Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO Website DirectoryCommunityFuturePalisades-Goshen-Rebuild
Description of Wyoming coal fields and seam analyses
Glass, G.B.
1983-01-01T23:59:59.000Z
Introductory material describe coal-bearing areas, coal-bearing rocks, and the structural geology of coal-bearing areas, discussing coal rank, proximate analyses, sulfur content, heat value, trace elements, carbonizing properties, coking coal, coking operations, in-situ gasification, coal mining, and production. The paper then gives descriptions of the coal seams with proximate analyses, where available, located in the following areas: Powder River coal basin, Green River region, Hanna field, Hams Fork coal region, and Bighorn coal basin. Very brief descriptions are given of the Wind River coal basin, Jackson Hole coal field, Black Hills coal region, Rock Creek coal field, and Goshen Hole coal field. Finally coal resources, production, and reserves are discussed. 76 references.
Black holes and the absorption rate of cosmological scalar fields
L. Arturo Urena-Lopez; Lizbeth M. Fernandez
2011-07-15T23:59:59.000Z
We study the absorption of a massless scalar field by a static black hole. Using the continuity equation that arises from the Klein-Gordon equation, it is possible to define a normalized absorption rate $\\Gamma(t)$ for the scalar field as it falls into the black hole. It is found that the absorption mainly depends upon the characteristics wavelengths involved in the physical system: the mean wavenumber and the width of the wave packet, but that it is insensitive to the scalar field's strength. By taking a limiting procedure, we determine the minimum absorption fraction of the scalar field's mass by the black hole, which is around 50%.
Quasinormal modes of test fields around regular black holes
Bobir Toshmatov; Ahmadjon Abdujabbarov; Zden?k Stuchlík; Bobomurat Ahmedov
2015-04-25T23:59:59.000Z
We study scalar, electromagnetic and gravitational test fields in the Hayward, Bardeen and Ay\\'on-Beato-Garc\\'ia regular black hole spacetimes and demonstrate that the test fields are stable in all these spacetimes. Using the sixth order WKB approximation of the linear "axial" perturbative scheme, we determine dependence of the quasinormal mode (QNM) frequencies on the characteristic parameters of the test fields and the spacetime charge parameters of the regular black holes. We give also the greybody factors, namely the transmission and reflection coefficients of scattered scalar, electromagnetic and gravitational waves. We show that damping of the QNMs in regular black hole spacetimes is suppressed in comparison to the case of Schwarzschild black holes, and increasing charge parameter of the regular black holes increases reflection and decreases transmission factor of incident waves for each of the test fields.
Quasinormal modes of test fields around regular black holes
Bobir Toshmatov; Ahmadjon Abdujabbarov; Zden?k Stuchlík; Bobomurat Ahmedov
2015-03-19T23:59:59.000Z
We study scalar, electromagnetic and gravitational test fields in the Hayward, Bardeen and Ay\\'{o}n-Beato-Garc\\'{i}a regular black hole spacetimes and demonstrate that the test fields are stable in all these spacetimes. Using the sixth order WKB approximation of the linear "axial" perturbative scheme, we determine dependence of the quasinormal mode (QNM) frequencies on the characteristic parameters of the test fields and the spacetime charge parameters of the regular black holes. We give also the greybody factors, namely the transmission and reflection coefficients of scattered scalar, electromagnetic and gravitational waves. We show that damping of the QNMs in regular black hole spacetimes is suppressed in comparison to the case of Schwarzschild black holes, and increasing charge parameter of the regular black holes increases reflection and decreases transmission factor of incident waves for each of the test fields.
Towards a characterization of fields leading to black hole hair
Narayan Banerjee; Somasri Sen
2013-07-05T23:59:59.000Z
In the present work, it is shown that an asymptotically flat spherical black hole can have a nontrivial signature of any field for an exterior observer if the energy momentum tensor of the corresponding field is either tracefree or if the trace falls off at least as rapidly as inverse cube of the radial distance. In the absence of a general No Hair Theorem, this result can provide a characterization of the fields leading to black hole hair.
Supersymmetric Yang Mills Fields and Black Holes ; In Ten Dimensional Unified Field Theory
Ajay Patwardhan
2007-05-17T23:59:59.000Z
The Ten dimensional Unified field theory has a 4 dimensional Riemannian spacetime and six dimensional Calabi Yau space structure. The supersymmetric Yang Mills fields and black holes are solutions in these theories. The formation of primordial black holes in early universe, the collapse to singularity of stellar black holes, the Hawking evaporation of microscopic black holes in LHC are topics of observational and theoretical interest. The observation of gamma ray bursts and creation of spectrum of particles and radiation of dark and normal matter occur due to primordial and microscopic black holes. The approach to singularity in black hole interior solutions, require the Bogoliubov transforms of SUSY YM fields in black hole geometries; both during formation and in evaporation. The Hawking effect of radiating black holes is applicable for all the fields. Invariants can be defined to give the conditions for these processes.
Viscosity, Black Holes, and Quantum Field Theory
D. T. Son; A. O. Starinets
2007-07-11T23:59:59.000Z
We review recent progress in applying the AdS/CFT correspondence to finite-temperature field theory. In particular, we show how the hydrodynamic behavior of field theory is reflected in the low-momentum limit of correlation functions computed through a real-time AdS/CFT prescription, which we formulate. We also show how the hydrodynamic modes in field theory correspond to the low-lying quasinormal modes of the AdS black p-brane metric. We provide a proof of the universality of the viscosity/entropy ratio within a class of theories with gravity duals and formulate a viscosity bound conjecture. Possible implications for real systems are mentioned.
Some differences between Dirac's hole theory and quantum field theory
Dan Solomon
2005-06-30T23:59:59.000Z
Diracs hole theory (HT) and quantum field theory (QFT) are generally considered to be equivalent to each other. However, it has been recently shown by several researchers that this is not necessarily the case. When the change in the vacuum energy was calculated for a time independent perturbation HT and QFT yielded different results. In this paper we extend this discussion to include a time dependent perturbation for which the exact solution to the Dirac equation is known. It will be shown that for this case, also, HT and QFT yield different results. In addition, there will be some discussion of the problem of anomalies in QFT.
Axion inflation with gauge field production and primordial black holes
Edgar Bugaev; Peter Klimai
2014-10-19T23:59:59.000Z
We study the process of primordial black hole (PBH) formation at the beginning of radiation era for the cosmological scenario in which the inflaton is a pseudo-Nambu-Goldstone boson (axion) and there is a coupling of the inflaton with some gauge field. In this model inflation is accompanied by the gauge quanta production and a strong rise of the curvature power spectrum amplitude at small scales (along with non-Gaussianity) is predicted. We show that data on PBH searches can be used for a derivation of essential constraints on the model parameters in such an axion inflation scenario. We compare our numerical results with the similar results published earlier, in the work by Linde et al.
Supermassive black holes from OASIS and SAURON integral-field kinematics
M. Cappellari; R. Bacon; R. L. Davies; P. T. de Zeeuw; E. Emsellem; J. Falcon-Barroso; D. Krajnovic; H. Kuntschner; R. M. McDermid; R. F. Peletier; M. Sarzi; R. C. E. van den Bosch; G. van de Ven
2007-09-18T23:59:59.000Z
Supermassive black holes are a key element in our understanding of how galaxies form. Most of the progress in this very active field of research is based on just ~30 determinations of black hole mass, accumulated over the past decade. We illustrate how integral-field spectroscopy, and in particular our OASIS modeling effort, can help improve the current situation.
Supermassive black holes from OASIS and SAURON integral-field kinematics
Cappellari, M; Davies, R L; De Zeeuw, P T; Emsellem, E; Falcon-Barroso, J; Krajnovic, D; Kuntschner, H; McDermid, R M; Peletier, R F; Sarzi, M; Bosch, R C E van den; van de Ven, G
2007-01-01T23:59:59.000Z
Supermassive black holes are a key element in our understanding of how galaxies form. Most of the progress in this very active field of research is based on just ~30 determinations of black hole mass, accumulated over the past decade. We illustrate how integral-field spectroscopy, and in particular our OASIS modeling effort, can help improve the current situation.
Characterizing asymptotically anti-de Sitter black holes with abundant stable gauge field hair
Ben L. Shepherd; Elizabeth Winstanley
2012-06-25T23:59:59.000Z
In the light of the "no-hair" conjecture, we revisit stable black holes in su(N) Einstein-Yang-Mills theory with a negative cosmological constant. These black holes are endowed with copious amounts of gauge field hair, and we address the question of whether these black holes can be uniquely characterized by their mass and a set of global non-Abelian charges defined far from the black hole. For the su(3) case, we present numerical evidence that stable black hole configurations are fixed by their mass and two non-Abelian charges. For general N, we argue that the mass and N-1 non-Abelian charges are sufficient to characterize large stable black holes, in keeping with the spirit of the "no-hair" conjecture, at least in the limit of very large magnitude cosmological constant and for a subspace containing stable black holes (and possibly some unstable ones as well).
Instability of a four-dimensional de Sitter black hole with a conformally coupled scalar field
Tom J. T. Harper; Paul A. Thomas; Elizabeth Winstanley; Phil M. Young
2004-08-11T23:59:59.000Z
We study the stability of new neutral and electrically charged four-dimensional black hole solutions of Einstein's equations with a positive cosmological constant and conformally coupled scalar field. The neutral black holes are always unstable. The charged black holes are also shown analytically to be unstable for the vast majority of the parameter space of solutions, and we argue using numerical techniques that the configurations corresponding to the remainder of the parameter space are also unstable.
Dynamics of Scalar Fields in the Background of Rotating Black Holes
W. Krivan; P. Laguna; P. Papadopoulos
1996-06-04T23:59:59.000Z
A numerical study of the evolution of a massless scalar field in the background of rotating black holes is presented. First, solutions to the wave equation are obtained for slowly rotating black holes. In this approximation, the background geometry is treated as a perturbed Schwarzschild spacetime with the angular momentum per unit mass playing the role of a perturbative parameter. To first order in the angular momentum of the black hole, the scalar wave equation yields two coupled one-dimensional evolution equations for a function representing the scalar field in the Schwarzschild background and a second field that accounts for the rotation. Solutions to the wave equation are also obtained for rapidly rotating black holes. In this case, the wave equation does not admit complete separation of variables and yields a two-dimensional evolution equation. The study shows that, for rotating black holes, the late time dynamics of a massless scalar field exhibit the same power-law behavior as in the case of a Schwarzschild background independently of the angular momentum of the black hole.
Thin-shell wormholes from black holes with dilaton and monopole fields
F. Rahaman; A. Banerjee
2011-09-08T23:59:59.000Z
We provide a new type of thin-shell wormhole from the black holes with dilaton and monopole fields. The dilaton and monopole that built the black holes may supply fuel to construct the wormholes. Several characteristics of this thin-shell wormhole have been discussed. Finally, we discuss the stability of the thin-shell wormholes with a "phantom-like" equation of state for the exotic matter at the throat.
Are black holes a serious threat to scalar field dark matter models?
Juan Barranco; Argelia Bernal; Juan Carlos Degollado; Alberto Diez-Tejedor; Miguel Megevand; Miguel Alcubierre; Darío Núñez; Olivier Sarbach
2011-08-03T23:59:59.000Z
Classical scalar fields have been proposed as possible candidates for the dark matter component of the universe. Given the fact that super-massive black holes seem to exist at the center of most galaxies, in order to be a viable candidate for the dark matter halo a scalar field configuration should be stable in the presence of a central black hole, or at least be able to survive for cosmological time-scales. In the present work we consider a scalar field as a test field on a Schwarzschild background, and study under which conditions one can obtain long-lived configurations. We present a detailed study of the Klein-Gordon equation in the Schwarzschild spacetime, both from an analytical and numerical point of view, and show that indeed there exist quasi-stationary solutions that can remain surrounding a black hole for large time-scales.
Analytical Tendex and Vortex Fields for Perturbative Black Hole Initial Data
Kenneth A. Dennison; Thomas W. Baumgarte
2012-07-10T23:59:59.000Z
Tendex and vortex fields, defined by the eigenvectors and eigenvalues of the electric and magnetic parts of the Weyl curvature tensor, form the basis of a recently developed approach to visualizing spacetime curvature. In particular, this method has been proposed as a tool for interpreting results from numerical binary black hole simulations, providing a deeper insight into the physical processes governing the merger of black holes and the emission of gravitational radiation. Here we apply this approach to approximate but analytical initial data for both single boosted and binary black holes. These perturbative data become exact in the limit of small boost or large binary separation. We hope that these calculations will provide additional insight into the properties of tendex and vortex fields, and will form a useful test for future numerical calculations.
Effects of black hole's gravitational field on the luminosity of a star during close encounter
Andreja Gomboc; Andrej Cadez
2005-02-24T23:59:59.000Z
To complement hydrodynamic studies of the tidal disruption of the star by a massive black hole, we present the study of stellar luminosity and its variations, produced by the strong gravitational field of the black hole during a close encounter. By simulating the relativistically moving star and its emitted light and taking into account general relativistic effects on particle and light trajectories, our results show that the black hole's gravity alone induces apparent stellar luminosity variations on typical timescales of a few r_g/c (=5 sec m_bh/10^6 M_\\odot) to a few 100 r_g/c (\\sim 10 min m_bh/10^6 M_\\odot), where r_g=Gm_bh/c^2. We discern different cases with respect to the strength of tidal interaction and focus on two: a) a star encountering a giant black hole traces space-time almost as a point particle, so that the apparent luminosity variations are dominated by clearly recognizable general relativistic effects and b) in a close encounter of a star with a black hole of similar size the stellar debris is spread about the black hole by processes where hydrodynamics plays an important role. We discuss limitations and results of our approach.
Farhad Ali
2014-12-30T23:59:59.000Z
In this paper we present Plane symmetric, Cylindrically Symmetric and Spherically Symmetric Black hole or Vacuum solutions of Einstein Field Equations(EFEs). Some of these solutions are new which we have not seen in the literature. This calculation will help us in understanding the gravitational wave and gravitational wave spacetimes.
Hawking radiation for a scalar field conformally coupled to an AdS black hole
P. Valtancoli
2015-02-05T23:59:59.000Z
The decomposition in normal modes of a scalar field conformally coupled to an AdS black hole leads to a Heun equation with simple coefficients thanks to conformal invariance. By applying the Damour-Ruffini method we can relate the critical exponent of the radial part at the horizon surface to the Hawking radiation of scalar particles.
Resonant excitation of black holes by massive bosonic fields and giant ringings
Yves Decanini; Antoine Folacci; Mohamed Ould El Hadj
2014-03-20T23:59:59.000Z
We consider the massive scalar field, the Proca field and the Fierz-Pauli field in the Schwarzschild spacetime and we focus more particularly on their long-lived quasinormal modes. We show numerically that the associated excitation factors have a strong resonant behavior and we confirm this result analytically from semiclassical considerations based on the properties of the unstable circular geodesics on which a massive particle can orbit the black hole. The conspiracy of (i) the long-lived behavior of the quasinormal modes and (ii) the resonant behavior of their excitation factors induces intrinsic giant ringings, i.e., ringings of a huge amplitude. Such ringings, which are moreover slowly decaying, are directly constructed from the retarded Green function. If we describe the source of the black hole perturbation by an initial value problem with Gaussian initial data, i.e., if we consider the excitation of the black hole from an extrinsic point of view, we can show that these extraordinary ringings are still present. This suggests that physically realistic sources of perturbations should generate giant and slowly decaying ringings and that their existence could be used to constrain ultralight bosonic field theory interacting with black holes.
Thermodynamics of the Three-dimensional Black Hole with a Coulomb-like Field
Alexis Larranaga; Luz Angela Garcia
2008-11-21T23:59:59.000Z
In this paper, we study the thermodynamical properties of the (2+1)dimensional black hole with a Coulomb-like electric field and the differential form of the first law of thermodynamics is derived considering a virtual displacement of its event horizon. This approach shows that it is possible to give a thermodynamical interpretation to the field equations near the horizon. The Lambda=0 solution is studied and its interesting thermodynamical properties are commented.
Mubasher Jamil; Saqib Hussain; Bushra Majeed
2015-01-21T23:59:59.000Z
We investigate the dynamics of a neutral and a charged particle around a static and spherically symmetric black hole in the presence of quintessence matter and external magnetic field. We explore the conditions under which the particle moving around the black hole could escape to infinity after colliding with another particle. The innermost stable circular orbit (ISCO) for the particles are studied in detail. Mainly the dependence of ISCO on dark energy and on the presence of external magnetic field in the vicinity of black hole is discussed. By using the Lyapunov exponent, we compare the stabilities of the orbits of the particles in the presence and absence of dark energy and magnetic field. The expressions for the center of mass energies of the colliding particles near the horizon of the black hole are derived. The effective force on the particles due to dark energy and magnetic field in the vicinity of black hole is also discussed.
Black holes and fundamental fields: hair, kicks and a gravitational "Magnus" effect
Hirotada Okawa; Vitor Cardoso
2014-05-19T23:59:59.000Z
Scalar fields pervade theoretical physics and are a fundamental ingredient to solve the dark matter problem, to realize the Peccei-Quinn mechanism in QCD or the string-axiverse scenario. They are also a useful proxy for more complex matter interactions, such as accretion disks or matter in extreme conditions. Here, we study the collision between scalar "clouds" and rotating black holes. For the first time we are able to compare analytic estimates and strong field, nonlinear numerical calculations for this problem. As the black hole pierces through the cloud it accretes according to the Bondi-Hoyle prediction, but is deflected through a purely kinematic gravitational "anti-Magnus" effect, which we predict to be present also during the interaction of black holes with accretion disks. After the interaction is over, we find large recoil velocities in the transverse direction. The end-state of the process belongs to the vacuum Kerr family if the scalar is massless, but can be a hairy black hole when the fundamental scalar is massive.
Quasi-stationary solutions of self-gravitating scalar fields around black holes
Nicolas Sanchis-Gual; Juan Carlos Degollado; Pedro J. Montero; José A. Font
2014-12-29T23:59:59.000Z
Recent perturbative studies have shown the existence of long-lived, quasi-stationary configurations of scalar fields around black holes. In particular, such configurations have been found to survive for cosmological timescales, which is a requirement for viable dark matter halo models in galaxies based on such type of structures. In this paper we perform a series of numerical relativity simulations of dynamical non-rotating black holes surrounded by self-gravitating scalar fields. We solve numerically the coupled system of equations formed by the Einstein and the Klein-Gordon equations under the assumption of spherical symmetry using spherical coordinates. Our results confirm the existence of oscillating, long-lived, self-gravitating scalar fields configurations around non-rotating black holes in highly dynamical spacetimes with a rich scalar field environment. Our numerical simulations are long-term stable and allow for the extraction of the resonant frequencies to make a direct comparison with results obtained in the linearized regime. A byproduct of our simulations is the existence of a degeneracy in plausible long-lived solutions of Einstein equations that would induce the same motion of test particles, either with or without the existence of quasi-bound states.
Absorption of a massive scalar field by a charged black hole
Carolina L. Benone; Ednilton S. de Oliveira; Sam R. Dolan; Luís C. B. Crispino
2014-07-15T23:59:59.000Z
We calculate the absorption cross section of a massive neutral scalar field impinging upon a Reissner-Nordstr\\"om black hole. First, we derive key approximations in the high- and low-frequency regimes. Next, we develop a numerical method to compute the cross section at intermediate frequencies, and present a selection of results. Finally, we draw together our complementary approaches to give a quantitative full-spectrum description of absorption.
String-theoretic breakdown of effective field theory near black hole horizons
Matthew Dodelson; Eva Silverstein
2015-04-21T23:59:59.000Z
We investigate the validity of the equivalence principle near horizons in string theory, analyzing the breakdown of effective field theory caused by longitudinal string spreading effects. An experiment is set up where a detector is thrown into a black hole a long time after an early infalling string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-mean-square longitudinal spreading of the initial string as measured by the late infaller. This results from the large relative boost between the string and detector in the near horizon region, which develops automatically despite their modest initial energies outside the black hole and the weak curvature in the geometry. We subject this scenario to basic consistency checks, using these to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results consistent with the predicted spreading albeit not in a direct analogue of the black hole process. We discuss applications of this effect to the firewall paradox, and estimate the time and distance scales it predicts for new physics near black hole and cosmological horizons.
Alba Field cased-hole horizontal gravel pack: A team approach to design
Alexander, K. [Chevron U.K. Ltd., London (United Kingdom); Winton, S. [Baker Hughes INTEQ, Aberdeen (United Kingdom); Price-Smith, C. [Dowell Schlumberger, Aberdeen (United Kingdom)
1996-03-01T23:59:59.000Z
A 700-ft cased-hole horizontal well was gravel packed and completed in the Alba Field, central North Sea. The completion incorporated a number of new technologies adopted for a horizontal cased-hole completion, including both equipment and fluids. The zone was completed in two stages using a horizontal stack-pack approach. Perforation packing was optimized by performing a staged acid prepack with the guns in the hole using a low-density synthetic gravel substitute in a shear thinning carrier fluid. This was a world-first achievement at a cased-hole gravel pack using the stack-pack approach in a horizontal well. A solids-free fluid-loss control material was evaluated and chosen for the high-permeability Alba sands (3 darcies). Extensive lab testing was performed to ensure minimal damage from various fluids. A 30-ft physical model was used to optimize annular pack efficiency. A gravel placement computer simulation was used to design pump rate, sand concentration, and gel loading to optimize annular and perforation-pack efficiency.
Magnetic Fields in Blazar Pc-scale Jets - Possible connection to Spin Rates of Black holes ?
P. Kharb; M. L. Lister; P. Shastri
2008-03-06T23:59:59.000Z
We re-examine the differences observed in the pc-scale magnetic field geometry of high and low optical polarization Quasars (HPQs, LPRQs) using the MOJAVE sample. We find that, as previously reported, HPQ jets exhibit predominantly transverse B fields while LPRQ jets tend to display longitudinal B fields. We attempt to understand these results along with the different B field geometry observed in the low and high energy peaked BL Lacs (LBLs, HBLs) using a simple picture wherein the spinning central black holes in these AGNs influence the speed and strength of the jet components (spine, sheath). Higher spin rates in HPQs compared to LPRQs and LBLs compared to HBLs could explain the different total radio powers, VLBI jet speeds, and the observed B field geometry in these AGN classes.
Evolution of massive fields around a black hole in Horava gravity
Nijo Varghese; V C Kuriakose
2011-05-23T23:59:59.000Z
We study the evolution of massive scalar field in the spacetime geometry of Kehagias-Sfetsos(KS) black hole in deformed Horava-Lifshitz(HL) gravity by numerical analysis. We find that the signature of HL theory is encoded in the quasinormal mode(QNM) phase of the evolution of field. The QNM phase in the evolution process lasts for a longer time in HL theory. QNMs involved in the evolution of massive field are calculated and find that they have a higher oscillation frequency and a lower damping rate than the Schwarzschild spacetime case. We also study the relaxation of field in the intermediate and asymptotic range and verified that behaviors of field in these phases are independent of the HL parameter and is identical to the Schwarzschild case.
E. Kyriakopoulos
2009-05-15T23:59:59.000Z
We present two rotating black hole solutions with axion $\\xi$, dilaton $\\phi$ and two U(1) vector fields. By applying the "Newman-Janis trick" to a metric with 3 arbitrary parameters we find a rotating metric $g_{\\mu\
String-theoretic breakdown of effective field theory near black hole horizons
Dodelson, Matthew
2015-01-01T23:59:59.000Z
We investigate the validity of the equivalence principle near horizons in string theory, analyzing the breakdown of effective field theory caused by longitudinal string spreading effects. An experiment is set up where a detector is thrown into a black hole a long time after an early infalling string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-mean-square longitudinal spreading of the initial string as measured by the late infaller. This results from the large relative boost between the string and detector in the near horizon region, which develops automatically despite their modest initial energies outside the black hole and the weak curvature in the geometry. We subject this scenario to basic consistency checks, using these to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results consistent with the predicted spreading albe...
Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field
Dick Benoit; David Blackwell; Joe Moore; Colin Goranson
2005-10-27T23:59:59.000Z
During Phases 2 and 3 of the Lake City GRED II project two slim holes were cored to depths of 1728 and 4727 ft. Injection and production tests with temperature and pressure logging were performed on the OH-1 and LCSH-5 core holes. OH-1 was permanently modified by cementing an NQ tubing string in place below a depth of 947 ft. The LCSH-1a hole was drilled in Quaternary blue clay to a depth of 1727 ft and reached a temperature of 193 oF at a depth of 1649 ft. This hole failed to find evidence of a shallow geothermal system east of the Mud Volcano but the conductive temperature profile indicates temperatures near 325 oF could be present below depth of 4000 ft. The LCSH-5 hole was drilled to a depth of 4727 ft and encountered a significant shallow permeability between depths of 1443 and 1923 ft and below 3955 ft. LCSH-5 drilled impermeable Quaternary fanglomerate to a depth of 1270 ft. Below 1270 ft the rocks consist primarily of Tertiary sedimentary rocks. The most significant formation deep in LCSH-5 appears to be a series of poikoilitic mafic lava flows below a depth of 4244 ft that host the major deep permeable fracture encountered. The maximum static temperature deep in LCSH-5 is 323 oF and the maximum flowing temperature is 329 oF. This hole extended the known length of the geothermal system by ¾ of a mile toward the north and is located over ½ mile north of the northernmost hot spring. The OH-1 hole was briefly flow tested prior to cementing the NQ rods in place. This flow test confirmed the zone at 947 ft is the dominant permeability in the hole. The waters produced during testing of OH-1 and LCSH-5 are generally intermediate in character between the deep geothermal water produced by the Phipps #2 well and the thermal springs. Geothermometers applied to deeper fluids tend to predict higher subsurface temperatures with the maximum being 382 oF from the Phipps #2 well. The Lake City geothermal system can be viewed as having shallow (elevation > 4000 ft and temperatures of 270 to 310 oF), intermediate (elevation 2800 to 3700 ft and temperatures 270 to 320 oF ) and deep (elevations < 1000 ft and temperatures 323 to 337 oF) components. In the south part of the field, near Phipps #2 the shallow and deep components are present. In the central part of the field, near OH-1 the shallow and intermediate components are present and presumably the deep component is also present. In the north part of the field, the intermediate and deep components are present. Most or all of the fractures in the core have dips between 45 degrees and vertical and no strong stratigraphic control on the resource has yet been demonstrated. Conceptually, the Lake City geothermal resource seems to be located along the north-south trending range front in a relatively wide zone of fractured rock. The individual fractures do not seem to be associated with any readily identifiable fault. In fact, no major hydraulically conductive faults were identified by the core drilling.
General relativistic simulations of black hole-neutron star mergers: Effects of magnetic fields
Zachariah B. Etienne; Yuk Tung Liu; Vasileios Paschalidis; Stuart L. Shapiro
2012-05-15T23:59:59.000Z
As a neutron star (NS) is tidally disrupted by a black hole (BH) companion at the end of a BH-NS binary inspiral, its magnetic fields will be stretched and amplified. If sufficiently strong, these magnetic fields may impact the gravitational waveforms, merger evolution and mass of the remnant disk. Formation of highly-collimated magnetic field lines in the disk+spinning BH remnant may launch relativistic jets, providing the engine for a short-hard GRB. We analyze this scenario through fully general relativistic, magnetohydrodynamic (GRMHD) BHNS simulations from inspiral through merger and disk formation. Different initial magnetic field configurations and strengths are chosen for the NS interior for both nonspinning and moderately spinning (a/M=0.75) BHs aligned with the orbital angular momentum. Only strong interior (Bmax~10^17 G) initial magnetic fields in the NS significantly influence merger dynamics, enhancing the remnant disk mass by 100% and 40% in the nonspinning and spinning BH cases, respectively. However, detecting the imprint of even a strong magnetic field may be challenging for Advanced LIGO. Though there is no evidence of mass outflows or magnetic field collimation during the preliminary simulations we have performed, higher resolution, coupled with longer disk evolutions and different initial magnetic field configurations, may be required to definitively assess the possibility of BHNS binaries as short-hard GRB progenitors.
Boyer, Edmond
1069 Exciton Bose condensation : the ground state of an electron-hole gas I. Mean field description dÃ©gÃ©nÃ©rÃ©es. Nous Ã©tudions la condensation de Bose de ce systÃ¨me en fonction de la densitÃ©, nÃ©gligeant dans-hole gas in a simple model semiconductor, with direct gap and isotropic, non degenerate bands. We study
Field Theoretic Study of Bilayer Membrane Fusion: II. Mechanism of a Stalk-Hole Complex
Kirill Katsov; Marcus Mueller; Michael Schick
2005-07-19T23:59:59.000Z
We use self-consistent field theory to determine structural and energetic properties of intermediates and transition states involved in bilayer membrane fusion. In particular, we extend our original calculations from those of the standard hemifusion mechanism, which was studied in detail in the first paper of this series, to consider a possible alternative to it. This mechanism involves non-axial stalk expansion, in contrast to the axially symmetric evolution postulated in the classical mechanism. Elongation of the initial stalk facilitates the nucleation of holes and leads to destabilization of the fusing membranes via the formation of a stalk-hole complex. We study properties of this complex in detail, and show how transient leakage during fusion, previously predicted and recently observed in experiment, should vary with system architecture and tension. We also show that the barrier to fusion in the alternative mechanism is lower than that of the standard mechanism by a few $k_BT$ over most of the relevant region of system parameters, so that this alternative mechanism is a viable alternative to the standard pathway.
Running spectral index and formation of primordial black hole in single field inflation models
Drees, Manuel; Erfani, Encieh, E-mail: drees@th.physik.uni-bonn.de, E-mail: erfani@th.physik.uni-bonn.de [Physikalisches Institut and Bethe Center for Theoretical Physics, Universität Bonn, Nussallee 12, 53115 Bonn (Germany)
2012-01-01T23:59:59.000Z
A broad range of single field models of inflation are analyzed in light of all relevant recent cosmological data, checking whether they can lead to the formation of long-lived Primordial Black Holes (PBHs). To that end we calculate the spectral index of the power spectrum of primordial perturbations as well as its first and second derivatives. PBH formation is possible only if the spectral index increases significantly at small scales, i.e. large wave number k. Since current data indicate that the first derivative ?{sub S} of the spectral index n{sub S}(k{sub 0}) is negative at the pivot scale k{sub 0}, PBH formation is only possible in the presence of a sizable and positive second derivative (''running of the running'') ?{sub S}. Among the three small-field and five large-field models we analyze, only one small-field model, the ''running mass'' model, allows PBH formation, for a narrow range of parameters. We also note that none of the models we analyze can accord for a large and negative value of ?{sub S}, which is weakly preferred by current data.
Particle Dynamics around Riessner-Nordström Black Hole with Magnetic Field
Bushra Majeed; Saqib Hussain; Mubasher Jamil
2014-11-18T23:59:59.000Z
We investigate the dynamics of a neutral and a charged particle around the Reissner-Nordstr\\"om (RN) black hole immersed in magnetic field. We are interested to explore the conditions under which the moving charged particle can escape to infinity after collision with another neutral particle or a photon in the vicinity of the BH. We have calculated the expressions of the escape velocity. Further we have studied that how does the presence of magnetic field in the vicinity of BH, effect the motion of the orbiting particle. There are more than one stable regions if we consider the magnetic field in the accretion disk of BH so the stability of ISCO increases in the presence of magnetic field. We have also discussed the Lyapunov exponent in detail. Time-like geodesics of the moving particle are also studied. It is observed that the particle goes closer to the extremal RN-BH as compared to the case when it is moving around RN-BH.
Arman Tursunov; Martin Kološ; Zden?k Stuchlík; Bobomurat Ahmedov
2014-09-18T23:59:59.000Z
We study the acceleration of an electric current-carrying and axially-symmetric string loop initially oscillating in the vicinity of a Schwarzschild black hole embedded in an external asymptotically uniform magnetic field. The plane of the string loop is orthogonal to the magnetic field lines and the acceleration of the string loop occurs due to the transmutation effect turning in the deep gravitational field the internal energy of the oscillating strings to the energy of their translational motion along the axis given by the symmetry of the black hole spacetime and the magnetic field. We restrict our attention to the motion of string loop with energy high enough, when it can overcome the gravitational attraction and escape to infinity. We demonstrate that for the current-carrying string loop the transmutation effect is enhanced by the contribution of the interaction between the electric current of the string loop and the external magnetic field and we give conditions that have to be fulfilled for an efficient acceleration. The Schwarzschild black hole combined with the strong external magnetic field can accelerate the current-carrying string loop up to the velocities close to the speed of light $v \\sim c$. Therefore, the string loop transmutation effect can potentially well serve as an explanation for acceleration of highly relativistic jets observed in microquasars and active galactic nuclei.
Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation
Brihaye, Yves [Physique-Mathematique, Universite de Mons-Hainaut, 7000 Mons (Belgium); Hartmann, Betti [School of Engineering and Science, Jacobs University Bremen, 28759 Bremen (Germany)
2011-10-15T23:59:59.000Z
We study the stability of static, hyperbolic Gauss-Bonnet black holes in (4+1)-dimensional anti-de Sitter (AdS) space-time against the formation of scalar hair. Close to extremality the black holes possess a near-horizon topology of AdS{sub 2}xH{sup 3} such that within a certain range of the scalar field mass one would expect that they become unstable to the condensation of an uncharged scalar field. We confirm this numerically and observe that there exists a family of hairy black hole solutions labeled by the number of nodes of the scalar field function. We construct explicit examples of solutions with a scalar field that possesses zero nodes, one node, and two nodes, respectively, and show that the solutions with nodes persist in the limit of Einstein gravity, i.e. for vanishing Gauss-Bonnet coupling. We observe that the interval of the mass for which scalar field condensation appears decreases with increasing Gauss-Bonnet coupling and/or with increasing node number.
Damien Gobin
2014-12-02T23:59:59.000Z
In this paper, we consider massive charged Dirac fields propagating in the exterior region of de Sitter-Reissner-Nordstr\\"om black holes.We show that the parameters of such black holes are uniquely determined by the partial knowledge of the corresponding scattering operator $S(\\lambda)$ at a fixed energy $\\lambda$.More precisely, we consider the partial wave scattering operators $S(\\lambda,n)$ (here $\\lambda \\in \\mathbb{R}$ is the energy and $n \\in \\mathbb{N}^{\\star}$ denotes the angular momentum) defined as the restrictions of the full scattering operator on a well chosen basis of spin-weighted spherical harmonics.We prove that the knowledge of the scattering operators $S(\\lambda,n)$, for all $n \\in \\mathcal{L}$, where $\\mathcal{L}$ is a subset of $\\mathbb{N}^{\\star}$ that satisfies the M\\"untz condition $\\sum\\_{n \\in \\mathcal{L}} \\frac{1}{n} = + \\infty$, allows to recover the mass, the charge and the cosmological constant of a dS-RN black hole.The main tool consists in the complexification of the angular momentum $n$ and in studying the analytic properties of the "unphysical" corresponding data in the complex variable $z$.
LaFontaine-McLarty, J.; Ali, S.A.; Sanclemente, L.W.; Sketchler, B.C.
1995-11-01T23:59:59.000Z
This paper describes the results of a two-year study conducted to optimize cleanup systems in open hole environments. Specifically, the study originated from problems encountered in the design of a series of open hole horizontal completions and the effort to improve well productivity. It was determined that the design of the drilling and completion phases would have to address not only which fluid would provide the necessary requirements for drilling the intervals, but also address the cleanup process during the completion phase. The fluid and cleanup treatment selections would have to be designed to work together to eliminate damage. A combination of a pay zone drilling fluid and an effective cleanup system resulted from the study and productivity numbers have been more than anticipated in all of the completions.
Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas
Morrison, C., E-mail: c.morrison.2@warwick.ac.uk; Rhead, S. D.; Foronda, J.; Leadley, D. R.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Wi?niewski, P. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland)
2014-11-03T23:59:59.000Z
We report the observation, through Shubnikov-de Haas oscillations in the magnetoresistance, of spin splitting caused by the Rashba spin-orbit interaction in a strained Ge quantum well epitaxially grown on a standard Si(001) substrate. The Shubnikov-de Haas oscillations display a beating pattern due to the spin split Landau levels. The spin-orbit parameter and Rashba spin-splitting energy are found to be 1.0?×?10{sup ?28?}?eVm{sup 3} and 1.4?meV, respectively. This energy is comparable to 2D electron gases in III-V semiconductors, but substantially larger than in Si, and illustrates the suitability of Ge for modulated hole spin transport devices.
Probing strong-field gravity and black holes with gravitational waves
Hughes, Scott A.
Gravitational wave observations will be excellent tools for making precise measurements of processes that occur in very strong- field regions of space time. Extreme mass
Taking Consensus of Signed Distance Field for Hole Filling Ryusuke SAGAWA
Tokyo, University of
distance field, SDF) SDF SDF SDF 2. SDF [5], [10], [18], [19], [21] SDF Curless Levoy[5] Wheeler [18] [14], [22], [23] Wheeler [18] n v d d = sgn(-n Â· v)|v| (1) sgn(x) x 1 -1 [22] 1 SDF Fig. 1 Corruption of the surface caused by wrong sign of SDF W W SDF 3. SDF SDF 1 1 2 #12;1 (marching cubes
Cranmer, Steven R
2009-01-01T23:59:59.000Z
Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are establish...
Late-Time Dynamics of Scalar Fields on Rotating Black Hole Backgrounds
William Krivan
1999-07-08T23:59:59.000Z
Motivated by results of recent analytic studies, we present a numerical investigation of the late-time dynamics of scalar test fields on Kerr backgrounds. We pay particular attention to the issue of mixing of different multipoles and their fall-off behavior at late times. Confining ourselves to the special case of axisymmetric modes with equatorial symmetry, we show that, in agreement with the results of previous work, the late-time behavior is dominated by the lowest allowed l-multipole. However the numerical results imply that, in general, the late-time fall-off of the dominating multipole is different from that in the Schwarzschild case, and seems to be incompatible with a result of a recently published analytic study.
B. Kleihaus; J. Kunz
2000-12-20T23:59:59.000Z
We construct stationary black holes in SU(2) Einstein-Yang-Mills theory, which carry angular momentum and electric charge. Possessing non-trivial non-abelian magnetic fields outside their regular event horizon, they represent non-perturbative rotating hairy black holes.
Goshen North Wind Project | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation, searchGoodyear, Arizona:Georgia:North
Goshen, California: Energy Resources | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation, searchGoodyear,
Goshen, Utah: Energy Resources | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEFLakes,GoliadGordon,
Goshen, Vermont: Energy Resources | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEFLakes,GoliadGordon,Vermont: Energy
P. K. Townsend
1997-07-04T23:59:59.000Z
Lecture notes for a 'Part III' course 'Black Holes' given in DAMTP, Cambridge. The course covers some of the developments in Black Hole physics of the 1960s and 1970s.
Michael W. Rose
2005-09-22T23:59:59.000Z
The San Andres Formation is one of the major hydrocarbon-producing units in the Permian Basin, with multiple reservoirs contained within the dolomitized subtidal portions of upward shoaling carbonate shelf cycles. The test well is located in Tedbit (San Andres) Field in northeastern Gaines County, Texas, in an area of scattered San Andres production associated with local structural highs. Selected on the basis of geological and historical data, the Oil and Gas Properties Wood No. 1 well is considered to be typical of a large number of San Andres stripper wells in the Permian Basin. Thus, successful completion of horizontal drain holes in this well would demonstrate a widely applicable enhanced recovery technology. Water-jet horizontal drilling is an emerging technology with the potential to provide significant economic benefits in marginal wells. Forecast benefits include lower recompletion costs and improved hydrocarbon recoveries. The technology utilizes water under high pressure, conveyed through small-diameter coiled tubing, to jet horizontal drain holes into producing formations. Testing of this technology was conducted with inconclusive results. Paraffin sludge and mechanical problems were encountered in the wellbore, initially preventing the water-jet tool from reaching the kick-off point. After correcting these problems and attempting to cut a casing window with the water-jet milling assembly, lateral jetting was attempted without success.
Optical black holes and solitons
Shawn Westmoreland
2010-12-21T23:59:59.000Z
We exhibit a static, cylindrically symmetric, exact solution to the Euler-Heisenberg field equations (EHFE) and prove that its effective geometry contains (optical) black holes. It is conjectured that there are also soliton solutions to the EHFE which contain black hole geometries.
BLACK HOLE AURORA POWERED BY A ROTATING BLACK HOLE
Takahashi, Masaaki [Department of Physics and Astronomy, Aichi University of Education, Kariya, Aichi 448-8542 (Japan); Takahashi, Rohta, E-mail: takahasi@phyas.aichi-edu.ac.j [Cosmic Radiation Laboratory, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2010-05-15T23:59:59.000Z
We present a model for high-energy emission sources generated by a standing magnetohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole magnetosphere would be constructed around a black hole with an accretion disk, where a global magnetic field could be originated by currents in the accretion disk and its corona. Such a black hole magnetosphere may be considered as a model for the central engine of active galactic nuclei, some compact X-ray sources, and gamma-ray bursts. The energy sources of the emission from the magnetosphere are the gravitational and electromagnetic energies of magnetized accreting matters and the rotational energy of a rotating black hole. When the MHD shock generates in MHD accretion flows onto the black hole, the plasma's kinetic energy and the black hole's rotational energy can convert to radiative energy. In this Letter, we demonstrate the huge energy output at the shock front by showing negative energy postshock accreting MHD flows for a rapidly rotating black hole. This means that the extracted energy from the black hole can convert to the radiative energy at the MHD shock front. When an axisymmetric shock front is formed, we expect a ring-shaped region with very hot plasma near the black hole; this would look like an 'aurora'. The high-energy radiation generated from there would carry to us the information for the curved spacetime due to the strong gravity.
Signatures of black holes at the LHC
Marco Cavaglia; Romulus Godang; Lucien M. Cremaldi; Donald J. Summers
2007-07-02T23:59:59.000Z
Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.
Rotating black hole in asymptotic de Sitter space: Perturbation of the space-time with spin fields
Khanal, U.
1983-09-15T23:59:59.000Z
The Newman-Penrose formalism is used to work with gravitational, electromagnetic, and Dirac field perturbations of the Kerr--de Sitter space. It is shown that the resulting equations are separable, and the radial parts (for the massless fields) combine into a master equation resembling that of Teukolsky. This master equation includes the Teukolsky equation and the equation arising from the de Sitter--Schwarzschild universe, and can be reduced to these cases under appropriate limiting conditions. Finally, the radial parts of the electromagnetic and neutrino fields are transformed to the form of the one-dimensional barrier-penetration equation.
M. B. Altaie
2001-05-07T23:59:59.000Z
In this paper we follow a new approach for particle creation by a localized strong gravitational field. The approach is based on a definition of the physical vacuum drawn from Heisenberg uncertainty principle. Using the fact that the gravitational field red-shifts the frequency modes of the vacuum, a condition on the minimum stregth of the gravitational field required to achieve real particle creation is derived. Application of this requirement on a Schwartzchid black hole resulted in deducing an upper limit on the region, outside the event horizon, where real particles can be created. Using this regional upper limit, and considering particle creation by black holes as a consequence of the Casimir effect, with the assumption that the created quanta are to be added to the initial energy, we deduce a natural power law for the development of the event horizon, and consequently a logarithmic law for the area spectrum of an inflating black hole. Application of the results on a cosmological model shows that if we start with a Planck-dimensional black hole, then through the process of particle creation we end up with a universe having the presently estimated critical density. Such a universe will be in a state of eternal inflation.
Observational Evidence for Black Holes
Ramesh Narayan; Jeffrey E. McClintock
2014-07-20T23:59:59.000Z
Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly correlated with properties of their host galaxies, suggesting that these black holes, although extremely small in size, have a strong influence on the formation and evolution of entire galaxies. Spin parameters have recently been measured for a handful of black holes. Based on the data, there is an indication that the kinetic power of at least one class of relativistic jet ejected from accreting black holes may be correlated with black hole spin. If verified, it would suggest that these jets are powered by a generalized Penrose process mediated by magnetic fields.
G. 't Hooft
2005-04-25T23:59:59.000Z
Interactions between outgoing Hawking particles and ingoing matter are determined by gravitational forces and Standard Model interactions. In particular the gravitational interactions are responsible for the unitarity of the scattering against the horizon, as dictated by the holographic principle, but the Standard Model interactions also contribute, and understanding their effects is an important first step towards a complete understanding of the horizon's dynamics. The relation between in- and outgoing states is described in terms of an operator algebra. In this paper, the first of a series, we describe the algebra induced on the horizon by U(1) vector fields and scalar fields, including the case of an Englert-Brout-Higgs mechanism, and a more careful consideration of the transverse vector field components.
Herdeiro, Carlos A R
2014-01-01T23:59:59.000Z
We show that scalar hair can be added to rotating, vacuum black holes of general relativity. These hairy black holes (HBHs) clarify a lingering question concerning gravitational solitons: if a black hole can be added at the centre of a boson star, as it typically can for other solitons. We argue that it can, but only if it is spinning. The existence of such HBHs is related to the Kerr superradiant instability triggered by a massive scalar field. This connection leads to the following conjecture: a (hairless) black hole which is afflicted by the superradiant instability of a given field must allow hairy generalizations with that field.
Absorption cross section of RN black hole
Sini R.; V. C. Kuriakose
2007-08-23T23:59:59.000Z
The behavior of a charged scalar field in the RN black hole space time is studied using WKB approximation. In the present work it is assumed that matter waves can get reflected from the event horizon. Using this effect, the Hawking temperature and the absorption cross section for RN black hole placed in a charged scalar field are calculated. The absorption cross section $\\sigma _{abs}$ is found to be inversely proportional to square of the Hawking temperature of the black hole.
Black Hole Evaporation as a Nonequilibrium Process
Hiromi Saida
2008-11-11T23:59:59.000Z
When a black hole evaporates, there arises a net energy flow from the black hole into its outside environment due to the Hawking radiation and the energy accretion onto black hole. Exactly speaking, due to the net energy flow, the black hole evaporation is a nonequilibrium process. To study details of evaporation process, nonequilibrium effects of the net energy flow should be taken into account. In this article we simplify the situation so that the Hawking radiation consists of non-self-interacting massless matter fields and also the energy accretion onto the black hole consists of the same fields. Then we find that the nonequilibrium nature of black hole evaporation is described by a nonequilibrium state of that field, and we formulate nonequilibrium thermodynamics of non-self-interacting massless fields. By applying it to black hole evaporation, followings are shown: (1) Nonequilibrium effects of the energy flow tends to accelerate the black hole evaporation, and, consequently, a specific nonequilibrium phenomenon of semi-classical black hole evaporation is suggested. Furthermore a suggestion about the end state of quantum size black hole evaporation is proposed in the context of information loss paradox. (2) Negative heat capacity of black hole is the physical essence of the generalized second law of black hole thermodynamics, and self-entropy production inside the matter around black hole is not necessary to ensure the generalized second law. Furthermore a lower bound for total entropy at the end of black hole evaporation is given. A relation of the lower bound with the so-called covariant entropy bound conjecture is interesting but left as an open issue.
Black holes cannot support conformal scalar hair
T. Zannias
1994-09-14T23:59:59.000Z
It is shown that the only static asymptotically flat non-extrema black hole solution of the Einstein-conformally invariant scalar field equations having the scalar field bounded on the horizon, is the Schwarzschild one. Thus black holes cannot be endowed with conformal scalar hair of finite length.
Remarks on Renormalization of Black Hole Entropy
Sang Pyo Kim; Sung Ku Kim; Kwang-Sup Soh; Jae Hyung Yee
1996-07-07T23:59:59.000Z
We elaborate the renormalization process of entropy of a nonextremal and an extremal Reissner-Nordstr\\"{o}m black hole by using the Pauli-Villars regularization method, in which the regulator fields obey either the Bose-Einstein or Fermi-Dirac distribution depending on their spin-statistics. The black hole entropy involves only two renormalization constants. We also discuss the entropy and temperature of the extremal black hole.
Introduction to Black Hole Evaporation
Pierre-Henry Lambert
2014-01-16T23:59:59.000Z
These lecture notes are an elementary and pedagogical introduction to the black hole evaporation, based on a lecture given by the author at the Ninth Modave Summer School in Mathematical Physics and are intended for PhD students. First, quantum field theory in curved spacetime is studied and tools needed for the remaining of the course are introduced. Then, quantum field theory in Rindler spacetime in 1+1 dimensions and in the spacetime of a spherically collapsing star are considered, leading to Unruh and Hawking effects, respectively. Finally, some consequences such as thermodynamics of black holes and information loss paradox are discussed.
An electromagnetic black hole made of metamaterials
Cheng, Qiang
2009-01-01T23:59:59.000Z
Traditionally, a black hole is a region of space with huge gravitational field in the means of general relativity, which absorbs everything hitting it including the light. In general relativity, the presence of matter-energy densities results in the motion of matter propagating in a curved spacetime1, which is similar to the electromagnetic-wave propagation in a curved space and in an inhomogeneous metamaterial2. Hence one can simulate the black hole using electromagnetic fields and metamaterials. In a recent theoretical work, an optical black hole has been proposed based on metamaterials, in which the numerical simulations showed a highly efficient light absorption3. Here we report the first experimental demonstration of electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can absorb electromagnetic waves efficiently coming from all directions due to the local control of electromagnetic fields. Hence the elect...
Black Holes: from Speculations to Observations
Thomas W. Baumgarte
2006-04-13T23:59:59.000Z
This paper provides a brief review of the history of our understanding and knowledge of black holes. Starting with early speculations on ``dark stars'' I discuss the Schwarzschild "black hole" solution to Einstein's field equations and the development of its interpretation from "physically meaningless" to describing the perhaps most exotic and yet "most perfect" macroscopic object in the universe. I describe different astrophysical black hole populations and discuss some of their observational evidence. Finally I close by speculating about future observations of black holes with the new generation of gravitational wave detectors.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Black Holes at RHIC? Further discussion by Physicist Dmitri Kharzeev on why RHIC cannot produce a real gravitational black hole Black holes are among the most mysterious objects in...
Black holes in Born-Infeld extended new massive gravity
Ghodsi, Ahmad; Yekta, Davood Mahdavian [Department of Physics, Ferdowsi University of Mashhad, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)
2011-05-15T23:59:59.000Z
In this paper we find different types of black holes for the Born-Infeld extended new massive gravity. Our solutions include (un)charged warped (anti-)de Sitter black holes for four and six derivative expanded action. We also look at the black holes in unexpanded Born-Infeld action. In each case we calculate the entropy, angular momentum and mass of the black holes. We also find the central charges for the conformal field theory duals.
Goshen County, Wyoming: Energy Resources | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEFLakes,GoliadGordon, Alabama:GorlitzCounty,
Sadeghi, J
2015-01-01T23:59:59.000Z
As we know, the cosmological constant in different theories of gravity acts as a thermodynamics variable. The cosmological constant exists in different actions of gravity and also appears in the solution of such theories. These lead to use the black hole as a heat engines. Also, there are two values for the cosmological constant as positive and negative values. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. In this paper, we are going to define heat engines for two different black holes as Dyonic BH and Kerr BH. And also, we calculate maximum efficiency for two black holes.
J. Sadeghi; Kh. Jafarzade
2015-04-29T23:59:59.000Z
As we know, the cosmological constant in different theories of gravity acts as a thermodynamics variable. The cosmological constant exists in different actions of gravity and also appears in the solution of such theories. These lead to use the black hole as a heat engines. Also, there are two values for the cosmological constant as positive and negative values. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. In this paper, we are going to define heat engines for two different black holes as Dyonic BH and Kerr BH. And also, we calculate maximum efficiency for two black holes.
Spacetime constraints on accreting black holes
Garofalo, David [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California 91109 (United States)
2009-06-15T23:59:59.000Z
We study the spin dependence of accretion onto rotating Kerr black holes using analytic techniques. In its linear regime, angular momentum transport in MHD turbulent accretion flow involves the generation of radial magnetic field connecting plasma in a differentially rotating flow. We take a first principles approach, highlighting the constraint that limits the generation and amplification of radial magnetic fields, stemming from the transfer of energy from mechanical to magnetic form. Because the energy transferred in magnetic form is ultimately constrained by gravitational potential energy or Killing energy, the spin dependence of the latter allows us to derive spin-dependent constraints on the success of the accreting plasma to expel its angular momentum. We find an inverse relationship between this ability and black hole spin. If this radial magnetic field generation forms the basis for angular momentum transfer in accretion flows, accretion rates involving Kerr black holes are expected to be lower as the black hole spin increases in the prograde sense.
Shuang-Qing Wu
2009-10-10T23:59:59.000Z
We continue to investigate the separability of massive field equations for spin-0 and spin-1/2 charged particles in the general, non-extremal, rotating, charged, Chong-Cvetic-Lu-Pope black holes with two independent angular momenta and a non-zero cosmological constant in minimal D = 5 gauged supergravity theory. We show that the complex Klein-Gordon equation and the modified Dirac equation with the inclusion of an extra counter-term can be separated by variables into purely radial and purely angular parts in this general Einstein-Maxwell-Chern-Simons background spacetime. A second order symmetry operator that commutes with the complex Laplacian operator is constructed from the separated solutions and expressed compactly in terms of a rank-2 Stackel-Killing tensor which admits a simple diagonal form in the chosen pentad one-forms so that it can be understood as the square of a rank-3 totally anti-symmetric tensor. A first order symmetry operator that commutes with the modified Dirac operator is expressed in terms of a rank-3 generalized Killing-Yano tensor and its covariant derivative. The Hodge dual of this generalized Killing-Yano tensor is a generalized principal conformal Killing-Yano tensor of rank-2, which can generate a `tower' of generalized (conformal) Killing-Yano and Stackel-Killing tensors that are responsible for the whole hidden symmetries of this general, rotating, charged, Kerr-AdS black hole geometry. In addition, the first laws of black hole thermodynamics have been generalized to the case that the cosmological constant can be viewed as a thermodynamical variable.
Fourier Analysis of the BTZ Black Hole
Ian M. Tolfree
2009-11-11T23:59:59.000Z
In this paper we extend our previous work regarding the role of the Fourier transformation in bulk to boundary mappings to include the BTZ black hole. We follow standard procedures for modifying Fourier Transformations to accommodate quotient spaces and arrive at a bulk to boundary mapping in a black hole background. We show that this mapping is consistent with known results and lends a new insight into the AdS/CFT duality. We find that the micro-states corresponding to the entropy of a bulk scalar field are the Fourier coefficients on the boundary, which transform under the principal series representation of $SL(2,R)$. Building upon this we present a toy model to analyze the implications of this for the origin of black hole entropy. We find that the black hole micro-states live on the boundary and correspond to the possible emission modes of the black hole
Black holes in Asymptotically Safe Gravity
Saueressig, Frank; D'Odorico, Giulio; Vidotto, Francesca
2015-01-01T23:59:59.000Z
Black holes are among the most fascinating objects populating our universe. Their characteristic features, encompassing spacetime singularities, event horizons, and black hole thermodynamics, provide a rich testing ground for quantum gravity ideas. In this note we observe that the renormalization group improved Schwarzschild black holes constructed by Bonanno and Reuter within Weinberg's asymptotic safety program constitute a prototypical example of a Hayward geometry used to model non-singular black holes within quantum gravity phenomenology. Moreover, they share many features of a Planck star: their effective geometry naturally incorporates the one-loop corrections found in the effective field theory framework, their Kretschmann scalar is bounded, and the black hole singularity is replaced by a regular de Sitter patch. The role of the cosmological constant in the renormalization group improvement process is briefly discussed.
Topological Black Holes -- Outside Looking In
R. B. Mann
1997-09-15T23:59:59.000Z
I describe the general mathematical construction and physical picture of topological black holes, which are black holes whose event horizons are surfaces of non-trivial topology. The construction is carried out in an arbitrary number of dimensions, and includes all known special cases which have appeared before in the literature. I describe the basic features of massive charged topological black holes in $(3+1)$ dimensions, from both an exterior and interior point of view. To investigate their interiors, it is necessary to understand the radiative falloff behaviour of a given massless field at late times in the background of a topological black hole. I describe the results of a numerical investigation of such behaviour for a conformally coupled scalar field. Significant differences emerge between spherical and higher genus topologies.
Black hole hair in higher dimensions
Chao Cao; Yi-Xin Chen; Jian-Long Li
2008-04-02T23:59:59.000Z
We study the property of matter in equilibrium with a static, spherically symmetric black hole in D-dimensional spacetime. It requires this kind of matter has an equation of state (\\omega\\equiv p_r/\\rho=-1/(1+2kn), k,n\\in \\mathbb{N}), which seems to be independent of D. However, when we associate this with specific models, some interesting limits on space could be found: (i)(D=2+2kn) while the black hole is surrounded by cosmic strings; (ii)the black hole can be surrounded by linear dilaton field only in 4-dimensional spacetime. In both cases, D=4 is special.
Black holes in extra dimensions can decay on the bulk
A. K. Chaudhuri
2003-01-08T23:59:59.000Z
In the extra dimensional theories, with TeV scale Plank constant, black holes may be produced in the Large Hadron Collider experiments. We have argued that in the d-dimensional black hole, the intrinsically 4-dimensional brane fields do not see the same geometry at the horizon, as in a 4-dimensional space-time. Kaluza-Klein modes invades the brane and surroundings and the brane fields can be considered as a thermal system at the temperature of the black hole. From energy and entropy consideration, we show that whether or not a six-dimensional black hole will decay by emitting Kaluza-Klein modes or the standard model particles, will depend on the length scale of the extra dimensions as well as on the mass of the black hole. For higher dimensional black holes, Kaluza-Klein modes will dominate the decay.
A Quantum Material Model of Static Schwarzschild Black Holes
S. -T. Sung
1997-03-16T23:59:59.000Z
A quantum-mechanical prescription of static Einstein field equation is proposed in order to construct the matter-metric eigen-states in the interior of a static Schwarzschild black hole where the signature of space-time is chosen as (--++). The spectrum of the quantum states is identified to be the integral multiples of the surface gravity. A statistical explanation of black hole entropy is given and a quantisation rule for the masses of Schwarzschild black holes is proposed.
Classical and Quantum Properties of Liouville Black Holes
R. B. Mann
1994-04-25T23:59:59.000Z
Black hole spacetimes can arise when a Liouville field is coupled to two- dimensional gravity. Exact solutions are obtained both classically and when quantum corrections due to back reaction effects are included. The black hole temperature depends upon the mass and the thermodynamic limit breaks down before evaporation of the black hole is complete, indicating that higher-loop effects must be included for a full description of the process.
Towards Black Hole Entropy in Shape Dynamics
Gabriel Herczeg; Vasudev Shyam
2014-10-21T23:59:59.000Z
Shape dynamics is classical theory of gravity which agrees with general relativity in many important cases, but possesses different gauge symmetries and constraints. Rather than spacetime diffeomorphism invariance, shape dynamics takes spatial diffeomorphism invariance and spatial Weyl invariance as the fundamental gauge symmetries associated with the gravitational field. Since the area of the event horizon of a black hole transforms under a generic spatial Weyl transformation, there has been some doubt that one can speak sensibly about the thermodynamics of black holes in shape dynamics. The purpose of this paper is to show that by treating the event horizon of a black hole as an interior boundary, one can recover familiar notions of black hole thermodynamics in shape dynamics and define a gauge invariant entropy that agrees with general relativity.
Scattering map for two black holes
Alessandro P. S. de Moura; Patricio S. Letelier
1999-10-25T23:59:59.000Z
We study the motion of light in the gravitational field of two Schwarzschild black holes, making the approximation that they are far apart, so that the motion of light rays in the neighborhood of one black hole can be considered to be the result of the action of each black hole separately. Using this approximation, the dynamics is reduced to a 2-dimensional map, which we study both numerically and analytically. The map is found to be chaotic, with a fractal basin boundary separating the possible outcomes of the orbits (escape or falling into one of the black holes). In the limit of large separation distances, the basin boundary becomes a self-similar Cantor set, and we find that the box-counting dimension decays slowly with the separation distance, following a logarithmic decay law.
Vacuum polarization for lukewarm black holes
Elizabeth Winstanley; Phil M. Young
2007-12-20T23:59:59.000Z
We compute the renormalized expectation value of the square of a quantum scalar field on a Reissner-Nordstrom-de Sitter black hole in which the temperatures of the event and cosmological horizons are equal (`lukewarm' black hole). Our numerical calculations for a thermal state at the same temperature as the two horizons indicate that this renormalized expectation value is regular on both the event and cosmological horizons. We are able to show analytically, using an approximation for the field modes near the horizons, that this is indeed the case.
Vacuum polarization for lukewarm black holes
Winstanley, Elizabeth; Young, Phil M. [Department of Applied Mathematics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom)
2008-01-15T23:59:59.000Z
We compute the renormalized expectation value of the square of a quantum scalar field on a Reissner-Nordstroem-de Sitter black hole in which the temperatures of the event and cosmological horizons are equal ('lukewarm' black hole). Our numerical calculations for a thermal state at the same temperature as the two horizons indicate that this renormalized expectation value is regular on both the event and cosmological horizons. We are able to show analytically, using an approximation for the field modes near the horizons, that this is indeed the case.
Gravitational waves versus black holes
Trevor W. Marshall
2007-07-02T23:59:59.000Z
It is argued that, in order for the gravitational field to be propagated as a wave, it is necessary for it to satisfy a further set of field equations, in addition to those of Einstein and Hilbert, and these equations mean there is a preferred coordinate frame, called the Global Inertial Frame, giving rise to a unique metric . The implication is that a true gravitational field is not compatible with Einstein's Principle of Equivalence, which is in contradiction with his other fundamental concept of locality. The additional field equations ensure that gravitational collapse does not go below the Schwarzschild radius, thereby excluding the possibility of singular solutions (black holes) of the Einstein-Hilbert equations. Such solutions would also violate Einstein's locality principle.
Black Holes with Flavors of Quantum Hair?
Gia Dvali
2006-07-20T23:59:59.000Z
We show that black holes can posses a long-range quantum hair of super-massive tensor fields, which can be detected by Aharonov-Bohm tabletop interference experiments, in which a quantum-hairy black hole, or a remnant particle, passes through the loop of a magnetic solenoid. The long distance effect does not decouple for an arbitrarily high mass of the hair-providing field. Because Kaluza-Klein and String theories contain infinite number of massive tensor fields, we study black holes with quantum Kaluza-Klein hair. We show that in five dimensions such a black hole can be interpreted as a string of `combed' generalized magnetic monopoles, with their fluxes confined along it. For the compactification on a translation-invariant circle, this substructure uncovers hidden flux conservation and quantization of the monopole charges, which constrain the quantum hair of the resulting four-dimensional black hole. For the spin-2 quantum hair this result is somewhat unexpected, since the constituent `magnetic' charges have no `electric' counterparts. Nevertheless, the information about their quantization is encoded in singularity.
Sean A. Hayward
2009-02-28T23:59:59.000Z
This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping horizon which manifests temporally as separate horizons.
Nonrotating black hole in a post-Newtonian tidal environment
Stephanne Taylor; Eric Poisson
2008-09-11T23:59:59.000Z
We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces the equations of motion for the black hole and the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.
Brief review on higher spin black holes
Alfredo Perez; David Tempo; Ricardo Troncoso
2014-05-12T23:59:59.000Z
We review some relevant results in the context of higher spin black holes in three-dimensional spacetimes, focusing on their asymptotic behaviour and thermodynamic properties. For simplicity, we mainly discuss the case of gravity nonminimally coupled to spin-3 fields, being nonperturbatively described by a Chern-Simons theory of two independent sl(3,R) gauge fields. Since the analysis is particularly transparent in the Hamiltonian formalism, we provide a concise discussion of their basic aspects in this context; and as a warming up exercise, we briefly analyze the asymptotic behaviour of pure gravity, as well as the BTZ black hole and its thermodynamics, exclusively in terms of gauge fields. The discussion is then extended to the case of black holes endowed with higher spin fields, briefly signaling the agreements and discrepancies found through different approaches. We conclude explaining how the puzzles become resolved once the fall off of the fields is precisely specified and extended to include chemical potentials, in a way that it is compatible with the asymptotic symmetries. Hence, the global charges become completely identified in an unambiguous way, so that different sets of asymptotic conditions turn out to contain inequivalent classes of black hole solutions being characterized by a different set of global charges.
Structure of the Spherical Black Hole Interior
A. Bonanno; S. Droz; W. Israel; S. M. Morsink
1994-11-18T23:59:59.000Z
The internal structure of a charged spherical black hole is still a topic of debate. In a nonrotating but aspherical gravitational collapse to form a spherical charged black hole, the backscattered gravitational wave tails enter the black hole and are blueshifted at the Cauchy horizon. This has a catastrophic effect if combined with an outflux crossing the Cauchy horizon: a singularity develops at the Cauchy horizon and the effective mass inflates. Recently a numerical study of a massless scalar field in the \\RN background suggested that a spacelike singularity may form before the Cauchy horizon forms. We will show that there exists an approximate analytic solution of the scalar field equations which allows the mass inflation singularity at the Cauchy horizon to exist. In particular, we see no evidence that the Cauchy horizon is preceded by a spacelike singularity.
Moduli vacuum bubbles produced by evaporating black holes
Morris, J. R. [Physics Department, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)
2007-10-15T23:59:59.000Z
We consider a model with a toroidally compactified extra dimension giving rise to a temperature-dependent 4D effective potential with one-loop contributions due to the Casimir effect, along with a 5D cosmological constant. The forms of the effective potential at low and high temperatures indicate a possibility for the formation of a domain wall bubble, formed by the modulus scalar field, surrounding an evaporating black hole. This is viewed as an example of a recently proposed black hole vacuum bubble arising from matter-sourced moduli fields in the vicinity of an evaporating black hole [D. Green, E. Silverstein, and D. Starr, Phys. Rev. D 74, 024004 (2006)]. The black hole bubble can be highly opaque to lower-energy particles and photons, and thereby entrap them within. For high-temperature black holes, there may also be a symmetry-breaking black hole bubble of false vacuum of the type previously conjectured by Moss [I. G. Moss, Phys. Rev. D 32, 1333 (1985)], tending to reflect low-energy particles from its wall. A double bubble composed of these two different types of bubble may form around the black hole, altering the hole's emission spectrum that reaches outside observers. Smaller mass black holes that have already evaporated away could have left vacuum bubbles behind that contribute to the dark matter.
Absorption of planar massless scalar waves by Bardeen regular black holes
Caio F. B. Macedo; Luís C. B. Crispino
2014-09-09T23:59:59.000Z
Accretion of fields by black holes is a subject of great interest in physics. It is known that accretion plays a fundamental role in active galactic nuclei and in the evolution of black holes. Accretion of fundamental fields is often related to the study of absorption cross section. Basically all black holes for which absorption of fields has been studied so far present singularities. However, even within general relativity, it is possible to construct regular black holes: objects with event horizons but without singularities. Many physically motivated regular black hole solutions have been proposed in the past years, demanding the understanding of their absorption properties. We study the absorption of planar massless scalar waves by Bardeen regular black holes. We compare the absorption cross section of Bardeen and Reissner--Nordstr\\"om black holes, showing that the former always have a bigger absorption cross section for fixed values of the field frequency and of the normalized black hole charge. We also show that it is possible for a Bardeen black hole to have the same high-frequency absorption cross section of a Reissner--Nordstr\\"om black hole. Our results suggest that, in mid-to-high-frequency regimes, regular black holes can have compatible properties with black holes with singularities, as far as absorption is concerned.
Disregarding the 'Hole Argument'
Bryan W. Roberts
2014-12-17T23:59:59.000Z
Jim Weatherall has suggested that Einstein's hole argument, as presented by Earman and Norton (1987), is based on a misleading use of mathematics. I argue on the contrary that Weatherall demands an implausible restriction on how mathematics is used. The hole argument, on the other hand, is in no new danger at all.
Krotov, D. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Moscow State University, Department of Physics, Vorobjevy Gory, Moscow, 119899 (Russian Federation); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya, 25, Moscow, 117259 (Russian Federation); Rebbi, C. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston Massachusetts 02215 (United States); Rubakov, V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Zakharov, V. [Max-Planck Institut fuer Physik, Foeringer Ring 6, 80805, Munichn (Germany)
2005-02-15T23:59:59.000Z
In a recently proposed model of 'ghost condensation', spatially homogeneous states may mix, via tunneling, with inhomogeneous states which are somewhat similar to bubbles in the theory of false vacuum decay, the corresponding bubble nucleation rate being exponentially sensitive to the ultraviolet completion of the model. The conservation of energy and charge requires that the energy density is negative and the field is strongly unstable in a part of the nucleated bubble. Unlike in the theory of false vacuum decay, this region does not expand during subsequent real-time evolution. In the outer part, positive energy outgoing waves develop, which eventually form shocks. Behind the outgoing waves and away from the bubble center, the background settles down to its original value. The outcome of the entire process is thus a microscopic region of negative energy and strong field - 'hole in the ghost condensate' - plus a collection of outgoing waves (particles of the ghost condensate field) carrying away finite energy.
Extracting Energy from Black Hole through Transition Region
Li-Xin Li
2000-07-24T23:59:59.000Z
A new scenario for extracting energy from a Kerr black hole is proposed. With magnetic field lines connecting plasma particles inside the ergosphere with remote loads, the frame dragging twists the field lines so that energy and angular momentum are extracted from the plasma particles. If the magnetic field is strong enough, the energy extracted from the particles can be so large that the particles have negative energy as they fall into the black hole. So effectively the energy is extracted from the black hole. The particles inside the ergosphere can be continuously replenished with accretion from a disk surrounding the black hole, so a transition region with sufficient amount of plasma is formed between the black hole's horizon and the inner edge of the disk. Thus the energy can be continuously extracted from the black hole through the transition region. This may be the most efficient way for extracting energy from a Kerr black hole: in principle almost all of the rotational energy (up to $\\approx 29%$ of the total energy of the black hole) can be extracted.
Flux avalanches in superconducting films with periodic arrays of holes.
Vlasko-Vlasov, V.; Welp, U.; Metlushko, V.; Crabtree, G. W.; Materials Science Division; Inst. of Solid State Physics RAS
2000-01-01T23:59:59.000Z
The magnetic flux dynamics in Nb films with periodic hole arrays is studied magneto-optically. Flux motion in the shape of microavalanches along {l_brace}100{r_brace} and {l_brace}110{r_brace} directions of the hole lattice is observed. At lower temperatures anisotropic large scale thermo-magnetic avalanches dominate flux entry and exit. At T-T{sub c} critical-state-like field patterns periodically appear at fractions of the matching field.
On Noncommutative Black Holes Thermodynamics
Faizal, Mir; Ulhoa, S C
2015-01-01T23:59:59.000Z
In this paper, we will analyze noncommutative deformation of the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and the noncommutative metrics using an Moyal product. We will also analyze the thermodynamics of these noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature of these black hole solutions.
Schwarzschild black hole in dark energy background
Ngangbam Ishwarchandra; Ng. Ibohal; K. Yugindro Singh
2014-09-27T23:59:59.000Z
In this paper we present an exact solution of Einstein's field equations describing the Schwarzschild black hole in dark energy background. It is also regarded as an embedded solution that the Schwarzschild black hole is embedded into the dark energy space producing Schwarzschild-dark energy black hole. It is found that the space-time geometry of Schwarzschild-dark energy solution is non-vacuum Petrov type $D$ in the classification of space-times. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor of the Schwarzschild-dark energy solution. We also find that the energy-momentum tensor of the Schwarzschild-dark energy solution violates the strong energy condition due to the negative pressure leading to a repulsive gravitational force of the matter field in the space-time. It is shown that the time-like vector field for an observer in the Schwarzschild-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity and the area of the horizons for the Schwarzschild-dark energy black hole.
Small Hairy Black Holes in Global AdS Spacetime
Pallab Basu; Jyotirmoy Bhattacharya; Sayantani Bhattacharyya; R. Loganayagam; Shiraz Minwalla; V. Umesh
2010-05-16T23:59:59.000Z
We study small charged black holes in global AdS spacetime in the presence of a charged massless minimally coupled scalar field. In a certain parameter range these black holes suffer from well known superradiant instabilities. We demonstrate that the end point of the resultant tachyon condensation process is a hairy black hole which we construct analytically in a perturbative expansion in the black hole radius. At leading order our solution is a small undeformed RNAdS black hole immersed into a charged scalar condensate that fills the AdS `box'. These hairy black hole solutions appear in a two parameter family labelled by their mass and charge. Their mass is bounded from below by a function of their charge; at the lower bound a hairy black hole reduces to a regular horizon free soliton which can also be thought of as a nonlinear Bose condensate. We compute the microcanonical phase diagram of our system at small mass, and demonstrate that it exhibits a second order `phase transition' between the RNAdS black hole and the hairy black hole phases.
Hydrodynamic model for electron-hole plasma in graphene
D. Svintsov; V. Vyurkov; S. Yurchenko; T. Otsuji; V. Ryzhii
2012-01-03T23:59:59.000Z
We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.
Fontana, Peter R.; Srivastava, Rajendra P.
1973-06-01T23:59:59.000Z
The decay of an atom in the presence of a static perturbation is investigated. The perturbation couples a decaying state with a nondecaying state. A "hole" appears in the emission line at a frequency equal to the frequency difference between...
Gravitational energy of rotating black holes
J. W. Maluf; E. F. Martins; A. Kneip
1996-08-21T23:59:59.000Z
In the teleparallel equivalent of general relativity the energy density of asymptotically flat gravitational fields can be naturaly defined as a scalar density restricted to a three-dimensional spacelike hypersurface $\\Sigma$. Integration over the whole $\\Sigma$ yields the standard ADM energy. After establishing the reference space with zero gravitational energy we obtain the expression of the localized energy for a Kerr black hole. The expression of the energy inside a surface of constant radius can be explicitly calculated in the limit of small $a$, the specific angular momentum. Such expression turns out to be exactly the same as the one obtained by means of the method preposed recently by Brown and York. We also calculate the energy contained within the outer horizon of the black hole for {\\it any} value of $a$. The result is practically indistinguishable from $E=2M_{ir}$, where $M_{ir}$ is the irreducible mass of the black hole.
J. W. Moffat
1993-02-22T23:59:59.000Z
The problem of information loss in black hole formation and the associated violations of basic laws of physics, such as conservation of energy, causality and unitarity, are avoided in the nonsymmetric gravitational theory, if the NGT charge of a black hole and its mass satisfy an inequality that does not violate any known experimental data and allows the existence of white dwarfs and neutron stars.
Helical superconducting black holes
Aristomenis Donos; Jerome P. Gauntlett
2012-05-17T23:59:59.000Z
We construct novel static, asymptotically $AdS_5$ black hole solutions with Bianchi VII$_0$ symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have vanishing entropy and approach domain wall solutions that reveal homogenous, non-isotropic dual ground states with emergent scaling symmetry.
The Environmental Impact of Supermassive Black Holes
Abraham Loeb
2004-08-10T23:59:59.000Z
The supermassive black holes observed at the centers of almost all present-day galaxies, had a profound impact on their environment. I highlight the principle of self-regulation, by which supermassive black holes grow until they release sufficient energy to unbind the gas that feeds them from their host galaxy. This principle explains several observed facts, including the correlation between the mass of a central black hole and the depth of the gravitational potential well of its host galaxy, and the abundance and clustering properties of bright quasars in the redshift interval of z~2-6. At lower redshifts, quasars might have limited the maximum mass of galaxies through the suppression of cooling flows in X-ray clusters. The seeds of supermassive black holes were likely planted in dwarf galaxies at redshifts z>10, through the collapse of massive or supermassive stars. The minimum seed mass can be identified observationally through the detection of gravitational waves from black hole binaries by Advanced LIGO or LISA. Aside from shaping their host galaxies, quasar outflows filled the intergalactic medium with magnetic fields and heavy elements. Beyond the reach of these outflows, the brightest quasars at z>6 have ionized exceedingly large volumes of gas (tens of comoving Mpc) prior to global reionization, and must have suppressed the faint end of the galaxy luminosity function in these volumes before the same occurred through the rest of the universe.
Bense, Ronald
1989-01-01T23:59:59.000Z
distribution, but more experimental testing is required before this could be accepted as a, simple method for determining stress in an orthotropic laminate with a, circular hole. Others evaluated the complete three dimensional stress field with three dimen.... (August 1989) Ronald Bense, B. S. , Texas A@M Univerisity Chair ot Advisory Committee Dr. O. O. Ochoa Delamination characterization and a model of the stress field around the boundary of a hole or an inclusion, a filled hole, are presented...
Weighing Black Holes in high-z SCUBA Galaxies
Alexander, D M
2006-01-01T23:59:59.000Z
Deep SCUBA surveys have uncovered a population of dust-enshrouded star-forming galaxies at z~2. Using the ultra-deep 2 Ms Chandra Deep Field-North survey we recently showed that a large fraction of these systems are also undergoing intense black-hole growth. Here we provide further constraints on the properties of the black holes in SCUBA galaxies using the virial black-hole mass estimator. We show that typical SCUBA galaxies are likely to host black holes with M_BH~10^7-10^8 M_solar which are accreting at, or close to, the Eddington limit. These results provide qualitative support for our earlier conclusion that the growth of the black hole lags that of the host galaxy in these massive ultraluminous galaxies.
False Vacuum Black Holes and Universes
R. G. Daghigh; J. I. Kapusta; Y. Hosotani
2000-08-01T23:59:59.000Z
We construct a black hole whose interior is the false vacuum and whose exterior is the true vacuum of a classical field theory. From the outside the metric is the usual Schwarzschild one, but from the inside the space is de Sitter with a cosmological constant determined by the energy of the false vacuum. The parameters of the field potential may allow for the false vacuum to exist for more than the present age of the universe. A potentially relevant effective field theory within the context of QCD results in a Schwarzschild radius of about 200 km.
Gravitating discs around black holes
V. Karas; J. -M. Hure; O. Semerak
2004-01-16T23:59:59.000Z
Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole--disc system by analytical solutions of stationary, axially symmetric Einstein's equations. Then, more detailed considerations are focused to middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring, however, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging and completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the environment around. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star--disc interactions, which can be recognised in observational properties, such as the relation between the central mass and stellar velocity dispersion.
Energy decomposition within Einstein-Born-Infeld black holes
Jonas P. Pereira; Jorge A. Rueda
2015-03-09T23:59:59.000Z
We analyze the consequences of the recently found generalization of the Christodoulou-Ruffini black hole mass decomposition for Einstein-Born-Infeld black holes [characterized by the parameters $(Q,M,b)$, where $M = M(M_{irr},Q,b)$, $b$ scale field, $Q$ charge, $M_{irr}$ "irreducible mass", physically meaning the energy of a black hole when its charge is null] and their interactions. We show in this context that their description is largely simplified and can basically be split into two families depending upon the parameter $b|Q|$. If $b|Q|\\leq 1/2$, then black holes could have even zero irreducible masses and they always exhibit single, non degenerated, horizons. If $b|Q|>1/2$, then an associated black hole must have a minimum irreducible mass (related to its minimum energy) and has two horizons up to a transitional irreducible mass. For larger irreducible masses, single horizon structures raise again. By assuming that black holes emit thermal uncharged scalar particles, we further show in light of the black hole mass decomposition that one satisfying $b|Q|>1/2$ takes an infinite amount of time to reach the zero temperature, settling down exactly at its minimum energy. Finally, we argue that depending on the fundamental parameter $b$, the radiation (electromagnetic and gravitational) coming from Einstein-Born-Infeld black holes could differ significantly from Einstein-Maxwell ones. Hence, it could be used to assess such a parameter.
Lasota, Jean-Pierre
2015-01-01T23:59:59.000Z
This is an introduction to models of accretion discs around black holes. After a presentation of the non-relativistic equations describing the structure and evolution of geometrically thin accretion discs we discuss their steady-state solutions and compare them to observation. Next we describe in detail the thermal-viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated-disc version which explains the soft X--ray transients, i.e. outbursting black-hole low-mass X-ray binaries. We then turn to the role of advection in accretion flow onto black holes illustrating its action and importance with a toy model describing both ADAFs and slim discs. We conclude with a presentation of the general-relativistic formalism describing accretion discs in the Kerr space-time.
Black Holes with Primary Hair in gauged N=8 Supergravity
Andres Anabalon; Fabrizio Canfora; Alex Giacomini; Julio Oliva
2012-03-29T23:59:59.000Z
In this paper, we analyze the static solutions for the $U(1)^{4}$ consistent truncation of the maximally supersymmetric gauged supergravity in four dimensions. Using a new parametrization of the known solutions it is shown that for fixed charges there exist three possible black hole configurations according to the pattern of symmetry breaking of the (scalars sector of the) Lagrangian. Namely a black hole without scalar fields, a black hole with a primary hair and a black hole with a secondary hair respectively. This is the first, exact, example of a black hole with a primary scalar hair, where both the black hole and the scalar fields are regular on and outside the horizon. The configurations with secondary and primary hair can be interpreted as a spontaneous symmetry breaking of discrete permutation and reflection symmetries of the action. It is shown that there exist a triple point in the thermodynamic phase space where the three solution coexist. The corresponding phase transitions are discussed and the free energies are written explicitly as function of the thermodynamic coordinates in the uncharged case. In the charged case the free energies of the primary hair and the hairless black hole are also given as functions of the thermodynamic coordinates.
No-hair theorem for Black Holes in Astrophysical Environments
Gürlebeck, Norman
2015-01-01T23:59:59.000Z
According to the no-hair theorem, static black holes are described by a Schwarzschild spacetime provided there are no other sources of the gravitational field. This requirement, however, is in astrophysical realistic scenarios often violated, e.g., if the black hole is part of a binary system or if it is surrounded by an accretion disk. In these cases, the black hole is distorted due to tidal forces. Nonetheless, the subsequent formulation of the no-hair theorem holds: The contribution of the distorted black hole to the multipole moments that describe the gravitational field close to infinity and, thus, all sources is that of a Schwarzschild black hole. It still has no hair. This implies that there is no multipole moment induced in the black hole and that its second Love numbers, which measure some aspects of the distortion, vanish as was already shown in approximations to general relativity. But here we prove this property for astrophysical relevant black holes in full general relativity.
Strong gravitational lensing in a noncommutative black-hole spacetime
Ding Chikun; Kang Shuai; Chen Changyong; Chen Songbai; Jing Jiliang [Department of Physics and Information Engineering, Hunan Institute of Humanities Science and Technology, Loudi, Hunan 417000 (China); Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081 (China) and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control (Hunan Normal University), Ministry of Education (China)
2011-04-15T23:59:59.000Z
Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy can be described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. In comparison to the Reissner-Norstroem black hole, we find that the influences of the spacetime noncommutative parameter is similar to those of the charge, but these influences are much smaller. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norstroem black hole, and may permit us to probe the spacetime noncommutative constant {theta} by the astronomical instruments in the future.
Flow localization in sheet specimens with pairs of holes
Geltmacher, A.B. [FM Technologies, Fairfax, VA (United States); Koss, D.A. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Metals Science and Engineering; Stout, M.G. [Los Alamos National Lab., NM (United States); Matic, P. [Naval Research Lab., Washington, DC (United States). Mechanics of Materials Dept.
1998-03-01T23:59:59.000Z
The deformation localization behavior of sheet specimens containing geometric perturbations in the form of pairs of through-thickness holes is examined. Both experiments and computational modeling are performed in either uniaxial or equal-biaxial tension in order to examine the effect of applied loading path on the far-field strain needed to initiate localized necking in the ligament between the hole pairs. The models also examine the influence of hole spacing and matrix strain hardening on ligament localization. The far-field strain needed to cause the localization of the ligament is shown to increase as the biaxiality of the loading path increases, the hole spacing increases, and the strain-hardening exponent increases. The present study also indicates that the onset of localized necking can be predicted by employing the Hill criterion, if the local strain states within the ligament are taken into account.
Scalar emission in a rotating Gödel black hole
Songbai Chen; Bin Wang; Jiliang Jing
2008-08-23T23:59:59.000Z
We study the absorption probability and Hawking radiation of the scalar field in the rotating G\\"{o}del black hole in minimal five-dimensional gauged supergravity. We find that G\\"{o}del parameter $j$ imprints in the greybody factor and Hawking radiation. It plays a different role from the angular momentum of the black hole in the Hawking radiation and super-radiance. These information can help us know more about rotating G\\"{o}del black holes in minimal five-dimensional gauged supergravity.
Rotating charged cylindrical black holes as particle accelerators
Said, Jackson Levi [Physics Department, University of Malta, Msida MSD 2080 (Malta); Adami, Kristian Zarb [Physics Department, University of Malta, Msida MSD 2080 (Malta); Physics Department, University of Oxford, Oxford, OX1 3RH (United Kingdom)
2011-05-15T23:59:59.000Z
It has recently been pointed out that arbitrary center-of-mass energies may be obtained for particle collisions near the horizon of an extremal Kerr black hole. We investigate this mechanism in cylindrical topology. In particular we consider the center-of-mass energies of a cylindrical black hole with an extremal rotation and charge parameter. The geodesics are first derived with a rotating charged cylindrical black hole producing the background gravitational field. Finally the center-of-mass is determined for this background and its extremal limit is taken.
Thermodynamical instability of black holes
V. V. Kiselev
2012-08-07T23:59:59.000Z
In contrast to Hawking radiation of black hole with a given spacetime structure, we consider a competitive transition due to a heat transfer from a hotter inner horizon to a colder outer horizon of Kerr black hole, that results in a stable thermodynamical state of extremal black hole. In this process, by supposing an emission of gravitational quanta, we calculate the mass of extremal black hole in the final state of transition.
Towards noncommutative quantum black holes
Lopez-Dominguez, J. C.; Obregon, O.; Sabido, M.; Ramirez, C. [Instituto de Fisica de la Universidad de Guanajuato, P.O. Box E-143, 37150 Leon Gto. (Mexico); Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)
2006-10-15T23:59:59.000Z
In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole.
Holographic superconductors with Horava-Lifshitz black holes
Cai Ronggen; Zhang Haiqing [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China)
2010-03-15T23:59:59.000Z
We discuss the phase transition of planar black holes in Horava-Lifshitz gravity by introducing a Maxwell field and a complex scalar field. We calculate the condensate of the charged operators in the dual conformal field theories when the mass square of the complex scalar field is m{sup 2}=-2/L{sup 2} and m{sup 2}=0, respectively. We compute the electrical conductivity of the Horava-Lifshitz superconductor in the probe approximation. In particular, it is found that there exists a spike in the conductivity for the case of the operator with scaling dimension one. These results are quite similar to those in the case of Schwarzschild-AdS black holes, which demonstrates that the holographic superconductivity is a robust phenomenon associated with asymptotic AdS black holes.
The river model of black holes
Andrew J. S. Hamilton; Jason P. Lisle
2006-08-31T23:59:59.000Z
This paper presents an under-appreciated way to conceptualize stationary black holes, which we call the river model. The river model is mathematically sound, yet simple enough that the basic picture can be understood by non-experts. %that can by understood by non-experts. In the river model, space itself flows like a river through a flat background, while objects move through the river according to the rules of special relativity. In a spherical black hole, the river of space falls into the black hole at the Newtonian escape velocity, hitting the speed of light at the horizon. Inside the horizon, the river flows inward faster than light, carrying everything with it. We show that the river model works also for rotating (Kerr-Newman) black holes, though with a surprising twist. As in the spherical case, the river of space can be regarded as moving through a flat background. However, the river does not spiral inward, as one might have anticipated, but rather falls inward with no azimuthal swirl at all. Instead, the river has at each point not only a velocity but also a rotation, or twist. That is, the river has a Lorentz structure, characterized by six numbers (velocity and rotation), not just three (velocity). As an object moves through the river, it changes its velocity and rotation in response to tidal changes in the velocity and twist of the river along its path. An explicit expression is given for the river field, a six-component bivector field that encodes the velocity and twist of the river at each point, and that encapsulates all the properties of a stationary rotating black hole.
On Brane Inflation Potentials and Black Hole Attractors
Adil Belhaj; Pablo Diaz; Mohamed Naciri; Antonio Segui
2007-11-16T23:59:59.000Z
We propose a new potential in brane inflation theory, which is given by the arctangent of the square of the scalar field. Then we perform an explicit computation for inflationary quantities. This potential has many nice features. In the small field approximation, it reproduces the chaotic and MSSM potentials. It allows one, in the large field approximation, to implement the attractor mechanism for bulk black holes where the geometry on the brane is de Sitter. In particular, we show, up to some assumptions, that the Friedman equation can be reinterpreted as a Schwarzschild black hole attractor equation for its mass parameter.
Thermodynamic properties of asymptotically Reissner–Nordström black holes
Hendi, S.H., E-mail: hendi@shirazu.ac.ir
2014-07-15T23:59:59.000Z
Motivated by possible relation between Born–Infeld type nonlinear electrodynamics and an effective low-energy action of open string theory, asymptotically Reissner–Nordström black holes whose electric field is described by a nonlinear electrodynamics (NLED) are studied. We take into account a four dimensional topological static black hole ansatz and solve the field equations, exactly, in terms of the NLED as a matter field. The main goal of this paper is investigation of thermodynamic properties of the obtained black holes. Moreover, we calculate the heat capacity and find that the nonlinearity affects the minimum size of stable black holes. We also use Legendre-invariant metric proposed by Quevedo to obtain scalar curvature divergences. We find that the singularities of the Ricci scalar in Geometrothermodynamics (GTD) method take place at the Davies points. -- Highlights: •We examine the thermodynamical properties of black holes in Einstein gravity with nonlinear electrodynamics. •We investigate thermodynamic stability and discuss about the size of stable black holes. •We obtain analytical solutions of higher dimensional theory.
Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O
2014-01-14T23:59:59.000Z
There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.
Bryan Webber
2006-04-06T23:59:59.000Z
In theories with large extra dimensions and TeV-scale gravity, black holes are copiously produced in particle collisions at energies well above the Planck scale. I briefly review some recent work on the phenomenology of this process, with emphasis on theoretical uncertainties and possible strategies for measuring the number of extra dimensions.
No Scalar Hair Theorem for a Charged Spherical Black Hole
N. Banerjee; S. Sen
1998-08-11T23:59:59.000Z
This paper consolidates noscalar hair theorem for a charged spherically symmetric black hole in four dimension in general relativity as well as in all scalar tensor theories, both minimally and nonminimally coupled, when the effective Newtonian constant of gravity is positive. However, there is an exception when the matter field itself is coupled to the scalar field, such as in dilaton gravity.
Limits on New Physics from Black Holes
Clifford Cheung; Stefan Leichenauer
2014-08-02T23:59:59.000Z
Black holes emit high energy particles which induce a finite density potential for any scalar field $\\phi$ coupling to the emitted quanta. Due to energetic considerations, $\\phi$ evolves locally to minimize the effective masses of the outgoing states. In theories where $\\phi$ resides at a metastable minimum, this effect can drive $\\phi$ over its potential barrier and classically catalyze the decay of the vacuum. Because this is not a tunneling process, the decay rate is not exponentially suppressed and a single black hole in our past light cone may be sufficient to activate the decay. Moreover, decaying black holes radiate at ever higher temperatures, so they eventually probe the full spectrum of particles coupling to $\\phi$. We present a detailed analysis of vacuum decay catalyzed by a single particle, as well as by a black hole. The former is possible provided large couplings or a weak potential barrier. In contrast, the latter occurs much more easily and places new stringent limits on theories with hierarchical spectra. Finally, we comment on how these constraints apply to the standard model and its extensions, e.g. metastable supersymmetry breaking.
SHIP VELOCITY FIELDS , Lichuan Guib
Gui, Lichuan
directions. 1. Introduction Knowledge of flow around ships is important for design, model development, and computational fluid dynamics (CFD) validation. Historically, five-hole pitot probes have been used for measuring of multi-hole pitot and Laser-doppler systems, they both require measurement of ship velocity fields
Comparing quantum black holes and naked singularities
T. P. Singh
2000-12-21T23:59:59.000Z
There are models of gravitational collapse in classical general relativity which admit the formation of naked singularities as well as black holes. These include fluid models as well as models with scalar fields as matter. Even if fluid models were to be regarded as unphysical in their matter content, the remaining class of models (based on scalar fields) generically admit the formation of visible regions of finite but arbitrarily high curvature. Hence it is of interest to ask, from the point of view of astrophysics, as to what a stellar collapse leading to a naked singularity (or to a visible region of very high curvature) will look like, to a far away observer. The emission of energy during such a process may be divided into three phases - (i) the classical phase, during which matter and gravity can both be treated according to the laws of classical physics, (ii) the semiclassical phase, when gravity is treated classically but matter behaves as a quantum field, and (iii) the quantum gravitational phase. In this review, we first give a summary of the status of naked singularities in classical relativity, and then report some recent results comparing the semiclassical phase of black holes with the semiclassical phase of spherical collapse leading to a naked singularity. In particular, we ask how the quantum particle creation during the collapse leading to a naked singularity compares with the Hawking radiation from a star collapsing to form a black hole. It turns out that there is a fundamental difference between the two cases. A spherical naked star emits only about one Planck energy during its semiclassical phase, and the further evolution can only be determined by the laws of quantum gravity. This contrasts with the semiclassical evaporation of a black hole.
Following Black Hole Scaling Relations Through Gas-Rich Mergers
Medling, Anne M; Max, Claire E; Sanders, David B; Armus, Lee; Holden, Bradford; Mieda, Etsuko; Wright, Shelley A; Larkin, James E
2015-01-01T23:59:59.000Z
We present black hole mass measurements from kinematic modeling of high-spatial resolution integral field spectroscopy of the inner regions of 9 nearby (ultra-)luminous infrared galaxies in a variety of merger stages. These observations were taken with OSIRIS and laser guide star adaptive optics on the Keck I and Keck II telescopes, and reveal gas and stellar kinematics inside the spheres of influence of these supermassive black holes. We find that this sample of black holes are overmassive ($\\sim10^{7-9}$ M$_{Sun}$) compared to the expected values based on black hole scaling relations, and suggest that the major epoch of black hole growth occurs in early stages of a merger, as opposed to during a final episode of quasar-mode feedback. The black hole masses presented are the dynamical masses enclosed in $\\sim$25pc, and could include gas which is gravitationally bound to the black hole but has not yet lost sufficient angular momentum to be accreted. If present, this gas could in principle eventually fuel AGN f...
Thermodynamics of topological nonlinear charged Lifshitz black holes
Zangeneh, M Kord; Dehghani, M H
2015-01-01T23:59:59.000Z
In this paper, we construct a new class of analytic topological Lifshitz black holes with constant curvature horizon in the presence of power-law Maxwell field in four and higher dimensions. We find that in order to obtain these exact Lifshitz solutions, we need a dilaton and at least three electromagnetic fields. Interestingly enough, we find that the reality of the charge of the electromagnetic field which is needed for having solutions with curved horizon rules out black holes with hyperbolic horizon. Next, we study the thermodynamics of these nonlinear charged Lifshitz black holes with spherical and flat horizons by calculating all the conserved and thermodynamic quantities of the solutions. Furthermore, we obtain a generalized Smarr formula and show that the first law of thermodynamics is satisfied. Finally, we perform a stability analysis in both canonical and grand-canonical ensembles. We find that the solutions are thermally stable in a proper ranges of the metric parameters.
Clement, María E Gabach
2015-01-01T23:59:59.000Z
It is well known that celestial bodies tend to be spherical due to gravity and that rotation produces deviations from this sphericity. We discuss what is known and expected about the shape of black holes' horizons from their formation to their final, stationary state. We present some recent results showing that black hole rotation indeed manifests in the widening of their central regions, limits their global shapes and enforces their whole geometry to be close to the extreme Kerr horizon geometry at almost maximal rotation speed. The results depend only on the horizon area and angular momentum. In particular they are entirely independent of the surrounding geometry of the spacetime and of the presence of matter satisfying the strong energy condition. We also discuss the the relation of this result with the Hoop conjecture.
Kerr black holes with scalar hair
Herdeiro, Carlos A R
2014-01-01T23:59:59.000Z
We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M,J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^2>1, quadrupole moment larger than J^2/M and larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (...
Statistics of black hole radiance and the horizon area spectrum
Bekenstein, Jacob D
2015-01-01T23:59:59.000Z
The statistical response of a Kerr black hole to incoming quantum radiation has heretofore been studied by the methods of maximum entropy or quantum field theory in curved spacetime. Neither approach pretends to take into account the quantum structure of the black hole itself. To address this last issue we calculate here the conditional probability distribution associated with the hole's response by assuming that the horizon area has a discrete quantum spectrum, and that its quantum evolution corresponds to jumps between adjacent area eigenvalues, possibly occurring in series, with consequent emission or absorption of quanta, possibly in the same mode. This "atomic" model of the black hole is implemented in two different ways and recovers the previously calculated radiation statistics in both cases. The corresponding conditional probably distribution is here expressed in closed form in terms of an hypergeometric function.
On the black hole limit of rotating discs and rings
Andreas Kleinwächter; Hendrick Labranche; Reinhard Meinel
2010-07-20T23:59:59.000Z
Solutions to Einstein's field equations describing rotating fluid bodies in equilibrium permit parametric (i.e. quasi-stationary) transitions to the extreme Kerr solution (outside the horizon). This has been shown analytically for discs of dust and numerically for ring solutions with various equations of state. From the exterior point of view, this transition can be interpreted as a (quasi) black hole limit. All gravitational multipole moments assume precisely the values of an extremal Kerr black hole in the limit. In the present paper, the way in which the black hole limit is approached is investigated in more detail by means of a parametric Taylor series expansion of the exact solution describing a rigidly rotating disc of dust. Combined with numerical calculations for ring solutions our results indicate an interesting universal behaviour of the multipole moments near the black hole limit.
Gravitational radiation from dynamical black holes
Sean A. Hayward
2005-12-26T23:59:59.000Z
An effective energy tensor for gravitational radiation is identified for uniformly expanding flows of the Hawking mass-energy. It appears in an energy conservation law expressing the change in mass due to the energy densities of matter and gravitational radiation, with respect to a Killing-like vector encoding a preferred flow of time outside a black hole. In a spin-coefficient formulation, the components of the effective energy tensor can be understood as the energy densities of ingoing and outgoing, transverse and longitudinal gravitational radiation. By anchoring the flow to the trapping horizon of a black hole in a given sequence of spatial hypersurfaces, there is a locally unique flow and a measure of gravitational radiation in the strong-field regime.
Laser stabilization using spectral hole burning
L. Rippe; B. Julsgaard; A. Walther; S. Kröll
2006-11-05T23:59:59.000Z
We have frequency stabilized a Coherent CR699-21 dye laser to a transient spectral hole on the 606 nm transition in Pr^{+3}:Y_2SiO_5. A frequency stability of 1 kHz has been obtained on the 10 microsecond timescale together with a long-term frequency drift below 1 kHz/s. RF magnetic fields are used to repopulate the hyperfine levels allowing us to control the dynamics of the spectral hole. A detailed theory of the atomic response to laser frequency errors has been developed which allows us to design and optimize the laser stabilization feedback loop, and specifically we give a stability criterion that must be fulfilled in order to obtain very low drift rates. The laser stability is sufficient for performing quantum gate experiments in Pr^{+3}:Y_2SiO_5.
Geometric description of BTZ black holes thermodynamics
Hernando Quevedo; Alberto Sanchez
2008-11-15T23:59:59.000Z
We study the properties of the space of thermodynamic equilibrium states of the Ba\\~nados-Teitelboim-Zanelli (BTZ) black hole in (2+1)-gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a $2-$dimensional thermodynamic metric whose curvature is non-vanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.
Energy Associated with Schwarzschild Black Hole in a Magnetic Universe
S. S. Xulu
2000-01-29T23:59:59.000Z
In this paper we obtain the energy distribution associated with the Ernst space-time (geometry describing Schwarzschild black hole in Melvin's magnetic universe) in Einstein's prescription. The first term is the rest-mass energy of the Schwarzschild black hole, the second term is the classical value for the energy of the uniform magnetic field and the remaining terms in the expression are due to the general relativistic effect. The presence of the magnetic field is found to increase the energy of the system.
Black holes in massive gravity
Babichev, Eugeny
2015-01-01T23:59:59.000Z
We review the black hole solutions of the ghost-free massive gravity theory and its bimetric extension and outline the main results on the stability of these solutions against small perturbations. Massive (bi)-gravity accommodates exact black hole solutions, analogous to those of General Relativity. In addition to these solutions, hairy black holes -- solutions with no correspondent in General Relativity -- have been found numerically, whose existence is a natural consequence of the absence of the Birkhoff's theorem in these theories. The existence of extra propagating degrees of freedom, makes the stability properties of these black holes richer and more complex than those of General Relativity. In particular, the bi-Schwarzschild black hole exhibits an unstable spherically symmetric mode, while the bi-Kerr geometry is also generically unstable, both against the spherical mode and against superradiant instabilities. If astrophysical black holes are described by these solutions, the superradiant instability o...
Gia Dvali; Cesar Gomez
2012-03-29T23:59:59.000Z
According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.
Magnetorotational collapse of very massive stars to black holes in full general relativity
Yuk Tung Liu; Stuart L. Shapiro; Branson C. Stephens
2007-10-28T23:59:59.000Z
We perform axisymmetric simulations of the magnetorotational collapse of very massive stars in full general relativity. Our simulations are applicable to the collapse of supermassive stars (M > 10^3M_sun) and to very massive Pop III stars. We model our initial configurations by n=3 polytropes. The ratio of magnetic to rotational kinetic energy in these configurations is chosen to be small (1% and 10%). We find that such magnetic fields do not affect the initial collapse significantly. The core collapses to a black hole, after which black hole excision is employed to continue the evolution long enough for the hole to reach a quasi-stationary state. We find that the black hole mass is M_h = 0.95M and its spin parameter is J_h/M_h^2 = 0.7, with the remaining matter forming a torus around the black hole. We freeze the spacetime metric ("Cowling approximation") and continue to follow the evolution of the torus after the black hole has relaxed to quasi-stationary equilibrium. In the absence of magnetic fields, the torus settles down following ejection of a small amount of matter due to shock heating. When magnetic fields are present, the field lines gradually collimate along the hole's rotation axis. MHD shocks and the MRI generate MHD turbulence in the torus and stochastic accretion onto the central black hole. When the magnetic field is strong, a wind is generated in the torus, and the torus undergoes radial oscillations that drive episodic accretion onto the hole. These oscillations produce long-wavelength gravitational waves potentially detectable by LISA. The final state of the magnetorotational collapse always consists of a central black hole surrounded by a collimated magnetic field and a hot, thick accretion torus. This system is a viable candidate for the central engine of a long-soft gamma-ray burst.
Energy distribution of 2+1 dimensional black holes with nonlinear electrodynamics
Leonardo Balart
2009-11-27T23:59:59.000Z
The energy distributions for a black hole solution resulting from coupling electrodynamics and gravity in 2+1 dimensions are obtained. This solution considers the correction for a 2+1 static charged black hole from the first contribution of the weak field limit of one loop QED in 2+1 dimensions. The Einstein and Moller energy-momentum prescriptions are used to evaluate the energy distributions associated with the mentioned 2+1 dimensional black hole and other 2+1 black hole solutions coupled with nonlinear electrodynamics. A relation that connects the coefficients of both prescriptions is established.
S. N. Dolya
2014-10-18T23:59:59.000Z
This article considers an opportunity of disinfecting a part of the Earth surface, occupying a large area of ten thousand square kilometers. The sunlight will cause dissociation of molecular bromine into atoms; each bromine atom kills thirty thousand molecules of ozone. Each bromine plate has a mass of forty milligrams grams and destroys ozone in the area of hundred square meters. Thus, to form the ozone hole over the area of ten thousand square kilometers, it is required to have the total mass of bromine equal to the following four tons.
Holographic Superconductors with Ho?ava-Lifshitz Black Holes
Rong-Gen Cai; Hai-Qing Zhang
2009-12-03T23:59:59.000Z
We discuss the phase transition of planar black holes in Ho\\v{r}ava-Lifshitz gravity by introducing a Maxwell field and a complex scalar field. We calculate the condensates of the charged operators in the dual CFTs when the mass square of the complex scalar filed is $m^2=-2/L^2$ and $m^2=0$, respectively. We compute the electrical conductivity of the \\hl superconductor in the probe approximation. In particular, it is found that there exists a spike in the conductivity for the case of the operator with scaling dimension one. These results are quite similar to those in the case of Schwarzschild-AdS black holes, which demonstrates that the holographic superconductivity is a robust phenomenon associated with asymptotic AdS black holes.
Noncommutative effects in the black hole evaporation in two dimensions
Garcia-Compean, Hugo [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Cerro de las Mitras 2565, Colonia Obispado, Monterrey Nuevo Leon 64060 (Mexico); Departamento de Fisica Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico Distrito Federal (Mexico); Soto-Campos, Carlos [Departamento de Fisica Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico Distrito Federal (Mexico); Unidad Profesional Interdisciplinaria en Ingenieria y Tecnologias Avanzadas del IPN Avenida IPN 2580 Colonia Laguna Ticoman 07340 Mexico Distrito Federal (Mexico)
2006-11-15T23:59:59.000Z
We discuss some possible implications of a two-dimensional toy model for black hole evaporation in noncommutative field theory. While the noncommutativity we consider does not affect gravity, it can play an important role in the dynamics of massless and Hermitian scalar fields in the event horizon of a Schwarzschild black hole. We find that noncommutativity will affect the flux of outgoing particles and the nature of its UV/IR divergences. Moreover, we show that the noncommutative interaction does not affect Leahy's and Unruh's interpretation of thermal ingoing and outgoing fluxes in the black hole evaporation process. Thus, the noncommutative interaction still destroys the thermal nature of fluxes. In the process, some nonlocal implications of the noncommutativity are discussed.
Spectrum of the radiation from electric charges and from dipoles which free infall into a black hole
A. A. Shatskiy; I. D. Novikov; L. N. Lipatova
2013-03-30T23:59:59.000Z
The free fall of electric charges and dipoles, radial and freely falling into the Schwarzschild black hole event horizon, was considered. Inverse effect of electromagnetic fields on the black hole is neglected. Dipole was considered as a point particle, so the deformation associated with exposure by tidal forces are neglected. According to the theorem, "the lack of hair" of black holes, multipole magnetic fields must be fully emitted by multipole fall into a black hole. The spectrum of electromagnetic radiation power for these multipoles (monopole and dipole) was found. Differences were found in the spectra for different orientations of the falling dipole. A general method has been developed to find radiated electromagnetic multipole fields for the free falling multipoles into a black hole (including higher order multipoles - quadrupoles, etc.). The electromagnetic spectrum can be compared with observational data from stellar mass and smaller black holes.
Comments on absorption cross section for Chern-Simons black holes in five dimensions
P. A. González; Joel Saavedra
2011-05-12T23:59:59.000Z
In this paper we study the effects of black hole mass on the absorption cross section for a massive scalar field propagating in a 5-dimensional topological Chern-Simons black hole at the low-frequency limit. We consider the two branches of black hole solutions $(\\alpha=\\pm 1)$ and we show that, if the mass of black hole increase the absorption cross section decreases at the zero-frequency limit for the branch $\\alpha=-1$ and for the other branch, $\\alpha=1$, the behavior is opposite, if the black hole mass increase the absorption cross section increases. Also we find that beyond a certain frequency value, the mass black hole does not affect the absorption cross section.
The Ozone Hole Some perspective
Toohey, Darin W.
The Ozone Hole · Some perspective · The British Antarctic Survey · The "Ozone Hole" · International of the predicted ozone losses! This was quite a controversy. Ultimately, ozone losses started appearing in the late 1980s (see Figure below), but by then, there was already a credibility issue for ozone scientists. #12
R. B. Mann
1997-05-06T23:59:59.000Z
I demonstrate that, under certain circumstances, regions of negative energy density can undergo gravitational collapse into a black hole. The resultant exterior black hole spacetimes necessarily have negative mass and non-trivial topology. A full theory of quantum gravity, in which topology-changing processes take place, could give rise to such spacetimes.
Stringy Stability of Charged Dilaton Black Holes with Flat Event Horizon
Yen Chin Ong; Pisin Chen
2014-12-29T23:59:59.000Z
Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Crucial to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilaton arises naturally in the context of string theory, we study the effect of coupling dilaton to Maxwell field on the stability of flat charged AdS black holes. In particular, we study the stability of Gao-Zhang black holes, which are locally asymptotically anti-de Sitter. We find that for dilaton coupling parameter $\\alpha$ > 1, flat black holes are stable against brane pair production, however for 0 electrical charges is increased. Such instability however, behaves somewhat differently from that of flat Reissner-Nordstr\\"om black holes. In addition, we prove that the Seiberg-Witten action of charged dilaton AdS black hole of Gao-Zhang type with flat event horizon (at least in 5-dimension) is always logarithmically divergent at infinity for finite values of $\\alpha$, and is finite and positive in the case $\\alpha$ tends to infinity . We also comment on the robustness of our result for other charged dilaton black holes that are not of Gao-Zhang type.
Stability of Horava-Lifshitz Black Holes in the Context of AdS/CFT
Ong, Yen Chin; /Taiwan, Natl. Taiwan U.; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC
2012-06-13T23:59:59.000Z
The anti-de Sitter/conformal field theory (AdS/CFT) correspondence is a powerful tool that promises to provide new insights toward a full understanding of field theories under extreme conditions, including but not limited to quark-gluon plasma, Fermi liquid, and superconductor. In many such applications, one typically models the field theory with asymptotically AdS black holes. These black holes are subjected to stringy effects that might render them unstable. Horava-Lifshitz gravity, in which space and time undergo different transformations, has attracted attention due to its power-counting renormalizability. In terms of AdS/CFT correspondence, Horava-Lifshitz black holes might be useful to model holographic superconductors with Lifshitz scaling symmetry. It is thus interesting to study the stringy stability of Horava-Lifshitz black holes in the context of AdS/CFT. We find that uncharged topological black holes in {lambda} = 1 Horava-Lifshitz theory are nonperturbatively stable, unlike their counterparts in Einstein gravity, with the possible exceptions of negatively curved black holes with detailed balance parameter {epsilon} close to unity. Sufficiently charged flat black holes for {epsilon} close to unity, and sufficiently charged positively curved black holes with {epsilon} close to zero, are also unstable. The implication to the Horava-Lifshitz holographic superconductor is discussed.
Formation of subhorizon black holes from preheating
E. Torres-Lomas; Juan Carlos Hidalgo; Karim A. Malik; L. Arturo Ureña-López
2014-04-29T23:59:59.000Z
We study the production of primordial black holes (PBHs) during the preheating stage that follows a chaotic inflationary phase. The scalar fields present in the process are evolved numerically using a modified version of the HLATTICE code. From the output of the numerical simulation, we compute the probability distribution of curvature fluctuations, paying particular attention to sub-horizon scales. We find that in some specific models these modes grow to large amplitudes developing highly non-Gaussian probability distributions. We then calculate PBH abundances using the standard Press-Schechter criterion and find that overproduction of PBHs is likely in some regions of the chaotic preheating parameter space.
Reissner-Nordstrom black hole in dark energy background
Ngangbam Ishwarchandra; Ng. Ibohal; K. Yugindro Singh
2014-11-29T23:59:59.000Z
In this paper we propose a stationary solution of Einstein's field equations describing Reissner-Nordstrom black hole in dark energy background. It is to be regarded as the Reissner-Nordstrom black hole is embedded into the dark energy solution producing Reissner-Nordstrom-dark energy black hole. We find that the space-time geometry of Reissner-Nordstrom-dark energy solution is Petrov type $D$ in the classification of space-times. It is also shown that the embedded space-time possesses an energy-momentum tensor of the electromagnetic field interacting with the dark energy having negative pressure. We find the energy-momentum tensor for dark energy violates the the strong energy condition due to the negative pressure, whereas that of the electromagnetic field obeys the strong energy condition. It is shown that the time-like vector field for an observer in the Reissner-Nordstrom-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity of the horizons for the embedded dark energy black hole. The characteristic properties of relativistic dark energy based on the de Sitter solution is discussed in an appendix.
No hair theorems for stationary axisymmetric black holes
Sourav Bhattacharya; Amitabha Lahiri
2011-05-20T23:59:59.000Z
We present a non-perturbative proof of the no hair theorems corresponding to scalar and Proca fields for stationary axisymmetric de Sitter black hole spacetimes. Our method also applies to asymptotically flat and under a reasonable assumption, to asymptotically anti-de Sitter spacetimes.
A scale-free analysis of magnetic holes in the solar wind
Stevens, M. L. (Michael Louis)
2006-01-01T23:59:59.000Z
Magnetic holes are isolated intervals of depleted interplanetary magnetic field (IMF) strength on timescales of several seconds to several hours. These intervals have been seen as often as several times per day in the ...
Core Hole Drilling And Testing At The Lake City, California Geothermal...
Drilling And Testing At The Lake City, California Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Core Hole Drilling And...
Vacuum polarisation on the brane for a higher dimensional black hole spacetime
Matthew Hewitt; Elizabeth Winstanley
2013-03-13T23:59:59.000Z
We present the vacuum polarisation of a massless, conformally coupled scalar field on the brane for a Schwarzschild-Tangherlini black hole in a bulk of zero to seven additional dimensions.
Asymptotically flat black holes with scalar hair: a review
Carlos A. R. Herdeiro; Eugen Radu
2015-04-30T23:59:59.000Z
We consider the status of black hole solutions with non-trivial scalar fields but no gauge fields, in four dimensional asymptotically flat space-times, reviewing both classical results and recent developments. We start by providing a simple illustration on the physical difference between black holes in electro-vacuum and scalar-vacuum. Next, we review no-scalar-hair theorems. In particular, we detail an influential theorem by Bekenstein and stress three key assumptions: 1) the type of scalar field equation; 2) the spacetime symmetry inheritance by the scalar field; 3) an energy condition. Then, we list regular (on and outside the horizon), asymptotically flat BH solutions with scalar hair, organizing them by the assumption which is violated in each case and distinguishing primary from secondary hair. We provide a table summary of the state of the art.
Asymptotically flat black holes with scalar hair: a review
Herdeiro, Carlos A R
2015-01-01T23:59:59.000Z
We consider the status of black hole solutions with non-trivial scalar fields but no gauge fields, in four dimensional asymptotically flat space-times, reviewing both classical results and recent developments. We start by providing a simple illustration on the physical difference between black holes in electro-vacuum and scalar-vacuum. Next, we review no-scalar-hair theorems. In particular, we detail an influential theorem by Bekenstein and stress three key assumptions: 1) the type of scalar field equation; 2) the spacetime symmetry inheritance by the scalar field; 3) an energy condition. Then, we list regular (on and outside the horizon), asymptotically flat BH solutions with scalar hair, organizing them by the assumption which is violated in each case and distinguishing primary from secondary hair. We provide a table summary of the state of the art.
Holographic superconductors in the AdS black hole spacetime with a global monopole
Songbai Chen; Liancheng Wang; Chikun Ding; Jiliang Jing
2010-06-08T23:59:59.000Z
We study holographic superconductors in the Schwarzschild-AdS black hole with a global monopole through a charged complex scalar field. We calculate the condensates of the charged operators in the dual conformal field theories (CFTs) and discuss the effects of the global monopole on the condensation formation. Moreover, we compute the electric conductive using the probe approximation and find that the properties of the conductive are quite similar to those in the Schwarzschild-AdS black hole. These results can help us know more about holographic superconductors in the asymptotic AdS black holes.
The primordial explosion of a false white hole from a 5D vacuum
José Edgar Madriz Aguilar; Claudia Moreno; Mauricio Bellini
2013-12-05T23:59:59.000Z
We explore the cosmological consequences of some possible big bang produced by a black-hole with mass $M$ in an 5D extended SdS. Under these particular circumstances, the effective 4D metric obtained by the use of a constant foliation on the extra coordinate is comported as a false white-hole (FWH), which evaporates for all unstable modes that have wavelengths bigger than the size of the FWH. Outside the white hole the repulsive gravitational field can be considered as weak, so that the dynamics for fluctuations of the inflaton field and the scalar perturbations of the metric can be linearized.
Low energy 2+1 string gravity; black hole solutions
A. A. Garcia Diaz; G. Gutierrez Cano
2014-12-17T23:59:59.000Z
In this report a detailed derivation of the dynamical equations for an n dimensional heterotic string theory of the Horowitz type is carried out in the string frame and in the Einstein frame too. In particular, the dynamical equations of the three dimensional string theory are explicitly given. The relation of the Horowitz Welch and Horne Horowitz string black hole solution is exhibited. The Chan Mann charged dilaton solution is derived and the subclass of string solutions field is explicitly identified. The stationary generalization, via SL(2;R) transformations, of the static (2+1) Horne Horowitz string black hole solution is given.
Fate of Yang-Mills black hole in early Universe
Nakonieczny, Lukasz; Rogatko, Marek [Institute of Physics Maria Curie-Sklodowska University 20-031 Lublin, pl. Marii Curie-Sklodowskiej 1 (Poland)
2013-02-21T23:59:59.000Z
According to the Big Bang Theory as we go back in time the Universe becomes progressively hotter and denser. This leads us to believe that the early Universe was filled with hot plasma of elementary particles. Among many questions concerning this phase of history of the Universe there are questions of existence and fate of magnetic monopoles and primordial black holes. Static solution of Einstein-Yang-Mills system may be used as a toy model for such a black hole. Using methods of field theory we will show that its existence and regularity depend crucially on the presence of fermions around it.
Black Holes in 2+1 Teleparallel Theories of Gravity
A. A. Sousa; J. W. Maluf
2003-01-21T23:59:59.000Z
We apply the Hamiltonian formulation of teleparallel theories of gravity in 2+1 dimensions to a circularly symmetric geometry. We find a family of one-parameter black hole solutions. The BTZ solution fixes the unique free parameter of the theory. The resulting field equations coincide with the teleparallel equivalent of Einstein's three-dimensional equations. We calculate the gravitational energy of the black holes by means of the simple expression that arises in the Hamiltonian formulation and conclude that the resulting value is identical to that calculated by means of the Brown-York method.
Strings, higher curvature corrections, and black holes
Thomas Mohaupt
2005-12-05T23:59:59.000Z
We review old and recent results on subleading contributions to black hole entropy in string theory.
Alternate Explosions: Collapse and Accretion Events with Red Holes instead of Black Holes
James S. Graber
1999-08-10T23:59:59.000Z
A red hole is "just like a black hole" except it lacks an event horizon and a singularity. As a result, a red hole emits much more energy than a black hole during a collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae.
Primordial black holes from temporally enhanced curvature perturbation
Teruaki Suyama; Yi-Peng Wu; Jun'ichi Yokoyama
2014-06-02T23:59:59.000Z
Scalar field with generalized kinetic interactions metamorphoses depending on its field value, ranging from cosmological constant to stiff matter. We show that such a scalar field can give rise to temporal enhancement of the curvature perturbation in the primordial Universe, leading to efficient production of primordial black holes while the enhancement persists. If the inflation energy scale is high, those mini-black holes evaporate by the Hawking radiation much before Big Bang nucleosynthesis and the effective reheating of the Universe is achieved by the black hole evaporation. Dominance of PBHs and the reheating by their evaporation modify the expansion history of the primordial Universe. This results in a characteristic feature of the spectrum of primordial tensor modes in the DECIGO frequency band, opening an interesting possibility of testing PBH reheating scenario by measuring the primordial tensor modes. If the inflation energy scale is low, the PBH mass can be much larger than the solar mass. In this case, PBH is an interesting candidate for seeds for supermassive black holes residing in present galaxies.
Asymptotically Lifshitz brane-world black holes
Ranjbar, Arash, E-mail: a_ranjbar@sbu.ac.ir; Sepangi, Hamid Reza, E-mail: hr-sepangi@sbu.ac.ir; Shahidi, Shahab, E-mail: s_shahidi@sbu.ac.ir
2012-12-15T23:59:59.000Z
We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the entropy imposes the critical exponent z to be bounded from above. This maximum value of z corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed. - Highlights: Black-Right-Pointing-Pointer Studying the gravity dual of a Lifshitz field theory in the context of brane-world scenario. Black-Right-Pointing-Pointer Studying the thermodynamical behavior of asymptotically Lifshitz black holes. Black-Right-Pointing-Pointer Showing that the entropy imposes the critical exponent z to be bounded from above. Black-Right-Pointing-Pointer Discussing the phase transition for different spatial topologies.
Thermodynamics of regular black hole
Yun Soo Myung; Yong-Wan Kim; Young-Jai Park
2008-09-21T23:59:59.000Z
We investigate thermodynamics for a magnetically charged regular black hole (MCRBH), which comes from the action of general relativity and nonlinear electromagnetics, comparing with the Reissner-Norstr\\"om (RN) black hole in both four and two dimensions after dimensional reduction. We find that there is no thermodynamic difference between the regular and RN black holes for a fixed charge $Q$ in both dimensions. This means that the condition for either singularity or regularity at the origin of coordinate does not affect the thermodynamics of black hole. Furthermore, we describe the near-horizon AdS$_2$ thermodynamics of the MCRBH with the connection of the Jackiw-Teitelboim theory. We also identify the near-horizon entropy as the statistical entropy by using the AdS$_2$/CFT$_1$ correspondence.
Black Hole Interior Mass Formula
Parthapratim Pradhan
2014-05-06T23:59:59.000Z
We argue by explicit computations that, although the area product, horizon radii product, entropy product and \\emph {irreducible mass product} of the event horizon and Cauchy horizon are universal, the \\emph{surface gravity product}, \\emph{surface temperature product} and \\emph{Komar energy product} of the said horizons do not seem to be universal for Kerr-Newman (KN) black hole space-time. We show the black hole mass formula on the \\emph{Cauchy horizon} following the seminal work by Smarr\\cite{smarr} for the outer horizon. We also prescribed the \\emph{four} laws of black hole mechanics for the \\emph{inner horizon}. New definition of the extremal limit of a black hole is discussed.
Absolute conservation law for black holes
D. Grumiller; W. Kummer
1999-11-08T23:59:59.000Z
In all 2d theories of gravity a conservation law connects the (space-time dependent) mass aspect function at all times and all radii with an integral of the matter fields. It depends on an arbitrary constant which may be interpreted as determining the initial value together with the initial values for the matter field. We discuss this for spherically reduced Einstein-gravity in a diagonal metric and in a Bondi-Sachs metric using the first order formulation of spherically reduced gravity, which allows easy and direct fixations of any type of gauge. The relation of our conserved quantity to the ADM and Bondi mass is investigated. Further possible applications (ideal fluid, black holes in higher dimensions or AdS spacetimes etc.) are straightforward generalizations.
Supercurrent: Vector Hair for an AdS Black Hole
Pallab Basu; Anindya Mukherjee; Hsien-Hang Shieh
2008-09-26T23:59:59.000Z
In arXiv:0803.3295 [hep-th] a holographic black hole solution is discussed which exhibits a superconductor like transition. In the superconducting phase the black holes show infinite DC conductivity. This gives rise to the possibility of deforming the solutions by turning on a time independent current (supercurrent), without any electric field. This type of deformation does not exist for normal (non-superconducting) black holes, due to the no-hair theorems. In this paper we have studied such a supercurrent solution and the associated phase diagram. Interestingly, we have found a "special point" (critical point) in the phase diagram where the second order superconducting phase transition becomes first order. Supercurrent in superconducting materials is a well studied phenomenon in condensed matter systems. We have found some qualitative agreement with known results.
Construction and physical properties of Kerr black holes with scalar hair
Herdeiro, Carlos
2015-01-01T23:59:59.000Z
Kerr black holes with scalar hair are solutions of the Einstein-Klein-Gordon field equations describing regular (on and outside an event horizon), asymptotically flat black holes with scalar hair (arXiv:1403.2757). These black holes interpolate continuously between the Kerr solution and rotating boson stars in D=4 spacetime dimensions. Here we provide details on their construction, discussing properties of the ansatz, the field equations, the boundary conditions and the numerical strategy. Then, we present an overview of the parameter space of the solutions, and describe in detail the space-time structure of the black holes exterior geometry and of the scalar field for a sample of reference solutions. Phenomenological properties of potential astrophysical interest are also discussed, and the stability properties and possible generalizations are commented on. As supplementary material to this paper we make available numerical data files for the sample of reference solutions discussed, for public use.
Black holes with gravitational hair in higher dimensions
Anabalon, Andres [Departamento de Ciencias Facultad de Artes Liberales, Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibanez, Vina Del Mar (Chile); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1 D-14476 Golm (Germany); Canfora, Fabrizio [Centro de Estudios Cientificos (CECS), Casilla 1469 Valdivia (Chile); Giacomini, Alex; Oliva, Julio [Instituto de Ciencias Fisicas y Matematicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia (Chile)
2011-10-15T23:59:59.000Z
A new class of vacuum black holes for the most general gravity theory leading to second order field equations in the metric in even dimensions is presented. These space-times are locally anti-de Sitter in the asymptotic region, and are characterized by a continuous parameter that does not enter in the conserve charges, nor it can be reabsorbed by a coordinate transformation: it is therefore a purely gravitational hair. The black holes are constructed as a warped product of a two-dimensional space-time, which resembles the r-t plane of the Banados-Teitelboim-Zanelli black hole, times a warp factor multiplying the metric of a D-2-dimensional Euclidean base manifold, which is restricted by a scalar equation. It is shown that all the Noether charges vanish. Furthermore, this is consistent with the Euclidean action approach: even though the black hole has a finite temperature, both the entropy and the mass vanish. Interesting examples of base manifolds are given in eight dimensions which are products of Thurston geometries, giving then a nontrivial topology to the black hole horizon. The possibility of introducing a torsional hair for these solutions is also discussed.
A. Brotas
2006-09-01T23:59:59.000Z
The coordinate system $(\\bar{x},\\bar{t})$ defined by $r = 2m + K\\bar{x}- c K \\bar{t}$ and $t=\\bar{x}/cK - 1 /cK \\int_{r_a}^r (1- 2m/r + K^2)^{1/2} (1 - 2m/r)^{-1}dr$ allow us to write the Schwarzschild metric in the form: \\[ds^2=c^2 d\\bar{t}^2 + (W^2/K^2 - 2W/K) d\\bar{x}^2 + 2c (1 + W/K) d\\bar{x}d\\bar{t} - r^2 (d\\theta^2 + cos^2\\theta d\\phi^2)\\] with $W=(1 - 2m/r + K^2)^{1/2}$, in which the coefficients' pathologies are moved to $r_K = 2m/(1+K^2)$. This new coordinate system is used to study the entrance into a black hole of a rigid line (a line in which the shock waves propagate with velocity c).
Black Holes with Quantum Massive Spin-2 Hair
Gia Dvali
2006-05-31T23:59:59.000Z
We show that black holes can posses a long range quantum mechanical hair associated with a massive spin-2 field, which can be detected by a stringy generalization of the Aharovon-Bohm effect, in which a string loop lassoes the black hole. The long distance effect persist for arbitrarily high mass of the spin-2 field. An analogous effect is exhibited by a massive antisymmetric two-form field. We make a close parallel between the two and the ordinary Aharonov-Bohm phenomenon, and also show that in the latter case the effect can be experienced even by the electrically-neutral particles, provided some boundary terms are added to the action.
"Meissner effect" and Blandford-Znajek mechanism in conductive black hole magnetospheres
S. S. Komissarov; J. C. McKinney
2007-02-14T23:59:59.000Z
The expulsion of axisymmetric magnetic field from the event horizons of rapidly rotating black holes has been seen as an astrophysically important effect that may significantly reduce or even nullify the efficiency of the Blandford-Znajek mechanism of powering the relativistic jets in Active Galactic Nuclei and Gamma Ray Bursts. However, this Meissner-like effect is seen in vacuum solutions of black hole electrodynamics whereas the Blandford-Znajek mechanism is concerned with plasma-filled magnetospheres. In this paper we argue that conductivity dramatically changes the properties of axisymmetric electromagnetic solutions -- even for a maximally rotating Kerr black hole the magnetic field is pulled inside the event horizon. Moreover, the conditions resulting in outgoing Poynting flux in the Blandford-Znajek mechanism exist not on the event horizon but everywhere within the black hole ergosphere. Thus, the Meissner effect is unlikely to be of interest in astrophysics of black holes, at least not in the way this has been suggested so far. These conclusions are supported by the results of time-dependent numerical simulations with three different computer codes. The test problems involve black holes with the rotation parameter ranging from $a=0.999$ to $a=1$. The pure electrodynamic simulations deal with the structure of conductive magnetospheres of black holes placed in a uniform-at-infinity magnetic field (Wald's problem) and the magnetohydrodynamic simulations are used to study the magnetospheres arising in the problem of disk accretion.
Density matrix of black hole radiation
Lasma Alberte; Ram Brustein; Andrei Khmelnitsky; A. J. M. Medved
2015-02-09T23:59:59.000Z
Hawking's model of black hole evaporation is not unitary and leads to a mixed density matrix for the emitted radiation, while the Page model describes a unitary evaporation process in which the density matrix evolves from an almost thermal state to a pure state. We compare a recently proposed model of semiclassical black hole evaporation to the two established models. In particular, we study the density matrix of the outgoing radiation and determine how the magnitude of the off-diagonal corrections differs for the three frameworks. For Hawking's model, we find power-law corrections to the two-point functions that induce exponentially suppressed corrections to the off-diagonal elements of the full density matrix. This verifies that the Hawking result is correct to all orders in perturbation theory and also allows one to express the full density matrix in terms of the single-particle density matrix. We then consider the semiclassical theory for which the corrections, being non-perturbative from an effective field-theory perspective, are much less suppressed and grow monotonically in time. In this case, the R\\'enyi entropy for the outgoing radiation is shown to grow linearly at early times; but this growth slows down and the entropy eventually starts to decrease at the Page time. In addition to comparing models, we emphasize the distinction between the state of the radiation emitted from a black hole, which is highly quantum, and that of the radiation emitted from a typical classical black body at the same temperature.
Bulk emission of scalars by a rotating black hole
M. Casals; S. R. Dolan; P. Kanti; E. Winstanley
2008-07-17T23:59:59.000Z
We study in detail the scalar-field Hawking radiation emitted into the bulk by a higher-dimensional, rotating black hole. We numerically compute the angular eigenvalues, and solve the radial equation of motion in order to find transmission factors. The latter are found to be enhanced by the angular momentum of the black hole, and to exhibit the well-known effect of superradiance. The corresponding power spectra for scalar fields show an enhancement with the number of dimensions, as in the non-rotating case. We compute the total mass loss rate of the black hole for a variety of black-hole angular momenta and bulk dimensions, and find that, in all cases, the bulk emission remains significantly smaller than the brane emission. The angular-momentum loss rate is also computed and found to have a smaller value in the bulk than on the brane. We present accurate bulk-to-brane emission ratios for a range of scenarios.
Three-Dimensional Hairy Black Holes in Teleparallel Gravity
P. A. González; Joel Saavedra; Yerko Vásquez
2015-02-11T23:59:59.000Z
We consider three-dimensional gravity based on torsion. Specifically, we consider an extension of the so-called Teleparallel Equivalent of General Relativity in the presence of a scalar field with a self-interacting potential, where the scalar field is non-minimally coupled with the torsion scalar. Then, we find asymptotically AdS hairy black hole solutions, which are characterized by a scalar field with a power-law behavior, being regular outside the event horizon and null at spatial infinity and by a self-interacting potential, which tends to an effective cosmological constant at spatial infinity.
Spin interference of holes in silicon nanosandwiches
Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru; Danilovskii, E. Yu.; Klyachkin, L. E.; Malyarenko, A. M. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Mashkov, V. A. [St. Petersburg State Polytechnical University (Russian Federation)
2012-01-15T23:59:59.000Z
Spin-dependent transport of holes is studied in silicon nanosandwiches on an n-Si (100) surface which are represented by ultranarrow p-Si quantum wells confined by {delta}-barriers heavily doped with boron. The measurement data of the longitudinal and Hall voltages as functions of the top gate voltage without an external magnetic field show the presence of edge conduction channels in the silicon nanosandwiches. An increase in the stabilized source-drain current within the range 0.25-5 nA subsequently exhibits the longitudinal conductance value 4e{sup 2}/h, caused by the contribution of the multiple Andreev reflection, the value 0.7(2e{sup 2}/h) corresponding to the known quantum conductance staircase feature, and displays Aharonov-Casher oscillations, which are indicative of the spin polarization of holes in the edge channels. In addition, at a low stabilized source-drain current, due to spin polarization, a nonzero Hall voltage is detected which is dependent on the top gate voltage; i. e., the quantum spin Hall effect is observed. The measured longitudinal I-V characteristics demonstrate Fiske steps and a negative differential resistance caused by the generation of electromagnetic radiation as a result of the Josephson effect. The results obtained are explained within a model of topological edge states which are a system of superconducting channels containing quantum point contacts transformable to single Josephson junctions at an increasing stabilized source-drain current.
Energy on black hole spacetimes
Alejandro Corichi
2012-07-18T23:59:59.000Z
We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.
Charged black holes in expanding Einstein-de Sitter universes
Manuela G. Rodrigues; Vilson T. Zanchin
2015-02-02T23:59:59.000Z
Inspired in a previous work by McClure and Dyer (Classical Quantum Gravity 23, 1971 (2006)), we analyze some solutions of the Einstein-Maxwell equations which were originally written to describe charged black holes in cosmological backgrounds. A detailed analysis of the electromagnetic sources for a sufficiently general metric is performed, and then we focus on deriving the electromagnetic four-current as well as the conserved electric charge of each metric. The charged McVittie solution is revisited and a brief study of its causal structure is performed, showing that it may represent a charged black hole in an expanding universe, with the black hole horizon being formed at infinite late times. Charged versions of solutions originally put forward by Vaidya (Vd) and Sultana and Dyer (SD) are also analyzed. It is shown that the charged Sultana-Dyer metric requires a global electric current, besides a central (pointlike) electric charge. With the aim of comparing to the charged McVittie metric, new charged solutions of Vd and SD type are considered. In these cases, the original mass and charge parameters are replaced by particular functions of the cosmological time. In the new generalized charged Vaidya metric the black hole horizon never forms, whereas in the new generalized Sultana-Dyer case both the Cauchy and the black hole horizons develop at infinite late times. A charged version of the Thakurta metric is also studied here. It is also a new solution. As in the charged Sultana-Dyer case, the natural source of the electromagnetic field is a central electric charge with an additional global electric current. The global structure is briefly studied and it is verified that the corresponding spacetime may represent a charged black hole in a cosmological background. All the solutions present initial singularities as found in the McVittie metric.
Using radio emission to detect isolated and quiescent accreting black holes
Thomas J. Maccarone
2005-03-05T23:59:59.000Z
We discuss the implications of new relations between black holes' masses, X-ray luminosities and radio luminosities, as well as the properties of the next generation of radio telescopes, for the goal of finding isolated accreting black holes. Because accreting black holes have radio-to-X-ray flux ratios that increase with decreasing luminosity in Eddington units, and because deep surveys over large fields of view should be possible with planned instrumentation such as LOFAR, radio surveys should be significantly more efficient than X-ray surveys for finding these objects.
No-go theorem for false vacuum black holes
Dmitri V. Gal'tsov; Jose' P. S. Lemos
2001-03-18T23:59:59.000Z
We study the possibility of non-singular black hole solutions in the theory of general relativity coupled to a non-linear scalar field with a positive potential possessing two minima: a `false vacuum' with positive energy and a `true vacuum' with zero energy. Assuming that the scalar field starts at the false vacuum at the origin and comes to the true vacuum at spatial infinity, we prove a no-go theorem by extending a no-hair theorem to the black hole interior: no smooth solutions exist which interpolate between the local de Sitter solution near the origin and the asymptotic Schwarzschild solution through a regular event horizon or several horizons.
Rotating BTZ Black Holes and One Dimensional Holographic Superconductors
Pankaj Chaturvedi; Gautam Sengupta
2014-06-30T23:59:59.000Z
We consider charged rotating BTZ black holes in 2+1 dimensions and obtain 1+1 dimensional holographic superconductors on a spatial circle in the context of the $AdS_3/CFT_2$ correspondence. The charged condensate for the boundary superconductor is computed both in the analytic and the numerical framework in a probe limit and a low angular momentum approximation. A critical value of the angular momentum for the onset of superconductivity is established. We also numerically compute the electrical conductivity of the 1+1 dimensional boundary theory on a circle. The conductivity exhibits a dependence on angular momentum of the rotating black hole both for the normal and the superconducting phase of the boundary field theory. The significance of the boundary field theory in the context of a Fermi-Luttinger liquid on a circle is discussed.
Absorption cross section of RN and SdS extremal black hole
Sini R; Nijo Varghese; V C Kuriakose
2008-02-29T23:59:59.000Z
The nature of scalar wave functions near the horizon of Reissner Nordstrom (RN) extremal and Schwarzschild-de Sitter (SdS) extremal black holes are found using WKB approximation and the effect of reflection of waves from the horizon. The absorption cross section $\\sigma_{abs}$ when RN extremal and SdS extremal black holes placed in a Klein-Gordon field is calculated.
Hawking Emission and Black Hole Thermodynamics
Don N. Page
2006-12-18T23:59:59.000Z
A brief review of Hawking radiation and black hole thermodynamics is given, based largely upon hep-th/0409024.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2013-04-02T23:59:59.000Z
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2007-03-20T23:59:59.000Z
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2005-03-08T23:59:59.000Z
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
Absorption cross section in Lifshitz black hole
Taeyoon Moon; Yun Soo Myung
2012-10-05T23:59:59.000Z
We derive the absorption cross section of a minimally coupled scalar in the Lifshitz black hole obtained from the new massive gravity. The absorption cross section reduces to the horizon area in the low energy and massless limit of s-wave mode propagation, indicating that the Lifshitz black hole also satisfies the universality of low energy absorption cross section for black holes.
Near Horizon Structure of Extremal Vanishing Horizon Black Holes
Sadeghian, S; Vahidinia, M H; Yavartanoo, H
2015-01-01T23:59:59.000Z
We study the near horizon structure of Extremal Vanishing Horizon (EVH) black holes, extremal black holes with vanishing horizon area with a vanishing one-cycle on the horizon. We construct the most general near horizon EVH and near-EVH ansatz for the metric and other fields, like dilaton and gauge fields which may be present in the theory. We prove that (1) the near horizon EVH geometry for generic gravity theory in generic dimension has a three dimensional maximally symmetric subspace; (2) if the matter fields of the theory satisfy strong energy condition either this 3d part is AdS$_3$, or the solution is a direct product of a locally 3d flat space and a $d-3$ dimensional part; (3) these results extend to the near horizon geometry of near-EVH black holes, for which the AdS$_3$ part is replaced with BTZ geometry. We present some specific near horizon EVH geometries in 3, 4 and 5 dimensions for which there is a classification. We also briefly discuss implications of these generic results for generic (gauged) ...
Einstein, Black Holes Gravitational Waves
Cook, Greg
1 #12;Einstein, Black Holes and Gravitational Waves Gregory B. Cook Wake Forest University 2 #12;Einstein's Miraculous Year: 1905 · Einstein, A. "¨Uber einen die Erzeugung und Verwandlung des Lichtes Concerning the Production and Transformation of Light. · Einstein, A. "¨Uber die von der molekularkinetischen
Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-10-06T23:59:59.000Z
Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.
Massive spin-2 and spin-1/2 no hair theorems for stationary axisymmetric black holes
Sourav Bhattacharya; Amitabha Lahiri
2012-10-09T23:59:59.000Z
We present a proof of the no hair theorems corresponding to free massive non-perturbative Pauli-Fierz spin-2 and perturbative massive spin-1/2 fields for stationary axisymmetric de Sitter black hole spacetimes of dimension four with two commuting Killing vector fields. The applicability of these results for asymptotically flat and anti-de Sitter spacetimes are also discussed.
Black hole free energy during charged collapse: a numerical study
Hugues Beauchesne; Ariel Edery
2012-05-19T23:59:59.000Z
We perform a numerical investigation of the thermodynamics during the collapse of a charged (complex) scalar field to a Reissner-Nordstr\\"om (RN) black hole in isotropic coordinates. Numerical work on gravitational collapse in isotropic coordinates has recently shown that the negative of the total Lagrangian approaches the Helmholtz free energy F= E-TS of a Schwarzschild black hole at late times of the collapse (where E is the black hole mass, T the temperature and S the entropy). The relevant thermodynamic potential for the RN black hole is the Gibbs free energy G=E-TS-$\\Phi_H$ Q where Q is the charge and $\\Phi_H$ the electrostatic potential at the outer horizon. In charged collapse, there is a large outgoing matter wave which prevents the exterior from settling quickly to a static state. However, the interior region is not affected significantly by the wave. We find numerically that the interior contribution to the Gibbs free energy is entirely gravitational and accumulates in a thin shell just inside the horizon. The entropy is gravitational in origin and one observes dynamically that it resides on the horizon. We also compare the numerical value of the interior Lagrangian to the expected analytical value of the interior Gibbs free energy for different initial states and we find that they agree to within 10-13%. The two values are approaching each other so that their difference decreases with more evolution time.
Black Hole Radiation and Volume Statistical Entropy
Mario Rabinowitz
2005-06-29T23:59:59.000Z
The simplest possible equation for Hawking radiation, and other black hole radiated power is derived in terms of black hole density. Black hole density also leads to the simplest possible model of a gas of elementary constituents confined inside a gravitational bottle of Schwarzchild radius at tremendous pressure, which yields identically the same functional dependence as the traditional black hole entropy. Variations of Sbh can be obtained which depend on the occupancy of phase space cells. A relation is derived between the constituent momenta and the black hole radius which is similar to the Compton wavelength relation.
A quantum peek inside the black hole event horizon
Sumanta Chakraborty; Suprit Singh; T. Padmanabhan
2015-03-14T23:59:59.000Z
We solve the Klein-Gordon equation for a scalar field, in the background geometry of a dust cloud collapsing to form a black hole, everywhere in the (1+1) spacetime: that is, both inside and outside the event horizon and arbitrarily close to the curvature singularity. This allows us to determine the regularized stress tensor expectation value, everywhere in the appropriate quantum state (viz., the Unruh vacuum) of the field. We use this to study the behaviour of energy density and the flux measured in local inertial frames for the radially freely falling observer at any given event. Outside the black hole, energy density and flux lead to the standard results expected from the Hawking radiation emanating from the black hole, as the collapse proceeds. Inside the collapsing dust ball, the energy densities of both matter and scalar field diverge near the singularity in both (1+1) and (1+3) spacetime dimensions; but the energy density of the field dominates over that of classical matter. In the (1+3) dimensions, the total energy (of both scalar field and classical matter) inside a small spatial volume around the singularity is finite (and goes to zero as the size of the region goes to zero) but the total energy of the quantum field still dominates over that of the classical matter. Inside the event horizon, but \\textit{outside} the collapsing matter, freely falling observers find that the energy density and the flux diverge close to the singularity. In this region, even the integrated energy inside a small spatial volume enclosing the singularity diverges. This result holds in both (1+1) and (1+3) spacetime dimensions with a \\emph{milder} divergence for the total energy inside a small region in (1+3) dimensions. These results suggest that the back-reaction effects are significant even in the region \\emph{outside the matter but inside the event horizon}, close to the singularity.
Similarities and Differences between Coronal Holes and the Quiet Sun: Are Loop Statistics the Key?
T. Wiegelmann; S. K. Solanki
2008-02-01T23:59:59.000Z
Coronal holes (CH) emit significantly less at coronal temperatures than quiet-Sun regions (QS), but can hardly be distinguished in most chromospheric and lower transition region lines. A key quantity for the understanding of this phenomenon is the magnetic field. We use data from SOHO/MDI to reconstruct the magnetic field in coronal holes and the quiet Sun with the help of a potential magnetic model. Starting from a regular grid on the solar surface we then trace field lines, which provide the overall geometry of the 3D magnetic field structure. We distinguish between open and closed field lines, with the closed field lines being assumed to represent magnetic loops. We then try to compute some properties of coronal loops. The loops in the coronal holes (CH) are found to be on average flatter than in the QS. High and long closed loops are extremely rare, whereas short and low-lying loops are almost as abundant in coronal holes as in the quiet Sun. When interpreted in the light of loop scaling laws this result suggests an explanation for the relatively strong chromospheric and transition region emission (many low-lying, short loops), but the weak coronal emission (few high and long loops) in coronal holes. In spite of this contrast our calculations also suggest that a significant fraction of the cool emission in CHs comes from the open flux regions. Despite these insights provided by the magnetic field line statistics further work is needed to obtain a definite answer to the question if loop statistics explain the differences between coronal holes and the quiet Sun.
Black hole mimickers: Regular versus singular behavior
Lemos, Jose P. S.; Zaslavskii, Oleg B. [Centro Multidisciplinar de Astrofisica, CENTRA, Departamento de Fisica, Instituto Superior Tecnico-IST, Universidade Tecnica de Lisboa-UTL, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Astronomical Institute of Kharkov, V. N. Karazin National University, 35 Sumskaya Street, Kharkov, 61022 (Ukraine)
2008-07-15T23:59:59.000Z
Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal {epsilon}-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal {epsilon}-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to be less difficult than one could think of it.
Surface tension, hydrophobicity, and black holes: The entropic connection
David J. E. Callaway
1996-01-23T23:59:59.000Z
Recent calculations have shown that the linear proportionality between black hole entropy and area can be explained by performing a density matrix calculation for a massless free field theory. By applying the same formalism to an empirical fluid ``field theory,'' entropic quantities such as surface tension can be calculated in a novel fashion. Good agreement with experiment is obtained for a number of liquids. This approach may lead to a practical new technique for the evaluation of thermodynamic quantities important entropic components. Implications for the protein folding problem are discussed.
Noncommutative D{sub 3}-brane, black holes, and attractor mechanism
Kar, Supriya [Abdus Salam International Centre for Theoretical Physics Strada Costiera 11, Trieste (Italy); Department of Physics and Astrophysics, University of Delhi Delhi 110 007 (India); Majumdar, Sumit [Department of Physics and Astrophysics, University of Delhi Delhi 110 007 (India)
2006-09-15T23:59:59.000Z
We revisit the 4D generalized black hole geometries, obtained by us 14, with a renewed interest, to unfold some aspects of effective gravity in a noncommutative D{sub 3}-brane formalism. In particular, we argue for the existence of extra dimensions in the gravity decoupling limit in the theory. We show that the theory is rather described by an ordinary geometry and is governed by an effective string theory in 5D. The extremal black hole geometry AdS{sub 5} obtained in effective string theory is shown to be in precise agreement with the gravity dual proposed for D{sub 3}-brane in a constant magnetic field. Kaluza-Klein compactification is performed to obtain the corresponding charged black hole geometries in 4D. Interestingly, they are shown to be governed by the extremal black hole geometries known in string theory. The attractor mechanism is exploited in effective string theory underlying a noncommutative D{sub 3}-brane and the macroscopic entropy of a charged black hole is computed. We show that the generalized black hole geometries in a noncommutative D{sub 3}-brane theory are precisely identical to the extremal black holes known in 4D effective string theory.
N = 4 Super-Yang-Mills on Conic Space as Hologram of STU Topological Black Hole
Xing Huang; Yang Zhou
2014-09-05T23:59:59.000Z
We construct four-dimensional N=4 super-Yang-Mills theories on a conic sphere with various background R-symmetry gauge fields. We study free energy and supersymmetric Renyi entropy using heat kernel method as well as localization technique. We find that the universal contribution to the partition function in the free field limit is the same as that in the strong coupling limit, which implies that it may be protected by supersymmetry. Based on the fact that, the conic sphere can be conformally mapped to $S^1\\times H^3$ and the R-symmetry background fields can be supported by the R-charges of black hole, we propose that the holographic dual of these theories are five-dimensional, supersymmetric STU topological black holes. We demonstrate perfect agreement between N=4 super-Yang-Mills theories in the planar limit and the STU topological black holes.
BSW process of the slowly evaporating charged black hole
Liancheng Wang; Feng He; Xiangyun Fu
2015-02-09T23:59:59.000Z
In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.
Weisz, Daniel R.; Skillman, Evan D. [Astronomy Department, University of Minnesota, Minneapolis, MN 55455 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, St. Paul, MN 55125 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E Hermans Rd, Tucson, AZ 85756 (United States); Kennicutt, Robert C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Lee, Janice [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Walter, Fabian, E-mail: dweisz@astro.umn.ed, E-mail: skillman@astro.umn.ed, E-mail: jcannon@macalester.ed, E-mail: adolphin@raytheon.co, E-mail: robk@ast.cam.ac.u, E-mail: jlee@obs.carnegiescience.ed, E-mail: walter@mpia.d [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)
2009-10-20T23:59:59.000Z
We use deep Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) F555W and F814W photometry of resolved stars in the M81 Group dwarf irregular galaxy Ho II to study the hypothesis that the holes identified in the neutral interstellar medium (H I) are created by stellar feedback. From the deep photometry, we construct color-magnitude diagrams (CMDs) and measure the star formation histories (SFHs) for stars contained in H I holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of H I column densities. The CMDs reveal young (< 200 Myr) stellar populations inside all H I holes, which contain very few bright OB stars with ages less than 10 Myr, indicating they are not reliable tracers of H I hole locations while the recent SFHs confirm multiple episodes of star formation within most holes. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a timescale that is less than the estimated kinematic age of the hole. A similar analysis of stars in the control fields finds that the stellar populations of the control fields and H I holes are statistically indistinguishable. However, because we are only sensitive to holes approx100 pc in diameter, we cannot tell if there are smaller holes inside the control fields. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside H I holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of H I holes, we propose a potential new model: a viable mechanism for creating the observed H I holes in Ho II is stellar feedback from multiple generations of SF spread out over tens or hundreds of Myr, and thus, the concept of an age for an H I hole is intrinsically ambiguous. For H I holes in the outer parts of Ho II, located beyond the HST/ACS coverage, we use Monte Carlo simulations of expected stellar populations to show that low level SF could provide the energy necessary to form these holes. Applying the same method to the SMC, we find that the holes that appear to be void of stars could have formed via stellar feedback from low level SF. We further find that Halpha and 24 mum emission, tracers of the most recent star formation, do not correlate well with the positions of the H I holes. However, UV emission, which traces star formation over roughly the last 100 Myr, shows a much better correlation with the locations of the H I holes.
Down hole periodic seismic generator
Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)
1989-01-01T23:59:59.000Z
A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
Buoyancy and Penrose Process Produce Jets from Rotating Black Holes
Semenov, V S; Heyn, M F
2014-01-01T23:59:59.000Z
The exact mechanism by which astrophysical jets are formed is still unknown. It is believed that necessary elements are a rotating (Kerr) black hole and a magnetised accreting plasma. We model the accreting plasma as a collection of magnetic flux tubes/strings. If such a tube falls into a Kerr black hole, then the leading portion loses angular momentum and energy as the string brakes, and to compensate for this loss, momentum and energy is redistributed to the trailing portion of the tube.} {We found that buoyancy creates a pronounced helical magnetic field structure aligned with the spin axis. Along the field lines, the plasma is centrifugally accelerated close to the speed of light. This process leads to unlimited stretching of the flux tube since one part of the tube continues to fall into the black hole and simultaneously the other part of the string is pushed outward. Eventually, reconnection cuts the tube, the inner part is filled with new material and the outer part forms a collimated bubble-structured...
Charged spinning black holes as particle accelerators
Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune [Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 (China)
2010-11-15T23:59:59.000Z
It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/{radical}(3)){<=}(a/M){<=}1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.
Cardy-Verlinde Formula of Non-Commutative Schwarzschild Black Hole
G. Abbas
2014-05-28T23:59:59.000Z
Few years ago, Setare \\cite{1} has investigated the Cardy-Verlinde formula of non-commutative black hole obtained by non-commutativity of coordinates. In this paper, we apply the same procedure to a non-commutative black hole obtained by the co-ordinate coherent approch. The Cardy-Verlinde formula is entropy formula of conformal field theory in an arbitrary dimension. It relates the entropy of conformal filed theory to its total energy and Casimir energy. In this paper, we have calculated the total energy and Casimir energy of non-commutative Schwarzschild black hole and have shown that entropy of non-commutative Schwarzschild black hole horizon can be expressed in terms of Cardy-Verlinde formula.
Thermodynamics of black holes in $(n+1)$-dimensional Einstein-Born-Infeld dilaton gravity
A. Sheykhi; N. Riazi
2006-10-08T23:59:59.000Z
We construct a new class of $(n+1)$-dimensional $(n\\geq3)$ black hole solutions in Einstein-Born-Infeld-dilaton gravity with Liouville-type potential for the dilaton field and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can represent black holes, with inner and outer event horizons, an extreme black hole or a naked singularity provided the parameters of the solutions are chosen suitably. We compute the thermodynamic quantities of the black hole solutions and find that these quantities satisfy the first law of thermodynamics. We also perform stability analysis and investigate the effect of dilaton on the stability of the solutions.
Thermodynamics of black holes in (n+1)-dimensional Einstein-Born-Infeld-dilaton gravity
Sheykhi, A. [Physics Department and Biruni Observatory, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Physics Department, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Riazi, N. [Physics Department and Biruni Observatory, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)
2007-01-15T23:59:59.000Z
We construct a new class of (n+1)-dimensional (n{>=}3) black hole solutions in Einstein-Born-Infeld-dilaton gravity with Liouville-type potential for the dilaton field and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can represent black holes, with inner and outer event horizons, an extreme black hole, or a naked singularity provided the parameters of the solutions are chosen suitably. We compute the thermodynamic quantities of the black hole solutions and find that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis and investigate the effect of dilaton on the stability of the solutions.
On the temperature dependence of the absorption cross section for charged black holes
Filipe Moura
2014-06-08T23:59:59.000Z
We analyze the the low frequency absorption cross section of minimally coupled massless scalar fields by different kinds of charged static black holes, namely the d-dimensional Reissner-Nordstrom solution, the D1-D5 system in d=5 and a four dimensional dyonic four-charged black hole. In each case we show that this cross section is inversely proportional to the black hole Hawking temperature. This inverse proportionality also arises in the same cross section for black holes with string $alpha' corrections, as we have shown in a previous work: string corrections induce such temperature dependence. In each case we also carefully analyze the extremal limit and show that the cross section is well defined in it.
Submicron patterned metal hole etching
McCarthy, Anthony M. (Menlo Park, CA); Contolini, Robert J. (Lake Oswego, OR); Liberman, Vladimir (Needham, MA); Morse, Jeffrey (Martinez, CA)
2000-01-01T23:59:59.000Z
A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.
Quantum Geometry and Black Holes
G., J Fernando Barbero
2015-01-01T23:59:59.000Z
We present an overall picture of the advances in the description of black hole physics from the perspective of loop quantum gravity. After an introduction that discusses the main conceptual issues we present some details about the classical and quantum geometry of isolated horizons and their quantum geometry and then use this scheme to give a natural definition of the entropy of black holes. The entropy computations can be neatly expressed in the form of combinatorial problems solvable with the help of methods based on number theory and the use of generating functions. The recovery of the Bekenstein-Hawking law and corrections to it is explained in some detail. After this, due attention is paid to the discussion of semiclassical issues. An important point in this respect is the proper interpretation of the horizon area as the energy that should appear in the statistical-mechanical treatment of the black hole model presented here. The chapter ends with a comparison between the microscopic and semiclassical app...
Making Clean Energy with a Kerr Black Hole: a Tokamak Model for Gamma-Ray Bursts
Li-Xin Li
2000-08-02T23:59:59.000Z
In this paper we present a model for making clean energy with a Kerr black hole. Consider a Kerr black hole with a dense plasma torus spinning around it. A toroidal electric current flows on the surface of the torus, which generates a poloidal magnetic field outside the torus. On the surface of the tours the magnetic field is parallel to the surface. The closed magnetic field lines winding around the torus compress and confine the plasma in the torus, as in the case of tokamaks. Though it is unclear if such a model is stable, we look into the consequences if the model is stable. If the magnetic field is strong enough, the baryonic contamination from the plasma in the torus is greatly suppressed by the magnetic confinement and a clean magnetosphere of electron-positron pairs is built up around the black hole. Since there are no open magnetic field lines threading the torus and no accretion, the power of the torus is zero. If some magnetic field lines threading the black hole are open and connect with loads, clean energy can be extracted from the Kerr black hole by the Blandford-Znajek mechanism. The model may be relevant to gamma-ray bursts. The energy in the Poynting flux produced by the Blandford-Znajek mechanism is converted into the kinetic energy of the electron-positron pairs in the magnetosphere around the black hole, which generates two oppositely directed jets of electron-positron pairs with super-high bulk Lorentz factors. The jets collide and interact with the interstellar medium, which may produce gamma-ray bursts and the afterglows.
Accretion Discs Around Black Holes: Developement of Theory
G. S. Bisnovatyi-Kogan
1999-11-11T23:59:59.000Z
Standard accretion disk theory is formulated which is based on the local heat balance. The energy produced by a turbulent viscous heating is supposed to be emitted to the sides of the disc. Sources of turbulence in the accretion disc are connected with nonlinear hydrodynamic instability, convection, and magnetic field. In standard theory there are two branches of solution, optically thick, and optically thin. Advection in accretion disks is described by the differential equations what makes the theory nonlocal. Low-luminous optically thin accretion disc model with advection at some suggestions may become advectively dominated, carrying almost all the energy inside the black hole. The proper account of magnetic filed in the process of accretion limits the energy advected into a black hole, efficiency of accretion should exceed $\\sim 1/4$ of the standard accretion disk model efficiency.
Holographic entropy of Warped-AdS$_3$ black holes
Donnay, Laura
2015-01-01T23:59:59.000Z
We study the asymptotic symmetries of three-dimensional Warped Anti-de Sitter (WAdS) spaces in three-dimensional New Massive Gravity (NMG). For a specific choice of asymptotic boundary conditions, we find that the algebra of charges is infinite-dimensional and coincides with the semidirect sum of Virasoro algebra with non-vanishing central charge and an affine $\\hat{u}(1)_k$ Ka\\v{c}-Moody algebra. We show that the WAdS black hole configurations organize in terms of two commuting Virasoro algebras. We identify the Virasoro generators that expand the associated representations in the dual Warped Conformal Field Theory (WCFT) and, by applying the Warped version of the Cardy formula, we prove that the microscopic WCFT computation exactly reproduces the entropy of black holes in WAdS space.
Holographic entropy of Warped-AdS$_3$ black holes
Laura Donnay; Gaston Giribet
2015-05-09T23:59:59.000Z
We study the asymptotic symmetries of three-dimensional Warped Anti-de Sitter (WAdS) spaces in three-dimensional New Massive Gravity (NMG). For a specific choice of asymptotic boundary conditions, we find that the algebra of charges is infinite-dimensional and coincides with the semidirect sum of Virasoro algebra with non-vanishing central charge and an affine $\\hat{u}(1)_k$ Ka\\v{c}-Moody algebra. We show that the WAdS black hole configurations organize in terms of two commuting Virasoro algebras. We identify the Virasoro generators that expand the associated representations in the dual Warped Conformal Field Theory (WCFT) and, by applying the Warped version of the Cardy formula, we prove that the microscopic WCFT computation exactly reproduces the entropy of black holes in WAdS space.
CP Violation and Baryogenesis in the Presence of Black Holes
Tom Banks; Willy Fischler
2015-05-16T23:59:59.000Z
In a recent paper[1] Kundu and one of the present authors showed that there were transient but observable CP violating effects in the decay of classical currents on the horizon of a black hole, if the Lagrangian of the Maxwell field contained a CP violating angle {\\theta}. In this paper we demonstrate that a similar effect can be seen in the quantum mechanics of QED: a non-trivial Berry phase in the QED wave function is produced by in-falling electric charges. We also investigate whether CP violation, of this or any other type, might be used to produce the baryon asymmetry of the universe, in models where primordial black hole decay contributes to the matter content of the present universe. This can happen both in a variety of hybrid inflation models, and in the Holographic Space-time (HST) model of inflation[2].
Black Hole Fluctuations and Backreaction in Stochastic Gravity
Sukanya Sinha; Alpan Raval; B. L. Hu
2002-10-04T23:59:59.000Z
We present a framework for analyzing black hole backreaction from the point of view of quantum open systems using influence functional formalism. We focus on the model of a black hole described by a radially perturbed quasi-static metric and Hawking radiation by a conformally coupled massless quantum scalar field. It is shown that the closed-time-path (CTP) effective action yields a non-local dissipation term as well as a stochastic noise term in the equation of motion, the Einstein-Langevin equation. Once the thermal Green's function in a Schwarzschild background becomes available to the required accuracy the strategy described here can be applied to obtain concrete results on backreaction. We also present an alternative derivation of the CTP effective action in terms of the Bogolyubov coefficients, thus making a connection with the interpretation of the noise term as measuring the difference in particle production in alternative histories.
Supermassive Black Holes as Giant Bose-Einstein Condensates
Theo M. Nieuwenhuizen
2008-07-02T23:59:59.000Z
The Schwarzschild metric has a divergent energy density at the horizon, which motivates a new approach to black holes. If matter is spread uniformly throughout the interior of a supermassive black hole, with mass $M\\sim M_\\star= 2.34 10^8M_\\odot$, it may arise from a Bose-Einstein condensate of densely packed H-atoms. Within the Relativistic Theory of Gravitation with a positive cosmological constant, a bosonic quantum field is coupled to the curvature scalar. In the Bose-Einstein condensed groundstate an exact, selfconsistent solution for the metric is presented. It is regular with a specific shape at the origin. The redshift at the horizon is finite but large, $z\\sim 10^{14}$$M_\\star/M$. The binding energy remains as an additional parameter to characterize the BH; alternatively, the mass observed at infinity can be any fraction of the rest mass of its constituents.
Towards a Novel no-hair Theorem for Black Holes
Thomas Hertog
2006-08-16T23:59:59.000Z
We provide strong numerical evidence for a new no-scalar-hair theorem for black holes in general relativity, which rules out spherical scalar hair of static four dimensional black holes if the scalar field theory, when coupled to gravity, satisfies the Positive Energy Theorem. This sheds light on the no-scalar-hair conjecture for Calabi-Yau compactifications of string theory, where the effective potential typically has negative regions but where supersymmetry ensures the total energy is always positive. In theories where the scalar tends to a negative local maximum of the potential at infinity, we find the no-scalar-hair theorem holds provided the asymptotic conditions are invariant under the full anti-de Sitter symmetry group.
Scalar and Electromagnetic Quasinormal modes of Extended black hole in F(R) gravity
Saneesh Sebastian; V. C. Kuriakose
2014-08-05T23:59:59.000Z
In this paper we study the scalar and electromagnetic perturbations of an extended black hole in F(R) gravity. The quasinormal modes in two cases are evaluated and studied their behavior by plotting graphs in each case. To study the quasinormal mode, we use the third order WKB method. The present study shows that the absolute value of imaginary part of complex quasinormal modes increases in both cases, thus the black hole is stable against these perturbations. As the mass of the scalar field increases the imaginary part of the frequency decreases. Thus damping slows down with increasing mass of the scalar field.
An Exact Hairy Black Hole Solution for AdS/CFT Superconductors
Ding-fang Zeng
2009-08-30T23:59:59.000Z
We provide an exact hairy black hole solution to an $n+1$ dimensional complex scalar field model coupled with gravity. The model is characterized by a potential with one parameter. Depending on the magnitude of this parameter, the effective mass square of the scalar field can be both positive and negative. No matter what case it is, there are temperature ranges in which the hairy black hole is thermodynamically stable against decaying into its no-hair counterpart. We use this solution as an AdS/CFT superconductor model and study its conductivity-frequency relation and find typical features observed in other AdS/CFT superconductor models.
Hidden conformal symmetry of rotating black holes in minimal five-dimensional gauged supergravity
Setare, M. R.; Kamali, V. [Department of Science of Bijar, University of Kurdistan Bijar (Iran, Islamic Republic of)
2010-10-15T23:59:59.000Z
In the present paper we show that for a low frequency limit the wave equation of a massless scalar field in the background of nonextremal charged rotating black holes in five-dimensional minimal gauged and ungauged supergravity can be written as the Casimir of an SL(2,R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. Also the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional conformal field theory.
Black holes are almost optimal quantum cloners
C. Adami; G. Ver Steeg
2015-04-15T23:59:59.000Z
If black holes were able to clone quantum states, a number of paradoxes in black hole physics would disappear. However, the linearity of quantum mechanics forbids exact cloning of quantum states. Here we show that black holes indeed clone incoming quantum states with a fidelity that depends on the black hole's absorption coefficient, without violating the no-cloning theorem because the clones are only approximate. Perfectly reflecting black holes are optimal universal "quantum cloning machines" and operate on the principle of stimulated emission, exactly as their quantum optical counterparts. In the limit of perfect absorption, the fidelity of clones is equal to what can be obtained via quantum state estimation methods. But for any absorption probability less than one, the cloning fidelity is nearly optimal as long as $\\omega/T\\geq10$, a common parameter for modest-sized black holes.
Hole cleaning requirements with seabed returns
Nordt, David Paul
1988-01-01T23:59:59.000Z
of different non-Newtonian fluids 56 INTRODUCTION A drilling fluid is used for removing cuttings from the hole, controlling subsurface pressures, preventing caving-in of the formations, suspension of cuttings, weighting materials, and many other uses... of the hole. The drilling problems related to hole cleaning can occur at low as well as high annular velocities. Cuttings can travel no faster than the fluid in which they are transported; however, they can travel more slowly. Their fall (slip) rate...
Probing the Constituent Structure of Black Holes
Lukas Gruending; Stefan Hofmann; Sophia Müller; Tehseen Rug
2014-12-12T23:59:59.000Z
We calculate the cross section for scattering processes between graviton emitters on the near side of a Schwarzschild surface and absorbers on its far side, that is black hole constituents. We show that these scatterings allow to directly extract structural observables such as the momentum distribution of black hole constituents. For this we employ a quantum bound state description originally developed in quantum chromodynamics and recently applied to general relativity that allows to consider black holes in a relativistic Hartree like framework.
Black hole initial data without elliptic equations
István Rácz; Jeffrey Winicour
2015-02-24T23:59:59.000Z
We explore whether a new method to solve the constraints of Einstein's equations, which does not involve elliptic equations, can be applied to provide initial data for black holes. We show that this method can be successfully applied to a nonlinear perturbation of a Schwarzschild black hole by establishing the well-posedness of the resulting constraint problem. We discuss its possible generalization to the boosted, spinning multiple black hole problem.
Black holes with massive graviton hair
Richard Brito; Vitor Cardoso; Paolo Pani
2013-09-03T23:59:59.000Z
No-hair theorems exclude the existence of nontrivial scalar and massive vector hair outside four-dimensional, static, asymptotically flat black-hole spacetimes. We show, by explicitly building nonlinear solutions, that black holes can support massive graviton hair in theories of massive gravity. These hairy solutions are, most likely, the generic end state of the recently discovered monopole instability of Schwarzschild black holes in massive graviton theories.
Soil Sample Questionnaire --Field Crops Sample No. Field Identification Field Size acres
Norton, Jay B.
. Subsoil: (if known) sand gravel clay hardpan lime solid rock 7. Water penetration: rapid moderate slow soil questionnaire on the back of this sheet. Have soil tested at least once every rotation. 2. Sample of the hole and put it in a clean container. Repeat this procedure at 10 or 12 locations in the field. Mix
Thermoelectric DC conductivities from black hole horizons
Aristomenis Donos; Jerome P. Gauntlett
2014-10-14T23:59:59.000Z
An analytic expression for the DC electrical conductivity in terms of black hole horizon data was recently obtained for a class of holographic black holes exhibiting momentum dissipation. We generalise this result to obtain analogous expressions for the DC thermoelectric and thermal conductivities. We illustrate our results using some holographic Q-lattice black holes as well as for some black holes with linear massless axions, in both $D=4$ and $D=5$ bulk spacetime dimensions, which include both spatially isotropic and anisotropic examples. We show that some recently constructed ground states of holographic Q-lattices, which can be either electrically insulating or metallic, are all thermal insulators.
Mineral Test Hole Regulatory Act (Tennessee)
Broader source: Energy.gov [DOE]
The Mineral Hole Regulatory Act is applicable to any person (individual, corporation, company, association, joint venture, partnership, receiver, trustee, guardian, executor, administrator,...
Lower Dimensional Black Holes: Inside and Out
R. B. Mann
1995-01-27T23:59:59.000Z
I survey the physics of black holes in two and three spacetime dimensions, with special attention given to an understanding of their exterior and interior properties.
Approximate initial data for binary black holes
Kenneth A. Dennison; Thomas W. Baumgarte; Harald P. Pfeiffer
2006-08-26T23:59:59.000Z
We construct approximate analytical solutions to the constraint equations of general relativity for binary black holes of arbitrary mass ratio in quasicircular orbit. We adopt the puncture method to solve the constraint equations in the transverse-traceless decomposition and consider perturbations of Schwarzschild black holes caused by boosts and the presence of a binary companion. A superposition of these two perturbations then yields approximate, but fully analytic binary black hole initial data that are accurate to first order in the inverse of the binary separation and the square of the black holes' momenta.
Rotating embedded black holes: Entropy and Hawking's radiation
Ng Ibohal
2004-12-27T23:59:59.000Z
In this paper we derive a class of rotating embedded black holes. Then we study Hawking's radiation effects on these embedded black holes. The surface gravity, entropy and angular velocity are given for each of these black holes.
Maximal spin and energy conversion efficiency in a symbiotic system of black hole, disk and jet
Zoltán Kovács; László Á. Gergely; Peter L. Biermann
2011-10-13T23:59:59.000Z
We study a combined model of black hole - accretion disk - magnetosphere - jet symbiosis, applicable for supermassive black holes. We quantify the mass and spin evolution and we analyze how the limiting value of the spin parameter and the conversion efficiency of accreted mass into radiation depend on the interplay of electromagnetic radiation reaction, magnetosphere characteristics and truncation radius of radiation. The dominant effect comes from the closed magnetic field line region, which reduces the spin limit to values ~0.89 (instead ~0.99 in its absence). Therefore observations on black hole spins could favour or disfavour the existence of the closed magnetic field line region (or its coupling to the disk). We also find that the suppression of radiation from the innermost part of the accretion disk, inferred from observations, and a collimated jet both increase the spin limit and the energy conversion efficiency.
Port hole perturbations to the magnetic field in MST
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38Polaron BehaviorPolymer-likeStudy COAL2 (2010)
Black Holes at the LHC: Progress since 2002
Park, Seong Chan [FRDP, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of)
2008-11-23T23:59:59.000Z
We review the recent noticeable progresses in black hole physics focusing on the up-coming super-collider, the LHC. We discuss the classical formation of black holes by particle collision, the greybody factors for higher dimensional rotating black holes, the deep implications of black hole physics to the 'energy-distance' relation, the security issues of the LHC associated with black hole formation and the newly developed Monte-Carlo generators for black hole events.
Oscillating axion bubbles as alternative to supermassive black holes at galactic centers
Anatoly A. Svidzinsky
2007-10-30T23:59:59.000Z
Recent observations of near-infrared and X-ray flares from Sagittarius A*, which is believed to be a supermassive black hole at the Galactic center, show that the source exhibits about 20-minute periodic variability. Here we provide arguments based on a quantitative analysis that supermassive objects at galactic centers may be bubbles of dark matter axions rather than black holes. An oscillating axion bubble can explain periodic variability of Sagittarius A* and yields the axion mass about 0.6 meV which fits in the open axion mass window. The bubble scenario with no other free parameters explains lack of supermassive "black holes" with mass Maxion bubble can not exceed 1.5\\times 10^9 M_{Sun}, in agreement with the upper limit on the supermassive "black hole" mass obtained from observations. Our finding, if confirmed, suggests that Einstein general relativity is invalid for strong gravity and the gravitational field for the bubble effectively becomes repulsive at large potential. Imaging a shadow of the "black hole" at the Galactic center with VLBI in the next decade can distinguish between the black hole and the oscillating axion bubble scenarios. In the case of axion bubble, a steady shadow will not be observed. Instead, the shadow will appear and disappear periodically with a period of about 20 min.
The scattering matrix approach for the quantum black hole, an overview
G. 't Hooft
1996-07-09T23:59:59.000Z
If one assumes the validity of conventional quantum field theory in the vicinity of the horizon of a black hole, one does not find a quantum mechanical description of the entire black hole that even remotely resembles that of conventional forms of matter; in contrast with matter made out of ordinary particles one finds that, even if embedded in a finite volume, a black hole would be predicted to have a strictly continuous spectrum. Dissatisfied with such a result, which indeed hinges on assumptions concerning the horizon that may well be wrong, various investigators have now tried to formulate alternative approaches to the problem of ``quantizing" the black hole. We here review the approach based on the assumption of quantum mechanical purity and unitarity as a starting point, as has been advocated by the present author for some time, concentrating on the physics of the states that should live on a black hole horizon. The approach is shown to be powerful in not only producing promising models for the quantum black hole, but also new insights concerning the dynamics of physical degrees of freedom in ordinary flat space-time.
Mirza, Behrouz; Sherkatghanad, Zeinab [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)
2011-05-15T23:59:59.000Z
We study the AdS rotating black hole solution for the Bergshoeff-Hohm-Townsend massive gravity in three dimensions. The field equations of the asymptotically AdS black hole of the static metric can be expressed as the first law of thermodynamics, i.e. dE=TdS-PdV. The corrected Hawking-like temperature and entropy of the asymptotically AdS rotating black hole are calculated using the Cardy formula and the tunneling method. Comparison of these methods will help identify the unknown leading correction parameter {beta}{sub 1} in the tunneling method.
Topological Black Holes in Quantum Gravity
J. Kowalski-Glikman; D. Nowak-Szczepaniak
2000-07-31T23:59:59.000Z
We derive the black hole solutions with horizons of non-trivial topology and investigate their properties in the framework of an approach to quantum gravity being an extension of Bohm's formulation of quantum mechanics. The solutions we found tend asymptotically (for large $r$) to topological black holes. We also analyze the thermodynamics of these space-times.
Primordial black holes and asteroid danger
Alexander Shatskiy
2008-02-21T23:59:59.000Z
Probability for a primordial black hole to invade the Kuiper belt was calculated. We showed that primordial black holes of certain masses can significantly change asteroids' orbits. These events may result in disasters, local for our solar system and global for the Earth (like the Tunguska meteorite). We also estimated how often such events occur.
Dynamics of Primordial Black Hole Formation
J. C. Niemeyer; K. Jedamzik
1999-01-21T23:59:59.000Z
We present a numerical investigation of the gravitational collapse of horizon-size density fluctuations to primordial black holes (PBHs) during the radiation-dominated phase of the Early Universe. The collapse dynamics of three different families of initial perturbation shapes, imposed at the time of horizon crossing, is computed. The perturbation threshold for black hole formation, needed for estimations of the cosmological PBH mass function, is found to be $\\delta_{\\rm c} \\approx 0.7$ rather than the generally employed $\\delta_{\\rm c} \\approx 1/3$, if $\\delta$ is defined as $\\Delta M/\\mh$, the relative excess mass within the initial horizon volume. In order to study the accretion onto the newly formed black holes, we use a numerical scheme that allows us to follow the evolution for long times after formation of the event horizon. In general, small black holes (compared to the horizon mass at the onset of the collapse) give rise to a fluid bounce that effectively shuts off accretion onto the black hole, while large ones do not. In both cases, the growth of the black hole mass owing to accretion is insignificant. Furthermore, the scaling of black hole mass with distance from the formation threshold, known to occur in near-critical gravitational collapse, is demonstrated to apply to primordial black hole formation.
Strings, black holes, and quantum information
Kallosh, Renata; Linde, Andrei [Department of Physics, Stanford University, Stanford, California 94305 (United States)
2006-05-15T23:59:59.000Z
We find multiple relations between extremal black holes in string theory and 2- and 3-qubit systems in quantum information theory. We show that the entropy of the axion-dilaton extremal black hole is related to the concurrence of a 2-qubit state, whereas the entropy of the STU black holes, Bogomol'nyi-Prasad-Sommerfield (BPS) as well as non-BPS, is related to the 3-tangle of a 3-qubit state. We relate the 3-qubit states with the string theory states with some number of D-branes. We identify a set of large black holes with the maximally entangled Greenberger, Horne, Zeilinger (GHZ) class of states and small black holes with separable, bipartite, and W states. We sort out the relation between 3-qubit states, twistors, octonions, and black holes. We give a simple expression for the entropy and the area of stretched horizon of small black holes in terms of a norm and 2-tangles of a 3-qubit system. Finally, we show that the most general expression for the black hole and black ring entropy in N=8 supergravity/M theory, which is given by the famous quartic Cartan E{sub 7(7)} invariant, can be reduced to Cayley's hyperdeterminant describing the 3-tangle of a 3-qubit state.
Quantum Entropy of Charged Rotating Black Holes
R. B. Mann
1996-07-10T23:59:59.000Z
I discuss a method for obtaining the one-loop quantum corrections to the tree-level entropy for a charged Kerr black hole. Divergences which appear can be removed by renormalization of couplings in the tree-level gravitational action in a manner similar to that for a static black hole.
Phosphine Oxide Based Electron Transporting and Hole Blocking...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Oxide Based Electron Transporting and Hole Blocking Materials for Blue Electrophosphorescent Organic Light Emitting Phosphine Oxide Based Electron Transporting and Hole Blocking...
Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues. Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues....
T-623: HP Business Availability Center Input Validation Hole...
Broader source: Energy.gov (indexed) [DOE]
3: HP Business Availability Center Input Validation Hole Permits Cross-Site Scripting Attacks T-623: HP Business Availability Center Input Validation Hole Permits Cross-Site...
Lake, Matthew J
2015-01-01T23:59:59.000Z
The discovery of a large number of supermassive black holes at redshifts $z> 6$, when the Universe was only nine hundred million years old, has raised the fundamental question of how such massive compact objects could form in a (cosmologically) short time interval. Each of the proposed standard scenarios for black hole formation, involving rapid accretion of seed black holes, or black hole mergers, faces severe theoretical difficulties in explaining the short time formation of supermassive objects. In the present Letter, we propose an alternative scenario for the formation of supermassive black holes in the early Universe in which energy transfer from superconducting cosmic strings, piercing small seed black holes, is the main physical process leading to rapid mass increase. The increase in mass of a primordial seed black hole pierced by two antipodal strings is estimated and it is shown that this increases linearly in time. Due to the high energy transfer rate from the cosmic strings, we find that supermassi...
Black hole and holographic dark energy
Yun Soo Myung
2007-04-11T23:59:59.000Z
We discuss the connection between black hole and holographic dark energy. We examine the issue of the equation of state (EOS) for holographic energy density as a candidate for the dark energy carefully. This is closely related to the EOS for black hole, because the holographic dark energy comes from the black hole energy density. In order to derive the EOS of a black hole, we may use its dual (quantum) systems. Finally, a regular black hole without the singularity is introduced to describe an accelerating universe inside the cosmological horizon. Inspired by this, we show that the holographic energy density with the cosmological horizon as the IR cutoff leads to the dark energy-dominated universe with $\\omega_{\\rm \\Lambda}=-1$.
Quantum Black Hole Model and Hawking's Radiation
V. A. Berezin
1996-02-12T23:59:59.000Z
The black hole model with a self-gravitating charged spherical symmetric dust thin shell as a source is considered. The Schroedinger-type equation for such a model is derived. This equation appeared to be a finite differences equation. A theory of such an equation is developed and general solution is found and investigated in details. The discrete spectrum of the bound state energy levels is obtained. All the eigenvalues appeared to be infinitely degenerate. The ground state wave functions are evaluated explicitly. The quantum black hole states are selected and investigated. It is shown that the obtained black hole mass spectrum is compatible with the existence of Hawking's radiation in the limit of low temperatures both for large and nearly extreme Reissner-Nordstrom black holes. The above mentioned infinite degeneracy of the mass (energy) eigenvalues may appeared helpful in resolving the well known information paradox in the black hole physics.
Black Hole Thermodynamics Based on Unitary Evolutions
Feng, Yu-Lei
2015-01-01T23:59:59.000Z
In this paper, we try to construct black hole thermodynamics based on the fact that, the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy $S_{BH}$ cannot be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's "first law" cannot be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described in a unitary manner effectively, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.
Fermionic greybody factors in dilaton black holes
Jahed Abedi; Hessamaddin Arfaei
2014-09-17T23:59:59.000Z
In this paper the question of emission of fermions in the process of dilaton black hole evolution and its characters for different dilaton coupling constants $\\alpha$ is studied. The main quantity of interest, the greybody factors are calculated both numerically and in analytical approximation. The dependence of rates of evaporation and behaviour on the dilaton coupling constant is analyzed. Having calculated the greybody factors we are able to address the question of the final fate of the dilaton black hole. For that we also need to make dynamical treatment of the solution by considering the backreaction which will show a crucial effect on the final result. We find a transition line in $(Q/M, \\alpha)$ plane that separates the two regimes for the fate of the black hole, decay regime and extremal regime. In the decay regime the black hole completely evaporates, while in the extremal regime the black hole approaches the extremal limit by radiation and becomes stable.
Force-free black hole jet power from impedance matching
Robert F. Penna
2015-04-01T23:59:59.000Z
The standard model of spin-powered black hole jets is the Blandford-Znajek (BZ) model. Unfortunately, the BZ jet power depends on an arbitrary function, $\\Omega_F(\\theta)$, which controls the angular distribution of field line velocities at the horizon. In practice, this function is fixed by finding exact solutions of force-free electrodynamics (FFE) and reading off $\\Omega_F(\\theta)$. We prove that all stationary, axisymmetric solutions of FFE with roughly uniform distributions of field lines at the horizon and at infinity have $\\Omega_F/\\Omega_H\\approx 0.5$, where $\\Omega_H$ is the angular velocity of the horizon. We derive a formula for $\\Omega_F(\\theta)$ that depends only on the angular distribution of field lines at the horizon and at infinity (the full FFE solution is not needed). We give a physical interpretation of our results using the black hole membrane paradigm and a recent extension which treats future null infinity as a resistive membrane. We show that $\\Omega_F/\\Omega_H$ is controlled by impedance matching between the membrane at the horizon and the membrane at infinity. Both membranes have the same surface resistivity, $377 \\Omega$. This universality ultimately explains the universality of $\\Omega_F/\\Omega_H\\approx 0.5$ and fixes the ambiguity in the BZ jet power prediction.
Force-free black hole jet power from impedance matching
Penna, Robert F
2015-01-01T23:59:59.000Z
The standard model of spin-powered black hole jets is the Blandford-Znajek (BZ) model. Unfortunately, the BZ jet power depends on an arbitrary function, $\\Omega_F(\\theta)$, which controls the angular distribution of field line velocities at the horizon. In practice, this function is fixed by finding exact solutions of force-free electrodynamics (FFE) and reading off $\\Omega_F(\\theta)$. We prove that all stationary, axisymmetric solutions of FFE with roughly uniform distributions of field lines at the horizon and at infinity have $\\Omega_F/\\Omega_H\\approx 0.5$, where $\\Omega_H$ is the angular velocity of the horizon. We derive a formula for $\\Omega_F(\\theta)$ that depends only on the angular distribution of field lines at the horizon and at infinity (the full FFE solution is not needed). We give a physical interpretation of our results using the black hole membrane paradigm and a recent extension which treats future null infinity as a resistive membrane. We show that $\\Omega_F/\\Omega_H$ is controlled by impeda...
Hairy black holes in N=2 gauged supergravity
Federico Faedo; Dietmar Klemm; Masato Nozawa
2015-05-22T23:59:59.000Z
We construct black holes with scalar hair in a wide class of four-dimensional N=2 Fayet-Iliopoulos gauged supergravity theories that are characterized by a prepotential containing one free parameter. Considering the truncated model in which only a single real scalar survives, the theory is reduced to an Einstein-scalar system with a potential, which admits at most two AdS critical points and is expressed in terms of a real superpotential. Our solution is static, admits maximally symmetric horizons, asymptotically tends to AdS space corresponding to an extremum of the superpotential, but is disconnected from the Schwarzschild-AdS family. The condition under which the spacetime admits an event horizon is addressed for each horizon topology. It turns out that for hyperbolic horizons the black holes can be extremal. In this case, the near-horizon geometry is AdS_2 x H^2, where the scalar goes to the other, non-supersymmetric, critical point of the potential. Our solution displays fall-off behaviours different from the standard one, due to the fact that the mass parameter $m^2=-2/\\ell^2$ at the supersymmetric vacuum lies in a characteristic range $m^2_{BF}\\le m^2\\le m^2_{\\rm BF}+\\ell^{-2}$ for which the slowly decaying scalar field is also normalizable. Nevertheless, we identify a well-defined mass for our spacetime, following the prescription of Hertog and Maeda. Quite remarkably, the product of all horizon areas is not given in terms of the asymptotic cosmological constant alone, as one would expect in absence of electromagnetic charges and angular momentum. Our solution shows qualitatively the same thermodynamic behaviour as the Schwarzschild-AdS black hole, but the entropy is always smaller for a given mass and AdS curvature radius. We also find that our spherical black holes are unstable against radial perturbations.
Black hole temperature: Minimal coupling vs conformal coupling
Fazel, Mohamadreza, E-mail: m.fazel@ph.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Department of Physics, University of Tehran, North Kargar Avenue, Teharn 14395-547 (Iran, Islamic Republic of); Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mansoori, Seyed Ali Hosseini, E-mail: sa.hosseinimansoori@ph.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)
2014-05-15T23:59:59.000Z
In this article, we discuss the propagation of scalar fields in conformally transformed spacetimes with either minimal or conformal coupling. The conformally coupled equation of motion is transformed into a one-dimensional Schrödinger-like equation with an invariant potential under conformal transformation. In a second stage, we argue that calculations based on conformal coupling yield the same Hawking temperature as those based on minimal coupling. Finally, it is conjectured that the quasi normal modes of black holes are invariant under conformal transformation.
Streaming Motions Towards the Supermassive Black Hole in NGC 1097
Kambiz Fathi; Thaisa Storchi-Bergmann; Rogemar A. Riffel; Claudia Winge; David J. Axon; Andrew Robinson; Alessandro Capetti; Alessandro Marconi
2006-01-31T23:59:59.000Z
We have used GMOS-IFU and high resolution HST-ACS observations to map, in unprecedented detail, the gas velocity field and structure within the 0.7 kpc circumnuclear ring of the SBb LINER/Seyfert 1 galaxy NGC 1097. We find clear evidence of radial streaming motions associated with spiral structures leading to the unresolved (<3.5 parsecs) nucleus, which we interpret as part of the fueling chain by which gas is transported to the nuclear starburst and supermassive black hole.
Conservative solutions to the black hole information problem
Hossenfelder, S. [NORDITA, Roslagstullsbacken 23, 106 91 Stockholm (Sweden); Smolin, L. [Perimeter Institute for Theoretical Physics, Waterloo, N2J 2W9 (Canada); Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)
2010-03-15T23:59:59.000Z
We propose a novel scheme to classify the different options for resolution of the black hole loss of information problem that is independent of the details of the underlying theory of quantum gravity. We distinguish first between radical options, which require a quantum theory of gravity which has large deviations from semiclassical physics on macroscopic scales, such as nonlocality or endowing horizons with special properties not seen in the semiclassical approximation, and conservative options, which do not need such help. Among the conservative options, we conclude that restoring unitary evolution relies on elimination of singularities. We argue that this should hold also in the anti-de Sitter/conformal field theories correspondence.
Phase transitions in charged topological black holes dressed with a scalar hair
Cristian Martinez; Alejandra Montecinos
2010-09-28T23:59:59.000Z
Phase transitions in charged topological black holes dressed with a scalar field are studied. These black holes are solutions of the Einstein-Maxwell theory with a negative cosmological constant and a conformally coupled real self-interacting scalar field. Comparing, in the grand canonical ensemble, the free energies of the hairy and undressed black holes two different phase transitions are found. The first of them is one of second-order type and it occurs at a temperature defined by the value of the cosmological constant. Below this temperature an undressed black hole spontaneously acquires a scalar hair. The other phase transition is one of first-order type. The corresponding critical temperature, which is bounded from above by the one of the previous case, strongly depends on the coupling constant of the quartic self-interaction potential, and this transition only appears when the coupling constant is less than a certain value. In this case, below the critical temperature the undressed black is thermodynamically favored. However, when the temperature exceeds the critical value a hairy black hole is likely to be occur.
Generalised Smarr Formula and the Viscosity Bound for Einstein-Maxwell-Dilaton Black Holes
Liu, Hai-Shan; Pope, C N
2015-01-01T23:59:59.000Z
We study the shear viscosity to entropy ratio $\\eta/S$ in the boundary field theories dual to black hole backgrounds in theories of gravity coupled to a scalar field, and generalisations including a Maxwell field and non-minimal scalar couplings. Motivated by the observation in simple examples that the saturation of the $\\eta/S\\ge 1/(4\\pi)$ bound is correlated with the existence of a generalised Smarr relation for the planar black-hole solutions, we investigate this in detail for the general black-hole solutions in these theories, focusing especially on the cases where the scalar field plays a non-trivial role and gives rise to an additional parameter in the space of solutions. We find that a generalised Smarr relation holds in all cases, and in fact it can be viewed as the bulk gravity dual of the statement of the saturation of the viscosity to entropy bound. We obtain the generalised Smarr relation, whose existence depends upon a scaling symmetry of the planar black-hole solutions, by two different but rela...
Solar cycle changes in coronal holes and space weather cycles J. G. Luhmann,1
California at Berkeley, University of
Solar cycle changes in coronal holes and space weather cycles J. G. Luhmann,1 Y. Li,1 C. N. Arge,2-heliolatitude solar wind over approximately the last three solar cycles. Related key parameters like interplanetary explain solar magnetic field control of long-term interplanetary variations. In particular, the enduring
Method of determining interwell oil field fluid saturation distribution
Donaldson, Erle C. (Bartlesville, OK); Sutterfield, F. Dexter (Bartlesville, OK)
1981-01-01T23:59:59.000Z
A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.
Thermodynamics of Dyonic Lifshitz Black Holes
Tobias Zingg
2011-07-15T23:59:59.000Z
Black holes with asymptotic anisotropic scaling are conjectured to be gravity duals of condensed matter system close to quantum critical points with non-trivial dynamical exponent z at finite temperature. A holographic renormalization procedure is presented that allows thermodynamic potentials to be defined for objects with both electric and magnetic charge in such a way that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz spacetimes can exhibit paramagnetic behavior at low temperature limit for certain values of the critical exponent z, whereas the behavior of AdS black holes is always diamagnetic.
Some remarks on black hole thermodynamics
R. Y. Chiao
2011-02-04T23:59:59.000Z
Two thermodynamic "paradoxes" of black hole physics are re-examined. The first is that there is a thermal instability involving two coupled blackbody cavities containing two black holes, and second is that a classical black hole can swallow up entropy in the form of ambient blackbody photons without increasing its mass. The resolution of the second paradox by Bekenstein and by Hawking is re-visited. The link between Hawking radiation and Wigner's superluminal tunneling time is discussed using two equivalent Feynman diagrams, and Feynman's re-interpretation principle.
Radion clouds around evaporating black holes
J. R. Morris
2009-09-03T23:59:59.000Z
A Kaluza-Klein model, with a matter source associated with Hawking radiation from an evaporating black hole, is used to obtain a simple form for the radion effective potential. The environmental effect generally causes a matter-induced shift of the radion vacuum, resulting in the formation of a radion cloud around the hole. There is an albedo due to the radion cloud, with an energy dependent reflection coefficient that depends upon the size of the extra dimensions and the temperature of the hole.
Non-linear metric perturbations and production of primordial black holes
P. Ivanov
1997-08-25T23:59:59.000Z
We consider the simple inflationary model with peculiarity in the form of "plateau" in the inflaton potential. We use the formalism of coarse-grained field to describe the production of metric perturbations $h$ of an arbitrary amplitude and obtain non-Gaussian probability function for such metric perturbations. We associate the spatial regions having large perturbations $h\\sim 1$ with the regions going to primordial black holes after inflation. We show that in our model the non-linear effects can lead to overproduction of the primordial black holes.
Exact solutions of three dimensional black holes: Einstein gravity vs F(R) gravity
S. H. Hendi; B. Eslam Panah; R. Saffari
2014-10-28T23:59:59.000Z
In this paper, we consider Einstein gravity in the presence of a class of nonlinear electrodynamics, called power Maxwell invariant (PMI). We take into account $(2+1)$-dimensional spacetime in Einstein-PMI gravity and obtain its black hole solutions. Then, we regard pure $F(R)$ gravity as well as $F(R)$-conformally invariant Maxwell theory to obtain exact solutions of the field equations with black hole interpretation. Finally, we investigate the conserved and thermodynamic quantities and discuss about the first law of thermodynamics for the mentioned gravitational models.
Black Hole Entropy and the Dimensional Continuation of the Gauss-Bonnet Theorem
Bañados, Máximo; Zanelli, Jorge; 10.1103/PhysRevLett.72.957
2009-01-01T23:59:59.000Z
The Euclidean black hole has topology $\\Re^2 \\times {\\cal S}^{d-2}$. It is shown that -in Einstein's theory- the deficit angle of a cusp at any point in $\\Re^2$ and the area of the ${\\cal S}^{d-2}$ are canonical conjugates. The black hole entropy emerges as the Euler class of a small disk centered at the horizon multiplied by the area of the ${\\cal S}^{d-2}$ there.These results are obtained through dimensional continuation of the Gauss-Bonnet theorem. The extension to the most general action yielding second order field equations for the metric in any spacetime dimension is given.
Thermodynamics of Schwarzschild-de Sitter black hole: thermal stability of Nariai black hole
Yun Soo Myung
2008-03-28T23:59:59.000Z
We study thermodynamics of the Schwarzschild-de Sitter black hole in five dimensions by introducing two temperatures based on the standard and Bousso-Hawking normalizations. We use the first-law of thermodynamics to derive thermodynamic quantities. The two temperatures indicate that the Nariai black hole is thermodynamically unstable. However, it seems that black hole thermodynamics favors the standard normalization, and does not favor the Bousso-Hawking normalization.
Magnetohydrodynamic Shocks in Non-Equatorial Plasma Flows around a Black Hole
Keigo Fukumura; Masaaki Takahashi; Sachiko Tsuruta
2006-11-08T23:59:59.000Z
We study magnetohydrodynamic (MHD) standing shocks in inflowing plasmas in a black hole magnetosphere. Fast and intermediate shock formation is explored in Schwarzschild and Kerr geometry to illustrate general relativistic effects. We find that non-equatorial standing MHD shocks are physically possible, creating a very hot plasma region close to the event horizon. Shocked downstream plasmas can be heated or magnetized depending on the values of various magnetic field-aligned parameters. Then we may expect high-energy thermal/nonthermal emissions from the shocked region. We present the properties of non-equatorial MHD shocks and discuss the shocked plasma region in the black hole magnetosphere. We also investigate the effects of the poloidal magnetic field and the black hole spin on the properties of shocks, and show that both effects can modify the distribution of the shock front and shock strength. We find for strong MHD shock formation that fast rotating magnetic fields are necessary. The physics of non-equatorial MHD shocks in the black hole magnetosphere could be very important when we are to construct the central engine model of various astrophysical phenomena.
Thermalization with chemical potentials, and higher spin black holes
Gautam Mandal; Ritam Sinha; Nilakash Sorokhaibam
2015-03-06T23:59:59.000Z
We study the long time behaviour of local observables following a quantum quench in 1+1 dimensional conformal field theories possessing additional conserved charges besides the energy. We show that the expectation value of an arbitrary string of {\\it local} observables supported on a finite interval exponentially approaches an equilibrium value. The equilibrium is characterized by a temperature and chemical potentials defined in terms of the quenched state. For an infinite number of commuting conserved charges, the equilibrium ensemble is a generalized Gibbs ensemble (GGE). We compute the thermalization rate in a systematic perturbation in the chemical potentials, using a new technique to sum over an infinite number of Feynman diagrams. The above technique also allows us to compute relaxation times for thermal Green's functions in the presence of an arbitrary number of chemical potentials. In the context of a higher spin (hs[\\lambda]) holography, the partition function of the final equilibrium GGE is known to agree with that of a higher spin black hole. The thermalization rate from the CFT computed in our paper agrees with the quasinormal frequency of a scalar field in this black hole.
Black hole evolution: I. Supernova-regulated black hole growth
Dubois, Yohan; Silk, Joseph; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain
2015-01-01T23:59:59.000Z
The growth of a supermassive black hole (BH) is determined by how much gas the host galaxy is able to feed it, which in turn is controlled by the cosmic environment, through galaxy mergers and accretion of cosmic flows that time how galaxies obtain their gas, but also by internal processes in the galaxy, such as star formation and feedback from stars and the BH itself. In this paper, we study the growth of a 10^12 Msun halo at z=2, which is the progenitor of an archetypical group of galaxies at z=0, and of its central BH by means of a high-resolution zoomed cosmological simulation, the Seth simulation. We study the evolution of the BH driven by the accretion of cold gas in the galaxy, and explore the efficiency of the feedback from supernovae (SNe). For a relatively inefficient energy input from SNe, the BH grows at the Eddington rate from early times, and reaches self-regulation once it is massive enough. We find that at early cosmic times z>3.5, efficient feedback from SNe forbids the formation of a settled...
Tucker Wireline Open Hole Wireline Logging
Milliken, M.
2002-05-23T23:59:59.000Z
The Tucker Wireline unit ran a suite of open hole logs right behind the RMOTC logging contractor for comparison purposes. The tools included Dual Laterolog, Phased Induction, BHC Sonic, and Density-Porosity.
Multipole moments of bumpy black holes
Vigeland, Sarah Jane
General relativity predicts the existence of black holes, compact objects whose spacetimes depend only on their mass, spin, and charge in vacuum (the “no-hair” theorem). As various observations probe deeper into the strong ...
Hole Coupling Resonator for Free Electron Lasers
Xie, M.
2011-01-01T23:59:59.000Z
3. Total round-trip power loss, coupling efficiency and themicron. Total round-trip power loss and coupling efficiencythe total fractional power loss per round trip, the hole
Black Hole Thermodynamics in Modified Gravity
Jonas R. Mureika; John W. Moffat; Mir Faizal
2015-03-03T23:59:59.000Z
We analyze the thermodynamics of a non-rotating and rotating black hole in a modified theory of gravity that includes scalar and vector modifications to general relativity, which results in a modified gravitational constant $G = G_N(1+\\alpha)$ and a new gravitational charge $Q = \\sqrt{\\alpha G_N}M$. The influence of the parameter $\\alpha$ alters the non-rotating black hole's lifetime, temperature and entropy profiles from the standard Schwarzschild case. The thermodynamics of a rotating black hole is analyzed and it is shown to possess stable, cold remnants. The thermodynamic properties of a vacuum solution regular at $r=0$ are investigated and the solution without a horizon called a "gray hole" is not expected to possess an information loss problem.
Energy of 4-Dimensional Black Hole, etc
Dmitriy Palatnik
2011-07-18T23:59:59.000Z
In this letter I suggest possible redefinition of mass density, not depending on speed of the mass element, which leads to a more simple stress-energy for an object. I calculate energy of black hole.
Anosov maps with rectangular holes. Nonergodic cases.
Ingenier'ia. Universidad de la Rep'ublica C.C. 30, Montevideo, Uruguay EÂmail: roma@fing.edu.uy; Fax: (598 Partially supported by CONICYT (Uruguay). 1 #12; Running head: Anosov maps with rectangular holes Address
Horizon Operator Approach to Black Hole Quantization
G. 't Hooft
1994-02-21T23:59:59.000Z
The $S$-matrix Ansatz for the construction of a quantum theory of black holes is further exploited. We first note that treating the metric tensor $g_{\\m\
Radioactive hot cell access hole decontamination machine
Simpson, William E. (Richland, WA)
1982-01-01T23:59:59.000Z
Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.
Thermodynamics and evaporation of the noncommutative black hole
Yun Soo Myung; Yong-Wan Kim; Young-Jai Park
2007-01-21T23:59:59.000Z
We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.
Spacetime noncommutative effect on black hole as particle accelerators
Chikun Ding; Changqing Liu; Qian Guo
2013-01-08T23:59:59.000Z
We study the spacetime noncommutative effect on black hole as particle accelerators and, find that particle falling from infinity with zero velocity cannot collide with unbound energy when the noncommutative Kerr black hole is exactly extremal. Our results also show that the bigger of the spinning black hole's mass is, the higher of center of mass energy that the particles obtain. For small and medium noncommutative Schwarzschild black hole, the collision energy depends on the black holes' mass.
SHORT-TERM EVOLUTION OF CORONAL HOLE BOUNDARIES
Krista, Larisza D.; Gallagher, Peter T.; Bloomfield, D. Shaun [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland)
2011-04-20T23:59:59.000Z
The interaction of open and closed field lines at coronal hole (CH) boundaries is widely accepted to be due to interchange magnetic reconnection. To date, it is unclear how the boundaries vary on short timescales and at what velocity this occurs. Here, we describe an automated boundary tracking method used to determine CH boundary displacements on short timescales. The boundary displacements were found to be isotropic and to have typical expansion/contraction speeds of {<=}2 km s{sup -1}, which indicate magnetic reconnection rates of {<=}3 x 10{sup -3}. The observed displacements were used in conjunction with the interchange reconnection model to derive typical diffusion coefficients of {<=}3 x 10{sup 13} cm{sup 2} s{sup -1}. These results are consistent with an interchange reconnection process in the low corona driven by the random granular motions of open and closed fields in the photosphere.
The runaway instability of thick discs around black holes. II. Non constant angular momentum discs
Frederic Daigne; Jose A. Font
2003-11-28T23:59:59.000Z
We present results from a comprehensive number of relativistic, time-dependent, axisymmetric simulations of the runaway instability of non-constant angular momentum thick discs around black holes. This second paper extends earlier results where only constant angular momentum discs were considered. All relevant aspects of the theory of stationary thick discs around rotating black holes, necessary to build the initial state in our simulations, are presented in great detail. The angular momentum of the discs is assumed to increase outwards with the radial distance according to a power law. The main simplifying assumptions of our approach are not to include magnetic fields and self-gravity in the discs. Furthermore, the dynamics of the spacetime is accounted for by computing the transfer of mass and angular momentum from the disc to the black hole through the event horizon : the evolution of the central black hole is assumed to follow a sequence of Kerr black holes of increasing mass and spin. In agreement with previous results based on stationary models we find that by allowing the mass and the spin of the black hole to grow, constant angular momentum discs rapidly become unstable on a dynamical timescale. The comparison with the results of paper I shows that the effect of the angular momentum transfer from the torus to the black hole is to make constant angular momentum discs less unstable, increasing the timescale of the instability. However, we find that non-constant angular momentum discs are dramatically stabilized for very small values of the angular momentum slope. Our time-dependent simulations confirm, thus, the predictions of stationary studies concerning the stabilizing effect of non-constant angular momentum distributions.
The Equations of Motion of Compact Binaries in the Neighborhood of Supermassive Black Hole
Gorbatsievich, Alexander; Bobrik, Alexey [Belarusian state university, Nezavisimosti Av., 4, 220030 Minsk (Belarus)
2010-03-24T23:59:59.000Z
By the use of Einstein-Infeld-Hoffmann method, the equations of motion of a binary star system in the field of a supermassive black hole are derived. In spite of the fact that the motion of a binary system as a whole can be relativistic or even ultra-relativistic with respect to the supermassive black hole, it is shown, that under the assumption of non-relativistic relative motion of the stars in binary system, the motion of the binary system as a whole satisfies the Mathisson-Papapetrou equations with additional terms depending on quadrupole moments. Exemplary case of ultrarelativistic motion of a binary neutron star in the vicinity of non-rotating black hole is considered. It it shown that the motion of binary's center of mass may considerably differ from geodesic motion.
Gödel black hole, closed timelike horizon, and the study of particle emissions
Sourav Bhattacharya; Anirban Saha
2010-07-22T23:59:59.000Z
We show that a particle, with positive orbital angular momentum, following an outgoing null/timelike geodesic, shall never reach the closed timelike horizon (CTH) present in the $(4+1)$-dimensional rotating G\\"{o}del black hole space-time. Therefore a large part of this space-time remains inaccessible to a large class of geodesic observers, depending on the conserved quantities associated with them. We discuss how this fact and the existence of the closed timelike curves present in the asymptotic region make the quantum field theoretic study of the Hawking radiation, where the asymptotic observer states are a pre-requisite, unclear. However, the semiclassical approach provides an alternative to verify the Smarr formula derived recently for the rotating G\\"{o}del black hole. We present a systematic analysis of particle emissions, specifically for scalars, charged Dirac spinors and vectors, from this black hole via the semiclassical complex path method.
Comment on "Black holes constrain varying constants"
V. V. Flambaum
2002-08-20T23:59:59.000Z
A recent paper [DDL] claims that the increase of the proton electric charge e leads to a (forbidden) decrease of black hole entropy, therefore, possible evidence for variation of $\\alpha=e^2/\\hbar c$ [alpha] must be interpreted as a decrease of the speed of light. We argue that purely theoretical consideration of black holes possibly cannot give any model-independent limitations on variation of fundamental constants.
Fractionated Branes and Black Hole Interiors
Martinec, Emil J
2015-01-01T23:59:59.000Z
Combining a variety of results in string theory and general relativity, a picture of the black hole interior is developed wherein spacetime caps off at an inner horizon, and the inter-horizon region is occupied by a Hagedorn gas of a very low tension state of fractionated branes. This picture leads to natural resolutions of a variety of puzzles concerning quantum black holes. Gravity Research Foundation 2015 Fourth Prize Award for Essays on Gravitation.
Fractionated Branes and Black Hole Interiors
Emil J. Martinec
2015-05-20T23:59:59.000Z
Combining a variety of results in string theory and general relativity, a picture of the black hole interior is developed wherein spacetime caps off at an inner horizon, and the inter-horizon region is occupied by a Hagedorn gas of a very low tension state of fractionated branes. This picture leads to natural resolutions of a variety of puzzles concerning quantum black holes. Gravity Research Foundation 2015 Fourth Prize Award for Essays on Gravitation.
Local temperature for dynamical black holes
Sean A. Hayward; R. Di Criscienzo; M. Nadalini; L. Vanzo; S. Zerbini
2008-12-13T23:59:59.000Z
A local Hawking temperature was recently derived for any future outer trapping horizon in spherical symmetry, using a Hamilton-Jacobi tunneling method, and is given by a dynamical surface gravity as defined geometrically. Descriptions are given of the operational meaning of the temperature, in terms of what observers measure, and its relation to the usual Hawking temperature for static black holes. Implications for the final fate of an evaporating black hole are discussed.
Notes on Black Hole Fluctuations and Backreaction
B. L. Hu; Alpan Raval; Sukanya Sinha
1999-01-05T23:59:59.000Z
In these notes we prepare the ground for a systematic investigation into the issues of black hole fluctuations and backreaction by discussing the formulation of the problem, commenting on possible advantages and shortcomings of existing works, and introducing our own approach via a stochastic semiclassical theory of gravity based on the Einstein-Langevin equation and the fluctuation-dissipation relation for a self-consistent description of metric fluctuations and dissipative dynamics of the black hole with backreaction of its Hawking radiance.
Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre
Sheperd Doeleman; Jonathan Weintroub; Alan E. E. Rogers; Richard Plambeck; Robert Freund; Remo P. J. Tilanus; Per Friberg; Lucy M. Ziurys; James M. Moran; Brian Corey; Ken H. Young; Daniel L. Smythe; Michael Titus; Daniel P. Marrone; Roger J. Cappallo; Douglas C. J. Bock; Geoffrey C. Bower; Richard Chamberlin; Gary R. Davis; Thomas P. Krichbaum; James Lamb; Holly Maness; Arthur E. Niell; Alan Roy; Peter Strittmatter; Daniel Werthimer; Alan R. Whitney; David Woody
2008-09-15T23:59:59.000Z
The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation (ref 1). Sagittarius A*, the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4 million times that of the Sun (refs. 2,3). A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A* where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering (refs. 4-7). Here we report observations at a wavelength of 1.3 mm that set a size of 37 (+16, -10; 3-sigma) microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of SgrA* emission may not be not centred on the black hole, but arises in the surrounding accretion flow.
Kerr black holes and time profiles of gamma-ray bursts
S. McBreen; B. McBreen; L. Hanlon; F. Quilligan
2002-08-19T23:59:59.000Z
The cumulative light curves of gamma-ray bursts (GRBs) smooth the spiky nature of the running light curve. The cumulative count increases in an approximately linear way with time t for most bursts. In 19 out of 398 GRBs with T90 > 2s, the cumulative light curve was found to increase with time as \\~t^2 implying a linear increase in the running light curve. The non-linear sections last for a substantial fraction of the GRB duration, have a large proportion of the cumulative count and many resolved pulses that usually end with the highest pulse in the burst. The reverse behaviour was found in 11 GRBs where the running light curve decreased with time and some bursts are good mirror images of the increases. These GRBs are among the spectrally hardest bursts observed by BATSE. The most likely interpretation is that these effects are signatures of black holes that are either being spun up or down in the accretion process. In the spin up case, the increasing Kerr parameter of the black hole allows additional rotational and accretion energy to become available for extraction. The process is reversed if the black hole is spun down by magnetic field torques. The luminosity changes in GRBs are consistent with the predictions of the BZ process and neutrino annihilation and thus provide the link to spinning black holes. GRBs provide a new window for studying the general relativistic effects of Kerr black holes.
Roman Gold; Vasileios Paschalidis; Milton Ruiz; Stuart L. Shapiro; Zachariah B. Etienne; Harald P. Pfeiffer
2014-12-03T23:59:59.000Z
We report results from simulations in general relativity of magnetized disks accreting onto merging black hole binaries, starting from relaxed disk initial data. The simulations feature an effective, rapid radiative cooling scheme as a limiting case of future treatments with radiative transfer. Here we evolve the systems after binary-disk decoupling through inspiral and merger, and analyze the dependence on the binary mass ratio with $q\\equiv m_{\\rm bh}/M_{\\rm BH}=1,1/2,$ and $1/4$. We find that the luminosity associated with local cooling is larger than the luminosity associated with matter kinetic outflows, while the electromagnetic (Poynting) luminosity associated with bulk transport of magnetic field energy is the smallest. The cooling luminosity around merger is only marginally smaller than that of a single, non-spinning black hole. Incipient jets are launched independently of the mass ratio, while the same initial disk accreting on a single non-spinning black hole does not lead to a jet, as expected. For all mass ratios we see a transient behavior in the collimated, magnetized outflows lasting $2-5 ( M/10^8M_\\odot ) \\rm days$ after merger: the outflows become increasingly magnetically dominated and accelerated to higher velocities, boosting the Poynting luminosity. These sudden changes can alter the electromagnetic emission across the jet and potentially help distinguish mergers of black holes in AGNs from single accreting black holes based on jet morphology alone.
Grover, Rakhi, E-mail: grover.rakhi@gmail.com [Amity Institute of Advanced Research and Studies (Materials and Devices), Amity University, Noida, Uttar Pradesh 201303 (India); Srivastava, Ritu, E-mail: ritu@mail.nplindia.org; Dagar, Janardan; Kamalasanan, M. N. [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, CSIR-Network of Institute for Solar Energy (NISE), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Mehta, D. S. [Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)
2014-08-14T23:59:59.000Z
Electrical transport in thermally stable 2, 7-bis [N, N-bis (4-methoxy-phenyl) amino]-9, 9-spirobifluorene (MeO-Spiro-TPD) thin films has been investigated as a function of temperature and organic layer thickness. ITO/MeO-Spiro-TPD interface was found to be injection limited and has been studied in detail to find barrier height for hole injection. The thickness of tetra-fluoro-tetracyano-quinodimethane thin films were optimized to be used as hole injection buffer layer which resulted in switching of charge transport mechanism from injection limited to space charge limited conduction above a critical thickness of 3?nm. Hole mobility has been measured using transient space charge limited conduction (SCLC), field dependent SCLC, and top contact transistor characteristics. The charge carrier transport in interface modified hole only devices was analysed using Gaussian disorder model. The thermal stability of MeO-Spiro-TPD has been investigated by atomic force microscopy and X-ray diffraction studies. The study indicates a thermally stable and highly efficient hole transport material for application in organic semiconductor based devices.
Hawking Radiation of a Quantum Black Hole in an Inflationary Universe
Wung-Hong Huang
2004-09-07T23:59:59.000Z
The quantum stress-energy tensor of a massless scalar field propagating in the two-dimensional Vaidya-de Sitter metric, which describes a classical model spacetime for a dynamical evaporating black hole in an inflationary universe, is analyzed. We present a possible way to obtain the Hawking radiation terms for the model with arbitrary functions of mass. It is used to see how the expansion of universe will affect the dynamical process of black hole evaporation. The results show that the cosmological inflation has an inclination to depress the black hole evaporation. However, if the cosmological constant is sufficiently large then the back-reaction effect has the inclination to increase the black hole evaporation. We also present a simple method to show that it will always produce a divergent flux of outgoing radiation along the Cauchy horizon where the curvature is a finite value. This means that the Hawking radiation will be very large in there and shall modify the classical spacetime drastically. Therefore the black hole evaporation cannot be discussed self-consistently on the classical Vaidya-type spacetime. Our method can also be applied to analyze the quantum stress-energy tensor in the more general Vaidya-type spacetimes.
Raman Spectroscopy Determination of Hole Concentration in p-Type GaSb
Maslar JE, Hurst WS, Wang CA
2007-04-05T23:59:59.000Z
Room temperature p-type GaSb bulk coupled mode spectra were measured as a function of hole concentration. These spectra were obtained using an optical system based on 752.55 nm excitation in order to obtain more sensitivity to bulk GaSb coupled mode scattering than possible with visible wavelength excitation-based systems. A relatively simple spectral model for the electronic contribution to the dielectric function was evaluated for determination of hole concentration from the bulk coupled mode spectra. Optically-derived values for hole concentration were determined by minimizing the sum of the residuals squared between an experimental and simulated spectrum as a function of total hole concentration and a plasmon damping parameter. Hole concentrations obtained from the Raman spectroscopic measurements deviated from the values determined from single field Hall effect measurements that were corrected to account for two band conduction by {approx}20% to {approx}65%. These deviations were attributed to the limitations of the spectral model employed and uncertainties in GaSb materials properties.
A derivative-free optimization method to compute scalar perturbation of AdS black holes
Rodrigo S. Lima; Alan B. Pavan
2014-03-25T23:59:59.000Z
In this work we describe an interesting application of a simple derivative-free optimization method to extract the quasinormal modes (QNM's) of a massive scalar field propagating in a 4-dimensional Schwarzschild anti-de Sitter black hole (Sch-AdS$_4$). In this approach, the problem to find the QNM's is reduced to minimize a real valued function of two variables and does not require any information about derivatives. In fact, our strategy requires only evaluations of the objective function to search global minimizers of the optimization problem. Firstly, numerical experiments were performed to find the QNM's of a massless scalar field propagating in intermediate and large Sch-AdS$_4$ black holes. The performance of this optimization algorithm was compared with other numerical methods used in previous works. Our results showed to be in good agreement with those obtained previously. Finally, the massive scalar field case and its QNM's were also obtained and discussed.
Three-dimensional stationary cyclic symmetric Einstein-Maxwell solutions; black holes
Garcia, Alberto A. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 Mexico, DF (Mexico); Department of Physics, University of California, Davis, CA 95616 (United States)], E-mail: aagarcia@fis.cinvestav.mx
2009-09-15T23:59:59.000Z
From a general metric for stationary cyclic symmetric gravitational fields coupled to Maxwell electromagnetic fields within the (2 + 1)-dimensional gravity the uniqueness of wide families of exact solutions is established. Among them, all uniform electromagnetic solutions possessing electromagnetic fields with vanishing covariant derivatives, all fields having constant electromagnetic invariants F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} and T{sub {mu}}{sub {nu}}T{sup {mu}}{sup {nu}}, the whole classes of hybrid electromagnetic solutions, and also wide classes of stationary solutions are derived for a third-order nonlinear key equation. Certain of these families can be thought of as black hole solutions. For the most general set of Einstein-Maxwell equations, reducible to three nonlinear equations for the three unknown functions, two new classes of solutions - having anti-de Sitter spinning metric limit - are derived. The relationship of various families with those reported by different authors' solutions has been established. Among the classes of solutions with cosmological constant a relevant place is occupied by the electrostatic and magnetostatic Peldan solutions, the stationary uniform and spinning Clement classes, the constant electromagnetic invariant branches with the particular Kamata-Koikawa solution, the hybrid cyclic symmetric stationary black hole fields, and the non-less important solutions generated via SL(2,R)-transformations where the Clement spinning charged solution, the Martinez-Teitelboim-Zanelli black hole solution, and Dias-Lemos metric merit mention.
The Revival of White Holes as Small Bangs
Alon Retter; Shlomo Heller
2011-07-17T23:59:59.000Z
Black holes are extremely dense and compact objects from which light cannot escape. There is an overall consensus that black holes exist and many astronomical objects are identified with black holes. White holes were understood as the exact time reversal of black holes, therefore they should continuously throw away material. It is accepted, however, that a persistent ejection of mass leads to gravitational pressure, the formation of a black hole and thus to the "death of while holes". So far, no astronomical source has been successfully tagged a white hole. The only known white hole is the Big Bang which was instantaneous rather than continuous or long-lasting. We thus suggest that the emergence of a white hole, which we name a 'Small Bang', is spontaneous - all the matter is ejected at a single pulse. Unlike black holes, white holes cannot be continuously observed rather their effect can only be detected around the event itself. Gamma ray bursts are the most energetic explosions in the universe. Long gamma-ray bursts were connected with supernova eruptions. There is a new group of gamma-ray bursts, which are relatively close to Earth, but surprisingly lack any supernova emission. We propose identifying these bursts with white holes. White holes seem like the best explanation of gamma-ray bursts that appear in voids. We also predict the detection of rare gigantic gamma-ray bursts with energies much higher than typically observed.
Is the firewall consistent? Gedanken experiments on black hole complementarity and firewall proposal
Hwang, Dong-il; Lee, Bum-Hoon; Yeom, Dong-han, E-mail: dongil.j.hwang@gmail.com, E-mail: bhl@sogang.ac.kr, E-mail: innocent.yeom@gmail.com [Center for Quantum Spacetime, Sogang University, Seoul 121-742 (Korea, Republic of)
2013-01-01T23:59:59.000Z
In this paper, we discuss the black hole complementarity and the firewall proposal at length. Black hole complementarity is inevitable if we assume the following five things: unitarity, entropy-area formula, existence of an information observer, semi-classical quantum field theory for an asymptotic observer, and the general relativity for an in-falling observer. However, large N rescaling and the AMPS argument show that black hole complementarity is inconsistent. To salvage the basic philosophy of the black hole complementarity, AMPS introduced a firewall around the horizon. According to large N rescaling, the firewall should be located close to the apparent horizon. We investigate the consistency of the firewall with the two critical conditions: the firewall should be near the time-like apparent horizon and it should not affect the future infinity. Concerning this, we have introduced a gravitational collapse with a false vacuum lump which can generate a spacetime structure with disconnected apparent horizons. This reveals a situation that there is a firewall outside of the event horizon, while the apparent horizon is absent. Therefore, the firewall, if it exists, not only does modify the general relativity for an in-falling observer, but also modify the semi-classical quantum field theory for an asymptotic observer.
Holographic superconductor in the exact hairy black hole
Yun Soo Myung; Chanyong Park
2011-09-13T23:59:59.000Z
We study the charged black hole of hyperbolic horizon with scalar hair (charged Martinez-Troncoso-Zanelli: CMTZ black hole) as a model of analytic hairy black hole for holographic superconductor. For this purpose, we investigate the second order phase transition between CMTZ and hyperbolic Reissner-Nordstr\\"om-AdS (HRNAdS) black holes. However, this transition unlikely occur. As an analytic treatment for holographic superconductor, we develop superconductor in the bulk and superfluidity on the boundary using the CMTZ black hole below the critical temperature. The presence of charge destroys the condensates around the zero temperature, which is in accord with the thermodynamic analysis of the CMTZ black hole.
Perturbative String Thermodynamics near Black Hole Horizons
Thomas G. Mertens; Henri Verschelde; Valentin I. Zakharov
2014-10-29T23:59:59.000Z
We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work JHEP 1403 (2014) 086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of $\\alpha'$-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large $k$ limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O'Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in $g_s$) to compute thermodynamical quantities in black hole spacetimes.
Investigating Dark Energy with Black Hole Binaries
Laura Mersini-Houghton; Adam Kelleher
2009-06-08T23:59:59.000Z
The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accretion of dark energy induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is too long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state $w[z]$ of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. In this talk I describe how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy, based on the work done with A.Kelleher.
No-hair theorems for black holes in the Abelian Higgs model
Juan Fernandez-Gracia; Bartomeu Fiol
2009-10-26T23:59:59.000Z
Motivated by the study of holographic superconductors, we generalize no-hair theorems for minimally coupled scalar fields charged under an Abelian gauge field, in arbitrary dimensions and with arbitrary horizon topology. We first present a straightforward generalization of no-hair theorems for neutral scalar hair. We then consider the existence of extremal black holes with scalar hair, and in the case of horizons with zero or positive curvature, provide a bound on the mass and charge of the scalar field that are necessary for the scalar hair to develop.
Massive scalar particle emission from Schwarzschild black holes
Simkins, R.D.
1986-01-01T23:59:59.000Z
A study is undertaken to compute the absorption coefficients (or particle scattering cross-sections) of massive, scalar modes of Hawking radiation emanating from Schwarzschild black holes. This is accomplished using various variable - and constant - stepwise techniques whose results are later compared. All techniques are applied to the initial value problem associated with the system of two first-order ordinary differential equations derived from separating the Klein-Gordon wave equation in a Kerr-Newman geometry into radial and angular second-order differential equations; and all use the same JWKB-approximated starting values and asymptotic forms of the system's solutions. Using the above coefficients, summing over model angular momenta (l) gives luminosity (or total scattering cross-section, sigma) as a function of modal energy (omega) for the spectrum of modal masses (..mu..). Summing over l and integrating over model energies gives total power emission and total number emission rate as function s of model mass. The approach to the problem that is used involves elements both of the thermodynamic and of the scattering pictures of black hole emission. The partial scattering cross sections are compared both with one another and with the previously known massless, scalar field counterparts.
Structure and Dynamics of the Sun's Open Magnetic Field
S. K. Antiochos; C. R. DeVore; J. T. Karpen; Z. Mikic
2007-05-30T23:59:59.000Z
The solar magnetic field is the primary agent that drives solar activity and couples the Sun to the Heliosphere. Although the details of this coupling depend on the quantitative properties of the field, many important aspects of the corona - solar wind connection can be understood by considering only the general topological properties of those regions on the Sun where the field extends from the photosphere out to interplanetary space, the so-called open field regions that are usually observed as coronal holes. From the simple assumptions that underlie the standard quasi-steady corona-wind theoretical models, and that are likely to hold for the Sun, as well, we derive two conjectures on the possible structure and dynamics of coronal holes: (1) Coronal holes are unique in that every unipolar region on the photosphere can contain at most one coronal hole. (2) Coronal holes of nested polarity regions must themselves be nested. Magnetic reconnection plays the central role in enforcing these constraints on the field topology. From these conjectures we derive additional properties for the topology of open field regions, and propose several observational predictions for both the slowly varying and transient corona/solar wind.
THE FORCE-FREE MAGNETOSPHERE OF A ROTATING BLACK HOLE
Contopoulos, Ioannis [Research Center for Astronomy, Academy of Athens, Athens 11527 (Greece); Kazanas, Demosthenes [NASA/GSFC, Code 663, Greenbelt, MD 20771 (United States); Papadopoulos, Demetrios B., E-mail: icontop@academyofathens.gr, E-mail: demos.kazanas@nasa.gov, E-mail: papadop@astro.auth.gr [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)
2013-03-10T23:59:59.000Z
We revisit the Blandford-Znajek process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity {omega} and the poloidal electric current I. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem: the inner ''light surface'' located inside the ergosphere and the outer ''light surface'' which is the generalization of the pulsar light cylinder. We find the solution for the simplest possible magnetic field configuration, the split monopole, through a numerical iterative relaxation method analogous to the one that yields the structure of the steady-state axisymmetric force-free pulsar magnetosphere. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blandford and Znajek and of previous time-dependent simulations. Furthermore, we discuss the physical applicability of magnetic field configurations that do not cross both ''light surfaces''.
Black Hole Chromosphere at the LHC
Luis Anchordoqui; Haim Goldberg
2003-02-26T23:59:59.000Z
If the scale of quantum gravity is near a TeV, black holes will be copiously produced at the LHC. In this work we study the main properties of the light descendants of these black holes. We show that the emitted partons are closely spaced outside the horizon, and hence they do not fragment into hadrons in vacuum but more likely into a kind of quark-gluon plasma. Consequently, the thermal emission occurs far from the horizon, at a temperature characteristic of the QCD scale. We analyze the energy spectrum of the particles emerging from the "chromosphere", and find that the hard hadronic jets are almost entirely suppressed. They are replaced by an isotropic distribution of soft photons and hadrons, with hundreds of particles in the GeV range. This provides a new distinctive signature for black hole events at LHC.
Hole interactions with molecular vibrations on DNA
A. Omerzu; M. Licer; T. Mertelj; V. V. Kabanov; D. Mihailovic
2004-05-13T23:59:59.000Z
We report on a study of the interactions between holes and molecular vibrations on dry DNA using photoinduced infrared absorption spectroscopy. Laser photoexcited (PE) holes are found to have a room-temperature lifetime in excess of 1 ms, clearly indicating the presence of localization. However, from a quantitative model analysis of the frequency shifts of vibrational modes caused by the PE holes, we find the holevibrational coupling constant to be relatively small, 0.2. This interaction leads to a change in the conformational energy of 0.015 eV, which is too small to cause selftrapping at room temperature. We conclude that, at least in the dry (A) form, DNA is best understood in terms of a double chain of coupled quantum dots arising from the pseudo-random chain sequence of base pairs, in which Anderson localization prevents the formation of a metallic state.
Neutrino Majorana Mass from Black Hole
Yosuke Uehara
2002-05-25T23:59:59.000Z
We propose a new mechanism to generate the neutrino Majorana mass in TeV-scale gravity models. The black hole violates all non-gauged symmetries and can become the origin of lepton number violating processes. The fluctuation of higher-dimensional spacetime can result in the production of a black hole, which emits 2 neutrinos. If neutrinos are Majorana particles, this process is equivalent to the free propagation of a neutrino with the insertion of the black hole. From this fact, we derive the neutrino Majorana mass. The result is completely consistent with the recently observed evidence of neutrinoless double beta decay. And the obtained neutrino Majorana mass satisfies the constraint from the density of the neutrino dark matter, which affects the cosmic structure formation. Furthermore, we can explain the ultrahigh energy cosmic rays by the Z-burst scenario with it.
Particle-hole symmetry parameters for nuclei
Ian Bentley
2015-03-10T23:59:59.000Z
Two parameters, nu and zeta, motivated by particle-hole symmetry are introduced. These parameters are determined using the number of proton (or neutron) particles and holes counted from neighboring shell closures. The new parameters can be used to evaluate particle-hole and proton-neutron symmetries of adopted B(E2) values, which indicate that both symmetries are approximate for A>100. The combined symmetries motivate empirical fits of binding energies and the energy ratio E(4_1^+)/E(2_1^+). A global binding energy fit consisting of a traditional liquid droplet and one new shell term, comprised of a function of nu and zeta, reproduces the experimental binding energies of 2353 nuclei with an r.m.s. standard deviation of 1.55 MeV.
Turbodrilling in the hot-hole environment
Herbert, P.
1982-10-01T23:59:59.000Z
Historically, geothermal and other types of hot-hole drilling have presented what seemed to be insurmountable barriers to efficient and extended use of downhole drilling motors, particularly those containing elastomeric bearing or motor components. Typical temperatures of 350 to 700/sup 0/F (177 to 371/sup 0/C) damage the elastomers and create other operating problems, reducing the life of the motors and their ability to drill efficiently. Recent innovations in turbodrill design have opened heretofore unrealized potentials and have allowed, for the first time, extended downhole drilling time in hot-hole conditions. The unique feature of this turbodrill is the lack of any elastomers or other temperature-sensitive materials. Its capabilities are matched closely to the requirements of drilling in elevated-temperature environments. The bearing assembly can withstand conditions encountered in typical geothermal formations and provides the performance necessary to stay in the hole. The result is increased rate of penetration (ROP) and more economical drilling.
Tachyon Perturbation on Two Dimensional Black Hole
Aniket Basu
2014-07-03T23:59:59.000Z
We study the black hole geometry in the presence of tachyonic perturbations, and solve for the form of allowed tachyonic hair in the presence of back reaction, and for the form of the metric under the assumption that only the metric is perturbed but not the dilaton. We evaluate the Kretschmann scalar and argue that the horizon becomes singular in the presence of tachyons, implying that the black hole has turned into a naked singularity. A form of the allowed tachyon potential emerges as a requirement of self-consistency of our solution.
Thermal Gravitational Waves from Primordial Black Holes
C. Sivaram; Kenath Arun
2010-05-19T23:59:59.000Z
Thermal gravitational waves can be generated in various sources such as, in the cores of stars, white dwarfs and neutron stars due to the fermion collisions in the dense degenerate Fermi gas. Such high frequency thermal gravitational waves can also be produced during the collisions in a gamma ray burst or during the final stages of the evaporation of primordial black holes. Here we estimate the thermal gravitational waves from primordial black holes and estimate the integrated energy of the gravitational wave emission over the entire volume of the universe and over Hubble time. We also estimate the gravitational wave flux from gamma ray bursts and jets.
Einstein-Yang-Mills-Lorentz Black Holes
Jose A. R. Cembranos; Jorge Gigante Valcarcel
2015-01-28T23:59:59.000Z
Different black hole solutions of the coupled Einstein-Yang-Mills equations are well known from long time. They have attracted much attention from mathematicians and physicists from their discovery. In this work, we analyze black holes associated with the gauge Lorentz group. In particular, we study solutions which identify the gauge connection with the spin connection. This ansatz allows to find exact solutions to the complete system of equations. By using this procedure, we show the equivalence between the Yang-Mills-Lorentz model in curved space-time and a particular set of extended gravitational theories.
Chaotic Information Processing by Extremal Black Holes
Axenides, Minos; Nicolis, Stam
2015-01-01T23:59:59.000Z
We review an explicit regularization of the AdS$_2$/CFT$_1$ correspondence, that preserves all isometries of bulk and boundary degrees of freedom. This scheme is useful to characterize the space of the unitary evolution operators that describe the dynamics of the microstates of extremal black holes in four spacetime dimensions. Using techniques from algebraic number theory to evaluate the transition amplitudes, we remark that the regularization scheme expresses the fast quantum computation capability of black holes as well as its chaotic nature.
Dynamics of galaxy cores and supermassive black holes
David Merritt
2006-05-02T23:59:59.000Z
Recent work on the dynamical evolution of galactic nuclei containing supermassive black holes is reviewed. Topics include galaxy structural properties; collisionless and collisional equilibria; loss-cone dynamics; and dynamics of binary and multiple supermassive black holes.
Yield, variance and spatial distribution of electron–hole...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Yield, variance and spatial distribution of electron–hole pairs in CsI. Yield, variance and spatial distribution of electron–hole pairs in CsI. Abstract: A Monte Carlo...
Evaluation of Coso Geothermal Exploratory Hole No. 1 (CGEH-1...
hole with drill cuttings. The second test, on November 2, 1978, utilized a nitrogen-foam-water mixture to clean residual particles from bottom hole, following which nitrogen was...
Topological black holes in Horava-Lifshitz gravity
Cai Ronggen [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China) and Kavli Institute for Theoretical Physics China (KITPC), Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China); Cao Liming [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Ohta, Nobuyoshi [Department of Physics, Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan)
2009-07-15T23:59:59.000Z
We find topological (charged) black holes whose horizon has an arbitrary constant scalar curvature 2k in Horava-Lifshitz theory. Without loss of generality, one may take k=1, 0, and -1. The black hole solution is asymptotically anti-de Sitter with a nonstandard asymptotic behavior. Using the Hamiltonian approach, we define a finite mass associated with the solution. We discuss the thermodynamics of the topological black holes and find that the black hole entropy has a logarithmic term in addition to an area term. We find a duality in Hawking temperature between topological black holes in Horava-Lifshitz theory and Einstein's general relativity: the temperature behaviors of black holes with k=1, 0, and -1 in Horava-Lifshitz theory are, respectively, dual to those of topological black holes with k=-1, 0, and 1 in Einstein's general relativity. The topological black holes in Horava-Lifshitz theory are thermodynamically stable.
Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...
planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300...
Thermal Interpretation of Schwinger Effect in Near-Extremal RN Black Hole
Sang Pyo Kim; Hyun Kyu Lee; Yongsung Yoon
2015-03-01T23:59:59.000Z
We propose a thermal interpretation of the Schwinger effect for charged scalars and spinors in an extremal and near-extremal Reissner-Nordstr\\"{o}m (RN) black hole. The emission of charges has the distribution with an effective temperature determined by the Davies-Unruh temperature for accelerating charges by the electric field and the scalar curvature of AdS_2 from the near-horizon geometry AdS_2 X S^2. We find a charge bound for the extremal micro black hole to remain stable against the Schwinger emission in analogy with the Breitenlohlner-Freedman bound for the AdS space. In the in-out formalism we find the one-loop QED effective action consistent with the vacuum persistence and interpret the vacuum persistence as the leading Schwinger effect and the effect of a charged vacuum of the Coulomb field.
Graphene and the Zermelo Optical Metric of the BTZ Black Hole
M. Cvetic; G. W. Gibbons
2012-05-23T23:59:59.000Z
It is well known that the low energy electron excitations of the curved graphene sheet $\\Sigma$ are solutions of the massless Dirac equation on a 2+1 dimensional ultra-static metric on ${\\Bbb R} \\times \\Sigma$. An externally applied electric field on the graphene sheet induces a gauge potential which could be mimicked by considering a stationary optical metric of the Zermelo form, which is conformal to the BTZ black hole when the sheet has a constant negative curvature. The Randers form of the metric can model a magnetic field, which is related by a boost to an electric one in the Zermelo frame. We also show that there is fundamental geometric obstacle to obtaining a model that extends all the way to the black hole horizon.
Free motion around black holes with discs or rings: between integrability and chaos - I
O. Semerák; P. Suková
2012-11-17T23:59:59.000Z
Geodesic dynamics is regular in the fields of isolated stationary black holes. However, due to the presence of unstable periodic orbits, it easily becomes chaotic under various perturbations. Here we examine what amount of chaoticity is induced in Schwarzschild space-time by a presence of an additional source. Following astrophysical motivation, we specifically consider thin rings or discs lying symmetrically around the hole, and describe the total field in terms of exact static and axially symmetric solutions of Einstein's equations. The growth of chaos in time-like geodesic motion is illustrated on Poincar\\'e sections, on time series of position or velocity and their Fourier spectra, and on time evolution of the orbital `latitudinal action'. The results are discussed in dependence on the mass and position of the ring/disc and on geodesic parameters (energy and angular momentum). In the Introduction, we also add an overview of the literature.
Critical Behaviors of 3D Black Holes with a Scalar Hair
A. Belhaj; M. Chabab; H. EL Moumni; K. Masmar; M. B. Sedra
2014-10-17T23:59:59.000Z
The principal focus of the present work concerns the critical behaviors of a class of three dimensional black holes with a scalar field hair. Since the cosmological constant is viewed as a thermodynamic pressure and its conjugate quantity as a volume, we examine such properties in terms of two parameters B and a. The latters are related to the scalar field and the angular momentum respectively. In particular, we give the equation of state predicting a critical universal number depending on the (B,a) moduli space. In the vanishing limit of the B parameter, we recover the usual perfect gas behavior appearing in the case of the non rotating BTZ black hole. We point out that in a generic region of the (B,a) moduli space, the model behaves like a Van der Waals system.
A Holographic Superconductor in an External Magnetic Field
Tameem Albash; Clifford V. Johnson
2008-09-24T23:59:59.000Z
We study a system of a complex charged scalar coupled to a Reissner-Nordstrom black hole in 3+1 dimensional anti-de Sitter spacetime, neglecting back-reaction. With suitable boundary conditions, the cases of a neutral and purely electric black hole have been studied in various limits and were shown to yield key elements of superconductivity in the dual 2+1 dimensional field theory, forming a condensate below a critical temperature. By adding magnetic charge to the black hole, we immerse the superconductor into an external magnetic field. We show that a family of condensates can form and we examine their structure. For finite magnetic field, they are localized in one dimension with a profile that is exactly solvable, since it maps to the quantum harmonic oscillator. As the magnetic field increases, the condensate shrinks in size, which is reminiscent of the Meissner effect.
Universality of critical magnetic field in holographic superconductor
D. Momeni; R. Myrzakulov
2015-02-11T23:59:59.000Z
In this letter we study aspects of the holographic superconductors analytically in the presence of a constant external magnetic field. We show that the critical temperature and critical magnetic field can be calculated at nonzero temperature. We detect the Meissner effect in such superconductors. A universal relation between black hole mass $ M$ and critical magnetic field $H_c$ is proposed as $\\frac{H_c}{M^{2/3}}\\leq 0.687365$. We discuss some aspects of phase transition in terms of black hole entropy and the Bekenstein's entropy to energy upper bound.
A Note on Black Hole Temperature and Entropy
P. R. Silva
2006-05-09T23:59:59.000Z
We propose intuitive derivations of the Hawking temperature and the Bekenstein-Hawking entropy of a Schwarzschild black hole.
Entropy of charged dilaton-axion black hole
Tanwi Ghosh; Soumitra SenGupta
2008-06-06T23:59:59.000Z
Using brick wall method the entropy of charged dilaton-axion black hole is determined for both asymptotically flat and non-flat cases. The entropy turns out to be proportional to the horizon area of the black hole confirming the Beckenstien, Hawking area-entropy formula for black holes. The leading order logarithmic corrections to the entropy are also derived for such black holes.
Can the fluctuations of a black hole be treated thermodynamically?
Kostyantyn Ropotenko
2008-03-31T23:59:59.000Z
Since the temperature of a typical Schwarzschild black hole is very low, some doubts are raised about whether the fluctuations of the black hole can be treated thermodynamically. It is shown that this is not the case: the thermodynamic fluctuations of a black hole are considerably larger than the corresponding quantum fluctuations. Moreover the ratio of the mean square thermodynamic fluctuation to the corresponding quantum fluctuation can be interpreted as a number of the effective constituents of a black hole.
Entropy and Area of Black Holes in Loop Quantum Gravity
I. B. Khriplovich
2002-03-31T23:59:59.000Z
Simple arguments related to the entropy of black holes strongly constrain the spectrum of the area operator for a Schwarzschild black hole in loop quantum gravity. In particular, this spectrum is fixed completely by the assumption that the black hole entropy is maximum. Within the approach discussed, one arrives in loop quantum gravity at a quantization rule with integer quantum numbers $n$ for the entropy and area of a black hole.
Dyons with potentials: Duality and black hole thermodynamics
Barnich, Glenn; Gomberoff, Andres [Physique Theorique et Mathematique, Universite Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Universidad Nacional Andres Bello, Av. Republica 239, Santiago (Chile)
2008-07-15T23:59:59.000Z
A modified version of the double potential formalism for the electrodynamics of dyons is constructed. Besides the two vector potentials, this manifestly duality invariant formulation involves four additional potentials, scalar potentials which appear as Lagrange multipliers for the electric and magnetic Gauss constraints and potentials for the longitudinal electric and magnetic fields. In this framework, a static dyon appears as a Coulomb-like solution without string singularities. Dirac strings are needed only for the Lorentz force law, not for Maxwell's equations. The magnetic charge no longer appears as a topological conservation law but as a surface integral on a par with electric charge. The theory is generalized to curved space. As in flat space, the string singularities of dyonic black holes are resolved. As a consequence all singularities are protected by the horizon and the thermodynamics is shown to follow from standard arguments in the grand canonical ensemble.
Black holes: interfacing the classical and the quantum
B. P. Kosyakov
2007-07-18T23:59:59.000Z
The central idea advocated in this paper is that {forming the black hole horizon is attended with transition from the classical regime of evolution to the quantum one}. We justify the following criterion for discriminating between the classical and the quantum: {spontaneous creations and annihilations of particle-antiparticle pairs are impossible in the classical world but possible in the quantum world}. We show that it is sufficient to {change the overall sign of the spacetime signature in the classical picture of field propagation for it to be treated as its associated quantum picture}. To describe a self-gravitating object at the last stage of its classical evolution, we propose to use the Foldy--Wouthuysen representation of the Dirac equation in curved spacetimes, and the Gozzi classical path integral. In both approaches, maintaining the dynamics in the classical regime is controlled by supersymmetry.
Modelling the Evaporation of Non-singular Black Holes
Tim Taves; Gabor Kunstatter
2015-01-11T23:59:59.000Z
We present a model for studying the formation and evaporation of non-singular (quantum corrected) black holes. The model is based on a generalized form of the dimensionally reduced, spherically symmetric Einstein--Hilbert action and includes a suitably generalized Polyakov action to provide a mechanism for radiation back-reaction. The equations of motion describing self-gravitating scalar field collapse are derived in local form both in null co--ordinates and in Painleve--Gullstrand (flat slice) co--ordinates. They provide the starting point for numerical studies of complete spacetimes containing dynamical horizons that bound a compact trapped region. Such spacetimes have been proposed in the past as solutions to the information loss problem because they possess neither an event horizon nor a singularity. Since the equations of motion in our model are derived from a diffeomorphism invariant action they preserve the constraint algebra and the resulting energy momentum tensor is manifestly conserved.
String Black Holes as Particle Accelerators to Arbitrarily High Energy
Parthapratim Pradhan
2014-03-25T23:59:59.000Z
We show that an extremal Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole may act as a particle accelerator with arbitrarily high energy when two uncharged particles falling freely from rest to infinity on the near horizon. We show that the center of mass energy of collision independent of the extreme fine tuning of the angular momentum of the colliding particles. We further show that the center of mass energy of collisions of particles at the ISCO ($r_{ISCO}$) or at the photon orbit ($r_{ph}$) or at the marginally bound circular orbit ($r_{mb}$) i.e. at $r \\equiv r_{ISCO}=r_{ph}=r_{mb}=2M$ could be arbitrarily large for the aforementioned spacetimes, which is different from Schwarzschild and Reissner-Nordstr{\\o}m spcetimes. For non-extremal GMGHS spacetimes the CM energy is finite and depends upon the asymptotic value of the dilation field ($\\phi_{0}$).
New bits, motors improve economics of slim hole horizontal wells
McDonald, S. [Hughes Christensen Co., New Orleans, LA (United States); Felderhoff, F. [Hughes Christensen Co., Midland, TX (United States); Fisher, K. [Baker Hughes Inteq, New Orleans, LA (United States)
1996-03-11T23:59:59.000Z
The latest generation of small-diameter bits, combined with a new extended power section positive displacement motor (PDM), has improved the economics of slim hole drilling programs. As costs are driven down, redevelopment reserves are generated in the older, more established fields. New reserves result from increases in the ultimate recovery and accelerated production rates from the implementation of horizontal wells in reentry programs. This logic stimulated an entire development program for a Gulf of Mexico platform, which was performed without significant compromises in well bore geometry. The savings from this new-generation drilling system come from reducing the total number of trips required during the drilling phase. This paper reviews the design improvements of roller cone bits, PDC bits, and positive displacement motors for offshore directional drilling operations.
Relativistic simulations of black hole-neutron star coalescence: the jet emerges
Vasileios Paschalidis; Milton Ruiz; Stuart L. Shapiro
2015-04-02T23:59:59.000Z
We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of a binary black hole--neutron star on a quasicircular orbit that undergoes merger. The binary mass ratio is $3:1$, the black hole has initial spin parameter $a/m=0.75$ ($m$ is the black hole Christodoulou mass) aligned with the orbital angular momentum, and the neutron star is an irrotational $\\Gamma=2$ polytrope. We adopt a $\\Gamma$-law equation of state. About two orbits prior to merger (at time $t=t_B$), we seed the neutron star with a dynamically weak interior dipole magnetic field that extends into the stellar exterior. At $t=t_B$ the exterior has a low density atmosphere with constant plasma parameter $\\beta\\equiv P_{\\rm gas}/P_{\\rm mag}$. Varying $\\beta$ at $t_B$ in the exterior from $0.1$ to $0.01$, we find that at a time $\\sim 4000{\\rm M} \\sim 100(M_{\\rm NS}/1.4M_\\odot)$ms [M is the total (ADM) mass] following the onset of accretion of tidally disrupted debris, magnetic winding above the remnant black hole poles builds up the magnetic field sufficiently to launch a mildly relativistic, collimated outflow - an incipient jet. The duration of the accretion and the lifetime of the jet is $\\Delta t\\sim 0.5(M_{\\rm NS}/1.4M_\\odot)$s. Our simulations furnish the first explicit examples in GRMHD which show that a jet can emerge following a black hole - neutron star merger.
Relativistic simulations of black hole-neutron star coalescence: the jet emerges
Vasileios Paschalidis; Milton Ruiz; Stuart L. Shapiro
2015-06-10T23:59:59.000Z
We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of a binary black hole-neutron star on a quasicircular orbit that undergoes merger. The binary mass ratio is 3:1, the black hole initial spin parameter $a/m=0.75$ ($m$ is the black hole Christodoulou mass) aligned with the orbital angular momentum, and the neutron star is an irrotational $\\Gamma=2$ polytrope. About two orbits prior to merger (at time $t=t_B$), we seed the neutron star with a dynamically weak interior dipole magnetic field that extends into the stellar exterior. At $t=t_B$ the exterior has a low-density atmosphere with constant plasma parameter $\\beta\\equiv P_{\\rm gas}/P_{\\rm mag}$. Varying $\\beta$ at $t_B$ in the exterior from $0.1$ to $0.01$, we find that at a time $\\sim 4000{\\rm M} \\sim 100(M_{\\rm NS}/1.4M_\\odot)$ms [M is the total (ADM) mass] following the onset of accretion of tidally disrupted debris, magnetic winding above the remnant black hole poles builds up the magnetic field sufficiently to launch a mildly relativistic, collimated outflow - an incipient jet. The duration of the accretion and the lifetime of the jet is $\\Delta t\\sim 0.5(M_{\\rm NS}/1.4M_\\odot)$s. Our simulations furnish the first explicit examples in GRMHD which show that a jet can emerge following a black hole - neutron star merger.
Longitudinal Wave Propagation in Relativistic Two-fluid Plasmas around Reissner-Nordstrom Black Hole
Md. Atiqur Rahman
2010-11-28T23:59:59.000Z
The 3+1 spacetime formulation of general relativity is used to investigate the transverse waves propagating in a plasma influenced by the gravitational field of Reissner-Nordstrom black hole, as explained in an earlier paper, to take account of relativistic effects due to the event horizon. Here, a local approximation is used to investigate the one-dimensional radial propagation of longitudinal waves. We derive the dispersion relation for these waves and solve it numerically for the wave number k.
Thin shell wormhole due to dyadosphere of a charged black hole
F. Rahaman; M. Kalam; K A Rahman
2008-06-09T23:59:59.000Z
To explain Gamma Ray Bursts, Ruffini argued that the event horizon of a charged black hole is surrounded by a special region called, the Dyadosphere where electric field exceeds the critical value for $e^+$ $e^-$ pair production. In the present work, we construct a thin shell wormhole by performing a thought surgery between two dadospheres. Several physical properties of this thin shell wormhole have been analyzed.
A turbulence-driven model for heating and acceleration of the fast wind in coronal holes
Verdini, A; Matthaeus, W H; Oughton, S; Dmitruk, P
2009-01-01T23:59:59.000Z
A model is presented for generation of fast solar wind in coronal holes, relying on heating that is dominated by turbulent dissipation of MHD fluctuations transported upwards in the solar atmosphere. Scale-separated transport equations include large-scale fields, transverse Alfvenic fluctuations, and a small compressive dissipation due to parallel shears near the transition region. The model accounts for proton temperature, density, wind speed, and fluctuation amplitude as observed in remote sensing and in situ satellite data.
Wind tunnel calibration of 5-hole pressure probes for application to wind turbines
Fingersh, L.J.; Robinson, M.C.
1998-05-01T23:59:59.000Z
A method to quantify the local inflow vector on a rotating turbine blade using a 5-hole static pressure probe was developed at the National Wind Technology Center. The technique permits quantification of dynamic pressure, angle-of-attack and cross-flow-angle to magnitudes of {+-} 40{degree} in any inflow direction parallel to the probe centerline. A description of the static and dynamic calibration procedure, iteration sequence for data reduction, and field results are included.
Spontaneous quantum emission from analog white holes in a nonlinear optical medium
Stefano Finazzi; Iacopo Carusotto
2014-07-21T23:59:59.000Z
We use a microscopic quantum optical model to compute the spectrum of quantum vacuum emission from strong laser pulses propagating in nonlinear optical media. Similarities and differences with respect to the emission of analog white holes as predicted by quantum field theory in curved spacetime are highlighted. Conceptual issues related to the role played by the material dispersion and to the presence or absence of the horizon are clarified. Critical comparison with available experimental data is made.
Decay of Dirac Massive Hair in the Background of Spherical Black Hole
Rafa? Moderski; Marek Rogatko
2008-05-06T23:59:59.000Z
The intermediate and late-time behaviour of massive Dirac hair in the static spherically symmetric black hole spacetime was studied. It was revealed that the intermediate asymptotic pattern of decay of massive Dirac spinor hair is dependent on the mass of the field under consideration as well as the multiple number of the wave mode. The long-lived oscillatory tail observed at timelike infinity in the considered background decays slowly as t^{-5/6}.
ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes
Iliffe, Thomas M.
ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes: initial discoveries from+Business Media B.V. 2011 Abstract Inland blue holes of the Bahamas are anchialine ecosystems with distinct fresh and geomicrobiology exploration of blue holes are providing a first glimpse of the geochemistry and microbial life
Einstein Algebras and the Hole Argument JONATHAN BAIN
Aronov, Boris
1 Einstein Algebras and the Hole Argument JONATHAN BAIN Department of Humanities and Social@duke.poly.edu word count: 5498 #12;2 word count: 5498 Einstein Algebras and the Hole Argument ABSTRACT. Einstein. In particular, I suggest that a gauge-invariant interpretation of Einstein algebras that avoids the hole
MOTION OF ELECTRON-HOLE DROPS IN Ge
Westervelt, R.M.
2011-01-01T23:59:59.000Z
MOTION OF ELECTRON-HOLE DROPS IN Ge R. M. Westervelt, J. C.MOTION OF ELECTRON-HOLE DROPS IN Ge R. M. Westervelt, J. C.OF ELECTRON-HOLE DROPS IN Ge R M Westervelt, J C Culbertson
The Role of Primordial Kicks on Black Hole Merger Rates
Miroslav Micic; Tom Abel; Steinn Sigurdsson
2006-09-06T23:59:59.000Z
Primordial stars are likely to be very massive $\\geq30\\Msun$, form in isolation, and will likely leave black holes as remnants in the centers of their host dark matter halos in the mass range $10^{6}-10^{10}\\Ms$. Such early black holes, at redshifts z$\\gtsim10$, could be the seed black holes for the many supermassive black holes found in galaxies in the local universe. If they exist, their mergers with nearby supermassive black holes may be a prime signal for long wavelength gravitational wave detectors. We simulate formation of black holes in the center of high redshift dark matter halos and explore implications of initial natal kick velocities conjectured by some formation models. The central concentration of early black holes in present day galaxies is reduced if they are born even with moderate kicks of tens of km/s. The modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the lower mass black holes as compared to those still embedded in their parent halos. Therefore, merger rates may be reduced by more than an order of magnitude. Using analytical and illustrative cosmological N--body simulations we quantify the role of natal kicks of black holes formed from massive metal free stars on their merger rates with supermassive black holes in present day galaxies. Our results also apply to black holes ejected by the gravitational slingshot mechanism.
On Space-Time Singularities, Holes, and Extensions
Manchak, John
On Space-Time Singularities, Holes, and Extensions John Byron Manchak*y Here, we clarify the relationship among three space-time conditions of interest: geodesic completeness, hole. In what follows, we consider three space-time conditions of interest: geodesic completeness, hole
Adrian C. Ottewill; Peter Taylor
2010-10-19T23:59:59.000Z
We calculate the renormalized vacuum polarization and stress tensor for a massless, arbitrarily coupled scalar field in the Hartle-Hawking vacuum state on the horizon of a Schwarzschild black hole threaded by an infinte straight cosmic string. This calculation relies on a generalized Heine identity for non-integer Legendre functions which we derive without using specific properties of the Legendre functions themselves.
Yves Decanini; Antoine Folacci; Mohamed Ould El Hadj
2015-06-30T23:59:59.000Z
With in mind the possibility to test massive gravity in the context of black hole physics, we consider the radiation produced by a particle plunging from slightly below the innermost stable circular orbit into a Schwarzschild black hole. In order to circumvent the difficulties associated with black hole perturbation theory in massive gravity, we use a toy model where we replace the graviton field by a massive scalar field and consider a linear coupling between the particle and this field. We compute the waveform generated by the plunging particle and study its spectral content. This permits us to highlight and interpret some important effects occurring in the plunge regime which are not present for massless fields such as (i) the decreasing and vanishing, as the mass parameter increases, of the signal amplitude generated when the particle moves on quasicircular orbits near the innermost stable circular orbit and (ii) in addition to the excitation of the quasinormal modes, the excitation of the quasibound states of the black hole.
Miskovic, Olivera; Olea, Rodrigo [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile) and Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Golm (Germany); Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile)
2011-01-15T23:59:59.000Z
Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.
A Maxwell field minimally coupled to torsion
Nikodem J. Poplawski
2011-08-31T23:59:59.000Z
We consider the Lagrangian density for a free Maxwell field, in which the electromagnetic field tensor minimally couples to the affine connection, in the Einstein-Cartan-Sciama-Kibble theory of gravity. We derive the formulae for the torsion and electromagnetic field tensors in terms of the electromagnetic potential. The divergence of the magnetic field does not vanish: the photon-torsion coupling acts like an effective magnetic monopole density. Such a coupling, which breaks U(1) gauge invariance, is significant only at extremely high energies existing in the very early Universe or inside black holes. It may, however, provide a mechanism for Dirac's quantization of electric charge.
Remote down-hole well telemetry
Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)
2004-07-20T23:59:59.000Z
The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.
Black hole formation in the early universe
Latif, M A; Schmidt, W; Niemeyer, J
2013-01-01T23:59:59.000Z
Supermassive black holes with up to a $\\rm 10^{9}~M_{\\odot}$ dwell in the centers of present-day galaxies, and their presence has been confirmed at z $\\geq$ 6. Their formation at such early epochs is still an enigma. Different pathways have been suggested to assemble supermassive black holes in the first billion years after the Big Bang. Direct collapse has emerged as a highly plausible scenario to form black holes as it provides seed masses of $\\rm 10^{5}-10^{6}~M_{\\odot}$. Gravitational collapse in atomic cooling haloes with virial temperatures T$_{vir} \\geq 10^{4}$~K may lead to the formation of massive seed black holes in the presence of an intense background UV flux. Turbulence plays a central role in regulating accretion and transporting angular momentum. We present here the highest resolution cosmological large-eddy simulations to date which track the evolution of high-density regions on scales of $0.25$~AU beyond the formation of the first peak, and study the impact of subgrid-scale turbulence. The pe...
Vector particles tunneling from BTZ black holes
Ge-Rui Chen; Shiwei Zhou; Yong-Chang Huang
2014-09-21T23:59:59.000Z
In this paper we investigate vector particles' Hawking radiation from a BTZ black hole. By applying the WKB approximation and the Hamilton-Jacobi Ansatz to the Proca equation, we obtain the tunneling spectrum of vector particles. The expected Hawking temperature is recovered.
Deep-hole drilling Fruit Flies & Zebrafish
Li, Yi
surface to purify air, employing existing technology in a new way. It is the brainchild of artistFEATURE Deep-hole drilling Fruit Flies & Zebrafish BjÃ¶rk FEATURE Academics & Industry: ResearchIScOvER mAGAZInE discover@sheffield.ac.uk Research and Innovation Services University of Sheffield New
Horizon structure of rotating Einstein-Born-Infeld black holes and shadow
Atamurotov, Farruh; Ahmedov, Bobomurat
2015-01-01T23:59:59.000Z
We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity ($\\beta \\rightarrow \\infty$). We find that for a given $\\beta$, mass $M$ and charge $Q$, there exist critical spinning parameter $a_{E}$ and $r_{H}^{E}$, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and $a_{E}$ decreases and $r_{H}^{E}$ increases with increase in the Born-Infeld parameter $\\beta$. While $aEinstein-Born-Infeld black hole with outer and inner horizons. Similarly, the effect of $\\beta$ on infinite redshift surface and in turn on ergoregion is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational field. We also investigate the shadow cast by the non-rotating ($a=0$) Einstein-Born-Infeld black hole and demonstrate that the null geodesic equations can be integr...
Entropy of near-extremal black holes in AdS5
Simon, Joan; Balasubramanian, Vijay; de Boer, Jan; Jejjala, Vishnu; Simon, Joan
2007-07-24T23:59:59.000Z
We construct the microstates of near-extremal black holes in AdS_5 x S5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS_3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS_2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities.
Gravitational Lensing by Kerr-Sen Dilaton-Axion Black Hole in the Weak Deflection Limit
Gyulchev, G. N. [Department of Physics, Biophysics and Roentgenology, Faculty of Medicine, St. Kliment Ohridski, University of Sofia, 1 Kozyak str., 1407 Sofia (Bulgaria); Yazadjiev, S. S. [Department of Theoretical Physics, Faculty of Physics, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia (Bulgaria)
2010-11-25T23:59:59.000Z
We investigate analytically gravitational lensing by charged, stationary, axially symmetric Kerr-Sen dilaton-axion black hole in the weak deflection limit. Approximate solutions to the lightlike equations of motion are present up to and including third-order terms in M/b, a/b and r{sub {alpha}}/b, where M is the black hole mass, a is the angular momentum, r{sub {alpha}}= Q{sup 2}/M,Q being the charge and b is the impact parameter of the light ray. We compute the positions of the two weak field images up to post-Newtonian order. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly with the increase of the charge. The lensing observables are compared to these characteristics for particular cases as Schwarzschild and Kerr black holes as well as the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole.
Dynamical formation and evolution of (2+1)-dimensional charged black holes
Dong-il Hwang; Hongbin Kim; Dong-han Yeom
2012-02-13T23:59:59.000Z
In this paper, we investigate the dynamical formation and evolution of 2 + 1-dimensional charged black holes. We numerically study dynamical collapses of charged matter fields in an anti de Sitter background and note the formation of black holes using the double-null formalism. Moreover, we include re-normalized energy-momentum tensors assuming the S-wave approximation to determine thermodynamical back-reactions to the internal structures. If there is no semi-classical effects, the amount of charge determines the causal structures. If the charge is sufficiently small, the causal structure has a space-like singularity. However, as the charge increases, an inner Cauchy horizon appears. If we have sufficient charge, we see a space-like outer horizon and a time-like inner horizon, and if we give excessive charge, black hole horizons disappear. We have some circumstantial evidences that weak cosmic censorship is still satisfied, even for such excessive charge cases. Also, we confirm that there is mass inflation along the inner horizon, although the properties are quite different from those of four-dimensional cases. Semi-classical back-reactions will not affect the outer horizon, but they will affect the inner horizon. Near the center, there is a place where negative energy is concentrated. Thus, charged black holes in three dimensions have two types of curvature singularities in general: via mass inflation and via a concentration of negative energy. Finally, we classify possible causal structures.
Blade tip clearance effect on the performance and flow field of a three stage axial turbine
Abdel-Fattah, Sharef Aly
2003-01-01T23:59:59.000Z
The effect of a 1.5 % blade tip clearance on a rotating three stage turbine under different operating points was investigated using radially and circumferentially traversed five hole pressure probes. The probes were used to obtain flow field total...
Improved methods for simulating nearly extremal binary black holes
Mark A. Scheel; Matthew Giesler; Daniel A. Hemberger; Geoffrey Lovelace; Kevin Kuper; Michael Boyle; Bela Szilagyi; Lawrence E. Kidder
2014-12-04T23:59:59.000Z
Astrophysical black holes could be nearly extremal (that is, rotating nearly as fast as possible); therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass $m$ and spin $S$ exceeding the Bowen-York limit of $S/m^2=0.93$. We present improved methods that enable us to simulate merging, nearly extremal black holes more robustly and more efficiently. We use these methods to simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has $S/m^2=0.99$. We also use these methods to simulate a non-precessing binary black hole coalescence, where both black holes have $S/m^2=0.994$, nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; we compare the evolution of the black-hole masses and spins with analytic predictions; and we explore the effect of increasing spin magnitude on the orbital dynamics (the so-called "orbital hangup" effect).
Electric field induced spin-polarized current
Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng
2006-05-02T23:59:59.000Z
A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.
Acoustic clouds: standing sound waves around a black hole analogue
Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu
2015-01-28T23:59:59.000Z
Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.
Acoustic clouds: standing sound waves around a black hole analogue
Benone, Carolina L; Herdeiro, Carlos; Radu, Eugen
2014-01-01T23:59:59.000Z
Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.
Predictability in Quantum Gravity and Black Hole Evaporation
J. W. Moffat
1993-12-09T23:59:59.000Z
A possible resolution of the information loss paradox for black holes is proposed in which a phase transition occurs when the temperature of an evaporating black hole equals a critical value, $T_c$, and Lorentz invariance and diffeomorphism invariance are spontaneously broken. This allows a generalization of Schr\\"odinger's equation for the quantum mechanical density matrix, such that a pure state can evolve into a mixed state, because in the symmetry broken phase the conservation of energy-momentum is spontaneously violated. TCP invariance is also spontaneously broken together with time reversal invariance, allowing the existence of white holes, which are black holes moving backwards in time. Domain walls would form which separate the black holes and white holes (anti-black holes) in the broken symmetry regime, and the system could evolve into equilibrium producing a balance of information loss and gain.
Quasinormal modes of self-dual warped AdS{sub 3} black hole in topological massive gravity
Li Ran; Ren Jirong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu (China); Institute of Theoretical Physics, Lanzhou University, Lanzhou, 730000, Gansu (China)
2011-03-15T23:59:59.000Z
We consider the scalar, vector and spinor field perturbations in the background of self-dual warped AdS{sub 3} black hole of topological massive gravity. The corresponding exact expressions for quasinormal modes are obtained by analytically solving the perturbation equations and imposing the vanishing Dirichlet boundary condition at asymptotic infinity. It is expected that the quasinormal modes agree with the poles of retarded Green's functions of the CFT dual to self-dual warped AdS{sub 3} black hole. Our results provide a quantitative test of the warped AdS/CFT correspondence.
Tools Developed to Prepare and Stabilize Reactor Spent Fuel for Retrieval from Tile Holes - 12251
Horne, Michael; Clough, Malcolm [Atomic Energy of Canada Limited (Canada)
2012-07-01T23:59:59.000Z
Spent fuel from the Chalk River Laboratories (CRL) nuclear reactors is stored in the waste management areas on site. This fuel is contained within carbon steel spent fuel cans that are stored inside vertical carbon steel lined concrete pipes in the ground known as tile holes. The fuel cans have been stored in the tile holes for greater than 30 years. Some of the fuel cans have experienced corrosion which may have affected their structural integrity as well as the potential to form hydrogen gas. In addition to these potential hazards, there was a need to clean contaminated surfaces inside of and around the exposed upper surface of the tile holes. As part of the site waste management remediation plan spent fuel will be retrieved from degraded tile holes, dried, and relocated to a new purpose built above ground storage facility. There have been a number of tools that are required to be developed to ensure spent fuel cans are in a safe condition prior to retrieval and re-location. A series of special purpose tools have been designed and constructed to stabilize the contents of the tile holes, to determine the integrity of the fuel containers and to decontaminate inside and around the tile holes. Described herein are the methods and types of tools used. Tools that have been presented here have been used, or will be used in the near future, in the waste management areas of the CRL Site in preparation for storage of spent fuel in a new above ground facility. The stabilization tools have been demonstrated on mock-up facilities prior to successful use in the field to remove hydrogen gas and uranium hydrides from the fuel cans. A lifting tool has been developed and used successfully in the field to confirm the integrity of the fuel cans for future relocation. A tool using a commercial dry ice blaster has been developed and is ready to start mock-up trials and is scheduled to be used in the field during the summer of 2012. (authors)
The Role of Primordial Kicks on Black Hole Merger Rates
Miroslav Micic; Tom Abel; Steinn Sigurdsson
2006-09-15T23:59:59.000Z
Primordial stars are likely to be very massive >30 Msun, form in isolation, and will likely leave black holes as remnants in the centers of their host dark matter halos. We expect primordial stars to form in halos in the mass range 10^6-10^10 Msun. Some of these early black holes, formed at redshifts z>10, could be the seed black hole for a significant fraction of the supermassive black holes found in galaxies in the local universe. If the black hole descendants of the primordial stars exist, their mergers with nearby supermassive black holes may be a prime candidate for long wavelength gravitational wave detectors. We simulate formation and evolution of dark matter halos in LambdaCDM universe. We seed high-redshift dark matter halos with early black holes, and explore the merger history of the host halos and the implications of black hole's kick velocities arising from their coalescence. The central concentration of low mass early black holes in present day galaxies is reduced if they experience even moderate kicks of tens of km/s. Even such modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the low mass black holes that were ejected, compared to those still embedded in their parent halos. Therefore, merger rates with central supermassive black holes in the largest halos may be reduced by more than an order of magnitude. Using analytical and illustrative cosmological N-body simulations, we quantify the role of kicks on the merger rates of black holes formed from massive metal free stars with supermassive black holes in present day galaxies.
Brunetto Marco Ziosi; Michela Mapelli; Marica Branchesi; Giuseppe Tormen
2014-05-20T23:59:59.000Z
In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Zsun). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 Msun), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10^-3-10^7 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.
Application of spectral hole burning to the study of in vitro cellular systems
Milanovich, Nebojsa
1999-11-08T23:59:59.000Z
Chapter 1 of this thesis describes the various stages of tumor development and a multitude of diagnostic techniques used to detect cancer. Chapter 2 gives an overview of the aspects of hole burning spectroscopy important for its application to the study of cellular systems. Chapter 3 gives general descriptions of cellular organelles, structures, and physical properties that can serve as possible markers for the differentiation of normal and cancerous cells. Also described in Chapter 3 are the principles of cryobiology important for low temperature spectroscopy of cells, characterization of MCF-10F (normal) and MCF-7 (cancer) cells lines which will serve as model systems, and cellular characteristics of aluminum phthalocyanine tetrasulfonate (APT), which was used as the test probe. Chapters 4 and 5 are previously published papers by the author pertaining to the results obtained from the application of hole burning to the study of cellular systems. Chapter 4 presents the first results obtained by spectral hole burning of cellular systems and Chapter 5 gives results for the differentiation of MCF-10F and MCF-7 cells stained with APT by an external applied electric (Stark) field. A general conclusion is presented in Chapter 6. Appendices A and B provide additional characterization of the cell/probe model systems. Appendix A describes the uptake and subcellular distribution of APT in MCF-10F and MCF-7 cells and Appendix B compares the hole burning characteristics of APT in cells when the cells are in suspension and when they are examined while adhering to a glass coverslip. Appendix C presents preliminary results for a novel probe molecule, referred to as a molecular thumbtack, designed by the authors for use in future hole burning applications to cellular systems.
The hydraulic jump as a white hole
G. E. Volovik
2005-10-21T23:59:59.000Z
In the geometry of the circular hydraulic jump, the velocity of the liquid in the interior region exceeds the speed of capillary-gravity waves (ripplons), whose spectrum is `relativistic' in the shallow water limit. The velocity flow is radial and outward, and thus the relativistic ripplons cannot propagating into the interior region. In terms of the effective 2+1 dimensional Painleve-Gullstrand metric appropriate for the propagating ripplons, the interior region imitates the white hole. The hydraulic jump represents the physical singularity at the white-hole horizon. The instability of the vacuum in the ergoregion inside the circular hydraulic jump and its observation in recent experiments on superfluid 4He by E. Rolley, C. Guthmann, M.S. Pettersen and C. Chevallier in physics/0508200 are discussed.
Formation and Evolution of Galactic Black Holes
F. Combes
2002-08-06T23:59:59.000Z
The main requirements for fueling an active galactic nucleus and to form massive black holes are reviewed. Low-luminosity AGN can be fueled easily from the local star clusters, near the nucleus, and the various stellar processes are described. Above a certain luminosity (and therefore accretion rate) large-scale gas flows from galactic scales are required. These can be driven by gravity torques of non-axisymmetric perturbations, such as bars, spirals, galaxy interactions. Observational evidence that these mechanisms are in action is found for high enough luminosities. It is very frequent that starbursts are also triggered through the same mechanisms, and the dense nuclear star clusters formed provide fuel for the AGN over a longer time-scale. Secular internal evolution and more violent evolution through interactions and mergers contribute to grow both a massive black hole and a bulge, and this could explain the observed proportionality relation between the mass of these two components.
Slant hole completion test. Final report
Mann, R.L.
1993-07-01T23:59:59.000Z
One of the Department of Energy`s (DOE) Strategies and Objectives in the Natural Gas Program is to conduct activities to transfer technology from R&D programs to potential users. The Slant Hole Completion Test has achieved exactly this objective. The Slant Hole site is essentially the same as the Multiwell site and is located in the southeastern portion of the Piceance Basin near Rifle, Colorado. The Piceance Basin is typical of the Western low permeability basins that contain thick sequences of sands, silts and coals deposited during the Cretaceous period. These sequences contain vast amounts of natural gas but have proven to be resistant to commercial production because of the low permeability of the host rocks. Using the knowledge gained from the DOE`s earlier Multiwell experiment, the SHCT-1 was drilled to demonstrate that by intersecting the natural fractures found in these ``tight rocks,`` commercial gas production can be obtained.
Phase Structure of Higher Spin Black Holes
Abhishek Chowdhury; Arunabha Saha
2015-02-12T23:59:59.000Z
We revisit the study of the phase structure of higher spin black holes carried out in arXiv$:1210.0284$ using the "canonical formalism". In particular we study the low as well as high temperature regimes. We show that the Hawking-Page transition takes place in the low temperature regime. The thermodynamically favoured phase changes from conical surplus to black holes and then again to conical surplus as we increase temperature. We then show that in the high temperature regime the diagonal embedding gives the appropriate description. We also give a map between the parameters of the theory near the IR and UV fixed points. This makes the "good" solutions near one end map to the "bad" solutions near the other end and vice versa.
Quantized black holes, their spectrum and radiation
Khriplovich, I. B. [Budker Institute of Nuclear Physics (Russian Federation)], E-mail: khriplovich@inp.nsk.su
2008-04-15T23:59:59.000Z
Under quite natural general assumptions, the following results are obtained. The maximum entropy of a quantized surface is demonstrated to be proportional to the surface area in the classical limit. The general structure of the horizon spectrum is found. In the special case of loop quantum gravity, the value of the Barbero-Immirzi parameter is found. The discrete spectrum of thermal radiation of a black hole fits the Wien profile. The natural widths of the lines are much smaller than the distances between them. The total intensity of the thermal radiation is estimated. If the density of quantized primordial black holes is close to the present upper limit on the dark-matter density in our Solar system, the sensitivity of modern detectors is close to that necessary for detecting this radiation.
Galactic Dark Matter in the Phantom Field
Li, Ming-Hsun
2012-01-01T23:59:59.000Z
We investigate the possibility that the galactic dark matter exists in the phantom field responsible for the dark energy. We obtain the statically and spherically exact solution for this kind of the galaxy system with a supermassive black hole at its center. The solution of the metric functions is satisfied with $g_{tt} = - g_{rr}^{-1}$. Constrained by the observation of the rotational stars moving in circular orbits with nearly constant tangential speed in a spiral galaxy, the background of the phantom field which is spatially inhomogeneous has an exponential potential. The absorption cross section of the low-energy $S$-wave excitations, arising from the phantom dark energy, into the central black hole is shown to be the horizontal area of the central black hole. Because the infalling phantom particles have a total negative energy, the accretion of the phantom energy is companied with the decrease of the black hole mass which is estimated to be much less than a solar mass in the lifetime of the Universe. Usi...
AnalyzeHOLE: An Integrated Wellbore Flow Analysis Tool
Keith J. Halford
2009-10-01T23:59:59.000Z
Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically displaying pertinent results.
Charged Cylindrical Black Holes in Conformal Gravity
Jackson Levi Said; Joseph Sultana; Kristian Zarb Adami
2013-01-04T23:59:59.000Z
Considering cylindrical topology we present the static solution for a charged black hole in conformal gravity. We show that unlike the general relativistic case there are two different solutions, both including a factor that when set to zero recovers the familiar static charged black string solution in Einstein's theory. This factor gives rise to a linear term in the potential that also features in the neutral case and may have significant ramifications for particle trajectories.
Are Ultra Long Gamma Ray Bursts powered by a black hole spinning down?
Nathanail, Antonios
2015-01-01T23:59:59.000Z
Gamma-ray bursts (GRBs) are violent explosions, coming from cosmological distances. They are detected in gamma-rays (also X-rays, UV, optical, radio) almost every day, and have typical durations of a few seconds to a few minutes. Some GRBs have been reported with extraordinary duration of 10^4 sec. These are called Ultra Long GRBs. It has been debated whether these form a new distinct class of events or whether they are similar to long GRBs. According to Blandford & Znajek (1977), the spin energy of a rotating black hole can be extracted electromagnetically, should the hole be endowed with a magnetic field supported by electric currents in a surrounding disk. We argue that this can be the case for the central engines of GRBs and we show that the duration of the burst depends on the magnetic flux accumulated on the event horizon of the black hole. We thus estimate the surface magnetic field of a possible progenitor star, and we conclude that an Ultra Long GRB may originate from a progenitor star with a rel...
Scanning Tunneling Macroscopy, Black Holes, and AdS/CFT Bulk Locality
Soo-Jong Rey; Vladimir Rosenhaus
2014-06-02T23:59:59.000Z
We establish resolution bounds on reconstructing a bulk field from boundary data on a timelike hypersurface. If the bulk only supports propagating modes, reconstruction is complete. If the bulk also supports evanescent modes, local reconstruction is not achievable unless one has exponential precision in knowledge of the boundary data. Without exponential precision, for a Minkowski bulk, one can reconstruct a spatially coarse-grained bulk field, but only out to a depth set by the coarse-graining scale. For an asymptotically AdS bulk, reconstruction is limited to a spatial coarse-graining proper distance set by the AdS scale. AdS black holes admit evanescent modes. We study the resolution bound in the large AdS black hole background and provide a dual CFT interpretation. Our results demonstrate that, if there is a black hole of any size in the bulk, then sub-AdS bulk locality is no longer well-encoded in boundary data in terms of local CFT operators. Specifically, in order to probe the bulk on sub-AdS scales using only boundary data in terms of local operators, one must either have such data to exponential precision or make further assumptions about the bulk state.
Myers-Perry black holes with scalar hair and a mass gap
Yves Brihaye; Carlos Herdeiro; Eugen Radu
2014-08-24T23:59:59.000Z
We construct a family of asymptotically flat, rotating black holes with scalar hair and a regular horizon, within five dimensional Einstein's gravity minimally coupled to a complex, massive scalar field doublet. These solutions are supported by rotation and have no static limit. They are described by their mass $M$, two equal angular momenta $J_1=J_2\\equiv J$ and a conserved Noether charge $Q$, measuring the scalar hair. For vanishing horizon size the solutions reduce to five dimensional boson stars. In the limit of vanishing Noether charge density, the scalar field becomes point-wise arbitrarily small and the geometry becomes, locally, arbitrarily close to that of a specific set of Myers-Perry black holes (MPBHs); but there remains a global difference with respect to the latter, manifest in a finite mass gap. Thus, the scalar hair never becomes a linear perturbation of MPBHs. This is a qualitative difference when compared to Kerr black holes with scalar hair~\\cite{Herdeiro:2014goa}. Whereas the existence of the latter can be anticipated in linear theory, from the existence of scalar bound states on the Kerr geometry (i.e. scalar clouds), the hair of these MPBHs is intrinsically non-linear.
Noncommutative Inspired Black Holes in Extra Dimensions
Rizzo, Thomas G.
2006-06-07T23:59:59.000Z
In a recent string theory motivated paper, Nicolini, Smailagic and Spallucci (NSS) presented an interesting model for a noncommutative inspired, Schwarzschild-like black hole solution in 4-dimensions. The essential effect of having noncommutative co-ordinates in this approach is to smear out matter distributions on a scale associated with the turn-on of noncommutativity which was taken to be near the 4-d Planck mass. In particular, NSS assumed that this smearing was essentially Gaussian. This energy scale is sufficiently large that in 4-d such effects may remain invisible indefinitely. Extra dimensional models which attempt to address the gauge hierarchy problem, however, allow for the possibility that the effective fundamental scale may not be far from {approx} 1 TeV, an energy regime that will soon be probed by experiments at both the LHC and ILC. In this paper we generalize the NSS model to the case where flat, toroidally compactified extra dimensions are accessible at the TeV-scale and examine the resulting modifications in black hole properties due to the existence of noncommutativity. We show that while many of the noncommutativity-induced black hole features found in 4-d by NSS persist, in some cases there can be significant modifications due the presence of extra dimensions. We also demonstrate that the essential features of this approach are not particularly sensitive to the Gaussian nature of the smearing assumed by NSS.
Shuang-Qing Wu
2009-09-01T23:59:59.000Z
The aim of this paper is to investigate the separability of a spin-1/2 spinor field in a five-dimensional rotating, charged black hole constructed by Cvetic and Youm in string theory, in the case when three U(1) charges are set equal. This black hole solution represents a natural generalization of the famous four-dimensional Kerr-Newman solution to five dimensions with the inclusion of a Chern-Simons term to the Maxwell equation. It is shown that the usual Dirac equation can not be separated by variables in this general spacetime with two independent angular momenta. However if one supplements an additional counterterm into the usual Dirac operator, then the modified Dirac equation for the spin-1/2 spinor particles is separable in this rotating, charged Einstein-Maxwell-Chern-Simons black hole background geometry. A first-order symmetry operator that commutes with the modified Dirac operator has exactly the same form as that previously found in the uncharged Myers-Perry black hole case. It is expressed in terms of a rank-three totally antisymmetric tensor and its covariant derivative. This tensor obeys a generalized Killing-Yano equation and its square is a second-order symmetric Stackel-Killing tensor admitted by the five-dimensional rotating, charged black hole spacetime.
Non-linear Plasma Wake Growth of Electron Holes
Hutchinson, I H; Zhou, C
2015-01-01T23:59:59.000Z
An object's wake in a plasma with small Debye length that drifts \\emph{across} the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind wake and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable...
Approximate Killing Fields as an Eigenvalue Problem
Christopher Beetle
2008-08-12T23:59:59.000Z
Approximate Killing vector fields are expected to help define physically meaningful spins for non-symmetric black holes in general relativity. However, it is not obvious how such fields should be defined geometrically. This paper relates a definition suggested recently by Cook and Whiting to an older proposal by Matzner, which seems to have been overlooked in the recent literature. It also describes how to calculate approximate Killing fields based on these proposals using an efficient scheme that could be of immediate practical use in numerical relativity.
Eight powers of ten: similarities in black hole accretion on all mass scales
Rob Fender; Elmar Koerding; Tomaso Belloni; Phil Uttley; Ian McHardy; Tasso Tzioumis
2007-06-26T23:59:59.000Z
In this paper we discuss the recent advances in the quantitative comparison of accretion, and the accretion:jet coupling, in accreting black holes in both X-ray binaries (where M ~ 10Msun) and Active Galactic Nuclei (10^5Msun < M < 10^9Msun). These similarities include the radiative efficiency and jet power as a function of accretion rate, which are themselves probably the origin of the `fundamental plane of black hole activity'. A second `fundamental plane' which connects mass, accretion rate and timing properties provides us with a further physical diagnostic. Patterns of radio loudness (i.e. jet production) as a function of luminosity and accretion state are shown to be similar for X-ray binaries and AGN. Finally we discuss how neutron stars are a useful control sample, and what the future may hold for this field.
Comment on "Cyclotron resonance study of the electron and hole velocity in graphene monolayers"
S. C. Tiwari
2007-05-26T23:59:59.000Z
In this comment it is pointed out that the electron velocity of the same order as observed in graphene had been measured in GaAs submicron devices long ago. Particle- antiparticle asymmetry related with electron and hole effective masses in graphene seems puzzling as hole in a condensed matter system cannot be treated as anti-electron. It is argued that there should be a universal electrodynamics for QHE and superconductivity. In this context attention is drawn to the new approach based on massless electron and the interpretation that magnetic field represents angular momentum of the photon fluid. Measurement of electron velocity in graphene and GaAs in parallel is suggested for testing the massless electrodynamics.
Quasi-hole solutions in finite noncommutative Maxwell-Chern-Simons theory
Jules Lambert; M. B. Paranjape
2007-05-15T23:59:59.000Z
We study Maxwell-Chern-Simons theory in 2 noncommutative spatial dimensions and 1 temporal dimension. We consider a finite matrix model obtained by adding a linear boundary field which takes into account boundary fluctuations. The pure Chern-Simons has been previously shown to be equivalent to the Laughlin description of the quantum Hall effect. With the addition of the Maxwell term, we find that there exists a rich spectrum of excitations including solitons with nontrivial "magnetic flux" and quasi-holes with nontrivial "charges", which we describe in this article. The magnetic flux corresponds to vorticity in the fluid fluctuations while the charges correspond to sources of fluid fluctuations. We find that the quasi-hole solutions exhibit a gap in the spectrum of allowed charge.
Universality of high-energy absorption cross sections for black holes
Decanini, Yves [Equipe Physique Theorique, SPE, UMR 6134 du CNRS et de l'Universite de Corse, Universite de Corse, Faculte des Sciences, B.P. 52, F-20250 Corte (France); Esposito-Farese, Gilles [GReCO, Institut d'Astrophysique de Paris, UMR 7095 du CNRS et de l'Universite Pierre et Marie Curie-Paris 6, 98bis boulevard Arago, F-75014 Paris (France); Folacci, Antoine [Equipe Physique Theorique, SPE, UMR 6134 du CNRS et de l'Universite de Corse, Universite de Corse, Faculte des Sciences, B.P. 52, F-20250 Corte (France); Centre de Physique Theorique, UMR 6207 du CNRS et des Universites Aix-Marseille 1 et 2 et de l'Universite du Sud Toulon-Var, CNRS-Luminy Case 907, F-13288 Marseille (France)
2011-02-15T23:59:59.000Z
We consider the absorption problem for a massless scalar field propagating in static and spherically symmetric black holes of arbitrary dimension endowed with a photon sphere. For this wide class of black holes, we show that the fluctuations of the high-energy absorption cross section are totally and very simply described from the properties (dispersion relation and damping) of the waves trapped near the photon sphere and therefore, in the eikonal regime, from the characteristics (orbital period and Lyapunov exponent) of the null unstable geodesics lying on the photon sphere. This is achieved by using Regge pole techniques. They permit us to make an elegant and powerful resummation of the absorption cross section and to extract then all the physical information encoded in the sum over the partial wave contributions. Our analysis induces moreover some consequences concerning Hawking radiation which we briefly report.
Scattering of Sound Waves by a Canonical Acoustic Hole
Sam R. Dolan; Ednilton S. Oliveira; Luís C. B. Crispino
2009-04-06T23:59:59.000Z
This is a study of a monochromatic planar perturbation impinging upon a canonical acoustic hole. We show that acoustic hole scattering shares key features with black hole scattering. The interference of wavefronts passing in opposite senses around the hole creates regular oscillations in the scattered intensity. We examine this effect by applying a partial wave method to compute the differential scattering cross section for a range of incident wavelengths. We demonstrate the existence of a scattering peak in the backward direction, known as the glory. We show that the glory created by the canonical acoustic hole is approximately 170 times less intense than the glory created by the Schwarzschild black hole, for equivalent horizon-to-wavelength ratios. We hope that direct experimental observations of such effects may be possible in the near future.
Method and apparatus of assessing down-hole drilling conditions
Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)
2007-04-24T23:59:59.000Z
A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.
Connecting horizon pixels and interior voxels of a black hole
Piero Nicolini; Douglas Singleton
2014-10-03T23:59:59.000Z
In this paper we discuss to what extent one can infer details of the interior structure of a black hole based on its horizon. Recalling that black hole thermal properties are connected to the non-classical nature of gravity, we circumvent the restrictions of the no hair theorem by postulating that the black hole interior is singularity free due to violations of the usual energy conditions. Further these conditions allow one to establish a one-to-one, holographic projection between Planckian areal "bits" on the horizon and "voxels", representing the gravitational degrees of freedom in the black hole interior. We illustrate the repercussions of this idea by discussing an example of the black hole interior consisting of a de Sitter core postulated to arise from the local graviton quantum vacuum energy. It is shown that the black hole entropy can emerge as the statistical entropy of a gas of voxels.
Articles which include chevron film cooling holes, and related processes
Bunker, Ronald Scott; Lacy, Benjamin Paul
2014-12-09T23:59:59.000Z
An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.
Optoelectronic device with nanoparticle embedded hole injection/transport layer
Wang, Qingwu (Chelmsford, MA); Li, Wenguang (Andover, MA); Jiang, Hua (Methuen, MA)
2012-01-03T23:59:59.000Z
An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.
KKW Analysis for the Dyadosphere of a Charged Black Hole
I. Radinschi
2005-11-28T23:59:59.000Z
The Keski-Vakkuri, Kraus and Wilczek (KKW) analysis is used to compute the temperature and entropy in the dyadosphere of a charged black hole solution. For our purpose we choose the dyadosphere region of the Reissner-Nordstrom black hole solution. Our results show that the expressions of the temperature and entropy in the dyadosphere of this charged black hole are not the Hawking temperature and the Bekenstein-Hawking entropy, respectively.
A mathematical simulation of horizontal drain-hole performance
Cheng, Thomas Ru-Kang
1984-01-01T23:59:59.000Z
Flow Rate Obtained From This Model and From BOSS-AIM. 22 Comparison of The Gas-Oil Ratio Obtained From This Model and From BOSS-AIM. 24 Relative Positions of Conventional Well and Horizontal Drain-Hole in Simulation Runs. . . . . 27 Comparison... of The Economic Oil Recovery Obtained From Horizontal Drain-Hole and From Conventional Well. . . . . . . 28 Comparison of The Cumulative Gas-Oil Ratio Obtained From Horizontal Drain-Hole and From Conventional Well. . . 29 Effect of Horizontal Drain...
Brownian Motion of Black Holes in Dense Nuclei
David Merritt; Peter Berczik; Frederik Laun
2006-10-18T23:59:59.000Z
We evaluate the Brownian motion of a massive particle ("black hole") at the center of a galaxy using N-body simulations. Our galaxy models have power-law central density cusps like those observed at the centers of elliptical galaxies. The simulations show that the black hole achieves a steady-state kinetic energy that is substantially different than would be predicted based on the properties of the galaxy model in the absence of the black hole. The reason appears to be that the black hole responds to stars whose velocities have themselves been raised by the presence of the black hole. Over a wide range of density slopes and black hole masses, the black hole's mean kinetic energy is equal to what would be predicted under the assumption that it is in energy equipartition with stars lying within a distance ~r_h/2 from it, where r_h is the black hole's influence radius. The dependence of the Brownian velocity on black hole mass is approximately ~ 1/M^{1/(3-gamma)} with gamma the power-law index of the stellar density profile, rho~1/r^gamma. This is less steep than the 1/M dependence predicted in a model where the effect of the black hole on the stellar velocities is ignored. The influence of a stellar mass spectrum on the black hole's Brownian motion is also evaluated and found to be consistent with predictions from Chandrasekhar's theory. We use these results to derive a probability function for the mass of the Milky Way black hole based on a measurement of its proper motion velocity. Interesting constraints on M will require a velocity resolution exceeding 0.5 km/s.
Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...
Zacharakis, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Waunita Hot Springs Geothermal Area (Zacharakis,...
Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...
search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Exploration Activity Details Location...
Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...
Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Thermal Gradient Holes Activity...
Energy Distribution of a Charged Regular Black Hole
Irina Radinschi
2000-11-20T23:59:59.000Z
We calculate the energy distribution of a charged regular black hole by using the energy-momentum complexes of Einstein and M{\\o}ller.
Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...
of core holes were drilled from 1984 to 1988 as a part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal...
Core Holes At Valles Caldera - Redondo Geothermal Area (Goff...
of core holes were drilled from 1984 to 1988 as a part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal...
Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...
Home Exploration Activity: Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...
Thermal Gradient Holes At Long Valley Caldera Geothermal Area...
Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 -...
Spectroscopy of the Einstein-Maxwell-Dilaton-Axion black hole
Deyou Chen; Haitang Yang
2012-10-03T23:59:59.000Z
The entropy spectrum of a spherically symmetric black hole was derived via the Bohr-Sommerfeld quantization rule in Majhi and Vagenas's work. Extending this work to charged and rotating black holes, we quantize the horizon area and the entropy of an Einstein-Maxwell-Dilaton-Axion (EMDA) black hole via the Bohr-Sommerfeld quantization rule and the adiabatic invariance. The result shows the area spectrum and the entropy spectrum are respectively equally spaced and independent on the parameters of the black hole.
Particle Acceleration Around 5-dimensional Kerr Black Hole
Ahmadjon Abdujabbarov; Naresh Dadhich; Bobomurat Ahmedov; Husan Eshkuvatov
2013-12-11T23:59:59.000Z
On the lines of the 4-dimensional Kerr black hole we consider the particle acceleration near a 5-dimensional Kerr black hole which has the two rotation parameters. It turns out that the center of mass energy of the two equal mass colliding particles as expected diverges for the extremal black hole and there is a symmetry in the results for $\\theta = 0, \\pi/2$. Because of the two rotation parameters, $r=0$ can be a horizon without being a curvature singularity. It is shown that the acceleration of particles to high energies near the 5-D extreme rotating black hole avoids fine-tuning of the angular momentum of particles.
Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...
(1993) Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalGr...
accreting black holes: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae. James S. Graber...
Complete single-horizon quantum corrected black hole spacetime
Peltola, Ari; Kunstatter, Gabor [Department of Physics and Winnipeg Institute for Theoretical Physics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, R3B 2E9 (Canada)
2009-03-15T23:59:59.000Z
We show that a semiclassical polymerization of the interior of Schwarzschild black holes gives rise to a tantalizing candidate for a nonsingular, single-horizon black hole spacetime. The exterior has nonzero quantum stress energy but closely approximates the classical spacetime for macroscopic black holes. The interior exhibits a bounce at a microscopic scale and then expands indefinitely to a Kantowski-Sachs spacetime. Polymerization therefore removes the singularity and produces a scenario reminiscent of past proposals for universe creation via quantum effects inside a black hole.
Exploring higher dimensional black holes at the large hadron collider.
Harris, Chris M; Palmer, M J; Parker, Michael A; Richardson, P
cross section for production of black holes not too much heavier than the fundamental Planck scale corresponds to a production rate of a few Hertz at the LHC design luminosity. In the following sections, the process of the black hole production and decay... scattering in quantum gravity, hep-th/9906038. [7] R. Emparan, G. T. Horowitz, and R. C. Myers, Exact description of black holes on branes, JHEP 01 (2000) 007, [hep-th/9911043]. [8] S. B. Giddings and S. Thomas, High energy colliders as black hole factories...
Thermal Gradient Holes At Long Valley Caldera Geothermal Area...
Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1991 - 1991 Usefulness not useful DOE-funding Unknown...
Thermal Gradient Holes At Long Valley Caldera Geothermal Area...
Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1978 - 1985 Usefulness useful DOE-funding Unknown...
Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...
Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Thermal...
Thermal Gradient Holes At North Brawley Geothermal Area (Matlick...
Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At North Brawley Geothermal Area (Matlick & Jayne, 2008) Exploration...
AdS black hole solutions in dilatonic Einstein-Gauss-Bonnet gravity
Maeda, Kei-ichi [Department of Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Ohta, Nobuyoshi [Department of Physics, Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Sasagawa, Yukinori [Department of Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan)
2011-02-15T23:59:59.000Z
We find that anti-de Sitter (AdS) spacetime with a nontrivial linear dilaton field is an exact solution in the effective action of the string theory, which is described by gravity with the Gauss-Bonnet curvature terms coupled to a dilaton field in the string frame without a cosmological constant. The AdS radius is determined by the spacetime dimensions and the coupling constants of curvature corrections. We also construct the asymptotically AdS black hole solutions with a linear dilaton field numerically. We find these AdS black holes for hyperbolic topology and in dimensions higher than four. We discuss the thermodynamical properties of those solutions. Extending the model to the case with the even-order higher Lovelock curvature terms, we also find the exact AdS spacetime with a nontrivial dilaton. We further find a cosmological solution with a bounce of three-dimensional space and a solitonic solution with a nontrivial dilaton field, which is regular everywhere and approaches an asymptotically AdS spacetime.
p-wave Holographic Superconductors from Born-Infeld Black Holes
Pankaj Chaturvedi; Gautam Sengupta
2015-01-28T23:59:59.000Z
We obtain (2+1) dimensional p-wave holographic superconductors from charged Born-Infeld black holes in the presence of massive charged vector fields in a bulk $AdS_4$ Einstein-Born-Infeld theory through the $AdS_4$-$CFT_3$ correspondence. Below a certain critical transition temperature the charged black hole develops vector hair that corresponds to charged vector condensate in the strongly coupled (2+1) dimensional boundary field theory that breaks both the $U(1)$ symmetry as well as the rotational invariance. The holographic free energy is computed for the boundary field theory which shows that the vector order parameter exhibits a rich phase structure involving zeroth order, first order, second order and retrograde phase transitions for different values of the backreaction and the Born-Infeld parameters. We numerically compute the ac conductivity for the p-wave superconducting phase of the strongly coupled (2+1) dimensional boundary field theory which also depends on the relative values of the parameters in the theory.
p-wave Holographic Superconductors from Born-Infeld Black Holes
Chaturvedi, Pankaj
2015-01-01T23:59:59.000Z
We obtain (2+1) dimensional p-wave holographic superconductors from charged Born-Infeld black holes in the presence of massive charged vector fields in a bulk $AdS_4$ Einstein-Born-Infeld theory through the $AdS_4$-$CFT_3$ correspondence. Below a certain critical transition temperature the charged black hole develops vector hair that corresponds to charged vector condensate in the strongly coupled (2+1) dimensional boundary field theory that breaks both the $U(1)$ symmetry as well as the rotational invariance. The holographic free energy is computed for the boundary field theory which shows that the vector order parameter exhibits a rich phase structure involving zeroth order, first order, second order and retrograde phase transitions for different values of the backreaction and the Born-Infeld parameters. We numerically compute the ac conductivity for the p-wave superconducting phase of the strongly coupled (2+1) dimensional boundary field theory which also depends on the relative values of the parameters in...
Dionysios Anninos; Georgios Pastras
2008-09-30T23:59:59.000Z
The local and global thermal phase structure for asymptotically anti-de Sitter black holes charged under an abelian gauge group, with both Gauss-Bonnet and quartic field strength corrections, is mapped out for all parameter space. We work in the grand canonical ensemble where the external electric potential is held fixed. The analysis is performed in an arbitrary number of dimensions, for all three possible horizon topologies - spherical, flat or hyperbolic. For spherical horizons, new metastable configurations are exhibited both for the pure Gauss-Bonnet theory as well as the pure higher derivative gauge theory and combinations thereof. In the pure Gauss-Bonnet theory with negative coefficient and five or more spatial dimensions, two locally thermally stable black hole solutions are found for a given temperature. Either one or both of them may be thermally favored over the anti-de Sitter vacuum - corresponding to a single or a double decay channel for the metastable black hole. Similar metastable configurations are uncovered for the theory with pure quartic field strength corrections, as well combinations of the two types of corrections, in three or more spatial dimensions. Finally, a secondary Hawking-Page transition between the smaller thermally favored black hole and thermal anti-de Sitter space is observed when both corrections are turned on and their couplings are both positive.
Entropy: From Black Holes to Ordinary Systems
J. P. Badiali
2005-05-11T23:59:59.000Z
Several results of black holes thermodynamics can be considered as firmly founded and formulated in a very general manner. From this starting point we analyse in which way these results may give us the opportunity to gain a better understanding in the thermodynamics of ordinary systems for which a pre-relativistic description is sufficient. First, we investigated the possibility to introduce an alternative definition of the entropy basically related to a local definition of the order in a spacetime model rather than a counting of microstates. We show that such an alternative approach exists and leads to the traditional results provided an equilibrium condition is assumed. This condition introduces a relation between a time interval and the reverse of the temperature. We show that such a relation extensively used in the black hole theory, mainly as a mathematical trick, has a very general and physical meaning here; in particular its derivation is not related to the existence of a canonical density matrix. Our dynamical approach of thermodynamic equilibrium allows us to establish a relation between action and entropy and we show that an identical relation exists in the case of black holes. The derivation of such a relation seems impossible in the Gibbs ensemble approach of statistical thermodynamics. From these results we suggest that the definition of entropy in terms of order in spacetime should be more general that the Boltzmann one based on a counting of microstates. Finally we point out that these results are obtained by reversing the traditional route going from the Schr\\"{o}dinger equation to statistical thermodynamics.
ACCRETION-JET CONNECTION IN BLACK HOLES THE ORIGIN OF STELLAR BLACK HOLES &
Maryland at College Park, University of
of a sudden drop of the hard X-rays..." ·"The particles (corona/inner disk) are blown away..." ·"Jets have Direct collapse depends on: ·Metal content ·Mass of the core ·Angular momentum Can this model be tested observationally ? #12;HOW ARE FORM BLACK HOLE BINARIES ? CORE COLLAPSE MODELS: (Fryer & Kalogera ; Woosley & Heger
Tunneling into black hole, escape from black hole, reflection from horizon and pair creation
V. V. Flambaum
2004-08-05T23:59:59.000Z
Within classical general relativity, a particle cannot reach the horizon of a black hole during a finite time, in the reference frame of an external observer; a particle inside cannot escape from a black hole; and the horizon does not produce any reflection. We argue that these processes may possibly be allowed in the quantum world. It is known that quantum mechanics allows pair creation at the horizon (one particle inside, another particle outside) and Hawking radiation. One can extend this idea to propose other processes. Tunneling of an external particle inside black hole may be produced by the creation of a pair at the horizon, followed by the annihilation of one created particle with the initial particle outside, with the other created particle appearing inside. Escape of a particle from a black hole may result from the creation of a pair, followed by the annihilation of one created particle with the particle inside, with the other created particle appearing outside. The escape may allow the transfer of information to the outside.Finally, the reflection of an external particle from the horizon may be modelled by a combination of the two processes presented above. The relationship between these "pair creation-annihilation'' mechanisms and the "horizon tunneling" calculations [1-5] is discussed.
Collective Excitations in Electron-Hole Bilayers
Kalman, G. J. [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States); Hartmann, P.; Donko, Z. [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Golden, K. I. [Department of Mathematics and Statistics and Department of Physics, University of Vermont, Burlington, Vermont 05401 (United States)
2007-06-08T23:59:59.000Z
We report a combined analytic and molecular dynamics analysis of the collective mode spectrum of a bipolar (electron-hole) bilayer in the strong coupling classical limit. A robust, isotropic energy gap is identified in the out-of-phase spectra, generated by the combined effect of correlations and of the excitation of the bound dipoles. In the in-phase spectra we identify longitudinal and transverse acoustic modes wholly maintained by correlations. Strong nonlinear generation of higher harmonics of the fundamental dipole oscillation frequency and the transfer of harmonics between different modes is observed.
The effects of fastener hole defects
Andrews, Scot D.
1991-01-01T23:59:59.000Z
) August 1991 ABSTRACT The Effects of Fastener Hole Defects. (August 1991) Scot D. Andrews, B. S. , Texas A8rM University Chair of Advisory Committee: Dr. Orden O. Ochoa The influence of drilling-induced defects, such as delamination, on the fatigue... ambient and elevated temperature wet conditions. Specimens were tested in a bearing tension frame to static failure in order to measure the failure load and to calculate pin bearing stress. From static test results, a fatigue load was selected as 66...
Down-hole periodic seismic generator
Hardee, H.C.; Hills, R.G.; Striker, R.P.
1982-10-28T23:59:59.000Z
A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
Black hole birth captured by cosmic voyeurs
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy newsVideoProductionBlack hole
Wontae Kim; Edwin J. Son; Myungseok Yoon
2008-01-09T23:59:59.000Z
We study thermodynamic quantities of an acoustic black hole and its thermodynamic stability in a cavity based on the generalized uncertainty principle. It can be shown that there is a minimal black hole which can be a stable remnant after black hole evaporation. Moreover, the behavior of the free energy shows that the large black hole is stable too. Therefore, the acoustic black hole can decay into the remnant or the large black hole.
Paul M. Alsing
2015-02-04T23:59:59.000Z
In this paper we extend the investigation of Adami and Ver Steeg [Class. Quantum Grav. \\textbf{31}, 075015 (2014)] to treat the process of black hole particle emission effectively as the analogous quantum optical process of parametric down conversion (PDC) with a dynamical (depleted vs. non-depleted) `pump' source mode which models the evaporating black hole (BH) energy degree of freedom. We investigate both the short time (non-depleted pump) and long time (depleted pump) regimes of the quantum state and its impact on the Holevo channel capacity for communicating information from the far past to the far future in the presence of Hawking radiation. The new feature introduced in this work is the coupling of the emitted Hawking radiation modes through the common black hole `source pump' mode which phenomenologically represents a quantized energy degree of freedom of the gravitational field. This (zero-dimensional) model serves as a simplified arena to explore BH particle production/evaporation and back-action effects under an explicitly unitary evolution which enforces quantized energy/particle conservation. Within our analogous quantum optical model we examine the entanglement between two emitted particle/anti-particle and anti-particle/particle pairs coupled via the black hole (BH) evaporating `pump' source. We also analytically and dynamically verify the `Page information time' for our model which refers to the conventionally held belief that the information in the BH radiation becomes significant after the black hole has evaporated half its initial energy into the outgoing radiation. Lastly, we investigate the effect of BH particle production/evaporation on two modes in the exterior region of the BH event horizon that are initially maximally entangled, when one mode falls inward and interacts with the black hole, and the other remains forever outside and non-interacting.
Graviton Emission in the Bulk by a Simply Rotating Black Hole
P. Kanti; Hideo Kodama; R. A. Konoplya; N. Pappas; A. Zhidenko
2010-06-07T23:59:59.000Z
In this work, we study the emission of tensor-type gravitational degrees of freedom from a higher-dimensional, simply rotating black hole in the bulk. The decoupled radial part of the corresponding field equation is first solved analytically in the limit of low-energy emitted particles and low-angular momentum of the black hole in order to derive the absorption probability. Both the angular and radial equations are then solved numerically, and the comparison of the analytical and numerical results show a very good agreement in the low and intermediate energy regimes. By using our exact, numerical results we compute the energy and angular momentum emission rates and their dependence on the spacetime parameters such as the number of additional spacelike dimensions and the angular momentum of the black hole. Particular care is given to the convergence of our results in terms of the number of modes taken into account in the calculation, and the multiplicity of graviton tensor modes that correspond to the same angular-momentum numbers.
Holographic entanglement entropy and thermodynamic instability of planar R-charged black holes
Xing Wu
2014-01-19T23:59:59.000Z
The holographic entanglement entropy of an infinite strip subsystem on the asymptotic AdS boundary is used as a probe to study the thermodynamic instabilities of planar R-charged black holes (or their dual field theories). We focus on the single-charge AdS black holes in $D=5$, which correspond to spinning D3-branes with one non-vanishing angular momentum. Our results show that the holographic entanglement entropy indeed exhibits the thermodynamic instability associated with the divergence of the specific heat. When the width of the strip is large enough, the finite part of the holographic entanglement entropy as a function of the temperature resembles the thermal entropy, as is expected. As the width becomes smaller, however, the two entropies behave differently. In particular, there exists a critical value for the width of the strip, below which the finite part of the holographic entanglement entropy as a function of the temperature develops a self-intersection. We also find similar behavior in the single-charge black holes in $D=4$ and $7$.
On the Energy of Stringy Black Holes
Irina Radinschi; I-Ching Yang
2004-06-14T23:59:59.000Z
It is well-known that one of the most interesting and challenging problems of General Relativity is the energy and momentum localization. There are many attempts to evaluate the energy distribution in a general relativistic system. One of the methods used for the energy and momentum localization is the one which used the energy-momentum complexes. After the Einstein work, a large number of definitions for the energy distribution was given. We mention the expressions proposed by Landau and Lifshitz, Papapetrou, Bergmann, Weinberg and M{\\o}ller. The Einstein, Landau and Lifshitz, Papapetrou, Bergmann and Weinberg energy-momentum complexes are restricted to calculate the energy distribution in quasi-Cartesian coordinates. The energy-momentum complex of M{\\o}ller gives the possibility to make the calculations in any coordinate system. In this paper we calculate the energy distribution of three stringy black hole solutions in the M{\\o}ller prescription. The M{\\o}ller energy-momentum complex gives us a consistent result for these three situations. Keywords: M{\\o}ller energy-momentum complex, charged black hole solution in heterotic string theory PACS: 04. 20 Dw, 04. 70. Bw,
Cruz-Dombriz, A. de la; Dobado, A.; Maroto, A. L. [Departamento de Fisica Teorica I, Universidad Complutense de Madrid, 28040 Madrid (Spain)
2009-12-15T23:59:59.000Z
In the context of f(R) theories of gravity, we address the problem of finding static and spherically symmetric black hole solutions. Several aspects of constant curvature solutions with and without electric charge are discussed. We also study the general case (without imposing constant curvature). Following a perturbative approach around the Einstein-Hilbert action, it is found that only solutions of the Schwarzschild-(anti) de Sitter type are present up to second order in perturbations. Explicit expressions for the effective cosmological constant are obtained in terms of the f(R) function. Finally, we have considered the thermodynamics of black holes in anti-de Sitter space-time and found that this kind of solution can only exist provided the theory satisfies R{sub 0}+f(R{sub 0})<0. Interestingly, this expression is related to the condition which guarantees the positivity of the effective Newton's constant in this type of theories. In addition, it also ensures that the thermodynamical properties in f(R) gravities are qualitatively similar to those of standard general relativity.
Black holes can have curly hair
K. A. Bronnikov; O. B. Zaslavskii
2008-05-29T23:59:59.000Z
We study equilibrium conditions between a static, spherically symmetric black hole and classical matter in terms of the radial pressure to density ratio p_r/\\rho = w(u), where u is the radial coordinate. It is shown that such an equilibrium is possible in two cases: (i) the well-known case w\\to -1 as $u\\to u_h (the horizon), i.e., "vacuum" matter, for which \\rho(u_h) can be nonzero; (ii) w \\to -1/(1+2k) and \\rho \\sim (u-u_h)^k as u\\to u_h, where k>0 is a positive integer (w=-1/3 in the generic case k=1). A non-interacting mixture of these two kinds of matter can also exist. The whole reasoning is local, hence the results do not depend on any global or asymptotic conditions. They mean, in particular, that a static black hole cannot live inside a star with nonnegative pressure and density. As an example, an exact solution for an isotropic fluid with w = -1/3 (that is, a fluid of disordered cosmic strings), with or without vacuum matter, is presented.
Filing Holes in Complex Surfaces Using Volumetric Diffusion
Kazhdan, Michael
Method for Building Complex Models From range Images, '96) Applies line of sight constraints based components Complex hole geometry Construction of an arbitrary mesh can result in non-manifold surfaceFiling Holes in Complex Surfaces Using Volumetric Diffusion J. Davis, S. Marschner, M. Garr and M
Synchronization Helps Robots to Detect Black Holes in Directed Graphs
Pinotti, Maria Cristina
nodes are the so called black hole nodes, and once a robot enters in one of them, it is destroyed supported by the Italian CNR Short-Term Mobility Program. #12;1 Introduction The subject of exploring that destroy any entering entity. Such nodes are called black holes, and the exploration of a graph
Modified Black Hole with Polar Jet and Vortex
T. Tmmalm
2001-12-06T23:59:59.000Z
There are many models relating an accretion disk of Black Hole to jet outflow. The herein heuristic model describes the continuation of an external accretion disk to an internal accretion disk for less than Black Hole horizon, and subsequent polar jet outflow along polar axis out of polar vortex wherein the event horizon is no longer descriptive.
Particle Acceleration in Rotating Modified Hayward and Bardeen Black Holes
Behnam Pourhassan; Ujjal Debnath
2015-06-10T23:59:59.000Z
In this paper we consider rotating modified Hayward and Bardeen black holes as particle accelerators. We investigate the the center of mass energy of two colliding neutral particles with same rest masses falling from rest at infinity to near the horizons of the mentioned black holes. We also investigate the range of the particle's angular momentum and the orbit of the particle.
Particle Acceleration in Rotating Modified Hayward and Bardeen Black Holes
Pourhassan, Behnam
2015-01-01T23:59:59.000Z
In this paper we consider rotating modified Hayward and Bardeen black holes as particle accelerators. We investigate the the center of mass energy of two colliding neutral particles with same rest masses falling from rest at infinity to near the horizons of the mentioned black holes. We also investigate the range of the particle's angular momentum and the orbit of the particle.
Analysis of spherically symmetric black holes in Braneworld models
A. B. Pavan
2010-05-25T23:59:59.000Z
Research on black holes and their physical proprieties has been active on last 90 years. With the appearance of the String Theory and the Braneworld models as alternative descriptions of our Universe, the interest on black holes, in these context, increased. In this work we studied black holes in Braneworld models. A class of spherically symmetric black holes is investigaded as well its stability under general perturbations. Thermodynamic proprieties and quasi-normal modes are discussed. The black holes studied are the SM (zero mass) and CFM solutions, obtained by Casadio {\\it et al.} and Bronnikov {\\it et al.}. The geometry of bulk is unknown. However the Campbell-Magaard Theorem guarantees the existence of a 5-dimensional solution in the bulk whose projection on the brane is the class of black holes considered. They are stable under scalar perturbations. Quasi-normal modes were observed in both models. The tail behavior of the perturbations is the same. The entropy upper bound of a body absorved by the black holes studied was calculated. This limit turned out to be independent of the black hole parameters.
Pair Production of Topological anti de Sitter Black Holes
R. B. Mann
1996-07-28T23:59:59.000Z
The pair creation of black holes with event horizons of non-trivial topology is described. The spacetimes are all limiting cases of the cosmological $C$ metric. They are generalizations of the $(2+1)$ dimensional black hole and have asymptotically anti de Sitter behaviour. Domain walls instantons can mediate their pair creation for a wide range of mass and charge.
Proton Hole States of Nb,95,97,99
Bindal, P. K.; Youngblood, David H.; Kozub, R. L.
1974-01-01T23:59:59.000Z
-lying proton hole states in the Nb isotopes is from the study of Ohnuma and Yntema. ' Our recent study of hole state analogs of Nb levels in the Mo iso- topes' revealed a dramatic drop in analog state strength, particularly for / =1 states as one pro...
Renyi entropies of a black hole from Hawking radiation
A. Bialas; W. Czyz
2008-01-30T23:59:59.000Z
Renyi entropies of a black hole are evaluated by counting the states of the Hawking radiation which fills a thin shell surrounding the horizon. The width of the shell is determined from its energy content and the corresponding mass defect. The Bekenstein-Hawking formula for the entropy of the black hole is correctly reproduced.
Structure and Mass Absorption of Hypothetical Terrestrial Black Holes
A. P. VanDevender; J. Pace VanDevender
2011-05-02T23:59:59.000Z
The prospect of mini black holes, either primordial or in planned experiments at the Large Hadron Collider, interacting with the earth motivate us to examine how they may be detected and the scope of their impact on the earth. We propose that the more massive of these objects may gravitationally bind matter without significant absorption. Since the wave functions of gravitationally bound atoms orbiting a black hole are analogous to those of electrons around a nucleus, we call such an object the Gravitationally Equivalent of an Atom (GEA). Mini black holes are expected to lose mass through quantum evaporation, which has become well accepted on purely theoretical grounds. Since all attempts to directly observe x-rays from an evaporating black hole have failed, we examine the possibility of the inverse test: search for extant mini black holes by looking for emissions from matter bound in a GEA. If quantum evaporation does not occur, then miniature black holes left over from the early universe may be stable, contribute to dark matter, and in principle be detectable through emissions associated with the bound matter. We show that small black holes-with masses below \\sim10^12 kg-can bind matter without readily absorbing it into the black hole but the emissions are too weak to be detected from earth.
Zhang, Sijie; Gillin, W. P., E-mail: w.gillin@qmul.ac.uk [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Willis, M. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Gotto, R.; Roy, K. A.; Kreouzis, T. [Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Rolfe, N. J. [Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); University of Surrey, Guildford, Surrey GU2 5XH (United Kingdom)
2014-01-27T23:59:59.000Z
The change in current through an organic light emitting diode (OLED) when it is placed in a magnetic field has been dubbed organic magnetoresistance and provides a means to understand the spin interactions that are occurring in working devices. Whilst there are a wide range of interactions that have been proposed to be the cause of the measured effects, there is still a need to identify their individual roles and in particular how they respond to an applied magnetic field. In this work, we investigate the effect of changing the balance of electron and hole injection in a simple aluminium tris(8-hydroxyqinoline) based OLED and demonstrate that the triplet polaron interaction appears to be much stronger for electrons than for holes in this material.
Analytical holographic superconductors in $AdS_N$ Lifshitz topological black holes
D. Momeni; R. Myrzakulov; L. Sebastiani; M. R. Setare
2014-09-26T23:59:59.000Z
We present the analytic Lifshitz solutions for a scalar field model minimally coupled with the abelian gauge field in $N$ dimensions. We also consider the presence of cosmological constant $\\Lambda$. The Lifshitz parameter $z$ appearing in the solution plays the role of the Lorentz breaking parameter of the model. We investigate the thermodynamical properties of the solutions and discuss the energy issue. Furthermore, we study the hairy black hole solutions in which the abelian gauge field breaks the symmetry near the horizon. In the holographic picture, it is equivalent to a second order phase transition. Explicitly we show that there exists a critical temperature which is a function of the Lifshitz parameter $z$. The system below the critical temperature becomes superconductor, but the critical exponent of the model remains the same of the usual holographic superconductors without the higher order gravitational corrections, in agreement with Ginzburg-Landau theories.
On tidal capture of primordial black holes by neutron stars
Guillaume Defillon; Etienne Granet; Petr Tinyakov; Michel H. G. Tytgat
2014-09-01T23:59:59.000Z
The fraction of primordial black holes (PBHs) of masses $10^{17} - 10^{26}$ g in the total amount of dark matter may be constrained by considering their capture by neutron stars (NSs), which leads to the rapid destruction of the latter. The constraints depend crucially on the capture rate which, in turn, is determined by the energy loss by a PBH passing through a NS. Two alternative approaches to estimate the energy loss have been used in the literature: the one based on the dynamical friction mechanism, and another on tidal deformations of the NS by the PBH. The second mechanism was claimed to be more efficient by several orders of magnitude due to the excitation of particular oscillation modes reminiscent of the surface waves. We address this disagreement by considering a simple analytically solvable model that consists of a flat incompressible fluid in an external gravitational field. In this model, we calculate the energy loss by a PBH traversing the fluid surface. We find that the excitation of modes with the propagation velocity smaller than that of PBH is suppressed, which implies that in a realistic situation of a supersonic PBH the large contributions from the surface waves are absent and the above two approaches lead to consistent expressions for the energy loss.
Downhole control of deviation with steerable straight-hole turbodrills
Gaynor, T.M.
1988-03-01T23:59:59.000Z
Advances in directional drilling have until recently been confined to issues that are peripheral to the central problem of controlling assembly behavior downhole. Examples of these advances are measurement while drilling (MWD) and the increasing use of computer assistance in well planning. These were significant steps forward, but the major problem remained. Changes in formation deviation tendencies led to trips to change bottomhole assemblies (BHA's) to cope with the new conditions. There is almost no direct control of deviation behavior. The steerable straight-hole turbodrill (SST) addresses this problem directly, allowing alteration of the well course without the need to trip. The availability of such a system radically changes the way in which directional well planning may be approached. This paper describes the equipment used and the equipment's construction and operational requirements. It discusses the capabilities and current limitation of the systems. Field results are presented for some 300,000 ft (91 500 m) of deviated drilling carried out over 2 years in Alaska and the North Sea. A series of four highly deviated wells totaling 35,000 ft (10 700m) with only three deviation trips is included. The SST is the first deviation drilling system to achieve deviation control over long sections without tripping to change BHA's. Bits and downhole equipment are now more reliable and long-lived than ever, therefore, deviation trips are becoming a major target for well cost saving.
Black Holes are neither Particle Accelerators nor Dark Matter Probes
Sean T. McWilliams
2012-12-06T23:59:59.000Z
It has been suggested that maximally spinning black holes can serve as particle accelerators, reaching arbitrarily high center-of-mass energies. Despite several objections regarding the practical achievability of such high energies, and demonstrations past and present that such large energies could never reach a distant observer, interest in this problem has remained substantial. We show that, unfortunately, a maximally spinning black hole can never serve as a probe of high energy collisions, even in principle and despite the correctness of the original diverging energy calculation. Black holes can indeed facilitate dark matter annihilation, but the most energetic photons can carry little more than the rest energy of the dark matter particles to a distant observer, and those photons are actually generated relatively far from the black hole where relativistic effects are negligible. Therefore, any strong gravitational potential could probe dark matter equally well, and an appeal to black holes for facilitating such collisions is unnecessary.
Implications of a viscosity bound on black hole accretion
Aninda Sinha; Banibrata Mukhopadhyay
2012-02-13T23:59:59.000Z
Motivated by the viscosity bound in gauge/gravity duality, we consider the ratio of shear viscosity (eta) to entropy density (s) in black hole accretion flows. We use both an ideal gas equation of state and the QCD equation of state obtained from lattice for the fluid accreting onto a Kerr black hole. The QCD equation of state is considered since the temperature of accreting matter is expected to approach 10^{12}K in certain hot flows. We find that in both the cases eta/s is small only for primordial black holes and several orders of magnitude larger than any known fluid for stellar and supermassive black holes. We show that a lower bound on the mass of primordial black holes leads to a lower bound on eta/s and vice versa. Finally we speculate that the Shakura-Sunyaev viscosity parameter should decrease with increasing density and/or temperatures.
Black Hole Hair Removal: Non-linear Analysis
Dileep P. Jatkar; Ashoke Sen; Yogesh K. Srivastava
2009-07-03T23:59:59.000Z
BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, -- degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.
DIVERSION OF ADULT SALMON BY AN ELECTRICAL FIELD
DIVERSION OF ADULT SALMON BY AN ELECTRICAL FIELD Marine Biological Laboratory : -1958 WOODS HOLE or legislative action. It is issued in limited quantities for official use of Federal, State or cooperating agencies and in processed form for economy and to avoid delay in publication . #12;United States Department
Hysteretic magnetoresistance and thermal bistability in a magnetic two-dimensional hole system
Wurstbauer, Ursula; Weiss, Dieter; Dietl, Tomasz; Wegscheider, Werner; 10.1038/nphys1782
2011-01-01T23:59:59.000Z
Colossal negative magnetoresistance and the associated field-induced insulator-to-metal transition, the most characteristic features of magnetic semiconductors, are observed in n-type rare earth oxides and chalcogenides, p-type manganites, n-type and p-type diluted magnetic semiconductors (DMS) as well as in quantum wells of n-type DMS. Here, we report on magnetostransport studies of Mn modulation-doped InAs quantum wells, which reveal a magnetic field driven and bias voltage dependent insulator-to-metal transition with abrupt and hysteretic changes of resistance over several orders of magnitude. These phenomena coexist with the quantised Hall effect in high magnetic fields. We show that the exchange coupling between a hole and the parent Mn acceptor produces a magnetic anisotropy barrier that shifts the spin relaxation time of the bound hole to a 100 s range in compressively strained quantum wells. This bistability of the individual Mn acceptors explains the hysteretic behaviour while opening prospects for i...
Static and radiating p-form black holes in the higher dimensional Robinson-Trautman class
Marcello Ortaggio; Jiri Podolsky; Martin Zofka
2015-03-02T23:59:59.000Z
We study Robinson-Trautman spacetimes in the presence of an aligned p-form Maxwell field and an arbitrary cosmological constant in n>=4 dimensions. As it turns out, the character of these exact solutions depends significantly on the (relative) value of n and p. In odd dimensions the solutions reduce to static black holes dressed by an electric and a magnetic field and whose horizon is an Einstein space (further constrained by the Einstein-Maxwell equations) -- both the Weyl and Maxwell type are D. Even dimensions, however, open up more possibilities. In particular, when 2p=n there exist non-static solutions describing black holes acquiring (or losing) mass by receiving (or emitting) electromagnetic radiation. In this case the Weyl type is II (D) and the Maxwell type can be II (D) or N. Conditions under which the Maxwell field is self-dual (for odd p) are also discussed, and a few explicit examples presented. Finally, the case p=1 is special in all dimensions and leads to static metrics with a non-Einstein transverse space.
Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas
Kant, Niti [Department of Physics, Lovely Professional University, Phagwara, Punjab 144 402 (India); Nandan Gupta, Devki [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)
2012-01-15T23:59:59.000Z
In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.
Holographic Superconductors with Power-Maxwell field
Jiliang Jing; Qiyuan Pan; Songbai Chen
2011-11-17T23:59:59.000Z
With the Sturm-Liouville analytical and numerical methods, we investigate the behaviors of the holographic superconductors by introducing a complex charged scalar field coupled with a Power-Maxwell field in the background of $d$-dimensional Schwarzschild AdS black hole. We note that the Power-Maxwell field takes the special asymptotical solution near boundary which is different from all known cases. We find that the larger power parameter $q$ for the Power-Maxwell field makes it harder for the scalar hair to be condensated. We also find that, for different $q$, the critical exponent of the system is still 1/2, which seems to be an universal property for various nonlinear electrodynamics if the scalar field takes the form of this paper.
Free motion around black holes with discs or rings: between integrability and chaos - III
P. Suková; O. Semerák
2013-08-20T23:59:59.000Z
We continue the study of time-like geodesic dynamics in exact static, axially and reflection symmetric space-times describing the fields of a Schwarzschild black hole surrounded by thin discs or rings. In the first paper of this series, the rise (and decline) of geodesic chaos with ring/disc mass and position and with test particle energy was revealed on Poincar\\'e sections and on time series of position or velocity and their power spectra. In the second paper we compared these results with those obtained by two recurrence methods, focusing on "sticky" orbits whose different parts show different degrees of chaoticity. Here we complement the analysis by using several Lyapunov-type coefficients which quantify the rate of orbital divergence. After comparing the results with those obtained by the previous methods, we specifically consider a system involving a black hole surrounded by a small thin disc or a large ring, having in mind the configuration which probably occurs in galactic nuclei. Within the range of parameters which roughly corresponds to our Galactic center, we found that the black-hole accretion disc does not have a significant gravitational effect on the dynamics of free motion at larger radii, while the inner circumnuclear molecular ring (concentrated above 1 parsec radius) can only induce some irregularity in motion of stars ("particles") on smaller radii if its mass reaches 10 to 30% of the central black hole (which is the upper estimate given in the literature), if it is sufficiently compact (which does not hold but maybe for its inner rim) and if the stars can get to its close vicinity. The outer dust ring between 60 and 100 parsecs appears to be less important for the geodesic dynamics in its interior.
Unconstrained hyperboloidal evolution of black holes in spherical symmetry with GBSSN and Z4c
Alex Vañó-Viñuales; Sascha Husa
2014-12-15T23:59:59.000Z
We consider unconstrained evolution schemes for the hyperboloidal initial value problem in numerical relativity as a promising candidate for the optimally efficient numerical treatment of radiating compact objects. Here, spherical symmetry already poses nontrivial problems and constitutes an important first step to regularize the resulting singular PDEs. We evolve the Einstein equations in their generalized BSSN and Z4 formulations coupled to a massless self-gravitating scalar field. Stable numerical evolutions are achieved for black hole initial data, and critically rely on the construction of appropriate gauge conditions.
Emanuele Berti; Vitor Cardoso; Jose A. Gonzalez; Ulrich Sperhake
2007-06-17T23:59:59.000Z
The ringdown phase following a binary black hole merger is usually assumed to be well described by a linear superposition of complex exponentials (quasinormal modes). In the strong-field conditions typical of a binary black hole merger, non-linear effects may produce mode coupling. Artificial mode coupling can also be induced by the black hole's rotation, if the radiation field is expanded in terms of spin-weighted spherical (rather than spheroidal) harmonics. Observing deviations from linear black hole perturbation theory requires optimal fitting techniques to extract ringdown parameters from numerical waveforms, which are inevitably affected by errors. So far, non-linear least-squares fitting methods have been used as the standard workhorse to extract frequencies from ringdown waveforms. These methods are known not to be optimal for estimating parameters of complex exponentials. Furthermore, different fitting methods have different performance in the presence of noise. The main purpose of this paper is to introduce the gravitational wave community to modern variations of a linear parameter estimation technique first devised in 1795 by Prony: the Kumaresan-Tufts and matrix pencil methods. Using "test" damped sinusoidal signals in Gaussian white noise we illustrate the advantages of these methods, showing that they have variance and bias at least comparable to standard non-linear least-squares techniques. Then we compare the performance of different methods on unequal-mass binary black hole merger waveforms. The methods we discuss should be useful both theoretically (to monitor errors and search for non-linearities in numerical relativity simulations) and experimentally (for parameter estimation from ringdown signals after a gravitational wave detection).
Hole Spin Pumping and Re-pumping in a p-type ?-doped InAs Quantum Dot
Konstantinos G. Lagoudakis; Kevin A. Fischer; Tomas Sarmiento; Kai Mueller; Jelena Vu?kovi?
2014-08-29T23:59:59.000Z
We have grown high quality p-type {\\delta}-doped InAs quantum dots and have demonstrated coherent spin pumping and repumping of a hole spin in a positively charged quantum dot by means of a single-laser driving scheme under a high magnetic field in the Voigt configuration. Modeling of our system shows excellent qualitative agreement with the experimental findings and further explores the performance of the single-laser scheme for spin pumping and re-pumping.
Complementary junction heterostructure field-effect transistor
Baca, Albert G. (Albuquerque, NM); Drummond, Timothy J. (Albuquerque, NM); Robertson, Perry J. (Albuquerque, NM); Zipperian, Thomas E. (Albuquerque, NM)
1995-01-01T23:59:59.000Z
A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.
Complementary junction heterostructure field-effect transistor
Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.
1995-12-26T23:59:59.000Z
A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.
Horizon dynamics of distorted rotating black holes
Tony Chu; Harald P. Pfeiffer; Michael I. Cohen
2011-04-28T23:59:59.000Z
We present numerical simulations of a Kerr black hole perturbed by a pulse of ingoing gravitational radiation. For strong perturbations we find up to five concentric marginally outer trapped surfaces. These trapped surfaces appear and disappear in pairs, so that the total number of such surfaces at any given time is odd. The world tubes traced out by the marginally outer trapped surfaces are found to be spacelike during the highly dynamical regime, approaching a null hypersurface at early and late times. We analyze the structure of these marginally trapped tubes in the context of the dynamical horizon formalism, computing the expansion of outgoing and incoming null geodesics, as well as evaluating the dynamical horizon flux law and the angular momentum flux law. Finally, we compute the event horizon. The event horizon is well-behaved and approaches the apparent horizon before and after the highly dynamical regime. No new generators enter the event horizon during the simulation.
Collisions with Black Holes and Deconfined Plasmas
Amsel, Aaron J; Virmani, Amitabh
2008-01-01T23:59:59.000Z
We use AdS/CFT to investigate i) high energy collisions with balls of deconfined plasma surrounded by a confining phase and ii) the rapid localized heating of a deconfined plasma. Both of these processes are dual to collisions with black holes, where they result in the nucleation of a new "arm" of the horizon reaching out in the direction of the incident object. We study the resulting non-equilibrium dynamics in a universal limit of the gravitational physics which may indicate universal behavior of deconfined plasmas at large N_c. Process (i) produces "virtual" arms of the plasma ball, while process (ii) can nucleate surprisingly large bubbles of a higher temperature phase.
Collisions with Black Holes and Deconfined Plasmas
Aaron J. Amsel; Donald Marolf; Amitabh Virmani
2007-12-13T23:59:59.000Z
We use AdS/CFT to investigate i) high energy collisions with balls of deconfined plasma surrounded by a confining phase and ii) the rapid localized heating of a deconfined plasma. Both of these processes are dual to collisions with black holes, where they result in the nucleation of a new "arm" of the horizon reaching out in the direction of the incident object. We study the resulting non-equilibrium dynamics in a universal limit of the gravitational physics which may indicate universal behavior of deconfined plasmas at large N_c. Process (i) produces "virtual" arms of the plasma ball, while process (ii) can nucleate surprisingly large bubbles of a higher temperature phase.
The (Unstable) Threshold of Black Hole Formation
M. W. Choptuik
1998-03-23T23:59:59.000Z
In recent years it has become apparent that intriguing phenomenology exists at the threshold of black hole formation in a large class of general relativistic collapse models. This phenomenology, which includes scaling, self-similarity and universality, is largely analogous to statistical mechanical critical behaviour, a fact which was first noted empirically, and subsequently clarified by perturbative calculations which borrow on ideas and techniques from dynamical systems theory and renormalization group theory. This contribution, which closely parallels my talk at the conference, consists of an overview of the considerable ``zoo''' of critical solutions which have been discovered thus far, along with a brief discussion of how we currently understand the nature of these solutions from the point of view of perturbation theory.
Black Hole Attractors and Pure Spinors
Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro
2006-02-21T23:59:59.000Z
We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to {Sigma}f{sub k} = Im(C{Phi}), where {Phi} is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, {Phi} = {Omega} and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation.
Modeling the black hole excision problem
Szilagyi, B.; Winicour, J. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Albert Einstein Institute, Max Planck Gesellschaft, Am Muehlenberg 1, D-14476 Golm (Germany); Kreiss, H.-O. [Albert Einstein Institute, Max Planck Gesellschaft, Am Muehlenberg 1, D-14476 Golm (Germany); NADA, Royal Institute of Technology, 10044 Stockholm (Sweden)
2005-05-15T23:59:59.000Z
We analyze the excision strategy for simulating black holes. The problem is modeled by the propagation of quasilinear waves in a 1-dimensional spatial region with timelike outer boundary, spacelike inner boundary and a horizon in between. Proofs of well-posed evolution and boundary algorithms for a second differential order treatment of the system are given for the separate pieces underlying the finite-difference problem. These are implemented in a numerical code which gives accurate long term simulations of the quasilinear excision problem. Excitation of long wavelength exponential modes, which are latent in the problem, are suppressed using conservation laws for the discretized system. The techniques are designed to apply directly to recent codes for the Einstein equations based upon the harmonic formulation.
Generalized uncertainty principle and black hole thermodynamics
Sunandan Gangopadhyay; Abhijit Dutta; Anirban Saha
2014-01-08T23:59:59.000Z
We study the Schwarzschild and Reissner-Nordstr\\"{o}m black hole thermodynamics using the simplest form of the generalized uncertainty principle (GUP) proposed in the literature. The expressions for the mass-temperature relation, heat capacity and entropy are obtained in both cases from which the critical and remnant masses are computed. Our results are exact and reveal that these masses are identical and larger than the so called singular mass for which the thermodynamics quantities become ill-defined. The expression for the entropy reveals the well known area theorem in terms of the horizon area in both cases upto leading order corrections from GUP. The area theorem written in terms of a new variable which can be interpreted as the reduced horizon area arises only when the computation is carried out to the next higher order correction from GUP.
Gravitational collapse of charged scalar fields
Jose M. Torres; Miguel Alcubierre
2014-07-29T23:59:59.000Z
In order to study the gravitational collapse of charged matter we analyze the simple model of an self-gravitating massless scalar field coupled to the electromagnetic field in spherical symmetry. The evolution equations for the Maxwell-Klein-Gordon sector are derived in the 3+1 formalism, and coupled to gravity by means of the stress-energy tensor of these fields. To solve consistently the full system we employ a generalized Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation of General Relativity that is adapted to spherical symmetry. We consider two sets of initial data that represent a time symmetric spherical thick shell of charged scalar field, and differ by the fact that one set has zero global electrical charge while the other has non-zero global charge. For compact enough initial shells we find that the configuration doesn't disperse and approaches a final state corresponding to a sub-extremal Reissner-N\\"ordstrom black hole with $|Q|
Spin orientation of supermassive black holes in active galaxies
W. Kollatschny
2003-11-12T23:59:59.000Z
Accretion of gas onto a central supermassive black hole is generally accepted to be the source of the emitted energy in active galactic nuclei.The broad emission lines we observe in their optical spectra are probably formed in the wind of an accretion disk at distances of light days to light years from the central black hole. The variable fraction of the emission lines originates at typical distances of only 1 to 50 light days from the central supermassive black hole. We derived a central black hole mass of M_orbital = 1.8 +/-0.4 x 10^7 M_sun in the Seyfert galaxy Mrk110 assuming the broad emission lines are generated in gas clouds orbiting within an accretion disk. This figure depends on the inclination angle of the accretion disk. Here we report on the detection of gravitational redshifted emission in the variable fraction of the broad emission lines. We derive a central black hole mass of M_grav = 14.0 +/-3.0 x 10^7 M_sun. These measurements are independent on the orientation of the accretion disk. The comparison of both black hole mass estimates allows to determine the projection of the central accretion disk angle i to 21 +/-5 deg. in Mrk110 and therefore the orientation of the spin axis of the central black hole.
Higgs Boson Production from Black Holes at the LHC
Gouranga C. Nayak; J. Smith
2006-06-09T23:59:59.000Z
If the fundamental Planck scale is near a TeV, then TeV scale black holes should be produced in proton-proton collisions at the LHC where \\sqrt{s} = 14 TeV. As the temperature of the black holes can be ~ 1 TeV we also expect production of Higgs bosons from them via Hawking radiation. This is a different production mode for the Higgs boson, which would normally be produced via direct pQCD parton fusion processes. In this paper we compare total cross sections and transverse momentum distributions d\\sigma/dp_T for Higgs production from black holes at the LHC with those from direct parton fusion processes at next-to-next-to-leading order and next-to-leading order respectively. We find that the Higgs production from black holes can be larger or smaller than the direct pQCD production depending upon the Planck mass and black hole mass. We also find that d\\sigma/dp_T of Higgs production from black holes increases as a function of p_T which is in sharp contrast with the pQCD predictions where d\\sigma/dp_T decreases so we suggest that the measurement of an increase in d\\sigma/dp_T as p_T increases for Higgs (or any other heavy particle) production can be a useful signature for black holes at the LHC.
Simulating merging binary black holes with nearly extremal spins
Lovelace, Geoffrey [Center for Radiophysics and Space Research, Cornell University, Ithaca, New York, 14853 (United States); Scheel, Mark A.; Szilagyi, Bela [Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125 (United States)
2011-01-15T23:59:59.000Z
Astrophysically realistic black holes may have spins that are nearly extremal (i.e., close to 1 in dimensionless units). Numerical simulations of binary black holes are important tools both for calibrating analytical templates for gravitational-wave detection and for exploring the nonlinear dynamics of curved spacetime. However, all previous simulations of binary-black-hole inspiral, merger, and ringdown have been limited by an apparently insurmountable barrier: the merging holes' spins could not exceed 0.93, which is still a long way from the maximum possible value in terms of the physical effects of the spin. In this paper, we surpass this limit for the first time, opening the way to explore numerically the behavior of merging, nearly extremal black holes. Specifically, using an improved initial-data method suitable for binary black holes with nearly extremal spins, we simulate the inspiral (through 12.5 orbits), merger and ringdown of two equal-mass black holes with equal spins of magnitude 0.95 antialigned with the orbital angular momentum.
Quantum-Gravity Fluctuations and the Black-Hole Temperature
Hod, Shahar
2015-01-01T23:59:59.000Z
Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the {\\it discrete} quantum spectrum suggested by Bekenstein with the {\\it continuous} semi-classical spectrum suggested by Hawking ? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quanti...
Reconstructing the massive black hole cosmic history through gravitational waves
Alberto Sesana; Jonathan R. Gair; Emanuele Berti; Marta Volonteri
2010-11-25T23:59:59.000Z
The massive black holes we observe in galaxies today are the natural end-product of a complex evolutionary path, in which black holes seeded in proto-galaxies at high redshift grow through cosmic history via a sequence of mergers and accretion episodes. Electromagnetic observations probe a small subset of the population of massive black holes (namely, those that are active or those that are very close to us), but planned space-based gravitational-wave observatories such as the Laser Interferometer Space Antenna (LISA) can measure the parameters of ``electromagnetically invisible'' massive black holes out to high redshift. In this paper we introduce a Bayesian framework to analyze the information that can be gathered from a set of such measurements. Our goal is to connect a set of massive black hole binary merger observations to the underlying model of massive black hole formation. In other words, given a set of observed massive black hole coalescences, we assess what information can be extracted about the underlying massive black hole population model. For concreteness we consider ten specific models of massive black hole formation, chosen to probe four important (and largely unconstrained) aspects of the input physics used in structure formation simulations: seed formation, metallicity ``feedback'', accretion efficiency and accretion geometry. For the first time we allow for the possibility of ``model mixing'', by drawing the observed population from some combination of the ``pure'' models that have been simulated. A Bayesian analysis allows us to recover a posterior probability distribution for the ``mixing parameters'' that characterize the fractions of each model represented in the observed distribution. Our work shows that LISA has enormous potential to probe the underlying physics of structure formation.
The r-Process in Black Hole Winds
Shinya Wanajo; Hans-Thomas Janka
2010-06-11T23:59:59.000Z
All the current r-process scenarios relevant to core-collapse supernovae are facing severe difficulties. In particular, recent core-collapse simulations with neutrino transport show no sign of a neutron-rich wind from the proto-neutron star. In this paper, we discuss nucleosynthesis of the r-process in an alternative astrophysical site, "black hole winds", which are the neutrino-driven outflow from the accretion torus around a black hole. This condition is assumed to be realized in double neutron star mergers, neutron star - black hole mergers, or hypernovae.
Thermodynamics of an Evaporating Schwarzschild Black Hole in Noncommutative Space
Kourosh Nozari; Behnaz Fazlpour
2007-01-14T23:59:59.000Z
We investigate the effects of space noncommutativity and the generalized uncertainty principle on the thermodynamics of a radiating Schwarzschild black hole. We show that evaporation process is in such a way that black hole reaches to a maximum temperature before its final stage of evolution and then cools down to a nonsingular remnant with zero temperature and entropy. We compare our results with more reliable results of string theory. This comparison Shows that GUP and space noncommutativity are similar concepts at least from view point of black hole thermodynamics.
From Special Geometry to Black Hole Partition Functions
Thomas Mohaupt
2008-12-22T23:59:59.000Z
These notes are based on lectures given at the Erwin-Schrodinger Insitut in Vienna in 2006/07 and at the 2007 School on Attractor Mechanism in Frascati. Lecture I: special geometry from the superconformal point of view. Lecture II: black hole attractor mechanism, its underlying variational principle, and black hole partition functions. Lecture III: large and small BPS black holes in N=4 supergravity. Lecture IV: state counting for N=4 string compactifications. Appendix A: special geometry from the mathematical point of view. Appendix B: review of modular forms. Contains four problems which allow the readers to develop some of the key concepts by themselves.
Non-extremal Kerr black holes as particle accelerators
Sijie Gao; Changchun Zhong
2011-08-03T23:59:59.000Z
It has been shown that extremal Kerr black holes can be used as particle accelerators and arbitrarily high energy may be obtained near the event horizon. We study particle collisions near the event horizon (outer horizon) and Cauchy horizon (inner horizon) of a non-extremal Kerr black hole. Firstly, we provide a general proof showing that particles cannot collide with arbitrarily high energies at the outter horizon. Secondly, we show that ultraenergetic collisions can occur near the inner horizon of a Kerr black hole with any spin parameter $a$.
Acceleration of particles in Einstein-Maxwell-Dilaton black hole
Pu-Jian Mao; Ran Li; Lin-Yu Jia; Ji-Rong Ren
2011-03-08T23:59:59.000Z
It has been recently pointed out that, under certain conditions, the energy of particles accelerated by black holes in the center-of-mass frame can become arbitrarily high. In this Letter, we study the collision of two particles around the four-dimensional Kaluza-Klein black hole in Einstein-Maxwell-Dilaton theory. We find that the center-of-mass energy for a pair of colliding particles is unlimited at the horizon of charged nonrotating and extremal rotating Kaluza-Klein black hole.
String black hole: Can it be a particle accelerator ?
Sharmanthie Fernando
2014-08-21T23:59:59.000Z
In this paper we have studied the possibility of the center-of-mass energy of two particles colliding near the horizon of a static charged black hole in string theory. Various cases corresponding to the electric charge and the angular momentum of the particles were considered. The studies were done for the general black hole as well as for the extreme black hole. There were two scenarios where the center-of-mass energy reach very large values if the appropriate properties of the particles are chosen.
Inferring black hole charge from backscattered electromagnetic radiation
Luís C. B. Crispino; Sam R. Dolan; Atsushi Higuchi; Ednilton S. de Oliveira
2014-09-16T23:59:59.000Z
We compute the scattering cross section of Reissner-Nordstr\\"om black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.
Accretion onto a black hole in a string cloud background
Apratim Ganguly; Sushant G. Ghosh; Sunil D. Maharaj
2014-09-28T23:59:59.000Z
We examine the accretion process onto the black hole with a string cloud background, where the horizon of the black hole has an enlarged radius $r_H=2 M/(1-\\alpha)$, due to the string cloud parameter $\\alpha\\; (0 \\leq \\alpha cloud parameter $\\alpha$. We also find the gas compression ratios and temperature profiles below the accretion radius and at the event horizon. It is shown that the mass accretion rate, for both the relativistic and the non-relativistic fluid by a black hole in the string cloud model, increases with increase in $\\alpha$.
Rotordynamic evaluation of frequency dependent impedances of hole-pattern gas damper seals
Holt, Christopher George
2000-01-01T23:59:59.000Z
Two hole-pattern seals are compared with one smooth bore seal. The two hole-pattern seals have cell depths of 2.03 mm and 3.18 mm with a cell diameter of 1.59 mm. The hole area density factor for both hole-pattern seals is 43%. The L/D ratio...
Helmick, C.; Koczan, S.; Pettitt, R.
1982-04-01T23:59:59.000Z
During the preceding work (Phase I) of the Hot Dry Rock (HDR) Geothermal Energy Project at Fenton Hill, two holes were drilled to a depth of nearly 3048 m (10,000 ft) and connected by a vertical hydraulic fracture. In this phase, water was pumped through the underground reservoir for approximately 417 days, producing an energy equivalent of 3 to 5 MW(t). Energy Extraction Hole No. 2 (EE-2) is the first of two deep holes that will be used in the Engineering-Resource Development System (Phase II) of the ongoing HDR Project of the Los Alamos National Laboratory. This phase of the work consists of drilling two parallel boreholes, inclined in their lower, open-hole sections at 35/sup 0/ to the vertical and separated by a vertical distance of 366 m (1200 ft) between the inclined parts of the drill holes. The holes will be connected by a series of vertical, hydraulically produced fractures in the Precambrian granitic rock complex. EE-2 was drilled to a depth of 4660 m (15,289 ft), where the bottom-hole temperature is approximately 320/sup 0/C (608/sup 0/F). Directional drilling techniques were used to control the azimuth and deviation of the hole. Upgrading of the temperature capability of existing hardware, and development of new equipment was necessary to complete the drilling of the hole in the extremely hot, hard, and abrasive granitic formation. The drilling history and the problems with bits, directional tools, tubular goods, cementing, and logging are described. A discussion of the problems and recommendations for overcoming them are also presented.
Extended two-dimensional characteristic framework to study nonrotating black holes
W. Barreto
2014-07-07T23:59:59.000Z
We develop a numerical solver, that extends the computational framework considered in [Phys. Rev. D 65, 084016 (2002)], to include scalar perturbations of nonrotating black holes. The nonlinear Einstein-Klein-Gordon equations for a massless scalar field minimally coupled to gravity are solved in two spatial dimensions (2D). The numerical procedure is based on the ingoing light cone formulation for an axially and reflection symmetric spacetime. The solver is second order accurate and was validated in different ways. We use for calibration an auxiliary 1D solver with the same initial and boundary conditions and the same evolution algorithm. We reproduce the quasinormal modes for the massless scalar field harmonics $\\ell = 0$, $1$ and $2$. For these same harmonics, in the linear approximation, we calculate the balance of energy between the black hole and the world tube. As an example of nonlinear harmonic generation, we show the distortion of a marginally trapped two-surface approximated as a q-boundary and based upon the harmonic $\\ell=2$. Additionally, we study the evolution of the $\\ell = 8$ harmonic in order to test the solver in a spacetime with a complex angular structure. Further applications and extensions are briefly discussed.
Variability of black hole accretion discs: The cool, thermal disc component
M. Mayer; J. E. Pringle
2006-01-29T23:59:59.000Z
We extend the model of King et al. (2004) for variability in black hole accretion discs, by taking proper account of the thermal properties of the disc. Because the degree of variability in the King et al. (2004) model depends sensitively on the ratio of disc thickness to radius, H/R, it is important to follow the time-dependence of the local disc structure as the variability proceeds. In common with previous authors, we develop a one-zone model for the local disc structure. We agree that radial heat advection plays an important role in determining the inner disc structure, and also find limit-cycle behaviour. When the stochastic magnetic dynamo model of King et al. (2004) is added to these models, we find similar variability behaviour to before. We are now better placed to put physical constraints on model parameters. In particular, we find that in order to be consistent with the low degree of variability seen in the thermal disc component of black hole binaries, we need to limit the energy density of the poloidal field that can be produced by local dynamo cells in the disc to less than a few percent of the energy density of the dynamo field within the disc itself.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,Conservation BillingFieldField
Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots
Belhadj, T.; Amand, T.; Kunz, S.; Marie, X.; Urbaszek, B. [INSA-CNRS-UPS, LPCNO, Universite de Toulouse, 135 Av. Rangueil, 31077 Toulouse (France); Kunold, A. [INSA-CNRS-UPS, LPCNO, Universite de Toulouse, 135 Av. Rangueil, 31077 Toulouse (France); Departamento de Ciencias Basicas, UAM-A, Col. Reynosa Tamaulipas, 02200 Mexico D.F. (Mexico); Simon, C.-M. [INSA-CNRS-UPS, LPCNO, Universite de Toulouse, 135 Av. Rangueil, 31077 Toulouse (France); CNRS-UPS, LCAR, IRSAMC, Universite de Toulouse, 31062 Toulouse (France); Kuroda, T.; Abbarchi, M.; Mano, T.; Sakoda, K. [National Institute for Material Science, Namiki 1-1, Tsukuba 305-0044 (Japan)
2010-08-02T23:59:59.000Z
We report strong heavy hole-light hole mixing in GaAs quantum dots grown by droplet epitaxy. Using the neutral and charged exciton emission as a monitor we observe the direct consequence of quantum dot symmetry reduction in this strain free system. By fitting the polar diagram of the emission with simple analytical expressions obtained from k{center_dot}p theory we are able to extract the mixing that arises from the heavy-light hole coupling due to the geometrical asymmetry of the quantum dot.