National Library of Energy BETA

Sample records for field california jump

  1. Steel characteristics measurement system using Barkhausen jump sum rate and magnetic field intensity and method of using same

    DOE Patents [OSTI]

    Kohn, Gabriel (Omer, IL); Hicho, George (Derwood, MD); Swartzendruber, Lydon (New Carrollton, MD)

    1997-01-01

    A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment.

  2. Steel characteristics measurement system using Barkhausen jump sum rate and magnetic field intensity and method of using same

    DOE Patents [OSTI]

    Kohn, G.; Hicho, G.; Swartzendruber, L.

    1997-04-08

    A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment. 7 figs.

  3. LBNL# 40102 Field Investigation of Duct System Performance in California Light Commercial Buildings 1 of 26

    E-Print Network [OSTI]

    LBNL# 40102 Field Investigation of Duct System Performance in California Light Commercial Buildings 1 of 26 Field Investigation of Duct System Performance in California Light Commercial Buildings Wm National Laboratory Berkeley, California Synopsis This paper discusses field measurements of duct system

  4. Structure, tectonics and stress field of the Coso Range, Inyo...

    Open Energy Info (EERE)

    Structure, tectonics and stress field of the Coso Range, Inyo County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure,...

  5. "You Can't Just Jump Into the Icy Pool of Metacognition": The Value of Networking and Community Building in California Community Colleges' Reading Apprenticeship Project

    E-Print Network [OSTI]

    Harrington, Deborah Lea

    2014-01-01

    You Can't Just Jump Into the Icy Pool of Metacognition": TheYou Can't Just Jump Into the Icy Pool of Metacognition": Thejump  into  the  icy  pool  of  metacognition. ”  This  

  6. Tular Lake Field, Kings County, California - a significant onshore development

    SciTech Connect (OSTI)

    Lindblom, R.G.; Waldron, J.M.

    1985-04-01

    The Tulare Lake field is located in Kings County, California, on the west side of the San Joaquin Valley and 10 mi east of the Kettleman Hills (North Dome) field and 30 mi souuheast of the city of Coalinga. The field was discovered by Husky Oil Co. (Marathon) in October 1981 with the completion of the Boswell 22-16, Sec. 16, T22S, R20E from sands in the Burbank formation of Oligocene geologic age. Chevron USA offset the Husky discovery well with the completion of the Salyer 678X, Sec. 8, T22S, R20E, in May 1983. Both Chevron and Husky have continued an orderly development of the field, and to date Chevron has 9 producing wells and Husky 10 producing wells. Production is found in the Burbank formation at a vertical depth below 12,800 ft. The entrapment of hydrocarbons is caused by a low amplitude, seismically subtle, anticlinal fold trending northwest/southeast. Isochore maps of the Burbank formation show that stratigraphy is important in the distribution of the four producing sand intervals. Oil gravities form the sands vary 39/sup 0/ API to 51/sup 0/ API and the GOR ranges from 1050 to over 5500. As of January 1, 1984, the field has a cumulative production of 1.7 million bbl of oil and 3.5 billion ft/sup 3/ of gas.

  7. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01

    Geothermal Field, Monograph on The Geysers GeothermalField, Geothermal Resources Council, Special Report no. 17,Subsidence at The Geysers geothermal field, N. California

  8. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

    2010-01-01

    Mar Lett (2010) 30:331–338 Fig. 3 Coal Oil Point seep field,hydrocarbon seeps near Coal Oil Point, California. Marhydrocarbon seep emissions, Coal Oil Point seep field,

  9. Core Hole Drilling And Testing At The Lake City, California Geothermal...

    Open Energy Info (EERE)

    Core Hole Drilling And Testing At The Lake City, California Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Core Hole Drilling...

  10. Field comparison of shallow seismic sources near Chino, California

    E-Print Network [OSTI]

    Miller, Richard D.; Pullan, Susan E.; Steeples, Don W.; Hunter, James A.

    1992-05-01

    Data from a shallow seismic?source comparison test conducted in an area with a water?table depth in excess of 30 m and near?surface velocities less than 330 m/s were acquired from 13 different sources at a single site near Chino, California...

  11. Community Renewable Energy Deployment: University of California...

    Open Energy Info (EERE)

    Community Renewable Energy Deployment: University of California at at Davis Project Jump to: navigation, search Name Community Renewable Energy Deployment: University of California...

  12. California Environmental Protection Agency Department of Toxic...

    Open Energy Info (EERE)

    California Environmental Protection Agency Department of Toxic Substances Control Jump to: navigation, search Name: California Environmental Protection Agency Department of Toxic...

  13. Crosshole EM for oil field characterization and EOR monitoring: Field examples from Lost Hills, California

    SciTech Connect (OSTI)

    Wilt, M.; Schenkel, C.; Wratcher, M.; Lambert, I.; Torres-Verdin, C.; Tseng H.W.

    1996-07-16

    A steamflood recently initiated by Mobil Development and Production U.S. at the Lost Hills No 3 oil field in California is notable for its shallow depth and the application of electromagnetic (EM) geophysical techniques to monitor the subsurface steam flow. Steam was injected into three stacked eastward-dipping unconsolidated oil sands at depths from 60 to 120 m; the plume is expected to develop as an ellipsoid aligned with the regional northwest-southeast strike. Because of the shallow depth of the sands and the high viscosity of the heavy oil, it is important to track the steam in the unconsolidated sediments for both economic and safety reasons. Crosshole and surface-to-borehole electromagnetic imaging were applied for reservoir characterization and steamflood monitoring. The crosshole EM data were collected to map the interwell distribution of the high-resistivity oil sands and to track the injected steam and hot water. Measurements were made in two fiberglass-cased observation wells straddling the steam injector on a northeast-southwest profile. Field data were collected before the steam drive, to map the distribution of the oil sands, and then 6 and 10 months after steam was injected, to monitor the expansion of the steam chest. Resistivity images derived from the collected data clearly delineated the distribution and dipping structure of the target oil sands. Difference images from data collected before and during steamflooding indicate that the steam chest has developed only in the middle and lower oil sands, and it has preferentially migrated westward in the middle oil sand and eastward in the deeper sand. Surface-to-borehole field data sets at Lost Hills were responsive to the large-scale subsurface structure but insufficiently sensitive to model steam chest development in the middle and lower oil sands. As the steam chest develops further, these data will be of more use for process monitoring.

  14. Near-Surface Microearthquakes at The Geysers Geothermal Field, California James T. Rutledge

    E-Print Network [OSTI]

    to permeability in geothermal reservoirs, the ability to map them at large distance from boreholes has direct-1- Near-Surface Microearthquakes at The Geysers Geothermal Field, California James T. Rutledge# 00-1554 Keywords: Induced seismicity, microearthquake, wellbore deformation, geothermal #12;Near

  15. Investigation of sand consolidation using steam for the Tar Zone, Wilmington field, California 

    E-Print Network [OSTI]

    Nilsen, Knut Arild

    1999-01-01

    An experimental study was carried out to better understand and optimize the process of sand consolidation using high-pH steam in wells of the Wilmington field, California. The apparatus consisted of a vertical 18 in. long aluminum cylindrical cell...

  16. DOE Awards Contract for Environmental Remediation Services at California Santa Susana Field Laboratory

    Broader source: Energy.gov [DOE]

    Cincinnati – The Department of Energy (DOE) today awarded a task order (contract) to CDM, A Joint Venture, of Fairfax, Virginia, to provide environmental remediation services for the Energy Technology Engineering Center at the Santa Susana Field Laboratory, Canoga Park, California. The cost-plus incentive fee task order has a 36-month performance period and a value of $11.3 million.

  17. California State Water Resources Control Board 401 Water Quality...

    Open Energy Info (EERE)

    California State Water Resources Control Board 401 Water Quality Certification Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California State...

  18. California Department of Fish and Wildlife Environmental Review...

    Open Energy Info (EERE)

    California Department of Fish and Wildlife Environmental Review and Permitting Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California...

  19. California Desert Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    California Desert Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name California Desert Fish Farm Aquaculture Low Temperature Geothermal...

  20. California Department of Fish and Wildlife Consistency Determination...

    Open Energy Info (EERE)

    California Department of Fish and Wildlife Consistency Determination Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California Department of...

  1. California Department of Conservation, Division of Oil, Gas,...

    Open Energy Info (EERE)

    California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Jump to: navigation, search Name: California Department of Conservation, Division of Oil, Gas,...

  2. California Customer Load Reductions during the Electricity Crisis...

    Open Energy Info (EERE)

    California Customer Load Reductions during the Electricity Crisis: Did They Help to Keep the Lights On? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California...

  3. EIS-0402: Remediation of Area IV of the Santa Susana Field Laboratory, California

    Broader source: Energy.gov [DOE]

    DOE is preparing an EIS for cleanup of Area IV, including the Energy Technology Engineering Center (ETEC), as well as the Northern Buffer Zone of the Santa Susana Field Laboratory (SSFL) in eastern Ventura County, California, approximately 29 miles north of downtown Los Angeles. (DOE’s operations bordered the Northern Buffer Zone. DOE is responsible for soil cleanup in Area IV and the Northern Buffer Zone.) In the EIS, DOE will evaluate reasonable alternatives for disposition of radiological facilities and support buildings, remediation of contaminated soil and groundwater, and disposal of all resulting waste at permitted facilities.

  4. Waveform Relocated Earthquake Catalog for Southern California...

    Open Energy Info (EERE)

    Waveform Relocated Earthquake Catalog for Southern California (1981 to June 2011) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Waveform...

  5. California - Establishing Transmission Project Review Streamlining...

    Open Energy Info (EERE)

    California - Establishing Transmission Project Review Streamlining Directives Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  6. Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California

    E-Print Network [OSTI]

    Washburn, Libe

    Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil coastal ocean near Coal Oil Point, Santa Barbara Channel, California. Methane was quantified in the down originating from Coal Oil Point enters the atmosphere within the study area. Most of it appears

  7. The Kelso dune field is located in the eastern Mojave Desert, California, at the terminus of a

    E-Print Network [OSTI]

    Ramsey, Michael

    ABSTRACT The Kelso dune field is located in the eastern Mojave Desert, California, at the terminus significant spectral variations that indicate potential mineralogic heterogeneities within the active dunes-member minerals that showed marked variations within the dunes. In addition, standard petrographic techniques re

  8. The 1999 Hector Mine Earthquake, Southern California: Vector Near-Field Displacements from ERS InSAR

    E-Print Network [OSTI]

    Sandwell, David T.

    1 The 1999 Hector Mine Earthquake, Southern California: Vector Near-Field Displacements from ERS In-slip and dip-slip in along the surface of the 1999 Hector Mine rupture (Figure 1). Many publications use In; Zebker et al., 1994; Peltzer et al., 1994; Fujiwara et al., 1997; Michel et al., 1999b; Price, 1999

  9. Mixing of biogenic siliceous and terrigenous clastic sediments: South Belridge field and Beta field, California

    SciTech Connect (OSTI)

    Schwartz, D.E. )

    1990-05-01

    The intermixing and interbedding of biogenically derived siliceous sediment with terrigenous clastic sediment in reservoirs of upper Miocene age provides both reservoir rock and seal and influences productivity by affecting porosity and permeability. Miocene reservoirs commonly contain either biogenic-dominated cyclic diatomite, porcelanite, or chert (classic Monterey Formation) or clastic-dominated submarine fan sequences with interbedded or intermixed siliceous members of biogenic origin. Biogenic-clastic cycles, 30-180 ft thick, at South Belridge field were formed by episodic influx of clastic sediment from distant submarine fans mixing with slowly accumulating diatomaceous ooze. The cycles consist of basal silt and pelletized massive diatomaceous mudstone, overlain by burrowed, faintly bedded clayey diatomite and topped by laminated diatomite. Cycle tops have higher porosity and permeability, lower grain density, and higher oil saturation than clay and silt-rich portions of the cycles. Submarine fan sediments forming reservoirs at the Beta field are comprised of interbedded sands and silts deposited in a channelized middle fan to outer fan setting. Individual turbidites display fining-upward sequences, with oil-bearing sands capped by wet micaceous silts. Average sands are moderately to poorly sorted, fine- to medium-grained arkosic arenites. Sands contain pore-filling carbonate and porcelaneous cements. Porcelaneous cement consists of a mixture of opal-A, opal-CT, and chert with montmorillonite and minor zeolite. This cement is an authigenic material precipitated in intergranular pore space. The origin of the opal is biogenic, with recrystallization of diatom frustules (opal-A) into opal-CT lepispheres and quartz crystals. Porcelaneous cement comprises 4-21% of the bulk volume of the rock. Seventy percent of the bulk volume of the cement is micropore space.

  10. The Impact of Injection on Seismicity at The Geyses, California Geothermal Field

    E-Print Network [OSTI]

    Majer, Ernest L.; Peterson, John E.

    2008-01-01

    The Geysers, California, geothermal area, U.S. Geol. Surv.seismicity at The Geysers geothermal reservoir, Californiaseismic image of a geothermal reservoir: The Geysers,

  11. Olig sand, shallow oil zone, Elk Hills Field, Kern County, California: General reservoir study

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The Olig Sand Reservoirs, classified as part of the Shallow Oil Zone, were studied and evaluated. The reservoirs are located in Section 30R, T30S, R23E and Section 24Z, T30S, R22E, M.D.B. and M., all in Elk Hills Oil Field, Naval Petroleum Reserve No. 1, Kern County, California. The three productive reservoirs studied cover an area of 255 acres, and originally contained 3311 MMCF of gas condensate in 4292 acre-feet of sand. The main reservoir, Fault Block I in Section 30R, has been on production since 1982 and is largely depleted. The reservoirs around wells 324-30R and 385-24Z should still be in a virgin state. They can be depleted either through those wells, when their service as Stevens Zone producers is completed, or by twin well replacements drilled specifically as Olig Sand completions. Thirty-six exhibits have been included to present basic data and study results in a manner that will enhance the readers's understanding of the reservoirs. These exhibits include six maps in the M-series, six sections in the S-Series, and fourteen figures in the F-Series, as well as ten tables. The Appendix includes miscellaneous basic data such as well logs, core analyses, pressure measurements, and well tests. The Calculations Section of the report develops and explains the analytical methods used to define well productivity, determine reserves, and schedule future production of those reserves. Although no MER recommendations have been made for these gas condensate reservoirs, recommended depletion schemes and schedules are presented. These schemes include one eventual recompletion and one new well to maximize present worth of these reservoirs which carry proved reserves of 289 MMCF and probable reserves of 853 MMCF, effective August 1, 1986. In addition, potential future testing is earmarked for wells 322-30R and 344-30R. 11 refs., 14 figs., 10 tabs.

  12. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Thompson, T.W.; McJannet, G.S.

    1996-12-31

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  13. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Thompson, T.W. ); McJannet, G.S. )

    1996-01-01

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  14. Hydrogen chloride in superheated steam and chloride in deep brine at The Geysers geothermal field, California

    SciTech Connect (OSTI)

    Haizlip, J.R.; Truesdell, A.H.

    1988-01-01

    Chloride (Cl) concentrations of 10-120 ppm{sub w} have been measured in superheated steam produced by wells at The Geysers, a vapor-dominated geothermal field in northern California. Corrosion of the well casing and steam-gathering system has been recognized in some parts of The Geysers, and is apparently related to the presence of Cl. Cl in the steam is in a volatile form, generated with the steam at reservoir temperatures, and probably travels to the wellhead as HCl gas. Published experimental data for partial pressures of HCl in steam over aqueous HCl solutions and for dissociation constants of HCl were used to calculate distribution coefficients for HCl. Reservoir liquid Cl concentrations capable of generating steam with the observed Cl concentrations were then calculated as a function of pH and temperatures from 250 to 350º C. Equilibrium mineral/liquid reactions with the K-mica and K-feldspar assemblage found in the wells limit the reservoir liquid pH values at various Cl concentrations to about 5 to 6 (near neutral at 250 to 350º C). Within this pH range, liquid at 250º C could not produce steam containing the high Cl concentrations observed. However, liquid at higher temperatures (300 to 350º C) with chloride concentrations greater than 10,000 ppm{sub w} could generate steam with 10 to over 200 ppm{sub w} Cl. There is a positive correlation between pH and the chloride concentrations required to generate a given Cl concentration in steam. The concentration of Cl in superheated steam constrains not only the reservoir liquid composition, but the temperature at which the steam last equilibrated with liquid.

  15. Hydraulic jumps on an incline

    E-Print Network [OSTI]

    Jean-Luc Thiffeault; Andrew Belmonte

    2010-09-01

    When a fluid jet strikes an inclined solid surface at normal incidence, gravity creates a flow pattern with a thick outer rim resembling a parabola and reminiscent of a hydraulic jump. There appears to be little theory or experiments describing simple aspects of this phenomenon, such as the maximum rise height of the fluid above the impact point, and its dependence on jet velocity and inclination angle. We address this with experiments, and present a simple theory based on horizontal hydraulic jumps which accounts for the rise height and its scaling, though without describing the shape of the parabolic envelope.

  16. IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL FIELD (CALIFORNIA)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFB Agro Industries Ltd JumpUSING REMOTE

  17. Viscous Hydraulic Jumps Submitted by

    E-Print Network [OSTI]

    Bush, John W.M.

    Viscous Hydraulic Jumps Submitted by Jeffrey M. Aristoff, Jeffrey D. Leblanc, Annette E. Hosoi, and John W. M. Bush, Massachusetts Institute of Technology We examine the form of the viscous hydraulic of height 2­10 mm. Elegaard et al.1 first demonstrated that the axial symme- try of the viscous hydraulic

  18. Attenuation structure of Coso geothermal area, California, from...

    Open Energy Info (EERE)

    Attenuation structure of Coso geothermal area, California, from wave pulse widths Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Attenuation...

  19. California Department of Fish and Wildlife: Federal Energy Regulatory...

    Open Energy Info (EERE)

    California Department of Fish and Wildlife: Federal Energy Regulatory Commission (FERC) Hydroelectric Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  20. Renewable and Distributed Power in California Simplifying the...

    Open Energy Info (EERE)

    Distributed Power in California Simplifying the Regulatory Maze - Making the Path for Future Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Renewable...

  1. California Public Resources Code Division 3, Chapter 4 - Geothermal...

    Open Energy Info (EERE)

    4 - Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: California Public Resources Code Division 3,...

  2. Non-Double-Couple Microearthquakes At Long Valley Caldera, California...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  3. The nascent Coso metamorphic core complex, east-central California...

    Open Energy Info (EERE)

    complex, east-central California, brittle upper plate structure revealed by reflection seismic data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  4. Reservoir characterization of the Upper and Lower Repetto reservoirs of the Santa Clara field-federal waters, offshore California 

    E-Print Network [OSTI]

    Roco, Craig Emmitt

    2000-01-01

    APPENDIX B APPENDIX C APPENDIX D . 88 93 112 131 181 VITA . 229 LIST OF FIGURES FIGURE Location of the Offshore Santa Clara Field Relative to the Coast of California Page 2. 1 Early Production and Injection Wells on Federal Tract P-216.../McCray Decline Type Curve for Well S-79 30 4. 1 Interpretation of the Reciprocal Rate Plot for Well S-02 . . . . . . . . 35 FIGURE 4. 2 Interpretation of the Reciprocal Rate Plot for Well S-57 . . . Page . . . . 36 4. 3 Initial Interpretation...

  5. Overgeneration from Solar Energy in California - A Field Guide to the Duck Chart

    SciTech Connect (OSTI)

    Denholm, Paul; Brinkman, Gregory; Jorgenson, Jennie

    2015-11-01

    In 2013, the California Independent System Operator published the "duck chart,"" which shows a significant drop in mid-day net load on a spring day as solar photovoltaics (PV) are added to the system. The chart raises concerns that the conventional power system will be unable to accommodate the ramp rate and range needed to fully utilize solar energy, particularly on days characterized by the duck shape. This could result in "overgeneration"" and curtailed renewable energy, increasing its costs and reducing its environmental benefits. This paper explores the duck chart in detail, examining how much PV might need to be curtailed if additional grid flexibility measures are not taken, and how curtailment rates can be decreased by changing grid operational practices. It finds that under business-as-usual types of assumptions and corresponding levels of grid flexibility in California, solar penetrations as low as 20 percent of annual energy could lead to marginal curtailment rates that exceed 30 percent. However, by allowing (or requiring) distributed PV and storage (including new installations that are part of the California storage mandate) to provide grid services, system flexibility could be greatly enhanced. Doing so could significantly reduce curtailment and allow much greater penetration of variable generation resources in achieving a 50 percent renewable portfolio standard. Overall, the work described in this paper points to the need to fully integrate distributed resources into grid system planning and operations to allow maximum use of the solar resource.

  6. Overgeneration from Solar Energy in California. A Field Guide to the Duck Chart

    SciTech Connect (OSTI)

    Denholm, Paul; O'Connell, Matthew; Brinkman, Gregory; Jorgenson, Jennie

    2015-11-01

    In 2013, the California Independent System Operator published the 'duck chart,' which shows a significant drop in mid-day net load on a spring day as solar photovoltaics (PV) are added to the system. The chart raises concerns that the conventional power system will be unable to accommodate the ramp rate and range needed to fully utilize solar energy, particularly on days characterized by the duck shape. This could result in 'overgeneration' and curtailed renewable energy, increasing its costs and reducing its environmental benefits. This paper explores the duck chart in detail, examining how much PV might need to be curtailed if additional grid flexibility measures are not taken, and how curtailment rates can be decreased by changing grid operational practices. It finds that under "business-as-usual"" types of assumptions and corresponding levels of grid flexibility in California, solar penetrations as low as 20% of annual energy could lead to marginal curtailment rates that exceed 30%. However, by allowing (or requiring) distributed PV and storage (including new installations that are part of the California storage mandate) to provide grid services, system flexibility could be greatly enhanced. Doing so could significantly reduce curtailment and allow much greater penetration of variable generation resources. Overall, the work described in this paper points to the need to fully integrate distributed resources into grid system planning and operations to allow maximum use of the solar resource.

  7. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Evidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation EnergyCCST 2011a. California’s Energy Future - The View to 2050,

  8. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    of meeting California’s transportation energy needs andEvidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation Energy

  9. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report, Executive summary

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    The Naval Petroleum Reserve No. 1 (Elk Hills) is located in Kern County, California, and is jointly owned by the US Department of Energy and Chevron USA Inc. The Elk Hills Field is presently producing oil and gas from five geologic zones. These zones contain a number of separate and geologically complex reservoirs. Considerable field development and production of oil and gas have occurred since initial estimates of reserves were made. Total cumulative field production through December 1987 is 850 MMBbls of oil, 1.2 Tcf of gas and 648.2 MMBbls of water. In December 1987, field producing rates expressed on a calendar day basis amounted to 110,364 BOPD, 350,946 Mcfd and 230,179 BWPD from 1157 producers. In addition, a total of two reservoirs have gas injection in progress and four reservoirs have water injection in progress and four reservoirs have water injection in progress. Cumulative gas and water injection amounted to 586 Bcf of gas and 330 MMB of water. December 1987 gas and water injection rates amounted to 174 MMcfd and 234 MBWPD, into 129 injectors. In addition, a steamflood pilot program is currently active in the Eastern Shallow Oil Zone. Jerry R. Bergeson and Associates, Inc. (Bergeson) has completed Phase II of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objectives for this phase of the study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. 28 figs., 37 tabs.

  10. Park Profiler/Jump Analyzer Practical method for determining terrain park jump performance

    E-Print Network [OSTI]

    . Terrain Park jump safety as a rider/resort partnership II. USTPC criteria: Quantifying best practices in terrain park jump design III. "Park Profiler" - practical tool to measure TP jump IV. "Jump Analyzer of flying ... but, as Icarus leaned the hard way, there are risks. #12;Terrain Park Jump Safety Terrain park

  11. NEW SEISMIC IMAGING OF THE COSO GEOTHERMAL FIELD, EASTERN CALIFORNIA | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergyTexas: EnergyMyRecipeR.S.NCRCCARBENEnergy

  12. Numerical Study of a Turbulent Hydraulic Jump

    E-Print Network [OSTI]

    Zhao, Qun

    Numerical Study of a Turbulent Hydraulic Jump Qun Zhao, Shubhra Misra, Ib. A. Svendsen and James T of a Turbulent Hydraulic Jump ­ p.1/14 #12;Objective Our ultimate goal is to study the breaking waves. Numerical Study of a Turbulent Hydraulic Jump ­ p.2/14 #12;A moving bore Qiantang Bore China (Courtesy of Dr J

  13. RIDGE JUMP PROCESS IN ICELAND Sebastian GARCIA

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 RIDGE JUMP PROCESS IN ICELAND Sebastian GARCIA Freie Universität Berlin ­ Department of Geologie, sgarcia@zedat.fu-berlin.de Abstract Eastward ridge jumps bring the volcanic zones of Iceland back pulses triggers these ridge jumps. One of them is occurring in Southern Iceland, whereas the exact

  14. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 92, NO. C2, PAGES 1637-1654, FEBRUARY 15, 1987 Structure of the Coastal Current Field off Northern California During the

    E-Print Network [OSTI]

    Kurapov, Alexander

    of the Coastal Current Field off Northern California During the Coastal Ocean Dynamics Experiment College of 1981 and 1982, in conjunction with the CoastalOcean Dynamics Experiment,profilesof upperoceancurrents. Synoptic maps of near-surface currents often deviate substantially from classical two-dimensional wind

  15. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Luyendyk, Bruce

    ORIGINAL Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the world (Shindell et al. 2005; Etiope 2009). As a result, future Kyoto- type treaties likely will seek to reduce

  16. Property description and fact-finding report for NPR-2, Buena Vista Hills Field, Kern County, California

    SciTech Connect (OSTI)

    NONE

    1996-06-01

    The US Department of Energy has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 2 (NPR-2) in Kern County, California. The report that follows is the Phase 1 fact-finding and property description for that study. The United States of America owns 100 percent of the mineral rights and 96.1 percent of surface rights in 10,447 acres of the 30,182 acres contained within NPR-2. This property comprises the Buena Vista Hills Oil Field. Oil and gas companies have leased out 9,227 acres in 17 separate leases. Discovered in 1909, this field has approximately 435 active wells producing 2,819 gross barrels of oil and 8.6 million cubic feet of gas per day. Net production to the Government royalty interests include 200 barrels of oil per day and 750 thousand cubic feet of gas per day. Royalty revenues are about $1.7 million per year. Remaining recoverable reserves are approximately 407 thousand barrels of oil and 1.8 billion cubic feet of gas. Significant plugging and abandonment (P&A) and environmental liabilities are present, but these should be the responsibility of the lessees. Ultimate liability still rests with the United States and may increase as the leases are sold to smaller and smaller operators.

  17. Constitutive models for the Etchegoin Sands, Belridge Diatomite, and overburden formations at the Lost Hills oil field, California

    SciTech Connect (OSTI)

    FOSSUM,ARLO F.; FREDRICH,JOANNE T.

    2000-04-01

    This report documents the development of constitutive material models for the overburden formations, reservoir formations, and underlying strata at the Lost Hills oil field located about 45 miles northwest of Bakersfield in Kern County, California. Triaxial rock mechanics tests were performed on specimens prepared from cores recovered from the Lost Hills field, and included measurements of axial and radial stresses and strains under different load paths. The tested intervals comprise diatomaceous sands of the Etchegoin Formation and several diatomite types of the Belridge Diatomite Member of the Monterey Formation, including cycles both above and below the diagenetic phase boundary between opal-A and opal-CT. The laboratory data are used to drive constitutive parameters for the Extended Sandler-Rubin (ESR) cap model that is implemented in Sandia's structural mechanics finite element code JAS3D. Available data in the literature are also used to derive ESR shear failure parameters for overburden formations. The material models are being used in large-scale three-dimensional geomechanical simulations of the reservoir behavior during primary and secondary recovery.

  18. Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01

    M. A. Piette, Integrating Renewable Resources in CaliforniaEnable Integration of Renewable Resources,” February 2012.P. Worhach, ”|ntegration of Renewable Resources at 20% RPS,”

  19. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    SciTech Connect (OSTI)

    Elders, W.A.; Cohen, L.H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

  20. Microearthquake Study of the Salton Sea Geothermal Field, California: Evidence of Stress Triggering - Masters Thesis

    SciTech Connect (OSTI)

    Holland, Austin Adams

    2002-02-01

    A digital network of 24 seismograph stations was operated from September 15, 1987 to September 30, 1988, by Lawrence Livermore National Laboratory and Unocal as part of the Salton Sea Scientific Drilling Project to study seismicity related to tectonics and geothermal activity near the drilling site. More than 2001 microearthquakes were relocated in this study in order to image any pervasive structures that may exist within the Salton Sea geothermal field. First, detailed velocity models were obtained through standard 1-D inversion techniques. These velocity models were then used to relocate events using both single event methods and Double-Differencing, a joint hypocenter location method. An anisotropic velocity model was built from anisotropy estimates obtained from well logs within the study area. During the study period, the Superstition wills sequence occurred with two moderate earthquakes of MS 6.2 and MS 6.6. These moderate earthquakes caused a rotation of the stress field as observed from the inversion of first motion data from microearthquakes at the Salton Sea geothermal field. Coulomb failure analysis also indicates that microearthquakes occurring after the Superstition Hills sequence are located within a region of stress increase suggesting stress triggering caused by the moderate earthquakes.

  1. Bubble visualization in a simulated hydraulic jump

    E-Print Network [OSTI]

    Witt, Adam; Shen, Lian

    2013-01-01

    This is a fluid dynamics video of two- and three-dimensional computational fluid dynamics simulations carried out at St. Anthony Falls Laboratory. A transient hydraulic jump is simulated using OpenFOAM, an open source numerical solver. A Volume of Fluid numerical method is employed with a realizable k-epsilon turbulence model. The goal of this research is to model the void fraction and bubble size in a transient hydraulic jump. This fluid dynamics video depicts the air entrainment characteristics and bubble behavior within a hydraulic jump of Froude number 4.82.

  2. Heavy oil reservoirs in the Tulare Fold Belt, Cymric-McKittrick fields, Kern County, California

    SciTech Connect (OSTI)

    Farley, T. (Chevron U.S.A., Bakersfield, CA (USA))

    1990-05-01

    The Tulare fold belt is a series of asymmetric, generally northeast-verging anticlines and synclines in the Pliocene-Pleistocene Tulare Formation that trend northwestward through the Cymric-McKittrick fields. Anticlines within the deformed belt generally originated as fault propagation folds above decollements, the most important of which is the regional decollement on top of the Amnicola sand, the basal Tulare unit. The Amnicola decollement is the northeast subsurface extension of the McKittrick thrust, a low-angle fault that has displaced the Miocene Antelope shale over the Pliocene San Joaquin Formation and locally over the Tulare Formation. The Amnicola decollement is itself deformed by folding related to a younger, deeper decollement near the base of the San Joaquin Formation that merges westward with the Amnicola decollement and defines a zone of faulting associated with the McKittrick thrust Heavy oil reservoirs in the Tulare Formation are currently undergoing active development by thermal recovery techniques. In general, the geometry of heavy oil reservoirs is determined by location within the Tulare fold belt combined with the position of a subhorizontal fluid level trap that forms the updip limit of fluid-saturated rock Reservoir geometry is complicated by complex local structure, discontinuous stratigraphy, and partial depletion of heavy oil reservoirs by fluid withdrawal due to gravity drainage. Proper resolution of fold geometry, fault geometry, and position of the fluid level trap is crucial to the design and monitoring of thermal recovery projects within the Tulare fold belt.

  3. Integrated reservoir characterization of a Tulare steamflood finds bypassed oil - South Belridge Field, Kern County, California

    SciTech Connect (OSTI)

    Walter, D.R.; Wylie, A.S. Jr.; Broussard, K.A. (Santa Fe Energy Resources, Bakersfield, CA (United States))

    1996-01-01

    Reservoir quality and producibility are directly related to the characteristics of the depositional lithofacies. Electric log gamma ray/resistivity profiles were used to define facies trends within the Tulare steamflood at South Belridge. Channel and non-channel facies profiles are distinctive across the lease with the channel sands having the better quality reservoir and greater net pay values. Sidewall core permeabilities were averaged over the main producing Tulare intervals with the channels averaging 2000-3000 millidarcies and non-channels 200-500 millidarcies. This supports the lithofacies trend and net pay maps. Although the approach is qualitative, it illustrates the dramatic permeability contrast between the channel and non-channel lithofacies. Temperature maps using downhole temperature surveys and flowline temperatures indicate channel facies temperatures up to 300[degrees] with the non-channel facies having 90[degrees] to 100[degrees] temperatures (near ambient). Higher temperatures also relate to higher average daily production rates for channel associated wells. Channel wells averaged greater than 30 BOPD while non-channel wells averaged 10 BOPD or less. New and replacement well nations have been high graded resulting in favorable production responses. Integration of the lithofacies, permeability and temperature data plus ongoing preventive production optimization work has led to a more efficient Tulare steamflood and identification of bypassed oil on the King-Ellis lease in the South Belridge Field.

  4. Integrated reservoir characterization of a Tulare steamflood finds bypassed oil - South Belridge Field, Kern County, California

    SciTech Connect (OSTI)

    Walter, D.R.; Wylie, A.S. Jr.; Broussard, K.A. [Santa Fe Energy Resources, Bakersfield, CA (United States)

    1996-12-31

    Reservoir quality and producibility are directly related to the characteristics of the depositional lithofacies. Electric log gamma ray/resistivity profiles were used to define facies trends within the Tulare steamflood at South Belridge. Channel and non-channel facies profiles are distinctive across the lease with the channel sands having the better quality reservoir and greater net pay values. Sidewall core permeabilities were averaged over the main producing Tulare intervals with the channels averaging 2000-3000 millidarcies and non-channels 200-500 millidarcies. This supports the lithofacies trend and net pay maps. Although the approach is qualitative, it illustrates the dramatic permeability contrast between the channel and non-channel lithofacies. Temperature maps using downhole temperature surveys and flowline temperatures indicate channel facies temperatures up to 300{degrees} with the non-channel facies having 90{degrees} to 100{degrees} temperatures (near ambient). Higher temperatures also relate to higher average daily production rates for channel associated wells. Channel wells averaged greater than 30 BOPD while non-channel wells averaged 10 BOPD or less. New and replacement well nations have been high graded resulting in favorable production responses. Integration of the lithofacies, permeability and temperature data plus ongoing preventive production optimization work has led to a more efficient Tulare steamflood and identification of bypassed oil on the King-Ellis lease in the South Belridge Field.

  5. UONPR No. 1, Elk Hills, 26R Reservoir, Elk Hills oil and gas field, Kern County, California: Management Review: Surface operations and measurements of production and injection volumes

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Evans, Carey and Crozier was given the task to conduct a Management Review of the Surface Operations of the 26R Reservoir in UONPR No. 1, Elk Hills field, Kern County, California. The MER strategy for this reservoir is to maintain pressure, and toward this end, gas injection volumes are scheduled to amount to 110% of calculated withdrawals. In spite of this, however, reservoir pressure continues to decline. The purpose of this study was, therefore, to determine if, and to what extent, field operating practices and accounting procedures may be contributing to this dilemma and to make appropriate recommendations pertaining to correcting any deficiencies which may have been found.

  6. JUMP DIFFUSION OPTION WITH TRANSACTION COSTS

    E-Print Network [OSTI]

    Mocioalca, Oana

    JUMP DIFFUSION OPTION WITH TRANSACTION COSTS "non-systematic" risk, inclusive of transaction costs. We compute the total transac- tion costs and the turnover for different options, transaction costs, and revision intervals

  7. Review of mineral estate of the United States at Naval Petroleum Reserve No. 2, Buena Vista Hills Field, Kern County, California

    SciTech Connect (OSTI)

    1996-08-09

    The purpose of this report is to present this Consultant`s findings regarding the nature and extent of the mineral estate of the United States at National Petroleum Reserve No. 2 (NPR-2), Buena Vista Hills Field, Kern County, California. Determination of the mineral estate is a necessary prerequisite to this Consultant`s calculation of estimated future cash flows attributable to said estate, which calculations are presented in the accompanying report entitled ``Phase II Final Report, Study of Alternatives for Future Operations of the Naval Petroleum and Oil Shale Reserves, NPR-2, California.`` This Report contains a discussion of the leases in effect at NPR-2 and subsequent contracts affecting such leases. This Report also summarizes discrepancies found between the current royalty calculation procedures utilized at NPR-2 and those procedures required under applicable agreements and regulations. Recommendations for maximizing the government`s income stream at NPR-2 are discussed in the concluding section of this Report.

  8. California's Housing Problem

    E-Print Network [OSTI]

    Kroll, Cynthia; Singa, Krute

    2008-01-01

    only improve California’s housing opportunities but produce2004: California’s Affordable Housing Crisis. 2004. http://Raising the Roof: California Housing Development Projections

  9. Heat flow studies, Coso Geothermal Area, China Lake, California...

    Open Energy Info (EERE)

    Heat flow studies, Coso Geothermal Area, China Lake, California. Technical report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Heat flow studies, Coso...

  10. California Building Industry Association et al. v. State Water...

    Open Energy Info (EERE)

    California Building Industry Association et al. v. State Water Resources Control Board Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing:...

  11. The hydraulic jump as a white hole

    E-Print Network [OSTI]

    G. E. Volovik

    2005-10-21

    In the geometry of the circular hydraulic jump, the velocity of the liquid in the interior region exceeds the speed of capillary-gravity waves (ripplons), whose spectrum is `relativistic' in the shallow water limit. The velocity flow is radial and outward, and thus the relativistic ripplons cannot propagating into the interior region. In terms of the effective 2+1 dimensional Painleve-Gullstrand metric appropriate for the propagating ripplons, the interior region imitates the white hole. The hydraulic jump represents the physical singularity at the white-hole horizon. The instability of the vacuum in the ergoregion inside the circular hydraulic jump and its observation in recent experiments on superfluid 4He by E. Rolley, C. Guthmann, M.S. Pettersen and C. Chevallier in physics/0508200 are discussed.

  12. The hydraulic jump as a white whole

    E-Print Network [OSTI]

    Volovik, G E

    2005-01-01

    In the geometry of the circular hydraulic jump, the velocity of the liquid in the interior region exceeds the speed of capillary-gravity waves (ripplons), whose spectrum is `relativistic' in the shallow water limit. The velocity flow is radial and outward, and thus the relativistic ripplons cannot propagating into the interior region. In terms of the effective 2+1 dimensional Painleve-Gullstrand metric appropriate for the propagating ripplons, the interior region imitates the `white-hole'. The hydraulic jump represents the physical singularity at the white-hole horizon. The instability of the vacuum in the ergoregion inside the circular hydraulic jump and its observation in recent experiments on superfluid 4He by E. Rolley, C. Guthmann, M.S. Pettersen and C. Chevallier in physics/0508200 are discussed.

  13. A Model For Polygonal Hydraulic Jumps

    E-Print Network [OSTI]

    Martens, Erik A; Bohr, Tomas

    2011-01-01

    We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard et al., based on the known flow structure for the type II hydraulic jumps with a "roller" (separation eddy) near the free surface in the jump region. The model consists of mass conservation and radial force balance between hydrostatic pressure and viscous stresses on the roller surface. In addition, we consider the azimuthal force balance, primarily between pressure and viscosity, but also including non-hydrostatic pressure contributions from surface tension in light of recent observations by Bush et al. The model can be analyzed by linearization around the circular state, resulting in a parameter relationship for nearly circular polygonal states. A truncated, but fully nonlinear version of the model can be solved analytically. This simpler model gives rise to polygonal shapes that are very similar to those observed in experiments, even though surface tension is neglected, and the condition for the existence of a pol...

  14. Effect of shockwave-induced density jump on laser plasma interactions in low-pressure ambient air

    E-Print Network [OSTI]

    Tillack, Mark

    and Aerospace Engineering and the Center for Energy Research, University of California San Diego, 9500 Gilman significantly reduce laser energy absorbed in the solid plasma. The ionization of the density jump was confirmed , extreme ultraviolet lithography (EUVL) source 3 , and inertial fusion energy (IFE) 4 . During

  15. Heber, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to: navigation, searchHeber, California: Energy Resources Jump

  16. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    truck activity in California. Transport Policy. Volume 16,in California Travel Demand Reductions Decreasing transportCalifornia, USA. Transportation Research, Part D: Transport

  17. Hydraulic/Shock-Jumps in Protoplanetary Disks

    E-Print Network [OSTI]

    A. C. Boley; R. H. Durisen

    2006-03-10

    In this paper, we describe the nonlinear outcome of spiral shocks in protoplanetary disks. Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the post-shock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hybrids between shocks and hydraulic jumps (shock bores) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that shock bores produce and discuss possible consequences for disk mixing, turbulence, and evolution of solids.

  18. Does the side jump effect exist?

    E-Print Network [OSTI]

    Sushkov, O P; Mori, M; Maekawa, S

    2012-01-01

    The side-jump effect is a manifestation of the spin orbit interaction in electron scattering from an atom/ion/impurity. The effect has a broad interest because of its conceptual importance for generic spin-orbital physics, in particular the effect is widely discussed in spintronics. We reexamine the effect accounting for the exact nonperturbative electron wave function inside the atomic core. We find that value of the effect is much smaller than estimates accepted in literature. The reduction factor is 1/Z^2, where Z is the nucleus charge of the atom/impurity. This implies that the side-jump effect is practically irrelevant for spintronics, the skew scattering and/or the intrinsic mechanism always dominate the anomalous Hall and spin Hall effects.

  19. University of California Davis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:Power Company JumpGeoPower JumpCalifornia Davis Jump

  20. Sunnyvale, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMember Corp JumpSunfilm AG JumpIslesCalifornia:

  1. Avalon, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustria Geothermal Region Jump to:Auxin Solar JumpCalifornia:

  2. CALIFORNIA ENERGY CALIFORNIA'S STATE ENERGY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA'S STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM INITIAL November 2009 CEC-400-2009-026-CMD Arnold Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Program Manager Paula David Supervisor Appliance and Process Energy Office Valerie T. Hall Deputy Director

  3. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Energy Use in California PEV Technology and Costs The mainEnergy Use in California Component HEV Battery Cost, $/kWhaccount the cost of delivery. California’s Energy Future -

  4. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Deputy Project Director, Energy and Environmental Security,Security Principal Directorate, Lawrence Livermore National Lab California’s Energy

  5. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  6. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    Jerry R. Bergeso and Associates, Inc. (Bergeson) has completed Phase II of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objectives for this phase of the study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. Volume one contains the following: summary; introduction; and reservoir studies for tulare, dry gas zone, eastern shallow oil zone, western shallow oil zone, and Stevens --MBB/W31S, 31S NA/D.

  7. Jump-Diffusion Risk-Sensitive Asset Management II: Jump-Diffusion Factor Model

    E-Print Network [OSTI]

    Davis, Mark

    2011-01-01

    In this article we extend earlier work on the jump-diffusion risk-sensitive asset management problem [SIAM J. Fin. Math. (2011) 22-54] by allowing jumps in both the factor process and the asset prices, as well as stochastic volatility and investment constraints. In this case, the HJB equation is a partial integro-differential equation (PIDE). By combining viscosity solutions with a change of notation, a policy improvement argument and classical results on parabolic PDEs we prove that the HJB PIDE admits a unique smooth solution. A verification theorem concludes the resolution of this problem.

  8. Electrowetting study of jumping droplets on hydrophobic surfaces

    E-Print Network [OSTI]

    Tio, Evelyn

    2014-01-01

    Recent studies have shown that jumping-droplet-enhanced condensation has higher heat transfer than state-of-the-art dropwise condensing surfaces by -30-40%. Jumping-droplet condensation occurs due to the conversion of ...

  9. Dry gas zone, Elk Hills Field, Kern County, California: General reservoir study: Engineering data, effective August 1, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-10

    This reservoir study of the dry gas zone of Elk Hills Field is a data compilation with information relating to well: completion; production; pressure; and back pressure. (JF)

  10. Viscous Undular Hydraulic Jumps of Moderate Reynolds number

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Viscous Undular Hydraulic Jumps of Moderate Reynolds number Ratul Dasgupta I will present some results on undular hydraulic jumps occurring in a two bores (in rivers), where the interface remains horizontal, the moderate Reynolds hydraulic jump shows a linear increase in height due to viscosity

  11. -California -Washington

    E-Print Network [OSTI]

    with Hawaii-based U.S. fisheries, as well as the fleets of other Pacific Rim nations. As such, the managementPacific - California - Oregon - Washington #12;Regional Summary Pacific Region Management Context The Pacific Region includes California, Oregon, and Washington. Federal fisheries in this region are managed

  12. California's Environmental

    E-Print Network [OSTI]

    California at Davis, University of

    SB 375 and California's Environmental Goals Louise Bedsworth Deputy Director Governor's Office of Planning and Research January 22, 2014 UC Davis Policy Forum Series #12;A vision for California's future Strong economy Thriving urban areas Prosperous rural regions Clean Environment Clean and efficient energy

  13. Lift-off dynamics in a simple jumping robot

    E-Print Network [OSTI]

    Jeffrey Aguilar; Alex Lesov; Kurt Wiesenfeld; Daniel I. Goldman

    2012-08-30

    We study vertical jumping in a simple robot comprising an actuated mass-spring arrangement. The actuator frequency and phase are systematically varied to find optimal performance. Optimal jumps occur above and below (but not at) the robot's resonant frequency $f_0$. Two distinct jumping modes emerge: a simple jump which is optimal above $f_0$ is achievable with a squat maneuver, and a peculiar stutter jump which is optimal below $f_0$ is generated with a counter-movement. A simple dynamical model reveals how optimal lift-off results from non-resonant transient dynamics.

  14. Modelling populations of Lygus hesperus on cotton fields in the San Joaquin Valley of California: the importance

    E-Print Network [OSTI]

    an important component of understanding pattern and process in population studies. In agricultural ecology decades of field studies that have generated time-series data aimed at assessing the effects of pesticides selection. In all cases, this includes optimal selection of both statistical and mathematical models fit

  15. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    economy from today’s levels, cutting energy consumption pertoday, though they will likely continue to improve and be refined over time. California’s Energy

  16. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    aviation, marine and rail sectors. Energy use, broken out bysuch as aviation and marine. California’s Energy Future -and marine. We believe that the CEF transportation energy

  17. California City, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED:Calendar Home2015Energy Jump

  18. Optimal Control of Standing Jump Movements Michael W. Koch, Sigrid Leyendecker

    E-Print Network [OSTI]

    Leyendecker, Sigrid

    Optimal Control of Standing Jump Movements Michael W. Koch, Sigrid Leyendecker Chair of Applied standing jumping movements, in particular, standing high jumps and standing long jumps are considered. The exemplary investigated jumps are restricted to standing jump movements. Historically, the standing high jump

  19. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 3 report, economic development and production plan

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    Jerry R. Bergeson and Associates, Inc. (Bergeson) has completed Phase 3 of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objective of this phase of the study was to establish the economic potential for the field by determining the optimum economic plan for development and production. The optimum economic plan used net cash flow analysis to evaluate future expected Department of Energy revenues less expenses and investments for proved developed, proved undeveloped, probable, possible and possible-enhanced oil recovery (EOR) reserves assigned in the Phase 2 study. The results of the Phase 2 study were used to define future production flowstreams. Additional production scheduling was carried out to evaluate accelerated depletion of proved developed reserves in the 29R, 31 C/D Shale and Northwest Stevens T Sand/N Shale Reservoirs. Production, cost and investment schedules were developed for the enhanced oil recovery projects identified in Phase 2. Price forecasts were provided by the Department of Energy. Operating costs and investment requirements were estimated by Bergeson. 4 figs., 48 tabs.

  20. Atmospheric Radiation Measurement (ARM) Data from Los Angeles, California, to Honolulu, Hawaii for the Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign (an AMF2 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship Spirit, operated by Horizon Lines, for the Marine ARM GPCI* Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation; surface meteorological and oceanographic variables; and atmospheric profiles from weather balloons launched every six hours. During two two-week intensive observational periods in January and July 2013, additional instruments were deployed and balloon soundings were be increased to every three hours. These additional data provided a more detailed characterization of the state of the atmosphere and its daily cycle during two distinctly different seasons. The primary objective of MAGIC was to improve the representation of the stratocumulus-to-cumulus transition in climate models. AMF2 data documented the small-scale physical processes associated with turbulence, convection, and radiation in a variety of marine cloud types.

  1. Escondido, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,Power Corp Jump to:SIBRErwin, NewEscondido, California:

  2. Chico, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:Changing WorldCalifornia: Energy Resources Jump to:

  3. Palmdale, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 of MasonPalcan ChinaPalmdale, California:

  4. Randsburg, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎Wind Farm Jump to:Randsburg, California:

  5. Yucaipa, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas: EnergyYBR SolarYemenYucaipa, California:

  6. Arcadia, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:AngolaEnergyAquaAratua CentralArbuthnottCalifornia:

  7. Byron, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to:Energy Inc JumpByron, California:

  8. California State Assembly | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency Jump to:Assembly Jump to:

  9. California State Lands Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency Jump to:Assembly JumpLands

  10. California Wind Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency JumpSystems Jump to:

  11. Parlier, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina:Paramount Farms JumpParlier, California:

  12. San Dimas, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California: Energy Resources Jump to:

  13. Magnetic flux jumps in textured Bi2Sr2CaCu2O8 A. Nabialek,1,2

    E-Print Network [OSTI]

    Niewczas, Marek

    and it was found to be well accounted for by the available theoretical models. The magnetic-field sweep rate and magnetic-field range where flux jumps occur suggesting a relationship between the two. The heat exchange with decreasing magnetic-field sweep rate. De- magnetizing effects are also shown to have a significant influence

  14. Itron (California) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California) Jump to: navigation, search Name: Itron

  15. California Ridge | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency Jump to:

  16. “The Making of” California’s Energy Crisis

    E-Print Network [OSTI]

    Whittington, Jan

    2002-01-01

    2000. California’s Energy Crisis, Whittington Vogel, Nancy (23 2001. California’s Energy Crisis, Whittington Girion,of” California’s Energy Crisis Jan Whittington Abstract This

  17. California/Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas:Information 2ndCalifornia/Incentives < California Jump

  18. CaliforniaFIRST (California) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells using Renewable Fuels Photovoltaics Solar Water Heat Program Info State California Program Type PACE Financing The CaliforniaFIRST Program is a Property Assessed Clean...

  19. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

  20. San Marcos, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas,Rey, California: EnergyCalifornia:

  1. San Martin, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas,Rey, California:Martin, California:

  2. Environmental Survey preliminary report, Department of Energy (DOE) activities at Santa Susana Field Laboratories, Ventura County, California

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) activities at the Santa Susana Field Laboratories Site (DOE/SSFL), conducted May 16 through 26, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by an private contractor. The objective of the survey is to identify environmental problems and areas of environmental risk associated with DOE activities at SSFL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at SSFL, and interviews with site personnel. 90 refs., 17 figs., 28 tabs.

  3. ISSN 1745-9648 Gasoline Prices Jump Up on Mondays

    E-Print Network [OSTI]

    Feigon, Brooke

    ISSN 1745-9648 Gasoline Prices Jump Up on Mondays: an Outcome of Aggressive Competition? by Øystein Research Council is gratefully acknowledged. #12;Gasoline prices jump up on Mondays: An outcome, 2008 Abstract This paper examines Norwegian gasoline pump prices using daily station

  4. Hamilton-Jacobi equations with jumps: asymptotic stability

    E-Print Network [OSTI]

    Amir Mahmood; Saima Parveen

    2009-09-05

    The asymptotic stability of a global solution satisfying Hamilton-Jacobi equations with jumps will be analyzed in dependence on the strong dissipativity of the jump control function and using orbits of the differentiable flows to describe the corresponding characteristic system.

  5. Dry Gas Zone, Elk Hills field, Kern County, California: General reservoir study: Engineering text and exhibits: (Final report)

    SciTech Connect (OSTI)

    Not Available

    1988-08-01

    The Dry Gas Zone in the Elk Hills field is comprised of fourteen separate productive horizons deposited in the MYA Group of the San Joaquin Formation of Pliocene Age. Eighty-six separate Reservoir Units have been identified within the interval over an area roughly ten miles long and four miles wide. One basal Tulare sand, the Tulare B, was also included in the geologic study. Five earlier studies have been made of the Dry Gas Zone; each is referenced in the Appendix of this report. Most of these studies were geologic in nature, and none provided in-depth reservoir analyses. This report is made up of ten (10) separate volumes which include: engineering text and exhibits (white dot); engineering data (black dot); geologic text and tables (green dot); structure and isochore maps (light blue dot); structural cross sections (dark blue dot); stratigraphic cross sections (brown dot); geologic data sheets -book 1 (yellow dot); geologic data sheets - book 2 (orange dot); geologic data sheets - book 3 (red dot); and geologic data sheets - book 4 (pink or coral dot). Basic production, injection, pressure, and other assorted technical data were provided by the US Department of Energy engineering staff at Elk Hills. These data were accepted as furnished with no attempt being made at independent verification.

  6. Dry Gas Zone, Elk Hills Field, Kern County, California: General reservoir study: Geologic text and tables: Final report

    SciTech Connect (OSTI)

    Not Available

    1988-06-29

    The Dry Gas Zone was defined by US Naval Petroleum Reserve No. 1 Engineering Committee (1957) as ''/hor ellipsis/all sands bearing dry gas above the top of the Lower Scalez marker bed. The term is used to include the stratigraphic interval between the Scalez Sand Zone and the Tulare Formation - the Mya Sand Zone. The reservoirs in this upper zone are thin, lenticular, loosely cemented sandstones with relatively high permeabilities.'' Other than the limited Tulare production in the western part of the field, the Dry Gas Zone is the shallowest productive zone in the Elk Hills Reserve and is not included in the Shallow Oil Zone. It is Pliocene in age and makes up approximately eighty percent of the San Joaquin Formation as is summarized in Exhibit TL-1. The lithologic character of the zone is one of interbedded shales and siltstones with intermittent beds of various thickness sands. The stratigraphic thickness of the Dry Gas Zone ranges from 950 to 1150 feet with a general thickening along the flanks and thinning over the crests of the anticlines. The productive part of the Dry Gas Zone covers portions of 30 sections in an area roughly 10 miles long by 4 miles wide. 4 refs.

  7. Application of horizontal drilling in the development of a complex turbidite sandstone reservoir, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A. (Bechtel Petroleum Operations, Inc., Tupman, CA (USA)); McJannet, G.S. (Dept. of Energy, Tupman, CA (USA)); Hart, O.D. (Chevron Inc., Tupman, CA (USA))

    1990-05-01

    Horizontal drilling techniques have been used at the Elk Hills field, to more effectively produce the complex 26R reservoir. This Stevens zone reservoir of the Miocene Monterey Formation contains turbid sediments deposited in a deep-sea fan setting and consists of several distinct sandstone layers averaging 150 ft thick and usually separated by mudstone beds. Layers in the reservoir dip as much as 50{degree} southwest. An expanding gas cap makes many vertical wells less favorable to operate. Horizontal completions were thought ideal for the pool because (1) original oil-water contact is level and believed stable, (2) water production is low, (3) a horizontal well provides for a long production life; and (4) several sandstone layers can be produced through one well. For the first well, the plan was to redrill an idle well to horizontal along an arc with a radius of 350 ft. The horizontal section was to be up to 1,000 ft long and extend northeast slightly oblique to dip just above the average oil-water contact. The well was drilled in September 1988, reached horizontal nearly as planned, was completed after perforating 210 ft of oil sand, and produced a daily average of 1,000 bbl oil and 8 bbl of water. However, structural influence was stronger than expected, causing the horizontal drill path to turn directly updip away from the bottom-hole target area. The well also encountered variable oil-water contacts, with more than half the horizontal section possibly water productive. Geologic and drilling data from the first well were used for planning another well. This well was drilled in October 1989, and was highly successful with over 1,000 ft of productive interval.

  8. Wendel, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources Jump to:Search YourIndiana:Wendel, California:

  9. Westmorland, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland: Energy Resources JumpWestmorland, California:

  10. Willowbrook, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy Resources Jump to:Willoughby,California: Energy

  11. Tustin, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: Energy Resources JumpTuscaloosaITustin, California:

  12. Hillsborough, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to:Hershey,High-TemperatureHiles,Hillcrest,Texas:California:

  13. Dublin, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreafor Geothermal Resources Rules -Dublin, California:Jump

  14. Lakeside, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy Resources Jump to:Village, California:Green,

  15. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

    1999-02-01

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

  16. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Steven Schamel

    1997-07-29

    This project reactivates ARCO?s idle Pru Fee property in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery was initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and the recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  17. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

    1997-10-21

    This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  18. CALIFORNIA ENERGY COMMISSION California Energy Commission

    E-Print Network [OSTI]

    , CALIFORNIA CENTER FOR SUSTAINABLE ENERGY, CALIFORNIA ENVIRONMENTAL JUSTICE ALLIANCE, CALIFORNIA SOLAR ENERGY., LOCAL ENERGY AGGREGATION NETWORK, DR. LUIS PACHECO, PRESENTE.ORG, SIERRA CLUB, SOLAR ENERGY INDUSTRIES ASSOCIATION, AND THE VOTE SOLAR INITIATIVE FOR SOCIETAL COST-BENEFIT EVALUATION OF CALIFORNIA'S NET ENERGY

  19. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:www.nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  20. California energy flow in 1991

    SciTech Connect (OSTI)

    Borg, I.Y.; Briggs, C.K.

    1993-04-01

    Energy consumption in California fell in 1991 for the first time in five years. The State`s economy was especially hard hit by a continuing national recession. The construction industry for the second year experienced a dramatic downturn. Energy use in the industrial sector showed a modest increase, but consumption in other end-use categories declined. The decrease in energy used in transportation can be traced to a substantial fall in the sales of both highway diesel fuels and vessel bunkering fuels at California ports, the latter reflecting a mid-year increase in taxes. Gasoline sales by contrast increased as did the number of miles traveled and the number of automobiles in the State. Production in California`s oil and gas fields was at 1990 levels thus arresting a steady decline in output. Due to enlarged steam flooding operations, production at several fields reached record levels. Also countering the decline in many of California fields was new production from the Port Arguello offshore field. California natural gas production, despite a modest 1991 increase, will not fill the use within the State. Petroleum comprised more than half of the State`s energy supply principally for transportation. Natural gas use showed a small increase. Oil products play virtually no role in electrical production. The largest single source of electricity to the State is imports from the Pacific Northwest and from coal-fired plants in the Southwest. Combined contributions to transmitted electricity from renewable and alternate sources declined as hydropower was constrained by a prolonged drought and as geothermal power from the largest and oldest field at The Geysers fell. Windpower grew slightly; however solar power remained at 1990 levels and made no substantial contribution to total power generation.

  1. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    E-Print Network [OSTI]

    Miljkovic, Nenad

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured ...

  2. Spontaneous azimuthal breakout and instability at the circular hydraulic jump

    E-Print Network [OSTI]

    Ray, Arnab K; Basu, Abhik; Bhattacharjee, Jayanta K

    2015-01-01

    We consider a shallow, two-dimensional flow of a liquid in which the radial and the azimuthal dynamics are coupled to each other. The steady and radial background flow of this system creates an axially symmetric circular hydraulic jump. On this background we apply time-dependent perturbations of the matter flow rate and the azimuthal flow velocity, with the latter strongly localized at the hydraulic jump. The perturbed variables depend spatially on both the radial and azimuthal coordinates. Linearization of the perturbations gives a coupled system of wave equations. The characteristic equations extracted from these wave equations show that under a marginally stable condition a spontaneous breaking of axial symmetry occurs at the position of the hydraulic jump. Departure from the marginal stability shows further that a linear instability develops in the azimuthal direction, resulting in an azimuthal transport of liquid at the hydraulic jump. The time for the growth of azimuthal instability is scaled by viscosi...

  3. Gravity-free hydraulic jumps and metal femtocups

    E-Print Network [OSTI]

    Rama Govindarajan; Manikandan Mathur; Ratul DasGupta; N. R. Selvi; Neena Susan John; G. U. Kulkarni

    2006-10-03

    Hydraulic jumps created by gravity are seen every day in the kitchen sink. We show that at small scales a circular hydraulic jump can be created in the absence of gravity, by surface tension. The theory is motivated by our experimental finding of a height discontinuity in spreading submicron molten metal droplets created by pulsed-laser ablation. By careful control of initial conditions, we show that this leads to solid femtolitre cups of gold, silver, copper, niobium and tin.

  4. Chemical Potential Jump during Evaporation of a Quantum Bose Gas

    E-Print Network [OSTI]

    E. A. Bedrikova; A. V. Latyshev

    2013-01-07

    The dependence of the chemical potential jump coefficient on the evaporation coefficient is analyzed for the case in which the evaporating component is a Bose gas. The concentration of the evaporating component is assumed to be much lower than the concentration of the carrier gas. The expression for the chemical potential jump is derived from the analytic solution of the problem for the case in which the collision frequency of molecules of the evaporating component is constant.

  5. California: California’s Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-15

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of California.

  6. CALIFORNIA INVESTMENT PLAN FOR THE

    E-Print Network [OSTI]

    . California Air Resources Board California Energy Commission Gerhard Achtelik Mike Smith Independent Oil Marketers Association Gerald Secundy, California Council for Environmental and Economic and Anthony Brunello, California Resources Agency Rick Shedd, California Department of General Services John

  7. California's electricity crisis

    E-Print Network [OSTI]

    Joskow, Paul L.

    2001-01-01

    The collapse of California's electricity restructuring and competition program has attracted attention around the world. Prices in California's competitive wholesale electricity market increased by 500% between the second ...

  8. UCDavis University of California A California Energy

    E-Print Network [OSTI]

    California at Davis, University of

    Francisco 20% have a garage · About 50% of USA, California new car buyers have a stable parking spot 25 feetUCDavis University of California A California Energy Commission Public Interest Energy Research · Fleet Operation · Energy Savings Battery studies · Benchmark Testing · 2nd use · End of life Spatial

  9. Non-Markovian Quantum Jump with Generalized Lindblad Master Equation

    E-Print Network [OSTI]

    X. L. Huang; H. Y. Sun; X. X. Yi

    2008-10-14

    The Monte Carlo wave function method or the quantum trajectory/jump approach is a powerful tool to study dissipative dynamics governed by the Markovian master equation, in particular for high-dimensional systems and when it is difficult to simulate directly. In this paper, we extend this method to the non-Markovian case described by the generalized Lindblad master equation. Two examples to illustrate the method are presented and discussed. The results show that the method can correctly reproduce the dissipative dynamics for the system. The difference between this method and the traditional Markovian jump approach and the computational efficiency of this method are also discussed.

  10. California's Water Energy Relationship

    E-Print Network [OSTI]

    1 CALIFORNIA ENERGY COMMISSION California's Water ­ Energy Relationship Prepared in Support The California's Water-Energy Relationship report is the product of contributions by many California Energy, Lorraine White and Zhiqin Zhang. Staff would also like to thank the members of the Water-Energy Working

  11. NUCLEAR POWER in CALIFORNIA

    E-Print Network [OSTI]

    NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100 public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear

  12. “The Making of” California’s Energy Crisis

    E-Print Network [OSTI]

    Whittington, Jan

    2002-01-01

    much individual California power plants increased earningspower plants were popular developments in California, butno new power plants had been constructed in California over

  13. Ancillary services market in California

    E-Print Network [OSTI]

    Gomez, Tomas; Marnay, Chris; Siddiqui, Afzal; Liew, Lucy; Khavkin, Mark

    1999-01-01

    www.caiso.com). California Power Exchange. 1998. PX Primer:Source: California Power Exchange) . 2 CaliforniaControl Automated Power Exchange Ancillary Service Balancing

  14. SHORT COMMUNICATION Dynamical analysis of winter terrain park jumps

    E-Print Network [OSTI]

    of this work is to show how a dynamical analysis can assess impact injury risks and inform safer terrain park frequently pose a hazard to patrons and may represent a significant liability risk to winter resorts. By performing a simple dynamic analysis of terrain park jumps, the relative risk to impact injuries for any

  15. Peak-Jumping Frequent Itemset Mining Nele Dexters1

    E-Print Network [OSTI]

    Van Gucht, Dirk

    Peak-Jumping Frequent Itemset Mining Algorithms Nele Dexters1 , Paul W. Purdom2 , and Dirk Van Gucht2 1 Departement Wiskunde-Informatica, Universiteit Antwerpen, Belgium, nele.dexters@ua.ac.be, 2. We analyze algorithms that, under the right circumstances, permit efficient mining for frequent

  16. Geothermal California: California Claims the World's Highest...

    Open Energy Info (EERE)

    Claims the World's Highest Geothermal Power Output with Potential for Even More Production With Advanced Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to...

  17. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    policy implications.   Energy Policy.   2009. 37 (12). ppin Southern California”, Energy Policy, 39 (2011) 1923–1938.and Policy and Director, Sustainable Transportation Energy

  18. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    in California PEV Technology and Costs The main challengesthis analysis. FCV Technology and Costs A hydrogen fuel cell6. Hydrogen storage technology and cost status compared to

  19. DOE and NASA Reach Cleanup Agreements with the State of California...

    Energy Savers [EERE]

    DOE and NASA Reach Cleanup Agreements with the State of California for the Santa Susana Field Laboratory DOE and NASA Reach Cleanup Agreements with the State of California for the...

  20. Daly City, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa: Energy Resources Jump to:City, California:

  1. East Foothills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation,Foothills, California: Energy Resources Jump to:

  2. Palo Alto, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 of MasonPalcan ChinaPalmdale,California:

  3. Solana Beach, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery TechnologySocovoltaic Systems JumpSolana Beach, California:

  4. San Miguel, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD WindI Jump to:Miguel, California: Energy

  5. San Rafael, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD WindI Jump to:Miguel, California:

  6. Thousand Oaks, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies Jump to:Thousand Oaks, California:

  7. Alpine County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All HomeAlphakat GmbH Jump to:County, California:

  8. Fair Oaks, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoal Jump to:Sheet Jump to:California:

  9. California State Historic Preservation Officer | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency Jump to:Assembly Jump

  10. California State Water Resources Control Board | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency Jump to:Assembly JumpLands

  11. California's 10th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency JumpSystems Jump

  12. Orange County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid Data availableInformationOptony Inc JumpCalifornia:

  13. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    energy demand along with the potential for technologies in different transportation sectors to reduce fuelpotential for reductions in energy demand, rather than the supply of low-carbon transportation fuel.potential for reductions in fuel use is provided. California’s Energy

  14. Dismantling College Opportunity in California

    E-Print Network [OSTI]

    The Civil Rights Project/ Proyecto Derechos Civiles

    2011-01-01

    DISMANTLING   COLLEGE     OPPORTUNITY   IN   CALIFORNIACrisis   and   California’s   Future   Dismantling   CollegePART   4: DISMANTLING   COLLEGE     OPPORTUNITY   IN  

  15. Holtville, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: EnergyHolly Springs,Nebraska:Holtville, California:

  16. Homeland, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: EnergyHollyHoma Hills,Homeland, California: Energy

  17. Stanton, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:SpillDavid,Energyby EuropeCounty,Kansas:California:

  18. Lakewood, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy Resources Jump to:Village,OpenLakeway, Texas:California:

  19. Occidental, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGE Energy Resources, IncIncOccidental, California:

  20. Fremont, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc FFCFremont, California: Energy

  1. Riverdale, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy| OpenNew York:Rincon,Rio,California:

  2. Roseville, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|Gas andRofinRoscoe WindCalifornia:

  3. Vineyard, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairexVertVillage of Shiloh, OhioVillageCalifornia:

  4. Alhambra, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -TelephoneInformationAlhambra, California: Energy

  5. Cabazon, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources JumpCIA-TheCSC/UNDCabazon, California:

  6. California Environmental Protection Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: EnergyCalendarCalhounWebpage | OpenCaliforniaAgency Jump to:

  7. Belmont, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,Bel AirPennsylvania:California: Energy Resources

  8. Bradbury, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to:Open EnergyBradbury, California: Energy

  9. Clayton, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:New York:Clay County,NorthGeorgia: EnergyCalifornia:

  10. Highland, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, CaliforniaHessWind Project Jump to:

  11. Huron, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine JumpEnergy ServicesHungary:California:

  12. Johannesburg, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California) JumpJeffersonJessi3bl's

  13. Laton, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:Laredo Ridge Wind FarmCalifornia

  14. Albany, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAirAlamoCalifornia: Energy Resources Jump to:

  15. Ashland, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line SitingOil and GasinArtimanCalifornia:

  16. Barstow, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWind Project JumpBarstow, California:

  17. Biola, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility Jump to:Biola, California: Energy

  18. Cupertino, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) Wind Farm Jump to:Cupertino, California:

  19. California Clean Tech Open | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED:Calendar Home2015Energy JumpClean

  20. California Energy Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED:CalendarResourcesPower Jump to:

  1. California Natural Resources Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency Jump to: navigation,

  2. California Public Utilities Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency Jump to: navigation,to

  3. California Street Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency Jump to:Assembly

  4. Cayucos, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient Holes Jump to:MiddleCayucos, California:

  5. City of Stockton, California | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCubaParker, SouthCityStockton, California Jump to:

  6. Oceano, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName01988) |Oceano, California:

  7. Pasadena, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina:Paramount FarmsPasadena, California:

  8. Heat release by controlled continuous-time Markov jump processes

    E-Print Network [OSTI]

    Paolo Muratore-Ginanneschi; Carlos Mejía-Monasterio; Luca Peliti

    2012-12-17

    We derive the equations governing the protocols minimizing the heat released by a continuous-time Markov jump process on a one-dimensional countable state space during a transition between assigned initial and final probability distributions in a finite time horizon. In particular, we identify the hypotheses on the transition rates under which the optimal control strategy and the probability distribution of the Markov jump problem obey a system of differential equations of Hamilton-Bellman-Jacobi-type. As the state-space mesh tends to zero, these equations converge to those satisfied by the diffusion process minimizing the heat released in the Langevin formulation of the same problem. We also show that in full analogy with the continuum case, heat minimization is equivalent to entropy production minimization. Thus, our results may be interpreted as a refined version of the second law of thermodynamics.

  9. Insider Models with Finite Utility in Markets with Jumps

    SciTech Connect (OSTI)

    Kohatsu-Higa, Arturo; Yamazato, Makoto

    2011-10-15

    In this article we consider, under a Levy process model for the stock price, the utility optimization problem for an insider agent whose additional information is the final price of the stock blurred with an additional independent noise which vanishes as the final time approaches. Our main interest is establishing conditions under which the utility of the insider is finite. Mathematically, the problem entails the study of a 'progressive' enlargement of filtration with respect to random measures. We study the jump structure of the process which leads to the conclusion that in most cases the utility of the insider is finite and his optimal portfolio is bounded. This can be explained financially by the high risks involved in models with jumps.

  10. Analysis and Improvements of Fringe Jump Corrections by Electronics on the JET Tokamak FIR Interferometer

    E-Print Network [OSTI]

    Analysis and Improvements of Fringe Jump Corrections by Electronics on the JET Tokamak FIR Interferometer

  11. Fast MCMC sampling for Markov jump processes and extensions

    E-Print Network [OSTI]

    Bach, Francis

    Fast MCMC sampling for Markov jump processes and extensions Vinayak Rao and Yee Whye Teh Rao-backward, Baum-Welch. V Rao and Y W Teh (Mar 2013) Fast MCMC for MJPs 2 / 41 #12;Continuous-Time Hidden Markov state i V Rao and Y W Teh (Mar 2013) Fast MCMC for MJPs 3 / 41 #12;Predator-Prey (Lotka-Volterra) Model

  12. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    SciTech Connect (OSTI)

    Miljkovic, N; Enright, R; Nam, Y; Lopez, K; Dou, N; Sack, J; Wang, E

    2012-01-01

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

  13. Institutional Causes of California's Budget Problem

    E-Print Network [OSTI]

    Cain, Bruce E.; Noll, Roger

    2010-01-01

    2, Issue 3 Institutional Causes of California’s BudgetCain and Noll: Institutional Causes of California’s BudgetPolicy Institutional Causes of California’s Budget Problem

  14. NORTHERN CALIFORNIA METALLURGICAL SECTION

    E-Print Network [OSTI]

    Wu, Junqiao

    . Chin, Department of Materials Science, University of California, Berkeley, California 12:30 "UFO Professor Robert Creegan as our luncheon speaker. His topic will be "UFO's -- Borders of Science." 5

  15. Energy Upgrade California

    Broader source: Energy.gov [DOE]

    The Energy Upgrade California program serves as a one-stop shop for California homeowners who want to improve the energy efficiency of their homes. The program connects homeowners with qualified...

  16. Post-remedial-action survey report for Kinetic Experiment Water Boiler Reactor Facility, Santa Susana Field Laboratories, Rockwell International, Ventura County, California

    SciTech Connect (OSTI)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Flynn, K.F.; Justus, A.L.

    1981-10-01

    Rockwell International's Santa Susana Laboratories in Ventura County, California, have been the site of numerous federally-funded contracted projects involving the use of radioactive materials. Among these was the Kinetics Experiment Water Boiler (KEWB) Reactor which was operated under the auspices of the US Atomic Energy Commission (AEC). The KEWB Reactor was last operated in 1966. The facility was subsequently declared excess and decontamination and decommissioning operations were conducted during the first half of calendar year 1975. The facility was completely dismantled and the site graded to blend with the surrounding terrain. During October 1981, a post-remedial-action (certification) survey of the KEWB site was conducted on the behalf of the US Department of Energy by the Radiological Survey Group (RSG) of the Occupational Health and Safety Division's Health Physics Section (OHS/HP) of Argonne National Laboratory (ANL). The survey confirmed that the site was free from contamination and could be released for unrestricted use.

  17. Workplace Charging Challenge Partner: University of California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa...

  18. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    renewable case) alone almost exceed the target emissions. California’s Energy Future -renewable energy, i.e. the “median case. ” California’s Energy Future -

  19. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    Forecasts of California transportation energy demand, 2005-alternative transportation energy pathways on California’salternative transportation energy pathways on California’s

  20. Foraging ecology of North Pacific albacore in the California Current System

    E-Print Network [OSTI]

    Glaser, Sarah M.

    2009-01-01

    California Current System. California Cooperative OceanicCalifornia Current system. California Cooperative OceanicCalifornia Current region. California Cooperative Oceanic

  1. West Carson, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources Jump to:SearchWesleyBrooklyn,Carson, California:

  2. West Covina, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources JumpChicago, Illinois: EnergyCovina, California:

  3. Hidden Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to:Hershey, Pennsylvania:Hidden Hills, California: Energy

  4. Hidden Meadows, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to:Hershey, Pennsylvania:Hidden Hills, California:

  5. San Fernando, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California: Energy

  6. San Francisco, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California: EnergySan

  7. San Gabriel, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California: EnergySanGabriel,

  8. San Jacinto, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County, Texas:

  9. San Jose, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,

  10. San Jose, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,

  11. San Jose, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,

  12. San Leandro, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,BasinSan JuanLeandro,

  13. San Lorenzo, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,BasinSanLeon,

  14. San Luis Rey, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas,Rey, California: Energy Resources

  15. San Marino, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas,Rey, California:

  16. San Rafael, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas,Rey, California:Martin,Corp

  17. Sedco Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,SageScheucoSedco Hills, California: Energy Resources Jump to:

  18. McKinleyville, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to: navigation,McDonoughNorthMcKinleyville, California:

  19. Lakeland Village, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy Resources Jump to:Village, California: Energy Resources

  20. Quail Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility DistrictQuail Valley, California: Energy

  1. Jump Steady Resort Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York: EnergyUnlimitedEnergy Information Jump

  2. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At...

  3. Field Mapping At Central Nevada Seismic Zone Region (Shevenell...

    Open Energy Info (EERE)

    Field Mapping At Central Nevada Seismic Zone Region (Shevenell, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At...

  4. Field Mapping At Central Nevada Seismic Zone Region (Blewitt...

    Open Energy Info (EERE)

    Field Mapping At Central Nevada Seismic Zone Region (Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At...

  5. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Schamel, S.

    1996-11-01

    This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. One of the main objectives of Budget Period I was to return the Pru Fee property to economic production and establish a baseline productivity with cyclic steaming. By the end of the second quarter 1996, all Pru producers except well 101 had been cyclic steamed two times. Each steam cycle was around 10,000 barrels of steam (BS) per well. No mechanical problems were found in the existing old wellbores. Conclusion is after several years of being shut-in, the existing producers on the Pru lease are in reasonable mechanical condition, and can therefore be utilized as viable producers in whatever development plan we determine is optimum. Production response to cyclic steam is very encouraging in the new producer, however productivity in the old producers appears to be limited in comparison.

  6. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect (OSTI)

    Allan, M.E.; Wilson, M.L.; Wightman, J. [Bechtel Petroleum, Elk Hills, CA (United States)

    1996-12-31

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  7. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect (OSTI)

    Allan, M.E.; Wilson, M.L.; Wightman, J. (Bechtel Petroleum, Elk Hills, CA (United States))

    1996-01-01

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  8. UNIVERSITY OF CALIFORNIA, SANTA CRUZ DEPARTMENT OF ELECTRICAL ENGINEERING

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    UNIVERSITY OF CALIFORNIA, SANTA CRUZ DEPARTMENT OF ELECTRICAL ENGINEERING On-Going Adjunct Pool The Department of Electrical Engineering in the Baskin School of Engineering at the University of California with local industry in the field of electrical engineering. The campus is especially interested in candidates

  9. Computing the Rates of Measurement-Induced Quantum Jumps

    E-Print Network [OSTI]

    Michel Bauer; Denis Bernard; Antoine Tilloy

    2015-06-08

    Small quantum systems can now be continuously monitored experimentally which allows for the reconstruction of quantum trajectories. A peculiar feature of these trajectories is the emergence of jumps between the eigenstates of the observable which is measured. Using the Stochastic Master Equation (SME) formalism for continuous quantum measurements, we show that the density matrix of a system indeed shows a jumpy behavior when it is subjected to a tight measurement (even if the noise in the SME is Gaussian). We are able to compute the jump rates analytically for any system evolution, i.e. any Lindbladian, and we illustrate how our general recipe can be applied to two simple examples. We then discuss the mathematical, foundational and practical applications of our results. The analysis we present is based on a study of the strong noise limit of a class of stochastic differential equations (the SME) and as such the method may be applicable to other physical situations in which a strong noise limit plays a role.

  10. Jump River Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California)JointJosephine, Texas:Gap Wind Farm

  11. A STEEP CLINE IN FLOWERING TIME FOR BRASSICA RAPA IN SOUTHERN CALIFORNIA: POPULATION-LEVEL VARIATION IN THE FIELD AND THE GREENHOUSE

    E-Print Network [OSTI]

    Weis, Arthur

    -LEVEL VARIATION IN THE FIELD AND THE GREENHOUSE Denise M. Franke, Allan G. Ellis, Manisha Dharjwa, Melinda. Greenhouse experiments using other populations along the cline and conducted under different photoperiod

  12. Post remedial action survey report for Building 003, Santa Susana Field Laboratories, Rockwell International, Ventura County, California, October 1981; April 1982. Surplus Facilities Management Program

    SciTech Connect (OSTI)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1983-10-01

    Rockwell International's Santa Susana Laboratories in Ventura County, California, have been the site of numerous Federally-funded projects involving the use of radioactive materials. One such project was the System for Nuclear Auxiliary Power (SNAP) Program. Building 003 on the Santa Susana site was used in conjunction with the SNAP Program and contained a highly shielded area designed for remote manipulation of radioactive materials. Such facilities are commonly referred to as hot caves. During the SNAP Program, fuel burnup samples were analyzed and irradiation experiments were evaluated in the Building 003 hot cave. Use of the hot cave facility ended when the SNAP Program was terminated in 1973. Subsequently, the Building 003 facilities were declared excess and were decontaminaed and decommissioned during the first half of calendar year 1975. At that time, the building was given a preliminary release. In 1981, a post-remedial-action (certification) survey of Building 003 was conducted at the request of the Department of Energy. Significant levels of residual contamination were found in various parts of the building. Consequently, additional decontamination was conducted by Rockwell International. A final post-remedial-action survey was conducted during April 1982, and those areas in Building 003 that had been found contaminated in 1981 were now found to be free of detectable radioactive contamination. Sludge samples taken from the sewer sump showed elevated levels of enriched uranium contaminant. Hence, all sewer lines within Building 003 were removed. This permitted unconditional release of the building for unrestricted use. However, the sewer lines exterior to the building, which remain in place, must be considered potentially contaminated and, therefore, subject to restricted use.

  13. Synthesis of Remote Sensing and Field Observations to Model and Understand Disturbance and Climate Effects on the Carbon Balance of Oregon & Northern California

    SciTech Connect (OSTI)

    Beverly Law; David Turner; Warren Cohen; Mathias Goeckede

    2008-05-22

    The goal is to quantify and explain the carbon (C) budget for Oregon and N. California. The research compares "bottom -up" and "top-down" methods, and develops prototype analytical systems for regional analysis of the carbon balance that are potentially applicable to other continental regions, and that can be used to explore climate, disturbance and land-use effects on the carbon cycle. Objectives are: 1) Improve, test and apply a bottom up approach that synthesizes a spatially nested hierarchy of observations (multispectral remote sensing, inventories, flux and extensive sites), and the Biome-BGC model to quantify the C balance across the region; 2) Improve, test and apply a top down approach for regional and global C flux modeling that uses a model-data fusion scheme (MODIS products, AmeriFlux, atmospheric CO2 concentration network), and a boundary layer model to estimate net ecosystem production (NEP) across the region and partition it among GPP, R(a) and R(h). 3) Provide critical understanding of the controls on regional C balance (how NEP and carbon stocks are influenced by disturbance from fire and management, land use, and interannual climate variation). The key science questions are, "What are the magnitudes and distributions of C sources and sinks on seasonal to decadal time scales, and what processes are controlling their dynamics? What are regional spatial and temporal variations of C sources and sinks? What are the errors and uncertainties in the data products and results (i.e., in situ observations, remote sensing, models)?

  14. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study, Executive Summary: Bittium, Wilhelm, Gusher, and Calitroleum Sands

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-12-22

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. The study addresses the Bittium Wilhelm, Gusher, and Calitroleum Sands and their several sub units and pools. A total of twenty-eight (28) separate reservoir units have been identified and analyzed. Areally, these reservoirs are located in 31 separate sections of land including and lying northwest of sections 5G, 8G, and 32S, all in the Elk Hills Oil Fileds, Naval Petroleum Reserve No. 1, Kern County California. Vertically, the reservoirs occur as shallow as 2600 feet and as deep as 4400 feet. Underlying a composite productive area of about 8300 acres, the reservoirs originally contained an estimated 138,022,000 stock tank barrels of oil, and 85,000 MMCF of gas, 6300 MMCF of which occurred as free gas in the Bittium and W-1B Sands. Since original discovery in April 1919, a total of over 500 wells have been drilled into or through the zones, 120 of which were completed as Western Shallow Oil Zone producers. Currently, these wells are producing about 2452 barrels of oil per day, 1135 barrels of water per day and 5119 MCF of gas per day from the collective reservoirs. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent vertification. This study has successfully identified the size and location of all commercially productive pools in the Western Shallow Oil Zone. It has identified the petrophysical properties and the past productive performance of the reservoirs. Primary reserves have been determined and general means of enhancing future recovery have been suggested. 11 figs., 8 tabs.

  15. California’s Top Two Primary and the Business Agenda

    E-Print Network [OSTI]

    McGhee, Eric

    2015-01-01

    Quinn, Tony. 2013. The “Top Two” System: Working Like ItAssessing California’s Top-Two Primary and RedistrictingCalifornia’s Top Two Primary and the Business Agenda Eric

  16. CALIFORNIA ENERGY CALIFORNIA ENERGY DEMAND 2010-2020

    E-Print Network [OSTI]

    , and utilities. Ted Dang, Steven Mac, and Libbie Bessman prepared the historical energy consumption data. Miguel CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2010-2020 ADOPTED FORECAST Schwarzenegger, Governor #12; #12; CALIFORNIA ENERGY COMMISSION Chris Kavalec Tom Gorin

  17. Making Things Clearer: Exaggeration, Jumping the Gun, and The Venus Syndrome

    E-Print Network [OSTI]

    Hansen, James E.

    1 Making Things Clearer: Exaggeration, Jumping the Gun, and The Venus Syndrome 15 April 2013 James. Jumping the Gun It has been said that I reach conclusions before the evidence warrants them. Two examples

  18. Deposition trends of the Amnicola and Tulare sands, and relevance to the development of asphaltenes in a portion of the Cymric oil field, western San Joaquin Valley, California

    SciTech Connect (OSTI)

    Bell, P. (Irvine Valley College, CA (United States))

    1991-02-01

    The Cymric oil field is located on the southwestern margin of the San Joaquin Valley. The upper productive units include the lower Amnicola, and upper Tulare I and II sandstones. The Amnicola unit ranges from lacustrine to braided stream in depositional environment, it averages about 60 ft thick. The Tulare I and II sands are primarily braided stream to fan delta, with a thickness averaging about 300 ft total in the two units. The oil produced is of low gravity and is currently being produced by steamflood. The area studied is part of Chevron Fee land. Wells containing asphaltenes are strongly correlated to major channels within the producing units. A combination of flushing by meteoric water and possible biodegradation of the oil, which was migrating updip into these sands along higher porosity and permeability trends, resulted in the production of asphaltenes in the wells of a portion of the Cymric field. The development of a detailed stratigraphic framework allowed a recognition of a pattern to the problem wells, and suggested a plan of remediation and further planning for the development of the field. Certain other problem fields could be investigated by detailed stratigraphic means that could lead to better understanding of the placement of future well sites, or development of effective stream drive strategies with concomitant saving of time and field costs.

  19. Precautionary Measures for Credit Risk Management in Jump Models

    E-Print Network [OSTI]

    Egami, Masahiko

    2011-01-01

    Sustaining efficiency and stability by properly controlling the equity to asset ratio is one of the most important and difficult challenges in bank management. Due to unexpected and abrupt decline of asset values, a bank must closely monitor its net worth as well as market conditions, and one of its important concerns is when to raise more capital so as not to violate capital adequacy requirements. In this paper, we model the tradeoff between avoiding costs of delay and premature capital raising, and solve the corresponding optimal stopping problem. In order to model defaults in a bank's loan/credit business portfolios, we represent its net worth by Levy processes, and solve explicitly for the double exponential jump diffusion process and for a general spectrally negative Levy process.

  20. Markov Jump Processes Approximating a Non-Symmetric Generalized Diffusion

    SciTech Connect (OSTI)

    Limic, Nedzad

    2011-08-15

    Consider a non-symmetric generalized diffusion X( Dot-Operator ) in Double-Struck-Capital-R {sup d} determined by the differential operator A(x) = -{Sigma}{sub ij} {partial_derivative}{sub i}a{sub ij}(x){partial_derivative}{sub j} + {Sigma}{sub i} b{sub i}(x){partial_derivative}{sub i}. In this paper the diffusion process is approximated by Markov jump processes X{sub n}( Dot-Operator ), in homogeneous and isotropic grids G{sub n} Subset-Of Double-Struck-Capital-R {sup d}, which converge in distribution in the Skorokhod space D([0,{infinity}), Double-Struck-Capital-R {sup d}) to the diffusion X( Dot-Operator ). The generators of X{sub n}( Dot-Operator ) are constructed explicitly. Due to the homogeneity and isotropy of grids, the proposed method for d{>=}3 can be applied to processes for which the diffusion tensor {l_brace}a{sub ij}(x){r_brace}{sub 11}{sup dd} fulfills an additional condition. The proposed construction offers a simple method for simulation of sample paths of non-symmetric generalized diffusion. Simulations are carried out in terms of jump processes X{sub n}( Dot-Operator ). For piece-wise constant functions a{sub ij} on Double-Struck-Capital-R {sup d} and piece-wise continuous functions a{sub ij} on Double-Struck-Capital-R {sup 2} the construction and principal algorithm are described enabling an easy implementation into a computer code.

  1. NUMERICAL STUDY OF A TURBULENT HYDRAULIC JUMP Qun Zhao 1 Shubhra K. Misra1

    E-Print Network [OSTI]

    Zhao, Qun

    . Hydraulic jumps are commonly used as energy dissipators and they have been studied intensively by hydraulicNUMERICAL STUDY OF A TURBULENT HYDRAULIC JUMP Qun Zhao 1 Shubhra K. Misra1 Ib A. Svendsen 1 (Member of a turbulent hydraulic jump. The numerical model is based on RIPPLE (Kothe et al., 1994) with two turbulence

  2. Jump Flooding in GPU with Applications to Voronoi Diagram and Distance Transform Guodong Rong

    E-Print Network [OSTI]

    Tan, Tiow Seng

    Jump Flooding in GPU with Applications to Voronoi Diagram and Distance Transform Guodong Rong Tiow of the jump flooding algorithm is shown in the other six pictures, with the rightmost being the computed Voronoi diagram. Abstract This paper studies jump flooding as an algorithmic paradigm in the general

  3. Edit: Study -APP Save | Exit | Hide/Show Errors | Print... | Jump To

    E-Print Network [OSTI]

    Biederman, Irving

    Edit: Study - APP Save | Exit | Hide/Show Errors | Print... | Jump To: 01. Project Guidance Save | Exit | Hide/Show Errors | Print... | Jump To: 01. Project IdentificationStarDev/ResourceAdministration/Project/ProjectEditor?Project=com... 1 #12;Edit: Study - APP- Save | Exit | Hide/Show Errors | Print... | Jump To: 02. Study

  4. “The Making of” California’s Energy Crisis

    E-Print Network [OSTI]

    Whittington, Jan

    2002-01-01

    the California Power Exchange, and the CaliforniaOperator (Cal ISO). The Power Exchange would be a wholesaleauspices of the Western Power Exchange Steering Committee.

  5. Exploring California PV Home Premiums

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Energy Systems on Residential Selling Prices in California.Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices.Residential Photovoltaic Energy Systems on Home Sales Prices in California,”

  6. California Energy Commission CONSULTANT REPORT

    E-Print Network [OSTI]

    roofs and the energy requirement for renovated lighting systems to meet the new 2013 energyCalifornia Energy Commission CONSULTANT REPORT IMPACT ANALYSIS California's 2013 Building Energy Efficiency Standards JULY 2013 CEC4002013008 CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr

  7. Examining Sustainable Development Policy in California Cities: 2011 Energy Sustainable California Communities Survey

    E-Print Network [OSTI]

    Kwon, Myungjung

    2013-01-01

    Cities: 2011 Energy Sustainable California Communitiesusing the 2011 Energy Sustainable California Communitiessurveyed in 2011 (Energy Sustainable California Communities

  8. Land subsidence in the Cerro Prieto Geothermal Field, 1 Baja California, Mexico, from 1994 to 2005. An integrated analysis of DInSAR, levelingand geological data.

    SciTech Connect (OSTI)

    Sarychikhina, O; Glowacka, E; Mellors, R; Vidal, F S

    2011-03-03

    Cerro Prieto is the oldest and largest Mexican geothermal field in operation and has been producing electricity since 1973. The large amount of geothermal fluids extracted to supply steam to the power plants has resulted in considerable deformation in and around the field. The deformation includes land subsidence and related ground fissuring and faulting. These phenomena have produced severe damages to infrastructure such as roads, irrigation canals and other facilities. In this paper, the technique of Differential Synthetic Aperture Radar Interferometry (DInSAR) is applied using C-band ENVISAR ASAR data acquired between 2003 and 2006 to determine the extent and amount of land subsidence in the Mexicali Valley near Cerro Prieto Geothermal Field. The DInSAR results were compared with published data from precise leveling surveys (1994- 1997 and 1997-2006) and detailed geological information in order to improve the understanding of temporal and spatial distributions of anthropogenic subsidence in the Mexicali Valley. The leveling and DInSAR data were modeled to characterize the observed deformation in terms of fluid extraction. The results confirm that the tectonic faults control the spatial extent of the observed subsidence. These faults likely act as groundwater flow barriers for aquifers and reservoirs. The shape of the subsiding area coincides with the Cerro Prieto pull-apart basin. In addition, the spatial pattern of the subsidence as well as changes in rate are highly correlated with the development of the Cerro Prieto Geothermal Field.

  9. California Energy Incentive Programs

    Broader source: Energy.gov [DOE]

    Report from the Federal Energy Management Program (FEMP) discusses annual update on key energy issues and financial opportunities for federal sites in California.

  10. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    renewable case) alone almost exceed the target emissions. California’s Energy Future -renewable energy, i.e. the “median case. ” California’s Energy Future -

  11. Melt zones beneath five volcanic complexes in California: an...

    Open Energy Info (EERE)

    (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent...

  12. Melt Zones Beneath Five Volcanic Complexes in California: An...

    Open Energy Info (EERE)

    (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent...

  13. Planning Water Use in California

    E-Print Network [OSTI]

    Eisenstein, William; Kondolf, G. Mathias

    2008-01-01

    the University of Maryland Water Policy Collaborative, 2006.FURTH ER READ ING California Department of Water Resources.California Water Plan Update 2005: A Framework for Action.

  14. HANNAH APPEL University of California, Berkeley

    E-Print Network [OSTI]

    the crude's gaseous byproducts. This vast, self-propelling, shiplike structure floated above an oil field, the production chain of Equatorial Guinea's oil was clearest to me by helicopter, far off the country's shoresHANNAH APPEL University of California, Berkeley Offshore work: Oil, modularity, and the how

  15. UNIVERSITY OF CALIFORNIA, SANTA CRUZ COMPUTER SCIENCE

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    UNIVERSITY OF CALIFORNIA, SANTA CRUZ COMPUTER SCIENCE Ongoing Lecturer Pool The Baskin School temporary instructors for the Computer Science Department. Computer Science includes: algorithms, analysis.D., or equivalent in Computer Science, Digital Arts/Media, New Media, or closely related or relevant field

  16. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    installed at California power plants. Furthermore, recentlyinformation for California’s power plants. Personalinformation for California’s power plants. Personal

  17. Video camera log used for water isolation in the Main Body B pool, Elk Hills field, Kern Co., California -- Water and oil identification

    SciTech Connect (OSTI)

    Starcher, M.G.; Murphy, J.R.; Alexander, P.D.; Whittaker, J.L.

    1995-12-31

    The Main Body B reservoir in the Elk Hills Field is a peripherally waterflooded, +400 ft thick series of layered, turbidite Stevens sands. Permeability variation between layers adversely affects the vertical sweep, resulting in production from lower permeability oil sands dominated by production from higher permeability sands. This paper discusses the unique use of various tools to identify water zones to isolate and oil zones to stimulate. Tools used to identify water and oil entry are discussed with respect to their capabilities of identifying oil and water entry into the wellbore.

  18. Quantum Jump from Singularity to Outside of Black Hole

    E-Print Network [OSTI]

    Dündar, Furkan Semih

    2015-01-01

    Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as part of late radiations in black hole evaporation. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitarity evolutions. The non-unitary evolution is such that it does not have physically measurable effects for them. Besides, no information would be lost in singularity. Taking the modified picture into account, the firewall paradox {can be} resolved, respecting No Drama. A by-product of our modification is that roughly half of the mass ...

  19. STATE OF CALIFORNIA -NATURAL RESOURCES AGENCY CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    STATE OF CALIFORNIA - NATURAL RESOURCES AGENCY CALIFORNIA ENERGY COMMISSION 1516 Ninth Street Sacramento, California 95814 Main website: WWN.energy.ca.gov STATE OF CALIFORNIA ENERGY RESOURCES Energy Policy Report Update (20121EPR Update), Background Public Resources Code Section 25302 requires

  20. “The Making of” California’s Energy Crisis

    E-Print Network [OSTI]

    Whittington, Jan

    2002-01-01

    California’s Energy Crisis, Whittington cogeneration facilities, were advocating deregulation as a solution to high costs.cost overseas producers. Their primary representation was the California Large Energycosts - were equally dramatic. In August of 2000, “Energy Insight Today” compared how much individual California

  1. Multi-jump magnetic switching in ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20} thin films

    SciTech Connect (OSTI)

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-08-07

    Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20}(5–75 nm) thin films grown on Si/amorphous SiO{sub 2} are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the films are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices.

  2. Reservoir analysis study: Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 3 report, Recommended additional reservoir engineering analysis

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    The basis for completion of the Phase III tasks above were the reports of Phases I and II and the associated backup material. The Phase II report was reviewed to identify the major uncertainties in all of the reserve assignments. In addition to the Proved, Probable and Possible reserves of Phase II, ''potential reserves'' or those associated with a greater degree of risk than the Possible reserves included in the Phase II report, were also identified based on the work performed by Bergeson through the Phase II reporting date. Thirty-three specific studies were identified to address the major Phase II reserve uncertainties or these potential reserves. These studies are listed in Table 1 and are grouped by the Elk Hills pool designation. The basis and need for each study are elaborated in the discussion which follows. Where possible, the need for the study was quantified by associating the study with a particular reserve estimate which would be clarified by the analysis. This reserve value was either the Probable or Possible reserves which were being studied, the potential reserves that were identified, or simply the uncertainty inherent in the proved reserves as identified in the study purpose. The costs associated with performing the study are also shown in Table 1 and were estimated based on Bergeson's knowledge of the Elk Hills reservoirs and data base following Phases I and II, as well as the company's experience in performing similar studies in other fields. The cost estimates are considered reasonable for general budgeting purposes, but may require refinement prior to actual initiation of these studies. This is particularly true for studies involving field testing to obtain additional log, core or test information as the cost of such items is not considered in this report. 51 figs., 46 tabs.

  3. Jump start your career with an MS degree at Northwestern, with an emphasis in energy and sustainability. This program is for

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    to move into the increasingly critical energy/sustainability field. Dedicated, intensive and handsEfficientTechnology)* ME499ProjectsInEnergySystemsandSustainability* Contact Dr.Manohar Kulkarni, Assistant ChairJump start your career with an MS degree at Northwestern, with an emphasis in energy

  4. Diesel Use in California | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use in California Diesel Use in California 2002 DEER Conference Presentation: California Energy Commission 2002deerboyd.pdf More Documents & Publications Reducing Petroleum...

  5. Southern California Channel Islands Bibliography, through 1992

    E-Print Network [OSTI]

    Channel Islands National Marine Sanctuary

    1992-01-01

    Southern California Bight/San Onofre/Power Plant/Southern California Bight/San Onofre Power Plant/Power Plant (DCPP), San Luis Obispo County, California.

  6. The Aftermath of Redistricting Reform in California

    E-Print Network [OSTI]

    Buchler, Justin

    2011-01-01

    2009. “Redistricting Reform Will Not Solve California’sMatthew. 2009. “Redistricting Reform Could Save California2. ———. 2011. “Redistricting Reform Revisited. ” California

  7. Contaminant Transport in the Southern California Bight

    E-Print Network [OSTI]

    Idica, Eileen Y.

    2010-01-01

    1987). The California Current transports Pacific Subarctic1987). The California Current transports Pacific Subarcticthe dynamics and transport of Southern California stormwater

  8. Register now at career.ucla.edu/JumpStart The JumpStart Series is a fee-based program open to currently registered UCLA students.

    E-Print Network [OSTI]

    Ferguson, Thomas S.

    . Blogs Winter 2015 Internship Search Wednesday, January 7, 4-7pm Engineering / Technology / Consulting-7pm Graduate Student JumpStart Engineering and Technology Thursday, Oct 16, 4-7pm #12;

  9. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Jaoquin Basin, California. Annual report, June 13, 1995--June 13, 1996

    SciTech Connect (OSTI)

    Deo, M.; Jenkins, C.; Sprinkel, D.; Swain, R.; Wydrinski, R.; Schamel, S.

    1998-09-01

    This project reactivates ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  10. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Users in a zone with one solar measurement location shouldin California where solar data of one kind or another havelifetime of the solar heating system: one can expect to pay

  11. CALIFORNIA INVESTMENT PLAN FOR

    E-Print Network [OSTI]

    ) .................................................................... 25 Natural Gas TRANSPORTATION COMMITTEE James D. Boyd Presiding Member Karen Douglas Associate Member Primary Author was prepared by the California Energy Commission's Transportation Committee as part of the Alternative

  12. University of California, Davis

    E-Print Network [OSTI]

    Ullrich, Paul

    , SANCTIONS, & LAWS 11 University Policy and Sanctions 11 Loss of Financial Aid for Conviction Involving Possession/Sale of Illegal Drugs 11 Federal Laws and Sanctions 12 California Laws and Sanctions 12 Sacramento

  13. Renewable Hydrogen From Wind in California

    E-Print Network [OSTI]

    Bartholomy, Obadiah

    2005-01-01

    lowest cost renewable energy source in California [2], windCost of California Central Station Electricity Generation Technologies” August 2003, California Energycosts are consistent with values developed by the California Energy

  14. GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    2009-01-01

    document. LBL-7094 UC-66~1 GEOTHERMAL RESOURCE AND RESERVOIRInc. , 1976. Study of the geothermal reservoir underlyingtest, 1976, East Mesa geothermal field in California.

  15. Hydrogeological And Isotopic Survey Of Geothermal Fields In The...

    Open Energy Info (EERE)

    Hydrogeological And Isotopic Survey Of Geothermal Fields In The Buyuk Menderes Graben, Turkey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  16. Geothermal Literature Review At San Francisco Volcanic Field...

    Open Energy Info (EERE)

    Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  17. Temporal Velocity Variations beneath the Coso Geothermal Field...

    Open Energy Info (EERE)

    Temporal Velocity Variations beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Jump to:...

  18. Regional hydrology of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  19. Current Status of the high enthalpy conventional geothermal fields...

    Open Energy Info (EERE)

    Current Status of the high enthalpy conventional geothermal fields in Europe and the potential perspectives for their exploitation in terms of EGS Jump to: navigation, search...

  20. California energy flow in 1993

    SciTech Connect (OSTI)

    Borg, I.Y.; Briggs, C.K.

    1995-04-01

    Energy consumption in the state of California decreased about 3% in 1993 reflecting continuation of the recession that was manifest in a moribund construction industry and a high state unemployment that ran counter to national recovery trends. Residential/commercial use decreased slightly reflecting a mild winter in the populous southern portion of the state, a decrease that was offset to some extent by an increase in the state population. Industrial consumption of purchased energy declined substantially as did production of self-generated electricity for in-house use. Consumption in the transportation sector decreased slightly. The amount of power transmitted by the utilities was at 1992 levels; however a smaller proportion was produced by the utilities themselves. Generation of electricity by nonutilities, primarily cogenerators and small power producers, was the largest of any state in the US. The growth in the number of private power producers combined with increased amounts of electricity sold to the public utilities set the stage for the sweeping proposals before the California Public Utility Commission to permit direct sales from the nonutilities to retail customers. California production of both oil and natural gas declined; however, to meet demand only the imports of natural gas increased. A break in the decade-long drought during the 1992--1993 season resulted in a substantial increase in the amount of hydroelectricity generated during the year. Geothermal energy`s contribution increased substantially because of the development of new resources by small power producers. Decline in steam production continued at The Geysers, the state`s largest field, principally owned and managed by a public utility. Increases in windpower constituted 1--1/2% of the total electric supply--up slightly from 1992. Several solar photo voltaic demonstration plants were in operation, but their contribution remained small.

  1. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    from imports. Onshore crude oil production in California isa peak in production within California of both crude oil and

  2. Modelling the "Pop" in Winter Terrain Park Jumps J. A. McNeil

    E-Print Network [OSTI]

    at ski resorts have found that jumping generally poses a signif- icantly greater risk of spine and head found that jumping generally (whether in a terrain park or not) poses a significantly greater risk of the feature." The authors have since identified experimental errors in this work and an erratum has been

  3. Title 22 California Code of Regulations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open EnergyTinox Jump to:,11 Protection of2 California Code of

  4. Home Gardens, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: EnergyHollyHoma Hills, Wyoming:Gardens, California:

  5. Garden Acres, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy Resources Jump to:Garden Acres, California: Energy

  6. Garden Grove, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy Resources Jump to:Garden Acres,Grove, California:

  7. Diamond Bar, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP) Jump to:SouthBar, California: Energy

  8. East Hemet, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation,Foothills, California:HamptonHazel Crest,Hemet,

  9. El Cajon, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,New Mexico: EnergyEnergyCreekEggCajon, California:

  10. El Cerrito, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,New Mexico:Cerrito, California: Energy Resources

  11. El Dorado County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,New Mexico:Cerrito, California: Energy

  12. El Granada, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,New Mexico:Cerrito, California: EnergyVentures

  13. El Monte, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,New Mexico:Cerrito, California:Lago, Texas:

  14. El Monte, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,New Mexico:Cerrito, California:Lago,

  15. Morgan Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation MontanaOhio:Hill, California: Energy Resources Jump to:

  16. Lincoln Village, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: Energy Resources Jump to:Heights, Ohio:California: Energy

  17. City of California, Missouri (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd JumpGeorgiaBurley, Idaho (Utility Company)California, Missouri

  18. San Ramon, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEastCarbon DevelopmentValley CleanRamon, California:

  19. Squaw Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpionSquaw Valley, California:

  20. Arroyo Grande, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen Energy InformationArpin,Arroyo Grande, California:

  1. Bay Point, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas: Energy ResourcesPoint, California:

  2. California Fish and Game Code Section 86 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: EnergyCalendarCalhounWebpage | OpenCaliforniaAgency Jump

  3. El Segundo, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc Jump to: navigation,SolarSegundo, California:

  4. Butte County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy Resources Jump to: navigation, search Equivalent

  5. California Center for Sustainable Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED:Calendar Home2015Energy Jump to:

  6. California Environmental Protection Agency Department of Toxic Substances

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED:CalendarResourcesPower Jump

  7. California Environmental Protection Agency Water Resources Control Board |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED:CalendarResourcesPower JumpOpen

  8. California Sunrise Alternative Energy Development LLC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency Jump

  9. California's 11st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency JumpSystems

  10. California's 13th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency JumpSystemsInformation

  11. Cantua Creek, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy Resources JumpCanbyCantua Creek, California:

  12. California: California's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of California.

  13. Steamflooding projects boost California's crude oil production

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    During the summer and fall of 1981, the first time in more than a decade, US crude oil production in the lower 48 was higher than production in the preceding year. California is leading this resurgence. The state's oil production in October 1981 averaged 1,076,000 bpd, compared with 991,000 bpd in October 1980. Some of the increase comes from production in several offshore fields whose development had been delayed; some is due to greater output from the US Government's petroleum reserve at Elk Hills. However, a big portion of the state's increased production results from large steamdrive projects in heavy-oil fields of the San Joaquin Valley that were set in motion by decontrol of heavy-oil proces in mid-1979. California holds vast reserves of viscous, low-gravity oil in relatively shallow reservoirs. The methods used to produce heavy oil are discussed.

  14. One: The California Economic Outlook

    E-Print Network [OSTI]

    Thornberg, Christopher

    2006-01-01

    THE CALIFORNIA ECONOMIC OUTLOOK Christopher Thornberg,signs of having peaked. The outlook for 2006 is dominated by

  15. UNIVERSITY OF CALIFORNIA Los Angeles

    E-Print Network [OSTI]

    Palermo, Sam

    of California, Los Angeles 2003 #12;iii Dedication To my parents #12;iv Table of Contents Dedication

  16. Airflow-terrain interactions through a mountain gap, with an example of eolian activity beneath an atmospheric hydraulic jump

    SciTech Connect (OSTI)

    Gaylord, D.R.; Dawson, P.J.

    1987-09-01

    The integration of atmospheric soundings from a fully instrumented aircraft with detailed sedimentary and geomorphic analyses of eolian features in the Ferris dune field of south-central Wyoming lends insight into the manner in which topography interacts with airflow to modify eolian activity. Topographically modified airflow results in zones of airflow deceleration, acceleration, and enhanced atmospheric turbulence, all of which influence the surface morphology and sedimentology. Extreme lateral confluence of prevailing airflow produces accelerated, unidirectional winds. These winds correlate with unusually continuous and elongate parabolic dunes that extend into a mountain gap (Windy Gap). Persistently heightened winds produced at the entrance to Windy Gap have resulted in a concentration of active sand dunes that lack slipfaces. Common development of a strongly amplified atmospheric wave analogous to a hydraulic jump in the gap contributes to the formation of a variety of eolian features that mantle the surface of Windy Gap and the Ferris dune field tail. Heightened, unidirectional winds in this zone promote grain-size segregation, the formation of elongated and aligned sand drifts, climbing and falling dunes, elongate scour streaks, and parabolic dunes that have low-angle (< 20/sup 0/) cross-stratification. Deflation of bedrock and loose sediment has been enhanced in the zone of maximum turbulence beneath the hydraulic jump.

  17. California’s North Coast Fishing Communities Historical Perspective and Recent Trends: Project Summary

    E-Print Network [OSTI]

    Pomeroy, Caroline; Thomson, Cynthia J.; Stevens, Melissa M.

    2011-01-01

    California’s North Coast Fishing Communities HistoricalCalifornia’s North Coast Fishing Communities Historicalprovided by North Coast fishing community members, including

  18. The State of Health Insurance in California: Findings from the 2005 California Health Interview Study

    E-Print Network [OSTI]

    Brown, E. Richard; Lavarreda, Shana Alex; Ponce, Ninez; Yoon, Jean; al., et

    2007-01-01

    THE STATE OF HEALTH INSURANCE IN CALIFORNIA FINDINGSFROM THE 2005 CALIFORNIA HEALTH INTERVIEW SURVEY JULY 2007Foundation THE STATE OF HEALTH INSURANCE IN CALIFORNIA

  19. Inefficiencies and Market Power in Financial Arbitrage: A Study of California’s Electricity Markets

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, James; Wolfram, Catherine D

    2006-01-01

    California electricity market, too few participants learnedof California’s Electricity Markets,” Center for the Studyof the New York Electricity Market,” mimeo, UC Berkeley. [

  20. Achieving Sustainability inCalifornia’s CentralValley

    E-Print Network [OSTI]

    Lubell, Mark; Beheim, Bret; Hillis, Vicken; Handy, Susan L.

    2009-01-01

    of agricultural sustainability. ” Agriculture, Ecosystems &19, 2009. Achieving Sustainability in California’s Centralvariables. Achieving Sustainability in California’s Central

  1. California/Transmission/Agency Links | Open Energy Information

    Open Energy Info (EERE)

    State Agency Links California Department of Fish and Wildlife California Office of Historic Preservation California Department of Transportation California Department of...

  2. The Social Costs of an MTBE Ban in California

    E-Print Network [OSTI]

    Rausser, Gordon C.; Adams, Gregory D.; Montgomery, W. David; Smith, Anne E.

    2005-01-01

    California Energy Commission, Staff Report: Supply and CostCalifornia Energy Commission. Staff Report: Supply and Costthe total cost of gasoline in California. California Energy

  3. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    to southern to transport California from the Sacramento-Sansouthern to transport from northern California California.California, include federally-owned to south. transport from

  4. State of California Website Trends 2008-2010

    E-Print Network [OSTI]

    Seneca, Tracy

    2010-01-01

    of Transportation (Caltrans) California Energy Commissionof Transportation (Caltrans)  California Energy Commission Transportation ( Caltrans)  11388  California Courts  California Energy 

  5. California Lithium Battery, Inc.

    Broader source: Energy.gov [DOE]

    California Lithium Battery (CaLBattery), based in Los Angeles, California, is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70 percent. Over the next year, CALBattery will be working with Argonne National Laboratory to combine their patented silicon-graphene anode material process together with other advanced ANL cathode and electrolyte battery materials.

  6. Notice of Decision by the California Energy Commission To: California Resources Agency From: California Energy Commission

    E-Print Network [OSTI]

    Notice of Decision by the California Energy Commission To: California Resources Agency From: California Energy Commission 1416 9th Street, Room 1311 1516 9th Street MS-2000 Sacramento, CA 95814 Sacramento, CA 95814 Subject: Filing of Notice of Decision in compliance with Public Resources Code Section

  7. NOTICE OF DECISION BY THE CALIFORNIA ENERGY COMMISSION To: California Resources Agency From: California Energy Commission

    E-Print Network [OSTI]

    NOTICE OF DECISION BY THE CALIFORNIA ENERGY COMMISSION To: California Resources Agency From: California Energy Commission 1416 9th Street, Room 1311 1516 9th Street, MS-2000 Sacramento, CA 95814 Sacramento, CA 95814 Subject: Filing of Notice of Decision in compliance with Public Resources Code Section

  8. Freedom Field | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc FFC JumpFreeFreedomField Jump

  9. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  10. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  11. Information Shocks, Liquidity Shocks, Jumps, and Price Discovery: Evidence from the U.S. Treasury Market

    E-Print Network [OSTI]

    Jiang, George J.

    In this paper, we identify jumps in U.S. Treasury-bond (T-bond) prices and investigate what causes such unexpected large price changes. In particular, we examine the relative importance of macroeconomic news announcements ...

  12. LETTER doi:10.1038/nature13436 Tracking photon jumps with repeated quantum

    E-Print Network [OSTI]

    Devoret, Michel H.

    LETTER doi:10.1038/nature13436 Tracking photon jumps with repeated quantum non-demolition parity measurements L. Sun1 {, A. Petrenko1 , Z. Leghtas1 , B. Vlastakis1 , G. Kirchmair1 {, K. M. Sliwa1 , A. Narla1

  13. California Geothermal Energy Collaborative

    E-Print Network [OSTI]

    CEC5002013105 Energy Research and Development Division FINAL PROJECT REPORT #12; PRIMARY AUTHOR, development, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Office Manager Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH

  14. CALIFORNIA ENERGY FOURTH EDITION

    E-Print Network [OSTI]

    further public funding, and to secure for California the environmental, economic, and reliability benefits, details how funding awards will be made, describes invoicing procedures, and includes necessary forms standard, biomass, solar thermal electric, wind, existing renewable #12;Table of Contents I - Introduction

  15. CALIFORNIA ENERGY COMMISSIONGUIDEBOOK

    E-Print Network [OSTI]

    these facilities may become selfsustaining without further public funding by 2011, and to secure for California. The Guidebook outlines eligibility and legal requirements, details how funding awards will be made, describes renewable energy, production incentives, renewables portfolio standard, biomass, solar thermal electric

  16. 167 Prospectus California Margin

    E-Print Network [OSTI]

    system and associated changes in coastal upwelling. These data will be used to reconstruct north Pacific Geophysical Data Center (NGDC) where the digital data have been archived. #12;INTRODUCTION The California upwelling systems to climate change is poorly documented. Climate models and available paleoceanographic

  17. Googling the Top Two: Information Search in California’s Top Two Primary

    E-Print Network [OSTI]

    Sinclair, Betsy; Wray, Michael

    2015-01-01

    more as a consequence of the top two primary. ReferencesAssessing California’s Top-Two Primary and RedistrictingGoogling the Top Two: Information Search in California’s Top

  18. The Los Angeles Aqueduct: A Reexamination of California’s First Critical Water Transfer

    E-Print Network [OSTI]

    Robie, Charles

    2015-01-01

    California’s First Critical Water Transfer By Charles Robieof California’s first great water transfer, between InyoLos Angeles’s Department of Water and Power. As I reexamine

  19. Estimated impacts of climate warming on California’s high-elevation hydropower

    E-Print Network [OSTI]

    Madani, Kaveh; Lund, Jay R.

    2010-01-01

    on high elevation hydropower generation in California’sCalifornia’s high-elevation hydropower Kaveh Madani · Jay R.Abstract California’s hydropower system is composed of high

  20. Reply to "Comment on `Microwave vortex dissipation of superconducting Nd-Ce-Cu-O epitaxial films in high magnetic fields' "

    E-Print Network [OSTI]

    Yeh, Nai-Chang

    in high magnetic fields' " N.-C. Yeh1 and D. M. Strayer2 1Department of Physics, California Institute of Technology, Pasadena, California 91125, USA 2 Jet Propulsion Laboratory, California Institute of Technology of these modes are insensitive to the application of external magnetic fields, be- cause magnetic fields do

  1. Particulate air quality model predictions using prognostic vs. diagnostic meteorology in central California

    E-Print Network [OSTI]

    Chen, Shu-Hua

    Particulate air quality model predictions using prognostic vs. diagnostic meteorology in central a , Michael J. Kleeman c,* a Department of Land, Air and Water Resources, University of California, Davis, 1 Prognostic meteorological fields Data assimilation UCD/CIT air quality model California Regional Particulate

  2. 3D Magnetotelluic characterization of the Coso Geothermal Field

    E-Print Network [OSTI]

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2008-01-01

    130, 475-496. the Coso Geothermal Field, Proc.28 th Workshop on Geothermal Reservoir Engineering, Stanfords ratio and porosity at Coso geothermal area, California: J.

  3. CALIFORNIA PATH PROGRAM INSTITUTE OF TRANSPORTATION STUDIES

    E-Print Network [OSTI]

    Agogino, Alice M.

    CALIFORNIA PATH PROGRAM INSTITUTE OF TRANSPORTATION STUDIES UNIVERFITY OF CALIFORNIA, BERKELEY,in cooperation with the State of California Business, Transportation, and Housing Agency, Department Agogino, Kai Goebel SatnamAlag University of California,Berkeley CaliforniaPATH Research Report UCB

  4. Achieving California’s Land Use and Transportation Greenhouse Gas Emission Targets Under AB 32: An Exploration of Potential Policy Processes and Mechanisms

    E-Print Network [OSTI]

    Shaheen, Susan A.; Bejamin-Chung, Jade; Allen, Denise; Howe-Steiger, Linda

    2009-01-01

    Department of Transportation, California Energy Commission,California Department of Transportation, the California EnergyCalifornia Department of Transportation (Caltrans), California Energy

  5. California energy flow in 1994

    SciTech Connect (OSTI)

    Borg, I.Y.; Mui, N.

    1996-09-01

    California energy consumption increased in 1994 in keeping with a recovery from the previous mild recession years. Although unemployment remained above the national average, other indicators pointed to improved economic health. Increased energy use was registered principally in the residential/commercial and transportation end-use sectors. A cooler-than-usual winter and spring was reflected in increased consumption of natural gas, the principal space-heating fuel in the state. Because of low water levels behind state dams, utilities turned to natural gas for electrical generation and to increased imports from out-of- state sources to meet demand. Other factors, such as smaller output from geothermal, biomass, and cogenerators, contributed to the need for the large increase in electrical supply from these two sources. Nonetheless, petroleum dominated the supply side of the energy equation of the state in which transportation requirements comprise more than one-third of total energy demand. About half of the oil consumed derived from California production. Onshore production has been in slow decline; however, in 1994 the decrease was compensated for by increases from federal offshore fields. Until 1994 production had been limited by regulatory restrictions relating to the movement of the crude oil to onshore refineries. State natural gas production remained at 1993 levels. The increased demand was met by larger imports from Canada through the recent expansion of Pacific Transmission Company`s 804 mile pipeline. Deregulation of the state`s utilities moved ahead in 1994 when the California Public Utilities Commission issued its proposal on how to restructure the industry. Public hearings were conducted in which the chief issues were recovery of the utilities` capital investments, conflicts with the Public Utilities Policies Act, management of power transactions between new suppliers and former utility customers, and preservation of energy conservation programs currently sponsored by the utilities. The issues were not resolved at year-end, but the state`s public utilities began to take steps to improve their positions in a future competitive market by cutting costs, improving efficiencies operating plants, and enlarging their nonutility interests.

  6. Bow-wave-like hydraulic jump and horseshoe vortex around an obstacle in a supercritical open channel flow

    E-Print Network [OSTI]

    Boyer, Edmond

    Bow-wave-like hydraulic jump and horseshoe vortex around an obstacle in a supercritical open the obstacle, two main flow structures are observed: i a hydraulic jump in the near-surface region and ii turbulent regime , the detachment length of the hydraulic jump exceeds the one of the horseshoe vortex

  7. The origin of California’s zero emission vehicle mandate

    E-Print Network [OSTI]

    Sperling, Dan; Collantes, Gustavo O

    2008-01-01

    Sperling, D. , 1989. Electric vehicles: performance, life-in California: The Role of Electric Vehicles. The ClaremontGM’s Revolutionary Electric Vehicle. Random House, New York.

  8. The origin of California’s zero emission vehicle mandate

    E-Print Network [OSTI]

    Sperling, Dan; Collantes, Gustavo O

    2008-01-01

    Regulations for Low-Emission Vehicles and Clean Fuels: FinalAmendments to the Zero-Emissions Vehicle Requirements, Marchauthority to regulate vehicle emissions. California is not

  9. Tiger Team Assessment of the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Reserves in California (NPRC) which consists of Naval Petroleum Reserve Number 1 (NPR-1), referred to as the Elk Hills oil field and Naval Petroleum Reserve Number 2 (NPR-2), referred to as the Buena Vista oil field, each located near Bakersfield, California. The Tiger Team Assessment was conducted from November 12 to December 13, 1991, under the auspices of DOE's Office of Special Projects (OSP) under the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health (ES H), and quality assurance (OA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, State of California, and local regulations; applicable DOE Orders; best management practices; and internal NPRC requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of DOE/NPRC, CUSA, and BPOI management of the ES H/QA programs was conducted.

  10. Tiger Team Assessment of the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Reserves in California (NPRC) which consists of Naval Petroleum Reserve Number 1 (NPR-1), referred to as the Elk Hills oil field and Naval Petroleum Reserve Number 2 (NPR-2), referred to as the Buena Vista oil field, each located near Bakersfield, California. The Tiger Team Assessment was conducted from November 12 to December 13, 1991, under the auspices of DOE`s Office of Special Projects (OSP) under the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health (ES&H), and quality assurance (OA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, State of California, and local regulations; applicable DOE Orders; best management practices; and internal NPRC requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of DOE/NPRC, CUSA, and BPOI management of the ES&H/QA programs was conducted.

  11. California Energy Incentive Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department ofBusinessCEA90:2:09California Energy Incentive

  12. Lessons from the California Electricity Crisis

    E-Print Network [OSTI]

    Wolak, Frank

    2003-01-01

    from the California Power Exchange (PX) day-ahead market andin the California Power Exchange day-ahead energy market andto cause the California Power Exchange to declare bankruptcy

  13. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Summit on America’s Energy Future (2008), http://www.natural gas. California’s Energy Future - The View to 2050supply California’ s Energy Future - The View to 2050 and

  14. Potential Benefits of Commissioning California Homes

    E-Print Network [OSTI]

    Matson, Nance; Wray, Craig; Walker, Iain; Sherman, Max

    2002-01-01

    California houses are improved energy utilization and reduced operating costs.Costs = Increased Funds for Other Purposes Improving the energy efficiency of California’costs, and environmental impacts. Energy Consumption Our evaluation of the benefits from commissioning California

  15. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATIONCann Please use the following citation for this report: Klein, Joel. 2009. Comparative Costs of California............................................................................................................................1 Changes in the Cost of Generation Model

  16. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    Laughlin, Robert B.

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION and Anitha Rednam, Comparative Costs of California Central Station Electricity Generation Technologies................................................................................................... 1 CHAPTER 1: Summary of Technology Costs

  17. The Impact of City-level Permitting Processes on Residential Photovoltaic Installation Prices and Development Times: An Empirical Analysis of Solar Systems in California Cities

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    Renewable Energy Council (IREC). 2010. Field InspectionRenewable Energy Council (IREC) have initiated efforts toinspections (OPR, 2012; IREC, 2010). California, Colorado,

  18. The California Energy Crisis: A Little Too Much Help

    E-Print Network [OSTI]

    Rosen, Kenneth T.; Howard, Amanda L.

    2001-01-01

    55 percent of California’s power plants use natural gas (100supply of new power plants in California and a coincidentof California’s power supply is generated by plants that

  19. Transnational Social Networks and Globalization: The Geography of California's Exports

    E-Print Network [OSTI]

    Deo Bardhan, Ashok; Howe, David K.

    1998-01-01

    THE GEOGRAPHY OF CALIFORNIA’S EXPORTS B These papers areGeography of California’s Exports Ashok Deo Bardhan & Davidof California's Exports, Working Paper 98-262. Fisher

  20. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    California Energy Commission STAFF REPORT FINAL EVALUATION REPORT 2008 Building Energy the evaporator coil by drilling of Temperature Measurement Access Holes for the placement of temperature sensors

  1. CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA

    E-Print Network [OSTI]

    GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA: REPORT TO THE LEGISLATURE Regional Carbon Sequestration Partnership (WESTCARB) studies that we used, including Cameron Downey

  2. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  3. Steven Greenhut California's Secret Government

    E-Print Network [OSTI]

    Handy, Susan L.

    Steven Greenhut California's Secret Government Redevelopment agencies blight the Golden State as a national travesty, a failed experiment in top-heavy government and liberal social engineering

  4. Early Ceramics from Southern California

    E-Print Network [OSTI]

    Drover, Christopher E.

    1975-01-01

    REPORTS Early Ceramics from Southern California CHRISTOPHERThis paper describes the ceramics and their chronologicalfor dating. To date, 10 ceramic specimens have been

  5. UNIVERSITY OF CALIFORNIA Los Angeles

    E-Print Network [OSTI]

    Pottie, Gregory J.

    , Committee Chair University of California, Los Angeles 2002 #12;iii DEDICATION To my family, near and far... With Love... #12;iv Contents Dedication

  6. UNIVERSITY OF CALIFORNIA Los Angeles

    E-Print Network [OSTI]

    Pottie, Gregory J.

    of California, Los Angeles 1999 ii #12;DEDICATION This dissertation is dedicated to my parents. iii #12;Contents Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Figures

  7. Mountain View, California: Fiat Res Publica

    E-Print Network [OSTI]

    Tung, Gregory

    1989-01-01

    Mountain View, California: Fiat Res Publica Gregory Tungundifferen­ tiated. In Mountain View, California (populationtoward San Francisco. Mountain View is avoiding a "just say

  8. California Nonpoint Source Program Strategy and Implementation...

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- OtherOther: California Nonpoint Source Program Strategy and Implementation Plan, 1998-2013Legal Abstract California Nonpoint Source Program...

  9. Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE

    E-Print Network [OSTI]

    Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER

  10. GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA to extend our thanks to the authors of various West Coast Regional Carbon Sequestration Partnership

  11. California Streamlines Approvals for Renewable Energy Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    between the California Energy Commission (CEC) and the California Department of Fish and Game to create a "one-stop" permitting process. The collaboration, called the...

  12. Competitive ancillary service procurement in California

    E-Print Network [OSTI]

    Marnay, Chris; Siddiqui, Afzal S.; Khavkin, Mark

    2000-01-01

    Model (Source: California Power Exchange) In late 1996, theestablishment of the Power Exchange (PX) and the IndependentSource: California Power Exchange) Imbalance Energy Price $/

  13. California's Electricity Crisis: A Market Apart?

    E-Print Network [OSTI]

    Bushnell, James

    2003-01-01

    rule in the California Power exchange as the source of theThe California Power Exchange (PX) was to oversee mostaverage unconstrained Power Exchange price through the 32

  14. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    2006-2016: Staff energy demand forecast (Revised SeptemberCEC (2005b) Energy demand forecast methods report.California energy demand 2003-2013 forecast. California

  15. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Rand Corporation, "Energy Alternatives for California: PathsDoctor et aI. , "Energy Alternatives for California: PathsPrograms Energy Facility Alternatives Discussion . ,

  16. Revisiting the emission from relativistic blast waves in a density-jump medium

    SciTech Connect (OSTI)

    Geng, J. J.; Huang, Y. F.; Dai, Z. G. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, X. F. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Liang, E-mail: hyf@nju.edu.cn, E-mail: dzg@nju.edu.cn, E-mail: xfwu@pmo.ac.cn [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2014-09-01

    Re-brightening bumps are frequently observed in gamma-ray burst afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps cannot be produced under common conditions, rather only a short plateau may emerge even when the encounter occurs at an early time (<10{sup 4} s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be caused by other scenarios.

  17. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin basin, California. Quarterly report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Schamel, S.

    1996-06-28

    This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. The producibility problems initially thought to be responsible for the low recovery in the Pru Fee property are: (a) the shallow dip of the bedding; (b) complex reservoir structure, (c) thinning pay zone; and (d) the presence of bottom water. The project is using tight integration of reservoir characterization and simulation modeling to evaluate the magnitude of and alternative solutions to these problems. Two main activities were brought to completion during the first quarter of 1996: (1) lithologic and petrophysical description of the core taken form the new well Pru 101 near the center of the demonstration site and (2) development of a stratigraphic model for the Pru Fee project area. In addition, the first phase of baseline cyclic steaming of the Pru Fee demonstration site was continued with production tests and formation temperature monitoring.

  18. STATE OF CALIFORNIA -NATURAL RESOURCES AGENCY CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    STATE OF CALIFORNIA - NATURAL RESOURCES AGENCY CALIFORNIA ENERGY COMMISSION 151 6 NINTH STREET SACRAMENTO, CA 95814-551 2 www.energy.ca.gov Buildings Technologies Program Building Energy Codes Program Manager U.S. Department of Energy August 7, 2013 Office of Energy Efficiency and Renewable Energy

  19. California Air Resources Board's "California Green Building Strategy"

    E-Print Network [OSTI]

    California Air Resources Board's "California Green Building Strategy" Collectively, energy use, as well as the sustainable operation, retrofitting and renovation of existing buildings. Since 1978, when building energy efficiency standards (Title 24, Part 6) were adopted, Californian's have saved more than

  20. Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field

    E-Print Network [OSTI]

    Foxall, B.; Vasco, D.W.

    2008-01-01

    site and the Okuaizu geothermal field, Japan", Geothermics,at the Cerro Prieto geothermal field, Baja California,and seismicity in the Coso geothermal area, Inyo County,

  1. Dynamics of a drop trapped inside a horizontal circular hydraulic jump

    E-Print Network [OSTI]

    Duchesne, Alexis; Lebon, Luc; Pirat, Christophe; Limat, Laurent

    2013-01-01

    A drop of moderate size deposited inside a horizontal circular hydraulic jump of the same liquid remains trapped at the shock front and does not coalesce. In this situation the drop is moving along the jump and one observes two different motions: a periodic one (it orbitates at constant speed) and an irregular one involving reversals of the orbital motion. Modeling the drop as a rigid sphere exchanging friction with liquid across a thin film of air, we recover the orbital motion and the internal rotation of the drop. This internal rotation is experimentally observed.

  2. Orbits and reversals of a drop rolling inside a horizontal circular hydraulic jump

    E-Print Network [OSTI]

    Alexis Duchesne; Clément Savaro; Luc Lebon; Christophe Pirat; Laurent Limat

    2013-02-14

    We explore the complex dynamics of a non-coalescing drop of moderate size inside a circular hydraulic jump of the same liquid formed on a horizontal disk. In this situation the drop is moving along the jump and one observes two different motions: a periodic one (it orbitates at constant speed) and an irregular one involving reversals of the orbital motion. Modeling the drop as a rigid sphere exchanging friction with liquid across a thin film of air, we recover the orbital motion and the internal rotation of the drop. This internal rotation is experimentally observed.

  3. Mantises exchange angular momentum between three rotating body parts to jump precisely to targets

    E-Print Network [OSTI]

    Burrows, M.; Cullen, D. A.; Dorosenko, M.; Sutton, G. P.

    2015-03-05

    muscular control. In the second manipulation, flexibility of the abdomen was reduced by super-gluing the segments together and this resulted in the mantises rotating at an angular velocity of 0.6 ± 0.2 degrees ms -1 (mean of means of 17 jumps by two 5... lens. The images had a resolution of 1024 x 1024 pixels and were fed directly to a computer for later analysis. Jumps were made from a platform made of high density white foam (Plastazote, Watkins and Doncaster, Cranbrook, Kent, UK) 85 mm deep and 150...

  4. PESTICIDE OCCURRENCE IN GROUNDWATER IN TULARE COUNTY, CALIFORNIA

    E-Print Network [OSTI]

    Zhang, Minghua

    PESTICIDE OCCURRENCE IN GROUNDWATER IN TULARE COUNTY, CALIFORNIA MINGHUA ZHANG1 , SHU GENG2 , SUSAN to identify the major factors affecting pesticide leaching in groundwater from agricultural fields in Tulare between 1970 and 1982 (Cohen, 1986). Forty-nine percent of the wells sampled in Tulare County (Troiano

  5. UNIVERSITY OF CALIFORNIA, Ion Flow Measurements and Plasma Current Analysis

    E-Print Network [OSTI]

    Heidbrink, William W.

    UNIVERSITY OF CALIFORNIA, IRVINE Ion Flow Measurements and Plasma Current Analysis in the Irvine OF THE DISSERTATION xvii 1 Introduction 1 2 Field Reversed Configurations 4 2.1 FRC Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 FRC Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.4 FRC Formation

  6. Measured Performance of California Buydown Program Residential PV Systems

    E-Print Network [OSTI]

    Measured Performance of California Buydown Program Residential PV Systems Kurt Scheuermann a proposal to monitor in-field performance of photovoltaic (PV) and hybrid PV/small wind systems funded collected from fourteen PV systems from mid-February through September, 2000. In December 2000 and January

  7. Department of Electrical Engineering University of California -Riverside

    E-Print Network [OSTI]

    Department of Electrical Engineering University of California - Riverside EE133: Solid include electronic band structure of semiconductors, basic concepts such as Fermi level, band gap operation. The devices that will be considered in detail include field-effect transistors, bipolar and metal

  8. Arnold Schwarzenegger CALIFORNIA OCEAN WAVE

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California, State and Federal Agencies and their expectations in respect to potential wave power deployments Jim a huge amount of wave measurement data from various data sources Asfaw Beyene of the Department

  9. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    Fuel and Vehicle Technology Program Under Solicitation PON-09-604 #12;CALIFORNIA ENERGY COMMISSION impacts report assesses and reports on the potential localized health impacts of this additional fuelCalifornia Energy Commission STAFF REPORT MAY 2011 CEC-600-2010-009-AD2 LOCALIZED HEALTH IMPACTS

  10. UNIVERSITY OF CALIFORNIA Los Angeles

    E-Print Network [OSTI]

    Stenstrom, Michael K.

    UNIVERSITY OF CALIFORNIA Los Angeles Application of Knowledge-Based Classification Techniques of California, Los Angeles 2005 #12;iii Table of Contents Signature Page ii Table of Contents iii List.5 Image Data 20 2.6 References 25 3 Digital Image Processing 28 3.1 Image Rectification and Restoration 28

  11. LIQUEFIED NATURAL GAS IN CALIFORNIA

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION LIQUEFIED NATURAL GAS IN CALIFORNIA: HISTORY, RISKS, AND SITING Tyler Contributors Dave Maul Manager NATURAL GAS & SPECIAL PROJECTS OFFICE Terrence O'Brien, Deputy Commissioner and Leader of the Governor's Natural Gas Working Group #12;This paper was prepared as the result

  12. University of California Los Angeles

    E-Print Network [OSTI]

    California at Los Angeles, University of

    University of California Los Angeles Understanding the BGP Transport Delay A dissertation submitted. Federic Paik Schoenberg Mario Gerla Songwu Lu Lixia Zhang, Committee Chair University of California, Los . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 BGP Transport Issues . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 BGP Monitoring

  13. Transforming California's Freight Transport System

    E-Print Network [OSTI]

    California at Davis, University of

    Transforming California's Freight Transport System Policy Forum on the Role of Freight Transport in Achieving Clean Air, Climate Goals, Economic Growth and Healthy Communities in California Jack Kitowski April 19, 2013 1 #12;Freight Impacts at Many Levels 2 #12;Freight Transport Today: Contribution

  14. NONPROFIT ORGANIZATION UNIVERSITY OF CALIFORNIA

    E-Print Network [OSTI]

    Wildermuth, Mary C

    (page 18). In another story on transformations, Energy and Resources Ph.D. candidate and California Public Utilities Commissioner Carla Peterman is focusing on developing the energy storage market, a project that could push California's alternative energy to the next level of efficiency and make

  15. CALIFORNIA ENERGY Large HVAC Building

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Energy Systems: Productivity and Building Science Program. This program was funded by the California of Portland Energy Conservation, Inc. Project Management: Cathy Higgins, Program Director for New Buildings

  16. California Proved Nonproducing Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948California (Million Cubic Feet)per272 522 542

  17. Usefulness of the reversible jump Markov chain Monte Carlo model in regional flood frequency

    E-Print Network [OSTI]

    Ribatet, Mathieu

    Usefulness of the reversible jump Markov chain Monte Carlo model in regional flood frequency; revised 3 May 2007; accepted 17 May 2007; published 3 August 2007. [1] Regional flood frequency analysis and the index flood approach. Results show that the proposed estimator is absolutely suited to regional

  18. Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge

    E-Print Network [OSTI]

    Klymak, Jody M.

    that tidal energy is both converted into internal waves, which radiate away from the topography, and used of tidal mixing for global climate models, the physical processes governing the transfer of energy fromInternal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge Sonya Legg

  19. Kinetics and Mechanisms of Sulfate Adsorption/Desorption on Goethite Using Pressure-Jump Relaxation

    E-Print Network [OSTI]

    Sparks, Donald L.

    Kinetics and Mechanisms of Sulfate Adsorption/Desorption on Goethite Using Pressure-Jump Relaxation Peng Chu Zhang* and Donald L. Sparks ABSTRACT Sulfate adsorption/desorption on goethite (Fe indicated that adsorption decreased with increased pH of the goethite suspension. The triple-layer model fit

  20. Multi-scale Jump and Volatility Analysis for High-Frequency Financial Data

    E-Print Network [OSTI]

    Fan, Jianqing

    Multi-scale Jump and Volatility Analysis for High-Frequency Financial Data Jianqing Fan and Yazhen Wang Version of May 2007 Abstract The wide availability of high-frequency data for many financial-diffusion processes observed with market microstructure noise are frequently used to model high-frequency financial

  1. Seismic signals are crucial for male mating success in a visual specialist jumping spider (Araneae: Salticidae)

    E-Print Network [OSTI]

    Elias, Damian Octavio

    Seismic signals are crucial for male mating success in a visual specialist jumping spider (Araneae of multicomponent seismic courtship signals in addition to and produced in concert with its multiple visual ornaments and movement displays. Here, we demonstrate the importance of these seismic signals

  2. NOTICE OF DECISION BY THE CALIFORNIA ENERGY COMMISSION To: California Resources Agency From: California Energy Commission

    E-Print Network [OSTI]

    NOTICE OF DECISION BY THE CALIFORNIA ENERGY COMMISSION To: California Resources Agency From Sacramento, CA 95814 Subject: Filing of Notice of Decision in compliance with Public Resources Code Section oilfield for use in enhanced oil recovery. Modification Description: Modify air quality conditions AQ-17

  3. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

  4. CHP Assessment, California Energy Commission, October 2009

    Broader source: Energy.gov [DOE]

    This report analyzes the potential market penetration of combined heat and power (CHP) systems in California.

  5. FIRE AND CLIMATE CHANGE IN CALIFORNIA

    E-Print Network [OSTI]

    Moritz, Max A.

    's California Climate Change Center JULY 2012 CEC5002012026 Prepared for: California Energy Commission FIRE AND CLIMATE CHANGE IN CALIFORNIA Changes in the Distribution and Frequency of Fire the University of California, Davis, provided downscaling and hydrologic modeling of climate data

  6. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION in this paper. #12;ABSTRACT In this 2007 report of the cost of generation of electricity for California located technologies, California Energy Commission staff provides levelized costs, including the cost assumptions

  7. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Energy Pathways Program, Institute of Transportation Studies, University of California,feasible transportation and heat. California’s EnergyCalifornia Council on Science and Technology Roland Hwang, Transportation Program Director, Natural Resources Defense Council Nalu Kaahaaina, Deputy Project Director, Energy

  8. Development of Energy Balances for the State of California

    E-Print Network [OSTI]

    Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

    2005-01-01

    oil/statistics/crude_oil_receipts.html. California Energyoil/statistics/crude_oil_receipts.html. California Energy2004f. Foreign Sources of Crude Oil Imports to California

  9. Is the California Special Education Achievement Gap Really Closing?

    E-Print Network [OSTI]

    Fearn, Emilene Johnson

    2012-01-01

    2011c). California Standards Tests technical report, Spring2009c). California Standards Tests technical report, Spring2010c). California Standards Tests technical report, Spring

  10. Impact of the Balance Billing Ban on California Emergency Providers

    E-Print Network [OSTI]

    Pao, Bing; Riner, Myles; Chan, Theodore C

    2014-01-01

    enf/ 2006-0777. California ACEP Web site. Available at:Physicians (California ACEP) reimbursement committee werePhysicians (California ACEP) argued that the DMHC did not

  11. Making Money from Microbes: Finance and the California Biotechnology Industry

    E-Print Network [OSTI]

    Willoughby, Kelvin W.; Blakely, Edward J.

    1989-01-01

    3. 8 Making Money from Microbes: Finance and the California28 Making Money from Microbes: Finance and the California36 Making Money from Microbes: Finance and the California

  12. Transportation and Stationary Power Integration Workshop: A California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A California Perspective Transportation and Stationary Power Integration Workshop: A California Perspective Overview of California regulations, latest funded hydrogen stations, and...

  13. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    generator in California Power Plant Generating Costsplants in California and 1195 power plants collectively inbe banned in California, and they those power plants are not

  14. Nine: The Causes of the California Energy Crisis

    E-Print Network [OSTI]

    Thornberg, Christopher F

    2002-01-01

    market, the California Power Exchange, was closed, and theCALPX or California Power Exchange Corp. ) to createthe California Power Exchange (CALPX). 19 The overall system

  15. Patterns of ecstasy-associated hyponatremia in California.

    E-Print Network [OSTI]

    Rosenson, Jonathan; Smollin, Craig; Sporer, Karl A; Blanc, Paul; Olson, Kent R

    2007-01-01

    Oakland, CA # California Poison Control System, Sanreported to the California Poison Control System (CPCS) overOakland, CA # California Poison Control System, San

  16. State of California Website Trends 2008-2010

    E-Print Network [OSTI]

    Seneca, Tracy

    2010-01-01

    California Integrated Waste Management Board  State  Water California Integrated Waste Management Board  poor  UC San Caucus  California Integrated Waste Management Board  80656 

  17. Changing Tracks? The Prospect for California Pension Reform

    E-Print Network [OSTI]

    Kogan, Vladimir; McCubbins, Mathew D

    2010-01-01

    for California Pension Reform Notes We focus on the combinedfor California Pension Reform Vladimir Kogan University ofCalifornia budget, pension reform, fiscal oversight

  18. Coherent Structures and Larval Transport in the California Current System

    E-Print Network [OSTI]

    Harrison, Cheryl S.

    2012-01-01

    eddies; ocean transport; California Current 1. Introductionand larval transport in the California Current system CherylEkman transport and pumping in the California Current based

  19. Light Quasiparticles Dominate Electronic Transport in Molecular Crystal Field-Effect Transistors

    E-Print Network [OSTI]

    Light Quasiparticles Dominate Electronic Transport in Molecular Crystal Field-Effect Transistors Z 1 Department of Physics, University of California, San Diego, La Jolla, California 92093, USA 2, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Received 1 March 2007; published 6

  20. STATE OF CALIFORNIA --THE RESOURCES AGENCY Arnold Schwarzenegger, Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    Kammen, Daniel M.

    1 STATE OF CALIFORNIA -- THE RESOURCES AGENCY Arnold Schwarzenegger, Governor CALIFORNIA ENERGY efficiency standards, resource acquisition, energy security, and other related matters. Litigation COMMISSION 1516 Ninth Street Sacramento, California 95814 WEBSITES Main website: www.energy.ca.gov Children

  1. STATE OF CALIFORNIA --THE NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    #12;are to conserve resources, protect the environment, ensure energy reliability, enhance the stateSTATE OF CALIFORNIA -- THE NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION 1516 Ninth Street Sacramento, California 95814 Main website: www.energy

  2. California’s North Coast Fishing Communities Historical Perspective and Recent Trends: Regional Profile

    E-Print Network [OSTI]

    Pomeroy, Caroline; Thomson, Cynthia J.; Stevens, Melissa M.

    2011-01-01

    W. L. 1954. California Fishing Ports Fish Bulletin 96,marine/status/ca_comm_fishing_gear.pdf (accessed 7/30/10)California’s North Coast Fishing Communities Historical

  3. Managing California’s Water: Insights from Interviews with Water Policy Experts

    E-Print Network [OSTI]

    Null, Sarah E.; Bartolomeo, Eleanor; Lund, Jay R.; Hanak, Ellen

    2012-01-01

    2009. Bulletin 160–09: California water plan update.California Department of Water Resources. Available from:should be allowed to sell water in California? Third-party

  4. Program Strategies and Results for California’s Energy Efficiency and Demand Response Markets 

    E-Print Network [OSTI]

    Ehrhard, R.; Hamilton, G.

    2008-01-01

    Global Energy Partners provides a review of California’s strategic approach to energy efficiency and demand response implementation, with a focus on the industrial sector. The official role of the state, through the California Energy Commission (CEC...

  5. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Summit on America’s Energy Future (2008), http://www.natural gas. California’s Energy Future - The View to 2050supply California’ s Energy Future - The View to 2050 and

  6. University of California, Santa Barbara University of California Insurance Requirements Ground Transportation Charter Services

    E-Print Network [OSTI]

    University of California, Santa Barbara University of California Insurance Requirements Ground Transportation Charter Services Prior to working with the University, vendors providing Ground Transportation. Workers' Compensation: as required under California State Law. D. Additional Insured Endorsement

  7. California Enterprise Development Authority- Statewide PACE Program (California)

    Broader source: Energy.gov [DOE]

    FIGTREE Energy Financing is administering a Property Assessed Clean Energy (PACE) financing program in a number of California cities and counties through a partnership with the Pacific Housing &...

  8. Playing Politics with California’s Prison System

    E-Print Network [OSTI]

    Grattet, Ryken

    2013-01-01

    in direct reaction to the prisoner ’ s rights movement 314as more sympathetic to prisoners than prison officers, thePolitics with California ’ s Prison System By Joshua Page

  9. California department of education HQ block 225: California's valedictorian

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Dickerhoff, Darryl J; Fentress, Curtis; Popowski, Matt

    2009-01-01

    Greg Gidez, AIA, DBIA, LEED AP is the corporate manager ofteam set a goal of achieving LEED Gold certifica- tion — abecame only the second LEED Gold build- ing in California as

  10. Automated high pressure cell for pressure jump x-ray diffraction

    SciTech Connect (OSTI)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  11. California’s Water Footprint: recent trends and framework for a sustainable transition

    E-Print Network [OSTI]

    Fulton, Julian

    2015-01-01

    Africa. Barbier, EB. 2004. “Water and Economic Growth. ”Sri Lanka: International Water Management Institute. CDF,California Department of Water Resources. 2015. “California

  12. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    California Energy Commission STAFF REPORT DRAFT EVALUATION REPORT Proposed Compliance Option of temperature sensors. Section RA3.2.2.2.2 of the reference appendices specifies the location and hole

  13. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    on the potential localized health impacts of this additional fuel production project recommendedCalifornia Energy Commission STAFF REPORT MARCH 2011 CEC-600-2010-004-AD Awarded Funding Through the Alternative and Renewable Fuel and Vehicle Technology

  14. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    on the potential localized health impacts of this additional fuel production project recommendedCalifornia Energy Commission STAFF REPORT MARCH 2011 CEC-600-2010-009-AD Projects Awarded Funding Through the Alternative and Renewable Fuel and Vehicle

  15. Residential California adobe : mud form

    E-Print Network [OSTI]

    Daymond, Diana Leigh

    1985-01-01

    Northern California has a rich tradition of adobe architecture . Formed with earth, defined by site, climate and use, the adobe structures exemplify a building methodology in harmony with nature and the lifestyle of it's ...

  16. UNIVERSITY of CALIFORNIA Santa Barbara

    E-Print Network [OSTI]

    Martinis, John M.

    UNIVERSITY of CALIFORNIA Santa Barbara Fault-tolerant superconducting qubits A dissertation a full-fledged superconducting surface code quantum computer. v #12;Dan, oh man we have been through

  17. California Energy Commission COMMISSION REPORT

    E-Print Network [OSTI]

    Natural Gas Vehicle Coalition Brooke Coleman ­ New Fuels Alliance Will Coleman ­ Mohr Davidow Ventures ­ Western Propane Gas Association Bonnie HolmesGen ­ American Lung Association Roland Hwang ­ Natural of biofuels within California. Alternative and renewable transportation fuels include electricity, natural

  18. SCE- California Advanced Homes Incentives

    Broader source: Energy.gov [DOE]

    Southern California Edison offers an incentive for home builders to build homes which exceed 2008 Title 24 standards by 15%. The program is open to all single-family and multi-family new...

  19. UNIVERSITY OF CALIFORNIA Understanding Dependencies

    E-Print Network [OSTI]

    Grinter, Rebecca Elizabeth

    : ___________________________________ ___________________________________ ___________________________________ Committee Chair University of California, Irvine 1996 #12;iii Dedication To the British Taxpayer. Thank you love you. My thesis is dedicated to the people who made this all possible, the British taxpayer

  20. Temperature jump in degenerate quantum gases in the presence of a Bose - Einstein condensate

    E-Print Network [OSTI]

    A. V. Latyshev; A. A. Yushkanov

    2010-01-04

    We construct a kinetic equation modeling the behavior of degenerate quantum Bose gases whose collision rate depends on the momentum of elementary excitations. We consider the case where the phonon component is the decisive factor in the elementary excitations. We analytically solve the half-space boundary value problem of the temperature jump at the boundary of the degenerate Bose gas in the presence of a Bose -- Einstein condensate.

  1. A Lagrangian model of Copepod dynamics: clustering by escape jumps in turbulence

    E-Print Network [OSTI]

    Ardeshiri, Hamidreza; Schmitt, François G; Souissi, Sami; Toschi, Federico; Calzavarini, Enrico

    2016-01-01

    Planktonic copepods are small crustaceans that have the ability to swim by quick powerful jumps. Such an aptness is used to escape from high shear regions, which may be caused either by flow per- turbations, produced by a large predator (i.e. fish larvae), or by the inherent highly turbulent dynamics of the ocean. Through a combined experimental and numerical study, we investigate the impact of jumping behaviour on the small-scale patchiness of copepods in a turbulent environment. Recorded velocity tracks of copepods displaying escape response jumps in still water are here used to define and tune a Lagrangian Copepod (LC) model. The model is further employed to simulate the behaviour of thousands of copepods in a fully developed hydrodynamic turbulent flow obtained by direct numerical simulation of the Navier-Stokes equations. First, we show that the LC velocity statistics is in qualitative agreement with available experimental observations of copepods in tur- bulence. Second, we quantify the clustering of LC...

  2. Identification and delineation of low resistivity, low permeability reservoirs using qualitative sidewall sample log k * S[sub O] relationships in the western shallow oil zone, Elk Hills Field, California

    SciTech Connect (OSTI)

    Beacom, E.K.; Kornreich, I.S. (System Technology Associates, Inc., Golden, CO (United States))

    1996-01-01

    Over 500 wells, including wells producing from the deeper Miocene Stevens sands, penetrate the Western Shallow Oil Zone (Pliocene Etchegoin Formation) at the Elk Hills Naval Petroleum Reserve in California. The Western Shallow Oil Zone Gusher and Calitroleum sands are very fine grained, silty and pyritic and are interbedded with silty shales. Electric logs generally show 1[1/2]-2[1/2] ohm-meters of deep resistivity and the spontaneous potential displays little or no response to the sands. However, approximately 180 wells in each of the mapped productive sands have sidewall sample data to visually inspect the rock for hydrocarbons. Each productive interval within the Western Shallow Oil Zone has two or more pools. The most exploited (and most heavily drilled) of these pools is at the western end of the Eastern anticline. The pools on the Western anticline have few tests and production is limited and generally commingled. In order to identify productive intervals and to delineate the areal extent of these sands, qualitative assessment of sidewall sample data was done and maps of log permeability times oil saturation were prepared for each zone. The analysis showed large amounts of unexploited hydrocarbons in the Western pools. Complete exploitation of the Gusher and Calitroleum sands will recover in excess of 11 million additional barrels of 38 degree gravity oil.

  3. Identification and delineation of low resistivity, low permeability reservoirs using qualitative sidewall sample log k * S{sub O} relationships in the western shallow oil zone, Elk Hills Field, California

    SciTech Connect (OSTI)

    Beacom, E.K.; Kornreich, I.S. [System Technology Associates, Inc., Golden, CO (United States)

    1996-12-31

    Over 500 wells, including wells producing from the deeper Miocene Stevens sands, penetrate the Western Shallow Oil Zone (Pliocene Etchegoin Formation) at the Elk Hills Naval Petroleum Reserve in California. The Western Shallow Oil Zone Gusher and Calitroleum sands are very fine grained, silty and pyritic and are interbedded with silty shales. Electric logs generally show 1{1/2}-2{1/2} ohm-meters of deep resistivity and the spontaneous potential displays little or no response to the sands. However, approximately 180 wells in each of the mapped productive sands have sidewall sample data to visually inspect the rock for hydrocarbons. Each productive interval within the Western Shallow Oil Zone has two or more pools. The most exploited (and most heavily drilled) of these pools is at the western end of the Eastern anticline. The pools on the Western anticline have few tests and production is limited and generally commingled. In order to identify productive intervals and to delineate the areal extent of these sands, qualitative assessment of sidewall sample data was done and maps of log permeability times oil saturation were prepared for each zone. The analysis showed large amounts of unexploited hydrocarbons in the Western pools. Complete exploitation of the Gusher and Calitroleum sands will recover in excess of 11 million additional barrels of 38 degree gravity oil.

  4. Testing for jumps in the context of high frequency data Universite P. et M. Curie (Paris-6)

    E-Print Network [OSTI]

    Testing for jumps in the context of high frequency data Jean Jacod Universit´e P. et M. Curie of these discrete observations, in the case of high frequency observations. That is, n is small, and we are in fact Universit´e P. et M. Curie (Paris-6) Testing for Jumps in the Context of High Frequency Data MONDAY, April 2

  5. Understanding the response of commercial and institutional organizations to the California energy crisis. A report to the California Energy Commission - Sylvia Bender, Project Manager

    E-Print Network [OSTI]

    Lutzenhiser, Loren; Janda, Kathryn; Kunkle, Rick; Payne, Christopher

    2002-01-01

    to California’s 2001 Energy Crisis. ” In Proceedings of theof California's 2001 Energy Crisis: An Informal ProjectTO THE CALIFORNIA ENERGY CRISIS CONSULTANT REPORT July 24,

  6. Development of Energy Balances for the State of California

    E-Print Network [OSTI]

    Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

    2005-01-01

    Energy Commission, 2001. California Power Plants Database.for either of California’s two nuclear power plants and isout-of-state power plants controlled by California utilities

  7. Employee Transportation Coordinators: A New Profession in Southern California

    E-Print Network [OSTI]

    Wachs, Martin; Giuliano, Genevieve

    1992-01-01

    Coordinators: A New Profession in Southern California MartinCoordinators: A New Profession in Southern California Martin

  8. Public Health-Related Impacts of Climate Change in California

    E-Print Network [OSTI]

    2005-01-01

    VOC emissions. While California power plants are wellfrom large power plants in California as a function of

  9. California PG&E E-19 Rate Structure -- demand charge structure doesn't seem

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency Jump to: navigation,to fit

  10. POSTGRADUATE MONTEREY, CALIFORNIA

    E-Print Network [OSTI]

    -0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE December 2005 3. REPORT TYPE AND DATES created for the 0.29 0.31µ- spectral range of the LINUS sensor. Field observations were made of a coal. Field observations were made of a coal burni

  11. Final Technical Report: Global Field Aligned Mesh and Gyrokinetic Field Solver in a Tokamak Edge Geometry

    SciTech Connect (OSTI)

    Cummings, Julian C.

    2013-05-15

    This project was a collaboration between researchers at the California Institute of Technology and the University of California, Irvine to investigate the utility of a global field-aligned mesh and gyrokinetic field solver for simulations of the tokamak plasma edge region. Mesh generation software from UC Irvine was tested with specific tokamak edge magnetic geometry scenarios and the quality of the meshes and the solutions to the gyrokinetic Poisson equation were evaluated.

  12. @Ventures (California) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | Open Energy Information 55ft Wave

  13. San Francisco Volcanic Field Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California: EnergySan Francisco

  14. San Juan Volcanic Field Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,BasinSan Juan

  15. Examining Sustainable Development Policy in California Cities: 2011 Energy Sustainable California Communities Survey

    E-Print Network [OSTI]

    Kwon, Myungjung

    2013-01-01

    Energy Sustainable California Communities Survey, Interna- tional County/City Management Association (ICMA), and US

  16. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Energy Pathways Program, Institute of Transportation Studies, University of California,feasible transportation and heat. California’s EnergyCalifornia Council on Science and Technology Roland Hwang, Transportation Program Director, Natural Resources Defense Council Nalu Kaahaaina, Deputy Project Director, Energy

  17. ANALYSIS OF THE CALIFORNIA SOLAR RESOURCE

    E-Print Network [OSTI]

    Berdahl, P.

    2011-01-01

    CHECKS FOR THE PG&E SOLAR DATA NETWORK (COST: $20,000 START-THE CALIFORNIA SOLAR DATA MANUAL (COST: $40,000, ONCE EVERYTHE CALIFORNIA SOLAR DATA MANUAL (COST: $30,000, ONCE EVERY

  18. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Power (CSP) Solar Photovoltaic (PV) Geothermal Hydro andpower and the assumption that California’s large hydropower, this can be waste water as is used at The Geysers. Hydro and

  19. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    The renewables case is 100% renewable energy. The additionalthat all cases have at least 33% renewable energy in the33% renewable energy, i.e. the “median case. ” California’s

  20. California Energy Commission COMMITTEE DRAFT REPORT

    E-Print Network [OSTI]

    . Alternative and renewable transportation fuels include electricity, natural gas, biomethane, propane ­ California Air Resources Board Tim Carmichael ­ California Natural Gas Vehicle Coalition Brooke Coleman ENERGY COMMISSION TRANSPORTATION COMMITTEE James D. Boyd Vice-Chair Presiding Member Carla Peterman

  1. Electrical Engineering University of California, Riverside

    E-Print Network [OSTI]

    Electrical Engineering University of California, Riverside Bourns College of Engineering Electrical EngineeringElectrical Engineering Alexander A. Balandin Associate Professor Department of Electrical Engineering University of California - Riverside May 2005 Group Advising Meeting #12;Electrical Engineering

  2. Introduction: California's Growth: An Uncertain Future

    E-Print Network [OSTI]

    Teitz, Michael B.

    2008-01-01

    s Growth: An Uncertain Future BY MICHAEL B. TEITZ Editor'shave to be California’s future? Clearly, not so. This ofat the issue of accommodating future tions within them, for

  3. Deep Energy Retrofits - Eleven California Case Studies

    E-Print Network [OSTI]

    Less, Brennan

    2014-01-01

    2005). California’s Water-Energy Relationship. Integratedthe heating and hot water energy uses attributed to naturalof two to one, and hot water energy varied by factors of 2.4

  4. An investigation of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    of tracer tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: An investigation of the Dixie Valley geothermal field, Nevada, using temporal...

  5. A Geothermal Field Model Based On Geophysical And Thermal Prospectings...

    Open Energy Info (EERE)

    Field Model Based On Geophysical And Thermal Prospectings In Nea Kessani (Ne Greece) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

  6. Heterogeneous Structure Around the Jemez Volcanic Field, New...

    Open Energy Info (EERE)

    Field, New Mexico, USA, as Inferred from the Envelope Inversion of Active-Experiment Seismic Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  7. Field Investigations And Temperature-Gradient Drilling At Marine...

    Open Energy Info (EERE)

    Field Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Jump to: navigation, search OpenEI Reference...

  8. Jump Chaotic Behaviour of Ultra Low Loss Bulk Acoustic Wave Cavities

    E-Print Network [OSTI]

    Maxim Goryachev; Warrick G. Farr; Serge Galliou; Michael E. Tobar

    2014-06-16

    We demonstrate a previously unobserved nonlinear phenomenon in an ultra-low loss quartz Bulk Acoustic Wave cavity ($Q>3\\times10^9$), which only occurs below 20 milli-Kelvin in temperature and under relatively weak pumping. The phenomenon reveals the emergence of several stable equilibria (at least two foci and two nodes) and jumps between these quasi states at random times. The degree of this randomness as well as separations between levels can be controlled by the frequency of the incident carrier signal. It is demonstrated that the nature of the effect lays beyond the standard Duffing model.

  9. Jump chaotic behaviour of ultra low loss bulk acoustic wave cavities

    SciTech Connect (OSTI)

    Goryachev, Maxim, E-mail: maxim.goryachev@uwa.edu.au; Farr, Warrick G.; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Galliou, Serge [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l'Épitaphe 25000 Besançon (France)

    2014-08-11

    We demonstrate a previously unobserved nonlinear phenomenon in an ultra-low loss quartz bulk acoustic wave cavity (Q>3>10{sup 9}), which only occurs below 20 mK in temperature and under relatively weak pumping. The phenomenon reveals the emergence of several stable equilibria (at least two foci and two nodes) and jumps between these quasi states at random times. The degree of this randomness as well as separations between levels can be controlled by the frequency of the incident carrier signal. It is demonstrated that the nature of the effect lies beyond the standard Duffing model.

  10. Lessons from the California Electricity Crisis

    E-Print Network [OSTI]

    Wolak, Frank

    2003-01-01

    cost (paid by the affiliate that owns the generation unit) of providing energy or ancillary services to California

  11. Lessons from the California Electricity Crisis

    E-Print Network [OSTI]

    Wolak, Frank

    2003-01-01

    Southern California Edison, and San Diego Gas and ElectricBto the new ownersBDuke, Dynegy, Reliant, AES/

  12. POSTGRADUATE MONTEREY, CALIFORNIA

    E-Print Network [OSTI]

    School (NPS), from the roof of Spanagel Hall. Field observations were conducted at a coal-burning factory Sulfur Dioxide (SO2), Remote Sensing, Ultraviolet (UV) Spectral Imaging, LINUS, 16. PRICE CODE 17

  13. Magnetic Field Structure around Low-Mass Class 0 Protostars: B335, L1527 and IC348-SMM2

    E-Print Network [OSTI]

    Novak, Giles

    Magnetic Field Structure around Low-Mass Class 0 Protostars: B335, L1527 and IC348-SMM2 J Propulsion Laboratory, California Institute of Technology N. H. Volgenau6 California Institute of Technology Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Ms 264

  14. Regional availability of mechanical embolectomy for acute ischemic stroke in California, 2009 to 2010

    E-Print Network [OSTI]

    Choi, JC; Hsia, RY; Kim, AS

    2015-01-01

    Various Ground Transport Distances From California Hospitalsin California lived within reasonable ground transportin California lived within reason- able ground transport

  15. Regulation of Hydraulic Fracturing in California

    E-Print Network [OSTI]

    Kammen, Daniel M.

    APRIL 2013 Regulation of Hydraulic Fracturing in California: A WAsteWAteR And WAteR QuAlity Pe | Regulation of Hydraulic Fracturing in California Wheeler Institute for Water Law & Policy Center for Law #12;Regulation of Hydraulic Fracturing in California | 3Berkeley law | wheeler InstItute for water law

  16. STATE OF CALIFORNIA VALVE LEAKAGE TEST

    E-Print Network [OSTI]

    STATE OF CALIFORNIA VALVE LEAKAGE TEST CEC-MECH-8A (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-8A NA7.5.7 Valve Leakage Test (Page 1 of 3) Project Name/Address: System Name VALVE LEAKAGE TEST CEC-MECH-8A (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE

  17. UNIVERSITY OF CALIFORNIA, SANTA CRUZ SCIENCE COMMUNICATION

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    UNIVERSITY OF CALIFORNIA, SANTA CRUZ SCIENCE COMMUNICATION The internationally recognized Science Communication Program at the University of California, Santa Cruz, invites applications for an on-going pool Communication Program University of California 1156 High Street Please refer to provision T03-16 in your reply

  18. California Energy Commission DRAFT STAFF REPORT

    E-Print Network [OSTI]

    . Steven Mac and Irene Salazar provided the historic consumption data. Mark Ciminelli provided a newCalifornia Energy Commission DRAFT STAFF REPORT UPDATED CALIFORNIA ENERGY DEMAND FORECAST 20112022 MAY 2011 CEC2002011006SD #12;CALIFORNIA ENERGY COMMISSION Chris Kavalec Principal Author Chris

  19. NUCLEAR POWER IN CALIFORNIA: 2007 STATUS REPORT

    E-Print Network [OSTI]

    NUCLEAR POWER IN CALIFORNIA: 2007 STATUS REPORT Prepared For: California Energy Commission Prepared;Abstract This consultant report examines how nuclear power issues have evolved since publication of the consultant report, Nuclear Power in California: Status Report, which was prepared for the 2005 IEPR

  20. FIRE AND CLIMATE CHANGE IN CALIFORNIA

    E-Print Network [OSTI]

    FIRE AND CLIMATE CHANGE IN CALIFORNIA Changes in the Distribution and Frequency of Fire's California Climate Change Center JULY 2012 CEC5002012026 Prepared for: California Energy Commission to climate change has the potential to induce alteration of future fire activity. This research presents just