, A.Yu.; Yan, Z.

    2006-05-15

    The cross-field power loss due to radiation, plasma, and neutrals are measured for hydrogen discharges in a linear divertor simulator experiment. Radiation appears to be the dominant power loss channel; however, power loss due to heating of H{sub 2} neutrals is found to be quite significant, being only 2x weaker than radiation in the higher neutral pressure experiments. The H{sub 2} vibrational temperature T{sub vib} is found to be the most important channel for carrying neutral energy out of the plasma--more important than either kinetic temperature T{sub kin} or rotational temperature T{sub rot}. Power carried radially to the wall by plasma cross-field transport is found to be negligible when compared to neutral and radiation losses. These results demonstrate the importance of including of H{sub 2} neutrals in understanding power balance in detached tokamak divertors.

  13. Measurement of the second-order Zeeman effect on the sodium clock transition in the weak-magnetic-field region using the scalar Aharonov-Bohm phase

    SciTech Connect (OSTI)

    Numazaki, Kazuya; Imai, Hiromitsu; Morinaga, Atsuo

    2010-03-15

    The second-order Zeeman effect of the sodium clock transition in a weak magnetic field of less than 50 {mu}T was measured as the scalar Aharonov-Bohm phase by two-photon stimulated Raman atom interferometry. The ac Stark effect of the Raman pulse was canceled out by adopting an appropriate intensity ratio of two photons in the Raman pulse. The Ramsey fringes for the pulse separation of 7 ms were obtained with a phase uncertainty of {pi}/200 rad. The nondispersive feature of the scalar Aharonov-Bohm phase was clearly demonstrated through 18 fringes with constant amplitude. The Breit-Rabi formula of the sodium clock transition was verified to be {Delta}{nu}=(0.222{+-}0.003)x10{sup 12}xB{sup 1.998{+-}0.004} in a magnetic field of less than 50 {mu}T.

  14. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-06-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi

  15. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi

  16. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames

    SciTech Connect (OSTI)

    Stopper, U.; Aigner, M.; Ax, H.; Meier, W.; Sadanandan, R.; Stoehr, M.; Bonaldo, A.

    2010-04-15

    Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW. The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions. Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence-chemistry interaction. (author)

  17. Alkaline assisted thermal oil recovery: Kinetic and displacement studies

    SciTech Connect (OSTI)

    Saneie, S.; Yortsos, Y.C.

    1993-06-01

    This report deals with two major issues of chemical assisted flooding - the interaction of caustic, one of the proposed additives to steam flood, with the reservoir rock, and the displacement of oil by a chemical flood at elevated temperatures. A mathematical model simulating the kinetics of silica dissolution and hydroxyl ion consumption in a typical alkaline flooding environment is first developed. The model is based on the premise that dissolution occurs via hydrolysis of active sites through the formation of an intermediate complex, which is in equilibrium with the silicic acid in solution. Both static (batch) and dynamic (core flood) processes are simulated to examine the sensitivity of caustic consumption and silica dissolution to process parameters, and to determine rates of propagation of pH values. The model presented provides a quantitative description of the quartz-alkali interaction in terms of pH, salinity, ion exchange properties, temperature and contact time, which are of significant importance in the design of soluble silicate flooding processes. The modeling of an adiabatic hot waterflood assisted by the simultaneous injection of a chemical additive is next presented. The model is also applicable to the hot alkaline flooding under conditions of negligible adsorption of the generated anionic surfactant and of hydroxide adsorption being Langmuirian. The theory of generalized simple waves (coherence ) is used to develop solutions for the temperature, concentration, and oil saturation profiles, as well as the oil recovery curves. It is shown that, for Langmuir adsorption kinetics, the chemical resides in the heated region of the reservoir if its injection concentration is below a critical value, and in the unheated region if its concentration exceeds this critical value. Results for a chemical slug injection in a tertiary recovery process indicate recovery performance is maximized when chemical resides in the heated region of the reservior.

  18. A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis

    SciTech Connect (OSTI)

    Martin G. De Kauwe; Serbin, Shawn P.; Lin, Yan -Shih; Wright, Ian J.; Medlyn, Belinda E.; Crous, Kristine Y.; Ellsworth, David S.; Maire, Vincent; Prentice, I. Colin; Atkin, Owen K.; Rogers, Alistair; Niinemets, Ulo; Meir, Patrick; Uddling, Johan; Togashi, Henrique F.; Tarvainen, Lasse; Weerasinghe, Lasantha K.; Evans, Bradley J.; Ishida, F. Yoko; Domingues, Tomas F.

    2015-12-31

    Here, simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (Vcmax). Estimating this parameter using A–Ci curves (net photosynthesis, A, vs intercellular CO2 concentration, Ci) is laborious, which limits availability of Vcmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (Asat) measurements, from which Vcmax can be extracted using a ‘one-point method’.

  19. Field-measured performance of four full-scale cylindrical stratified chilled-water thermal storage tanks

    SciTech Connect (OSTI)

    Musser, A.; Bahnfleth, W.P.

    1999-07-01

    Results are presented for controlled flow rate tests in four full-scale cylindrical chilled-water storage tanks. The tanks range in volume from 1.15 to 5.18 million gallons (4.35 to 19.61 million liters) and have water depths of 40 to 65 ft (12.2 to 19.8 m). Water is introduced into and withdrawn from two of these tanks using radial parallel plate diffusers, while the remaining two tanks utilize octagonal slotted pipe diffuser designs. Thermal performance is quantified for full cycles in terms of Figure of Merit, for single charge and discharge processes as half-cycle Figure of Merit, and for incomplete charge and discharge processes as Lost Capacity. Results show that the thermal performance of all four tanks is excellent, with less than 4% of theoretical cooling capacity lost to inlet mixing and other degradation mechanisms for flow rates less than or equal to design. Based on these results, the appropriateness of current design guidance is discussed. Operational issues that affect implementation of controlled flow rate full-scale tests are also identified, and measurement issues are addressed.

  20. Genome Sequence of the Alkaline-Tolerant Cellulomonas sp. Strain FA1

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cohen, Michael F.; Hu, Ping; Nguyen, My Vu; Kamennaya, Nina; Brown, Natasha; Woyke, Tanja; Kyrpides, Nikos; Holman, Hoi-Ying; Torok, Tamas

    2015-06-18

    We present the genome of the cellulose-degrading Cellulomonas sp. strain FA1 isolated from an actively serpentinizing highly alkaline spring. Knowledge of this genome will enable studies into the molecular basis of plant material degradation in alkaline environments and inform the development of lignocellulose bioprocessing procedures for biofuel production.

  1. Genome Sequence of the Alkaline-Tolerant Cellulomonas sp. Strain FA1

    SciTech Connect (OSTI)

    Cohen, Michael F.; Hu, Ping; Nguyen, My Vu; Kamennaya, Nina; Brown, Natasha; Woyke, Tanja; Kyrpides, Nikos; Holman, Hoi-Ying; Torok, Tamas

    2015-06-18

    We present the genome of the cellulose-degrading Cellulomonas sp. strain FA1 isolated from an actively serpentinizing highly alkaline spring. Knowledge of this genome will enable studies into the molecular basis of plant material degradation in alkaline environments and inform the development of lignocellulose bioprocessing procedures for biofuel production.

  2. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    SciTech Connect (OSTI)

    Zheng, Ji-Lu Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  3. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect (OSTI)

    Snadra L. Fox; X. Xie; K. D. Schaller; E. P. Robertson; G. A. Bala

    2003-10-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones. Current technology relies on the use of cross-linking agents to initiate gelation. The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have produced a reactive alkaline-soluble biopolymer from Agrobacterium sp. ATCC no. 31749 that gels upon decreasing the pH of the polymeric solution. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability. Permeability modification was investigated by injecting solubilized biopolymer into Berea sandstone cores and defining the contribution of pH, salt, temperature, and Schuricht crude oil on biopolymer gelation. The biopolymer was soluble in KOH at a pH greater than 11.4 and gelled when the pH dropped below 10.8. The Berea sandstone core buffered the biopolymer solution, decreasing the pH sufficiently to form a gel, which subsequently decreased the permeability. The effluent pH of the control cores injected with 0.01 {und M} KOH (pH 12.0) and 0.10{und M} KOH (pH 13.0) decreased to 10.6 and 12.7, respectively. The permeability of the sandstone core injected with biopolymer was decreased to greater than 95% of the original permeability at 25 C in the presence of 2% NaCl, and Schuricht crude oil; however, the permeability increased when the temperature of the core was increased to 60 C. Residual resistance factors as high as 792 were seen in Berea cores treated with biopolymer. The buffering capacity of sandstone has been demonstrated to reduce the pH of a biopolymer solution sufficiently to cause the polymer to form a stable in-situ gel. This finding could potentially lead to alternate technology for permeability modification, thus

  4. Contamination and purification of alkaline gas treating solutions

    SciTech Connect (OSTI)

    McCullough, J.G. [Proton Technology Ltd., Hawthorne, NY (United States); Nielsen, R.B. [Fluor Daniel, Inc., Irvine, CA (United States)

    1996-08-01

    Alkanolamine and potassium carbonate solutions in gas treating units removing carbon dioxide, hydrogen sulfide, or both are contaminated by impurities in the feed gases and makeup water and by the products of the degradation and oxidation of amines occurring in the units themselves. Feed gas impurities include oxygen, carbonyl sulfide, carbon monoxide, hydrogen cyanide, ammonia, brine, solid particles, heavy hydrocarbons, sulfur dioxide, hydrochloric acid, organic acids, and pipeline corrosion inhibitors. Impure makeup water contains sulfate, chloride, alkali metal, and alkaline earth ions (hardness). Reactions causing contamination in the units include oxidation of hydrogen sulfide to sulfate and thiosulfate, oxidation of amines to formic acid and other products, and degradation of amines by carbon dioxide. The resulting heat-stable salts and polymers reduce the gas absorbing capacity of alkanolamine solutions and increase their corrosiveness. Similar problems occur in potassium carbonate solutions, except that degradation products of amine activators are too dilute to be harmful. Contaminants are removed by inlet gas separation, charcoal and mechanical filtration, neutralization of heat-stable salts, reclaiming at both atmospheric and reduced pressure, upstream washing of the feed gas, electrodialysis, use of antioxidants, ion exchange, and blowdown and dumping of the solution.

  5. Effects of spin-lock field direction on the quantitative measurement of spin-lattice relaxation time constant in the rotating frame (T1ρ) in a clinical MRI system

    SciTech Connect (OSTI)

    Yee, Seonghwan; Gao, Jia-Hong

    2014-12-15

    Purpose: To investigate whether the direction of spin-lock field, either parallel or antiparallel to the rotating magnetization, has any effect on the spin-lock MRI signal and further on the quantitative measurement of T1ρ, in a clinical 3 T MRI system. Methods: The effects of inverted spin-lock field direction were investigated by acquiring a series of spin-lock MRI signals for an American College of Radiology MRI phantom, while the spin-lock field direction was switched between the parallel and antiparallel directions. The acquisition was performed for different spin-locking methods (i.e., for the single- and dual-field spin-locking methods) and for different levels of clinically feasible spin-lock field strength, ranging from 100 to 500 Hz, while the spin-lock duration was varied in the range from 0 to 100 ms. Results: When the spin-lock field was inverted into the antiparallel direction, the rate of MRI signal decay was altered and the T1ρ value, when compared to the value for the parallel field, was clearly different. Different degrees of such direction-dependency were observed for different spin-lock field strengths. In addition, the dependency was much smaller when the parallel and the antiparallel fields are mixed together in the dual-field method. Conclusions: The spin-lock field direction could impact the MRI signal and further the T1ρ measurement in a clinical MRI system.

  6. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  7. M4FT-15OR03100421: Status Report on Alkaline Conditioning Studies

    SciTech Connect (OSTI)

    Tsouris, Costas; Brown, Suree; Janke, Christopher James; Mayes, Richard T; Dai, Sheng; Kuo, Li-Jung; Gill, Gary

    2015-05-01

    Significant progress in understanding the role of alkaline conditioning of polyethylene-fiber adsorbent, developed at the Oak Ridge National Laboratory (ORNL), is demonstrated in this report, which is essentially a manuscript prepared for publication in the journal Industrial & Engineering Chemistry Research of the American Chemical Society. The manuscript describes the influence of various parameters involved in adsorbent alkaline conditioning, including base concentration and duration and temperature of conditioning, on the uranium uptake history by the adsorbent. Various solutions have been used to determine the influence of conditioning parameters including (i) a screening solution containing uranyl nitrate at approximately 8 ppm and sodium bicarbonate and sodium chloride at concentrations similar to those found in seawater, (ii) seawater spiked with approximately 75 ppb uranium, and (iii) natural seawater. In addition to concentration measurements by inductively coupled plasma (ICP) spectroscopy to determine the uranium uptake capacity and kinetics, spectroscopic methods such as Fourier transformed infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy were employed to investigate the effect of base treatment on the various chemical bonds of the adsorbent. Scanning electron microscopy (SEM) has also been employed to determine structural effects of the alkali on the adsorbent. The results are summarized as follows: 1. Alkali conditioning is necessary to prepare the adsorbent for uranium uptake. ICP analysis showed that without alkali conditioning, no appreciable uranium adsorption occurs. 2. FTIR showed that the base converts amidoxime to carboxylate groups. 3. FTIR showed that formation of carboxylate groups is irreversible and reduces the selectivity of the adsorbent toward uranium. 4. NMR showed that alkali conditioning leads also to the formation of cyclic imidedioxime, which is suspected to bind uranium, vanadium, iron, copper, and

  8. Control of alkaline stress corrosion cracking in pressurized-water reactor steam generator tubing

    SciTech Connect (OSTI)

    Hwang, I.S. . Dept. of Nuclear Engineering); Park, I.G. . Div. of Materials Science and Engineering)

    1999-06-01

    Outer-diameter stress corrosion cracking (ODSCC) of alloy 600 (UNS N06600) tubings in steam generators of the Kori-1 pressurized-water reactor (PWR) caused an unscheduled outage in 1994. Failure analysis and remedy development studies were undertaken to avoid a recurrence. Destructive examination of a removed tube indicated axial intergranular cracks developed at the top of sludge caused by a boiling crevice geometry. A high ODSCC propagation rate was attributed to high local pH and increased corrosion potential resulting from oxidized copper presumably formed during the maintenance outage and plant heatup. Remedial measures included: (1) crevice neutralization by crevice flushing with boric acid (H[sub 3]BO[sub 3]) and molar ratio control using ammonium chloride (NH[sub 4]Cl), (2) corrosion potential reduction by hydrazine (H[sub 2]NNH[sub 2]) soaking and suppression of oxygen below 20 ppb to avoid copper oxide formation, (3) titanium dioxide (TiO[sub 2]) inhibitor soaking, and (4) temperature reduction of 5 C. Since application of the remedy program, no significant ODSCC has been observed, which clearly demonstrates the benefit of departing from an oxidizing alkaline environment. In addition, the TiO[sub 2] inhibitor appeared to have a positive effect, warranting further examination.

  9. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  10. Simulating Black Carbon and Dust and their Radiative Forcing in Seasonal Snow: A Case Study over North China with Field Campaign Measurements

    SciTech Connect (OSTI)

    Zhao, Chun; Hu, Zhiyuan; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Maoyi; Jin, Jiming; Flanner, M. G.; Zhang, Rudong; Wang, Hailong; Yan, Huiping; Lu, Zifeng; Streets, D. G.

    2014-10-30

    A state-of-the-art regional model, WRF-Chem, is coupled with the SNICAR model that includes the sophisticated representation of snow metamorphism processes available for climate study. The coupled model is used to simulate the black carbon (BC) and dust concentrations and their radiative forcing in seasonal snow over North China in January-February of 2010, with extensive field measurements used to evaluate the model performance. In general, the model simulated spatial variability of BC and dust mass concentrations in the top snow layer (hereafter BCS and DSTS, respectively) are quantitatively or qualitatively consistent with observations. The model generally moderately underestimates BCS in the clean regions but significantly overestimates BCS in some polluted regions. Most model results fall into the uncertainty ranges of observations. The simulated BCS and DSTS are highest with >5000 ng g-1 and up to 5 mg g-1, respectively, over the source regions and reduce to <50 ng g-1 and <1 ?g g-1, respectively, in the remote regions. BCS and DSTS introduce similar magnitude of radiative warming (~10 W m-2) in snowpack, which is comparable to the magnitude of surface radiative cooling due to BC and dust in the atmosphere. This study represents the first effort in using a regional modeling framework to simulate BC and dust and their direct radiative forcing in snow. Although a variety of observational datasets have been used to attribute model biases, some uncertainties in the results remain, which highlights the need for more observations, particularly concurrent measurements of atmospheric and snow aerosols and the deposition fluxes of aerosols, in future campaigns.

  11. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  12. Atmospheric Radiation Measurement (ARM) Data from Los Angeles, California, to Honolulu, Hawaii for the Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign (an AMF2 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship Spirit, operated by Horizon Lines, for the Marine ARM GPCI* Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation; surface meteorological and oceanographic variables; and atmospheric profiles from weather balloons launched every six hours. During two two-week intensive observational periods in January and July 2013, additional instruments were deployed and balloon soundings were be increased to every three hours. These additional data provided a more detailed characterization of the state of the atmosphere and its daily cycle during two distinctly different seasons. The primary objective of MAGIC was to improve the representation of the stratocumulus-to-cumulus transition in climate models. AMF2 data documented the small-scale physical processes associated with turbulence, convection, and radiation in a variety of marine cloud types.

  13. Field Campaign Guidelines

    SciTech Connect (OSTI)

    Voyles, J. W.; Chapman, L. A.

    2015-12-01

    This document establishes a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking System and are specifically tailored to meet the scope of each field campaign.

  14. Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Chamness, Michele A.; Petersen, Joseph M.; Singer, Brett C.; Maddalena, Randy L.; Destaillats, Hugo

    2014-10-20

    -emitting and “conventional” materials as installed in newly constructed residential homes using both (1) highly controlled, short-term active samples to precisely characterize the building-related chemical emissions and building contents and (2) a week-long passive sample designed to capture the impact of occupant behavior and related activities on measured IAQ contaminant levels indoors. The combination of detailed short-term measurements with the home under controlled/consistent conditions during pre- and post-occupancy and the week-long passive sampling data provide the opportunity to begin to separate the different emission sources and help isolate and quantify variability in the monitored homes. Between April and August 2014, the research team performed pre-occupancy and post-occupancy sampling in one conventional home and two homes built with low-emitting materials that were generally consistent with EPA’s Indoor airPLUS guidelines. However, for a number of reasons, the full experimental plan was not implemented. The project was intended to continue for up to three years to asses long-term changes in IAQ but the project was limited to one calendar year. As a result, several of the primary research questions related to seasonal impacts and the long-term trends in IAQ could not be addressed. In addition, there were several unexpected issues related to recruiting, availability of home types, and difficulty coordinating with builders/realtors/homeowners. Several field monitoring issues also came up that provide “lessons learned” that led to improvements to the original monitoring plan. The project produced a good experimental plan that is expected to be be useful for future efforts collecting data to support answering these same or similar research questions.

  15. Real-time materials evolution visualized within intact cycling alkaline batteries

    SciTech Connect (OSTI)

    Gallaway, JW; Erdonmez, CK; Zhong, Z; Croft, M; Sviridov, LA; Sholklapper, TZ; Turney, DE; Banerjee, S; Steingart, DA

    2014-01-01

    The scientific community has focused on the problem of inexpensive, safe, and sustainable large-scale electrical energy storage, which is needed for a number of emerging societal reasons such as stabilizing intermittent renewables-based generation like solar and wind power. The materials used for large-scale storage will need to be low cost, earth-abundant, and safe at the desired scale. The Zn-MnO2 "alkaline" battery chemistry is associated with one-time use, despite being rechargeable. This is due to material irreversibilities that can be triggered in either the anode or cathode. However, as Zn and MnO2 have high energy density and low cost, they are economically attractive even at limited depth of discharge. As received, a standard bobbin-type alkaline cell costs roughly $20 per kW h. The U. S. Department of Energy ARPA-E $100 per kW h cost target for grid storage is thus close to the cost of alkaline consumer primary cells if re-engineered and/or cycled at 5-20% nominal capacity. Herein we use a deeply-penetrating in situ technique to observe ZnO precipitation near the separator in an alkaline cell anode cycled at 5% DOD, which is consistent with cell failures observed at high cycle life. Alkaline cells designed to avoid such causes of cell failure could serve as a low-cost baseload for large-scale storage.

  16. Removal of dissolved actinides from alkaline solutions by the method of appearing reagents

    DOE Patents [OSTI]

    Krot, Nikolai N.; Charushnikova, Iraida A.

    1997-01-01

    A method of reducing the concentration of neptunium and plutonium from alkaline radwastes containing plutonium and neptunium values along with other transuranic values produced during the course of plutonium production. The OH.sup.- concentration of the alkaline radwaste is adjusted to between about 0.1M and about 4M. [UO.sub.2 (O.sub.2).sub.3 ].sup.4- ion is added to the radwastes in the presence of catalytic amounts of Cu.sup.+2, Co.sup.+2 or Fe.sup.+2 with heating to a temperature in excess of about 60.degree. C. or 85.degree. C., depending on the catalyst, to coprecipitate plutonium and neptunium from the radwaste. Thereafter, the coprecipitate is separated from the alkaline radwaste.

  17. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect (OSTI)

    Ternes, M.P.

    1991-01-01

    The performance of an advanced residential energy conservation measure (ECM) selection technique was tested in Buffalo, New York, to verify the energy savings and program improvements achieved from use of the technique in conservation programs and provide input into determining whether utility investments in residential gas end-use conservation are cost effective. The technique analyzes a house to identify all ECMs that are cost effective in the building envelope, space-heating system, and water-heating system. The benefit-to-cost ratio (BCR) for each ECM is determined and cost-effective ECMs (BCR > 1.0) are selected once interactions between ECMs are taken into account. Eighty-nine houses with the following characteristics were monitored for the duration of the field test: occupants were low-income, houses were single-family detached houses but not mobile homes, and primary space- and water-heating systems were gas-fired. Forty-five houses received a mix of ECMs as selected by the measure selection technique (audit houses) and 44 served as a control group. Pre-weatherization data were collected from January to April 1988 and post-weatherization data were collected from December 1988 to April 1989. Space- and waterheating gas consumption and indoor temperature were monitored weekly during the two winters. A house energy consumption model and regression analysis were employed to normalize the space-heating energy savings to average outdoor temperature conditions and a 68 F indoor temperature. Space and water-heating energy savings for the audit houses were adjusted by the savings for the control houses. The average savings of 257 therms/year for the audit houses was 17% of the average pre-weatherization house gas consumption and 78% of that predicted. Average space-heating energy savings was 252 therms/year (25% of pre-weatherization space-heating energy consumption and 85% of the predicted value) and average water-heating savings was 5 therms/year (2% of pre

  18. Developing and Testing an Alkaline-Side Solvent Extraction Process for Technetium Separation from Tank Waste

    SciTech Connect (OSTI)

    Leonard, Ralph A.; Conner, Cliff; Liberatore, Matthew W.; Bonnesen, Peter V.; Presley, Derek J.; Moyer, Bruce A.; Lumetta, Gregg J. )

    1998-11-01

    Engineering development and testing of the SRTALK solvent extraction process are discussed in this paper. This process provides a way to carry out alkaline-side removal and recovery of technetium in the form of pertechnetate anion from nuclear waste tanks within the DOE complex. The SRTALK extractant consists of a crown ether, bis-4,4'(5')[(tert-butyl)cyclohexano]-18-crown-6, in a modifier, tributyl phosphate, and a diluent, Isopar-L. The SRTALK flowsheet given here separates technetium form the waste and concentrates it by a factor of ten to minimize the load on downstream evaporator for the technetium effluent. In this work, we initially generated and correlated the technetium extraction data, measured the dispersion number for various processing conditions, and determined hydraulic performance in a single-stage 2-cm centrifugal contactor. Then we used extraction-factor analysis, single-stage contactor tests, and stage-to-stage process calculations to develop a SRTALK flowsheet . Key features of the flowsheet are (1) a low organic-to-aqueous (O/A) flow ratio in the extraction section and a high O/A flow ratio in the strip section to concentrate the technetium and (2) the use of a scrub section to reduce the salt load in the concentrated technetium effluent. Finally, the SRTALK process was evaluated in a multistage test using a synthetic tank waste. This test was very successful. Initial batch tests with actual waste from the Hanford nuclear waste tanks show the same technetium extractability as determined with the synthetic waste feed. Therefore, technetium removal from actual tank wastes should also work well using the SRTALK process.

  19. Small fields output factors measurements and correction factors determination for several detectors for a CyberKnife{sup Registered-Sign} and linear accelerators equipped with microMLC and circular cones

    SciTech Connect (OSTI)

    Bassinet, C.; Huet, C.; Derreumaux, S.; Baumann, M.; Trompier, F.; Roch, P.; Clairand, I.; Brunet, G.; Gaudaire-Josset, S.; Chea, M.; Boisserie, G.

    2013-07-15

    Purpose: The use of small photon fields is now an established practice in stereotactic radiosurgery and radiotherapy. However, due to a lack of lateral electron equilibrium and high dose gradients, it is difficult to accurately measure the dosimetric quantities required for the commissioning of such systems. Moreover, there is still no metrological dosimetric reference for this kind of beam today. In this context, the first objective of this work was to determine and to compare small fields output factors (OF) measured with different types of active detectors and passive dosimeters for three types of facilities: a CyberKnife{sup Registered-Sign} system, a dedicated medical linear accelerator (Novalis) equipped with m3 microMLC and circular cones, and an adaptive medical linear accelerator (Clinac 2100) equipped with an additional m3 microMLC. The second one was to determine the k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors introduced in a recently proposed small field dosimetry formalism for different active detectors.Methods: Small field sizes were defined either by microMLC down to 6 Multiplication-Sign 6 mm{sup 2} or by circular cones down to 4 mm in diameter. OF measurements were performed with several commercially available active detectors dedicated to measurements in small fields (high resolution diodes: IBA SFD, Sun Nuclear EDGE, PTW 60016, PTW 60017; ionizing chambers: PTW 31014 PinPoint chamber, PTW 31018 microLion liquid chamber, and PTW 60003 natural diamond). Two types of passive dosimeters were used: LiF microcubes and EBT2 radiochromic films.Results: Significant differences between the results obtained by several dosimetric systems were observed, particularly for the smallest field size for which the difference in the measured OF reaches more than 20%. For passive dosimeters, an excellent agreement was observed (better than 2%) between EBT2 and LiF microcubes

  20. Dependence of Berry's phase on the sign of the g factor for conical rotation of a magnetic field, measured without any dynamical phase shift

    SciTech Connect (OSTI)

    Morinaga, Atsuo; Toriyama, Koichi; Narui, Hirotaka; Aoki, Takatoshi; Imai, Hiromitsu

    2011-05-15

    Berry's phase for a whole turn in a conical rotation of the magnetic field with a semiangle {theta} has been clearly manifested free from the dynamical phase shift using the magnetic-field-insensitive two-photon transitions between sodium-ground hyperfine states having different signs of the g factors. The solid angles for states with a positive g factor and with a negative g factor are verified to be 2{pi}(1-cos{theta}) and -2{pi}(1+cos{theta}), respectively, for a right-handed rotation of a magnetic field and a semiangle of 0{<=}{theta}{<=}{pi}/2.

  1. ARM - Measurement -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurements ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Categories Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments UV-MFRSR : Ultraviolet

  2. The Influence of Fe Substitution in Lanthanum Calcium Cobalt Oxide on the Oxygen Evolution Reaction in Alkaline Media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abreu-Sepulveda, Maria A.; Dhital, Chetan; Huq, Ashfia; Li, Ling; Bridges, Craig A.; Paranthaman, M. Parans; Narayanan, S. R.; Quesnel, David J.; Tryk, Donald A.; Manivannan, A.

    2016-07-30

    The effect due to systematic substitution of cobalt by iron in La0.6Ca0.4Co1-xFexO3 towards the oxygen evolution reaction(OER) in alkaline media has been investigated. We synthesized these compounds by a facile glycine-nitrate synthesis and the phase formation was confirmed by X-ray diffraction and Neutron Diffraction elemental analysis. The apparent OER activity was evaluated by quasi steady state current measurements in alkaline media using a traditional three-electrode cell. X-ray photoelectron spectroscopy shows iron substitution causes an increase in the surface concentration of various cobalt oxidation states. Tafel slope in the vicinity of 60 mV/decade and electrochemical reaction order towards OH- near unitymore » were achieved for the unsubstituted La0.6Ca0.4CoO3. Moreover, a decrease in the Tafel slope to 49 mV/decade was observed when iron is substituted in high amounts in the perovskite structure. The area specific current density showed dependence on the Fe fraction, however the relationship of specific current density with Fe fraction is not linear. High Fe substitutions, La0.6Ca0.4Co0.2Fe0.8O3 and La0.6Ca0.4Co0.1Fe0.9O3 showed higher area specific activity towards OER than La0.6Ca0.4CoO3 or La0.6Ca0.4FeO3. Finally, we believe iron inclusion in the cobalt sites of the perovskite helps decrease the electron transfer barrier and facilitates the formation of cobalt-hydroxide at the surface. Possible OER mechanisms based on the observed kinetic parameters will be discussed.« less

  3. Alkaline resistant phosphate glasses and method of preparation and use thereof

    DOE Patents [OSTI]

    Brow, Richard K.; Reis, Signo T.; Velez, Mariano; Day, Delbert E.

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  4. Formation of H/sup -/ by charge transfer in alkaline-earth vapors

    SciTech Connect (OSTI)

    Schlachter, A.S.; Morgan, T.J.

    1983-10-01

    Progress on the study of H/sup -/ formation by charge transfer in alkaline-earth vapors is reported. The H/sup -/ equilibrium yield in strontium vapor reaches a maximum of 50% at an energy of 250 eV/amu, which is the highest H/sup -/ yield reported to date.

  5. CO adsorption and kinetics on well-characterized Pd films on Pt(111) in alkaline solutions

    SciTech Connect (OSTI)

    Arenz, M.; Stamenkovic, V.; Wandelt, K.; Ross, P.N.; Markovic, N.M.

    2002-01-01

    The electrochemistry of CO on a bare Pt(111) electrode as well as a Pt(111) electrode modified with pseudomorphic thin palladium films has been studied in alkaline solution by means of Fourier transform infrared (FTIR) spectroscopy. First Pd films were prepared and well characterized in UHV and subsequently transferred into the electrochemical cell for the registration of the voltammetric profiles. The charge corresponding to the formation of underpotentially deposited hydrogen (H{sub upd}) on these Pt(111)-xPd surfaces was established in sulfuric acid solution as a function of x (0 {le} x {le} 1 Pd monolayer (ML)). All subsequent measurements were then performed on electrochemically deposited palladium films using the above H{sub upd}-charge vs. Pd coverage relationship to evaluate the amount of electrochemically deposited palladium. FTIR spectra for CO adsorbed on one monolayer and a submonolayer coverage are compared to those of the unmodified Pt(111) surface, all surfaces having identical 2D lattice structures. Infrared absorption bands of CO bound on either Pt(111) or Pt(111)-1ML Pd are clearly distinguished. Spectra of CO adsorbed on Pd submonolayers show characteristic features of both CO bound to Pt and to Pd, indicating that on Pt(111)-xPd surfaces there is no coupling between Pt-CO{sub ad} and Pd-CO{sub ad} molecules. The kinetics of CO oxidation on these surfaces is determined either by rotating disk electrode (RDE) measurements or by FTIR spectroscopy, monitoring the CO{sub 3}{sup 2-} production. The oxidation of CO{sub ad} on Pt(111) and on Pd modified platinum surfaces starts at the same potential, ca. at 0.2 V. The oxidation rate is, however, considerably lower on the Pt(111)-xPd surfaces than on the Pt(111) surface. The kinetics of CO oxidation appears to be determined by the nature of adsorbed hydroxyl anions (OH{sub ad}), which are more strongly (less active) adsorbed on the highly oxophilic Pd atoms.

  6. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Measurements Ground-based Instruments Category

  7. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links SPARTICUS Home AAF Home Deployment Operations Measurements SGP Data Plots NASA Data Plots ARM Data Discovery Browse Data Experiment Planning SPARTICUS Proposal Abstract Science Questions Science and Operations (PDF, 1.01M) SPARTICUS Wiki News News & Press Backgrounder (PDF, 269K) Contacts Gerald Mace, Lead Scientist Measurements The SPARTICUS field campaign seeks to collect a substantial series of data sets-profiling cirrus ice crystal size and distribution-during

  8. New 30 kA power system at Fermilab and its use for measuring the effects of ripple current on the performance of superconducting high field magnets

    SciTech Connect (OSTI)

    Carcagno, R.; Feher, S.; Garvey, J.; Jaskierny, W.; Lamm, M.; Makulski, A.; Orris, D.F.; Pfeffer, H.; Tartaglia, M.; Tompkins, J.; Wolff, D.; /Fermilab

    2004-12-01

    A new 30 kA, 30 V dc Power System was designed, built, and commissioned at Fermilab for testing Superconducting High Field Magnets. This system has been successfully supporting operations at the Fermilab Magnet Test Facility since April 2002. It is based on six commercial 150 kW Power Energy Industries power supply modules and the following in-house modules: six 720 Hz filters, two 15 kA/1kV dc solid-state dump switch, and a 3 MJ/30 kA/1 kV dc dump resistor. Additional inhouse electronic components were designed and built to provide precise current regulation and distribution of current and current rate of change. An industrial-type Programmable Logic Controller system was used to provide equipment interlocks and monitoring. This paper summarizes studies on the influence of characteristics of this new power system--such as ripple current--on the performance of High Field Superconducting magnets.

  9. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOE Patents [OSTI]

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  10. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOE Patents [OSTI]

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  11. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization

    SciTech Connect (OSTI)

    Custelcean, Radu; Sloop Jr, Frederick {Fred} V; Rajbanshi, Arbin; Wan, Shun; Moyer, Bruce A

    2015-01-01

    ABSTRACT: The thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions have been measured in the 15 55 C temperature range, with the goal of identifying the optimal conditions for efficient and quick sulfate removal from nuclear wastes. The use of radiolabeled Na235SO4 provided a practical way to monitor the sulfate concentration in solution by liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na2SO4(L1)2(H2O)4 capsules. We found that temperature exerted relatively little influence over the equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. This corresponds to 77 91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 C, 63% and 75% of sulfate was removed from solution within 8 h and 24 h, respectively.

  12. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Custelcean, Radu; Sloop, Frederick V.; Rajbanshi, Arbin; Wan, Shun; Moyer, Bruce A.

    2014-12-04

    We measured the thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions in the 15 55 C temperature range, with the goal of identifying the optimal conditions for efficient and quick sulfate removal from nuclear wastes. The use of radiolabeled Na235SO4 provided a practical way to monitor the sulfate concentration in solution by liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na2SO4(L1)2(H2O)4 capsules. We found that temperature exerted relatively little influence over themore » equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. Moreover, this corresponds to 77 91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 C, 63% and 75% of sulfate was removed from solution within 8 h and 24 h, respectively.« less

  13. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Megan E. Scofield; Wong, Stanislaus S.; Zhou, Yuchen; Yue, Shiyu; Wang, Lei; Su, Dong; Tong, Xiao; Vukmirovic, Miomir B.; Adzic, Radoslav R.

    2016-05-19

    With the increased interest in the development of hydrogen fuel cells as a plausible alternative to internal combustion engines, recent work has focused on creating alkaline fuel cells (AFC), which employ an alkaline environment. Working in alkaline as opposed to acidic media yields a number of tangible benefits, including (i) the ability to use cheaper and plentiful precious-metal-free catalysts, due to their increased stability, (ii) a reduction in the amount of degradation and corrosion of Pt-based catalysts, and (iii) a longer operational lifetime for the overall fuel cell configuration. However, in the absence of Pt, no catalyst has achieved activitiesmore » similar to those of Pt. Herein, we have synthesized a number of crystalline ultrathin PtM alloy nanowires (NWs) (M = Fe, Co, Ru, Cu, Au) in order to replace a portion of the costly Pt metal without compromising on activity while simultaneously adding in metals known to exhibit favorable synergistic ligand and strain effects with respect to the host lattice. In fact, our experiments confirm theoretical insights about a clear and correlative dependence between measured activity and chemical composition. We have conclusively demonstrated that our as-synthesized alloy NW catalysts yield improved hydrogen oxidation reaction (HOR) activities as compared with a commercial Pt standard as well as with our as-synthesized Pt NWs. The Pt7Ru3 NW system, in particular, quantitatively achieved an exchange current density of 0.493 mA/cm2, which is higher than the corresponding data for Pt NWs alone. In addition, the HOR activities follow the same expected trend as their calculated hydrogen binding energy (HBE) values, thereby confirming the critical importance and correlation of HBE with the observed activities.« less

  14. LEACHING OF URANIUM ORES USING ALKALINE CARBONATES AND BICARBONATES AT ATMOSPHERIC PRESSURE

    DOE Patents [OSTI]

    Thunaes, A.; Brown, E.A.; Rabbits, A.T.; Simard, R.; Herbst, H.J.

    1961-07-18

    A method of leaching uranium ores containing sulfides is described. The method consists of adding a leach solution containing alkaline carbonate and alkaline bicarbonate to the ore to form a slurry, passing the slurry through a series of agitators, passing an oxygen containing gas through the slurry in the last agitator in the series, passing the same gas enriched with carbon dioxide formed by the decomposition of bicarbonates in the slurry through the penultimate agitator and in the same manner passing the same gas increasingly enriched with carbon dioxide through the other agitators in the series. The conditions of agitation is such that the extraction of the uranium content will be substantially complete before the slurry reaches the last agitator.

  15. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect (OSTI)

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  16. Non-Platinum Group Metal OER/ORR Catalysts for Alkaline Membrane Fuel Cells and Electrolyzers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Group Metal OER/ORR Catalysts for Alkaline Membrane Fuel Cells and Electrolyzers P. I. Name: Nemanja Danilovic Chris Capuano and Kathy Ayers Organization: Proton OnSite Date: May 15, 2015 (presented) August 5, 2015 (updated) Project ID: FC-133 This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview Page 2 * Total project funding - DOE share: $150,000 Budget * Project Start: 15 Feb 2015 * Project End: 15 Nov 2015 * Percent complete: ~85% *

  17. OSTIblog Articles in the alkaline membrane cells Topic | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information alkaline membrane cells Topic Fine tuning fuel cells by Kathy Chambers 14 Jun, 2012 in Products and Content 4314 ballard_fuel_cell_caption.jpg Fine tuning fuel cells Read more about 4314 Researchers are finding ways to fine tune fuel cells to make them affordable, reliable, efficient and commercially competitive. DOE National Energy Technology Laboratory (NETL) researchers have discovered ways to improve the fuel cell terminal surface

  18. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    SciTech Connect (OSTI)

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S; Cherepy, Nerine; Payne, Stephen A.; Beck, P; Burger, Arnold; Rowe, E; Bhattacharya, P.

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  19. Probing the Kondo lattice model with alkaline-earth-metal atoms

    SciTech Connect (OSTI)

    Foss-Feig, Michael; Hermele, Michael; Rey, Ana Maria

    2010-05-15

    We study transport properties of alkaline-earth-metal atoms governed by the Kondo lattice Hamiltonian plus a harmonic confining potential, and suggest simple dynamical probes of several different regimes of the phase diagram that can be implemented with current experimental techniques. In particular, we show how Kondo physics at strong coupling, at low density, and in the heavy fermion phase is manifest in the dipole oscillations of the conduction band upon displacement of the trap center.

  20. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  1. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOE Patents [OSTI]

    Moyer, Bruce A. (Oak Ridge, TN); Sachleben, Richard A. (Knoxville, TN); Bonnesen, Peter V. (Knoxville, TN); Presley, Derek J. (Ooltewah, TN)

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  2. Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris

    SciTech Connect (OSTI)

    Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric; Depraetere, Orily; Noppe, Wim; Dutta, Abhishek; Foubert, Imogen; Laurens, Lieve; Muylaert, Koenraad

    2016-01-01

    Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and this fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L-1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.

  3. A way for studying the impact of PEDOT:PSS interface layer on carrier transport in PCDTBT:PC{sub 71}BM bulk hetero junction solar cells by electric field induced optical second harmonic generation measurement

    SciTech Connect (OSTI)

    Ahmad, Zubair Abdullah, Shahino Mah; Sulaiman, Khaulah; Taguchi, Dai; Iwamoto, Mitsumasa

    2015-04-28

    Electric-field-induced optical second-harmonic generation (EFISHG) measurement was employed to study the impact of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) interface layer on the carrier transport mechanism of the PCDTBT:PC{sub 71}BM bulk heterojunction (BHJ) organic solar cells (OSCs). We revealed that the electric fields in the PCDTBT and PC{sub 71}BM were allowed to be measured individually by choosing fundamental laser wavelengths of 1000 nm and 1060 nm, respectively, in dark and under illumination. The results showed that the direction of the internal electric fields in the PCDTBT:PC{sub 71}BM BHJ layer is reversed by introducing the PEDOT:PSS layer, and this results in longer electron transport time in the BHJ layer. We conclude that TR-EFISHG can be used as a novel way for studying the impact of interfacial layer on the transport of electrons and holes in the bulk-heterojunction OSCs.

  4. The relationship between coefficient of restitution and state of charge of zinc alkaline primary LR6 batteries [Bouncing alkaline batteries: A basic solution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhadra, S.; Hertzberg, B. J.; Croft, M.; Gallaway, J. W.; Van Tassell, B. J.; Chamoun, M.; Erdonmez, C.; Zhong, Z.; Steingart, D. A.

    2015-03-13

    The coefficient of restitution of alkaline batteries had been shown to increase as a function of depth of discharge. In this work, using non-destructive mechanical testing, the change in coefficient of restitution is compared to in situ energy-dispersive x-ray diffraction data to determine the cause of the macroscopic change in coefficient of restitution. The increase in coefficient of restitution correlates to the formation of a percolation pathway of ZnO within the anode of the cell, and that the coefficient of restitution saturates at a value of 0.63 ± .05 at 50% state if charge when the anode has densified intomore » porous ZnO solid. Of note is the sensitivity of coefficient of restitution to the amount of ZnO formation that rivals the sensitivity on in situ energy-dispersive x-ray diffraction spectroscopy.« less

  5. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces

    SciTech Connect (OSTI)

    Sheng, WC; Myint, M; Chen, JGG; Yan, YS

    2013-05-01

    The slow reaction kinetics of the hydrogen evolution and oxidation reactions (HER/HOR) on platinum in alkaline electrolytes hinders the development of alkaline electrolysers, solar hydrogen cells and alkaline fuel cells. A fundamental understanding of the exchange current density of the HER/HOR in alkaline media is critical for the search and design of highly active electrocatalysts. By studying the HER on a series of monometallic surfaces, we demonstrate that the HER exchange current density in alkaline solutions can be correlated with the calculated hydrogen binding energy (HBE) on the metal surfaces via a volcano type of relationship. The HER activity varies by several orders of magnitude from Pt at the peak of the plot to W and Au located on the bottom of each side of the plot, similar to the observation in acids. Such a correlation suggests that the HBE can be used as a descriptor for identifying electrocatalysts for HER/HOR in alkaline media, and that the HER exchange current density can be tuned by modifying the surface chemical properties.

  6. Insights into the effect of dilute acid, hot water and alkaline pretreatment on cellulose accessible surface area and overall porosity of Populus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meng, Xianzhi; Wells, Tyrone; Sun, Qining; Huang, Fang; Ragauskas, Arthur J.

    2015-06-19

    Pretreatment is known to render biomass more reactive to cellulase by altering the chemical compositions as well as physical structures of biomass. Simons stain technique along with mercury porosimetry were applied on the acid, neutral, and alkaline pretreated materials to measure the accessible surface area of cellulose and pore size distribution of Populus. Results indicated that acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase. Further investigation suggests that lignin does not dictate cellulose accessibility to the extent that hemicellulose does, but it does restrict xylan accessibility which in turn controls themore » access of cellulase to cellulose. The most interesting finding is that severe acid pretreatment significantly decreases the average pore size, i.e., 90% average size decrease could be observed after 60 min dilute acid pretreatment at 160 °C; moreover, the nano-pore space formed between coated microfibrils is increased after pretreatment, especially for the acid pretreatment, suggesting this particular type of biomass porosity is probably the most fundamental barrier to effective enzymatic hydrolysis.« less

  7. High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties

    SciTech Connect (OSTI)

    Gürsoy, M.; Takeda, M.; Albert, B.

    2015-01-15

    Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB{sub 6}, SrB{sub 6}, BaB{sub 6} and the ternary hexaborides Ca{sub x}Sr{sub 1−x}B{sub 6}, Ca{sub x}Ba{sub 1−x}B{sub 6}, Sr{sub x}Ba{sub 1−x}B{sub 6} (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB{sub 6} (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials.

  8. Insights into the effect of dilute acid, hot water and alkaline pretreatment on cellulose accessible surface area and overall porosity of Populus

    SciTech Connect (OSTI)

    Meng, Xianzhi; Wells, Tyrone; Sun, Qining; Huang, Fang; Ragauskas, Arthur J.

    2015-06-19

    Pretreatment is known to render biomass more reactive to cellulase by altering the chemical compositions as well as physical structures of biomass. Simons stain technique along with mercury porosimetry were applied on the acid, neutral, and alkaline pretreated materials to measure the accessible surface area of cellulose and pore size distribution of Populus. Results indicated that acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase. Further investigation suggests that lignin does not dictate cellulose accessibility to the extent that hemicellulose does, but it does restrict xylan accessibility which in turn controls the access of cellulase to cellulose. The most interesting finding is that severe acid pretreatment significantly decreases the average pore size, i.e., 90% average size decrease could be observed after 60 min dilute acid pretreatment at 160 °C; moreover, the nano-pore space formed between coated microfibrils is increased after pretreatment, especially for the acid pretreatment, suggesting this particular type of biomass porosity is probably the most fundamental barrier to effective enzymatic hydrolysis.

  9. Large area graphene ion sensitive field effect transistors with tantalum pentoxide sensing layers for pH measurement at the Nernstian limit

    SciTech Connect (OSTI)

    Fakih, Ibrahim, E-mail: ibrahim.fakih@mail.mcgill.ca; Sabri, Shadi; Szkopek, Thomas, E-mail: thomas.szkopek@mcgill.ca [Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec H3A 2A7 (Canada); Mahvash, Farzaneh [Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec H3A 2A7 (Canada); Dpartement de Chimie et Biochimie, Universite du Qubec Montral, Montreal, Quebec H3C 3P8 (Canada); Nannini, Matthieu [McGill Nanotools Microfab, McGill University, Montreal, Quebec H3A 2A7 (Canada); Siaj, Mohamed [Dpartement de Chimie et Biochimie, Universite du Qubec Montral, Montreal, Quebec H3C 3P8 (Canada)

    2014-08-25

    We have fabricated and characterized large area graphene ion sensitive field effect transistors (ISFETs) with tantalum pentoxide sensing layers and demonstrated pH sensitivities approaching the Nernstian limit. Low temperature atomic layer deposition was used to deposit tantalum pentoxide atop large area graphene ISFETs. The charge neutrality point of graphene, inferred from quantum capacitance or channel conductance, was used to monitor surface potential in the presence of an electrolyte with varying pH. Bare graphene ISFETs exhibit negligible response, while graphene ISFETs with tantalum pentoxide sensing layers show increased sensitivity reaching up to 55?mV/pH over pH 3 through pH 8. Applying the Bergveld model, which accounts for site binding and a Guoy-Chapman-Stern picture of the surface-electrolyte interface, the increased pH sensitivity can be attributed to an increased buffer capacity reaching up to 10{sup 14} sites/cm{sup 2}. ISFET response was found to be stable to better than 0.05 pH units over the course of two weeks.

  10. Paleomagnetic Measurements | Open Energy Information

    Open Energy Info (EERE)

    Over Core Stress Paleomagnetic Measurements Petrography Analysis Rock Density X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF) Field Procedures One field method is to take small...

  11. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymermore » films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.« less

  12. Composition and isotopic constraints on the petrogenesis of alkaline arc lavas: Lihir Island, Papua New Guinea

    SciTech Connect (OSTI)

    Kennedy, A.K.; Hart, S.R.; Frey, F.A. )

    1990-05-10

    The SiO{sub 2}-undersaturated lavas from Lihir island, Papua New Guinea, like most arc lavas are highly enriched in Sr, Ba, K, Rb, and Cc and depleted in Hf, Ta, Nb, and Ti relative to ocean floor basalts and oceanic island basalts. These alkali-rich lavas have arc trace element signatures and Nd, Sr, and Pb isotopic systematics. However, they are not a product of present-day subduction, as this volcanism has tapped mantle which was enriched by prior subduction episodes. The narrow range of Pb isotopic compositions suggest a cogenetic origin for these lavas. During the fractionation of the primitive Lihir lavas, elements normally considered incompatible (i.e., the light rare earth elements (LREE), Rb, Th, and P) have high bulk solid/melt partition coefficients (0.15-1.5). Relatively higher partition coefficients during formation of the evolved lavas produced crossing rare earth element (REE) patterns, and primitive lavas have higher incompatible elements abundances than evolved lavas. The Lihir lavas have lower alkali, Sr, Ba, K, Rb, Cs, and LREE abundances than other Tabar-Feni lavas. They are derived from a less enriched mantle source rather than by a higher degree of melting of a source similar to that of the other islands. The similarity of Sm/Nd ratios of these undersaturated arc lavas to those of tholeiitic and calc-alkaline arc lavas and the moderate chondrite-normalized La/Yb (la/Yb{sub cn} = 3-7) indicates that there has been limited enrichment of the LREE relative to the heavy REE during generation of the arc-modified source mantle. The alkaline nature of these lavas reflects their generation, in a tensional tectonic environment, from a fossil arc mantle region that has undergone extreme arc enrichment of alkali and alkaline earth elements during two earlier subduction episodes.

  13. Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste

    SciTech Connect (OSTI)

    James Harvey; Michael Gula

    1998-12-07

    Development of remediation technologies for the characterization, retrieval, treatment, concentration, and final disposal of radioactive and chemical tank waste stored within the Department of Energy (DOE) complex represents an enormous scientific and technological challenge. A combined total of over 90 million gallons of high-level waste (HLW) and low-level waste (LLW) are stored in 335 underground storage tanks at four different DOE sites. Roughly 98% of this waste is highly alkaline in nature and contains high concentrations of nitrate and nitrite salts along with lesser concentrations of other salts. The primary waste forms are sludge, saltcake, and liquid supernatant with the bulk of the radioactivity contained in the sludge, making it the largest source of HLW. The saltcake (liquid waste with most of the water removed) and liquid supernatant consist mainly of sodium nitrate and sodium hydroxide salts. The main radioactive constituent in the alkaline supernatant is cesium-137, but strontium-90, technetium-99, and transuranic nuclides are also present in varying concentrations. Reduction of the radioactivity below Nuclear Regulatory Commission (NRC) limits would allow the bulk of the waste to be disposed of as LLW. Because of the long half-life of technetium-99 (2.1 x 10 5 y) and the mobility of the pertechnetate ion (TcO 4 - ) in the environment, it is expected that technetium will have to be removed from the Hanford wastes prior to disposal as LLW. Also, for some of the wastes, some level of technetium removal will be required to meet LLW criteria for radioactive content. Therefore, DOE has identified a need to develop technologies for the separation and concentration of technetium-99 from LLW streams. Eichrom has responded to this DOE-identified need by demonstrating a complete flowsheet for the separation, concentration, and immobilization of technetium (and iodine) from alkaline supernatant waste.

  14. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    SciTech Connect (OSTI)

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymer films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.

  15. Influence of Acidic and Alkaline Waste Solution Properties on Uranium Migration in Subsurface Sediments

    SciTech Connect (OSTI)

    Szecsody, James E.; Truex, Michael J.; Qafoku, Nikolla; Wellman, Dawn M.; Resch, Charles T.; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments has significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2+, Mg2+) and phosphate and a slow (100s of hours) increase in silica, Al3+, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10s to 100s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  16. Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates

    DOE Patents [OSTI]

    Epperly, William R.; Deane, Barry C.; Brunson, Roy J.

    1982-01-01

    An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.

  17. Sulfate Separation from Aqueous Alkaline Solutions by Selective Crystallization of Alkali Metal Coordination Capsules

    SciTech Connect (OSTI)

    Rajbanshi, Arbin; Moyer, Bruce A; Custelcean, Radu

    2011-01-01

    Self-assembly of a tris(urea) anion receptor with Na{sub 2}SO{sub 4} or K{sub 2}SO{sub 4} yields crystalline capsules held together by coordinating Na{sup +} or K{sup +} cations and hydrogen-bonding water bridges, with the sulfate anions encapsulated inside urea-lined cavities. The sodium-based capsules can be selectively crystallized in excellent yield from highly competitive aqueous alkaline solutions ({approx}6 M Na{sup +}, pH 14), thereby providing for the first time a viable approach to sulfate separation from nuclear wastes.

  18. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOE Patents [OSTI]

    Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.

    1981-01-01

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  19. Isotope fractionation in surface ionization ion source of alkaline-earth iodides

    SciTech Connect (OSTI)

    Suzuki, T.; Kanzaki, C.; Nomura, M.; Fujii, Y.

    2012-02-15

    The relationship between the isotope fractionation of alkaline-earth elements in the surface ionization ion source and the evaporation filament current, i.e., filament temperature, was studied. It was confirmed that the isotope fractionation depends on the evaporation filament temperature; the isotope fractionation in the case of higher temperature of filament becomes larger. The ionization and evaporation process in the surface ionization ion source was discussed, and it was concluded that the isotope fractionation is suppressed by setting at the lower temperature of evaporation filament because the dissociations are inhibited on the evaporation filament.

  20. Hydrophilic Electrode For An Alkaline Electrochemical Cell, And Method Of Manufacture

    DOE Patents [OSTI]

    Senyarich, Stephane (Mornac, FR); Cocciantelli, Jean-Michel (Bordeaux, FR)

    2000-03-07

    A negative electrode for an alkaline electrochemical cell. The electrode comprises an active material and a hydrophilic agent constituted by small cylindrical rods of polyolefin provided with hydrophilic groups. The mean length of the rods is less than 50 microns and the mean diameter thereof is less than 20 microns. A method of manufacturing a negative electrode in which hydrophilic rods are made by fragmenting long polyolefin fibers having a mean diameter of less than 20 microns by oxidizing them, with the rods being mixed with the active material and the mixture being applied to a current conductor.

  1. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    SciTech Connect (OSTI)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  2. Current distributions and dissolution mechanisms during localized corrosion of steels in alkaline environments

    SciTech Connect (OSTI)

    Isaacs, H.S.; Ryan, M.P.; Virtanen, S.; Schmuki, P.

    1997-12-31

    In situ corrosion investigations of iron were carried out in alkaline environments to determine the stages of corrosion that may be encountered with steels in concrete. The electrochemical and chemical processes taking place on Fe have been studied using x-ray absorption, current density mapping of the iron surface and artificial pits. The x-ray absorption near edge spectroscopy was used to observe the conversion of Fe to oxide in hydroxide solutions. The oxide formed was electrochemically active and changes in valence states between 2+ and 3+ were observed during electrochemical cycling between the passive state and hydrogen evolution. The oxide continued to thicken during the cycling with very little dissolution or any conversion back to the metallic state. Current density mapping in chloride/hydroxide solution showed that corrosion took place in highly localized areas confined by the formation of a corrosion product shell. The activity within the shell decayed on removing a supporting cathodic area limiting but reactivated on its replacement. Artificial pits were used to study the anodic processes taking place within the region confined by the corrosion product shell. The local pH and anodic behavior were similar to that observed in neutral or slightly acid bulk solutions. The dissolution within the artificial pits in alkaline bulk solutions was found to be sensitive to the presence of small-quantities of nitrite.

  3. Plutonium(IV) precipitates formed in alkaline media in the presence of various anions

    SciTech Connect (OSTI)

    Krot, N.N.; Shilov, V.P.; Yusov, A.B.; Tananaev, I.G.; Grigoriev, M.S.; Garnov, A.Yu.; Perminov, V.P.; Astafurova, L.N.

    1998-09-01

    The tendency of Pu(IV) to hydrolyze and form true solutions, colloid solutions, or insoluble precipitates has been known since the Manhattan Project. Since then, specific studies have been performed to examine in detail the equilibria of Pu(IV) hydrolytic reactions in various media. Great attention also has been paid to the preparation, structure, and properties of Pu(IV) polymers or colloids. These compounds found an important application in sol-gel technology for the preparation of nuclear fuel materials. A most important result of these works was the conclusion that Pu(IV) hydroxide, after some aging, consists of very small PuO{sub 2} crystallites and should therefore be considered to be Pu(IV) hydrous oxide. However, studies of the properties and behavior of solid Pu(IV) hydroxide in complex heterogeneous systems are rare. The primary goal of this investigation was to obtain data on the composition and properties of Pu(IV) hydrous oxide or other compounds formed in alkaline media under different conditions. Such information is important to understand Pu(IV) behavior and the forms of its existence in the Hanford Site alkaline tank waste sludge. This knowledge then may be applied in assessing plutonium criticality hazards in the storage, retrieval, and treatment of Hanford Site tank wastes as well as in understanding its contribution to the transuranic waste inventory (threshold at 100 nCi/g or about 5 {times} 10{sup {minus}6} M) of the separate solution and solid phases.

  4. Field power measurements of imaging equipment

    SciTech Connect (OSTI)

    McWhinney, Marla; Homan, Gregory; Brown, Richard; Roberson, Judy; Nordman, Bruce; Busch, John

    2004-05-14

    According to the U.S. Department of Energy, electricity use by non-PC commercial office equipment is growing at an annual rate of nearly 5 percent (AEO 2003). To help address this growth in consumption, U.S. EPA periodically updates its ENERGY STAR specifications as products and markets change. This report presents background research conducted to help EPA update the ENERGY STAR specification for imaging equipment, which covers printers, fax machines, copiers, scanners, and multifunction devices (MFDs). We first estimated the market impact of the current ENERGY STAR imaging specification, finding over 90 percent of the current market complies with the specification. We then analyzed a sample of typical new imaging products, including 11 faxes, 57 printers and 19 copiers/MFD. For these devices we metered power levels in the most common modes: active/ready/sleep/off, and recorded features that would most likely affect energy consumption. Our metering indicates that for many products and speed bins, current models consume substantially less power than the current specification. We also found that for all product categories, power consumption varied most considerably across technology (i.e. inkjet vs. laser). Although inkjet printers consumed less energy than laser printers in active, ready and sleep-mode, they consumed more power on average while off, mostly due to the use of external power supplies. Based on these findings, we developed strategies for the ENERGY STAR program to achieve additional energy reductions. Finally, we present an assessment of manufacturer's ENERGY STAR labeling practices.

  5. Magnetotransport measurements of current induced effective fields...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: Applied Physics Letters; Journal Volume: 103; Journal Issue: 26; Other Information: (c) 2013 AIP Publishing LLC;...

  6. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect (OSTI)

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  7. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect (OSTI)

    Marra, James C.; Billings, Amanda Y.; Crum, Jarrod V.; Ryan, Joseph V.; Vienna, John D.

    2010-02-26

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  8. Rechargeability and economic aspects of alkaline zinc-manganese dioxide cells for electrical storage and load leveling

    SciTech Connect (OSTI)

    Ingale, ND; Gallaway, JW; Nyce, M; Couzis, A; Banerjee, S

    2015-02-15

    Batteries based on manganese dioxide (MnO2) cathodes are good candidates for grid-scale electrical energy storage, as MnO2 is low-cost, relatively energy dense, safe, water-compatible, and non-toxic. Alkaline Zn-MnO2 cells, if cycled at reduced depth of discharge (DOD), have been found to achieve substantial cycle life with battery costs projected to be in the range of $100 to 150 per kWh (delivered). Commercialization of rechargeable Zn-MnO2 batteries has in the past been hampered due to poor cycle life. In view of this, the work reported here focuses on the long-term rechargeability of prismatic MnO2 cathodes at reduced DOD when exposed to the effects of Zn anodes and with no additives or specialty materials. Over 3000 cycles is shown to be obtainable at 10% DOD with energy efficiency >80%. The causes of capacity fade during long-term cycling are also investigated and appear to be mainly due to the formation of irreversible manganese oxides in the cathode. Analysis of the data indicates that capacity loss is rapid in the first 250 cycles, followed by a regime of stability that can last for thousands of cycles. A model has been developed that captures the behavior of the cells investigated using measured state of charge (SOC) data as input. An approximate economic analysis is also presented to evaluate the economic viability of Zn-MnO2 batteries based on the experiments reported here. (C) 2014 Elsevier B.V. All rights reserved.

  9. Magnetic-field-dosimetry system

    DOE Patents [OSTI]

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  10. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsAerosols

  11. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiometric

  12. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect (OSTI)

    Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.; Bonnesen, Peter V.

    2006-06-01

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of low-activity waste immobilization. Principles of ion recognition are being researched toward discovery of liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudohydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Studies at PNNL are directed toward new solvent formulation for the practical sodium pseudohydroxide extraction systems.

  13. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOE Patents [OSTI]

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  14. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOE Patents [OSTI]

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  15. Phase behavior and oil recovery investigations using mixed and alkaline-enhanced surfactant systems

    SciTech Connect (OSTI)

    Llave, F.M.; Gall, B.L.; French, T.R.; Noll, L.A.; Munden, S.A.

    1992-03-01

    The results of an evaluation of different mixed surfactant and alkaline-enhanced surfactant systems for enhanced oil recovery are described. Several mixed surfactant systems have been studies to evaluate their oil recovery potential as well as improved adaptability to different ranges of salinity, divalent ion concentrations, and temperature. Several combinations of screening methods were used to help identify potential chemical formulations and determine conditions where particular chemical systems can be applied. The effects of different parameters on the behavior of the overall surfactant system were also studied. Several commercially available surfactants were tested as primary components in the mixtures used in the study. These surfactants were formulated with different secondary as well as tertiary components, including ethoxylated and non-ethoxylated sulfonates and sulfates. Improved salinity and hardness tolerance was achieved for some of these chemical systems. The salinity tolerance of these systems were found to be dependent on the molecular weight, surfactant type, and concentration of the surfactant components.

  16. Syntheses and characterization of energetic compounds constructed from alkaline earth metal cations (Sr and Ba) and 1,2-bis(tetrazol-5-yl)ethane

    SciTech Connect (OSTI)

    Xia Zhengqiang; Chen Sanping; Wei Qing; Qiao Chengfang

    2011-07-15

    Two new energetic compounds, [M(BTE)(H{sub 2}O){sub 5}]{sub n} (M=Sr(1), Ba(2)) [H{sub 2}BTE=1,2-bis(tetrazol-5-yl)ethane], have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that they are isomorphous and exhibit 2D (4,4) net framework, generated by 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs linked up by two independent binding modes of H{sub 2}BTE, and the resulting 2D structure is interconnected by hydrogen-bond and strong face to face {pi}-{pi} stacking interactions between two tetrazole rings to lead to a 3D supramolecular architecture. DSC measurements show that they have significant catalytic effects on thermal decomposition of ammonium perchlorate. Moreover, the photoluminescence properties, thermogravimetric analyses, and flame colors of the as-prepared compounds are also investigated in this paper. - Graphical abstract: Two novel 2D isomorphous alkaline earth metal complexes were assembled by 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs and two independent binding modes of H{sub 2}BTE ligands, and the catalytic performances toward thermal decomposition of ammonium perchlorate and photoluminescent properties of them were investigated. Highlights: > Two novel alkaline earth energetic coordination polymers have been prepared.{yields} Both structures are layered based on 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs and two distinct H{sub 2}BTE coordination modes.{yields} The dehydrated products of the compounds possess good thermostability and significant catalytic effects on thermal decomposition of AP.

  17. Electric dipole polarizabilities at imaginary frequencies for hydrogen, the alkali-metal, alkaline-earth, and noble gas atoms

    SciTech Connect (OSTI)

    Derevianko, Andrei Porsev, Sergey G. Babb, James F.

    2010-05-15

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline-earth atoms, and the noble gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  18. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsCloud Properties

  19. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsSurface Properties

  20. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    SciTech Connect (OSTI)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  1. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect (OSTI)

    Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.; Bonnesen, Peter V.

    2005-06-01

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of low-activity waste immobilization. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudohydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

  2. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Engle, Nancy L.; Kang, Hyun-Ah; Keever, Tamara J.; Marchand, Alan P.; Gadthula, Srinivas; Gore, Vinayak K.; Huang, Zilin; Sivappa, Rasapalli; Tirunahari, Pavan K.; Levitskaia, Tatiana G.; Lumetta, Gregg J.

    2005-09-26

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of vitrification. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudo hydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

  3. Platinum and Palladium Overlayers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    St. John, Samuel; Atkinson, Robert W.; Unocic, Kinga A.; Unocic, Raymond R.; Zawodzinski, Thomas A.; Papandrew, Alexander B.

    2015-10-18

    Templated vapor synthesis and thermal annealing were used to synthesize unsupported metallic Ru nanotubes with Pt or Pd overlayers. By controlling the elemental composition and thickness of these overlayers, we obtain nanostructures with very high alkaline hydrogen oxidation activity. For nanotubes with a nominal atomic composition of Ru0.90Pt0.10 display a surface-specific activity (2.4 mA/cm2) that is 35 times greater than that of pure Ru nanotubes at a 50 mV overpotential and 2.5 times greater than that of pure Pt nanotubes (0.98 mA/cm2). The surface-segregated structure also confers dramatically increased Pt utilization efficiency. We find a platinum-mass-specific activity of 1240 A/gPtmore » for the optimized nanotube versus 280 A/gPt for carbon-supported Pt nanoparticles and 109 A/gPt for monometallic Pt nanotubes. Here, we attribute the enhancement of both area- and platinum-mass-specific activity to the atomic-scale homeomorphism of the nanotube form factor with adlayer-modified polycrystals. Subsurface ligand and bifunctional effects previously observed on segregated, adlayer-modified polycrystals are translated to nanoscale catalysts.« less

  4. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  5. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOE Patents [OSTI]

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  6. Understanding the Factors Affecting the Formation of Carbonyl Iron Electrodes in Rechargeable Alkaline Iron Batteries

    SciTech Connect (OSTI)

    Manohar, AK; Yang, CG; Malkhandi, S; Yang, B; Prakash, GKS; Narayanan, SR

    2012-01-01

    Rechargeable iron-based alkaline batteries such as iron - air and nickel - iron batteries are attractive for large-scale electrical energy storage because iron is inexpensive, globally-abundant and environmentally-friendly. Further, the iron electrode is known for its robustness to repeated charge/discharge cycling. During manufacturing these batteries are charged and discharged 20 to 50 times during which the discharge capacity of the iron electrode increases gradually and attains a stable value. This process of achieving stable capacity is called formation. In this study we have focused our efforts on understanding the effect of electrode design on formation. We have investigated the role of wetting agent, pore-former additive, and sulfide additive on the formation of carbonyl iron electrodes. The wetting agent increased the rate of formation while the pore-former additive increased the final capacity. Sodium sulfide added to the electrolyte worked as a de-passivation agent and increased the final discharge capacity. We have proposed a phenomenological model for the formation process that predicts the rate of formation and final discharge capacity given the design parameters for the electrode. The understanding gained here will be useful in reducing the time lost in formation and in maximizing the utilization of the iron electrode. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.021301jes] All rights reserved.

  7. Two new frameworks of potassium saccharate obtained from acidic and alkaline solution

    SciTech Connect (OSTI)

    Lv, Yao-Kang; Feng, Yun-Long; Liu, Ji-Wei; Jiang, Zhan-Guo

    2011-05-15

    Two chiral K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained from acidic and alkaline solution. The 3D framework of 1 includes K(I) polyhedral rods and typical pairwise coaxial right- and left-handed helical chains, and displays binodal 6-connected pcu topology. 2 contains 2D polyhedral sheets consisting of left-handed helical chains, and generates 3D network with an unprecedented (7,11)-connected net. Cyclic voltammetry tests and charge-discharge tests indicate that the addition of complex 2 to the electrolyte could improve the electrochemical properties of the nickel hydroxide electrode. -- Graphical abstract: Two K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained and characterized. Electrochemical studies indicate the potential use of 2 in Ni-MH battery. Display Omitted highlights: > Two novel chiral K(I) frameworks based on D-saccharic acid were obtained. > The structure of 1 includes K(I) polyhedral rods and typical helical chains. > 2 contains 2D polyhedral sheets and generates an unprecedented (7,11)-connected net. > Addition of 2 to electrolyte could improve the nickel hydroxide electrode's property.

  8. Phase Stability of Chromium(III) Oxide Hydroxide in Alkaline Sodium Phosphate Solutions

    SciTech Connect (OSTI)

    S.E. Ziemniak; E.P. Opalka

    2003-07-08

    Grimaldiite ({alpha}-CrOOH) is shown to transform to a sodium-chromium(III)-hydroxyphosphate compound (SCHP) in alkaline sodium phosphate solutions at elevated temperatures via CrOOH(s) + 4Na{sup +} + 2HPO{sub 4}{sup 2-} = Na{sub 4}Cr(OH)(PO{sub 4}){sub 2}(s) + H{sub 2}O. X-ray diffraction analyses indicate that SCHP possesses an orthorhombic lattice having the same space group symmetry (Ibam, No.72) as sodium ferric hydroxyphosphate. A structurally-consistent designation for SCHP is Na{sub 3}Cr(PO{sub 4}){sub 2} {center_dot} NaOH; the molar volume of SCHP is estimated to be 1552 cm{sup 3}. The thermodynamic equilibrium for the above reaction was defined in the system Na{sub 2}O-P{sub 2}O{sub 5}-Cr{sub 2}O{sub 3}-H{sub 2}O for Na/P molar ratios between 2.0 and 2.4. On the basis of observed reaction threshold values for sodium phosphate concentration and temperature, the standard molar entropy (S{sup o}), heat capacity (C{sub p}{sup o}) and free energy of formation ({Delta}G{sub f}{sup o}) for SCHP were calculated to be 690 J/(mol-K), 622 J/(mol-K) and -3509.97 kJ/mol, respectively.

  9. Modeling experimental results of diffusion of alkaline solutions through a compacted bentonite barrier

    SciTech Connect (OSTI)

    Fernandez, Raul; Cuevas, Jaime; Maeder, Urs K.

    2010-08-15

    The interaction between concrete/cement and swelling clay (bentonite) has been modeled in the context of engineered barrier systems for deep geological disposal of high-level radioactive waste. The geochemical transformations observed in laboratory diffusion experiments at 60 and 90 {sup o}C between bentonite and different high-pH solutions (K-Na-OH and Ca(OH){sub 2}-saturated) were reconciled with the reactive transport code CrunchFlow. For K-Na-OH solutions (pH = 13.5 at 25 {sup o}C) partial dissolution of montmorillonite and precipitation of Mg-silicates (talc-like), hydrotalcite and brucite at the interface are predicted at 60 {sup o}C, while at 90 {sup o}C the alteration is wider. Alkaline cations diffused beyond the mineralogical alteration zone by means of exchange with Mg{sup 2+} in the interlayer region of montmorillonite. Very slow reactivity and minor alteration of the clay are predicted in the Ca(OH){sub 2}-bentonite system. The model is a reasonable description of the experiments but also demonstrates the difficulties in modeling processes operating at a small scale under a diffusive regime.

  10. Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments

    DOE Patents [OSTI]

    McGowan, Kenneth A; Cullen, Robert M; Keiser, James R; Hemrick, James G; Meisner, Roberta A

    2013-10-22

    A method for improving the insulating character/and or penetration resistance of a liner in contact with at least one of an alkali and/or alkaline environments is provided. The method comprises lining a surface that is subject to wear by an alkali environment and/or an alkaline environment with a refractory composition comprising a refractory aggregate consisting essentially of a calcium hexa aluminate clinker having the formula CA.sub.6, wherein C is equal to calcium oxide, wherein A is equal to aluminum oxide, and wherein the hexa aluminate clinker has from zero to less than about fifty weight percent C.sub.12A.sub.7, and wherein greater than 98 weight percent of the calcium hexa aluminate clinker having a particle size ranging from -20 microns to +3 millimeters, for forming a liner of the surface. This method improves the insulating character/and or penetration resistance of the liner.

  11. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  12. Effects of Aging on PuO2?xH2O Particle Size in Alkaline Solution

    SciTech Connect (OSTI)

    Delegard, Calvin H.

    2013-05-01

    Between 1944 and 1989, 54.5 metric tons of the United States weapons-grade plutonium and an additional 12.9 metric tons of fuel-grade plutonium were produced and separated from irradiated fuel at the Hanford Site. Acidic high-activity wastes containing around 600 kg of plutonium were made alkaline and discharged to underground storage tanks from separations, isolation, and recycle processes to yield average plutonium concentration of about 0.003 grams per liter (or ~0.0002 wt%) in the ~200 million liter tank waste volume. The plutonium is largely associated with low-solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g., iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of plutonium hydrous oxide, PuO2?xH2O, could undergo sufficient crystal growth through dissolution and reprecipitation in the alkaline tank waste to potentially become separable from neutron absorbing constituents by settling or sedimentation. Thermodynamic considerations and laboratory studies of systems chemically analogous to tank waste show that the plutonium formed in the alkaline tank waste by precipitation through neutralization from acid solution probably entered as 24-nm PuO2?xH2O crystallite particles that, because of their low solubility and opposition from radiolytic processes, grow from that point at exceedingly slow rates, thus posing no risk of physical segregation.

  13. Kinetics of hydrolysis and oxidation of carbon disulfide by hydrogen peroxide in alkaline medium and application to carbonyl sulfide

    SciTech Connect (OSTI)

    Adewuyi, Y.G.; Carmichael, G.R.

    1987-02-01

    Kinetic studies of the oxidation of carbon disulfide by hydrogen peroxide in alkaline medium were made spectrophotometrically. The reaction of CS/sub 2/ with OH/sup -/ ion was found to be rate controlling and proceeded by the formation of a dithiocarbonate complex. The major reaction product was sulfate with sulfur occurring as colloidal suspensions only at pH values less than 8. The formation of sulfate increased exponentially with time and was also found to be dependent on the rate of hydrolysis of CS/sub 2/. In addition, the production of sulfate showed large induction periods, suggesting either a complex mechanism or formation by secondary reactions. The results obtained for carbon disulfide were extended to carbonyl sulfide (OCS) oxidation in alkaline solutions. The removal of OCS (acid gas) from mixtures of gases by alkaline liquid absorbents (e.g. NaOH) and oxidation of subsequent solutions to sulfate is an important industrial practice. 42 references, 14 figures, 2 tables.

  14. Field Campaign Guidelines (ARM Climate Research Facility)

    SciTech Connect (OSTI)

    Voyles, JW

    2011-01-17

    The purpose of this document is to establish a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking database tool and are tailored to meet the scope of each specific field campaign.

  15. Electron Heat Transport Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transport Measured in a Stochastic Magnetic Field T. M. Biewer, * C. B. Forest, ... limit of s &29; 1, RR assumed the electron heat flux to be diffusive, obeying Fourier's ...

  16. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Marchand, Alan P.; Lumetta, Gregg J.

    2004-06-30

    In this project, now completing its third year of its second renewal period, a collaborative project involving Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and the University of North Texas has been addressing outstanding questions regarding the separation of the bulk sodium constituents of alkaline tank waste. The principal potential benefit of this research is a major reduction in the volume of radioactive tank waste, obviating the building of expensive new tanks and reducing the costs of vitrification. As a general approach, principles of ion recognition are being explored toward discovery and basic understanding of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium salts from waste-like matrices. Questions being addressed pertain to applicable extraction equilibria and how extraction properties relate to extractant structure. Progress has included the elucidation of the promising concept of pseudo hydroxide extraction (PHE), demonstration of crown-ether synergized PHE, demonstration of combined sodium hydroxide/sodium nitrate separation, and synthesis of novel ditopic receptors for ditopic PHE. In future efforts (pending renewal), a thermochemical study of PHE relating extractant acidity to extraction strength is proposed, and this study will be extended to systems containing crown ethers, including proton-ionizable ones. A series of crown ethers will be synthesized for this purpose and to investigate the extraction of bulk sodium salts (e.g., nitrate, nitrite, and sulfate), possibly in combination with sodium hydroxide. Simple proof-of-principle tests with real tank waste at PNNL will provide feedback toward solvent designs that have desirable properties. In view of the upcoming milestone of completion of the second renewal period, this report will, in addition to providing a summary of the past year's progress, summarize all of the work completed since the start of this project.

  17. Text-Alternative Version of Building America Webinar: Field Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Test Best Practices, BEopt, and the National Residential Efficiency Measures Database Text-Alternative Version of Building America Webinar: Field Test Best Practices, BEopt, ...

  18. ARM - Field Campaign - ARM LBNL Carbon Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing such a predictive ability requires - * integrating ecosystem processes over ... During intensive field campaigns we measure ecosystem H218O and C18OO stocks and fluxes. ...

  19. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect (OSTI)

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases

  20. Development of Effective Solvent Modifiers for the Solvent Extraction of Cesium from Alkaline High-Level Tank Waste.

    SciTech Connect (OSTI)

    Bonnesen, Peter V.; Delmau, Laetitia H.; Moyer, Bruce A.; Lumetta, Gregg J. )

    2003-01-01

    A series of novel alkylphenoxy fluorinated alcohols were prepared and investigated for their effectiveness as modifiers in solvents containing calix[4]arene-bis-(tert-octylbenzo)-crown-6 for extracting cesium from alkaline nitrate media. A modifier that contained a terminal 1,1,2,2-tetrafluoroethoxy group was found to decompose following long-term exposure to warm alkaline solutions. However, replacement of the tetrafluoroethoxy group with a 2,2,3,3-tetrafluoropropoxy group led to a series of modifiers that possessed the alkaline stability required for a solvent extraction process. Within this series of modifiers, the structure of the alkyl substituent (tert-octyl, tert-butyl, tert-amyl, and sec-butyl) of the alkylphenoxy moiety was found to have a profound impact on the phase behavior of the solvent in liquid-liquid contacting experiments, and hence on the overall suitability of the modifier for a solvent extraction process. The sec-butyl derivative[1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol] (Cs-7SB) was found to possess the best overall balance of properties with respect to third phase and coalescence behavior, cleanup following degradation, resistance to solids formation, and cesium distribution behavior. Accordingly, this modifier was selected for use as a component of the solvent employed in the Caustic-Side Solvent Extraction (CSSX) process for removing cesium from high level nuclear waste (HLW) at the U.S. Department of Energy?s (DOE) Savannah River Site. In batch equilibrium experiments, this solvent has also been successfully shown to extract cesium from both simulated and actual solutions generated from caustic leaching of HLW tank sludge stored in tank B-110 at the DOE?s Hanford Site.

  1. Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination

    SciTech Connect (OSTI)

    Gallegos, María V.; Falco, Lorena R.; Peluso, Miguel A.; Sambeth, Jorge E.; Thomas, Horacio J.

    2013-06-15

    Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  2. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOE Patents [OSTI]

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  3. Electronic field permeameter

    DOE Patents [OSTI]

    Chandler, Mark A.; Goggin, David J.; Horne, Patrick J.; Kocurek, Gary G.; Lake, Larry W.

    1989-01-01

    For making rapid, non-destructive permeability measurements in the field, a portable minipermeameter of the kind having a manually-operated gas injection tip is provided with a microcomputer system which operates a flow controller to precisely regulate gas flow rate to a test sample, and reads a pressure sensor which senses the pressure across the test sample. The microcomputer system automatically turns on the gas supply at the start of each measurement, senses when a steady-state is reached, collects and records pressure and flow rate data, and shuts off the gas supply immediately after the measurement is completed. Preferably temperature is also sensed to correct for changes in gas viscosity. The microcomputer system may also provide automatic zero-point adjustment, sensor calibration, over-range sensing, and may select controllers, sensors, and set-points for obtaining the most precise measurements. Electronic sensors may provide increased accuracy and precision. Preferably one microcomputer is used for sensing instrument control and data collection, and a second microcomputer is used which is dedicated to recording and processing the data, selecting the sensors and set-points for obtaining the most precise measurements, and instructing the user how to set-up and operate the minipermeameter. To provide mass data collection and user-friendly operation, the second microcomputer is preferably a lap-type portable microcomputer having a non-volatile or battery-backed CMOS memory.

  4. Combined Utilization of Cation Exchanger and Neutral Receptor to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect (OSTI)

    Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.

    2004-03-29

    In this report, novel approaches to the selective liquid-liquid extraction separation of sodium hydroxide and sodium nitrate from high-level alkaline tank waste will be discussed. Sodium hydroxide can be successfully separated from alkaline tank-waste supernatants by weakly acidic lipophilic hydroxy compounds via a cation-exchange mechanism referred to as pseudo hydroxide extraction. In a multi-cycle process, as sodium hydroxide in the aqueous phase becomes depleted, it is helpful to have a neutral sodium receptor in the extraction system to exploit the high nitrate concentration in the waste solution to promote sodium removal by an ion-pair extraction process. Simultaneous utilization of an ionizable organic hydroxy compound and a neutral extractant (crown ether) in an organic phase results in the synergistic enhancement of ion exchange and improved separation selectivity due to the receptor's strong and selective sodium binding. Moreover, combination of the hydroxy compound and the crown ether provides for mutually increased solubility, even in a non-polar organic solvent. Accordingly, application of Isopar{reg_sign} L, a kerosene-like alkane solvent, becomes feasible. This investigation involves examination of such dual-mechanism extraction phases for sodium extraction from simulated and actual salt cake waste solutions. Sodium salts can be regenerated upon the contact of the loaded extraction phases with water. Finally, conditions of potential extraction/strip cycling will be discussed.

  5. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla; Serne, R. Jeffrey

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  6. Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives

    SciTech Connect (OSTI)

    Manohar, AK; Yang, CG; Malkhandi, S; Prakash, GKS; Narayanan, SR

    2013-09-07

    Iron-based alkaline rechargeable batteries have the potential of meeting the needs of large-scale electrical energy storage because of their low-cost, robustness and eco-friendliness. However, the widespread commercial deployment of iron-based batteries has been limited by the low charging efficiency and the poor discharge rate capability of the iron electrode. In this study, we have demonstrated iron electrodes containing bismuth oxide and iron sulfide with a charging efficiency of 92% and capable of being discharged at the 3C rate. Such a high value of charging efficiency combined with the ability to discharge at high rates is being reported for the first time. The bismuth oxide additive led to the in situ formation of elemental bismuth and a consequent increase in the overpotential for the hydrogen evolution reaction leading to an increase in the charging efficiency. We observed that the sulfide ions added to the electrolyte and iron sulfide added to the electrode mitigated-electrode passivation and allowed for continuous discharge at high rates. At the 3C discharge rate, a utilization of 0.2 Ah/g was achieved. The performance level of the rechargeable iron electrode demonstrated here is attractive for designing economically-viable large-scale energy storage systems based on alkaline nickel-iron and iron-air batteries. (C) 2013 The Electrochemical Society. All rights reserved.

  7. Bacillus cereus Phosphopentomutase Is an Alkaline Phosphatase Family Member That Exhibits an Altered Entry Point into the Catalytic Cycle

    SciTech Connect (OSTI)

    Panosian, Timothy D.; Nannemann, David P.; Watkins, Guy R.; Phelan, Vanessa V.; McDonald, W. Hayes; Wadzinski, Brian E.; Bachmann, Brian O.; Iverson, Tina M.

    2011-09-15

    Bacterial phosphopentomutases (PPMs) are alkaline phosphatase superfamily members that interconvert {alpha}-D-ribose 5-phosphate (ribose 5-phosphate) and {alpha}-D-ribose 1-phosphate (ribose 1-phosphate). We investigated the reaction mechanism of Bacillus cereus PPM using a combination of structural and biochemical studies. Four high resolution crystal structures of B. cereus PPM revealed the active site architecture, identified binding sites for the substrate ribose 5-phosphate and the activator {alpha}-D-glucose 1,6-bisphosphate (glucose 1,6-bisphosphate), and demonstrated that glucose 1,6-bisphosphate increased phosphorylation of the active site residue Thr-85. The phosphorylation of Thr-85 was confirmed by Western and mass spectroscopic analyses. Biochemical assays identified Mn{sup 2+}-dependent enzyme turnover and demonstrated that glucose 1,6-bisphosphate treatment increases enzyme activity. These results suggest that protein phosphorylation activates the enzyme, which supports an intermolecular transferase mechanism. We confirmed intermolecular phosphoryl transfer using an isotope relay assay in which PPM reactions containing mixtures of ribose 5-[{sup 18}O{sub 3}]phosphate and [U-{sup 13}C{sub 5}]ribose 5-phosphate were analyzed by mass spectrometry. This intermolecular phosphoryl transfer is seemingly counter to what is anticipated from phosphomutases employing a general alkaline phosphatase reaction mechanism, which are reported to catalyze intramolecular phosphoryl transfer. However, the two mechanisms may be reconciled if substrate encounters the enzyme at a different point in the catalytic cycle.

  8. Internal split field generator

    DOE Patents [OSTI]

    Thundat; Thomas George; Van Neste, Charles W.; Vass, Arpad Alexander

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  9. Alkaline Leaching of Key, Non-Radioactive Components from Simulants and Hanford Tank Sludge 241-S-110: Results of FY01 Studies

    SciTech Connect (OSTI)

    Rapko, Brian M.; Vienna, John D.; Sinkov, Serguei I.; Kim, Jinseong; Cisar, Alan J.

    2002-09-10

    This study addressed three aspects in selected alkaline leaching: first, the use of oxidants persulfate, permanganate, and ferrate as selective chromium-leaching agents from washed Hanford Tank S-110 solids under varying conditions of hydroxide concentration, temperature, and time was investigated. Second, the selective dissolution of solids containing mercury(II) oxide under alkaline conditions was examined. Various compounds were studied for their effectiveness in dissolving mercury under varying conditions of time, temperature, and hydroxide concentration in the leachate. Three compounds were studied: cysteine, iodide, and diethyldithiophosphoric acid (DEDTPA). Finally, the possibility of whether an oxidant bound to an anion-exchange resin can be used to effectively oxidize chromium(III) in alkaline solutions was addressed. The experimental results remain ambiguous to date; further work is required to reach any definitive conclusions as to the effectiveness of this approach.

  10. Optical sensor of magnetic fields

    DOE Patents [OSTI]

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  11. The relationship between coefficient of restitution and state of charge of zinc alkaline primary LR6 batteries

    SciTech Connect (OSTI)

    Bhadra, S; Hertzberg, BJ; Hsieh, AG; Croft, M; Gallaway, JW; Van Tassell, BJ; Chamoun, M; Erdonmez, C; Zhong, Z; Sholklapper, T; Steingart, DA

    2015-01-01

    The coefficient of restitution of alkaline batteries has been shown to increase as a function of depth of discharge. In this work, using non-destructive mechanical testing, the change in coefficient of restitution is compared to in situ energy-dispersive X-ray diffraction data to determine the cause of the macroscopic change in coefficient of restitution. The increase in coefficient of restitution correlates to the formation of a percolation pathway of ZnO within the anode of the cell, and the coefficient of restitution levels off at a value of 0.66 +/- 0.02 at 50% state of charge when the anode has densified into porous ZnO solid. Of note is the sensitivity of coefficient of restitution to the amount of ZnO formation that rivals the sensitivity of in situ energy-dispersive X-ray diffraction.

  12. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOE Patents [OSTI]

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  13. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  14. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  15. ARM - Measurement - Lidar polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsLidar polarization ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Lidar polarization The temporal and geometric behavior of the electric field vector of an electromagnetic wave transmitted or received by a lidar system, e.g. elliptical polarization, differential reflectivity, phase shift, co-polar correlation coefficient, linear depolarization ratio. Categories Cloud Properties

  16. Design of ternary alkaline-earth metal Sn(II) oxides with potential good p-type conductivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Mao -Hua; Singh, David J.; Zhang, Lijun; Li, Yuwei; Xu, Qiaoling; Ma, Yanming; Zheng, Weitao

    2016-04-19

    Oxides with good p-type conductivity have been long sought after to achieve high performance all-oxide optoelectronic devices. Divalent Sn(II) based oxides are promising candidates because of their rather dispersive upper valence bands caused by the Sn-5s/O-2p anti-bonding hybridization. There are so far few known Sn(II) oxides being p-type conductive suitable for device applications. Here, we present via first-principles global optimization structure searches a material design study for a hitherto unexplored Sn(II)-based system, ternary alkaline-earth metal Sn(II) oxides in the stoichiometry of MSn2O3 (M = Mg, Ca, Sr, Ba). We identify two stable compounds of SrSn2O3 and BaSn2O3, which can bemore » stabilized by Sn-rich conditions in phase stability diagrams. Their structures follow the Zintl behaviour and consist of basic structural motifs of SnO3 tetrahedra. Unexpectedly they show distinct electronic properties with band gaps ranging from 1.90 (BaSn2O3) to 3.15 (SrSn2O3) eV, and hole effective masses ranging from 0.87 (BaSn2O3) to above 6.0 (SrSn2O3) m0. Further exploration of metastable phases indicates a wide tunability of electronic properties controlled by the details of the bonding between the basic structural motifs. Lastly, this suggests further exploration of alkaline-earth metal Sn(II) oxides for potential applications requiring good p-type conductivity such as transparent conductors and photovoltaic absorbers.« less

  17. High field magnetotransport and point contact Andreev reflection measurements on CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}BrDegenerate magnetic semiconductor single crystals

    SciTech Connect (OSTI)

    Borisov, K. Coey, J. M. D.; Stamenov, P.; Alaria, J.

    2014-05-07

    Single crystals of the metallically degenerate fully magnetic semiconductors CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}Br have been prepared by the Chemical Vapour Transport method, using either Se or Br as transport agents. The high-quality, millimetre-sized, octahedrally faceted, needle- and platelet-shaped crystals are characterised by means of high field magnetotransport (?{sub 0}H? 14?T) and Point Contact Andreev Reflection. The relatively high spin polarisation observed |P|>0.56, together with the relatively low minority carrier effective mass of 0.25 m{sub e}, and long scattering time 10{sup ?13}?s, could poise these materials for integration in low- and close-to-room temperature minority injection bipolar heterojunction transistor demonstrations.

  18. Metrology Measurement Capabilities

    SciTech Connect (OSTI)

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  19. External split field generator

    DOE Patents [OSTI]

    Thundat, Thomas George; Van Neste, Charles W.; Vass, Arpad Alexander

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  20. livermore field office

    National Nuclear Security Administration (NNSA)

    donation to those in need.

    Livermore Field Office sets core values as part of continuous improvement process http:nnsa.energy.govbloglivermore-field-office-sets-cor...

  1. The North Carolina Field Test

    SciTech Connect (OSTI)

    Sharp, T.R.; Ternes, M.P.

    1990-08-01

    The North Carolina Field Test will test the effectiveness of two weatherization approaches: the current North Carolina Low-Income Weatherization Assistance Program and the North Carolina Field Test Audit. The Field Test Audit will differ from North Carolina's current weatherization program in that it will incorporate new weatherization measures and techniques, a procedure for basing measure selection of the characteristics of the individual house and the cost-effectiveness of the measure, and also emphasize cooling energy savings. The field test will determine the differences of the two weatherization approaches from the viewpoints of energy savings, cost effectiveness, and implementation ease. This Experimental Plan details the steps in performing the field test. The field test will be a group effort by several participating organizations. Pre- and post-weatherization data will be collected over a two-year period (November 1989 through August 1991). The 120 houses included in the test will be divided into a control group and two treatment groups (one for each weatherization procedure) of 40 houses each. Weekly energy use data will be collected for each house representing whole-house electric, space heating and cooling, and water heating energy uses. Corresponding outdoor weather and house indoor temperature data will also be collected. The energy savings of each house will be determined using linear-regression based models. To account for variations between the pre- and post-weatherization periods, house energy savings will be normalized for differences in outdoor weather conditions and indoor temperatures. Differences between the average energy savings of treatment groups will be identified using an analysis of variance approach. Differences between energy savings will be quantified using multiple comparison techniques. 9 refs., 8 figs., 5 tabs.

  2. Upstream -- SW92-03&

    Office of Legacy Management (LM)

    Field Measurements Alkalinity b mgL 196 130 263 218 196 98 145 202 228 183 227 186 213 Conductivity c mhoscm 1544 847...

  3. Measurement of $\

    SciTech Connect (OSTI)

    Acciarri, R.; et al.

    2015-11-03

    The ArgoNeuT collaboration reports the first measurement of neutral current $\\pi^{0}$ production in $\

  4. Measuring circuit

    DOE Patents [OSTI]

    Sun, Shan C.; Chaprnka, Anthony G.

    1977-01-11

    An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.

  5. Interferometry with synthetic gauge fields

    SciTech Connect (OSTI)

    Anderson, Brandon M.; Taylor, Jacob M.; Galitski, Victor M.

    2011-03-15

    We propose a compact atom interferometry scheme for measuring weak, time-dependent accelerations. Our proposal uses an ensemble of dilute trapped bosons with two internal states that couple to a synthetic gauge field with opposite charges. The trapped gauge field couples spin to momentum to allow time-dependent accelerations to be continuously imparted on the internal states. We generalize this system to reduce noise and estimate the sensitivity of such a system to be S{approx}10{sup -7}(m/s{sup 2}/{radical}(Hz)).

  6. Paint coatings: Controlled field and chamber experiments

    SciTech Connect (OSTI)

    Edney, E.O.

    1989-04-01

    To determine the impact of pollution levels on the weathering rates of coatings, laboratory chamber experiments and controlled field exposures at North Carolina and Ohio sites were conducted in such a manner to separate the contributions due to dry deposition, wet deposition, precipitation pH, etc. The results of these studies confirm that acidic gases such as SO/sub 2/ and HNO/sub 3/, as well as acids within rain, promote the dissolution of alkaline components including CaCO/sub 3/, ZnO, and Al flake from paint films. It is unclear from these studies whether the removal of these components reduces the service life or protective properties of the paint film. Other researchers within the Coatings Effects Program are conducting subsequent analyses to determine micro-damage of these paints. The uptake of acidic gases to painted surfaces is a complex process that depends on several factors. The deposition rate of SO/sub 2/ to a wet, painted surface may be controlled by the level of oxidants such as H/sub 2/O/sub 2/.

  7. Mapping the magnetic field vector in a fountain clock

    SciTech Connect (OSTI)

    Gertsvolf, Marina; Marmet, Louis

    2011-12-15

    We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.

  8. Origin of primordial magnetic fields

    SciTech Connect (OSTI)

    Souza, Rafael S. de; Opher, Reuven

    2008-02-15

    Magnetic fields of intensities similar to those in our galaxy are also observed in high redshift galaxies, where a mean field dynamo would not have had time to produce them. Therefore, a primordial origin is indicated. It has been suggested that magnetic fields were created at various primordial eras: during inflation, the electroweak phase transition, the quark-hadron phase transition (QHPT), during the formation of the first objects, and during reionization. We suggest here that the large-scale fields {approx}{mu}G, observed in galaxies at both high and low redshifts by Faraday rotation measurements (FRMs), have their origin in the electromagnetic fluctuations that naturally occurred in the dense hot plasma that existed just after the QHPT. We evolve the predicted fields to the present time. The size of the region containing a coherent magnetic field increased due to the fusion of smaller regions. Magnetic fields (MFs) {approx}10 {mu}G over a comoving {approx}1 pc region are predicted at redshift z{approx}10. These fields are orders of magnitude greater than those predicted in previous scenarios for creating primordial magnetic fields. Line-of-sight average MFs {approx}10{sup -2} {mu}G, valid for FRMs, are obtained over a 1 Mpc comoving region at the redshift z{approx}10. In the collapse to a galaxy (comoving size {approx}30 kpc) at z{approx}10, the fields are amplified to {approx}10 {mu}G. This indicates that the MFs created immediately after the QHPT (10{sup -4} s), predicted by the fluctuation-dissipation theorem, could be the origin of the {approx}{mu}G fields observed by FRMs in galaxies at both high and low redshifts. Our predicted MFs are shown to be consistent with present observations. We discuss the possibility that the predicted MFs could cause non-negligible deflections of ultrahigh energy cosmic rays and help create the observed isotropic distribution of their incoming directions. We also discuss the importance of the volume average magnetic field

  9. Field Monitoring Protocol: Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  10. Measurement Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins 2016 Joseph F. Keithley Award for Advances in Measurement Science October 15, 2015 Honors to Albert Migliori, developer of resonant ultrasound spectroscopy LOS ALAMOS, N.M., Oct. 15, 2015-Los Alamos National Laboratory physicist Albert Migliori, having led the development of a powerful tool for important measurements in condensed matter physics including superconductivity, is being given the Joseph F. Keithley Award For Advances in Measurement Science, the top instrumentation prize of the

  11. Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells

    SciTech Connect (OSTI)

    Malkhandi, S; Trinh, P; Manohar, AK; Jayachandrababu, KC; Kindler, A; Prakash, GKS; Narayanan, SR

    2013-06-07

    Conductive transition metal oxides (perovskites, spinels and pyrochlores) are attractive as catalysts for the air electrode in alkaline rechargeable metal-air batteries and fuel cells. We have found that conductive carbon materials when added to transition metal oxides such as calcium-doped lanthanum cobalt oxide, nickel cobalt oxide and calcium-doped lanthanum manganese cobalt oxide increase the electrocatalytic activity of the oxide for oxygen reduction by a factor of five to ten. We have studied rotating ring-disk electrodes coated with (a) various mass ratios of carbon and transition metal oxide, (b) different types of carbon additives and (c) different types of transition metal oxides. Our experiments and analysis establish that in such composite catalysts, carbon is the primary electro- catalyst for the two-electron electro-reduction of oxygen to hydroperoxide while the transition metal oxide decomposes the hydroperoxide to generate additional oxygen that enhances the observed current resulting in an apparent four-electron process. These findings are significant in that they change the way we interpret previous reports in the scientific literature on the electrocatalytic activity of various transition metal oxide- carbon composites for oxygen reduction, especially where carbon is assumed to be an additive that just enhances the electronic conductivity of the oxide catalyst. (C) 2013 The Electrochemical Society. All rights reserved.

  12. Effect of Lignin Removal by Alkaline Peroxide Pretreatment on the Susceptibility of Corn Stover to Purified Cellulolytic and Xylanolytic Enzymes

    SciTech Connect (OSTI)

    Selig, M. J.; Vinzant, T. B.; Himmel, M. E.; Decker, S. R.

    2009-01-01

    Pretreatment of corn stover with alkaline peroxide (AP) at pH 11.5 resulted in reduction of lignin content in the residual solids as a function of increasing batch temperature. Scanning electron microscopy of these materials revealed notably more textured surfaces on the plant cell walls as a result of the delignifying pretreatment. As expected, digestion of the delignified samples with commercial cellulase preparations showed an inverse relationship between the content of lignin present in the residual solids after pretreatment and the extent of both glucan and xylan conversion achievable. Digestions with purified enzymes revealed that decreased lignin content in the pretreated solids did not significantly impact the extent of glucan conversion achievable by cellulases alone. Not until purified xylanolytic activities were included with the cellulases were significant improvements in glucan conversion realized. In addition, an inverse relationship was observed between lignin content after pretreatment and the extent of xylan conversion achievable in a 24-h period with the xylanolytic enzymes in the absence of the cellulases. This observation, coupled with the direct relationship between enzymatic xylan and glucan conversion observed in a number of cases, suggests that the presence of lignins may not directly occlude cellulose present in lignocelluloses but rather impact cellulase action indirectly by its association with xylan.

  13. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  14. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  15. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  16. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  17. Nonmonotonic pressure evolution of the upper critical field in...

    Office of Scientific and Technical Information (OSTI)

    of the upper critical field, Hc2,c, of single crystalline FeSe was studied using measurements of the interplane resistivity, c, in magnetic fields parallel to tetragonal c axis. ...

  18. Evaluation of an alkaline-side solvent extraction process for cesium removal from SRS tank waste using laboratory-scale centrifugal contactors

    SciTech Connect (OSTI)

    Leonard, R. A.; Conner, C.; Liberatore, M. W.; Sedlet, J.; Aase, S. B.; Vandegrift, G. F.

    1999-11-29

    An alkaline-side solvent extraction process for cesium removal from Savannah River Site (SRS) tank waste was evaluated experimentally using a laboratory-scale centrifugal contactor. Single-stage and multistage tests were conducted with this contactor to determine hydraulic performance, stage efficiency, and general operability of the process flowsheet. The results and conclusions of these tests are reported along with those from various supporting tests. Also discussed is the ability to scale-up from laboratory- to plant-scale operation when centrifugal contractors are used to carry out the solvent extraction process. While some problems were encountered, a promising solution for each problem has been identified. Overall, this alkaline-side cesium extraction process appears to be an excellent candidate for removing cesium from SRS tank waste.

  19. Neutron Reference Benchmark Field Specification: ACRR Free-Field Environment (ACRR-FF-CC-32-CL).

    SciTech Connect (OSTI)

    Vega, Richard Manuel; Parma, Edward J.; Griffin, Patrick J.; Vehar, David W.

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity free-field reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in the neutron field are reported.

  20. Nevada Field Office

    National Nuclear Security Administration (NNSA)

    field-items">
    field-item odd">