National Library of Energy BETA

Sample records for field experiment fife

  1. FIFE-Jobsub: a grid submission system for intensity frontier experiments at Fermilab

    SciTech Connect (OSTI)

    Box, Dennis

    2014-01-01

    The Fermilab Intensity Frontier Experiments use an integrated submission system known as FIFE-jobsub, part of the FIFE (Fabric for Frontier Experiments) initiative, to submit batch jobs to the Open Science Grid. FIFE-jobsub eases the burden on experimenters by integrating data transfer and site selection details in an easy to use and well-documented format. FIFE-jobsub automates tedious details of maintaining grid proxies for the lifetime of the grid job. Data transfer is handled using the Intensity Frontier Data Handling Client (IFDHC) [1] tool suite, which facilitates selecting the appropriate data transfer method from many possibilities while protecting shared resources from overload. Chaining of job dependencies into Directed Acyclic Graphs (Condor DAGS) is well supported and made easier through the use of input flags and parameters.

  2. Fife Energy Park at Methil | Open Energy Information

    Open Energy Info (EERE)

    Energy Park at Methil Jump to: navigation, search Name: Fife Energy Park at Methil Place: United Kingdom Product: Government & NGO ( Government Public sector ) References: Fife...

  3. Surface reflectance retrieval from satellite and aircraft sensors: Results of sensor and algorithm comparisons during FIFE

    SciTech Connect (OSTI)

    Markham, B.L. ); Halthore, R.N.; Goetz, S.J. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on comparison of measurement systems which were deployed to measure surface reflectance factors, from aircraft or satellites. These instruments look over the general range of 0.4 to 2.5[mu]m. Instruments studied include Landsat 5 thematic mapper (TM), the SPOT 1 high-resolution visible sensor (HRV) 1, the NS001 thematic mapper simulator, and the modular multispectral radiometers (MMRs). The study looked at the radiometric consistency of the different instruments, and the adequacy of the atmospheric correction routines applied to data analysis.

  4. Progress on the Fabric for Frontier Experiments Project at Fermialb...

    Office of Scientific and Technical Information (OSTI)

    sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including ...

  5. JLab's Walt Akers: from Fife and Drum to Windmill (Daily Press) | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Walt Akers: from Fife and Drum to Windmill (Daily Press) External Link: http://articles.dailypress.com/2012-03-08/news/dp-tsq-ypq-five-questions-0308-20... By jlab_admin on Thu, 2012-03-08

  6. Progress on the Fabric for Frontier Experiments Project at Fermialb

    SciTech Connect (OSTI)

    Box, Dennis; Boyd, Joseph; Dykstra, Dave; Garzoglio, Gabriele; Herner, Kenneth; Kirby, Michael; Kreymer, Arthur; Levshina, Tanya; Mhashilkar, Parag; Sharma, Neha

    2015-12-23

    The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide

  7. Progress on the Fabric for Frontier Experiments Project at Fermialb

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Box, Dennis; Boyd, Joseph; Dykstra, Dave; Garzoglio, Gabriele; Herner, Kenneth; Kirby, Michael; Kreymer, Arthur; Levshina, Tanya; Mhashilkar, Parag; Sharma, Neha

    2015-12-23

    The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercialmore » cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide« less

  8. Progress on the FabrIc for Frontier Experiments project at Fermilab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Box, Dennis; Boyd, Joseph; Dykstra, Dave; Garzoglio, Gabriele; Herner, Kenneth; Kirby, Michael; Kreymer, Arthur; Levshina, Tanya; Mhashilkar, Parag; Sharma, Neha

    2015-01-01

    The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercialmore » cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. Hence, the progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide« less

  9. Overview of Field Experience - Degradation Rates & Lifetimes

    SciTech Connect (OSTI)

    Jordan, Dirk; Kurtz, Sarah

    2015-09-14

    The way a PV module fails may depend not only on its design and the materials used in its construction, but also on the weather it experiences, the way it is mounted, and the quality control during its manufacture. This presentation gives an overview of Field Experience - what degradation rates and what lifetimes are being observed in various regions.

  10. Laboratory Experiments and Modeling for Interpreting Field Studies...

    Office of Scientific and Technical Information (OSTI)

    Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic ... Citation Details In-Document Search Title: Laboratory Experiments and Modeling for ...

  11. Paint coatings: Controlled field and chamber experiments

    SciTech Connect (OSTI)

    Edney, E.O.

    1989-04-01

    To determine the impact of pollution levels on the weathering rates of coatings, laboratory chamber experiments and controlled field exposures at North Carolina and Ohio sites were conducted in such a manner to separate the contributions due to dry deposition, wet deposition, precipitation pH, etc. The results of these studies confirm that acidic gases such as SO/sub 2/ and HNO/sub 3/, as well as acids within rain, promote the dissolution of alkaline components including CaCO/sub 3/, ZnO, and Al flake from paint films. It is unclear from these studies whether the removal of these components reduces the service life or protective properties of the paint film. Other researchers within the Coatings Effects Program are conducting subsequent analyses to determine micro-damage of these paints. The uptake of acidic gases to painted surfaces is a complex process that depends on several factors. The deposition rate of SO/sub 2/ to a wet, painted surface may be controlled by the level of oxidants such as H/sub 2/O/sub 2/.

  12. /Fermilab 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Experiment...

    Office of Scientific and Technical Information (OSTI)

    a Higgs-like Boson in CMS at the LHC Bhat, Pushpalatha C.; Fermilab 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Experiment-HEP Experiment-HEP Abstract Not Provided Fermi...

  13. Minimizing magnetic fields for precision experiments

    SciTech Connect (OSTI)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  14. ARM - Field Campaign - Midlatitude Continental Convective Clouds Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MC3E) Experiment (MC3E) Campaign Links Science Plan MC3E Website Field Campaign Report ARM Data Discovery Browse Data Related Campaigns Midlatitude Continental Convective Clouds Experiment (MC3E): Inner Domain Thermodynamic Profiling during MC3E 2011.04.22, Turner, SGP Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers 2011.04.22, Williams, SGP Midlatitude Continental Convective Clouds Experiment: 2DVD Support 2011.04.22, Schwaller, SGP Midlatitude

  15. Lessons Learned from Practical Field Experience with High Pressure Gaseous

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels | Department of Energy Practical Field Experience with High Pressure Gaseous Fuels Lessons Learned from Practical Field Experience with High Pressure Gaseous Fuels Presentation given by Douglas Horne of the Clean Vehicle Energy Foundation at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_7_horne.pdf (4.54 MB) More Documents & Publications High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life Issues Workshop Notes from

  16. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaign Links Field Campaign Report ACAPEX Website ARM Data Discovery Browse Data Related Campaigns ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerosols and Ocean Science Expedition (AEROSE) 2015.01.14, Morris, AMF ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Ship-Based Ice Nuclei Collections 2015.01.14, DeMott, AMF ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerial Observations 2015.01.14, Leung, AAF Comments? We would love to hear from you! Send us a note below or

  17. ARM - Field Campaign - ARM-FIRE Water Vapor Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsARM-FIRE Water Vapor Experiment ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM-FIRE Water Vapor Experiment 2000.11.01 - 2000.12.31 Lead Scientist : Henry Revercomb Data Availability Yes For data sets, see below. Summary This field mission experience indicated that it is possible for several sensors to be used in a coordinated fashion over a period of several weeks to achieve a mean water

  18. Field experiments on an intelligent towed vehicle ``Flying Fish``

    SciTech Connect (OSTI)

    Koterayama, W.; Yamaguchi, S.; Nakamura, M.

    1995-12-31

    A depth, pitch and roll controllable towed vehicle, ``Flying Fish`` is being developed to measure the ocean current, temperature, salinity, dissolved oxygen, pH, turbidity, chlorophyll and total inorganic hydrocarbon. The first field experiments on its performance were carried out in the Japan sea last summer. The motion data of the ``Flying Fish`` are compared with those of numerical simulations.

  19. Renewable Energy Permitting Barriers in Hawaii: Experience from the Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Permitting Barriers in Hawaiʽi: Experience from the Field S. Busche and C. Donnelly National Renewable Energy Laboratory D. Atkins and R. Fields Parsons Brinckerhoff C. Black Hawaiʽi Department of Business, Economic Development, and Tourism Technical Report NREL/TP-7A20-55630 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable

  20. ARM - Field Campaign - SGP Ice Nuclei Characterization Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSGP Ice Nuclei Characterization Experiment Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : SGP Ice Nuclei Characterization Experiment 2014.04.22 - 2014.06.14 Lead Scientist : Paul DeMott For data sets, see below. Abstract Ice nucleating particles are required to trigger the formation of ice crystals in the mixed-phase (liquid and ice) regions of clouds,

  1. Dark matter effective field theory scattering in direct detection experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; et al

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. Here. we demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. In conclusion, we discussmore » the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less

  2. Dark matter effective field theory scattering in direct detection experiments

    SciTech Connect (OSTI)

    Schneck, K.; et al.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  3. Massless scalar field and solar-system experiments

    SciTech Connect (OSTI)

    Formiga, J. B.

    2011-04-15

    The solution of Einstein's field equations with the energy-momentum tensor of a massless scalar field is known as the Fisher solution. It is well known that this solution has a naked singularity due to the ''charge''{Sigma} of the massless scalar field. Here I obtain the radial null geodesic of the Fisher solution and use it to confirm that there is no black hole. In addition, I use the parametrized post-Newtonian formalism to show that the Fisher spacetime predicts the same effects on solar-system experiments as the Schwarzschild one does, as long as we impose a limit on {Sigma}. I show that this limit is not a strong constraint and we can even take values of {Sigma} bigger than M. By using the exact formula of the redshift and some assumptions, I evaluate this limit for the experiment of Pound and Snider [Phys. Rev. 140, B788 (1965)]. It turns out that this limit is {Sigma}<5.8x10{sup 3} m.

  4. SRNL RADIONUCLIDE FIELD LYSIMETER EXPERIMENT: BASELINE CONSTRUCTION AND IMPLEMENTATION

    SciTech Connect (OSTI)

    Roberts, K.; Kaplan, D.; Bagwell, L.; Powell, B.; Almond, P.; Emerson, H.; Hixon, A.; Jablonski, J.; Buchanan, C.; Waterhouse, T.

    2012-10-17

    The purpose of this document is to compile information regarding experimental design, facility design, construction, radionuclide source preparation, and path forward for the ten year Savannah River National Laboratory (SRNL) Radionuclide Field Lysimeter Experiment at the Savannah River Site (SRS). This is a collaborative effort by researchers at SRNL and Clemson University. The scientific objectives of this study are to: Study long-term radionuclide transport under conditions more representative of vadose zone conditions than laboratory experiments; Provide more realistic quantification of radionuclide transport and geochemistry in the vadose zone, providing better information pertinent to radioactive waste storage solutions than presently exists; Reduce uncertainty and improve justification for geochemical models such as those used in performance assessments and composite analyses.

  5. Overview of results from the MST reversed field pinch experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    38 Please note that terms and conditions apply. Overview of results from the MST reversed field pinch experiment View the table of contents for this issue, or go to the journal homepage for more 2015 Nucl. Fusion 55 104006 (http://iopscience.iop.org/0029-5515/55/10/104006) Home Search Collections Journals About Contact us My IOPscience | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 55 (2015) 104006 (8pp) doi:10.1088/0029-5515/55/10/104006 Overview of results from the MST

  6. Accelerated Stress Testing, Qualification Testing, HAST, Field Experience

    Broader source: Energy.gov [DOE]

    This presentation, which was the opening session of the NREL 2013 Photovoltaic Module Reliability Workshop held on February 26, 2013 in Golden, CO, was presented by John Wohlgemuth. Entitled "Accelerated Stress Testing, Qualification Testing, HAST, Field Experience -- What Do They All Mean?" the presentation details efforts to develop accelerated stress tests beyond the qualification test levels, which are necessary to predict PV module wear-out. The commercial success of PVs is ultimately based on the long-term reliability and safety of the deployed PV modules.

  7. The field experiments on the HTO washout from the atmosphere

    SciTech Connect (OSTI)

    Golubev, A.V.; Mavrin, S.V.; Golubeva, V.N.; Stengach, A.V.; Balashov, Y.S.; Kovalenko, V.P.; Solomatin, I.I.

    2015-03-15

    HTO (tritiated water) wash-out from the atmosphere is one of the key processes governing the HTO transport from the atmosphere into soil and plants. Experimental studies of the HTO interaction with water drops were carried out both in laboratories and in the field. In the course of experiments, the following rain characteristics were recorded: rain intensity, size distribution of drops, and falling velocities and their dependence on drop diameter. A laser optical device was designed and used to measure the distribution of the drop radius and velocities during the period of experiment. The tritium source was placed at a height of 30 m. Rainwater samples were collected in plastic bottles and their HTO activity was determined by liquid scintillation techniques. The data obtained for the experimental values of the scavenging rate are within the range from 4.12*10{sup -5} to 1.57*10{sup -4} s{sup -1} and correspond to the precipitation intensity from 0.3 to 1.26 mm/hour. These results are in sufficiently good agreement with the results of earlier papers.

  8. Idaho field experiment 1981. Volume 2: measurement data

    SciTech Connect (OSTI)

    Start, G E; Sagendorf, J F; Ackermann, G R; Cate, J H; Hukari, N F; Dickson, C R

    1984-04-01

    The 1981 Idaho Field Experiment was conducted in southeastern Idaho over the upper Snake River Plain. Nine test-day case studies were conducted between July 15 and 30, 1981. Releases of SF/sub 6/ gaseous tracer were made for 8-hour periods from 46m above ground. Tracer was sampled hourly, for 12 sequential hours, at about 100 locations within an area 24km square. Also, a single total integrated sample of about 30 hours duration was collected at approximately 100 sites within an area 48 by 72km square (using 6km spacings). Extensive tower profiles of meteorology at the release point were collected. RAWINSONDES, RABALS and PIBALS were collected at 3 to 5 sites. Horizontal, low-altitude winds were monitored using the INEL MESONET. SF/sub 6/ tracer plume releases were marked with co-located oil fog releases and bi-hourly sequential launches of tetroon pairs. Aerial LIDAR observations of the oil fog plume and airborne samples of SF/sub 6/ were collected. High altitude aerial photographs of daytime plumes were collected. Volume II lists the data in tabular form or cites the special supplemental reports by other participating contractors. While the primary user file and the data archive are maintained on 9 track/1600 cpi magnetic tapes, listings of the individual values are provided for the user who either cannot utilize the tapes or wishes to preview the data. The accuracies and quality of these data are described.

  9. Geothermal injection treatment: process chemistry, field experiences, and design options

    SciTech Connect (OSTI)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  10. Beam extraction experiment with field-emission arrays

    SciTech Connect (OSTI)

    Ishizuka, H.; Watanabe, A.; Shiho, M.

    1995-12-31

    An experimental project aimed to develop FEL drivers using a field-emission array is under way. The subject covers design and fabrication of novel micro-emitters, operation of FEAs, beam formation and emittance diagnostics. So far the generation of a focused beam has been demonstrated with an array of double-gated microemitters. Active control of FEAs has greatly improved the stability of the emission current. Large FEAs with an emitting area of up to 2 x 2 cm{sup 2} have been fabricated for the production of high-current beams. DC beams (1 - 5 keV < 100 {mu}A) extracted from Spindt cathodes were propagated over 1 m and projected on a fluorescent screen. Separate images of FEA tips were observed and emittance measurement has been carried out. The cathode is going to be replaced by a double-gated FEA to improve the beam quality. Pulsed extraction of high currents will also be tested, employing a non-gated FEA as the cathode of a 1 MV induction linac. Results of these experiments will be presented and perspectives concerning the FEA gun will be discussed.

  11. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign...

    Office of Scientific and Technical Information (OSTI)

    2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. ...

  12. ARM - Field Campaign - The ARM Pilot Radiation Observation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Observations in the ARM Pilot Radiation Observation Experiment Campaign Data Sets IOP Participant Data Source Description Final Data Tooman WSI Order Data Westwater ftirraob...

  13. ARM - Field Campaign - Lower Atmospheric Boundary Layer Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Campaigns 2013 Lower Atmospheric Boundary Layer Experiment 2013.05.28, Turner, SGP ... Lead Scientist : David Turner For data sets, see below. Abstract Boundary layer turbulence ...

  14. ARM - Field Campaign - Land - Atmosphere Feedback Experiment (LAFE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsLand - Atmosphere Feedback Experiment (LAFE) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Land - Atmosphere Feedback Experiment (LAFE) 2017.08.01 - 2017.08.31 Lead Scientist : Volker Wulfmeyer Abstract The Land-Atmosphere Feedback Experiment (LAFE) will deploy several state-of-the-art scanning lidar and remote sensing systems to the ARM SGP site. These instruments will augment the ARM instrument suite in order to collect

  15. ARM - Field Campaign - Midlatitude Continental Convective Clouds Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MC3E): Multi-Frequency Profilers Experiment (MC3E): Multi-Frequency Profilers ARM Data Discovery Browse Data Related Campaigns Midlatitude Continental Convective Clouds Experiment (MC3E) 2011.04.22, Jensen, SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers 2011.04.22 - 2011.06.06 Lead Scientist : Christopher Williams For data sets, see below.

  16. ARM - Field Campaign - Cross-Scale Land-Atmosphere Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Cross-Scale Land-Atmosphere Experiment 2016.09.01 - 2019.05.31 Lead Scientist :...

  17. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerial Observations 2015.01.14...

  18. ARM - Field Campaign - Integrated Precipitation and Hydrology Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (IPHEX): Cloud Spectrometer and Impactor (CSI) govCampaignsIntegrated Precipitation and Hydrology Experiment (IPHEX): Cloud Spectrometer and Impactor (CSI) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Integrated Precipitation and Hydrology Experiment (IPHEX): Cloud Spectrometer and Impactor (CSI) 2014.03.01 - 2014.07.01 Lead Scientist : Gerald Mace For data sets, see below. Abstract IPHEX -

  19. Behavioral Opportunities for Energy Savings in Office Buildings: a London Field Experiment

    Broader source: Energy.gov [DOE]

    Report details a controlled field experiment to reduce energy use and greenhouse gas emissions in five organizations across four office buildings in London, England.

  20. Dark matter effective field theory scattering in direct detection experiments

    SciTech Connect (OSTI)

    Schneck, K.; Cabrera, B.; Cerdeno, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, W.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-01

    We examine the consequences of the effective eld theory (EFT) of dark matter-nucleon scattering or current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral di*erences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  1. ARM - Field Campaign - AMIE (ACRF MJO Investigation Experiment):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations of the Madden Julian Oscillation for Modeling Studies govCampaignsAMIE (ACRF MJO Investigation Experiment): Observations of the Madden Julian Oscillation for Modeling Studies Campaign Links AMIE Website ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : AMIE (ACRF MJO Investigation Experiment): Observations of the Madden Julian Oscillation for Modeling Studies 2011.10.01 - 2012.03.31 Website

  2. ARM - Field Campaign - Aerosol Lidar Validation Experiment - ALIVE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAerosol Lidar Validation Experiment - ALIVE Campaign Links ALIVE Website ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol Lidar Validation Experiment - ALIVE 2005.09.12 - 2005.09.22 Website : http://geo.arc.nasa.gov/sgg/ALIVE/index.html Lead Scientist : Beat Schmid For data sets, see below. Abstract We performed the simultaneous validation of aerosol extinction profiles obtained from a

  3. ARM - Field Campaign - FIRE-Arctic Cloud Experiment/SHEBA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsFIRE-Arctic Cloud Experiment/SHEBA ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : FIRE-Arctic Cloud Experiment/SHEBA 1998.05.19 - 1998.06.24 Lead Scientist : Peter Hobbs Data Availability Data from the UW Convair-580 measurements in FIRE-ACE/SHEBA have been archived at the Langley DAAC. For data sets, see below. Abstract Based in Barrow, Alaska, from May 15 through June 24, 1998, the Univ. of

  4. ARM - Field Campaign - Macquarie Island Cloud and Radiation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MICRE) govCampaignsMacquarie Island Cloud and Radiation Experiment (MICRE) Campaign Links Science Plan Backgrounder Baseline Instruments and Data Plots Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Macquarie Island Cloud and Radiation Experiment (MICRE) 2016.03.01 - 2018.03.31 Lead Scientist : Roger Marchand Abstract Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model

  5. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    SciTech Connect (OSTI)

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in ?~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  6. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    SciTech Connect (OSTI)

    Rosenberg, M. J. Li, C. K.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D.; Fox, W.; Igumenshchev, I.; Stoeckl, C.; Glebov, V.; Town, R. P. J.

    2015-04-15

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β ∼ 10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  7. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    SciTech Connect (OSTI)

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  8. The experience from field operation of a subsea multiphase booster

    SciTech Connect (OSTI)

    De Donno, S.; Colombi, P.; Chiesa, G.; Ferrari Aggradi, G.

    1995-12-31

    The subsea multiphase production -- based on the transportation over long distance of the untreated oil-well fluids (oil, water and gas) -- is expected to be one of the most efficient tool for economic exploitation of deep offshore and marginal fields. A long term testing campaign on a multiphase screw pump was successfully completed in 1990 at the AGIP Trecate onshore oil field and the results confirmed the industrial viability for such a kind of equipment for surface application. Then, a subsea version of an improved multiphase twin screw pump has been integrated into a Subsea Multiphase Boosting Unit and installed on the Prezioso Field, offshore Sicily, in Summer 1994. Long term testing under real operating conditions were initiated after a successful start-up of the Unit. To the Authors` knowledge, this is the first world-wide subsea installation of an electrically driven multiphase pump operating with live oil. The paper presents first a description of the marine twin screw pump concept adopted for the subsea application including the main features of the complete boosting unit and the adopted solutions to allow it to operate under different conditions. Then, the project implementation activities from the onshore integration through the installation, commissioning and start-up operations are described. Moreover, the results of the initial functional tests are discussed with particular reference to the screw pump hydraulic performance as well as to the behavior of the pump pressure compensation and seal/lube oil systems. Transient and steady state conditions experienced by the system are finally characterized and the early evidences of its long term performance are discussed.

  9. Field experiences in on-line bacteria monitoring

    SciTech Connect (OSTI)

    Smart, J.; Pickthall, T.; Wright, T.G.

    1996-08-01

    The results of field testing for bacteria and related corrosion are presented for three crude oil and one gas pipeline. Large numbers of bacteria were usually found in the crude oil pipelines, but large bacteria populations did not result in accelerated corrosion in these lines. Crude oil pipeline corrosion was found to be most rapid in sediment deposits, which consisted of oil wet corrosion products, paraffins, and water. Both bacteria populations and corrosion rates were low in the gas pipeline studied, due to a high residual di-amine corrosion inhibitor content in the pipeline water.

  10. The 1987 Federal field exercise: The DOE experience

    SciTech Connect (OSTI)

    Adler, M.V.; Gant, K.S.

    1989-06-01

    The second full-scale field exercise of the Federal Radiological Emergency Response Plan (FRERP) was held at the Zion Nuclear Power Station, Zion, Illinois, in June 1987. The exercise incorporated the annual compliance exercise for the Zion plant and involved the operating utility, Commonwealth Edison Company, the states of Illinois and Wisconsin, local governments, volunteer groups, and representatives from 12 federal agencies. The 3-day exercise was played from many locations in the Zion area; Springfield, Illinois; Madison, Wisconsin; and Washington, DC. Approximately 1000 people participated in the exercise, which used a scenario in which an accident at the plant resulted in the release of radioactive material outside the plant boundary. The US Department of Energy (DOE) had major responsibilities during the planning, playing, and critiquing of the exercise; these functions are outlined in the report. This document describes the DOE participation in the planning and response during the exercise. During a radiological emergency, the FRERP gives DOE the responsibility for coordinating the federal radiological monitoring and assessment activities in support of the states and the cognizant federal agency. At Zion, a self-sufficient Federal Radiological Monitoring and Assessment Center was established by DOE at a nearby fairground in which over 200 people from DOE, the two states, and other federal agencies participated. Before the field exercise, a tabletop exercise and a dry run were held for training purposes. 5 refs., 6 figs.

  11. Field Experience with 3-Sun Mirror Module Systems

    SciTech Connect (OSTI)

    Fraas, Dr. Lewis; Avery, James E.; Huang, H,; Minkin, Leonid M; Fraas, J. X.; Maxey, L Curt; Gehl, Anthony C

    2008-01-01

    JX Crystals 3-sun PV mirror modules have now been operating in four separate systems in the field for up to 2 years. Two post-mounted 2-axis tracking arrays of 12 modules each were installed at the Shanghai Flower Park in April of 2006. Then 672 modules were installed in a 100 kW array on N-S horizontal beam trackers at the Shanghai Flower Port in November of 2006. Finally, sets of 4 modules were installed on azimuth-tracking carousels on buildings at the Oak Ridge National Lab and at the U. of Nevada in Las Vegas in late 2007. All of these modules in each of these systems are still operating at their initial power ratings. No degradation in performance has been observed. The benefit of these 3-sun PV mirror modules is that they use 1/3 of the silicon single-crystal cell material in comparison to traditional planar modules. Since aluminum mirrors are much cheaper than high-purity single-crystal silicon-cells, these modules and systems should be much lower in cost when manufactured in high volume.

  12. Improved understanding of geologic CO{sub 2} storage processes requires risk-driven field experiments

    SciTech Connect (OSTI)

    Oldenburg, C.M.

    2011-06-01

    The need for risk-driven field experiments for CO{sub 2} geologic storage processes to complement ongoing pilot-scale demonstrations is discussed. These risk-driven field experiments would be aimed at understanding the circumstances under which things can go wrong with a CO{sub 2} capture and storage (CCS) project and cause it to fail, as distinguished from accomplishing this end using demonstration and industrial scale sites. Such risk-driven tests would complement risk-assessment efforts that have already been carried out by providing opportunities to validate risk models. In addition to experimenting with high-risk scenarios, these controlled field experiments could help validate monitoring approaches to improve performance assessment and guide development of mitigation strategies.

  13. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; S??guin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-01

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in ß~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore » and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less

  14. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore » and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less

  15. ARM - Field Campaign - Ground-based Cloud Tomography Experiment at SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsGround-based Cloud Tomography Experiment at SGP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Ground-based Cloud Tomography Experiment at SGP 2009.05.26 - 2009.07.17 Lead Scientist : Dong Huang For data sets, see below. Abstract Knowledge of 3D cloud properties is pressingly needed in many research fields. One of the problems encountered when trying to represent 3D cloud fields in numerical

  16. Porous media experience applicable to field evaluation for compressed air energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Gutknecht, P.J.

    1980-06-01

    A survey is presented of porous media field experience that may aid in the development of a compressed air energy storage field demonstration. Work done at PNL and experience of other groups and related industries is reviewed. An overall view of porous media experience in the underground storage of fluids is presented. CAES experience consists of site evaluation and selection processes used by groups in California, Kansas, and Indiana. Reservoir design and field evaluation of example sites are reported. The studies raised questions about compatibility with depleted oil and gas reservoirs, storage space rights, and compressed air regulations. Related experience embraces technologies of natural gas, thermal energy, and geothermal and hydrogen storage. Natural gas storage technology lends the most toward compressed air storage development, keeping in mind the respective differences between stored fluids, physical conditions, and cycling frequencies. Both fluids are injected under pressure into an aquifer to form a storage bubble confined between a suitable caprock structure and partially displaced ground water. State-of-the-art information is summarized as the necessary foundation material for field planning. Preliminary design criteria are given as recommendations for basic reservoir characteristics. These include geometric dimensions and storage matrix properties such as permeability. Suggested ranges are given for injection air temperature and reservoir pressure. The second step in developmental research is numerical modeling. Results have aided preliminary design by analyzing injection effects upon reservoir pressure, temperature and humidity profiles. Results are reported from laboratory experiments on candidate sandstones and caprocks. Conclusions are drawn, but further verification must be done in the field.

  17. ARM - Field Campaign - 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    City 6 MAX-Mex-Megacity Aerosol eXperiment - Mexico City ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico City 2006.03.03 - 2006.03.28 Lead Scientist : Jeffrey Gaffney For data sets, see below. Abstract A 4-week field campaign was conducted in and downwind of Mexico City during March 2006. The Megacity Aerosol eXperiment - MEXico City (MAX-MEX)

  18. Self-generated magnetic fields in direct-drive implosion experiments

    SciTech Connect (OSTI)

    Igumenshchev, I. V.; Nilson, P. M.; Goncharov, V. N.; Zylstra, A. B.; Li, C. K.; Petrasso, R. D.

    2014-06-15

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA Laser Facility were investigated employing radiography with ∼10- to 60-MeV protons. The experiment used plastic-shell targets with imposed surface defects (glue spots, wires, and mount stalks), which enhance self-generated fields. The fields were measured during the 1-ns laser drive with an on-target intensity ∼10{sup 15} W/cm{sup 2}. Proton radiographs show multiple ring-like structures produced by electric fields ∼10{sup 7} V/cm and fine structures from surface defects, indicating self-generated fields up to ∼3 MG. These electric and magnetic fields show good agreement with two-dimensional magnetohydrodynamic simulations when the latter include the ∇T{sub e} × ∇n{sub e} source, Nernst convection, and anisotropic resistivity. The simulations predict that self-generated fields affect heat fluxes in the conduction zone and, through this, affect the growth of local perturbations.

  19. Sensitivity Reach of the Neutron EDM Experiment: The Electric Field Strength

    SciTech Connect (OSTI)

    Hennings-Yeomans, R.; Cooper, M.; Currie, S. A.; Makela, M. F.; Ramsey, J. C.; Tajima, S.; Womack, T. L.; Long, J. C.; Stanislaus, S.

    2010-08-04

    The search for an electric dipole moment of the neutron tests physics beyond the Standard Model such as new sources of CP-violation and Supersymmetry. The nEDM experiment aims to improve the sensitivity on the current limit of the electric dipole moment of the neutron to <10{sup -27} e{center_dot}cm. The experiment will use a flux of Ultra Cold Neutrons (UCNs) produced and stored in a bath of superfluid He-II. A change in precession frequency is expected for a non-zero EDM when an electric field is applied parallel and antiparallel to a magnetic field across the neutron storage cell. A dominant parameter in terms of reducing the statistical uncertainty of this measurement is the strength of the applied electric field. An experiment to measure if superfluid He-II can sustain up to 50 kV/cm for a volume and electrode spacings comparable to the nEDM experiment has been constructed at Los Alamos National Laboratory. It consists in a large-area parallel plate capacitor immersed in a 200 liter central volume inside a suitable cryostat that in turn is connected to a dilution refrigerator unit. A description of test runs and the status of the experiment is presented.

  20. SU-E-J-233: A Facility for Radiobiological Experiments in a Large Magnetic Field

    SciTech Connect (OSTI)

    Carlone, M; Heaton, R; Keller, H; Wouters, B; Jaffray, D

    2014-06-01

    Purpose: There is considerable interest in developing medical linear accelerators with integrated image guidance by MRI. Less work has been done on the fundamental biology of cell survival in the presence of a strong magnetic field. The purpose of this work is to describe an experimental system capable of measuring cell survival response in the types of MRI-linac systems currently under development. Methods: We have integrated a cobalt irradiator with a solenoid magnet. The solenoid magnet has inner diameter of 10 cm. To enable measurement of the biological effects as a function of depth, we are utilizing the sliced gel technique, in which cells are embedded and fixed within a gelatin matrix. Irradiated cells at defined positions (sub mm resolution) can subsequently be recovered and assessed for cell survival or other biological effects. Results: The magnetic field profile in the solenoid has a peak magnetic field 36 cm below the top edge of the magnet bore and can be placed at and SAD of 100 cm. At a solenoid current of 35 A, the peak magnetic field is 0.25 T. The dose rate of the cobalt irradiator is 16 cGy/min at 100 cm SAD. EBT3 film was used to demonstrate the system functionality. It was irradiated at 1 cm depth at 100 cm SSD with a 44 field to 1.5 Gy in a 0.25 T magnetic field. The dose profile was similar between this film and the control exposure without magnetic field. Conclusion: Integrating a cobalt irradiator with a high field magnet is demonstrated. The magnetic field at the cobalt defining head was minimal and did not interfere with the functioning of this unit. Cell survival experiments can be reproduced exactly in the presence or absence of a magnetic field since a resistive magnet is used.

  1. Note: Versatile sample stick for neutron scattering experiments in high electric fields

    SciTech Connect (OSTI)

    Bartkowiak, M., E-mail: marek.bartkowiak@psi.ch [Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); White, J. S. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen (Switzerland) [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Laboratory for Quantum Magnetism, Ecole Polytechnique Fdrale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Rnnow, H. M.; Pra, K. [Laboratory for Quantum Magnetism, Ecole Polytechnique Fdrale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)] [Laboratory for Quantum Magnetism, Ecole Polytechnique Fdrale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2014-02-15

    We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.

  2. ARM - Field Campaign - 2001 Philadelphia NE-OPS Air Quality Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Philadelphia NE-OPS Air Quality Experiment ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2001 Philadelphia NE-OPS Air Quality Experiment 2001.07.14 - 2001.07.30 Lead Scientist : C Philbrick For data sets, see below. Abstract BNL to field and operate the chemical gas analyzers (specifically the NO, NO2, NOy, NOy*, O3, SO2, CO and PILS instruments) to collect 15-s, 60-s, 15-min, and 1-h data from the BNL

  3. Modeling of coherent ultrafast magneto-optical experiments: Light-induced molecular mean-field model

    SciTech Connect (OSTI)

    Hinschberger, Y.; Hervieux, P.-A.

    2015-12-28

    We present calculations which aim to describe coherent ultrafast magneto-optical effects observed in time-resolved pump-probe experiments. Our approach is based on a nonlinear semi-classical Drude-Voigt model and is used to interpret experiments performed on nickel ferromagnetic thin film. Within this framework, a phenomenological light-induced coherent molecular mean-field depending on the polarizations of the pump and probe pulses is proposed whose microscopic origin is related to a spin-orbit coupling involving the electron spins of the material sample and the electric field of the laser pulses. Theoretical predictions are compared to available experimental data. The model successfully reproduces the observed experimental trends and gives meaningful insight into the understanding of magneto-optical rotation behavior in the ultrafast regime. Theoretical predictions for further experimental studies are also proposed.

  4. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    SciTech Connect (OSTI)

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  5. Visible bremsstrahlung tomographic diagnostic for the pulsed high density field-reversed configuration experiment

    SciTech Connect (OSTI)

    Gota, H.; Andreason, S. P.; Votroubek, G. R.; Pihl, C. J.; Slough, J. T.

    2006-10-15

    A diagnostic suite for the source section of the pulsed high density field-reversed configuration (FRC) experiment has been constructed to investigate the equilibrium and stability of FRC plasmas. In particular, a visible bremsstrahlung tomographic system has been designed and implemented. Three types of tomographic analyses for FRCs are performed: a Fourier fit method (Cormack-Granetz), a maximum entropy method, and a minimum Fisher method utilizing code developed for the TCV tokamak experiment in Switzerland [Anton et al., Plasma Phys. Controled Fusion 38, 1849 (1996)]. Results from the different methods and end-on imaging from the fast-framing camera are compared showing relative agreement of FRC internal structures between all measurements.

  6. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    SciTech Connect (OSTI)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

  7. PPPL researcher maps magnetic fields in first physics experiment on W7-X |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab researcher maps magnetic fields in first physics experiment on W7-X By Jeanne Jackson DeVoe December 4, 2015 Tweet Widget Google Plus One Share on Facebook Sam Lazerson in front of a stellarator model at PPPL that was built for the 1958 "Atoms for Peace Conference" in Geneva. (Photo by Elle Starkman/PPPL Office of Communications). (Photo by Elle Starkman/PPPL Office of Communications) Sam Lazerson in front of a stellarator model at PPPL that was built

  8. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:www.nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  9. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  10. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    SciTech Connect (OSTI)

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.; Salamov, Z.Z.; Cherkasov, A.B.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes in the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.

  11. Magnetic design calculation and FRC formation modeling for the field reversed experiment liner

    SciTech Connect (OSTI)

    Dorf, L. A.; Intrator, T. P.; Renneke, R.; Hsu, S. C.; Wurden, G. A.; Awe, T.; Siemon, R.; Semenov, V. E.

    2008-10-01

    Integrated magnetic modeling and design are important to meet the requirements for (1) formation, (2) translation, and (3) compression of a field reversed configuration (FRC) for magnetized target fusion. Off-the-shelf solutions do not exist for many generic design issues. A predictive capability for time-dependent magnetic diffusion in realistically complicated geometry is essential in designing the experiment. An eddy-current code was developed and used to compute the mutual inductances between driven magnetic coils and passive magnetic shields (flux excluder plates) to calculate the self-consistent axisymmetric magnetic fields during the first two stages. The plasma in the formation stage was modeled as an immobile solid cylinder with selectable constant resistivity and magnetic flux that was free to readjust itself. It was concluded that (1) use of experimentally obtained anomalously large plasma resistivity in magnetic diffusion simulations is sufficient to predict magnetic reconnection and FRC formation, (2) comparison of predicted and experimentally observed timescales for FRC Ohmic decay shows good agreement, and (3) for the typical range of resistivities, the magnetic null radius decay rate scales linearly with resistivity. The last result can be used to predict the rate of change in magnetic flux outside of the separatrix (equal to the back-emf loop voltage), and thus estimate a minimum {theta}-coil loop voltage required to form an FRC.

  12. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE WIDE-FIELD IMAGERS

    SciTech Connect (OSTI)

    Bock, J.; Battle, J.; Sullivan, I.; Arai, T.; Matsumoto, T.; Matsuura, S.; Tsumura, K.; Cooray, A.; Mitchell-Wynne, K.; Smidt, J.; Hristov, V.; Lam, A. C.; Levenson, L. R.; Mason, P.; Keating, B.; Renbarger, T.; Kim, M. G.; Lee, D. H.; Nam, U. W.; Suzuki, K.; and others

    2013-08-15

    We have developed and characterized an imaging instrument to measure the spatial properties of the diffuse near-infrared extragalactic background light (EBL) in a search for fluctuations from z > 6 galaxies during the epoch of reionization. The instrument is part of the Cosmic Infrared Background Experiment (CIBER), designed to observe the EBL above Earth's atmosphere during a suborbital sounding rocket flight. The imaging instrument incorporates a 2 Degree-Sign Multiplication-Sign 2 Degree-Sign field of view to measure fluctuations over the predicted peak of the spatial power spectrum at 10 arcmin, and 7'' Multiplication-Sign 7'' pixels, to remove lower redshift galaxies to a depth sufficient to reduce the low-redshift galaxy clustering foreground below instrumental sensitivity. The imaging instrument employs two cameras with {Delta}{lambda}/{lambda} {approx} 0.5 bandpasses centered at 1.1 {mu}m and 1.6 {mu}m to spectrally discriminate reionization extragalactic background fluctuations from local foreground fluctuations. CIBER operates at wavelengths where the electromagnetic spectrum of the reionization extragalactic background is thought to peak, and complements fluctuation measurements by AKARI and Spitzer at longer wavelengths. We have characterized the instrument in the laboratory, including measurements of the sensitivity, flat-field response, stray light performance, and noise properties. Several modifications were made to the instrument following a first flight in 2009 February. The instrument performed to specifications in three subsequent flights, and the scientific data are now being analyzed.

  13. Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles

    SciTech Connect (OSTI)

    Callister, S.J.; Wilkins, M.J.; Nicora, C.D.; Williams, K.H.; Banfield, J.F.; VerBerkmoes, N.C.; Hettich, R.L.; NGuessan, A.L.; Mouser, P.J.; Elifantz, H.; Smith, R.D.; Lovley, D.R.; Lipton, M.S.; Long, P.E.

    2010-07-15

    Stimulated by an acetate-amendment field experiment conducted in 2007, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this experiment, planktonic biomass was sampled at various time points to quantitatively evaluate proteomes. In 2008, an acetate-amended field experiment was again conducted in a similar manner to the 2007 experiment. As there was no comprehensive metagenome sequence available for use in proteomics analysis, we systematically evaluated 12 different organism genome sequences to generate sets of aggregate genomes, or pseudo-metagenomes, for supplying relative quantitative peptide and protein identifications. Proteomics results support previous observations of the dominance of Geobacteraceae during biostimulation using acetate as sole electron donor, and revealed a shift from an early stage of iron reduction to a late stage of iron reduction. Additionally, a shift from iron reduction to sulfate reduction was indicated by changes in the contribution of proteome information contributed by different organism genome sequences within the aggregate set. In addition, the comparison of proteome measurements made between the 2007 field experiment and 2008 field experiment revealed differences in proteome profiles. These differences may be the result of alterations in abundance and population structure within the planktonic biomass samples collected for analysis.

  14. Confinement analyses of the high-density field-reversed configuration plasma in the field-reversed configuration experiment with a liner

    SciTech Connect (OSTI)

    Zhang Shouyin; Intrator, T.P.; Wurden, G.A.; Waganaar, W.J.; Taccetti, J.M.; Renneke, R.; Grabowski, C.; Ruden, E.L.

    2005-05-15

    The focus of the field-reversed configuration (FRC) experiment with a liner (FRX-L) is the formation of a target FRC plasma for magnetized target fusion experiments. An FRC plasma with density of 10{sup 23} m{sup -3}, total temperature in the range of 150-300 eV, and a lifetime of {approx_equal}20 {mu}s is desired. Field-reversed {theta}-pinch technology is used with programed cusp fields at {theta}-coil ends to achieve non-tearing field line reconnections during FRC formation. Well-formed FRCs with density between (2-4)x10{sup 22} m{sup -3}, lifetime in the range of 15-20 {mu}s, and total temperature between 300-500 eV are reproducibly created. Key FRC parameters have standard deviation in the mean of 10% during consecutive shots. The FRCs are formed at 50 mTorr deuterium static fill using 2 kG net reversed bias field inside the {theta}-coil confinement region, with external main field unexpectedly ranging between 15-30 kG. The high-density FRCs confinement properties are approximately in agreement with empirical scaling laws obtained from previous experiments with fill pressure mostly less than 20 mTorr. Analyses in this paper reveal that reducing the external main field modulation and/or extending the {theta}-coil length in the FRX-L device are critical in achieving higher FRC parameters for application in magnetized target fusion.

  15. Equilibrium paradigm for field-reversed configurations and application to experiments

    SciTech Connect (OSTI)

    Steinhauer, Loren C.; Intrator, T. P.

    2009-07-15

    Fresh insights on field-reversed configurations (FRCs) are incorporated in a new paradigm for equilibria. In particular four new or unappreciated properties are accounted for: an empirically based scrape-off layer thickness; a new, more accurate axial force balance relation; viscous force regularity at the O-point; and the broken-surface effect. The new paradigm corrects glaring defects of previous models (rigid rotor, Hill's vortex). Further, the new paradigm is simple enough to be easily used as an interpretive tool despite the limited data suite in most experiments. It is applied to the newly enhanced FRC data compendium, a database of 69 records from 15 facilities. Several important observations and corrections on the previous understanding of FRCs follow, three of which stand out. (1) The traditional axial force balance ('average-{beta}' relation) gives an inaccurate scaling with the separatrix-to-wall radius ratio. (2) The improved equilibrium paradigm yields separatrix particle transport rates of 3-5 m{sup 2}/s for 'best confinement' examples; this is a factor of three lower than crude 'bulk' estimates commonly used. (3) The transport compared to the Bohm rate shows a great deal of scatter (40% scatter/mean ratio), i.e., 'Bohm' is not a useful representation for transport scaling.

  16. The LACARA Vacuum Laser Accelerator Experiment: Beam Positioning and Alignment in a Strong Magnetic Field

    SciTech Connect (OSTI)

    Shchelkunov, Sergey V.; Marshall, T. C.; Hirshfield, J. L.; Wang, Changbiao; LaPointe, M. A.

    2006-11-27

    LACARA (laser cyclotron auto-resonance accelerator) is a vacuum laser accelerator of electrons that is under construction at the Accelerator Test Facility (ATF), Brookhaven National Laboratory. It is expected that the experiment will be assembled by September 2006; this paper presents progress towards this goal. According to numerical studies, as an electron bunch moves along the LACARA solenoidal magnetic field ({approx}5.2 T, length {approx}1 m), it will be accelerated from 50 to {approx}75 MeV by interacting with a 0.8 TW Gaussian-mode circularly polarized optical pulse provided by the ATF CO2 10.6{mu}m laser system. The LACARA laser transport optics must handle 10 J and be capable of forming a Gaussian beam inside the solenoid with a 1.4 mm waist and a Rayleigh range of 60 cm. The electron optics must transport a bunch having input emittance of 0.015 mm-mrad and 100 {mu}m waist through the magnet. Precision alignment between the electron beam and the solenoid magnetic axis is required, and a method to achieve this is described in detail. Emittance- filtering may be necessary to yield an accelerated bunch having a narrow ({approx}1%) energy-spread.

  17. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    SciTech Connect (OSTI)

    A. G. Ware; C. Hsu; C. L. Atwood; M. B. Sattison; R. S. Hartley; V. N. Shah

    1999-02-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number and rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs.

  18. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    SciTech Connect (OSTI)

    Shah, Vikram Naginbhai; Ware, Arthur Gates; Atwood, Corwin Lee; Sattison, Martin Blaine; Hartley, Robert Scott; Hsu, C.

    1999-08-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number of rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs.

  19. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    SciTech Connect (OSTI)

    Salazar Mejía, C. Nayak, A. K.; Felser, C.; Nicklas, M.; Ghorbani Zavareh, M.; Wosnitza, J.; Skourski, Y.

    2015-05-07

    The present pulsed high-magnetic-field study on Ni{sub 50}Mn{sub 35}In{sub 15} gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields.

  20. Accelerated Stress Testing, Qualification Testing, HAST, Field Experience - What Do They All Mean? (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2013-05-01

    This presentation discusses the need for a set of tests for modules that would predict their long term-field performance.

  1. NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE...

    Office of Scientific and Technical Information (OSTI)

    GEODYN, GEODYN-L), and the far-field seismic propagation with an elastic wave ... This spiral development cycle wherein simulations are used to guide experimental design ...

  2. Studies of the Impact of Magnetic Field Uncertainties on Physics Parameters of the Mu2e Experiment

    SciTech Connect (OSTI)

    Bradascio, Federica

    2016-01-01

    The Mu2e experiment at Fermilab will search for a signature of charged lepton flavor violation, an effect prohibitively too small to be observed within the Standard Model of particle physics. Therefore, its observation is a signal of new physics. The signature that Mu2e will search for is the ratio of the rate of neutrinoless coherent conversion of muons into electrons in the field of a nucleus, relative to the muon capture rate by the nucleus. The conversion process is an example of charged lepton flavor violation. This experiment aims at a sensitivity of four orders of magnitude higher than previous related experiments. The desired sensitivity implies highly demanding requirements of accuracy in the design and conduct of the experiment. It is therefore important to investigate the tolerance of the experiment to instrumental uncertainties and provide specifications that the design and construction must meet. This is the core of the work reported in this thesis. The design of the experiment is based on three superconducting solenoid magnets. The most important uncertainties in the magnetic field of the solenoids can arise from misalignments of the Transport Solenoid, which transfers the beam from the muon production area to the detector area and eliminates beam-originating backgrounds. In this thesis, the field uncertainties induced by possible misalignments and their impact on the physics parameters of the experiment are examined. The physics parameters include the muon and pion stopping rates and the scattering of beam electrons off the capture target, which determine the signal, intrinsic background and late-arriving background yields, respectively. Additionally, a possible test of the Transport Solenoid alignment with low momentum electrons is examined, as an alternative option to measure its field with conventional probes, which is technically difficult due to mechanical interference. Misalignments of the Transport Solenoid were simulated using standard

  3. ARM - Field Campaign - 2004 NEAX (Northeast Aerosol Experiment), G-1 data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 NEAX (Northeast Aerosol Experiment), G-1 data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2004 NEAX (Northeast Aerosol Experiment), G-1 data 2004.07.20 - 2004.08.15 Lead Scientist : Peter Daum For data sets, see below. Abstract Brookhaven National Laboratory conducted a series of aircraft flights with the DOE G-1 aircraft during the 2004 Northeast Aerosol Experiment (NEAX). The flights accomplished

  4. ARM - Field Campaign - 2005 MASE-MArine Stratus Experiment-Pt. Reyes, CA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 MASE-MArine Stratus Experiment-Pt. Reyes, CA ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2005 MASE-MArine Stratus Experiment-Pt. Reyes, CA 2005.07.05 - 2005.07.27 Lead Scientist : Peter Daum For data sets, see below. Abstract The MArine Stratus Experiment (MASE) was designed to examine the influences of anthropogenic aerosols on marine stratus clouds so that the relevant processes can be more

  5. TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING

    SciTech Connect (OSTI)

    Miller, William A; Cherry, Nigel J; Allen, Richard Lowell; Childs, Phillip W; Atchley, Jerald Allen; Ronnen, Levinson; Akbari, Hashem; Berhahl, Paul

    2010-03-01

    counter battens, providing a nailing surface for the concrete tile. This double batten construction forms an inclined air channel running from the soffit to the ridge. The bottom surface of the channel is formed by the roof decking and is relatively flat and smooth. The top surface is created by the underside of the roofing tiles, and is designed to be an air permeable covering to alleviate the underside air pressure and minimize wind uplift on the tiles. The resulting air flows also have a cooling influence which further complicates prediction of the heat penetrating through the deck because an accurate measure of the airflow is required to predict the heat transfer. Measured temperatures and heat flows at the roof surface, within the attic and at the ceiling of the houses are discussed as well as the power usage to help gauge the benefit of cool-pigmented reflective roof products fitted with and without ventilation above the roof deck. Ventilation occurring above the deck is an inherent feature for tile roof assemblies, and is formed by an air space between the exterior face of the roof sheathing and the underside of the tile. The greater the tile s profile the greater is the effect of the ventilation which herein is termed above-sheathing ventilation (ASV). However, because of the complexity of the thermally induced flow, little credit is allowed by state and federal building codes. ASHRAE (2005) provides empirical data for the effective thermal resistance of plane air spaces. A -in. (0.0191-m) plane air space inclined at 45 with the horizontal has an RUS-0.85 (RSI-0.15) . Our intent is to help further deploy cool color pigments in roofs by conducting field experiments to evaluate the new cool-colored roofing materials in the hot climate of Southern California. The collected data will be used to showcase and market the performance of new cool-roof products and also to help formulate and validate computer codes capable of calculating the heat transfer occurring within

  6. Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  7. Strong field physics and QED experiments with ELI-NP 2×10PW laser beams

    SciTech Connect (OSTI)

    Turcu, I. C. E. Balascuta, S. Negoita, F.; Jaroszynski, D.; McKenna, P.

    2015-02-24

    The ELI-NP facility will focus a 10 PW pulsed laser beam at intensities of ∼10{sup 23} W/cm{sup 2} for the first time, enabling investigation of the new physical phenomena at the interfaces of plasma, nuclear and particle physics. The electric field in the laser focus has a maximum value of ∼10{sup 15} V/m at such laser intensities. In the ELI-NP Experimental Area E6, we propose the study of Radiation Reaction, Strong Field Quantum Electrodynamics (QED) effects and resulting production of Ultra-bright Sources of Gamma-rays which could be used for nuclear activation. Two powerful, synchronized 10 PW laser beams will be focused in the E6 Interaction Chamber on either gas or solid targets. One 10 PW beam is the Pump-beam and the other is the Probe-beam. The focused Pump beam accelerates the electrons to relativistic energies. The accelerated electron bunches interact with the very high electro-magnetic field of the focused Probe beam. The layout of the experimental area E6 will be presented with several options for the experimental configurations.

  8. The Facility for 500 MeV Plasma Wake-Field Acceleration Experiments at Budker INP

    SciTech Connect (OSTI)

    Petrenko, A. V.; Lotov, K. V.; Logatchov, P. V.; Burdakov, A. V.

    2010-11-04

    The experimental PWFA facility currently under construction at the Budker INP is described. The objective is to use electron and positron beams extracted from the VEPP-5 damping ring in PWFA experiments. Due to longitudinal beam compression many PWFA schemes including the efficient blowout regime as well as multibunch regime can be studied. The simulations of beam dynamics in the facility are presented. Also we propose a simple technique for longitudinal beam slicing using dipole kickers and collimator in the damping ring.

  9. Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE Experiment September, 2002 SeptemMyungkee Sung (LSU/MiniBooNE) 4th International Workshop on the Identification of Dark Matter Cosmologically Interesting Region; Hot Dark Matter? LSND Signal at High ∆m 2 KARMEN II narrowed the signal region MiniBooNE will fully address this signal. Neutrino Osillation at High ∆m 2 LSND: Searching for ν µ →ν e ν µ - From µ + decay at rest with endpoint energy 53 MeV L = 30m, L/E ~ 1m/MeV, 167 tons of Mineral Oil Look for ν e Appearance: ν

  10. Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments

    SciTech Connect (OSTI)

    Becker, Matthew W.

    2014-05-16

    The prediction of the geothermal system efficiency is strong linked to the character of the flow system that connects injector and producer wells. If water flow develops channels or “short circuiting” between injection and extraction wells thermal sweep is poor and much of the reservoir is left untapped. The purpose of this project was to understand how channelized flow develops in fracture geothermal reservoirs and how it can be measured in the field. We explored two methods of assessing channelization: hydraulic connectivity tests and tracer tests. These methods were tested at a field site using two verification methods: ground penetrating radar (GPR) images of saline tracer and heat transfer measurements using distributed temperature sensing (DTS). The field site for these studies was the Altona Flat Fractured Rock Research Site located in northeastern New York State. Altona Flat Rock is an experimental site considered a geologic analog for some geothermal reservoirs given its low matrix porosity. Because soil overburden is thin, it provided unique access to saturated bedrock fractures and the ability image using GPR which does not effectively penetrate most soils. Five boreholes were drilled in a “five spot” pattern covering 100 m2 and hydraulically isolated in a single bedding plane fracture. This simple system allowed a complete characterization of the fracture. Nine small diameter boreholes were drilled from the surface to just above the fracture to allow the measurement of heat transfer between the fracture and the rock matrix. The focus of the hydraulic investigation was periodic hydraulic testing. In such tests, rather than pumping or injection in a well at a constant rate, flow is varied to produce an oscillating pressure signal. This pressure signal is sensed in other wells and the attenuation and phase lag between the source and receptor is an indication of hydraulic connection. We found that these tests were much more effective than constant

  11. Engineering test plan for field radionuclide migration experiments in climax granite

    SciTech Connect (OSTI)

    Isherwood, D.; Raber, E.; Stone, R.; Lord, D.; Rector, N.; Failor, R.

    1982-05-01

    This Engineering Test Plan (ETP) describes field studies of radionuclide migration in fractured rock designed for the Climax grainite at the Nevada Test Site. The purpose of the ETP is to provide a detailed written document of the method of accomplishing these studies. The ETP contains the experimental test plans, an instrumentation plan, system schematics, a description of the test facility, and a brief outline of the laboratory support studies needed to understand the chemistry of the rock/water/radionuclide interactions. Results of our initial hydrologic investigations are presented along with pretest predictions based on the hydrologic test results.

  12. Field Experience with and Potential for Multi-time Scale Grid Transactions from Responsive Commercial Buildings

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2014-08-01

    The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis is based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.

  13. Analysis of magnetic probe signals including effect of cylindrical conducting wall for field-reversed configuration experiment

    SciTech Connect (OSTI)

    Ikeyama, Taeko; Hiroi, Masanori; Nemoto, Yuuichi; Nogi, Yasuyuki

    2008-06-15

    A confinement field is disturbed by magnetohydrodynamic (MHD) motions of a field-reversed configuration (FRC) plasma in a cylindrical conductor. The effect of the conductor should be included to obtain a spatial structure of the disturbed field with a good precision. For this purpose, a toroidal current in the plasma and an eddy current on a conducting wall are replaced by magnetic dipole and image magnetic dipole moments, respectively. Typical spatial structures of the disturbed field are calculated by using the dipole moments for such MHD motions as radial shift, internal tilt, external tilt, and n=2 mode deformation. Then, analytic formulas for estimating the shift distance, tilt angle, and deformation rate of the MHD motions from magnetic probe signals are derived. It is estimated from the calculations by using the dipole moments that the analytic formulas include an approximately 40% error. Two kinds of experiment are carried out to investigate the reliability of the calculations. First, a magnetic field produced by a circular current is measured in an aluminum pipe to confirm the replacement of the eddy current with the image magnetic dipole moments. The measured fields coincide well with the calculated values including the image magnetic dipole moments. Second, magnetic probe signals measured from the FRC plasma are substituted into the analytic formulas to obtain shift distance and deformation rate. The experimental results are compared to the MHD motions measured by using a radiation from the plasma. If the error included in the analytic formulas and the difference between the magnetic and optical structures in the plasma are considered, the results of the radiation measurement support well those of the magnetic analysis.

  14. Control of NO/sub x/ emissions in gas engines using pre-stratified charge - Applications and field experience

    SciTech Connect (OSTI)

    Tice, J.K.; Nalim, M.R.

    1988-01-01

    Since 1983, development of the Pre-Stratified Charge (PSC) means of NO/sub x/ control has focused upon gas fueled industrial engines following a decade of development in automobile-type liquid fueled engines. The early test results indicated exceptional potential and wre previously reported. In the two years following the initial tests of PSC on in-field gas engines, over 140 units have been installed in a wide range of applications including compression, generation, and pumping service. Importantly, the applications have demonstrated PSC effectiveness and longevity where other means of emissions control are either not applicable or ineffective. These include higher digester gas, landfill gas, and sour natural gas (containing substantial H/sub 2/S). This work is concerned with the Field experience in general, but with emphasis on particular applications and specific results.

  15. Overview of C-2 field-reversed configuration experiment plasma diagnostics

    SciTech Connect (OSTI)

    Gota, H. Thompson, M. C.; Tuszewski, M.; Binderbauer, M. W.

    2014-11-15

    A comprehensive diagnostic suite for field-reversed configuration (FRC) plasmas has been developed and installed on the C-2 device at Tri Alpha Energy to investigate the dynamics of FRC formation as well as to understand key FRC physics properties, e.g., confinement and stability, throughout a discharge. C-2 is a unique, large compact-toroid merging device that produces FRC plasmas partially sustained for up to ∼5 ms by neutral-beam (NB) injection and end-on plasma-guns for stability control. Fundamental C-2 FRC properties are diagnosed by magnetics, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. These diagnostics (totaling >50 systems) are essential to support the primary goal of developing a deep understanding of NB-driven FRCs.

  16. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect (OSTI)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  17. Gupco's experience in treating Gulf of Suez seawater for waterflooding the El Morgan oil field

    SciTech Connect (OSTI)

    El-Hattab, M.I.

    1982-07-01

    Pressure maintenance by waterflooding in some reservoirs may be considered essential for satisfactory oil recovery. The main objective of waterflooding is to place water into a rock formation at both the desired rate and pressure with minimal expense and trouble. This objective, however, cannot be achieved unless this water has certain characteristics. The water, therefore, should be treated and conditioned before injection. This study addresses the treatment phases adopted to improve seawater quality before injection, and to control problems associated with untreated seawater. Also discussed are GUPCO'S (Gulf of Suez Petroleum Co.) experience in seawaterfloods, problems encountered, and corrective actions taken to overcome these problems. The chemical treatment programs adopted are presented along with final conclusions and recommendations that can be applied to similar floods in Egypt with (Gulf of Suez) GOS. 47 refs.

  18. Characteristics study of Transmission Line Mechanical Research Center (TLMRC) wind tower data. Notes on field-wind loading experiments

    SciTech Connect (OSTI)

    Shan, L.

    1992-10-01

    To initiate and develop EPRI`s wind loading research program, an experimental wind tower was erected at the TLMRC site. A number of anemometers were placed at different elevation levels of the wind tower. Strain gages were also mounted on the leg posts of the tower. The purposes of this experiment were to establish the wind characteristics at the TLMRC site, and to gain experience using different types of instrumentation and data acquisition techniques in field-wind loading experiments. Three sets of wind data collected from the TLMRC wind tower were validated and analyzed in this study. Since the characteristics of wind and response data can be described in different terms and by various methods, the study describes the concept, Identifies the focal point, and discusses the results of each method used in this report. In addition, some comments are provided on how to conduct the field-wind loading experiments as well as how to analyze the wind and response data. The results of this study show that: (1) the magnitudes of wind velocity and direction can vary considerably during a short period of time; (2) the mean vertical wind profile does not hold constant as usually assumed; (3) the turbulence intensity and the gust factor increase as the height above ground decreases; (4) the averaging time can greatly influence the results of wind data analysis; (5) although wind contains lime energy beyond 1 Hz, structural responses above 1 Hz can be excited; (6) strong relationships exist between the wind velocity and the responses in the leg posts of the wind tower. System identification, a tool for establishing models of dynamic systems based in observed data, is successfully used in a trial application which estimates the relationship between the wind velocity and the responses in the wind tower.

  19. Changes in protein expression across laboratory and field experiments in Geobacter bemidjiensis

    SciTech Connect (OSTI)

    Merkley, Eric D.; Wrighton, Kelly C.; Castelle, Cindy; Anderson, Brian J.; Wilkins, Michael J.; Shah, Vega; Arbour, Tyler; Brown, Joseph N.; Singer, Steven W.; Smith, Richard D.; Lipton, Mary S.

    2015-03-06

    Bacterial extracellular metal respiration, as carried out by members of the genus Geobacter, is of interest for applications including microbial fuel cells and bioremediation. Geobacter bemidjiensis is the major species whose growth is stimulated during groundwater amendment with acetate. We have carried out label-free proteomics studies of Geobacter bemidjiensis grown with acetate as the electron donor and either fumarate, ferric citrate, or one of two hydrous ferric oxide mineral types as electron acceptor. The major class of proteins whose expression changes across these conditions is c-type cytochromes, many of which are known to be involved in extracellular metal reduction in other, better-characterized Geobacter species. Some proteins with multiple homologues in G. bemidjiensis (OmcS, OmcB) had different expression patterns than observed for their G. sulfurreducens homologues under similar growth conditions. We also compared the proteome from our study to a prior proteomics study of biomass recovered from an aquifer in Colorado, where the microbial community was dominated by strains closely-related to G. bemidjiensis. We detected an increased number of proteins with functions related to motility and chemotaxis in the Colorado field samples compared to the laboratory samples, suggesting the importance of motility for in situ extracellular metal respiration.

  20. Six years' operating experience at Ardjuna field helps prove out LPG SBS system

    SciTech Connect (OSTI)

    Smulders, L.H.

    1983-02-21

    The permanent yoke mooring system and the two-product flexpipe riser of the Arjuna Sakti LPG storage barge have completely lived up to their expectations. The LPG offtake system, the terminaling function of the storage unit, has also performed extremely well. Experience gained at Ardjuna provides confidence for future openocean mooring of large methanol or LNG plants. Mooring systems of these future units will likely have a different configuration, such as the single anchor leg storage (SALS) mooring. However, the basic system components have been used, both at Ardjuna and in comparable situations elsewhere in the world. Engineers who are working on floating, large scale, gas processing plants for mooring in the open ocean could profitably join their efforts in a team comprised of process specialists, naval architects, and mooring experts. Specific areas of consideration should be: length-to-beam and lengthto-depth ratios and shape of bow. This could result in a storage/process barge design with better motion characteristics and lower mooring forces than proposed at present.

  1. Survey of Field Programmable Gate Array Design Guides and Experience Relevant to Nuclear Power Plant Applications

    SciTech Connect (OSTI)

    Bobrek, Miljko; Bouldin, Don; Holcomb, David Eugene; Killough, Stephen M; Smith, Stephen Fulton; Ward, Christina D

    2007-09-01

    From a safety perspective, it is difficult to assess the correctness of FPGA devices without extensive documentation, tools, and review procedures. NUREG/CR-6463, "Review Guidelines on Software Languages for Use in Nuclear Power Plant Safety Systems," provides guidance to the Nuclear Regulatory Commission (NRC) on auditing of programs for safety systems written in ten high-level languages. A uniform framework for the formulation and discussion of language-specific programming guidelines was employed. Comparable guidelines based on a similar framework are needed for FPGA-based systems. The first task involves evaluation of regulatory experience gained by other countries and other agencies, and those captured in existing standards, to identify regulatory approaches that can be adopted by NRC. If existing regulations do not provide a sufficient regulatory basis for adopting relevant regulatory approaches that are uncovered, ORNL will identify the gaps. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

  2. Phase structure within a fracture network beneath a surface pond: Field experiment

    SciTech Connect (OSTI)

    GLASS JR.,ROBERT J.; NICHOLL,M.J.

    2000-05-09

    The authors performed a simple experiment to elucidate phase structure within a pervasively fractured welded tuff. Dyed water was infiltrated from a surface pond over a 36 minute period while a geophysical array monitored the wetted region within vertical planes directly beneath. They then excavated the rock mass to a depth of {approximately}5 m and mapped the fracture network and extent of dye staining in a series of horizontal pavements. Near the pond the network was fully stained. Below, the phase structure immediately expanded and with depth, the structure became fragmented and complicated exhibiting evidence of preferential flow, fingers, irregular wetting patterns, and varied behavior at fracture intersections. Limited transient geophysical data suggested that strong vertical pathways form first followed by increased horizontal expansion and connection within the network. These rapid pathways are also the first to drain. Estimates also suggest that the excavation captured from {approximately}10% to 1% or less of the volume of rock interrogated by the infiltration slug and thus the penetration depth could have been quite large.

  3. Glass bead size and morphology characteristics in support of Crystal Mist field experiments

    SciTech Connect (OSTI)

    Einfeld, W.

    1995-03-01

    One of the tasks of the Lethality Group within US Army Space and Strategic Defense Command (USASSDC) is the development of a capability to simulate various missile intercept scenarios using computer codes. Currently under development within USASSDC and its various contractor organizations is a group of codes collected under a master code called PEGEM for Post Event Ground Effects Model. Among the various components of the code are modules which are used to predict atmospheric dispersion and transport of particles or droplets following release at the altitude specified in the missile intercept scenario. The atmospheric transport code takes into account various source term data from the intercept such as: initial cloud size; droplet or particle size distribution; and, total mass of agent released. An ongoing USASSDC experimental program termed Crystal Mist involved release of precision glass beads under various altitude and meteorological conditions to assist in validation and refinement of various codes that are components of PEGEM used to predict particle atmospheric transport and diffusion following a missile intercept. Here, soda-lime glass beads used in the Crystal Mist series of atmospheric transport and diffusion tests were characterized by scanning electron microscopy and automated image processing routines in order to fully define their size distributions and morphology. Four bead size classifications ranging from a median count diameter of 45 to 200 micrometers were found to be approximately spherical and to fall within the supplier`s sizing specifications. Log-normal functions fit to the measured size distributions resulted in geometric standard deviations ranging from 1.08 to 1.12, thereby fulfilling the field trial requirements for a relatively narrow bead size distribution.

  4. Uptake of Uranium from Seawater by Amidoxime-Based Polymeric Adsorbent: Field Experiments, Modeling, and Updated Economic Assessment

    SciTech Connect (OSTI)

    Kim, Jungseung; Tsouris, Constantinos; Oyola, Yatsandra; Janke, C.; Mayes, R. T.; Dai, Sheng; Gill, Gary A.; Kuo, Li-Jung; Wood, Jordana R.; Choe, Key-Young; Schneider, Erich; Lindner, Harry

    2014-04-09

    Uranium recovery from seawater has been investigated for several decades for the purpose of securing nuclear fuel for energy production. In this study, field column experiments have been performed at the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL) using a laboratory-proven, amidoxime-based polymeric adsorbent developed at the Oak Ridge National Laboratory (ORNL). The adsorbent was packed either in in-line filters or in flow-through columns. The maximum amount of uranium uptake from seawater was 3.3 mg of U/g of adsorbent after 8 weeks of contact between the adsorbent and seawater. This uranium adsorption amount was about 3 times higher than the maximum amount achieved in this study by a leading adsorbent developed at the Japan Atomic Energy Agency (JAEA).

  5. Mechanistically-Based Field-Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

    SciTech Connect (OSTI)

    Tim Scheibe; Alexandre Tartakovsky; Brian Wood; Joe Seymour

    2007-04-19

    Effective environmental management of DOE sites requires reliable prediction of reactive transport phenomena. A central issue in prediction of subsurface reactive transport is the impact of multiscale physical, chemical, and biological heterogeneity. Heterogeneity manifests itself through incomplete mixing of reactants at scales below those at which concentrations are explicitly defined (i.e., the numerical grid scale). This results in a mismatch between simulated reaction processes (formulated in terms of average concentrations) and actual processes (controlled by local concentrations). At the field scale, this results in apparent scale-dependence of model parameters and inability to utilize laboratory parameters in field models. Accordingly, most field modeling efforts are restricted to empirical estimation of model parameters by fitting to field observations, which renders extrapolation of model predictions beyond fitted conditions unreliable. The objective of this project is to develop a theoretical and computational framework for (1) connecting models of coupled reactive transport from pore-scale processes to field-scale bioremediation through a hierarchy of models that maintain crucial information from the smaller scales at the larger scales; and (2) quantifying the uncertainty that is introduced by both the upscaling process and uncertainty in physical parameters. One of the challenges of addressing scale-dependent effects of coupled processes in heterogeneous porous media is the problem-specificity of solutions. Much effort has been aimed at developing generalized scaling laws or theories, but these require restrictive assumptions that render them ineffective in many real problems. We propose instead an approach that applies physical and numerical experiments at small scales (specifically the pore scale) to a selected model system in order to identify the scaling approach appropriate to that type of problem. Although the results of such studies will

  6. Soft x-ray measurement of the toroidal pinch experiment RX reversed field pinch plasma using transition edge sensor calorimeter

    SciTech Connect (OSTI)

    Shinozaki, Keisuke; Hoshino, Akio; Ishisaki, Yoshitaka; Morita, Umeyo; Ohashi, Takaya; Mihara, Tatehiro; Mitsuda, Kazuhisa; Tanaka, Keiichi; Yagi, Yasuyuki; Koguchi, Haruhisa; Hirano, Yoichi; Sakakita, Hajime

    2006-04-15

    A superconductive transition edge sensor (TES) calorimeter is for the first time applied for the diagnostics of the reversed field pinch plasma produced in the toroidal pinch experiment RX (TPE-RX), and the instrumental system is fully described. The first result from the soft x-ray spectroscopy in 0.2-3 keV with an energy resolution {approx}50 eV are also presented. The TES calorimeter is made of a thin bilayer film of titanium and gold with a transition temperature of 151 mK and its best energy resolution at our laboratory is 6.4 eV, while it was significantly degraded by about a factor of eight during the plasma operation. The TES microcalorimeter was installed in a portable adiabatic demagnetization refrigerator (ADR), which is originally designed for a rocket experiment. The detector box is carefully designed to shield the strong magnetic field produced by the ADR and TPE-RX. The ADR was directly connected to TPE-RX with a vacuum duct in the sideway configuration, and cooled down to 125 mK stabilized with an accuracy of 10 {mu}K rms using an improved proportional, integral, and derivative (PID) control method. Thin aluminized Toray Lumirror or Parylene-N films were used for the IR to UV blocking filters of the incident x-ray window to allow soft x-rays coming into the detector with good efficiency. TPE-RX was operated with the plasma current of I{sub p}=220 kA, and the wave forms of the TES output for every plasma shot lasting {approx}80 ms were obtained with a digital oscilloscope. The wave forms were analyzed with the optimal filtering method, and x-ray signals were extracted. A total of 3472 counts of x-ray signals were detected for 210 plasma shots during the flat-top phase of t=35-70 ms. Combined with the data measured with a lithium drifted silicon detector in the 1.3-8 keV range, spectral features are investigated using a spectral fitting package XSPEC. The obtained spectrum is well explained by thermal plasma emission, although an impurity iron-L line

  7. Report on field experiment program lithium bromide absorption chiller: Field gas conditioning project, Grayson County, Texas. Topical report, May 1991-December 1994

    SciTech Connect (OSTI)

    Lane, M.J.; Kilbourn, R.A.; Huey, M.A.

    1995-12-01

    The primary objective of the project was to determine the applicability of using commercial absorption air conditioning technology in an oil and gas field environment to condition natural gas to meet contractual limitations. Operational and maintenance requirements were documented throughout the test period of 1992 through 1994.

  8. FINAL REPORT: Mechanistically-Base Field Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

    SciTech Connect (OSTI)

    Wood, Brian D.

    2013-11-04

    Biogeochemical reactive transport processes in the subsurface environment are important to many contemporary environmental issues of significance to DOE. Quantification of risks and impacts associated with environmental management options, and design of remediation systems where needed, require that we have at our disposal reliable predictive tools (usually in the form of numerical simulation models). However, it is well known that even the most sophisticated reactive transport models available today have poor predictive power, particularly when applied at the field scale. Although the lack of predictive ability is associated in part with our inability to characterize the subsurface and limitations in computational power, significant advances have been made in both of these areas in recent decades and can be expected to continue. In this research, we examined the upscaling (pore to Darcy and Darcy to field) the problem of bioremediation via biofilms in porous media. The principle idea was to start with a conceptual description of the bioremediation process at the pore scale, and apply upscaling methods to formally develop the appropriate upscaled model at the so-called Darcy scale. The purpose was to determine (1) what forms the upscaled models would take, and (2) how one might parameterize such upscaled models for applications to bioremediation in the field. We were able to effectively upscale the bioremediation process to explain how the pore-scale phenomena were linked to the field scale. The end product of this research was to produce a set of upscaled models that could be used to help predict field-scale bioremediation. These models were mechanistic, in the sense that they directly incorporated pore-scale information, but upscaled so that only the essential features of the process were needed to predict the effective parameters that appear in the model. In this way, a direct link between the microscale and the field scale was made, but the upscaling process

  9. Simulations of the quart (101-bar1)/water interface: A comparison of classical force fields, ab initi molecular dynamics, and x-ray reflectivity experiments.

    SciTech Connect (OSTI)

    Skelton, Adam; Fenter, Paul; Kubicki, James D.; Wesolowski, David J; Cummings, Peter T

    2011-01-01

    Classical molecular dynamics (CMD) simulations of the (1011) surface of quartz interacting with bulk liquid water are performed using three different classical force fields, Lopes et al., ClayFF, and CHARMM water contact angle (CWCA), and compared to ab initio molecular dynamics (AIMD) and X-ray reflectivity (XR) results. The axial densities of the water and surface atoms normal to the surface are calculated and compared to previous XR experiments. Favorable agreement is shown for all the force fields with respect to the position of the water atoms. Analyses such as the radial distribution functions between water and hydroxyl atoms and the average cosine of the angle between the water dipole vector and the normal of the surface are also calculated for each force field. Significant differences are found between the different force fields from such analyses, indicating differing descriptions of the structured water in the near vicinity of the surface. AIMD simulations are also performed to obtain the water and hydroxyl structure for comparison among the predictions of the three classical force fields to better understand which force field is most accurate. It is shown that ClayFF exhibits the best agreement with the AIMD simulations for water hydroxyl radial distribution functions, suggesting that ClayFF treats the hydrogen bonding more accurately.

  10. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 29, Analysis results. Volume 3

    SciTech Connect (OSTI)

    Xu, Minfeng

    1995-08-18

    The electromagnetic analysis is mainly based on model built with 3-D electromagnetic software OPERA/TOSCA. In the process of evaluating the software package, some models are also built with 3-D boundary element electromagnetic software AMPERES. Fortran programs are also developed at B&W to perform Monte-Carlo simulations of the field error analysis to assist tolerance determinations.

  11. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 21, Materials and processes selection. Volume 2

    SciTech Connect (OSTI)

    Smith, B.R.

    1995-08-15

    This document identifies the candidate materials and manufacturing processes selected for development of the TPX Toroidal Field (TF) Magnet. Supporting rationale and selection criteria are provided for justification and the materials properties database report is included for completeness. Specific properties for each material selection are included in this document.

  12. INFLATION OF A DIPOLE FIELD IN LABORATORY EXPERIMENTS: TOWARD AN UNDERSTANDING OF MAGNETODISK FORMATION IN THE MAGNETOSPHERE OF A HOT JUPITER

    SciTech Connect (OSTI)

    Antonov, V. M.; Boyarinsev, E. L.; Boyko, A. A.; Zakharov, Yu. P.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Shaikhislamov, I. F.; Khodachenko, M. L.; Lammer, H.

    2013-05-20

    Giant exoplanets at close orbits, or so-called hot Jupiters, are supposed to have an intensive escape of upper atmospheric material heated and ionized by the radiation of a host star. An interaction between outflowing atmospheric plasma and the intrinsic planetary magnetic dipole field leads to the formation of a crucial feature of a hot Jupiter's magnetosphere-an equatorial current-carrying magnetodisk. The presence of a magnetodisk has been shown to influence the topology of a hot Jupiter's magnetosphere and to change a standoff distance of the magnetopause. In this paper, the basic features of the formation of a hot Jupiter's magnetodisk are studied by means of a laboratory experiment. A localized central source produces plasma that expands outward from the surface of the dipole and inflates the magnetic field. The observed structure of magnetic fields, electric currents, and plasma density indicates the formation of a relatively thin current disk extending beyond the Alfvenic point. At the edge of the current disk, an induced magnetic field was found to be several times larger than the field of the initial dipole.

  13. Elevated air temperature alters an old-field insect community in a multi-factor climate change experiment

    SciTech Connect (OSTI)

    Villalpando, Sean [Appalachian State University; Williams, Ray [ORNL; Norby, Richard J [ORNL

    2009-01-01

    To address how multiple, interacting climate drivers may affect plant-insect community associations, we sampled the insect community from a constructed old-field plant community grown under simultaneous [CO2], temperature, and water manipulation. Insects were identified to morphospecies, assigned to feeding guilds and abundance, richness and evenness quantified. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Non-metric multidimensional scaling clearly supported the effect of warming on insect community composition. Reductions in richness for herbivores and parasitoids suggest trophic-level effects within the insect community. Analysis of dominant insects demonstrated the effects of warming were limited to a relatively small number of morphospecies. Reported reductions in whole-community foliar N at elevated [CO2] unexpectedly did not result in any effects on herbivores. These results demonstrate climatic warming may alter certain insect communities via effects on insect species most responsive to higher temperature, contributing to a change in community structure.

  14. Synergy between fast-ion transport by core MHD and test blanket module fields in DIII-D experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heidbrink, W. W.; Austin, M. E.; Collins, C. S.; Gray, T.; Grierson, B. A.; Kramer, G. J.; Lanctot, M.; Pace, D. C.; Van Zeeland, M. A.; Mclean, A. G.

    2015-07-21

    We measured fast-ion transport caused by the combination of MHD and a mock-up test-blanket module (TBM) coil in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36±0.27 tomore » 2.6±0.5 MW/m-2.« less

  15. Texas Field Experiment Results: Performance of the Weatherization Assistance Program in Hot-Climate, Low-Income Homes

    SciTech Connect (OSTI)

    McCold, Lance Neil; Goeltz, Rick; Ternes, Mark P; Berry, Linda G

    2008-04-01

    A field test involving 35 houses was performed in Texas between 2000 and 2003 to study the response of low-income homes in hot climates to weatherization performed as part of the U.S Department of Energy Weatherization Assistance Program and to investigate certain methods to improve weatherization performance. The study found that improved Program designs and the use of advanced energy audits resulted in better weatherization measures being installed (use of blower doors to guide the infiltration work, more frequent installation of attic insulation, and installation of wall insulation) in the study homes, improved space-heating savings performance compared to the Program as implemented in the hot climates in 1989, and more comfortable indoor temperatures. Two key policy dilemmas for Texas and other hot-climate states were highlighted by the study; namely, how to balance expenditures between installing cost-effective weatherization measures and performing health, safety, and repair items, and that health, safety, and repair items can have an adverse impact on energy savings, which further complicates the weatherization decision process. Several occupant and equipment-related behaviors were observed in the field test homes that help explain why audits may over predict energy consumptions and savings and why air-conditioning electricity savings are difficult to measure. Based on this study, it is recommended that states in hot climates be encouraged to select from an expanded list of measures using advanced audits or other techniques, and further studies examining the benefits obtained from air conditioner measures should be performed. In addition, guidelines should be developed for the hot-climate states on how to (a) balance the objectives of saving energy, improving health and safety, and addressing repair issues, and (b) select repair items.

  16. Quantum wells on 3C-SiC/NH-SiC heterojunctions. Calculation of spontaneous polarization and electric field strength in experiments

    SciTech Connect (OSTI)

    Sbruev, I. S.; Sbruev, S. B.

    2010-10-15

    The results of experiments with quantum wells on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions obtained by various methods are reconsidered. Spontaneous polarizations, field strengths, and energies of local levels in quantum wells on 3C-SiC/NH-SiC heterojunctions were calculated within a unified model. The values obtained are in agreement with the results of all considered experiments. Heterojunction types are determined. Approximations for valence band offsets on heterojunctions between silicon carbide polytypes and the expression for calculating local levels in quantum wells on the 3C-SiC/NH-SiC heterojunction are presented. The spontaneous polarizations and field strengths induced by spontaneous polarization on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions were calculated as 0.71 and 0.47 C/m{sup 2} and 0.825 and 0.55 MV/cm, respectively.

  17. Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico

    SciTech Connect (OSTI)

    Birkle, P.; Pruess, K.; Xu, T.; Figueroa, R.A. Hernandez; Lopez, M. Diaz; Lopez, E. Contreras

    2008-10-01

    Waterflooding for enhanced oil recovery requires that injected waters must be chemically compatible with connate reservoir waters, in order to avoid mineral dissolution-and-precipitation cycles that could seriously degrade formation permeability and injectivity. Formation plugging is a concern especially in reservoirs with a large content of carbonates, such as calcite and dolomite, as such minerals typically react rapidly with an aqueous phase, and have strongly temperature-dependent solubility. Clay swelling can also pose problems. During a preliminary waterflooding pilot project, the Poza Rica-Altamira oil field, bordering the Gulf coast in the eastern part of Mexico, experienced injectivity loss after five months of reinjection of formation waters into well AF-847 in 1999. Acidizing with HCl restored injectivity. We report on laboratory experiments and reactive chemistry modeling studies that were undertaken in preparation for long-term waterflooding at Agua Frma. Using analogous core plugs obtained from the same reservoir interval, laboratory coreflood experiments were conducted to examine sensitivity of mineral dissolution and precipitation effects to water composition. Native reservoir water, chemically altered waters, and distilled water were used, and temporal changes in core permeability, mineral abundances and aqueous concentrations of solutes were monitored. The experiments were simulated with the multi-phase, nonisothermal reactive transport code TOUGHREACT, and reasonable to good agreement was obtained for changes in solute concentrations. Clay swelling caused an additional impact on permeability behavior during coreflood experiments, whereas the modeled permeability depends exclusively on chemical processes. TOUGHREACT was then used for reservoir-scale simulation of injecting ambient-temperature water (30 C, 86 F) into a reservoir with initial temperature of 80 C (176 F). Untreated native reservoir water was found to cause serious porosity and

  18. Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Warren, Jeffrey M.; Jensen, Anna M.; Medlyn, Belinda E.; Norby, Richard J.; Tissue, David T.

    2014-11-17

    Elevated atmospheric CO2 (eCO2) often increases photosynthetic CO2 assimilation (A) in field studies of temperate tree species, although there is evidence that the increases may decline through time due to biochemical and morphological acclimation, and environmental constraints. Indeed, at the free air CO2 enrichment (FACE) study in Oak Ridge, Tennessee, A was increased in 12-year-old sweetgum trees following two years of ~40% enhancement of CO2. A was re-assessed a decade later to determine if initial enhancement of eCO2 was sustained through time. Measurements were conducted at prevailing CO2 and temperature on detached, re-hydrated branches using a portable gas exchange system.more » Photosynthetic CO2 response curves (A versus the CO2 concentration in the intercellular air space (Ci); or A-Ci curves) were contrasted with earlier measurements using consistent leaf photosynthesis model equations. We accessed relationships between light-saturated photosynthesis (Asat), maximum electron transport rate (Jmax), maximum Rubisco activity (Vcmax) chlorophyll content and foliar nitrogen (N) and chlorophyll content. In 1999, light-saturated photosynthesis (Asat) for eCO2 treatments was 15.4 ± 0.8 μmol m-2 s-1, 22% higher than aCO2 treatments (P<0.01). By 2009, Asat declined to <50% of 1999 values, and there was no longer a significant effect of eCO2 (Asat = 6.9 or 5.7 ± 0.7 μmol m-2 s-1 for eCO2 or aCO2, respectively). In 1999, there was no treatment effect on area-based foliar N; however, by 2008, N content in eCO2 foliage was 17% less than in aCO2 foliage. Photosynthetic N use efficiency (Asat:N) was greater in eCO2 in 1999 resulting in greater Asat despite similar N content, but the enhanced efficiency in eCO2 trees was lost as foliar N declined to sub-optimal levels. There was no treatment difference in the declining linear relationships between Jmax or Vcmax with declining N, or in the ratio of Jmax:Vcmax through time. Results suggest that initial enhancement

  19. Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment

    SciTech Connect (OSTI)

    Warren, Jeffrey M.; Jensen, Anna M.; Medlyn, Belinda E.; Norby, Richard J.; Tissue, David T.

    2014-11-17

    Elevated atmospheric CO2 (eCO2) often increases photosynthetic CO2 assimilation (A) in field studies of temperate tree species, although there is evidence that the increases may decline through time due to biochemical and morphological acclimation, and environmental constraints. Indeed, at the free air CO2 enrichment (FACE) study in Oak Ridge, Tennessee, A was increased in 12-year-old sweetgum trees following two years of ~40% enhancement of CO2. A was re-assessed a decade later to determine if initial enhancement of eCO2 was sustained through time. Measurements were conducted at prevailing CO2 and temperature on detached, re-hydrated branches using a portable gas exchange system. Photosynthetic CO2 response curves (A versus the CO2 concentration in the intercellular air space (Ci); or A-Ci curves) were contrasted with earlier measurements using consistent leaf photosynthesis model equations. We accessed relationships between light-saturated photosynthesis (Asat), maximum electron transport rate (Jmax), maximum Rubisco activity (Vcmax) chlorophyll content and foliar nitrogen (N) and chlorophyll content. In 1999, light-saturated photosynthesis (Asat) for eCO2 treatments was 15.4 ± 0.8 μmol m-2 s-1, 22% higher than aCO2 treatments (P<0.01). By 2009, Asat declined to <50% of 1999 values, and there was no longer a significant effect of eCO2 (Asat = 6.9 or 5.7 ± 0.7 μmol m-2 s-1 for eCO2 or aCO2, respectively). In 1999, there was no treatment effect on area-based foliar N; however, by 2008, N content in eCO2 foliage was 17% less than in aCO2 foliage. Photosynthetic N use efficiency (Asat:N) was greater in eCO2 in 1999 resulting in greater A

  20. Addendum to material selection guidelines for geothermal energy-utilization systems. Part I. Extension of the field experience data base. Part II. Proceedings of the geothermal engineering and materials (GEM) program conference (San Diego, CA, 6-8 October 1982)

    SciTech Connect (OSTI)

    Smith, C.S.; Ellis, P.F. II

    1983-05-01

    The extension of the field experience data base includes the following: key corrosive species, updated field experiences, corrosion of secondary loop components or geothermal binary power plants, and suitability of conventional water-source heat pump evaporator materials for geothermal heat pump service. Twenty-four conference papers are included. Three were abstracted previously for EDB. Separate abstracts were prepared for twenty-one. (MHR)

  1. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    SciTech Connect (OSTI)

    Baxter, L.L.; Miles, T.R.; Miles, T.R. Jr.; Jenkins, B.M.; Dayton, D.C.; Milne, T.A.; Bryers, R.W.; Oden, L.L.

    1996-03-01

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  2. SciDAC Center for Simulation of Wave-Plasma Interactions - Iterated Finite-Orbit Monte Carlo Simulations with Full-Wave Fields for Modeling Tokamak ICRF Wave Heating Experiments - Final Report

    SciTech Connect (OSTI)

    Choi, Myunghee; Chan, Vincent S.

    2014-02-28

    This final report describes the work performed under U.S. Department of Energy Cooperative Agreement DE-FC02-08ER54954 for the period April 1, 2011 through March 31, 2013. The goal of this project was to perform iterated finite-orbit Monte Carlo simulations with full-wall fields for modeling tokamak ICRF wave heating experiments. In year 1, the finite-orbit Monte-Carlo code ORBIT-RF and its iteration algorithms with the full-wave code AORSA were improved to enable systematical study of the factors responsible for the discrepancy in the simulated and the measured fast-ion FIDA signals in the DIII-D and NSTX ICRF fast-wave (FW) experiments. In year 2, ORBIT-RF was coupled to the TORIC full-wave code for a comparative study of ORBIT-RF/TORIC and ORBIT-RF/AORSA results in FW experiments.

  3. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    SciTech Connect (OSTI)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed wind speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s-1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.

  4. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s-1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less

  5. Multiwell experiment

    SciTech Connect (OSTI)

    Sattler, A.R.; Warpinski, N.R.; Lorenz, J.C.; Hart, C.M.; Branagan, P.T.

    1985-01-01

    The Multiwell Experiment is a research-oriented field laboratory. Its overall objectives are to characterize lenticular, low-permeability gas reservoirs and to develop technology for their production. This field laboratory has been established at a site in the east-central Piceance basin, Colorado. Here the Mesaverde formation lies at a depth of 4000 to 8250 ft. This interval contains different, distinct reservoir types depending upon their depositional environments. These different zones serve as the focus of the various testing and stimulation programs. Field work began in late 1981 and is scheduled through mid-1988. One key to the Multiwell Experiment is three closely spaced wells. Core, log, well testing, and well-to-well seismic data are providing a far better definition of the geological setting than has been available previously. The closely spaced wells also allow interference and tracer tests to obtain in situ reservoir parameters. The vertical variation of in situ stress throughout the intervals of interest is being measured. A series of stimulation experiments is being conducted in one well and the other two wells are being used as observation wells for improved fracture diagnostics and well testing. Another key to achieving the Multiwell Experiment objectives is the synergism resulting from a broad spectrum of activities: geophysical surveys, sedimentological studies, core and log analyses, well testing, in situ stress determination, stimulation, fracture diagnostics, and reservoir analyses. The results from the various activities will define the reservoir and the hydraulic fracture. These, in turn, define the net pay stimulated: the intersection of a hydraulic fracture of known geometry with a reservoir of known morphology and properties. Accomplishments of the past year are listed. 4 refs.

  6. Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, Montana

    SciTech Connect (OSTI)

    Male, E.J.; Pickles, W.L.; Silver, E.A.; Hoffmann, G.D.; Lewicki, J.; Apple, M.; Repasky, K.; Burton, E.A.

    2009-11-01

    Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-yr timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to nearinfrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9th, 2008, pure carbon dioxide gas was released through a 100-meter long horizontal injection well, at a flow rate of 300 kg/day. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a ''FieldSpec Pro'' spectrometer by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants.

  7. Experiences in the design of CRA`s for erosion/corrosion control in the production facilities of eastern Venezuela oil fields

    SciTech Connect (OSTI)

    Romero, N.; Palacios, C.A.

    1997-08-01

    It is a well known fact that CRA`s are used in the oil industry as one way to control erosion/corrosion effects. Many fields in the eastern region of Venezuela are considered corrosive due to the presence of CO{sub 2} (5 to 20%), H{sub 2}S (up to 5 ppm), and water (50% water cut) contained in the produced hydrocarbons (condensated). For some areas, the hydrocarbon is accompanied by sand, making them erosive as well. These conditions and frequent failures experienced in the field, led to the use of CRA`s. For the wells, 13% Cr and bimetallic (carbon steel/13% Cr) tubing was used for 51 condensate wells containing 5 to 20% CO{sub 2}. For the surface equipment (valves, reducers, expanders and other types of fittings) tungsten carbide hard facing were used, for some of the valves, a epoxi-phenolic coating was used. This article describes the different design criteria used for the installation of the tubing, the logistics involved during field inspections and handling tips to avoid galling during workovers. It also, presents results from the bi-metallic tubing and the hard facings used for the surface equipment.

  8. Development of an integrated in-situ remediation technology. Topical report for task No. 11 entitled: Evaluation of TCE contamination before and after the field experiment, September 26, 1994--May 25, 1996

    SciTech Connect (OSTI)

    Hughes, B.M.; Athmer, C.J.; Sheridan, P.W.

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task No. 11 summarizes the results of TCE analysis in soil and carbon before and after conducting the field experiment. In addition, a discussion of the TCE material balance demonstrates that the Lasagna{trademark} process is effective in moving TCE from the contaminated soil into carbon treatment zones in the field experiment at DOE`s Gaseous Diffusion Plant in Paducah, Kentucky.

  9. Pre-shot simulations of far-field ground motion for the Source Physics Experiment (SPE) Explosions at the Climax Stock, Nevada National Security Site: SPE2

    SciTech Connect (OSTI)

    Mellors, R J; Rodgers, A; Walter, W; Ford, S; Xu, H; Matzel, E; Myers, S; Petersson, N A; Sjogreen, B; Hauk, T; Wagoner, J

    2011-10-18

    The Source Physics Experiment (SPE) is planning a 1000 kg (TNT equivalent) shot (SPE2) at the Nevada National Security Site (NNSS) in a granite borehole at a depth (canister centroid) of 45 meters. This shot follows an earlier shot of 100 kg in the same borehole at a depth 60 m. Surrounding the shotpoint is an extensive array of seismic sensors arrayed in 5 radial lines extending out 2 km to the north and east and approximately 10-15 to the south and west. Prior to SPE1, simulations using a finite difference code and a 3D numerical model based on the geologic setting were conducted, which predicted higher amplitudes to the south and east in the alluvium of Yucca Flat along with significant energy on the transverse components caused by scattering within the 3D volume along with some contribution by topographic scattering. Observations from the SPE1 shot largely confirmed these predictions although the ratio of transverse energy relative to the vertical and radial components was in general larger than predicted. A new set of simulations has been conducted for the upcoming SPE2 shot. These include improvements to the velocity model based on SPE1 observations as well as new capabilities added to the simulation code. The most significant is the addition of a new source model within the finite difference code by using the predicted ground velocities from a hydrodynamic code (GEODYN) as driving condition on the boundaries of a cube embedded within WPP which provides a more sophisticated source modeling capability linked directly to source site materials (e.g. granite) and type and size of source. Two sets of SPE2 simulations are conducted, one with a GEODYN source and 3D complex media (no topography node spacing of 5 m) and one with a standard isotropic pre-defined time function (3D complex media with topography, node spacing of 5 m). Results were provided as time series at specific points corresponding to sensor locations for both translational (x,y,z) and rotational

  10. The contribution of radio-frequency rectification to field-aligned losses of high-harmonic fast wave power to the divertor in the National Spherical Torus eXperiment

    SciTech Connect (OSTI)

    Perkins, R. J. Hosea, J. C.; Jaworski, M. A.; Diallo, A.; Bell, R. E.; Bertelli, N.; Gerhardt, S.; Kramer, G. J.; LeBlanc, B. P.; Phillips, C. K.; Podestà, M.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; McLean, A.; Sabbagh, S.

    2015-04-15

    The National Spherical Torus eXperiment (NSTX) can exhibit a major loss of high-harmonic fast wave (HHFW) power along scrape-off layer (SOL) field lines passing in front of the antenna, resulting in bright and hot spirals on both the upper and lower divertor regions. One possible mechanism for this loss is RF sheaths forming at the divertors. Here, we demonstrate that swept-voltage Langmuir probe characteristics for probes under the spiral are shifted relative to those not under the spiral in a manner consistent with RF rectification. We estimate both the magnitude of the RF voltage across the sheath and the sheath heat flux transmission coefficient in the presence of the RF field. Although precise comparison between the computed heat flux and infrared (IR) thermography cannot yet be made, the computed heat deposition compares favorably with the projections from IR camera measurements. The RF sheath losses are significant and contribute substantially to the total SOL losses of HHFW power to the divertor for the cases studied. This work will guide future experimentation on NSTX-U, where a wide-angle IR camera and a dedicated set of coaxial Langmuir probes for measuring the RF sheath voltage directly will quantify the contribution of RF sheath rectification to the heat deposition from the SOL to the divertor.

  11. ARM - Field Campaign - 2001 Phoenix Sunrise Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probe Order Data Hubbe Gas Monitors Order Data Hubbe Passive Cavity Aerosol Spectrometer Probe Order Data Hubbe Particle Soot Absorption Photometer Order Data Hubbe PSP Radiometer...

  12. Research Experience in Carbon Sequestration 2016 Now Accepting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experience in Carbon Sequestration 2016 Now Accepting Applications Research Experience in ... professionals can gain hands-on field research experience in areas related to carbon ...

  13. The MAJORANA Experiment

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Avignone, F. T.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, Matthew P.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, R.; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Sobolev, V.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, John; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2011-10-01

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale {sup 76}Ge neutrinoless double-beta decay ({beta}{beta}(0{nu})-decay) experiment. The current, primary focus is the construction of the Majorana Demonstrator experiment, an R and D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator.

  14. The Majorana Experiment

    SciTech Connect (OSTI)

    Aguayo, E.; Fast, J. E.; Hoppe, E. W.; Keillor, M. E.; Kephart, J. D.; Kouzes, R. T.; LaFerriere, B. D.; Merriman, J. H.; Orrell, J. L.; Overman, N. R. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F. T. III [Department of Physics and Astronomy, University of South Carolina, Columbia, SC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Back, H. O. [Department of Physics, North Carolina State University, Raleigh, NC (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Barabash, A. S.; Konovalov, S. I.; Vanyushin, I.; Yumatov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bergevin, M.; Chan, Y.-D.; Detwiler, J. A.; Loach, J. C. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); and others

    2011-12-16

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale {sup 76}Ge neutrinoless double-beta decay ({beta}{beta}(0{nu})-decay) experiment. The current, primary focus is the construction of the Majorana Demonstrator experiment, an R and D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator.

  15. Experiment Research | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Research Jefferson Lab has an ongoing and ambitious experimental program. Most experiments carried out with the Continuous Electron Beam Accelerator Facility (CEBAF) are in the field of nuclear physics and can be described in terms of the following. Structure of the Nucleus Here at Jefferson Lab, we study the structure of nuclear matter: how protons and neutrons (called nucleons) combine to make the nucleus and what forces bind nucleons together. We also peer deep inside nucleons to

  16. Task A, High Energy Physics Program experiment and theory: Task B, High Energy Physics Program numerical simulation of quantum field theories. [Particle Physics Group, Physics Dept. , The Florida State Univ. , Tallahassee

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The effort of the experimental group has been concentrated on the CERN ALEPH and FERMILAB D0 collider experiments and completion of two fixed target experiments. The BNL fixed target experiment 771 took the world's largest sample of D(1285) and E/iota(1420) events, using pion, kaon and antiproton beams. Observing the following resonances: 0[sup [minus plus

  17. Ignition Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ignition experiments Ignition Experiments The goal of many NIF experiments is to create a self-sustaining "burn" of fusion fuel (the hydrogen isotopes deuterium and tritium) that produces as much or more energy than the energy required to initiate the fusion reaction-an event called ignition. In moving closer to achieving ignition, NIF researchers are fulfilling the vision of early laser pioneers who conceived of using the x rays generated by a powerful, brief laser pulse to fuse

  18. Mixture Experiments

    SciTech Connect (OSTI)

    Piepel, Gregory F.

    2007-12-01

    A mixture experiment involves combining two or more components in various proportions or amounts and then measuring one or more responses for the resulting end products. Other factors that affect the response(s), such as process variables and/or the total amount of the mixture, may also be studied in the experiment. A mixture experiment design specifies the combinations of mixture components and other experimental factors (if any) to be studied and the response variable(s) to be measured. Mixture experiment data analyses are then used to achieve the desired goals, which may include (i) understanding the effects of components and other factors on the response(s), (ii) identifying components and other factors with significant and nonsignificant effects on the response(s), (iii) developing models for predicting the response(s) as functions of the mixture components and any other factors, and (iv) developing end-products with desired values and uncertainties of the response(s). Given a mixture experiment problem, a practitioner must consider the possible approaches for designing the experiment and analyzing the data, and then select the approach best suited to the problem. Eight possible approaches include 1) component proportions, 2) mathematically independent variables, 3) slack variable, 4) mixture amount, 5) component amounts, 6) mixture process variable, 7) mixture of mixtures, and 8) multi-factor mixture. The article provides an overview of the mixture experiment designs, models, and data analyses for these approaches.

  19. Madison Dynamo Experiment - Cary Forest Group - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the mechanism responsible for magnetic field generation in the Earth, Sun, and Galaxy. A picture of the Madison Dynamo Experiment Magnetic Field Lines This work is funded...

  20. Lessons Learned from the Source Physics Experiment (SPE) Near...

    Office of Scientific and Technical Information (OSTI)

    the Source Physics Experiment (SPE) Near Field Data and Associated Modeling Efforts Citation Details In-Document Search Title: Lessons Learned from the Source Physics Experiment ...

  1. Lessons Learned from the Source Physics Experiment (SPE) Near...

    Office of Scientific and Technical Information (OSTI)

    Physics Experiment (SPE) Near Field Data and Associated Modeling Efforts Citation Details In-Document Search Title: Lessons Learned from the Source Physics Experiment (SPE) Near ...

  2. Research Experience in Carbon Sequestration 2013 Now Accepting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Now Accepting Applications Research Experience in Carbon Sequestration 2013 Now ... professionals can gain hands-on field research experience in areas related to carbon ...

  3. ARM - ARM MJO Investigation Experiment (AMIE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM MJO Investigation Experiment (AMIE) ARM field campaigns on Gan Island, Maldives, and Manus Island, Papua New Guinea, will contribute significantly to concurrent national and ...

  4. Results from Neutrino Oscillations Experiments

    SciTech Connect (OSTI)

    Aguilar-Arevalo, Alexis

    2010-09-10

    The interpretation of the results of early solar and atmospheric neutrino experiments in terms of neutrino oscillations has been verified by several recent experiments using both, natural and man-made sources. The observations provide compelling evidence in favor of the existence of neutrino masses and mixings. These proceedings give a general description of the results from neutrino oscillation experiments, the current status of the field, and some possible future developments.

  5. Accelerated Stress Testing, Qualification Testing, HAST, Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Stress Testing, Qualification Testing, HAST, Field Experience This presentation, which was the opening session of the NREL 2013 Photovoltaic Module Reliability Workshop ...

  6. Current Schedule of Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    current schedule of experiments Current Schedule of Experiments Current Schedule of Experiments - Updated 4/2016

  7. Task A, High Energy Physics Program experiment and theory: Task B, High Energy Physics Program numerical simulation of quantum field theories. Progress report, July 1, 1991--June 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The effort of the experimental group has been concentrated on the CERN ALEPH and FERMILAB D0 collider experiments and completion of two fixed target experiments. The BNL fixed target experiment 771 took the world`s largest sample of D(1285) and E/iota(1420) events, using pion, kaon and antiproton beams. Observing the following resonances: 0{sup {minus_plus}} [1280], 1{sup {plus}{plus}} [1280], 0{sup {minus_plus}} [1420], 0{sup {minus_plus}} [1470], 1{sup {plus_minus}} [1415]. The Fermilab fixed target experiment E711, dihadron production in pN interactions at 800 GeV, completed data reduction and analysis. The atomic weight dependence, when parameterized as {sigma}(A) = {sigma}{sub o}A{sup {alpha}}, yielded a value of {alpha} = 1.043 {plus_minus} 0.011 {plus_minus} .012. The cross section per nucleon and angular distributions was also measured as a function of two particle mass and agrees very well with QCD calculations. The D0 Fermilab Collider Experiment E740 began its first data taking run in April 1992. The CERN collider experiment ALEPH at LEP is presently taking more data. The Z mass and width, the couplings to the upper and lower components of the hadronic isospin doublet, forward-backward asymmetries of hadronic events, and measurements of the fragmentation process have been made. The effort of detector development for the SSC has substantially increased with particular emphasis on scintillators, both in fibers and plates. Work has continued on higher-order QCD calculations using the Monte Carlo technique developed previously. This year results for WW, ZZ, WZ, and {sub {gamma}{gamma}} production have been published. A method for incorporating parton showering in such calculations was developed and applied to W production. The multicanonical Monte Carlo algorithm has stood up to the promises anticipated; it was used in multicanonical simulations of first-order phase transitions and for spin glass systems.

  8. SANE experiment

    SciTech Connect (OSTI)

    H. Baghdasaryan, SANE Collaboration

    2012-04-01

    The Spin Asymmetries of the Nucleon Experiment (SANE) is a measurement of parallel and near-perpendicular double spin asymmetries in an inclusive electron scattering. The main goal of the experiment was to measure A{sub {parallel}} and A{sub 80} and extract the spin asymmetries of the proton A{sub 1}{sup p}, A{sub 2}{sup p} and spin structure functions g{sub 1}{sup p} and g{sub 2}{sup p}. Using the Thomas Jefferson National Accelerator Facility's polarized electron beam and the University of Virginia's polarized frozen ammonia ({sup 14}NH{sub 3}) target in Hall C, the experiment ran in 2009, collecting data in a Q{sup 2} region from 2.5 to 6.5 GeV{sup 2} and between Bjorken x of 0.3 to 0.8. Particle detection was accomplished using the Big Electron Telescope Array (BETA), a novel non-magnetic detector. This talk will address the progress of the analysis designed to extract the proton spin asymmetries and structure functions. Preliminary results will be presented.

  9. Approved Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cycle 31OCT97 Exp# Spokesperson Experiment Title Days 666 Clark Magnetic Rotation in 104Sn 5 667 Janssens Unsafe COULEX of the 240Pu Nucleus 3 670 Smith Exotic Structures in very Neutron-Deficient 55 < Z < 59, A ~ 120 Nuclei 6 671LI Butler The Feasibility of Studying Octupole Correlations in 224,226U using Gammasphere and the FMA 1 672 Svensson Superdeformation in 3060Zn30 and Proton-Decay from Excited States in 3366As33 5 677 Woods Structure of Deformed Ho Isotopes Beyond the Proton

  10. An overview of the star thrust experiment

    SciTech Connect (OSTI)

    Miller, Kenneth; Slough, John; Hoffman, Alan

    1998-01-15

    The Field Reversed Configuration, FRC, is a closed field fusion confinement geometry with great potential to be used as a space propulsive device and power source. Present formation techniques are cumbersome and severely constrain the resultant FRC. An experiment is presently under construction to study the formation and sustainment of the FRC using a rotating magnetic field. If successful, this technique would vastly simplify and enable future FRC endeavors. An overview of the STX experiment is presented.

  11. Magnet operating experience review for fusion applications

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  12. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect (OSTI)

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  13. Two LANL laboratory astrophysics experiments

    SciTech Connect (OSTI)

    Intrator, Thomas P.

    2014-01-24

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The overarching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a driven and dissipative single flux rope that spontaneously self-saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown. The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.

  14. Driven reconnection in magnetic fusion experiments

    SciTech Connect (OSTI)

    Fitzpatrick, R.

    1995-11-01

    Error fields (i.e. small non-axisymmetric perturbations of the magnetic field due to coil misalignments, etc.) are a fact of life in magnetic fusion experiments. What effects do error fields have on plasma confinement? How can any detrimental effects be alleviated? These, and other, questions are explored in detail in this lecture using simple resistive magnetohydrodynamic (resistance MHD) arguments. Although the lecture concentrates on one particular type of magnetic fusion device, namely, the tokamak, the analysis is fairly general and could also be used to examine the effects of error fields on other types of device (e.g. Reversed Field Pinches, Stellerators, etc.).

  15. Research Experience in Carbon Sequestration 2016 Now Accepting Applications

    Broader source: Energy.gov [DOE]

    Graduate students and early career professionals can gain hands-on field research experience in areas related to carbon capture, utilization and storage (CCUS) by participating in the Research Experience in Carbon Sequestration (RECS) program.

  16. Research Experience in Carbon Sequestration 2015 Now Accepting Applications

    Broader source: Energy.gov [DOE]

    Graduate students and early career professionals can gain hands-on field research experience in areas related to carbon capture, utilization and storage (CCUS) by participating in the Research Experience in Carbon Sequestration (RECS) program.

  17. Attosecond nanoscale near-field sampling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forg, B.; Schotz, J.; SuBmann, F.; Forster, M.; Kruger, M.; Ahn, B.; Okell, W. A.; Wintersperger, K.; Zherebtsov, S.; Guggenmos, A.; et al

    2016-05-31

    The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. Furthermore, by comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted.

  18. Internal split field generator

    DOE Patents [OSTI]

    Thundat; Thomas George; Van Neste, Charles W.; Vass, Arpad Alexander

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  19. Research Experience in Carbon Sequestration 2015 Now Accepting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Now Accepting Applications Research Experience in Carbon Sequestration 2015 Now ... Graduate students and early career professionals can gain hands-on field research ...

  20. IOI Construction Field Manager | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a wealth of first hand field experience managing construction analyses, site logistics, construction safety, trade management, scheduling and commissioning the quality...

  1. ARM - Field Campaign - Ganges Valley Aerosol Experiment (GVAX...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CPC Condensation Particle Counter Browse Data CSPHOT Cimel Sunphotometer Browse Data DL Doppler Lidar Browse Data ECOR Eddy Correlation Flux Measurement System Browse Data GNDRAD...

  2. ARM - Field Campaign - WB57 Midlatitude Cirrus Cloud Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plains Atmospheric Radiation Measurement Central Facility near Lamont, Oklahoma where a raft of active and passive remote sensors continuously operate. We requested flight hours...

  3. Lessons Learned from Practical Field Experience with High Pressure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    your cylinders 2252010 www.cleanvehicle.org 2 Incidents in North America Since 1984 CVEF has recorded 97 incidents of which 67 involved CNG vehicles - 37 incidents involve ...

  4. ARM - Field Campaign - Aerosol and Cloud Experiments in the Eastern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol,...

  5. ARM - Field Campaign - ARM MJO Investigation Experiment on Gan...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was designed to test several current hypotheses regarding the mechanisms responsible for MJO (Madden-Julian Oscillation) initiation and propagation in the Indian Ocean area. ...

  6. Electric field induced texture in titania during experiments...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Journal Name: Journal of the European Ceramic Society; Journal Volume: 36; Journal Issue: 1 Publisher: Elsevier Research Org: Advanced Photon Source (APS), ...

  7. ARM - Field Campaign - ARM Enhanced Shortwave Experiment (ARESE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The ARM Program sponsored the ground-based measurements, ARM-UAV (Unmanned Aerospace ... ARM SGP Site Manager Tim Tooman, UAV Coordinator DSIT Contacts ARM Data and ...

  8. ARM - Field Campaign - Mixed-Phase Arctic Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The University of North Dakota Citation was the in situ platform, while the DOE-ARM UAV ... counter and the CSU IN counter, while the UAV had downward looking cloud radar, lidar and ...

  9. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a distinctly different INP population in comparison to long range transported desert or urban and regional land-sourced INP, and that the layering of marine within other...

  10. ARM - Field Campaign - Aerosol and Cloud Experiments in the Eastern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Duli Chand J.-Y. Christine Chiu Xiquan Dong Jerome Fast Andrew Gettelman Steven Ghan Scott Giangrande Mary Gilles Anne Jefferson Michael Jensen Pavlos Kollias Chongai Kuang...

  11. MOISyT Instrumentation System and Recent Field Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modular Ocean Instrumentation System (MOISyT) System Overview and Deployment Update Eric Nelson Offshore Wind and Ocean Power Systems July 10, 2012 Innovation for Our Energy Future Innovation for Our Energy Future An Integrated Instrumentation System to Support MHK Testing 2 Motivation: To develop a turn-key instrumentation system solution that enables a comprehensive set of measurements for testing of Marine Energy Systems through all TRLs - no such Commercial-Off-The-Shelf system exists Roles:

  12. Lessons Learned from Practical Field Experience with High Pressure...

    Broader source: Energy.gov (indexed) [DOE]

    Horne of the Clean Vehicle Energy Foundation at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cngh2workshop7horne.pdf (4.54 MB) More Documents & ...

  13. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remote sensing for resolving and studying the above processes? (i.e., Satellite CalVal) We have recently added a fourth study focused on the transport and evolution of...

  14. Renewable Energy Permitting Barriers in Hawaii: Experience from the Field

    SciTech Connect (OSTI)

    Busche, S.; Donnelly, C.; Atkins, D.; Fields, R.; Black, C.

    2013-03-01

    This white paper presents a summary of the solicited input from permitting agencies and renewable energy developers on the permitting process in Hawaii to provide stakeholders in Hawaii, particularly those involved in permitting, with information on current permitting barriers that renewable energy developers are experiencing.

  15. ARM - Field Campaign - AIRS Water Vapor Experiment - Ground ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Raman Lidar Yes Schmidlin Balloon-borne sounding system(s) Yes Hagan Laser Hygrometer Sonde Yes Lesht Surface Temperature and Relative Humidity Reference System Yes Turner Raman ...

  16. ARM - Field Campaign - ARM West Antarctic Radiation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cloud Radar Browse Data KAZR Ka ARM Zenith Radar Browse Data LDIS Laser Disdrometer Browse Data MET Surface Meteorological Instrumentation Browse Data Browse Plots MFR ...

  17. Overview of results from the MST reversed field pinch experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... MHD with the Hall term and gyro-viscosity shows that two-fluid effects tend to ... Since the mode amplitudes are dynamic over the sawtooth cycle, this provides a stringent ...

  18. ARM - Field Campaign - Complex Layered Cloud Experiment (CLEX...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cement, OK 400 34.957 N Pasture EBBR No No Phone line (only) installed October EF-26 ... The goals of the CLEX IOP are (1) to improve satellite determination of cloud base and ...

  19. Laboratory Experiments and Modeling for Interpreting Field Studies...

    Office of Scientific and Technical Information (OSTI)

    Formation Using an Oxidation Flow Reactor Citation Details In-Document Search ... Formation Using an Oxidation Flow Reactor You are accessing a document from the ...

  20. ARM - Field Campaign - ARM West Antarctic Radiation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and X-Ray Fluorescence (XRF) spectroscopy, enabling identification of organic functional groups and trace metal species, (2) characterization of the particles that serve as cloud...

  1. FIELD EXPERIENCE WITH 3-SUN MIRROR MODULE SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DUAL FOCUS CASSEGRAINIAN MODULE CAN ACHIEVE >45% EFFICIENCY L. M. Fraas 1 , J. E. Avery 1 , J. E. Strauch 2 , G. Girard 2 1 JX Crystals Inc, Issaquah, WA 98027, 2 Sandia National Laboratories, Albuquerque, NM 87185 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. ABSTRACT Various types of multijunction solar cells have now been

  2. Digital field ion microscopy

    SciTech Connect (OSTI)

    Sijbrandij, S.J.; Russell, K.F.; Miller, M.K.; Thomson, R.C.

    1998-01-01

    Due to environmental concerns, there is a trend to avoid the use of chemicals needed to develop negatives and to process photographic paper, and to use digital technologies instead. Digital technology also offers the advantages that it is convenient, as it enables quick access to the end result, allows image storage and processing on computer, allows rapid hard copy output, and simplifies electronic publishing. Recently significant improvements have been made to the performance and cost of camera-sensors and printers. In this paper, field ion images recorded with two digital cameras of different resolution are compared to images recorded on standard 35 mm negative film. It should be noted that field ion images exhibit low light intensity and high contrast. Field ion images were recorded from a standard microchannel plate and a phosphor screen and had acceptance angles of {approximately} 60{degree}. Digital recordings were made with a Digital Vision Technologies (DVT) MICAM VHR1000 camera with a resolution of 752 x 582 pixels, and a Kodak DCS 460 digital camera with a resolution of 3,060 x 2,036 pixels. Film based recordings were made with Kodak T-MAX film rated at 400 ASA. The resolving power of T-MAX film, as specified by Kodak, is between 50 and 125 lines per mm, which corresponds to between 1,778 x 1,181 and 4,445 x 2,953 pixels, i.e. similar to that from the DCS 460 camera. The intensities of the images were sufficient to be recorded with standard fl:1.2 lenses with exposure times of less than 2 s. Many digital cameras were excluded from these experiments due to their lack of sensitivity or the inability to record a full frame image due to the fixed working distance defined by the vacuum system. The digital images were output on a Kodak Digital Science 8650 PS dye sublimation color printer (300 dpi). All field ion micrographs presented were obtained from a Ni-Al-Be specimen.

  3. NCSX Toroidal Field Coil Design

    SciTech Connect (OSTI)

    Kalish, M.; Rushinski, J.; Myatt, L.; Brooks, A.; Dahlgren, F.; Chrzanowski, J.; Reiersen, W.; Freudenberg, K.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements.

  4. Tritium Plasma Experiment and

    Office of Environmental Management (EM)

    Plasma Experiment and its role in PHENIX program Masashi Shimada, Chase Taylor Fusion ... ID Outline: 1. Motivation 2. Tritium Plasma Experiment 3. INLSTAR's role on US-Japan ...

  5. ORISE: Research Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Experiences Research Experiences The Oak Ridge Institute for Science and Education (ORISE) administers more than 150 science education programs on behalf of the U.S....

  6. Water Vapor Experiment Concludes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Water Vapor Experiment Concludes The AIRS (atmospheric infrared sounder) Water Vapor Experiment - Ground (AWEX-G) intensive operations period (IOP) at the SGP central facility ...

  7. livermore field office

    National Nuclear Security Administration (NNSA)

    donation to those in need.

    Livermore Field Office sets core values as part of continuous improvement process http:nnsa.energy.govbloglivermore-field-office-sets-cor...

  8. External split field generator

    DOE Patents [OSTI]

    Thundat, Thomas George; Van Neste, Charles W.; Vass, Arpad Alexander

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  9. DOE - NNSA/NFO -- Photo Library Subcritical experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subcritical Experiments NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - Subcritical experiments The underground U1a Complex is the location for subcritical experiments. Subcritical experiments are physics experiments that obtain technical information to help the National Laboratories maintain the safety and reliability of the U.S. nuclear weapons stockpile. Instructions: Click the photograph THUMBNAIL to view the photograph details Click the Category, Number, or

  10. Subterranean stress engineering experiments

    SciTech Connect (OSTI)

    Campbell, J.R.; Colgate, S.A.; Wheat, B.M.

    1980-01-01

    The state of stress in a subterranean rock mass has classically been assumed to be constant at best. In soil with a high clay content, preconsolidation and drainage methods can lead to more stable foundation material, but methods for engineering the stresses in large masses of rock are not well known. This paper shows the results from an experiment designed to alter the in situ rock stress field in an oil shale mine. This was done by hydrofracturing the rock by use of a packed-well injection system and then propping the crack open with a thixotropic gel, which slowly hardened to the consistency of cement. Successive hydrofracture and high-pressure grouting resulted in an overstressed region. Well-head injection pressures, surface tilts, injection rates, and subterranean strains were measured and recorded on floppy disk by a Z-80 microprocessor. The results were then transmitted to the large computer system at the Los Alamos Scientific Laboratory (LASL). To put the data in a more useful form, computer-generated movies of the tilts and strains were made by use of computer graphics developed at LASL. The purpose of this paper is to present results from the Single Large Instrumented Test conducted in the Colony Oil Shale Mine near Rifle, Colorado. 13 figures.

  11. Operating Experience Committee Charter

    Broader source: Energy.gov [DOE]

    The Operating Experience Committe Charter explains the purpose of the Department of Energy (DOE) Operating Experience Committee (OEC), which is to support line management within DOE and the DOE community in developing and sustaining effective oeprating experience programs so that lessons from inernal and external operating experience lead to improvement in future operational and safety performance.

  12. Field Campaign Guidelines

    SciTech Connect (OSTI)

    Voyles, J. W.; Chapman, L. A.

    2015-12-01

    This document establishes a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking System and are specifically tailored to meet the scope of each field campaign.

  13. Validation of Geothermal Tracer Methods in Highly Constrained Field

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experiments | Department of Energy Geothermal Tracer Methods in Highly Constrained Field Experiments Validation of Geothermal Tracer Methods in Highly Constrained Field Experiments DOE Geothermal Peer Review 2010 - Project Summary. This project will test smartdiffusive tracers for measuring heat exchange. tracers_becker_verification_methods.pdf (1.81 MB) More Documents & Publications track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Advancing reactive tracer

  14. Source Physics Experiment | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Source Physics Experiment NNSA administrator visits NNSS to meet team, see national security work Last month, Department of Energy Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. Frank G. Klotz (Ret.) visited NNSA's Nevada Field Office where he hosted an all-hands for NNSA-Nevada staff and presented several service awards. During the trip he visited the NNSA... NNSA Conducts Fifth Experiment aimed to Improve U.S. Ability to Detect Foreign Nuclear Explosions WASHINGTON, D.C.

  15. Experience with pump gas seals

    SciTech Connect (OSTI)

    Nosowicz, J.; Schoepplein, W.

    1997-01-01

    The gas seal technology used in gas compressors has been successfully applied for emission-free sealing of liquid pumps in the past few years. The seals with pressurized gas supply systems are used as single or dual (tandem) seals. Gas seals, mainly as single seals, are frequently used as safety seals as well. Applying this non-contacting sealing system will result in reduced investment and operating cost. The paper discusses the sealing concept, operating performance, operating limits, gas-lubricated safety seals, field experience, and advantages.

  16. Carlsbad Field Office (CBFO) Fellowship Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Office (CBFO) Fellowship Program DOE Logo About Program Research Experiences Applicants About Appointment Mentors FAQs About ORAU Contact Welcome to the Carlsbad Field Office (CBFO) Fellowship Program The U.S. Department of Energy (DOE) CBFO Fellowship Program provides opportunities for high school seniors, undergraduates, graduates and postgraduates to conduct mission oriented research in Carlsbad, N.M., or at other sites throughout DOE. Whether you are interested in joining the program

  17. Operating Experience Committee Charter

    Broader source: Energy.gov [DOE]

    The Operating Experience Committee (OEC) charter provides a description of the OEC's purpose, background, membership, functions, and operations.

  18. Nevada Field Office

    National Nuclear Security Administration (NNSA)

    field-items">
    field-item odd">