National Library of Energy BETA

Sample records for field boundary outlines

  1. BUFFERED WELL FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a feature class (FC) with the following attributes: Field_name Buffer distance (can be unique for each well to represent reservoirs with different drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output:

  2. Outline:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutrino scattering results from MiniBooNE Outline: - Intro/Overview/Motivation - Previous Results - New results on neutrino CCQE scattering - Other MB scattering results - Interpretations/Ideas R. Tayloe IU nuc phys seminar 03/2010 MiniBooNE experiment: Booster K + target and horn detector dirt decay region absorber primary beam tertiary beam secondary beam (protons) (mesons) (neutrinos) π + ν µ → ν e ??? - Designed and built (at FNAL) to test the LSND observation of ν oscillations via

  3. Outline:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ν scattering measurements with MiniBooNE Outline: - Intro/Overview/Motivation - Previous Results - New results (cross sections!) from MiniBooNE - ν CCQE scattering - ν NC elastic scattering - ν CC/NC π production - Interpretations/conclusions R. Van de Water, Los Alamos for R. Tayloe, Indiana U. for MiniBooNE collaboration APS-DNP 2010 Santa Fe, 10/10 3 ν scattering measurements and oscillations In order to understand ν oscillations, it is crucial to understand the detailed physics of ν

  4. PERCENT FEDERAL LAND FOR OIL/GAS FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    The VBA code below calculates the area percent of a first polygon layer (e.g. oilgas field outlines) that are within a second polygon layer (e.g. federal land) and writes out the ...

  5. SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS

    U.S. Energy Information Administration (EIA) Indexed Site

    ... ' put the name of the field being processed in the caption, that ' way if there is a crash, we can select that field and ' step through the program and debug it more easily. ...

  6. Boundary conformal field theory and tunneling of edge quasiparticles in

    Office of Scientific and Technical Information (OSTI)

    non-Abelian topological states (Journal Article) | SciTech Connect Boundary conformal field theory and tunneling of edge quasiparticles in non-Abelian topological states Citation Details In-Document Search Title: Boundary conformal field theory and tunneling of edge quasiparticles in non-Abelian topological states We explain how (perturbed) boundary conformal field theory allows us to understand the tunneling of edge quasiparticles in non-Abelian topological states. The coupling between a

  7. ARM - Field Campaign - Boundary Layer Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBoundary Layer Cloud IOP Campaign Links Campaign Images ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at...

  8. Stable Boundary Layer Education Field Campaign Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Stable Boundary Layer Education (STABLE) Final Campaign Summary DD Turner March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

  9. BUFFERED WELL FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    Option Explicit Const cFEETPERMETER As Double 3.281 ' ' deviation factor is applied to the buffer distance ' so with a buffer distance of 100 and factor of 0.05 the ' ...

  10. Stable Boundary Layer Education Field Campaign Summary

    Office of Scientific and Technical Information (OSTI)

    ... in the wind field; this change was made and a new event ... The bore was triggered by outflow from the convective system ... to the instruments for class tours, the Doppler lidar ...

  11. ARM - Field Campaign - Lower Atmospheric Boundary Layer Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Campaigns 2013 Lower Atmospheric Boundary Layer Experiment 2013.05.28, Turner, SGP ... Lead Scientist : David Turner For data sets, see below. Abstract Boundary layer turbulence ...

  12. Waste Characteristics of the Former S-3 Ponds and Outline of Uranium Chemistry Relevant to NABIR Field Research Center Studies

    SciTech Connect (OSTI)

    Brooks, S.C.

    2001-06-29

    The Environmental Sciences Division at Oak Ridge National Laboratory (ORNL) was awarded the first Naturaland Accelerated Bioremediation Research (NABIR) Program, Field Research Center (FRC) based upon the recommendation of a review panel following a competitive peer-reviewed proposal process. The contaminated FRC site at ORNL is centered on groundwater plumes that originate from the former S-3 Waste Disposal Ponds located at the Y-12 Plant and the Y-12 Bone Yard/Bum Yard. Proposals for individual science research projects at the FRC were submitted in the spring of 2000 in response to a solicitation issued by the Department of Energy (DOE). Proposals selected for funding began work in Fiscal Year 2001 (October 1, 2000). The FRC staff have initiated several characterization efforts intended to support, inform, and educate individual FRC investigators, NABIR principal investigators (PIs), and the broader community of the specific conditions, opportunities, and challenges of this site. These efforts include both physical site characterization as well as numerical simulation (modeling) studies. Geochemical modeling has been conducted with the goal of: (1) providing a baseline understanding of the geochemical behavior of uranium (U); (2) examining the interaction of geochemistry and uranium transport in the subsurface; (3) elucidating some potential pitfalls for researchers with respect to manipulating subsurface environments for the purpose of demonstrating bacterially induced U immobilization. The geochemical modeling effort focused on using existing data and resources and did not involve the collection of new data or samples from the field site. Specifically, the following three tasks have been performed to date. (1) Searching for information on the wastes disposed in to the S-3 ponds. These data are typically found in internal technical reports at the labs and are rarely published in the peer-reviewed literature; thus, this information can be very difficult for the scientific community to access. Therefore, these searches may provide a nontrivial resource to investigators. To that end, some analytical data have already been located and the search for more data will continue. (2) Critical evaluation of thermodynamic data that are needed in the modeling calculations. (3) Generating model simulations to illustrate important aspects of U geochemistry and transport behavior in idealized solutions. This report summarizes the results of the geochemical modeling efforts.

  13. ARM - Field Campaign - 2013 Lower Atmospheric Boundary Layer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lower Atmospheric Boundary Layer Experiment 2012.09.17, Turner, SGP Comments? We would ... Lead Scientist : David Turner For data sets, see below. Abstract Instruments were deployed ...

  14. IAEA TECDOC 055 Outline

    SciTech Connect (OSTI)

    Shull, Doug

    2015-07-13

    An outline of suggestions for updating a version of IAEA-TECDOC-1276 is provided. This update will become IAEA-TECDOC-055, titled ''IAEA handbook for designing and implementing physical protection systems for nuclear material and nuclear facilities.''

  15. Electromagnetic field of a charge intersecting a cold plasma boundary in a waveguide

    SciTech Connect (OSTI)

    Alekhina, Tatiana Yu.; Tyukhtin, Andrey V.

    2011-06-15

    We analyze the electromagnetic field of a charge crossing a boundary between a vacuum and cold plasma in a waveguide. We obtain exact expressions for the field components and the spectral density of the transition radiation. With the steepest descent technique, we investigate the field components. We show that the electromagnetic field has a different structure in a vacuum than in cold plasma. We also develop an algorithm for the computation of the field based on a certain transformation of the integration path. The behavior of the field depending on distance and time and the spectral density depending on frequency are explored for different charge velocities. Some important physical effects are noted. A considerable increase and concentration of the field near the wave front in the plasma is observed for the case of ultrarelativistic particles. In the plasma, the mode envelopes and spectral density show zero points when the charge velocity is within certain limits.

  16. NATIONAL RENEWABLE ENERGY LABORATORY Outline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NATIONAL RENEWABLE ENERGY LABORATORY Outline 3 * Water scarcity and resources in the US * Desalination technologies * "GDsalt" decision support tool * Project status and ...

  17. Outline:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LBNL-55574 A Review of Methods for the Manufacture of Residential Roofing Materials Hashem Akbari, Ronnen Levinson, and Paul Berdahl Heat Island Group Lawrence Berkeley National Laboratory Berkeley, CA 94720 A Report Prepared for: California Energy Commission PIER Program Program Manager: Nancy Jenkins Project Manager: Chris Scruton June 2003 * This study was supported by funding from the California Energy Commissions (CEC) through the U.S. Department of Energy under contract DE-AC03-76SF00098.

  18. Outline

    Office of Scientific and Technical Information (OSTI)

    Chris Scruton, as well as the contributions of our industrial partners including Mr. ... Cu rin g Ch am b e rs Co llat io n Pack ag in g Co at ing s D rye r Sep arat o r Tile M ac ...

  19. Outline

    Office of Scientific and Technical Information (OSTI)

    ... and the surface is treated for either painting or use of the product in a bare metal ... and the surface is treated either for painting or for use as bare metal (Figure 10). ...

  20. Effects of twin boundary mobility on domain microstructure evolution in magnetic shape memory alloys: Phase field simulation

    SciTech Connect (OSTI)

    Jin, Yongmei M.

    2009-02-09

    Effects of twin boundary mobility on domain microstructure evolution during magnetic field-induced deformation in magnetic shape memory alloys are studied by phase field micromagnetic microelastic modeling. The simulations show that different twin boundary mobilities lead to drastically different domain microstructures and evolution pathways, yielding very different magnetization and strain responses, even with opposite signs. The study also reveals complex domain phenomena in magnetic shape memory alloys.

  1. The effect of guide-field and boundary conditions on collisionless magnetic reconnection in a stressed X-point collapse

    SciTech Connect (OSTI)

    Graf von der Pahlen, J.; Tsiklauri, D.

    2014-01-15

    Works of Tsiklauri and Haruki [Phys. Plasmas 15, 102902 (2008); 14, 112905 (2007)] are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed X-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. For zero guide-field, cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved, respectively. It is found that reconnection rates, out-of-plane currents and density in the X-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reached in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case it is shown that an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current changes similarly with increasing guide-field; however for low guide-fields the reconnection current increases, giving an optimal value for the guide-field between 0.1 and 0.2 times the in-plane field in both cases. Also, in the open boundary case, it is found that for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of decoupled particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the X-point are found, ranging in frequency from approximately 1 to 2 ?{sub pe} and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern in the simulation domain. Mapping the out-of-plane electric field along the central lines of the domain over time and applying a 2D Fourier transform reveal that the waves predominantly correspond to the ordinary and the extraordinary mode and hence may correspond to observable radio waves such as solar radio burst fine structure spikes.

  2. Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xiaoli; Kollias, Pavlos; Lewis, Ernie R.

    2015-03-01

    The recent ship-based MAGIC (Marine ARM GCSS Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds) field campaign with the marine-capable Second ARM Mobile Facility (AMF2) deployed on the Horizon Lines cargo container M/V Spirit provided nearly 200 days of intraseasonal high-resolution observations of clouds, precipitation, and marine boundary layer (MBL) structure on multiple legs between Los Angeles, California, and Honolulu, Hawaii. During the deployment, MBL clouds exhibited a much higher frequency of occurrence than other cloud types and occurred more often in the warm season than in the cold season. MBL clouds demonstrated a propensity to produce precipitation, which often evaporatedmore » before reaching the ocean surface. The formation of stratocumulus is strongly correlated to a shallow MBL with a strong inversion and a weak transition, while cumulus formation is associated with a much weaker inversion and stronger transition. The estimated inversion strength is shown to depend seasonally on the potential temperature at 700 hPa. The location of the commencement of systematic MBL decoupling always occurred eastward of the locations of cloud breakup, and the systematic decoupling showed a strong moisture stratification. The entrainment of the dry warm air above the inversion appears to be the dominant factor triggering the systematic decoupling, while surface latent heat flux, precipitation, and diurnal circulation did not play major roles. MBL clouds broke up over a short spatial region due to the changes in the synoptic conditions, implying that in real atmospheric conditions the MBL clouds do not have enough time to evolve as in the idealized models. (auth)« less

  3. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Y.; Collins, D. M.; Tarleton, E.; Hofmann, F.; Tischler, J.; Liu, W.; Xu, R.; Wilkinson, A. J.; Britton, T. B.

    2015-06-24

    The interaction between dislocation pile-ups and grain boundaries gives rise to heterogeneous stress distributions when a structural metal is subjected to mechanical loading. Such stress heterogeneity leads to preferential sites for damage nucleation and therefore is intrinsically linked to the strength and ductility of polycrystalline metals. To date the majority of conclusions have been drawn from 2D experimental investigations at the sample surface, allowing only incomplete observations. Our purpose here is to significantly advance the understanding of such problems by providing quantitative measurements of the effects of dislocation pile up and grain boundary interactions in 3D. This is accomplished throughmore » the application of differential aperture X-ray Laue micro-diffraction (DAXM) and high angular resolution electron backscatter diffraction (HR-EBSD) techniques. Our analysis demonstrates a similar strain characterization capability between DAXM and HR-EBSD and the variation of stress intensity in 3D reveals that different parts of the same grain boundary may have different strengths in resisting slip transfer, likely due to the local grain boundary curvature.« less

  4. Iran outlines oil productive capacity

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    National Iranian Oil Co. (NIOC) tested production limits last month to prove a claim of 4 million bd capacity made at September's meeting of the organization of Petroleum Exporting Countries. Onshore fields account for 3.6 million bd of the total, with offshore fields providing the rest. NIOC plans to expand total capacity to 4.5 million bd by April 1993, consisting of 4 million b/d onshore and 500,000 b/d offshore. Middle East Economic Survey says questions remain about completion dates for gas injection, drilling, and offshore projects, but expansion targets are attainable within the scheduled time. NIOC said some slippage may be unavoidable, but it is confident the objective will be reached by third quarter 1993 at the latest. More than 60 rigs are working or about to be taken under contract to boost development drilling in onshore fields and provide gas injection in some. NIOC has spent $3.2 billion in foreign exchange on the drilling program in the last 2 1/2 years.

  5. Gravity and magnetic anomalies associated with Tertiary volcanism and a Proterozoic crustal boundary, Hopi Buttes volcanic field, Navajo Nation (Arizona)

    SciTech Connect (OSTI)

    Donovan-Ealy, P.F. . Geology Dept.); Hendricks, J.D. )

    1992-01-01

    The Hopi Buttes volcanic field is located in the Navajo Nation of northeastern Arizona, near the southern margin of the Colorado Plateau. Explosive phreatomagmatic eruptions from late Miocene to mid-Pliocene time produced more than 300 maar-diatremes and deposited limburgite tuffs and tuff breccia and monchiquite dikes, necks and flows within a roughly circular 2,500 km[sup 2] area. The volcanic and volcaniclastic rocks make up the middle member of the Bidahochi Formation, whose lower and upper members are lacustrine and fluvial, respectively. The Bidahochi Formation overlies gently dipping Mesozoic sedimentary rocks exposed in the southwestern portion of the volcanic field. Two significant gravity and magnetic anomalies appear within the Hopi Buttes volcanic field that are unlike the signatures of other Tertiary volcanic fields on the Colorado Plateau. A circular 20 mGal negative gravity anomaly is centered over exposed sedimentary rocks in the southwestern portion of the field. The anomaly may be due to the large volume of low density pyroclastic rocks in the volcanic field and/or extensive brecciation of the underlying strata from the violent maar eruptions. The second significant anomaly is the northeast-trending Holbrook lineament, a 5 km-wide gravity and magnetic lineament that crosses the southeastern part of the volcanic field. The lineament reflects substantial gravity and magnetic decreases of 1.67 mGals/km and 100 gammas/km respectively, to the southeast. Preliminary two-dimensional gravity and magnetic modeling suggests the lineament represents a major Proterozoic crustal boundary and may correlate with one of several Proterozoic faults exposed in the transition zone of central Arizona. Gravity modeling shows a 3--5 km step'' in the Moho near the crustal boundary. The decrease in depth of the Moho to the northwest indicates either movement along the fault or magmatic upwelling beneath the volcanic field.

  6. Kaluza-Klein masses of bulk fields with general boundary conditions in AdS{sub 5} space

    SciTech Connect (OSTI)

    Chang, Sanghyeon; Park, Seong Chan; Song, Jeonghyeon

    2005-05-15

    Recently bulk Randall-Sundrum theories with the gauge group SU(2){sub L}xSU(2){sub R}xU(1){sub B-L} have drawn a lot of interest as an alternative to the electroweak symmetry breaking mechanism. These models are in better agreement with electroweak precision data since custodial isospin symmetry on the IR-brane is protected by the extended bulk gauge symmetry. We comprehensively study, in the S{sup 1}/Z{sub 2}xZ{sub 2}{sup '} orbifold, the bulk gauge and fermion fields with the general boundary conditions as well as the bulk and localized mass terms. Master equations to determine the Kaluza-Klein (KK) mass spectra are derived without any approximation, which is an important basic step for various phenomenologies at high energy colliders. The correspondence between orbifold boundary conditions and localized mass terms is demonstrated not only in the gauge sector but also in the fermion sector. As the localized mass increases, the first KK fermion mass is shown to decrease while the first KK gauge boson mass is shown to increase. The degree of gauge coupling universality violation is computed to be small in most parameter space, and its correlation with the mass difference between the top quark and light quark KK mode is also studied.

  7. SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS

    U.S. Energy Information Administration (EIA) Indexed Site

    The VBA code provided at the bottom of this document is an updated version (from ArcGIS ... but with "smu" suffix added to name. The first layer must contain the well points ...

  8. PERCENT FEDERAL LAND FOR OIL/GAS FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Do Until pInFeat Is Nothing Dim dTotalFedLand As Double dTotalFedLand 0 Dim l As Long Dim lLayersIntersected As Long lLayersIntersected 0 For l 0 To pFedGroupLayer.Count - 1 ...

  9. Boundary Layer Structure:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Structure: a comparison between methods and sites Thiago Biscaro Suzane de Sá Jae-In Song Shaoyue "Emily" Qiu Mentors: Virendra Ghate and Ewan O'Connor July 24 2015 1 st ever ARM Summer Training Outline * IntroducQon * Methodology * Results - SGP - MAO - Comparison between the 2 sites * Conclusions INTRODUCTION Focus: esQmates of PBL height Boundary Layer: "The boUom layer of the troposphere that is in contact with the surface of the earth." (AMS, Glossary of

  10. Annual Report Outline (IDIQ Attachment J-10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Outline (IDIQ Attachment J-10) Annual Report Outline (IDIQ Attachment J-10) Document offers an annual report outline sample for an energy savings performance contract. Microsoft Office document icon mv_annual_report.doc More Documents & Publications Post-Installation Report Outline (IDIQ Attachment J-9) Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) ESPC Task Order Financial Schedules (IDIQ Attachment J-6)

  11. Power Line Plan of Development Outline | Open Energy Information

    Open Energy Info (EERE)

    Line Plan of Development Outline Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Power Line Plan of Development OutlineLegal...

  12. DOE Outlines Research Needed to Improve Solar Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlines Research Needed to Improve Solar Energy Technologies DOE Outlines Research Needed to Improve Solar Energy Technologies August 12, 2005 - 2:39pm Addthis WASHINGTON, D.C. - ...

  13. Measurement and Verification Plan and Savings Calculations Methods Outline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (IDIQ Attachment J-8) | Department of Energy Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Document outlines measurement and verification planning and savings calculation methods for an energy savings performance contract. Microsoft Office document icon Download the M&V Plan and Savings Calculations Methods Outline. More Documents &

  14. Total outlines world exploration, production challenges, approaches

    SciTech Connect (OSTI)

    Not Available

    1992-07-27

    This paper describes the current international picture of exploration/production; expresses the most prominent challenges the author sees emerging from changing conditions, and discusses briefly how the industry can and does answer these challenges. Geologic status---first, oil and gas provinces are obviously maturing. The peak of discoveries in the U.K. North Sea is well past, and if yearly additions still appear more or less stable, this happens at the expense of a larger number of exploratory wells being drilled. This is going on with variations in a number of areas. Second, the world is shrinking in terms of new prospective basins. For instance, the Norwegian Barents Sea looked so promising a few years ago but has yet to yield a major field. The case is not unique, and everyone can make his own list of disappointments: East African rift basins, Paraguay, and so on. One article pointed out that the last decade's reserve addition from wildcat oil discoveries was down by almost 40% from additions registered during 1972-81. This excluded the USSR, Eastern Europe, China, Mexico, and a couple of Middle East countries.

  15. Phase coexistence and transformations in field-cooled ternary piezoelectric single crystals near the morphotropic phase boundary

    SciTech Connect (OSTI)

    Luo, Chengtao; Wang, Yaojin Wang, Zhiguang; Ge, Wenwei; Li, Jiefang; Viehland, D.; Luo, Haosu

    2014-12-08

    Structural phase transformations in (100)-oriented Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} single crystals have been investigated by X-ray diffraction. A cubic (C) → tetragonal (T) → monoclinic-C (M{sub C}) transformation sequence was observed in the field-cooled condition. Two phase coexistence regions of C + T and T + M{sub C} were found. In addition to an increase in the C → T phase transition temperature and a decrease of the T → M{sub C} one, a broadening of the coexistence regions was also found with increasing field. This broadening can be explained by the presence of polar nano regions within the C, T, and M{sub C} phase regions.

  16. Electric field determination in the plasma-antenna boundary of a lower-hybrid wave launcher in Tore Supra through dynamic Stark-effect spectroscopy

    SciTech Connect (OSTI)

    Martin, Elijah H; Goniche, M.; Klepper, C Christopher; Hillairet, J.; Isler, Ralph C; Caughman, J. B. O.; Colas, L.; Ekedahl, A.; Colledani, G.; Lotte, Ph.; Litaudon, X; Hillis, Donald Lee; Harris, Jeffrey H

    2015-01-01

    Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be important, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies ($E_{LH}$) was announced (Phys. Rev. Lett., 110:215005, 2013). The measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the processing of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique is investigated. It was found through an analysis of numerous Tore Supra pulses that good quantitative agreement exists between the measured and full-wave modeled $E_{LH}$ when the launched power exceeds 0.5MW. For low power the measurement becomes formidable utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.

  17. Electric field determination in the plasma-antenna boundary of a lower-hybrid wave launcher in Tore Supra through dynamic Stark-effect spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martin, Elijah H; Goniche, M.; Klepper, C Christopher; Hillairet, J.; Isler, Ralph C; Caughman, J. B. O.; Colas, L.; Ekedahl, A.; Colledani, G.; Lotte, Ph.; et al

    2015-01-01

    Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be important, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies (more » $$E_{LH}$$) was announced (Phys. Rev. Lett., 110:215005, 2013). The measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the processing of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique is investigated. It was found through an analysis of numerous Tore Supra pulses that good quantitative agreement exists between the measured and full-wave modeled $$E_{LH}$$ when the launched power exceeds 0.5MW. For low power the measurement becomes formidable utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.« less

  18. Method and system for detecting polygon boundaries of structures in images as particle tracks through fields of corners and pixel gradients

    DOE Patents [OSTI]

    Paglieroni, David W.; Manay, Siddharth

    2011-12-20

    A stochastic method and system for detecting polygon structures in images, by detecting a set of best matching corners of predetermined acuteness .alpha. of a polygon model from a set of similarity scores based on GDM features of corners, and tracking polygon boundaries as particle tracks using a sequential Monte Carlo approach. The tracking involves initializing polygon boundary tracking by selecting pairs of corners from the set of best matching corners to define a first side of a corresponding polygon boundary; tracking all intermediate sides of the polygon boundaries using a particle filter, and terminating polygon boundary tracking by determining the last side of the tracked polygon boundaries to close the polygon boundaries. The particle tracks are then blended to determine polygon matches, which may be made available, such as to a user, for ranking and inspection.

  19. Solar Energy Plan of Development Outline | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Solar Energy Plan of Development OutlineLegal Published NA Year Signed or Took Effect 2012...

  20. Vice President Biden Outlines Funding for Smart Grid Initiatives |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Outlines Funding for Smart Grid Initiatives Vice President Biden Outlines Funding for Smart Grid Initiatives April 16, 2009 - 12:00am Addthis Washington, DC - Vice President Joe Biden, on a visit to Jefferson City, Missouri, today with Commerce Secretary Gary Locke, detailed plans by the Department of Energy to develop a smart, strong and secure electrical grid, which will create new jobs and help deliver reliable power more effectively with less impact on the

  1. New Report Outlines Potential of Future Water Resource Recovery Facilities

    Broader source: Energy.gov [DOE]

    A new report from a workshop held jointly by the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the National Science Foundation (NSF) outlines a range of research and actions needed to transform today’s water treatment plants into water resource recovery facilities.

  2. Report Outlines Promising Opportunities for Addressing Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Outlines Promising Opportunities for Addressing Climate Change For more information contact: George Douglas, 303-275-4096 email: George Douglas Golden, Colo., Nov. 15, 2000 - Researchers from five U.S. Department of Energy national laboratories, including the National Renewable Energy Laboratory, have issued a major report that finds the United States can make impressive strides toward addressing climate change through smart policies and technologies. The report, "Scenarios for a

  3. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  4. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:www.nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  5. Electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary

    SciTech Connect (OSTI)

    Iamsasri, Thanakorn; Jones, Jacob L.; Tutuncu, Goknur; Uthaisar, Chunmanus; Pojprapai, Soodkhet; Wongsaenmai, Supattra

    2015-01-14

    The electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary (PPB) were observed using in situ X-ray diffraction. The ratio of monoclinic to tetragonal phase fraction was used as an indicator of the extent and reversibility of the phase transitions. The reversibility of the phase transition was greater in compositions further from the PPB. These results demonstrate that the field-induced phase transition is one of the origins of high piezoelectric properties in lead-free ferroelectric materials.

  6. Workshop Outline Resilient Electric Distribution Grid R&D

    Energy Savers [EERE]

    Ver: 6 June 2014 Workshop Outline Resilient Electric Distribution Grid R&D Office of Electricity Delivery and Energy Reliability (OE) U.S. Department of Energy (DOE) Purpose  To identify key R&D activities for enhancing resilience of electric distribution grids to natural disasters: - Share current practices by distribution utilities - Share ongoing activities on resilient electric distribution grid R&D - Define R&D gaps - Identify key R&D activities to fill the gaps

  7. Post-Installation Report Outline (IDIQ Attachment J-9) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Installation Report Outline (IDIQ Attachment J-9) Post-Installation Report Outline (IDIQ Attachment J-9) Document offers a post-installation report outline sample for an energy savings performance contract. Microsoft Office document icon mv_post_report.doc More Documents & Publications Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Annual Report Outline (IDIQ Attachment J-10) ESPC Task Order Financial Schedules (IDIQ Attachment

  8. CLASIC OUTLINE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of severe weather or icing conditions, or if the low-cloud cover is less than about 10%. ... If power and weight requirement permit, a Rosemount icing detector (RICE) should be added ...

  9. Plan Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sectors. BBEE programs are growing in prominence around the country, using a substantial body of knowledge and experience associated with behavior change that is rooted in the...

  10. Plan Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    end-use customers for measure installation or project implementation. BPA Action Plan for Energy Efficiency vi EXECUTIVE SUMMARY The Bonneville Power Administration is a leader in...

  11. On the interaction of solutes with grain boundaries

    SciTech Connect (OSTI)

    Dingreville, Remi Philippe Michel; Berbenni, Stephane

    2015-11-01

    Solute segregation to grain boundaries is considered by modeling solute atoms as misfitting inclusions within a disclination structural unit model describing the grain boundary structure and its intrinsic stress field. The solute distribution around grain boundaries is described through Fermi–Dirac statistics of site occupancy. The susceptibility of hydrogen segregation to symmetric tilt grain boundaries is discussed in terms of the misorientation angle, the defect type characteristics at the grain boundary, temperature, and the prescribed bulk hydrogen fraction of occupied sites. Through this formalism, it is found that hydrogen trapping on grain boundaries clearly correlates with the grain boundary structure (i.e. type of structural unit composing the grain boundary), and the associated grain boundary misorientation. Specifically, for symmetric tilt grain boundaries about the [001] axis, grain boundaries composed of both B and C structural units show a lower segregation susceptibility than other grain boundaries. A direct correlation between the segregation susceptibility and the intrinsic net defect density is provided through the Frank–Bilby formalism. Moreover, the present formulation could prove to be a simple and useful model to identify classes of grain boundaries relevant to grain boundary engineering.

  12. On the interaction of solutes with grain boundaries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dingreville, Remi Philippe Michel; Berbenni, Stephane

    2015-11-01

    Solute segregation to grain boundaries is considered by modeling solute atoms as misfitting inclusions within a disclination structural unit model describing the grain boundary structure and its intrinsic stress field. The solute distribution around grain boundaries is described through Fermi–Dirac statistics of site occupancy. The susceptibility of hydrogen segregation to symmetric tilt grain boundaries is discussed in terms of the misorientation angle, the defect type characteristics at the grain boundary, temperature, and the prescribed bulk hydrogen fraction of occupied sites. Through this formalism, it is found that hydrogen trapping on grain boundaries clearly correlates with the grain boundary structure (i.e.more » type of structural unit composing the grain boundary), and the associated grain boundary misorientation. Specifically, for symmetric tilt grain boundaries about the [001] axis, grain boundaries composed of both B and C structural units show a lower segregation susceptibility than other grain boundaries. A direct correlation between the segregation susceptibility and the intrinsic net defect density is provided through the Frank–Bilby formalism. Moreover, the present formulation could prove to be a simple and useful model to identify classes of grain boundaries relevant to grain boundary engineering.« less

  13. Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC

    Office of Scientific and Technical Information (OSTI)

    Field Campaign (Journal Article) | SciTech Connect Journal Article: Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign Citation Details In-Document Search Title: Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign The recent ship-based MAGIC (Marine ARM GCSS Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds) field campaign with the marine-capable Second ARM Mobile Facility (AMF2) deployed on the

  14. Boundary Entropy Can Increase Under Bulk RG Flow (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Boundary Entropy Can Increase Under Bulk RG Flow Citation Details In-Document Search Title: Boundary Entropy Can Increase Under Bulk RG Flow The boundary entropy log(g) of a critical one-dimensional quantum system (or two-dimensional conformal field theory) is known to decrease under renormalization group (RG) flow of the boundary theory. We study instead the behavior of the boundary entropy as the bulk theory flows between two nearby critical points. We use conformal

  15. MICROBOONE PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline * The detector and beam - MicroBooNE TPC - Booster and NuMI beams at Fermilab * Oscillation physics - Shed light on the ...

  16. Implementing Effective Enterprise Security Governance Outline for Energy Sector Executives and Boards

    Energy Savers [EERE]

    Implementing Effective Enterprise Security Governance Outline for Energy Sector Executives and Boards Introduction As recent attacks, Presidential Executive Order for Improving Critical Infrastructure Cybersecurity, and Presidential Policy Directive 21 for Critical Infrastructure Security and Resilience have illustrated, managing security risks to our most important organizations and systems, including the electric grid, has become a national security priority. Enterprise security program

  17. Boundary Layer Cloud Turbulence Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Cloud Turbulence Characteristics Virendra Ghate Bruce Albrecht Parameter Observational Readiness (/10) Modeling Need (/10) Cloud Boundaries 9 9 Cloud Fraction Variance Skewness Up/Downdraft coverage Dominant Freq. signal Dissipation rate ??? Observation-Modeling Interface

  18. Cell boundary fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  19. LLNL researchers outline what happens during metal 3D printing, enhancing

    National Nuclear Security Administration (NNSA)

    confidence | National Nuclear Security Administration researchers outline what happens during metal 3D printing, enhancing confidence Friday, February 19, 2016 - 12:00am NNSA Blog From left, Lawrence Livermore National Laboratory researchers Ibo Matthews, a principal investigator leading the lab's effort on the joint open source software project; Wayne King, director of the Accelerated Certification of Additively Manufactured Metals Initiative; and Gabe Guss, engineering associate - examine

  20. Handbook Outlines Proper Handling, Storage and Distribution of E85 - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Handbook Outlines Proper Handling, Storage and Distribution of E85 August 21, 2008 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently updated the "Handbook for Handling, Storing, and Dispensing E85," a comprehensive booklet that details the proper and safe use of E85, a domestically produced alternative fuel composed of 85 percent ethanol and 15 percent gasoline. Increasing gasoline prices and a growing number of initiatives have

  1. Cell boundary fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  2. Model curriculum outline for Alternatively Fueled Vehicle (AFV) automotive technician training in light and medium duty CNG and LPG

    SciTech Connect (OSTI)

    1997-04-01

    This model curriculum outline was developed using a turbo-DACUM (Developing a Curriculum) process which utilizes practicing experts to undertake a comprehensive job and task analysis. The job and task analysis serves to establish current baseline data accurately and to improve both the process and the product of the job through constant and continuous improvement of training. The DACUM process is based on the following assumptions: (1) Expert workers are the best source for task analysis. (2) Any occupation can be described effectively in terms of tasks. (3) All tasks imply knowledge, skills, and attitudes/values. A DACUM panel, comprised of six experienced and knowledgeable technicians who are presently working in the field, was given an orientation to the DACUM process. The panel then identified, verified, and sequenced all the necessary job duty areas and tasks. The broad duty categories were rated according to relative importance and assigned percentage ratings in priority order. The panel then rated every task for each of the duties on a scale of 1 to 3. A rating of 3 indicates an {open_quotes}essential{close_quotes} task, a rating of 2 indicates an {open_quotes}important{close_quotes} task, and a rating of 1 indicates a {open_quotes}desirable{close_quotes} task.

  3. Electric-field-induced strain contributions in morphotropic phase boundary composition of (Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}-BaTiO{sub 3} during poling

    SciTech Connect (OSTI)

    Khansur, Neamul H.; Daniels, John E.; Hinterstein, Manuel; Wang, Zhiyang; Groh, Claudia; Jo, Wook

    2015-12-14

    The microscopic contributions to the electric-field-induced macroscopic strain in a morphotropic 0.93(Bi{sub 1/2}Na{sub 1/2}TiO{sub 3})−0.07(BaTiO{sub 3}) with a mixed rhombohedral and tetragonal structure have been quantified using full pattern Rietveld refinement of in situ high-energy x-ray diffraction data. The analysis methodology allows a quantification of all strain mechanisms for each phase in a morphotropic composition and is applicable to use in a wide variety of piezoelectric compositions. It is shown that during the poling of this material 24%, 44%, and 32% of the total macroscopic strain is generated from lattice strain, domain switching, and phase transformation strains, respectively. The results also suggest that the tetragonal phase contributes the most to extrinsic domain switching strain, whereas the lattice strain primarily stems from the rhombohedral phase. The analysis also suggests that almost 32% of the total strain is lost or is a one-time effect due to the irreversible nature of the electric-field-induced phase transformation in the current composition. This information is relevant to on-going compositional development strategies to harness the electric-field-induced phase transformation strain of (Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}-based lead-free piezoelectric materials for actuator applications.

  4. Adiabatic model and design of a translating field reversed configuration

    SciTech Connect (OSTI)

    Intrator, T. P.; Siemon, R. E.; Sieck, P. E.

    2008-04-15

    We apply an adiabatic evolution model to predict the behavior of a field reversed configuration (FRC) during decompression and translation, as well as during boundary compression. Semi-empirical scaling laws, which were developed and benchmarked primarily for collisionless FRCs, are expected to remain valid even for the collisional regime of FRX-L experiment. We use this approach to outline the design implications for FRX-L, the high density translated FRC experiment at Los Alamos National Laboratory. A conical theta coil is used to accelerate the FRC to the largest practical velocity so it can enter a mirror bounded compression region, where it must be a suitable target for a magnetized target fusion (MTF) implosion. FRX-L provides the physics basis for the integrated MTF plasma compression experiment at the Shiva-Star pulsed power facility at Kirtland Air Force Research Laboratory, where the FRC will be compressed inside a flux conserving cylindrical shell.

  5. A proposed outline and review schedule for an integrated FS-EIS

    SciTech Connect (OSTI)

    Ambrose, R.; Cunningham, M.; Hanrahan, T. )

    1993-01-01

    Both CERCLA and NEPA have specific requirements for the information content, format, and review schedule of their respective Feasibility Study (FS) and Environmental Impact Statement (EIS) documents. The FS serves as the mechanism for the development, screening, and detailed evaluation of alternative remedial actions, while the EIS provides a discussion of significant environmental impacts and presents alternatives which would avoid or minimize adverse impacts or enhance the quality of the human environment. In some cases, the CERCLA and NEPA processes have been expressed as functionally equivalent'', and the need for NEPA questioned in instances where CERCLA compliance is required. This argument has been presented on the grounds that the CERCLA process addresses the information content needs of NEPA. However, in cases where EIS documents are required, specific information needs that are called for under NEPA are not typically addressed or readily fitted into the FS format (e.g. socioeconomic impacts). In addition, review schedules for an FS and an EIS differ; public comment opportunities and length of comment period differ. Where certain Federal agencies require that CERCLA and NEPA be integrated, there is often the guidance that NEPA be fitted into the CERCLA process. Using this guidance, an outline has been developed which integrates the information content needs of an FS and EIS, while maintaining, as closely as possible, the integrity of the FS format.

  6. Field observations and lessons learned

    SciTech Connect (OSTI)

    Nielsen, Joh B

    2010-01-01

    This presentation outlines observations and lessons learned from the Megaports program. It provides: (1) details of field and technical observations collected during LANL field activities at ports around the world and details of observations collected during radiation detections system testing at Los Alamos National Laboratory; (2) provides suggestions for improvement and efficiency; and (3) discusses possible program execution changes for more effective operations.

  7. Appendix TFIELD: Transmissivity Fields

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appendix TFIELD-2014 Transmissivity Fields United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix TFIELD-2014 Table of Contents TFIELD-1.0 Overview of the T-field Development, Calibration, and Mining Modification Process TFIELD-2.0 Geologic Data TFIELD-2.1 Culebra Hydrogeologic Setting TFIELD-2.2 Refinement of Geologic Boundaries TFIELD-2.2.1 Rustler Halite Margins TFIELD-2.2.2 Salado

  8. ARM - Field Campaign - Boundary Layer CO2 Using CW Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fiber lasers with advanced communication signal recovery techniques, ITT developed a new level of capability to detect small signals and reject common sources of noise, including...

  9. Boundary conformal field theory and tunneling of edge quasiparticles...

    Office of Scientific and Technical Information (OSTI)

    of Physics, University of California, Santa Barbara, CA 93106 3 ; Nayak, Chetan 2 ; Department of Physics, University of California, Santa Barbara, CA 93106 4 + Show Author ...

  10. Compressional boundaries in the Earth's foreshock

    SciTech Connect (OSTI)

    Rojas-Castillo, D.; Blanco-Cano, X.; Kajdic, P.; Omidi, N.

    2013-06-13

    The terrestrial foreshock is a highly dynamic region populated by particles, waves and non-linear structures such as shocklets, SLAMS, hot flow anomalies, cavities and cavitons. Recently a new structure named foreshock compressional boundary (FCB) was reported in global hybrid simulations by Omidi et al. (2009). This structure represents a transition region that separates the highly disturbed foreshock plasma from pristine solar wind or from the region of field-aligned ion beams. The FCB is associated with a strong compression of magnetic field and density. Besides the enhancements in the field and density, the FCB also shows a region where these two quantities decrease below the ambient solar wind (SW) values. Here, we study a FCB observed by Cluster-1. This FCB shows that although sometimes FCBs are transition regions between the pristine solar wind plasma and the foreshock plasma, in this case the FCB separates a region with large amplitude waves from regions with high frequency (f{approx}1.7 Hz) small amplitude waves. We analyze the FCB properties, ion distributions inside them, and the waves near the structure.

  11. Boundary Layer The U.S. Department of Energy's Atmospheric Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol, and Precipitation in the Marine Boundary Layer The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is sponsoring a 20-month field study on Graciosa Island in the Azores. Scientists involved in the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign are using the ARM Mobile Facility-a portable climate observatory-to study low-level clouds and aerosol in a marine environment. Collaborators from the Regional

  12. Free boundary, high beta equilibrium in a large aspect ratio...

    Office of Scientific and Technical Information (OSTI)

    circular plasma boundary Citation Details In-Document Search Title: Free boundary, high beta equilibrium in a large aspect ratio tokamak with nearly circular plasma boundary An ...

  13. ARM - Measurement - Planetary boundary layer height

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsPlanetary boundary layer height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Planetary boundary layer height Top of the planetary boundary layer; also known as depth or height of the mixing layer. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  14. Thermal boundary conductance accumulation and interfacial phonon...

    Office of Scientific and Technical Information (OSTI)

    and theory Citation Details In-Document Search Title: Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory Authors: ...

  15. DRAFT OUTLINE of UPDATED

    National Nuclear Security Administration (NNSA)

    ... shielding, ion column, and tubing for saline solution) Figure C- 55 Gallon Steel Drum ... for powder or pellets) Figure C-Power Reactor Spent Fuel (Shown with personnel ...

  16. Contract Management Plan Outline

    Energy Savers [EERE]

    of all necessary actions for effective contracting, ensuring compliance with the terms of the contract, and safeguarding the interests of the United States in its...

  17. Root cause outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 Signature page ... Error Bookmark not defined. Appendix A Capital Allocation Board Quarterly Status Reports Appendix B Root Cause Analysis...

  18. Environmental boundaries to energy development

    SciTech Connect (OSTI)

    Trivelpiece, A.W.

    1989-01-01

    Public concern about the environment, health and safety consequences of energy technology has been growing steadily for more than two decades in the United States. This concern forms an important boundary condition as the United States seeks to develop a new National Energy Strategy. Furthermore, the international aspects of the energy/environment interface such as acid rain global climate change and stratospheric ozone depletion are very prominent in US thinking. In fact, the energy systems of the world are becoming more closely coupled environmentally and otherwise. Now where is this coupling more important than that between the industrialized and developing world; the choices made by each will have profound effects on the other. The development of energy technologies compatible with both economic growth and improving and sustaining environmental quality represents a major R D challenge to the US and USSR. Decision about adoption of new technology and R D priorities can be improved by better measurements of how energy sources and uses are changing throughout the world and better methods to project the potential consequences of these decisions. Such projection require understanding relative risks of alternating existing and evolving technologies. All of these R D areas, technology improvement energy system monitoring and projection and comparative risk assessment are the topics of this seminar. Progress in each may be enhanced by collaboration and cooperation between our two countries. 7 refs., 27 figs., 5 tabs.

  19. The 1987 Federal field exercise: The DOE experience

    SciTech Connect (OSTI)

    Adler, M.V.; Gant, K.S.

    1989-06-01

    The second full-scale field exercise of the Federal Radiological Emergency Response Plan (FRERP) was held at the Zion Nuclear Power Station, Zion, Illinois, in June 1987. The exercise incorporated the annual compliance exercise for the Zion plant and involved the operating utility, Commonwealth Edison Company, the states of Illinois and Wisconsin, local governments, volunteer groups, and representatives from 12 federal agencies. The 3-day exercise was played from many locations in the Zion area; Springfield, Illinois; Madison, Wisconsin; and Washington, DC. Approximately 1000 people participated in the exercise, which used a scenario in which an accident at the plant resulted in the release of radioactive material outside the plant boundary. The US Department of Energy (DOE) had major responsibilities during the planning, playing, and critiquing of the exercise; these functions are outlined in the report. This document describes the DOE participation in the planning and response during the exercise. During a radiological emergency, the FRERP gives DOE the responsibility for coordinating the federal radiological monitoring and assessment activities in support of the states and the cognizant federal agency. At Zion, a self-sufficient Federal Radiological Monitoring and Assessment Center was established by DOE at a nearby fairground in which over 200 people from DOE, the two states, and other federal agencies participated. Before the field exercise, a tabletop exercise and a dry run were held for training purposes. 5 refs., 6 figs.

  20. Cyclone separator having boundary layer turbulence control

    DOE Patents [OSTI]

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  1. Boundary conditions for the subdiffusion equation

    SciTech Connect (OSTI)

    Shkilev, V. P.

    2013-04-15

    The boundary conditions for the subdiffusion equations are formulated using the continuous-time random walk model, as well as several versions of the random walk model on an irregular lattice. It is shown that the boundary conditions for the same equation in different models have different forms, and this difference considerably affects the solutions of this equation.

  2. PIA - Savannah River Remediation Accreditation Boundary (SRR AB) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Remediation Accreditation Boundary (SRR AB) PIA - Savannah River Remediation Accreditation Boundary (SRR AB) PIA - Savannah River Remediation Accreditation Boundary (SRR AB) PDF icon PIA - Savannah River Remediation Accreditation Boundary (SRR AB) More Documents & Publications PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - WEB Physical Security Major Application Occupational Medical Surveillance System (OMSS) PIA, Idaho

  3. Property:Building/Boundaries | Open Energy Information

    Open Energy Info (EERE)

    "BuildingBoundaries" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Several buildings + Sweden Building 05K0002 + Part of a building +...

  4. Calculation of grain boundary normals directly from 3D microstructure images

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lieberman, E. J.; Rollett, A. D.; Lebensohn, R. A.; Kober, E. M.

    2015-03-11

    The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracymore » of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.« less

  5. Calculation of grain boundary normals directly from 3D microstructure images

    SciTech Connect (OSTI)

    Lieberman, E. J.; Rollett, A. D.; Lebensohn, R. A.; Kober, E. M.

    2015-03-11

    The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracy of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.

  6. Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009) Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009) ...

  7. Friction of Steel Sliding Under Boundary Lubrication Regime in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Steel Sliding Under Boundary Lubrication Regime in Commercial Gear Oils at Elevated Temperatures Friction of Steel Sliding Under Boundary Lubrication Regime in Commercial Gear ...

  8. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production Report documenting the ...

  9. EA-1973: Kootenai River Restoration at Bonners Ferry, Boundary...

    Energy Savers [EERE]

    73: Kootenai River Restoration at Bonners Ferry, Boundary County, Idaho EA-1973: Kootenai River Restoration at Bonners Ferry, Boundary County, Idaho Summary Bonneville Power...

  10. Suppression of Grain Boundaries in Graphene Growth on Superstructured...

    Office of Scientific and Technical Information (OSTI)

    Suppression of Grain Boundaries in Graphene Growth on Superstructured Mn-Cu(111) Surface Title: Suppression of Grain Boundaries in Graphene Growth on Superstructured Mn-Cu(111) ...

  11. A dual mass flux framework for boundary layer convection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A dual mass flux framework for boundary layer convection Neggers, Roel European Centre for Medium-range Weather Forecasts (ECMWF) Category: Modeling A new convective boundary layer...

  12. Plasma Transport at the Magnetospheric Flank Boundary. Final report

    SciTech Connect (OSTI)

    Otto, Antonius

    2012-04-23

    Progress is highlighted in these areas: 1. Model of magnetic reconnection induced by three-dimensional Kelvin Helmholtz (KH) modes at the magnetospheric flank boundary; 2. Quantitative evaluation of mass transport from the magnetosheath onto closed geomagnetic field for northward IMF; 3. Comparison of mass transfer by cusp reconnection and Flank Kelvin Helmholtz modes; 4. Entropy constraint and plasma transport in the magnetotail - a new mechanism for current sheet thinning; 5. Test particle model for mass transport onto closed geomagnetic field for northward IMF; 6. Influence of density asymmetry and magnetic shear on (a) the linear and nonlinear growth of 3D Kelvin Helmholtz (KH) modes, and (b) three-dimensional KH mediated mass transport; 7. Examination of entropy and plasma transport in the magnetotail; 8. Entropy change and plasma transport by KH mediated reconnection - mixing and heating of plasma; 9. Entropy and plasma transport in the magnetotail - tail reconnection; and, 10. Wave coupling at the magnetospheric boundary and generation of kinetic Alfven waves.

  13. Boundary Layer Cloudiness Parameterizations Using ARM Observations

    SciTech Connect (OSTI)

    Bruce Albrecht

    2004-09-15

    This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.

  14. Evolution of twisted magnetic fields

    SciTech Connect (OSTI)

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  15. Surface and grain boundary scattering in nanometric Cu thin films: A quantitative analysis including twin boundaries

    SciTech Connect (OSTI)

    Barmak, Katayun [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 and Department of Materials Science and Engineering and Materials Research Science and Engineering Center, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Darbal, Amith [Department of Materials Science and Engineering and Materials Research Science and Engineering Center, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Ganesh, Kameswaran J.; Ferreira, Paulo J. [Materials Science and Engineering, The University of Texas at Austin, 1 University Station, Austin, Texas 78712 (United States); Rickman, Jeffrey M. [Department of Materials Science and Engineering and Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Sun, Tik; Yao, Bo; Warren, Andrew P.; Coffey, Kevin R., E-mail: kb2612@columbia.edu [Department of Materials Science and Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816 (United States)

    2014-11-01

    The relative contributions of various defects to the measured resistivity in nanocrystalline Cu were investigated, including a quantitative account of twin-boundary scattering. It has been difficult to quantitatively assess the impact twin boundary scattering has on the classical size effect of electrical resistivity, due to limitations in characterizing twin boundaries in nanocrystalline Cu. In this study, crystal orientation maps of nanocrystalline Cu films were obtained via precession-assisted electron diffraction in the transmission electron microscope. These orientation images were used to characterize grain boundaries and to measure the average grain size of a microstructure, with and without considering twin boundaries. The results of these studies indicate that the contribution from grain-boundary scattering is the dominant factor (as compared to surface scattering) leading to enhanced resistivity. The resistivity data can be well-described by the combined FuchsSondheimer surface scattering model and MayadasShatzkes grain-boundary scattering model using Matthiessen's rule with a surface specularity coefficient of p?=?0.48 and a grain-boundary reflection coefficient of R?=?0.26.

  16. Wireless boundary monitor system and method

    DOE Patents [OSTI]

    Haynes, Howard D.; Ayers, Curtis W.

    1997-01-01

    A wireless boundary monitor system used to monitor the integrity of a boundary surrounding an area uses at least two housings having at least one transmitting means for emitting ultrasonic pressure waves to a medium. Each of the housings has a plurality of receiving means for sensing the pressure waves in the medium. The transmitting means and the receiving means of each housing are aimable and communicably linked. At least one of the housings is equipped with a local alarm means for emitting a first alarm indication whereby, when the pressure waves propagating from a transmitting means to a receiving means are sufficiently blocked by an object a local alarm means or a remote alarm means or a combination thereof emit respective alarm indications. The system may be reset either manually or automatically. This wireless boundary monitor system has useful applications in both indoor and outdoor environments.

  17. Wireless boundary monitor system and method

    DOE Patents [OSTI]

    Haynes, H.D.; Ayers, C.W.

    1997-12-09

    A wireless boundary monitor system used to monitor the integrity of a boundary surrounding an area uses at least two housings having at least one transmitting means for emitting ultrasonic pressure waves to a medium. Each of the housings has a plurality of receiving means for sensing the pressure waves in the medium. The transmitting means and the receiving means of each housing are aimable and communicably linked. At least one of the housings is equipped with a local alarm means for emitting a first alarm indication whereby, when the pressure waves propagating from a transmitting means to a receiving means are sufficiently blocked by an object a local alarm means or a remote alarm means or a combination thereof emit respective alarm indications. The system may be reset either manually or automatically. This wireless boundary monitor system has useful applications in both indoor and outdoor environments. 4 figs.

  18. Bursting frequency prediction in turbulent boundary layers

    SciTech Connect (OSTI)

    LIOU,WILLIAM W.; FANG,YICHUNG

    2000-02-01

    The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.

  19. Multiscale simulation of xenon diffusion and grain boundary segregation in UO₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andersson, David A.; Tonks, Michael R.; Casillas, Luis; Vyas, Shyam; Nerikar, Pankaj; Uberuaga, Blas P.; Stanek, Christopher R.

    2015-07-01

    In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. The segregation rate is controlled by diffusion of fission gas atoms through the grains and interaction with the boundaries. Based on the mechanisms established from earlier density functional theory (DFT) and empirical potential calculations, diffusion models for xenon (Xe), uranium (U) vacancies and U interstitials in UO₂ have been derived for both intrinsic (no irradiation) and irradiation conditions. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model formore » the interaction between Xe atoms and three different grain boundaries in UO₂ (Σ5 tilt, Σ5 twist and a high angle random boundary), as derived from atomistic calculations. The present model does not attempt to capture nucleation or growth of fission gas bubbles at the grain boundaries. The point defect and Xe diffusion and segregation models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as to simulate Xe redistribution for a few simple microstructures.« less

  20. Quantifying the influence of twin boundaries on the deformation of nanocrystalline copper using atomistic simulations

    SciTech Connect (OSTI)

    Tucker, Garritt J.; Foiles, Stephen Martin

    2014-09-22

    Over the past decade, numerous efforts have sought to understand the influence of twin boundaries on the behavior of polycrystalline materials. Early results suggested that twin boundaries within nanocrystalline face-centered cubic metals have a considerable effect on material behavior by altering the activated deformation mechanisms. In this work, we employ molecular dynamics simulations to elucidate the role of twin boundaries on the deformation of <100> columnar nanocrystalline copper at room temperature under uniaxial strain. We leverage non-local kinematic metrics, formulated from continuum mechanics theory, to compute atomically-resolved rotational and strain fields during plastic deformation. These results are then utilized to compute the distribution of various nanoscale mechanisms during straining, and quantitatively resolve their contribution to the total strain accommodation within the microstructure, highlighting the fundamental role of twin boundaries. Our results show that nanoscale twins influence nanocrystalline copper by altering the cooperation of fundamental deformation mechanisms and their contributed role in strain accommodation, and we present new methods for extracting useful information from atomistic simulations. The simulation results suggest a tension–compression asymmetry in the distribution of deformation mechanisms and strain accommodation by either dislocations or twin boundary mechanisms. In highly twinned microstructures, twin boundary migration can become a significant deformation mode, in comparison to lattice dislocation plasticity in non-twinned columnar microstructures, especially during compression.

  1. Quantifying the influence of twin boundaries on the deformation of nanocrystalline copper using atomistic simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tucker, Garritt J.; Foiles, Stephen Martin

    2014-09-22

    Over the past decade, numerous efforts have sought to understand the influence of twin boundaries on the behavior of polycrystalline materials. Early results suggested that twin boundaries within nanocrystalline face-centered cubic metals have a considerable effect on material behavior by altering the activated deformation mechanisms. In this work, we employ molecular dynamics simulations to elucidate the role of twin boundaries on the deformation of <100> columnar nanocrystalline copper at room temperature under uniaxial strain. We leverage non-local kinematic metrics, formulated from continuum mechanics theory, to compute atomically-resolved rotational and strain fields during plastic deformation. These results are then utilized tomore » compute the distribution of various nanoscale mechanisms during straining, and quantitatively resolve their contribution to the total strain accommodation within the microstructure, highlighting the fundamental role of twin boundaries. Our results show that nanoscale twins influence nanocrystalline copper by altering the cooperation of fundamental deformation mechanisms and their contributed role in strain accommodation, and we present new methods for extracting useful information from atomistic simulations. The simulation results suggest a tension–compression asymmetry in the distribution of deformation mechanisms and strain accommodation by either dislocations or twin boundary mechanisms. In highly twinned microstructures, twin boundary migration can become a significant deformation mode, in comparison to lattice dislocation plasticity in non-twinned columnar microstructures, especially during compression.« less

  2. Planetary Boundary Layer from AERI and MPL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sawyer, Virginia

    2014-02-13

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  3. Thick diffusion limit boundary layer test problems

    SciTech Connect (OSTI)

    Bailey, T. S.; Warsa, J. S.; Chang, J. H.; Adams, M. L.

    2013-07-01

    We develop two simple test problems that quantify the behavior of computational transport solutions in the presence of boundary layers that are not resolved by the spatial grid. In particular we study the quantitative effects of 'contamination' terms that, according to previous asymptotic analyses, may have a detrimental effect on the solutions obtained by both discontinuous finite element (DFEM) and characteristic-method (CM) spatial discretizations, at least for boundary layers caused by azimuthally asymmetric incident intensities. Few numerical results have illustrated the effects of this contamination, and none have quantified it to our knowledge. Our test problems use leading-order analytic solutions that should be equal to zero in the problem interior, which means the observed interior solution is the error introduced by the contamination terms. Results from DFEM solutions demonstrate that the contamination terms can cause error propagation into the problem interior for both orthogonal and non-orthogonal grids, and that this error is much worse for non-orthogonal grids. This behavior is consistent with the predictions of previous analyses. We conclude that these boundary layer test problems and their variants are useful tools for the study of errors that are introduced by unresolved boundary layers in diffusive transport problems. (authors)

  4. Optimized boundary driven flows for dynamos in a sphere

    SciTech Connect (OSTI)

    Khalzov, I. V.; Brown, B. P.; Cooper, C. M.; Weisberg, D. B.; Forest, C. B. [Center for Magnetic Self Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)

    2012-11-15

    We perform numerical optimization of the axisymmetric flows in a sphere to minimize the critical magnetic Reynolds number Rm{sub cr} required for dynamo onset. The optimization is done for the class of laminar incompressible flows of von Karman type satisfying the steady-state Navier-Stokes equation. Such flows are determined by equatorially antisymmetric profiles of driving azimuthal (toroidal) velocity specified at the spherical boundary. The model is relevant to the Madison plasma dynamo experiment, whose spherical boundary is capable of differential driving of plasma in the azimuthal direction. We show that the dynamo onset in this system depends strongly on details of the driving velocity profile and the fluid Reynolds number Re. It is found that the overall lowest Rm{sub cr} Almost-Equal-To 200 is achieved at Re Almost-Equal-To 240 for the flow, which is hydrodynamically marginally stable. We also show that the optimized flows can sustain dynamos only in the range Rm{sub cr}fields are presented.

  5. Rigid-body translation and bonding across l brace 110 r brace antiphase boundaries in GaAs

    SciTech Connect (OSTI)

    Rasmussen, D.R.; McKernan, S.; Carter, C.B. )

    1991-05-20

    A transmission-electron-microscope strong-beam technique is used to investigate the rigid-body translation across {l brace}110{r brace} antiphase boundaries in GaAs. The results show a translation in the {l angle}001{r angle} direction parallel to the plane of the boundary. The magnitude of the translation is determined, and the antisite bond lengths are discussed in terms of the tetrahedral radii of Ga and As. Given this knowledge of the rigid-body translation, the absolute polarity of a GaAs grain can be determined immediately from a bright-field image of the {l brace}110{r brace} antiphase boundary.

  6. The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Uberuaga, Blas Pedro; Vernon, Louis J.; Martinez, Enrique; Voter, Arthur F.

    2015-03-13

    Nanocrystalline materials have received great attention due to their potential for improved functionality and have been proposed for extreme environments where the interfaces are expected to promote radiation tolerance. However, the precise role of the interfaces in modifying defect behavior is unclear. Using long-time simulations methods, we determine the mobility of defects and defect clusters at grain boundaries in Cu. We find that mobilities vary significantly with boundary structure and cluster size, with larger clusters exhibiting reduced mobility, and that interface sink efficiency depends on the kinetics of defects within the interface via the in-boundary annihilation rate of defects. Thus,more » sink efficiency is a strong function of defect mobility, which depends on boundary structure, a property that evolves with time. Further, defect mobility at boundaries can be slower than in the bulk, which has general implications for the properties of polycrystalline materials. Finally, we correlate defect energetics with the volumes of atomic sites at the boundary.« less

  7. SDO OBSERVATIONS OF MAGNETIC RECONNECTION AT CORONAL HOLE BOUNDARIES

    SciTech Connect (OSTI)

    Yang Shuhong; Zhang Jun; Li Ting; Liu Yang E-mail: zjun@nao.cas.cn E-mail: yliu@quake.stanford.edu

    2011-05-01

    With the observations from the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we investigate the coronal hole boundaries (CHBs) of an equatorial extension of the polar coronal hole. At the CHBs, many extreme-ultraviolet jets, which appear to be the signatures of magnetic reconnection, are observed in the 193 A images, and some jets occur repetitively at the same sites. The evolution of the jets is associated with the emergence and cancellation of magnetic fields. We note that both the east and west CHBs shift westward, and the shift velocities are close to the velocities of rigid rotation compared with those of the photospheric differential rotation. This indicates that magnetic reconnection at CHBs results in the evolution of CHBs and maintains the rigid rotation of coronal holes.

  8. THE HELIOTAIL REVEALED BY THE INTERSTELLAR BOUNDARY EXPLORER

    SciTech Connect (OSTI)

    McComas, D. J.; Dayeh, M. A.; Livadiotis, G.; Funsten, H. O.; Schwadron, N. A.

    2013-07-10

    Recent combined observations from the first three years of Interstellar Boundary Explorer (IBEX) data allow us to examine the heliosphere's downwind region-the heliotail-for the first time. In contrast to a preliminary identification of a narrow ''offset heliotail'' structure, we find a broad slow solar wind plasma sheet crossing essentially the entire downwind side of the heliosphere at low to mid-latitudes, with fast wind tail regions to the north and south. The slow wind plasma sheet exhibits the steepest ENA spectra in the IBEX sky maps, appears as a two-lobed structure (lobes on the port and starboard sides), and is twisted in the sense of (but at a smaller angle than) the external magnetic field. The overall heliotail structure clearly demonstrates the intermediate nature of the heliosphere's interstellar interaction, where both the external dynamic and magnetic pressures strongly affect the heliosphere.

  9. Boundary Plasma Turbulence Simulations for Tokamaks

    SciTech Connect (OSTI)

    Xu, X.; Umansky, M.; Dudson, B.; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  10. Open Boundary Conditions for Dissipative MHD

    SciTech Connect (OSTI)

    Meier, E T

    2011-11-10

    In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.

  11. Thermal boundary conductance accumulation and interfacial phonon

    Office of Scientific and Technical Information (OSTI)

    transmission: Measurements and theory (Journal Article) | SciTech Connect interfacial phonon transmission: Measurements and theory Citation Details In-Document Search Title: Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory Authors: Cheaito, Ramez ; Gaskins, John T. ; Caplan, Matthew E. ; Donovan, Brian F. ; Foley, Brian M. ; Giri, Ashutosh ; Duda, John C. ; Szwejkowski, Chester J. ; Constantin, Costel ; Brown-Shaklee, Harlan J. ;

  12. Boundary Entropy Can Increase Under Bulk RG Flow (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Boundary Entropy Can Increase Under Bulk RG Flow Citation Details In-Document Search Title: Boundary Entropy Can Increase Under Bulk RG Flow You are accessing a document from ...

  13. Stable Boundary Layer Education (STABLE) Final Campaign Summary (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Stable Boundary Layer Education (STABLE) Final Campaign Summary Citation Details In-Document Search Title: Stable Boundary Layer Education (STABLE) Final Campaign Summary The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region,

  14. Evolution of Grain Boundary Networks in Extreme Radiation Environments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Evolution of Grain Boundary Networks in Extreme Radiation Environments. Evolution of Grain Boundary Networks in Extreme Radiation Environments Research Our objective is to understand the characteristics of an "optimal" grain boundary (GB) network that minimizes microstructural evolution in radiation environments. Through our research we have elucidated that this optimal network requires a balance between two populations of grain boundaries: low free volume (low free energy)

  15. Planetary Boundary Layer from AERI and MPL (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Planetary Boundary Layer from AERI and MPL Title: Planetary Boundary Layer from AERI and MPL The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of

  16. Field Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Facilities Contacts for Printing and Mail Field Facilities Contacts for Printing and Mail This is the list of DOE field facilities contacts for Printing and Mail as of April 27, 2011. Go to Mail Services Go to Printing Services PDF icon Field_Facilities_Contacts_Print-Mail.pdf More Documents & Publications Director's Perspective by George Miller Tenant Education and Training Fire Safety Committee Membership List

    Ecologist for a Day Field Guide Program supported by: ©2011, Savannah

  17. NCSX Toroidal Field Coil Design

    SciTech Connect (OSTI)

    Kalish, M.; Rushinski, J.; Myatt, L.; Brooks, A.; Dahlgren, F.; Chrzanowski, J.; Reiersen, W.; Freudenberg, K.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements.

  18. GRAIN BOUNDARY STRENGTHENING PROPERTIES OF TUNGSTEN ALLOYS

    SciTech Connect (OSTI)

    Setyawan, Wahyu; Kurtz, Richard J.

    2012-10-10

    Density functional theory was employed to investigate grain boundary (GB) properties of W alloys. A range of substitutional solutes across the Periodic Table was investigated to understand the behavior of different electronic orbitals in changing the GB cleavage energy in the Σ27a[110]{525} GB. A number of transition metals were predicted to enhance the GB cohesion. This includes Ru, Re, Os, Ir, V, Cr, Mn, Fe, Co, Ti, Hf, Ta and Nb. While lanthanides, s and p elements were tended to cause GB embrittlement.

  19. Simulation of xenon, uranium vacancy and interstitial diffusion and grain boundary segregation in UO2

    SciTech Connect (OSTI)

    Andersson, Anders D.; Tonks, Michael R.; Casillas, Luis; Nerikar, Pankaj; Vyas, Shyam; Uberuaga, Blas P.; Stanek, Christopher R.

    2014-10-31

    In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations 1, continuum models for diffusion of xenon (Xe), uranium (U) vacancies and U interstitials in UO2 have been derived for both intrinsic conditions and under irradiation. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model for the interaction between Xe atoms and three different grain boundaries in UO2 ( ?5 tilt, ?5 twist and a high angle random boundary),as derived from atomistic calculations. All models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as redistribution for a few simple microstructures.

  20. Regional Wave Field Modeling and Array Effects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1C Marine and Hydrokinetic Instrumentation, Measurement & Computer Modeling Workshop - Broomfield, CO July 9 th , 2012 Regional Wave Field Modeling and Array Effects Outline  Overview of SNL's Large-Scale Wave and WEC Array Modeling Activities * WEC Farm Modeling on Roadmap * SNL Current Modeling Capabilities * SNL WEC Farm Model Tool Development WEC Farm Modeling  WEC Farms * Currently focused on improving large scale wave models for environmental assessments WEC Farm Modeling: WEC

  1. Atomistic simulations of dislocation pileup: Grain boundaries interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Jian

    2015-05-27

    Here, using molecular dynamics (MD) simulations, we studied the dislocation pileup–grain boundary (GB) interactions. Two Σ11 asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocations–GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation ofmore » these kinetic processes with the available slip systems across the GB and atomic structures of the GB.« less

  2. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study

    SciTech Connect (OSTI)

    Zhang, Xiaoyong Homma, Noriyasu; Ichiji, Kei; Takai, Yoshihiro; Yoshizawa, Makoto

    2015-05-15

    Purpose: To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. Methods: A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the tracking result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. Results: For the 4-D phantom image sequence, the CLE is 0.23 0.20 mm, and VOI is 95.6% 0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11 0.08 mm and 96.7% 0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32 0.77 mm in the CLE and 72.1% 5.5% in the VOI. These results demonstrate the effectiveness of the authors proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. Conclusions: In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.

  3. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Office of Scientific and Technical Information (OSTI)

    (Program Document) | SciTech Connect Program Document: Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report Citation Details In-Document Search Title: Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase,

  4. On the Interaction between Marine Boundary Layer Cellular Cloudiness and

    Office of Scientific and Technical Information (OSTI)

    Surface Heat Fluxes (Journal Article) | SciTech Connect On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes Citation Details In-Document Search Title: On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the

  5. RACORO continental boundary layer cloud investigations. Part I: Case study

    Office of Scientific and Technical Information (OSTI)

    development and ensemble large-scale forcings (Journal Article) | SciTech Connect RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings Citation Details In-Document Search This content will become publicly available on June 19, 2016 Title: RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings Observation-based modeling case studies of continental boundary

  6. Grain boundary energy in 5 degrees of freedom space

    Energy Science and Technology Software Center (OSTI)

    2012-09-21

    GB5DOF is a program written in MatLab for computing excess energy of an arbitrary grain boundary defined by its 5 geometrical degrees of freedom. The program is written in the form of a single self-contained function callable from within commercially available MatLab software package. The function takes a geometric description of the boundary and material identity as input parameters and returns the predicted boundary energy.

  7. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Mineral Deformation at Earth's Core-Mantle Boundary Print Wednesday, 31 August 2011 00:00 Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in

  8. Stable Boundary Layer Education (STABLE) Final Campaign Summary...

    Office of Scientific and Technical Information (OSTI)

    Title: Stable Boundary Layer Education (STABLE) Final ... and Environmental Research (BER) (SC-23) Country of Publication: United States Language: English Subject: 47 ...

  9. Local Correlations and Multi-Fractal Behaviour in Marine Boundary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Local Correlations and Multi-Fractal Behaviour in Marine Boundary Layer Cloud Dynamics N. Kitova and M. A. Mikhalev Institute of Electronics Bulgarian Academy of Sciences Sofia...

  10. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to...

  11. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parallel to the boundary, which is just what seismologists observe. These results open new possibilities for modeling anisotropy evolution at extreme conditions, linking...

  12. Two-dimensional heavy fermions on the strongly correlated boundaries...

    Office of Scientific and Technical Information (OSTI)

    Two-dimensional heavy fermions on the strongly correlated boundaries of Kondo topological insulators Prev Next Title: Two-dimensional heavy fermions on the strongly ...

  13. [Perovskite and Fluorite Grain Boundary Properties]. Final Project Report

    SciTech Connect (OSTI)

    Browning, N. D.

    2004-02-24

    One of the main areas of research in the last two years in this program has been the properties of grain boundaries in perovskite and fluorite structure materials.

  14. "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties...

    Office of Scientific and Technical Information (OSTI)

    the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models. ...

  15. On the interaction of solutes with grain boundaries (Journal...

    Office of Scientific and Technical Information (OSTI)

    The solute distribution around grain boundaries is described through Fermi-Dirac statistics of site occupancy. The susceptibility of hydrogen segregation to symmetric tilt grain ...

  16. Structure of the nocturnal boundary layer over a complex terrain

    SciTech Connect (OSTI)

    Parker, M.J. ); Raman, S. . Dept. of Marine, Earth and Atmospheric Sciences)

    1992-01-01

    The complex nature of the nocturnal boundary layer (NBL) has been shown extensively in the literature Project STABLE was conducted in 1988 to study NBL turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia. The third night of the study was particularly interesting because of the unusual phenomena observed in the structure of the NBL. Further analyses of microscale and mesoscale data from this night are presented using data from SRS network of eight 61 m towers over 900 km{sup 2}, from six launches of an instrumented tethersonde, from permanent SRL meteorological instrumentation at seven levels of the 304 m (1,000 ft) WJBF-TV tower near SRS, and additional data collected at 36 m (CC) by North Carolina State University (NCSU) including a one dimensional sonic anemometer, fine wire thermocouple, and a three dimensional propeller anemometer. Also, data from the nearby Plant Vogtle nuclear power plant observation tower and the National Weather Service at Augusta's Bush Field (AGS) are presented. The passage of a mesoscale phenomenon, defined as a microfront (with an explanation of the nomenclature used), and a vertical composite schematic of the NBL which shows dual low level wind maxima, dual inversions, and a persistent, elevated turbulent layer over a complex terrain are described.

  17. Structure of the nocturnal boundary layer over a complex terrain

    SciTech Connect (OSTI)

    Parker, M.J.; Raman, S.

    1992-08-01

    The complex nature of the nocturnal boundary layer (NBL) has been shown extensively in the literature Project STABLE was conducted in 1988 to study NBL turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia. The third night of the study was particularly interesting because of the unusual phenomena observed in the structure of the NBL. Further analyses of microscale and mesoscale data from this night are presented using data from SRS network of eight 61 m towers over 900 km{sup 2}, from six launches of an instrumented tethersonde, from permanent SRL meteorological instrumentation at seven levels of the 304 m (1,000 ft) WJBF-TV tower near SRS, and additional data collected at 36 m (CC) by North Carolina State University (NCSU) including a one dimensional sonic anemometer, fine wire thermocouple, and a three dimensional propeller anemometer. Also, data from the nearby Plant Vogtle nuclear power plant observation tower and the National Weather Service at Augusta`s Bush Field (AGS) are presented. The passage of a mesoscale phenomenon, defined as a microfront (with an explanation of the nomenclature used), and a vertical composite schematic of the NBL which shows dual low level wind maxima, dual inversions, and a persistent, elevated turbulent layer over a complex terrain are described.

  18. A Reduced-Boundary-Function Method for Convective Heat Transfer With Axial Heat Conduction and Viscous Dissipation

    SciTech Connect (OSTI)

    Zhijie Xu

    2012-07-01

    We introduce a new method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field T(x,r,t) is reduced to seek the solutions of T at the boundary (r = a or r = 0, r is the distance from the centerline shown in Fig. 1), i.e., the boundary functions T{sub a}(x,t) {triple_bond} T(x,r=a,t) and/or T{sub 0}(x,t) {triple_bond} T(x,r=0,t). In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field T(x,r,t) can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady-state problem using the proposed method.

  19. A Reduced-Boundary-Function Method for Convective Heat Transfer with Axial Heat Conduction and Viscous Dissipation

    SciTech Connect (OSTI)

    Xu, Zhijie

    2012-07-01

    We introduce a method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field is reduced to seek the solutions of T at the boundary (r=a or r=0, r is the distance from the centerline shown in Fig. 1), i.e. the boundary functions and/or . In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady state problem using the proposed method.

  20. ENERGETIC PARTICLE ANISOTROPIES AT THE HELIOSPHERIC BOUNDARY

    SciTech Connect (OSTI)

    Florinski, V.; Le Roux, J. A. [Department of Space Sciences, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)] [Department of Space Sciences, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Jokipii, J. R. [Department of Planetary Sciences and Lunar and Planetary Lab, University of Arizona, Tucson, AZ 85721 (United States)] [Department of Planetary Sciences and Lunar and Planetary Lab, University of Arizona, Tucson, AZ 85721 (United States); Alouani-Bibi, F. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)] [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2013-10-20

    In 2012 August the Voyager 1 space probe entered a distinctly new region of space characterized by a virtual absence of heliospheric energetic ions and magnetic fluctuations, now interpreted as a part of the local interstellar cloud. Prior to their disappearance, the ion distributions strongly peaked at a 90 pitch angle, implying rapid escape of streaming particles along the magnetic field lines. Here we investigate the process of particle crossing from the heliosheath into the interstellar space, using a kinetic approach that resolves scales of the particle's cyclotron radius and smaller. It is demonstrated that a 'pancake' pitch-angle distribution naturally arises at a tangential discontinuity separating a weakly turbulent plasma from a laminar region with a very low pitch-angle scattering rate. The relatively long persistence of gyrating ions is interpreted in terms of field line meandering facilitating their cross-field diffusion within the depletion region.

  1. SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS

    SciTech Connect (OSTI)

    Belyaev, Mikhail A.; Rafikov, Roman R., E-mail: rrr@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)

    2012-06-20

    Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonic vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.

  2. Irradiation Assisted Grain Boundary Segregation in Steels

    SciTech Connect (OSTI)

    Lu, Zheng; Faulkner, Roy G.

    2008-07-01

    The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

  3. THE KELVIN-HELMHOLTZ INSTABILITY AT CORONAL MASS EJECTION BOUNDARIES IN THE SOLAR CORONA: OBSERVATIONS AND 2.5D MHD SIMULATIONS

    SciTech Connect (OSTI)

    Moestl, U. V.; Temmer, M.; Veronig, A. M.

    2013-03-20

    The Atmospheric Imaging Assembly on board the Solar Dynamics Observatory observed a coronal mass ejection with an embedded filament on 2011 February 24, revealing quasi-periodic vortex-like structures at the northern side of the filament boundary with a wavelength of approximately 14.4 Mm and a propagation speed of about 310 {+-} 20 km s{sup -1}. These structures could result from the Kelvin-Helmholtz instability occurring on the boundary. We perform 2.5D numerical simulations of the Kelvin-Helmholtz instability and compare the simulated characteristic properties of the instability with the observations, where we obtain qualitative as well as quantitative accordance. We study the absence of Kelvin-Helmholtz vortex-like structures on the southern side of the filament boundary and find that a magnetic field component parallel to the boundary with a strength of about 20% of the total magnetic field has stabilizing effects resulting in an asymmetric development of the instability.

  4. Weather Research and Forecasting Model with the Immersed Boundary Method

    Energy Science and Technology Software Center (OSTI)

    2012-05-01

    The Weather Research and Forecasting (WRF) Model with the immersed boundary method is an extension of the open-source WRF Model available for wwww.wrf-model.org. The new code modifies the gridding procedure and boundary conditions in the WRF model to improve WRF's ability to simutate the atmosphere in environments with steep terrain and additionally at high-resolutions.

  5. THE MONOCLINIC PHASE IN PZT: NEW LIGHT ON MORPHOTROPIC PHASE BOUNDARIES

    SciTech Connect (OSTI)

    NOHEDA,B.; GONZALO,J.A.; GUO,R.; PARK,S.E.; CROSS,L.E.; COX,D.E.; SHIRANE,G.

    2000-03-09

    A summary of the work recently carried out on the morphotropic phase boundary (MPB) of PZT is presented. By means of x-ray powder diffraction on ceramic samples of excellent quality, the MPB has been successfully characterized by changing temperature in a series of closely spaced compositions. As a result, an unexpected monoclinic phase has been found to exist in between the well-known tetragonal and rhombohedral PZT phases. A detailed structural analysis, together with the investigation of the field effect in this region of compositions, have led to an important advance in understanding the mechanisms responsible for the physical properties of PZT as well as other piezoelectric materials with similar morphotropic phase boundaries.

  6. A boundary-value problem in weighted Hlder spaces for elliptic equations which degenerate at the boundary of the domain

    SciTech Connect (OSTI)

    Bazalii, B V; Degtyarev, S P

    2013-07-31

    An elliptic boundary-value problem for second-order equations with nonnegative characteristic form is investigated in the situation when there is a weak degeneracy on the boundary of the domain. A priori estimates are obtained for solutions and the problem is proved to be solvable in some weighted Hlder spaces. Bibliography: 18 titles.

  7. Free boundary, high beta equilibrium in a large aspect ratio tokamak with

    Office of Scientific and Technical Information (OSTI)

    nearly circular plasma boundary (Technical Report) | SciTech Connect Free boundary, high beta equilibrium in a large aspect ratio tokamak with nearly circular plasma boundary Citation Details In-Document Search Title: Free boundary, high beta equilibrium in a large aspect ratio tokamak with nearly circular plasma boundary An analytic solution is obtained for free-boundary, high-beta equilibria in large aspect ratio tokamaks with a nearly circular plasma boundary. In the absence of surface

  8. Oil and Gas Field Code Master List 1990

    SciTech Connect (OSTI)

    Not Available

    1991-01-04

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  9. Evaluation of Wall Boundary Condition Parameters for Gas-Solids

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Wall Boundary Condition Parameters for Gas-Solids Fluidized-Bed Simulations Tingwen Li 1,2 , Sofiane Benyahia 1 1. National Energy Technology Laboratory, U.S. Department of Energy, Morgantown, WV 26507, U.S.A. 2. URS Corporation, Morgantown, WV 26505, U.S.A. Abstract Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the

  10. Multi-field inflation from holography

    SciTech Connect (OSTI)

    Garriga, Jaume; Urakawa, Yuko [Departament de Fsica Fonamental i Institut de Cincies del Cosmos, Universitat de Barcelona, Mart i Franqus 1, 08028 Barcelona (Spain); Skenderis, Kostas, E-mail: jaume.garriga@ub.edu, E-mail: K.Skenderis@soton.ac.uk, E-mail: urakawa.yuko@h.mbox.nagoya-u.ac.jp [STAG Research Centre and Mathematical Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-01-01

    We initiate the study of multi-field inflation using holography. Bulk light scalar fields correspond to nearly marginal operators in the boundary theory and the dual quantum field theory is a deformation of a CFT by such operators. We compute the power spectra of adiabatic and entropy perturbations in a simple model and find that the adiabatic curvature perturbation is not conserved in the presence of entropy perturbations but becomes conserved when the entropy perturbations are set to zero or the model is effectively a single scalar model, in agreement with expectations from cosmological perturbation theory.

  11. 4D STUDY OF STRAIN GRADIENTS EVOLUTION IN TWINNED NiMnGa SINGLE CRYSTALS UNDER MAGNETIC FIELD

    SciTech Connect (OSTI)

    Barabash, Rozaliya; Xu, Ruqing; Barabash, Oleg M; Sozinov, Alexei

    2014-01-01

    Time-resolved 3D X-ray microscopy with a submicron beam size was used to follow the evolution of strains in off-stoichiometric NiMnGa twinned crystals near type I (hard) twin boundary under magnetic field. Laminate A/B microstructure was revealed near the twin boundaries in A variant. Large strain gradients are observed in the C variant in the immediate vicinity of the type I twin boundary: the lattice is under large tensile strains ~0.4% along the c- axes within first micron. Distinct a and b lattice parameter evolution with temperature and magnetic field is demonstrated. In an applied magnetic field the strain field was observed at larger distances from the twin boundary and becomes more complex. Stochastic twin boundary motion was observed after the magnetic field reaches a certain critical value.

  12. A fast multigrid-based electromagnetic eigensolver for curved metal boundaries on the Yee mesh

    SciTech Connect (OSTI)

    Bauer, Carl A., E-mail: carl.bauer@colorado.edu [Department of Physics and the Center for Integrated Plasma Studies, University of Colorado, Boulder, CO 80309 (United States); Werner, Gregory R. [Department of Physics and the Center for Integrated Plasma Studies, University of Colorado, Boulder, CO 80309 (United States)] [Department of Physics and the Center for Integrated Plasma Studies, University of Colorado, Boulder, CO 80309 (United States); Cary, John R. [Department of Physics and the Center for Integrated Plasma Studies, University of Colorado, Boulder, CO 80309 (United States) [Department of Physics and the Center for Integrated Plasma Studies, University of Colorado, Boulder, CO 80309 (United States); Tech-X Corporation, Boulder, CO 80303 (United States)

    2013-10-15

    For embedded boundary electromagnetics using the DeyMittra (Dey and Mittra, 1997) [1] algorithm, a special graddiv matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwells curlcurl matrix. Efficient curlcurl inversions are demonstrated within a shift-and-invert Krylov-subspace eigensolver (open-sourced at ([ofortt]https://github.com/bauerca/maxwell[cfortt])) on the spherical cavity and the 9-cell TESLA superconducting accelerator cavity. The accuracy of the DeyMittra algorithm is also examined: frequencies converge with second-order error, and surface fields are found to converge with nearly second-order error. In agreement with previous work (Nieter et al., 2009) [2], neglecting some boundary-cut cell faces (as is required in the time domain for numerical stability) reduces frequency convergence to first-order and surface-field convergence to zeroth-order (i.e. surface fields do not converge). Additionally and importantly, neglecting faces can reduce accuracy by an order of magnitude at low resolutions.

  13. Atomic-scale studies on the effect of boundary coherency on stability in twinned Cu

    SciTech Connect (OSTI)

    Niu, Rongmei; Han, Ke Su, Yi-Feng; Salters, Vincent J.

    2014-01-06

    The stored energy and hardness of nanotwinned (NT) Cu are related to interaction between dislocations and (111)-twin boundaries (TBs) studied at atomic scales by high-angle annular dark-field scanning transmission electron microscope. Lack of mobile dislocations at coherent TBs (CTBs) provides as-deposited NT Cu a rare combination of stability and hardness. The introduction of numerous incoherent TBs (ITBs) reduces both the stability and hardness. While storing more energy in their ITBs than in the CTBs, deformed NT Cu also exhibits high dislocation density and TB mobility and therefore has increased the driving force for recovery, coarsening, and recrystallization.

  14. Marine Boundary Layer Cloud Observations in the Azores (Journal...

    Office of Scientific and Technical Information (OSTI)

    Marine Boundary Layer Cloud Observations in the Azores Citation Details ... Publication Date: 2012-11-01 OSTI Identifier: 1059795 Report Number(s): BNL--98829-2012-JA Journal ID: ISSN ...

  15. Science at the interface : grain boundaries in nanocrystalline metals.

    SciTech Connect (OSTI)

    Rodriguez, Mark Andrew; Follstaedt, David Martin; Knapp, James Arthur; Brewer, Luke N.; Holm, Elizabeth Ann; Foiles, Stephen Martin; Hattar, Khalid M.; Clark, Blythe B.; Olmsted, David L.; Medlin, Douglas L.

    2009-09-01

    Interfaces are a critical determinant of the full range of materials properties, especially at the nanoscale. Computational and experimental methods developed a comprehensive understanding of nanograin evolution based on a fundamental understanding of internal interfaces in nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size distribution possess a unique combination of high-strength, ductility and wear-resistance. We performed a combined experimental and theoretical investigation of the structure and motion of internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain boundaries are computed for an unprecedented range of boundaries. The presence of roughening transitions in grain boundaries is explored and related to dramatic changes in boundary mobility. Experimental observations show that abnormal grain growth in nanograined materials is unlike conventional scale material in both the level of defects and the formation of unfavored phases. Molecular dynamics simulations address the origins of some of these phenomena.

  16. ARM - PI Product - Planetary Boundary Layer from AERI and MPL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Planetary Boundary Layer from AERI and MPL The distribution and transport of...

  17. Grain boundary and triple junction diffusion in nanocrystalline copper

    SciTech Connect (OSTI)

    Wegner, M. Leuthold, J.; Peterlechner, M.; Divinski, S. V.; Song, X.; Wilde, G.

    2014-09-07

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, ?d?, of ?35 and ?44?nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d???35?nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500?D{sub gb} within the temperature interval from 420?K to 470?K.

  18. The Puzzling Boundaries of Topological Quantum Matter | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Puzzling Boundaries of Topological Quantum Matter January 8, 2016 11:00AM to 12:00PM Presenter Michael Levin, University of Chicago Location Building 203 Type Colloquium Series...

  19. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have...

  20. Evaluation of wall boundary condition parameters for gas-solids...

    Office of Scientific and Technical Information (OSTI)

    Several models for the granular flow wall boundary condition are available in the open ... 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable ...

  1. Fast wave evanescence in filamentary boundary plasmas

    SciTech Connect (OSTI)

    Myra, J. R.

    2014-02-15

    Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed.

  2. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  3. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  4. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  5. Effects of tricritical points and morphotropic phase boundaries on the

    Office of Scientific and Technical Information (OSTI)

    piezoelectric properties of ferroelectrics (Journal Article) | SciTech Connect Effects of tricritical points and morphotropic phase boundaries on the piezoelectric properties of ferroelectrics Citation Details In-Document Search Title: Effects of tricritical points and morphotropic phase boundaries on the piezoelectric properties of ferroelectrics Authors: Porta, Marcel ; Lookman, Turab Publication Date: 2011-05-13 OSTI Identifier: 1099369 Type: Publisher's Accepted Manuscript Journal Name:

  6. Evidence of ion mixing increasing the thermal boundary conductance across

    Office of Scientific and Technical Information (OSTI)

    aluminum/silicon interfaces. (Journal Article) | SciTech Connect Evidence of ion mixing increasing the thermal boundary conductance across aluminum/silicon interfaces. Citation Details In-Document Search Title: Evidence of ion mixing increasing the thermal boundary conductance across aluminum/silicon interfaces. Abstract not provided. Authors: Hattar, Khalid Mikhiel ; Beechem Iii, Thomas Edwin ; Ihlefeld, Jon F. ; Biedermann, Laura Butler ; Piekos, Edward Stanley ; Medlin, Douglas L. [1] ;

  7. Examining Atomistic Defect/Boundary Interactions Induced by Light Ion

    Office of Scientific and Technical Information (OSTI)

    Irradiation (Conference) | SciTech Connect Conference: Examining Atomistic Defect/Boundary Interactions Induced by Light Ion Irradiation Citation Details In-Document Search Title: Examining Atomistic Defect/Boundary Interactions Induced by Light Ion Irradiation Authors: Aguiar, Jeffery [1] ; Dholabhai, Pratik [1] ; Misra, Amit [1] ; Jia, Quanxi [1] ; Uberuaga, Blas P. [1] ; Bi, Zhenxing [2] ; Fu, Engang [2] ; Zhu, Jiangtao [3] ; Aoki, Toshihiro [3] ; Chi, Miaofang [4] + Show Author

  8. Examining Atomistic Defect/Boundary Interactions Induced by Light Ion

    Office of Scientific and Technical Information (OSTI)

    Irradiation (Conference) | SciTech Connect Conference: Examining Atomistic Defect/Boundary Interactions Induced by Light Ion Irradiation Citation Details In-Document Search Title: Examining Atomistic Defect/Boundary Interactions Induced by Light Ion Irradiation × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  9. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Office of Scientific and Technical Information (OSTI)

    (Program Document) | SciTech Connect Program Document: Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report Citation Details In-Document Search Title: Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  10. Flavor twisted boundary conditions in the Breit frame

    SciTech Connect (OSTI)

    Jiang, F.-J.; Tiburzi, B. C.

    2008-08-01

    We use a generalization of chiral perturbation theory to account for the effects of flavor twisted boundary conditions in the Breit frame. The relevant framework for two light flavors is an SU(6|4) partially quenched theory, where the extra valence quarks differ only by their boundary conditions. Focusing on the pion electromagnetic form factor, finite volume corrections are calculated at next-to-leading order in the chiral expansion and are estimated to be small on current lattices.

  11. RACORO continental boundary layer cloud investigations. 2. Large-eddy

    Office of Scientific and Technical Information (OSTI)

    simulations of cumulus clouds and evaluation with in-situ and ground-based observations (Journal Article) | SciTech Connect RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations Citation Details In-Document Search This content will become publicly available on June 19, 2016 Title: RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and

  12. RACORO continental boundary layer cloud investigations. 3. Separation of

    Office of Scientific and Technical Information (OSTI)

    parameterization biases in single-column model CAM5 simulations of shallow cumulus (Journal Article) | SciTech Connect RACORO continental boundary layer cloud investigations. 3. Separation of parameterization biases in single-column model CAM5 simulations of shallow cumulus Citation Details In-Document Search This content will become publicly available on June 19, 2016 Title: RACORO continental boundary layer cloud investigations. 3. Separation of parameterization biases in single-column

  13. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  14. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  15. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  16. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  17. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  18. Automatic Identification and Truncation of Boundary Outlets in Complex

    Office of Scientific and Technical Information (OSTI)

    Imaging-Derived Biomedical Geometries (Journal Article) | SciTech Connect Automatic Identification and Truncation of Boundary Outlets in Complex Imaging-Derived Biomedical Geometries Citation Details In-Document Search Title: Automatic Identification and Truncation of Boundary Outlets in Complex Imaging-Derived Biomedical Geometries Fast and accurate reconstruction of imaging-derived geometries and subsequent quality mesh generation for biomedical computation are enabling technologies for

  19. Boundary condition and fuel composition effects on injection processes of

    Office of Scientific and Technical Information (OSTI)

    high-pressure sprays at the microscopic level (Journal Article) | DOE PAGES Publisher's Accepted Manuscript: Boundary condition and fuel composition effects on injection processes of high-pressure sprays at the microscopic level This content will become publicly available on March 22, 2018 « Prev Next » Title: Boundary condition and fuel composition effects on injection processes of high-pressure sprays at the microscopic level Authors: Manin, J. ; Bardi, M. ; Pickett, L. M. ; Payri, R.

  20. Retrieving 4-dimensional atmospheric boundary layer structure from surface

    Office of Scientific and Technical Information (OSTI)

    observations and profiles over a single station (Technical Report) | SciTech Connect Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station Citation Details In-Document Search Title: Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station Most routine measurements from climate study facilities, such as the Department of Energy's ARM SGP site, come from

  1. Thermal boundary conductance accumulation and spectral phonon transmission

    Office of Scientific and Technical Information (OSTI)

    across interfaces: experimental measurements across metal/native oxide/Si and metal/sapphire interfaces. (Journal Article) | SciTech Connect Thermal boundary conductance accumulation and spectral phonon transmission across interfaces: experimental measurements across metal/native oxide/Si and metal/sapphire interfaces. Citation Details In-Document Search Title: Thermal boundary conductance accumulation and spectral phonon transmission across interfaces: experimental measurements across

  2. Uniaxial stress-driven coupled grain boundary motion in hexagonal

    Office of Scientific and Technical Information (OSTI)

    close-packed metals: A molecular dynamics study (Journal Article) | SciTech Connect Uniaxial stress-driven coupled grain boundary motion in hexagonal close-packed metals: A molecular dynamics study Citation Details In-Document Search This content will become publicly available on January 1, 2017 Title: Uniaxial stress-driven coupled grain boundary motion in hexagonal close-packed metals: A molecular dynamics study Authors: Zong, Hongxiang ; Ding, Xiangdong ; Lookman, Turab ; Li, Ju ; Sun,

  3. Contributions of anharmonic phonon interactions to thermal boundary conductance.

    SciTech Connect (OSTI)

    Hopkins, Patrick E.; Norris, Pamela M.; Duda, John C.

    2010-05-01

    Continued reduction of characteristic dimensions in nanosystems has given rise to increasing importance of material interfaces on the overall system performance. With regard to thermal transport, this increases the need for a better fundamental understanding of the processes affecting interfacial thermal transport, as characterized by the thermal boundary conductance. When thermal boundary conductance is driven by phononic scattering events, accurate predictions of interfacial transport must account for anharmonic phononic coupling as this affects the thermal transmission. In this paper, a new model for phononic thermal boundary conductance is developed that takes into account anharonic coupling, or inelastic scattering events, at the interface between two materials. Previous models for thermal boundary conductance are first reviewed, including the Diffuse Mismatch Model, which only consdiers elastic phonon scattering events, and earlier attempts to account for inelastic phonon scattering, namely, the Maximum Transmission Model and the Higher Harmonic Inelastic model. A new model is derived, the Anharmonic Inelastic Model, which provides a more physical consideration of the effects of inelastic scattering on thermal boundary conductance. This is accomplished by considering specific ranges of phonon frequency interactions and phonon number density conservation. Thus, this model considers the contributions of anharmonic, inelastically scattered phonons to thermal boundary conductance. This new Anharmonic Inelastic Model shows excellent agreement between model predictions and experimental data at the Pb/diamond interface due to its ability to account for the temperature dependent changing phonon population in diamond, which can couple anharmonically with multiple phonons in Pb.

  4. An enriched finite element model with q-refinement for radiative boundary layers in glass cooling

    SciTech Connect (OSTI)

    Mohamed, M. Shadi; Seaid, Mohammed; Trevelyan, Jon; Laghrouche, Omar

    2014-02-01

    Radiative cooling in glass manufacturing is simulated using the partition of unity finite element method. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary simplified P{sub 1} approximation for the radiation in non-grey semitransparent media. To integrate the coupled equations in time we consider a linearly implicit scheme in the finite element framework. A class of hyperbolic enrichment functions is proposed to resolve boundary layers near the enclosure walls. Using an industrial electromagnetic spectrum, the proposed method shows an immense reduction in the number of degrees of freedom required to achieve a certain accuracy compared to the conventional h-version finite element method. Furthermore the method shows a stable behaviour in treating the boundary layers which is shown by studying the solution close to the domain boundaries. The time integration choice is essential to implement a q-refinement procedure introduced in the current study. The enrichment is refined with respect to the steepness of the solution gradient near the domain boundary in the first few time steps and is shown to lead to a further significant reduction on top of what is already achieved with the enrichment. The performance of the proposed method is analysed for glass annealing in two enclosures where the simplified P{sub 1} approximation solution with the partition of unity method, the conventional finite element method and the finite difference method are compared to each other and to the full radiative heat transfer as well as the canonical Rosseland model.

  5. Domain pinning near a single-grain boundary in tetragonal and...

    Office of Scientific and Technical Information (OSTI)

    Domain pinning near a single-grain boundary in tetragonal and rhombohedral lead zirconate ... Title: Domain pinning near a single-grain boundary in tetragonal and rhombohedral lead ...

  6. Field O

    Office of Legacy Management (LM)

    -- ! Department of Energy Field O ffice, O s k Ridge P.O . Box 2001 Oak Ridge, Tennessee 37031- 0723 April 20. 1993 Dr. Robert Kulikowskf Director, Bureau of Radiation Control New York City Department of Health 111 Livingston Street Brooklyn, New York 11201 Dear Dr. Kulfkowskf: BAKER AN0 W ILLIAM W AREHOUSES SITE - CORPLETION O F CLEANUP ACTIVITIES The purpose of this notice is to inform you about further scheduled c leanup activities to be conducted by the Department of Energy (WE) at 513-519

  7. Direct imaging of enhanced current collection on grain boundaries of Cu(In,Ga)Se{sub 2} solar cells

    SciTech Connect (OSTI)

    Kim, JunHo; Kim, SeongYeon; Jiang, Chun-Sheng; Ramanathan, Kannan; Al-Jassim, Mowafak M.

    2014-02-10

    We report on direct imaging of current collection by performing conductive atomic force microscopy (C-AFM) measurement on a complete Cu(In,Ga)Se{sub 2} solar cell. The localized current was imaged by milling away the top conductive layer of the device by repeated C-AFM scans. The result exhibits enhanced photocurrent collection on grain boundaries (GBs) of CIGS films, consistent with the argument for electric-field-assisted carrier collection on the GBs.

  8. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.

    2014-09-09

    To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The wavesmore » grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.« less

  9. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer

    SciTech Connect (OSTI)

    Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.

    2014-09-09

    To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The waves grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.

  10. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    SciTech Connect (OSTI)

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  11. Nocturnal Low-Level-Jet-Dominated Atmospheric Boundary Layer Observed by a Doppler Lidar Over Oklahoma City during JU2003

    SciTech Connect (OSTI)

    Wang, Yansen; Klipp, Cheryl L.; Garvey, Dennis M.; Ligon, David; Williamson, Chatt C.; Chang, Sam S.; Newsom, Rob K.; Calhoun, Ron

    2007-12-01

    Boundary layer wind data observed by a Doppler lidar and sonic anemometers during the mornings of three intensive observational periods (IOP2, IOP3, and IOP7) of the Joint Urban 2003 (JU2003) field experiment are analyzed to extract the mean and turbulent characteristics of airflow over Oklahoma City, Oklahoma. A strong nocturnal low-level jet (LLJ) dominated the flow in the boundary layer over the measurement domain from midnight to the morning hours. Lidar scans through the LLJ taken after sunrise indicate that the LLJ elevation shows a gradual increase of 25-100 m over the urban area relative to that over the upstream suburban area. The mean wind speed beneath the jet over the urban area is about 10%-15% slower than that over the suburban area. Sonic anemometer observations combined with Doppler lidar observations in the urban and suburban areas are also analyzed to investigate the boundary layer turbulence production in the LLJ-dominated atmospheric boundary layer. The turbulence kinetic energy was higher over the urban domain mainly because of the shear production of building surfaces and building wakes. Direct transport of turbulent momentum flux from the LLJ to the urban street level was very small because of the relatively high elevation of the jet. However, since the LLJ dominated the mean wind in the boundary layer, the turbulence kinetic energy in the urban domain is correlated directly with the LLJ maximum speed and inversely with its height. The results indicate that the jet Richardson number is a reasonably good indicator for turbulent kinetic energy over the urban domain in the LLJ-dominated atmospheric boundary layer.

  12. DROPOUTS IN SOLAR ENERGETIC PARTICLES: ASSOCIATED WITH LOCAL TRAPPING BOUNDARIES OR CURRENT SHEETS?

    SciTech Connect (OSTI)

    Seripienlert, A.; Ruffolo, D.; Matthaeus, W. H.; Chuychai, P. E-mail: scdjr@mahidol.ac.t E-mail: piyanate@gmail.co

    2010-03-10

    In recent observations by the Advanced Composition Explorer, the intensity of solar energetic particles exhibits sudden, large changes known as dropouts. These have been explained in terms of turbulence or a flux tube structure in the solar wind. Dropouts are believed to indicate filamentary magnetic connection to a localized particle source near the solar surface, and computer simulations of a random-phase model of magnetic turbulence have indicated a spatial association between dropout features and local trapping boundaries (LTBs) defined for a two-dimensional (2D) + slab model of turbulence. Previous observations have shown that dropout features are not well associated with sharp magnetic field changes, as might be expected in the flux tube model. Random-phase turbulence models do not properly treat sharp changes in the magnetic field, such as current sheets, and thus cannot be tested in this way. Here, we explore the properties of a more realistic magnetohydrodynamic (MHD) turbulence model (2D MHD), in which current sheets develop and the current and magnetic field have characteristic non-Gaussian statistical properties. For this model, computer simulations that trace field lines to determine magnetic connection from a localized particle source indicate that sharp particle gradients should frequently be associated with LTBs, sometimes with strong 2D magnetic fluctuations, and infrequently with current sheets. Thus, the 2D MHD + slab model of turbulent fluctuations includes some realistic features of the flux tube view and is consistent with the lack of an observed association between dropouts and intense magnetic fields or currents.

  13. Explicit Expressions for 3D Boundary Integrals in Potential Theory

    SciTech Connect (OSTI)

    Nintcheu Fata, Sylvain

    2009-01-01

    On employing isoparametric, piecewise linear shape functions over a flat triangular domain, exact expressions are derived for all surface potentials involved in the numerical solution of three-dimensional singular and hyper-singular boundary integral equations of potential theory. These formulae, which are valid for an arbitrary source point in space, are represented as analytic expressions over the edges of the integration triangle. They can be used to solve integral equations defined on polygonal boundaries via the collocation method or may be utilized as analytic expressions for the inner integrals in the Galerkin technique. Also, the constant element approximation can be directly obtained with no extra effort. Sample problems solved by the collocation boundary element method for the Laplace equation are included to validate the proposed formulae.

  14. DYNA3D Non-reflecting Boundary Conditions - Test Problems

    SciTech Connect (OSTI)

    Zywicz, E

    2006-09-28

    Two verification problems were developed to test non-reflecting boundary segments in DYNA3D (Whirley and Engelmann, 1993). The problems simulate 1-D wave propagation in a semi-infinite rod using a finite length rod and non-reflecting boundary conditions. One problem examines pure pressure wave propagation, and the other problem explores pure shear wave propagation. In both problems the non-reflecting boundary segments yield results that differ only slightly (less than 6%) during a short duration from their corresponding theoretical solutions. The errors appear to be due to the inability to generate a true step-function compressive wave in the pressure wave propagation problem and due to segment integration inaccuracies in the shear wave propagation problem. These problems serve as verification problems and as regression test problems for DYNA3D.

  15. Discrete Calderon's projections on parallelepipeds and their application to computing exterior magnetic fields for FRC plasmas

    SciTech Connect (OSTI)

    Kansa, E.; Shumlak, U.; Tsynkov, S.

    2013-02-01

    Confining dense plasma in a field reversed configuration (FRC) is considered a promising approach to fusion. Numerical simulation of this process requires setting artificial boundary conditions (ABCs) for the magnetic field because whereas the plasma itself occupies a bounded region (within the FRC coils), the field extends from this region all the way to infinity. If the plasma is modeled using single fluid magnetohydrodynamics (MHD), then the exterior magnetic field can be considered quasi-static. This field has a scalar potential governed by the Laplace equation. The quasi-static ABC for the magnetic field is obtained using the method of difference potentials, in the form of a discrete Calderon boundary equation with projection on the artificial boundary shaped as a parallelepiped. The Calderon projection itself is computed by convolution with the discrete fundamental solution on the three-dimensional Cartesian grid.

  16. Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks

    SciTech Connect (OSTI)

    L.E. Zakharov

    2010-11-22

    This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the ?-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  17. Gradient zone boundary control in salt gradient solar ponds

    DOE Patents [OSTI]

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  18. Oil and gas field code master list 1997

    SciTech Connect (OSTI)

    1998-02-01

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  19. Electric and Magnetic Fields Facts

    SciTech Connect (OSTI)

    2006-08-01

    This discussion outlines the EMF issue, summarizes the research conducted to date, and describes what Western Area Power Administration is doing to address concerns about EMF.

  20. Subjective surfaces: a geometric model for boundary completion

    SciTech Connect (OSTI)

    Sarti, Alessandro; Malladi, Ravi; Sethian, J.A.

    2000-06-01

    We present a geometric model and a computational method for segmentation of images with missing boundaries. In many situations, the human visual system fills in missing gaps in edges and boundaries, building and completing information that is not present. Boundary completion presents a considerable challenge in computer vision, since most algorithms attempt to exploit existing data. A large body of work concerns completion models, which postulate how to construct missing data; these models are often trained and specific to particular images. In this paper, we take the following, alternative perspective: we consider a reference point within an image as given, and then develop an algorithm which tries to build missing information on the basis of the given point of view and the available information as boundary data to the algorithm. Starting from this point of view, a surface is constructed. It is then evolved with the mean curvature flow in the metric induced by the image until a piecewise constant solution is reached. We test the computational model on modal completion, amodal completion, texture, photo and medical images. We extend the geometric model and the algorithm to 3D in order to extract shapes from low signal/noise ratio medical volumes. Results in 3D echocardiography and 3D fetal echography are presented.

  1. RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds

    SciTech Connect (OSTI)

    Vogelmann, A. M.; McFarquhar, Greg; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, G.; Long, Charles N.; Jonsson, Haf; Bucholtz, Anthony; Collins, Donald R.; Diskin, G. S.; Gerber, H.; Lawson, Paul; Woods, Roy; Andrews, Elizabeth; Yang, Hee-Jung; Chiu, Christine J.; Hartsock, Daniel; Hubbe, John M.; Lo, Chaomei; Marshak, A.; Monroe, Justin; McFarlane, Sally A.; Schmid, Beat; Tomlinson, Jason M.; Toto, Tami

    2012-06-30

    A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in-situ statistical characterization of boundary-layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that supports modeling studies and enables evaluating a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about two-thirds of the cloud flights occurred in May and June, boundary-layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 75% of the flights occurring in cumulus and stratocumulus. Preliminary analyses show how these data are being used to analyze cloud-aerosol relationships, determine the aerosol sizes that are responsible for nucleating cloud drops, characterize the horizontal variability of the cloud radiative impacts, and evaluate air-borne and surface-based cloud property retrievals. We discuss how conducting an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.

  2. Nonlinear electric field structures in the inner magnetosphere

    SciTech Connect (OSTI)

    Malaspina, D. M.; Andersson, L.; Ergun, R. E.; Wygant, J. R.; Bonnell, J. W.; Kletzing, C.; Reeves, G. D.; Skoug, R. M.; Larsen, B. A.

    2014-08-28

    Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combined with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.

  3. Nonlinear electric field structures in the inner magnetosphere

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malaspina, D. M.; Andersson, L.; Ergun, R. E.; Wygant, J. R.; Bonnell, J. W.; Kletzing, C.; Reeves, G. D.; Skoug, R. M.; Larsen, B. A.

    2014-08-28

    Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combinedmore » with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.« less

  4. Diagnostic Mass-Consistent Wind Field Monte Carlo Dispersion Model

    Energy Science and Technology Software Center (OSTI)

    1991-01-01

    MATHEW generates a diagnostic mass-consistent, three-dimensional wind field based on point measurements of wind speed and direction. It accounts for changes in topography within its calculational domain. The modeled wind field is used by the Langrangian ADPIC dispersion model. This code is designed to predict the atmospheric boundary layer transport and diffusion of neutrally bouyant, non-reactive species as well as first-order chemical reactions and radioactive decay (including daughter products).

  5. Change in the magnetic structure of (Bi,Sm)FeO{sub 3} thin films at the morphotropic phase boundary probed by neutron diffraction

    SciTech Connect (OSTI)

    Maruyama, Shingo; Anbusathaiah, Varatharajan; Takeuchi, Ichiro; Fennell, Amy; Enderle, Mechthild; Ratcliff, William D.

    2014-11-01

    We report on the evolution of the magnetic structure of BiFeO{sub 3} thin films grown on SrTiO{sub 3} substrates as a function of Sm doping. We determined the magnetic structure using neutron diffraction. We found that as Sm increases, the magnetic structure evolves from a cycloid to a G-type antiferromagnet at the morphotropic phase boundary, where there is a large piezoelectric response due to an electric-field induced structural transition. The occurrence of the magnetic structural transition at the morphotropic phase boundary offers another route towards room temperature multiferroic devices.

  6. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  7. Hall magnetohydrodynamics simulations of end-shorting induced rotation in field-reversed configurations

    SciTech Connect (OSTI)

    Macnab, A. I. D.; Milroy, R. D.; Kim, C. C.; Sovinec, C. R.

    2007-09-15

    End-shorting of the open field lines that surround a field-reversed configuration (FRC) is believed to contribute to its observed rotation. In this study, nonlinear extended magnetohydrodynamics (MHD) simulations were performed that detail the end-shorting process and the resulting spin-up of the FRC. The tangential component of the electric field E{sub T} is set to zero at the axial boundaries in an extended MHD model that includes the Hall and {nabla}P{sub e} terms. This shorting of the electric field leads to the generation of toroidal fields on the open field lines, which apply a torque leading to a rotation of the ions on the open field lines. The FRC then gains angular momentum through a viscous transfer from the open field line region. In addition, it is shown that spin-up is still induced when insulating boundaries are assumed.

  8. Casimir-Polder interaction between an atom and an infinite boundary in a thermal bath

    SciTech Connect (OSTI)

    She Wuying; Yu Hongwei; Zhu Zhiying

    2010-01-15

    We study the energy level shift of a static two-level atom interacting with a massless scalar field in a thermal bath with the presence of a plane boundary, which gives rise to the Casimir-Polder force. We separately calculate contributions of both thermal fluctuations and radiation reaction using the formalism suggested by J. Dalibard, J. Dupont-Roc, and C. Cohen-Tannoudji [J. Phys. (France) 43, 1617 (1982); 45, 673 (1984)] and analyze in detail the behaviors of the total energy level shifts in three distinct distance regimes in both the low- and high-temperature limits. A comparison of our results with those of a uniformly accelerated atom reveals that uniformly accelerated atoms, in general, do not behave the same as static ones in a thermal bath at the Unruh temperature in terms of the atomic energy level shifts.

  9. Model of the boundary layer of a vacuum-arc magnetic filter

    SciTech Connect (OSTI)

    Minotti, F.; Giuliani, L.; Grondona, D.; Della Torre, H.; Kelly, H.

    2013-03-21

    A model is developed to describe the electrostatic boundary layer in a positively biased magnetic filter in filtered arcs with low collisionality. The set of equations used includes the electron momentum equation, with an anomalous collision term due to micro-instabilities leading to Bohm diffusion, electron mass conservation, and Poisson equation. Analytical solutions are obtained, valid for the regimes of interest, leading to an explicit expression to determine the electron density current to the filter wall as a function of the potential of the filter and the ratio of electron density at the plasma to that at the filter wall. Using a set of planar and cylindrical probes it is verified experimentally that the mentioned ratio of electron densities remains reasonably constant for different magnetic field values and probe bias, which allows to obtain a closed expression for the current. Comparisons are made with the experimentally determined current collected at different sections of a positively biased straight filter.

  10. Flavor twisted boundary conditions and the nucleon vector current

    SciTech Connect (OSTI)

    Jiang, F.-J.; Tiburzi, B. C.

    2008-12-01

    Using flavor twisted boundary conditions, we study nucleon matrix elements of the vector current. We twist only the active quarks that couple to the current. Finite volume corrections due to twisted boundary conditions are determined using partially twisted, partially quenched, heavy baryon chiral perturbation theory, which we develop for the graded group SU(7|5). Asymptotically these corrections are exponentially small in the volume, but can become pronounced for small twist angles. Utilizing the Breit frame does not mitigate volume corrections to nucleon vector current matrix elements. The derived expressions will allow for better controlled extractions of the isovector magnetic moment and the electromagnetic radii from simulations at zero lattice momentum. Our formalism, moreover, can be applied to any nucleon matrix elements.

  11. Warm Bias and Parameterization of Boundary Upwelling in Ocean Models

    SciTech Connect (OSTI)

    Cessi, Paola; Wolfe, Christopher

    2012-11-06

    It has been demonstrated that Eastern Boundary Currents (EBC) are a baroclinic intensification of the interior circulation of the ocean due to the emergence of mesoscale eddies in response to the sharp buoyancy gradients driven by the wind-stress and the thermal surface forcing. The eddies accomplish the heat and salt transport necessary to insure that the subsurface flow is adiabatic, compensating for the heat and salt transport effected by the mean currents. The EBC thus generated occurs on a cross-shore scale of order 20-100 km, and thus this scale needs to be resolved in climate models in order to capture the meridional transport by the EBC. Our result indicate that changes in the near shore currents on the oceanic eastern boundaries are linked not just to local forcing, such as coastal changes in the winds, but depend on the basin-wide circulation as well.

  12. Shock wave convergence in water with parabolic wall boundaries

    SciTech Connect (OSTI)

    Yanuka, D.; Shafer, D.; Krasik, Ya.

    2015-04-28

    The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ?45?kA and rise time of ?80?ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger.

  13. Molecular dynamics simulations of grain boundaries in thin nanocrystalline silicon films

    SciTech Connect (OSTI)

    Berman, G.P.; Doolen, G.D.; Mainieri, R.; Campbell, D.K.; Luchnikov, V.A. |

    1997-10-01

    Using molecular dynamics simulations, the grain boundaries in thin polycrystalline silicon films (considered as promising material for future nanoelectronic devices) are investigated. It is shown that in polysilicon film with randomly oriented grains the majority of grain boundaries are disordered. However, some grains with small mutual orientation differences can form extended crystalline patterns. The structure of the grain boundaries satisfies the thermodynamical criterion. The majority of atoms in the grain boundaries are tetrahedrally coordinated with the nearest neighbors, even though the grain boundaries are disordered. The grain boundary matter is characterized as an amorphous phase with a characteristic tetragonality value.

  14. Intergranular degradation assessment via random grain boundary network analysis

    DOE Patents [OSTI]

    Kumar, Mukul; Schwartz, Adam J.; King, Wayne E.

    2002-01-01

    A method is disclosed for determining the resistance of polycrystalline materials to intergranular degradation or failure (IGDF), by analyzing the random grain boundary network connectivity (RGBNC) microstructure. Analysis of the disruption of the RGBNC microstructure may be assess the effectiveness of materials processing in increasing IGDF resistance. Comparison of the RGBNC microstructures of materials exposed to extreme operating conditions to unexposed materials may be used to diagnose and predict possible onset of material failure due to

  15. Charge Transport Anisotropy Due to Grain Boundaries in Directionally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystallized Thin Films of Regio-Regular Poly(3-hexylthiophene) Charge Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regio-Regular Poly(3-hexylthiophene) Semicrystalline polymers, such as polythiophenes, hold much promise as active layers in printable electronic devices such as photovoltaic cells, sensors, and thin film transistors. As organic semiconductors approach commercialization, there is a need to better understand the relationship between

  16. On the Boundary Condition Between Two Multiplying Media

    DOE R&D Accomplishments [OSTI]

    Friedman, F. L.; Wigner, E. P.

    1944-04-19

    The transition region between two parts of a pile which have different compositions is investigated. In the case where the moderator is the same in both parts of the pile, it is found that the diffusion constant times thermal neutron density plus diffusion constant times fast neutron density satisfies the usual pile equations everywhere, right to the boundary. More complicated formulae apply in a more general case.

  17. Vegetation Loblolly Pine N Site Boundary N Streams Roads

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Loblolly Pine N Site Boundary N Streams Roads [2J Other Set-Asides 6£] Hy~ric Soils < ____ n ____ ** __ ._ ** _______ 300 0 - L " " " " , 300 781 .3a 600 Meters Soils Soil Series and Phase _TrB Figure 4-1. Plant CO/lllllllllties and soils associated with the Loblolly Pine Stand Set-Aside Area. sc 4-5 Set-Aside 4: Loblolly Pine Stand

  18. Vertical Velocities in Continental Boundary Layer Stratocumulus Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Stratocumulus Clouds Virendra Ghate Bruce Albrecht and Pavlos Kollias Why BL Stratocumulus?? * Extensive Coverage - Cover ~24% of earth's surface - Persist of long time-scales * Impact on radiation budget - High SW albedo compared to land or ocean Klein and Hartmann 1993 But Why Continental Clouds? * They do exist - Monthly cloud fraction can vary from 10% to 23% * Impact on pollution & Diurnal Cycle - Affect pollutant venting out of BL & Aerosol processing by clouds *

  19. Argonne pushing boundaries of computing in engine simulations | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory The work will be conducted on MIRA, which is currently the fifth-fastest supercomputer in the world and serves as the epicenter of the Argonne Leadership Computing Facility. (Click image to view larger.) The work will be conducted on MIRA, which is currently the fifth-fastest supercomputer in the world and serves as the epicenter of the Argonne Leadership Computing Facility. (Click image to view larger.) Argonne pushing boundaries of computing in engine simulations By

  20. Friction of Steel Sliding Under Boundary Lubrication Regime in Commercial

    Broader source: Energy.gov (indexed) [DOE]

    Gear Oils at Elevated Temperatures | Department of Energy This study was conducted to understand how to increase engine efficiency by reducing parasitic boundary regime friction losses and enable operation with lower viscosity oils while maintaining engine durability. PDF icon deer08_erck.pdf More Documents & Publications Impact of Low-Friction Surface Treatments on Engine Friction Low-Friction Engineered Surfaces Overview of Friction and Wear Reduction for Heavy Vehicles

  1. Approximations of very weak solutions to boundary-value problems.

    SciTech Connect (OSTI)

    Berggren, Martin Olof

    2003-03-01

    Standard weak solutions to the Poisson problem on a bounded domain have square-integrable derivatives, which limits the admissible regularity of inhomogeneous data. The concept of solution may be further weakened in order to define solutions when data is rough, such as for inhomogeneous Dirichlet data that is only square-integrable over the boundary. Such very weak solutions satisfy a nonstandard variational form (u, v) = G(v). A Galerkin approximation combined with an approximation of the right-hand side G defines a finite-element approximation of the very weak solution. Applying conforming linear elements leads to a discrete solution equivalent to the text-book finite-element solution to the Poisson problem in which the boundary data is approximated by L{sub 2}-projections. The L{sub 2} convergence rate of the discrete solution is O(h{sub s}) for some s {element_of} (0,1/2) that depends on the shape of the domain, asserting a polygonal (two-dimensional) or polyhedral (three-dimensional) domain without slits and (only) square-integrable boundary data.

  2. Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS

    SciTech Connect (OSTI)

    Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng; Sun, Ruiyu N.; Han, J.

    2014-09-23

    The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.

  3. Assessment of local deformation using EBSD: Quantification of local damage at grain boundaries

    SciTech Connect (OSTI)

    Kamaya, Masayuki

    2012-04-15

    Electron backscatter diffraction (EBSD) in conjunction with scanning electron microscopy was used to assess localization of the local misorientation to grain boundary. In order to quantify the degree of localization, a parameter, which was referred to as the grain boundary local misorientation, was proposed. Through crystal orientation measurements using deformed Type 316 stainless steel, it was shown that the grain boundary local misorientation increased with the applied plastic strain. Particularly, at several grain boundaries, the grain boundary local misorientation was more than 3 times the local misorientation averaged for the whole area. Surface observations revealed that the large local misorientation near the grain boundaries was attributed to the impeded slip steps rather than the number of slip steps observed on the surface. The magnitude of the grain boundary local misorientation had a week correlation with grain boundary length or grain boundary misorientation, and no correlation was found for twin boundaries. Finally, it was shown that the maximum grain boundary local misorientation could be estimated statistically, and the estimated maximum value for the specimen surface with an area of 80 mm{sup 2} was 10.6 times the averaged value. - Highlights: Black-Right-Pointing-Pointer The grain boundary local misorientation was proposed. Black-Right-Pointing-Pointer The maximum grain boundary local misorientation could be estimated statistically. Black-Right-Pointing-Pointer The large local misorientation was attributed to the impeded slip steps.

  4. Development of an Immersed Boundary Method to Resolve Complex Terrain in the Weather Research and Forecasting Model

    SciTech Connect (OSTI)

    Lunquist, K A; Chow, F K; Lundquist, J K; Mirocha, J D

    2007-09-04

    Flow and dispersion processes in urban areas are profoundly influenced by the presence of buildings which divert mean flow, affect surface heating and cooling, and alter the structure of turbulence in the lower atmosphere. Accurate prediction of velocity, temperature, and turbulent kinetic energy fields are necessary for determining the transport and dispersion of scalars. Correct predictions of scalar concentrations are vital in densely populated urban areas where they are used to aid in emergency response planning for accidental or intentional releases of hazardous substances. Traditionally, urban flow simulations have been performed by computational fluid dynamics (CFD) codes which can accommodate the geometric complexity inherent to urban landscapes. In these types of models the grid is aligned with the solid boundaries, and the boundary conditions are applied to the computational nodes coincident with the surface. If the CFD code uses a structured curvilinear mesh, then time-consuming manual manipulation is needed to ensure that the mesh conforms to the solid boundaries while minimizing skewness. If the CFD code uses an unstructured grid, then the solver cannot be optimized for the underlying data structure which takes an irregular form. Unstructured solvers are therefore often slower and more memory intensive than their structured counterparts. Additionally, urban-scale CFD models are often forced at lateral boundaries with idealized flow, neglecting dynamic forcing due to synoptic scale weather patterns. These CFD codes solve the incompressible Navier-Stokes equations and include limited options for representing atmospheric processes such as surface fluxes and moisture. Traditional CFD codes therefore posses several drawbacks, due to the expense of either creating the grid or solving the resulting algebraic system of equations, and due to the idealized boundary conditions and the lack of full atmospheric physics. Meso-scale atmospheric boundary layer simulations, on the other hand, are performed by numerical weather prediction (NWP) codes, which cannot handle the geometry of the urban landscape, but do provide a more complete representation of atmospheric physics. NWP codes typically use structured grids with terrain-following vertical coordinates, include a full suite of atmospheric physics parameterizations, and allow for dynamic synoptic scale lateral forcing through grid nesting. Terrain following grids are unsuitable for urban terrain, as steep terrain gradients cause extreme distortion of the computational cells. In this work, we introduce and develop an immersed boundary method (IBM) to allow the favorable properties of a numerical weather prediction code to be combined with the ability to handle complex terrain. IBM uses a non-conforming structured grid, and allows solid boundaries to pass through the computational cells. As the terrain passes through the mesh in an arbitrary manner, the main goal of the IBM is to apply the boundary condition on the interior of the domain as accurately as possible. With the implementation of the IBM, numerical weather prediction codes can be used to explicitly resolve urban terrain. Heterogeneous urban domains using the IBM can be nested into larger mesoscale domains using a terrain-following coordinate. The larger mesoscale domain provides lateral boundary conditions to the urban domain with the correct forcing, allowing seamless integration between mesoscale and urban scale models. Further discussion of the scope of this project is given by Lundquist et al. [2007]. The current paper describes the implementation of an IBM into the Weather Research and Forecasting (WRF) model, which is an open source numerical weather prediction code. The WRF model solves the non-hydrostatic compressible Navier-Stokes equations, and employs an isobaric terrain-following vertical coordinate. Many types of IB methods have been developed by researchers; a comprehensive review can be found in Mittal and Iaccarino [2005]. To the authors knowledge, this is the first IBM approach that is able to

  5. Internal split field generator

    DOE Patents [OSTI]

    Thundat; Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  6. Grain boundary plane orientation fundamental zones and structure-property relationships

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-10-26

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to themore » strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.« less

  7. PERCOLATION ON GRAIN BOUNDARY NETWORKS: APPLICATION TO FISSION GAS RELEASE IN NUCLEAR FUELS

    SciTech Connect (OSTI)

    Paul C. Millett

    2012-02-01

    The percolation behavior of grain boundary networks is characterized in two- and three-dimensional lattices with circular macroscale cross-sections that correspond to nuclear fuel elements. The percolation of gas bubbles on grain boundaries, and the subsequent percolation of grain boundary networks is the primary mechanism of fission gas release from nuclear fuels. Both radial cracks and radial gradients in grain boundary property distributions are correlated with the fraction of grain boundaries vented to the free surfaces. Our results show that cracks surprisingly do not significantly increase the percolation of uniform grain boundary networks. However, for networks with radial gradients in boundary properties, the cracks can considerably raise the vented grain boundary content.

  8. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan Authors: Dan Nelson ; Joseph Hardin ; ...

  9. Grain boundary plane orientation fundamental zones and structure-property relationships

    SciTech Connect (OSTI)

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-10-26

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to the strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.

  10. Evaluation of wall boundary condition parameters for gas-solids fluidized

    Office of Scientific and Technical Information (OSTI)

    bed simulations (Journal Article) | SciTech Connect Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations Citation Details In-Document Search Title: Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open

  11. The Kastler-Kalau-Walze type theorem for six-dimensional manifolds with boundary

    SciTech Connect (OSTI)

    Wang, Jian; Wang, Yong E-mail: wangy581@nenu.edu.cn

    2015-05-15

    In this paper, we define lower dimensional volumes of spin manifolds with boundary. We compute the lower dimensional volume V ol{sub 6}{sup (1,3)} for 6-dimensional spin manifolds with boundary and derive the gravity on boundary from the noncommutative residue associated with Dirac operators. For 6-dimensional manifolds with boundary, we also get a Kastler-Kalau-Walze type theorem for a general fourth order operator.

  12. Oil and Gas field code master list 1995

    SciTech Connect (OSTI)

    1995-12-01

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

  13. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; et al

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less

  14. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    SciTech Connect (OSTI)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  15. Crystallographic Characteristics of Grain Boundaries in Dense Yttria-Stabilized Zirconia

    SciTech Connect (OSTI)

    Lam Helmick; Shen J. Dillon; Kirk Gerdes; Randall Gemmen; Gregory S. Rohrer; Sridhar Seetharaman; Paul A. Salvador

    2010-04-01

    Grain-boundary plane, misorientation angle, grain size, and grain-boundary energy distributions were quantified using electron backscatter diffraction data for dense polycrystalline yttria-stabilized zirconia, to understand interfacial crystallography in solid oxide fuel cells. Tape-cast samples were sintered at 14501C for 4 h and annealed for at least 100 h between 8001C and 16501C. Distributions obtained from both three-dimensional (3D) reconstructions and stereological analyses of 2D sections demonstrated that the (100) boundary planes {(111)} have relative areas larger {smaller} than expected in a random distribution, and that the boundary plane distribution is inversely correlated to the boundary energy distribution.

  16. Clear-sky and Cloudy Boundary Layers Virendra P. Ghate Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clear-sky and Cloudy Boundary Layers Virendra P. Ghate Argonne National Laboratory Define Boundary Layer Stull (1988) defined the atmospheric boundary layer as "the part of the troposphere that is directly influenced by the presence of the earth's surface, and responds to surface forcings with a time scale of about an hour or less." Typical Boundary Layer Depths and time-scales Scenario Time/Length scale Clear-air Convective 30 mins/1 km Cumulus Topped Boundary Layer 30 mins/1 km

  17. Fluorescence photon migration by the boundary element method

    SciTech Connect (OSTI)

    Fedele, Francesco; Eppstein, Margaret J. . E-mail: maggie.eppstein@uvm.edu; Laible, Jeffrey P.; Godavarty, Anuradha; Sevick-Muraca, Eva M.

    2005-11-20

    The use of the boundary element method (BEM) is explored as an alternative to the finite element method (FEM) solution methodology for the elliptic equations used to model the generation and transport of fluorescent light in highly scattering media, without the need for an internal volume mesh. The method is appropriate for domains where it is reasonable to assume the fluorescent properties are regionally homogeneous, such as when using highly specific molecularly targeted fluorescent contrast agents in biological tissues. In comparison to analytical results on a homogeneous sphere, BEM predictions of complex emission fluence are shown to be more accurate and stable than those of the FEM. Emission fluence predictions made with the BEM using a 708-node mesh, with roughly double the inter-node spacing of boundary nodes as in a 6956-node FEM mesh, match experimental frequency-domain fluorescence emission measurements acquired on a 1087 cm{sup 3} breast-mimicking phantom at least as well as those of the FEM, but require only 1/8 to 1/2 the computation time.

  18. Frictional anisotropy under boundary lubrication: effect of surface texture.

    SciTech Connect (OSTI)

    Ajayi, O. O.; Erck, R. A.; Lorenzo-Martin, C.; Fenske, G. R.; Energy Systems

    2009-06-15

    The friction coefficient was measured under boundary lubrication with a ball-on-flat contact configuration in unidirectional sliding. The ball was smooth and hardened 52100 steel. Discs were made from case-carburized and hardened 4620, annealed 1080, and 1018 steels with directionally ground surfaces. A synthetic lubricant of stock polyalphaolefin was used for testing. During testing with each material, a frictional spike was observed whenever the ball slid parallel to the grinding ridge on the disc surface. The average friction coefficient for all tests was about 0.1, which is typical for the boundary lubrication regime. The magnitude of the frictional spikes, which reached as high as a friction coefficient of 0.25, and their persistence depended on the hardness of the disc surface. On the basis of elastohydrodynamic theory, coupled with the observation of severe plastic deformation on the ridges parallel to the sliding direction, the frictional spike could be due to localized plastic deformation on the disc surface at locations of minimal thickness for the lubricant fluid film. This hypothesis was further supported by lack of frictional spikes in tests using discs coated with a thin film of diamond-like carbon, in which plastic deformation is minimal.

  19. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    SciTech Connect (OSTI)

    Yan, Yanfa Yin, Wan-Jian; Wu, Yelong; Shi, Tingting; Paudel, Naba R.; Li, Chen; Poplawsky, Jonathan; Wang, Zhiwei; Moseley, John; Guthrey, Harvey; Moutinho, Helio; Al-Jassim, Mowafak M.; Pennycook, Stephen J.

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can be chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.

  20. Free Boundary, High Beta Equilibrium in a Large Aspect Ratio...

    Office of Scientific and Technical Information (OSTI)

    for the purpose of developing an economic fusion reactor. ... to a sufficiently high value, the plasma aperture ... vacuum field, under the added assumption that the shape ...

  1. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOE Patents [OSTI]

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  2. ARM - Field Campaign - Summer 1996 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    launched at the Central Facility and the four boundary facilities eight times per day, seven days per week. The data are required for quantifying boundary forcing and column...

  3. ARM - Field Campaign - Spring 1997 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    launched at the Central Facility and the four boundary facilities eight times per day, seven days per week. The data are required for quantifying boundary forcing and column...

  4. ARM - Field Campaign - Spring 1996 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    launched at the Central Facility and the four boundary facilities eight times per day, seven days per week. The data are required for quantifying boundary forcing and column...

  5. livermore field office

    National Nuclear Security Administration (NNSA)

    donation to those in need.

    Livermore Field Office sets core values as part of continuous improvement process http:nnsa.energy.govbloglivermore-field-office-sets-cor...

  6. External split field generator

    DOE Patents [OSTI]

    Thundat, Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  7. Preliminary Phase Field Computational Model Development

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Xu, Ke; Suter, Jonathan D.; McCloy, John S.; Johnson, Bradley R.; Ramuhalli, Pradeep

    2014-12-15

    This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus of the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in experiments, special experimental methods were devised to create similar boundary conditions in the iron films. Preliminary MFM studies conducted on single and polycrystalline iron films with small sub-areas created with focused ion beam have correlated quite well qualitatively with phase-field simulations. However, phase-field model dimensions are still small relative to experiments thus far. We are in the process of increasing the size of the models and decreasing specimen size so both have identical dimensions. Ongoing research is focused on validation of the phase-field model. Validation is being accomplished through comparison with experimentally obtained MFM images (in progress), and planned measurements of major hysteresis loops and first order reversal curves. Extrapolation of simulation sizes to represent a more stochastic bulk-like system will require sampling of various simulations (i.e., with single non-magnetic defect, single magnetic defect, single grain boundary, single dislocation, etc.) with distributions of input parameters. These outputs can then be compared to laboratory magnetic measurements and ultimately to simulate magnetic Barkhausen noise signals.

  8. Field study plan for alternate barriers

    SciTech Connect (OSTI)

    Freeman, H.D.; Gee, G.W.; Relyea, J.F.

    1989-05-01

    Pacific Northwest Laboratory (PNL) is providing technical assistance in selecting, designing, evaluating, and demonstrating protective barriers. As part of this technical assistance effort, asphalt, clay, and chemical grout will be evaluated for use as alternate barriers. The purpose of the subsurface layer is to reduce the likelihood that extreme events (i.e., 100-year maximum storms, etc.) will cause significant drainage through the barrier. The tests on alternate barriers will include laboratory and field analysis of the subsurface layer performance. This field test plan outlines the activities required to test and design subsurface moisture barriers. The test plan covers activities completed in FY 1988 and planned through FY 1992 and includes a field-scale test of one or more of the alternate barriers to demonstrate full-scale application techniques and to provide performance data on a larger scale. Tests on asphalt, clay, and chemical grout were initiated in FY 1988 in small (30.5 cm diameter) tube-layer lysimeters. The parameters used for testing the materials were different for each one. The tests had to take into account the differences in material characteristics and response to change in conditions, as well as information provided by previous studies. 33 refs., 8 figs., 1 tab.

  9. Retrieval of Urban Boundary Layer Structures from Doppler Lidar Data. Part I: Accuracy Assessment

    SciTech Connect (OSTI)

    Xia, Quanxin; Lin, Ching Long; Calhoun, Ron; Newsom, Rob K.

    2008-01-01

    Two coherent Doppler lidars from the US Army Research Laboratory (ARL) and Arizona State University (ASU) were deployed in the Joint Urban 2003 atmospheric dispersion field experiment (JU2003) held in Oklahoma City. The dual lidar data are used to evaluate the accuracy of the four-dimensional variational data assimilation (4DVAR) method and identify the coherent flow structures in the urban boundary layer. The objectives of the study are three-fold. The first objective is to examine the effect of eddy viscosity models on the quality of retrieved velocity data. The second objective is to determine the fidelity of single-lidar 4DVAR and evaluate the difference between single- and dual-lidar retrievals. The third objective is to correlate the retrieved flow structures with the ground building data. It is found that the approach of treating eddy viscosity as part of control variables yields better results than the approach of prescribing viscosity. The ARL single-lidar 4DVAR is able to retrieve radial velocity fields with an accuracy of 98% in the along-beam direction and 80-90% in the cross-beam direction. For the dual-lidar 4DVAR, the accuracy of retrieved radial velocity in the ARL cross-beam direction improves to 90-94%. By using the dual-lidar retrieved data as a reference, the single-lidar 4DVAR is able to recover fluctuating velocity fields with 70-80% accuracy in the along-beam direction and 60-70% accuracy in the cross-beam direction. Large-scale convective roll structures are found in the vicinity of downtown airpark and parks. Vortical structures are identified near the business district. Strong updrafts and downdrafts are also found above a cluster of restaurants.

  10. Phase 2 CASL Unlimited Access Report Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... fission products into the coolant under certain conditions ... flexibility and lead to loss of power generation. ... state, transient and accident conditions, Preston (UK) ...

  11. Phase 2 CASL Unlimited Access Report Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... PWR ISV independent software vendor LANL Los Alamos National Laboratory LOCA loss of coolant accident LWR light water reactor LWRS Light Water Reactor Sustainability M&S modeling ...

  12. Phase 2 CASL Unlimited Access Report Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Probability of Failure Darts, epistemic interval uncertainty, Dempster-Shafer, Bayesian inference (QUESO, DREAM), incremental LHS * Optimization: NOMAD directional ...

  13. Phase 2 CASL Unlimited Access Report Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    34-000 MPACT Verification and Validation: Status and Plans Tom Downar Brendan Kochunas Univ of Michigan Ben Collins Oak Ridge National Laboratory April 30, 2015 MPACT Verification and Validation Consortium for Advanced Simulation of LWRs ii CASL-U-2015-0134-000 REVISION LOG Revision Date Affected Pages Revision Description 0 All Initial Release Document pages that are: Export Controlled ______________None________________________________ IP/Proprietary/NDA

  14. Microsoft Word - CAIP Outline.doc

    National Nuclear Security Administration (NNSA)

    for why it is not needed. o Topography o Geology including stratigraphylithology o Climate o Hydrogeology o Floodplain Studies o Infrastructure 3.2 Contaminants of Potential...

  15. Attachment_1_SOS_Outline.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  16. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    SciTech Connect (OSTI)

    Chatterjee, Vijay; Harniman, Robert; May, Paul W.; Barhai, P. K.

    2014-04-28

    The emission of electrons from diamond in vacuum occurs readily as a result of the negative electron affinity of the hydrogenated surface due to features with nanoscale dimensions, which can concentrate electric fields high enough to induce electron emission from them. Electrons can be emitted as a result of an applied electric field (field emission) with possible uses in displays or cold-cathode devices. Alternatively, electrons can be emitted simply by heating the diamond in vacuum to temperatures as low as 350?C (thermionic emission), and this may find applications in solar energy generation or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films deposited onto Si or metallic substrates by chemical vapor deposition, and these films have a rough, faceted morphology on the micron or nanometer scale. Electron emission is often improved by patterning the diamond surface into sharp points or needles, the idea being that the field lines concentrate at the points lowering the barrier for electron emission. However, there is little direct evidence that electrons are emitted from these sharp tips. The few reports in the literature that have studied the emission sites suggested that emission came from the grain boundaries and not the protruding regions. We now present direct observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force microscopy. We confirm that the emission current comes mostly from the grain boundaries, which is consistent with a model for emission in which the non-diamond phase is the source of electrons with a threshold that is determined by the surrounding hydrogenated diamond surface.

  17. The boundary effects of the shock wave dispersion in discharges

    SciTech Connect (OSTI)

    Markhotok, A.; Popovic, S.; Vuskovic, L.

    2008-03-15

    Interaction of shock waves with a weakly ionized gas generated by discharges has been studied. An additional thermal mechanism of the shock wave dispersion on the boundary between a neutral gas and discharge has been proposed [A. Markhotok, S. Popovic, and L. Vuskovic, Proceedings of the 15th International Conference on Atomic Processes in Plasmas, March 19-22, 2007 (NIST, Gaitersburg, MD, 2007)]. This mechanism can explain a whole set of thermal features of the shock wave-plasma interaction, including acceleration of the shock wave, broadening or splitting of the deflection signals and its consecutive restoration. Application has been made in the case of a shock wave interacting with a laser induced plasma. The experimental observations support well the results of calculation based on this model.

  18. AB INITIO STUDY OF GRAIN BOUNDARY PROPERTIES OF TUNGSTEN ALLOYS

    SciTech Connect (OSTI)

    Setyawan, Wahyu; Kurtz, Richard J.

    2012-04-17

    Density functional theory was employed to investigate the grain boundary (GB) property of W-TM alloys (TM: fifth and sixth row transition metals). GB strengthening was found for Hf, Ta, Nb, Ru, Re, Os and Ir for 27{l_brace}525{r_brace} and to a lesser degree for 11{l_brace}323{r_brace}. Lower valence solutes strengthen the GB at certain substitutional sites, while higher valence elements enforce it at other positions. For 3{l_brace}112{r_brace}, the alloys exhibit reduced cleavage energies. Hence, allowing with TMs increases the GB cohesion more effectively for large-angle GBs whose cleavage energy is, in general, inherently lower than the low-angle ones. Electron density analysis elucidates the mechanism of charge addition or depletion of the GB bonding region upon TM substitution at various positions leading to stronger or weaker intergranular cohesion, respectively.

  19. The growth mechanism of grain boundary carbide in Alloy 690

    SciTech Connect (OSTI)

    Li, Hui; Xia, Shuang; Zhou, Bangxin; Peng, Jianchao

    2013-07-15

    The growth mechanism of grain boundary M{sub 23}C{sub 6} carbides in nickel base Alloy 690 after aging at 715 C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M{sub 23}C{sub 6} and matrix was curved, and did not lie on any specific crystal plane. The M{sub 23}C{sub 6} carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M{sub 23}C{sub 6} carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M{sub 23}C{sub 6}: (111){sub matrix}//(0001){sub transition}//(111){sub carbide}, <112{sup }>{sub matrix}//<21{sup }10>{sub transition}//<112{sup }>{sub carbide}. The crystal lattice constants of transition phase are c{sub transition}=?(3)a{sub matrix} and a{sub transition}=?(6)/2a{sub matrix}. Based on the experimental results, the growth mechanism of M{sub 23}C{sub 6} and the formation mechanism of transition phase are discussed. - Highlights: A transition phase was observed at the coherent interfaces of M{sub 23}C{sub 6} and matrix. The transition phase has hexagonal structure, and is coherent with matrix and M{sub 23}C{sub 6}. The M{sub 23}C{sub 6} transforms from the matrix directly at the incoherent phase interface.

  20. The atomic structure and chemistry of Fe-rich steps on antiphase boundaries in Ti-doped Bi{sub 0.9}Nd{sub 0.15}FeO{sub 3}

    SciTech Connect (OSTI)

    MacLaren, Ian Craven, Alan J.; Schaffer, Bernhard; Wang, LiQiu; Ramasse, Quentin M.; Kalantari, Kambiz; Reaney, Ian M.

    2014-06-01

    Stepped antiphase boundaries are frequently observed in Ti-doped Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3}, related to the novel planar antiphase boundaries reported recently. The atomic structure and chemistry of these steps are determined by a combination of high angle annular dark field and bright field scanning transmission electron microscopy imaging, together with electron energy loss spectroscopy. The core of these steps is found to consist of 4 edge-sharing FeO{sub 6} octahedra. The structure is confirmed by image simulations using a frozen phonon multislice approach. The steps are also found to be negatively charged and, like the planar boundaries studied previously, result in polarisation of the surrounding perovskite matrix.

  1. Computer simulation study of the structure of vacancies in grain boundaries

    SciTech Connect (OSTI)

    Brokman, A.; Bristowe, P.D.; Balluffi, R.W.

    1981-01-01

    The structure of vacancies in grain boundaries has been investigated by computer molecular statics employing pairwise potentials. In order to gain an impression of the vacancy structures which may occur generally, a number of variables was investigated including: metal type, boundary type, degree of lattice coincidence and choice of boundary site. In all cases the vacancies remained as distinguishable point defects in the relatively irregular boundary structures. However, it was found that the vacancy often induced relatively large atomic displacements in the core of the boundary. These displacements often occurred only in the direct vicinity of the vacancy, but in certain cases they were widely distributed in the boundary, sometimes at surprisingly large distances.

  2. Consideration of Grain Size Distribution in the Diffusion of Fission Gas to Grain Boundaries

    SciTech Connect (OSTI)

    Paul C. Millett; Yongfeng Zhang; Michael R. Tonks; S. B. Biner

    2013-09-01

    We analyze the accumulation of fission gas on grain boundaries in a polycrystalline microstructure with a distribution of grain sizes. The diffusion equation is solved throughout the microstructure to evolve the gas concentration in space and time. Grain boundaries are treated as infinite sinks for the gas concentration, and we monitor the cumulative gas inventory on each grain boundary throughout time. We consider two important cases: first, a uniform initial distribution of gas concentration without gas production (correlating with post-irradiation annealing), and second, a constant gas production rate with no initial gas concentration (correlating with in-reactor conditions). The results show that a single-grain-size model, such as the Booth model, over predicts the gas accumulation on grain boundaries compared with a polycrystal with a grain size distribution. Also, a considerable degree of scatter, or variability, exists in the grain boundary gas accumulation when comparing all of the grain boundaries in the microstructure.

  3. ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    SciTech Connect (OSTI)

    Karen Johnson; Michael Jensen

    1996-11-08

    ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  4. ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  5. Revisit boundary conditions for the self-adjoint angular flux formulation

    SciTech Connect (OSTI)

    Wang, Yaqi; Gleicher, Frederick N.

    2015-03-01

    We revisit the boundary conditions for SAAF. We derived the equivalent parity variational form ready for coding up. The more rigorous approach of evaluating odd parity should be solving the odd parity equation coupled with the even parity. We proposed a symmetric reflecting boundary condition although neither positive definiteness nor even-odd decoupling is achieved. A simple numerical test verifies the validity of these boundary conditions.

  6. Joint retrievals of cloud and drizzle in marine boundary layer clouds using

    Office of Scientific and Technical Information (OSTI)

    ground-based radar, lidar and zenith radiances (Journal Article) | DOE PAGES Published Article: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances « Prev Next » Title: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar

  7. Joint retrievals of cloud and drizzle in marine boundary layer clouds using

    Office of Scientific and Technical Information (OSTI)

    ground-based radar, lidar and zenith radiances (Journal Article) | SciTech Connect Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Citation Details In-Document Search Title: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar

  8. Joint retrievals of cloud and drizzle in marine boundary layer clouds using

    Office of Scientific and Technical Information (OSTI)

    ground-based radar, lidar and zenith radiances (Journal Article) | SciTech Connect Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Citation Details In-Document Search Title: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar

  9. Photoluminescence Imaging of Large-Grain CdTe for Grain Boundary

    Office of Scientific and Technical Information (OSTI)

    Characterization (Conference) | SciTech Connect Photoluminescence Imaging of Large-Grain CdTe for Grain Boundary Characterization Citation Details In-Document Search Title: Photoluminescence Imaging of Large-Grain CdTe for Grain Boundary Characterization In this work, we use photoluminescence (PL) imaging to characterize CdTe grain boundary recombination. We use a silicon megapixel camera and green (532 nm) laser diodes for excitation. A microscope objective lens system is used for high

  10. RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds Citation Details In-Document Search Title: RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in-situ statistical characterization of boundary-layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM)

  11. Joint retrievals of cloud and drizzle in marine boundary layer clouds using

    Office of Scientific and Technical Information (OSTI)

    ground-based radar, lidar and zenith radiances (Journal Article) | DOE PAGES Published Article: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Title: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a

  12. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM

    Office of Scientific and Technical Information (OSTI)

    mobile facility deployment (Journal Article) | SciTech Connect Journal Article: Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment Citation Details In-Document Search Title: Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010)

  13. Simulation of Post-Frontal Boundary Layers Observed During the ARM 2000 Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of Post-Frontal Boundary Layers Observed During the ARM 2000 Cloud IOP D. B. Mechem and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma M. Poellot University of North Dakota Grand Forks, North Dakota Introduction Large-eddy simulation (LES) models have been widely employed in the study of radiatively forced cloud topped boundary layers (CTBL). These boundary layers are typically well mixed and characterized by a sharp jump

  14. Grain boundary chemistry effects on environment-induced crack growth of iron-based alloys

    SciTech Connect (OSTI)

    Jones, R.H.

    1992-11-01

    Relation between grain boundary chemistry and environment-induced crack growth of Fe-based alloys is reviewed. The importance of the cleanliness of steels is clearly demonstrated by direct relations between grain boundary chemistry and crack growth behavior for both H and anodic dissolution-induced crack growth. Relationships between strain to failure, work of fracture, K[sub ISCC], crack velocity and fracture mode and grain boundary chemistry are presented. Only results in which the grain boundary chemistry has been measured directly by Auger electron spectroscopy (AES) on intergranular surfaces exposed by in situ fracture have been considered in this review.

  15. Grain boundary chemistry effects on environment-induced crack growth of iron-based alloys

    SciTech Connect (OSTI)

    Jones, R.H.

    1992-11-01

    Relation between grain boundary chemistry and environment-induced crack growth of Fe-based alloys is reviewed. The importance of the cleanliness of steels is clearly demonstrated by direct relations between grain boundary chemistry and crack growth behavior for both H and anodic dissolution-induced crack growth. Relationships between strain to failure, work of fracture, K{sub ISCC}, crack velocity and fracture mode and grain boundary chemistry are presented. Only results in which the grain boundary chemistry has been measured directly by Auger electron spectroscopy (AES) on intergranular surfaces exposed by in situ fracture have been considered in this review.

  16. Surface relief produced by diffusion induced boundary migration in Cu-Zn

    SciTech Connect (OSTI)

    Tsai, Y.S.; Meyrick, G.; Shewmon, P.G.

    1984-03-01

    Experimental observations are presented that demonstrate that diffusion induced grain boundary migration in copper foils exposed to zinc vapor, from a Cu-15 pct Zn alloy, can be studied directl after treatment without etching. The general characteristics of migration are in accord with previous investigations, but novel changes in the surface topography are described. Pits were formed on the surface of areas swept by boundary migration; also, the surface was often converted into a series of corrugations. The formation of pits suggests that the grain boundary diffusivity of zinc exceeds that of copper. The corrugations are believed to indicate that boundaries sometimes move in an intermittent manner.

  17. Grain Boundary Percolation Modeling of Fission Gas Release in Oxide Fuels

    SciTech Connect (OSTI)

    Paul C. Millett; Michael R. Tonks; S. B. Biner

    2012-05-01

    We present a new approach to fission gas release modeling in oxide fuels based on grain boundary network percolation. The method accounts for variability in the bubble growth and coalescence rates on individual grain boundaries, and the resulting effect on macroscopic fission gas release. Two-dimensional representa- tions of fuel pellet microstructures are considered, and the resulting gas release rates are compared with traditional two-stage Booth models, which do not account for long-range percolation on grain boundary net- works. The results show that the requirement of percolation of saturated grain boundaries can considerably reduce the total gas release rates, particularly when gas resolution is considered.

  18. 3-D seismic data for field development: Landslide field case study

    SciTech Connect (OSTI)

    Raeuchle, S.K.; Carr, T.R.; Tucker, R.D. )

    1990-05-01

    The Landslide field is located on the extreme southern flank of the San Joaquin basin, approximately 25 mi south of Bakersfield, California. The field, discovered in 1985, has produced in excess 9 million bbl of oil with an estimated ultimate recovery of more than 13 MMBO. The Miocene Stevens sands, which form the reservoir units at Landslide field, are interpreted as a series of constructional submarine fan deposits. Deposition of the fans was controlled by paleotopography with an abrupt updip pinch-out of the sands to the southwest. The three-dimensional seismic data over the field was used to locate the bottom hole of the landslide 22X-30 development well as close to this abrupt updip pinchout as possible in order to maximize oil recovery. A location was selected two traces (330 ft) from the updip pinch-out as mapped on the seismic data. The well was successfully drilled during 1989, encountering 150 ft of net sand with initial production in excess of 1,500 bbl of oil/day. A pressure buildup test indicates the presence of a boundary approximately 200 ft from the well bore. This boundary is interpreted as the updip pinchout of the Stevens sands against the paleohigh. Based on examination of changes in amplitude, the absence or presence of reservoir-quality sand can be mapped across the paleohighs. Application of three-dimensional seismic data, integration with well data, and in particular reconstruction cuts tied closely to existing wells can be used to map the ultimate extent of the field and contribute to efficient development.

  19. Electromagnetic field interactions with the human body: observed effects and theories

    SciTech Connect (OSTI)

    Raines, J.K.

    1981-04-01

    The effects of nonionizing electromagnetic (EM) field interactions with the human body were reported and human related studies were collected. Nonionizing EM fields are linked to cancer in humans in three different ways: cause, means of detection, and effective treatment. Bad and benign effects are expected from nonionizing EM fields and much more knowledge is necessary to properly categorize and qualify EM field characteristics. It is concluded that knowledge of the boundary between categories, largely dependent on field intensity, is vital to proper future use of EM radiation for any purpose and the protection of the individual from hazard.

  20. Nevada Field Office

    National Nuclear Security Administration (NNSA)

    field-items">
    field-item odd">