National Library of Energy BETA

Sample records for fiberglass acorn black

  1. ACORNS: Analysis of Correlations Used in Neutron Spectrometry

    Energy Science and Technology Software Center (OSTI)

    1988-05-01

    The program ACORNS performs the complete analysis of the input covariance and/or relative covariance and/or correlation matrices, first of all used in the activation neutron spectrometry. These matrices have to be positive definite. To check the fulfillment of this requirement, the program calculates the eigenvalues and eigenvectors of those. If all the eigenvalues are positive, the program optionally performs the factor analysis. The user's input can be either made manually, or the cross section librariesmore » generated by the code X333.« less

  2. Cease All Funding of the Association of Community Organizations for Reform Now (ACORN)

    Broader source: Energy.gov [DOE]

    The purpose of this flash is to ensure you are aware of the attached Office of Management and Budget's memorandum regarding section 163 of the Continuing Appropriations Resolution, 2010, Division B of Public Law No. 1 1 1-68 and your responsibilities thereto. In part, the resolution states: None of the funds made available by this joint resolution or any prior act may be provided to ACORN, or any of its affiliates, subsidiaries, or allied organizations.

  3. Additional Documentation Regarding Policy Flash Number 2010-04: Cease All Funding of the Association of Community Organizations for Reform Now (ACORN)

    Broader source: Energy.gov [DOE]

    In reference to Policy Flash 2010-04, attached is a list of the 361 known affiliates, subsidiaries, and allied organizations of the ACORN Council. Note that the word "ACORN is not always in the name. As this list may not be all inclusive, Contracting Officers should review all available information before determining an entity is not precluded from receiving funding based on an affiliation with ACORN. This list is part of the U.S. House of Representatives Committee on Oversight and Government Reform Republican Staff Report: "Is ACORN Intentionally Structured as a Criminal Enterprise?" (July 23,2009), available at http://revublicans.oversi~t.house.qov/images/stories/Re~orts/20090923ACO....

  4. Rescind Policy Flashes 201 0-04 "Cease All Funding of the Association of Community Organizations for Reform Now (ACORN)" and 201 0-06 "Additional Documentation Regarding Policy Flash Number 201 0-04"

    Broader source: Energy.gov [DOE]

    The purpose of this flash to inform you that on March 10,201 0, the United States District Court for the Eastern District of New York issued an opinion regarding ACORN. In its opinion, the District Court concluded that the funding prohibitions regarding ACORN and related entities in FY 201 0 Continuing Resolution and in several of FY 201 0 appropriations acts are unconstitutional "bills of attainder" under Article 1, Section 9 of the United States Constitution. (See attached Office of Management and Budget (OMB) M- 10- 12, March 1 6,20 1 0 and United States District Court Eastern District of New York case ACORN vs. United States of America). This impacts the policies in Flashes 20 10-04 and 20 10-06 restricting funds that can be used for ACORN related awards.

  5. Rescind Policy Flashes 2010-04 "Cease All Funding of the Association of Community Organizations for Reform Now (ACORN)" and 2010-06 "Additional Documentation Regarding Policy Flash Number 2010-04"

    Broader source: Energy.gov [DOE]

    The purpose of this flash to inform you that on March 10,201 0, the United States District Court for the Eastern District of New York issued an opinion regarding ACORN. In its opinion, the District Court concluded that the funding prohibitions regarding ACORN and related entities in FY 201 0 Continuing Resolution and in several of FY 201 0 appropriations acts are unconstitutional "bills of attainder" under Article 1, Section 9 of the United States Constitution. (See attached Office of Management and Budget (OMB) M- 10- 12, March 1 6,20 1 0 and United States District Court Eastern District of New York case ACORN vs. United States of America). This impacts the policies in Flashes 20 10-04 and 20 10-06 restricting funds that can be used for ACORN related awards.

  6. ANALYSIS OF VAPORS FROM METHYLENE CHLORIDE EXTRACTS OF NUCLEAR GRADE HEPA FILTER FIBERGLASS SAMPLES

    SciTech Connect (OSTI)

    FRYE JM; ANASTOS HL; GUTIERREZ FC

    2012-06-07

    While several organic compounds were detected in the vapor samples used in the reenactment of the preparation of mounts from the extracts of nuclear grade high-efficiency particulate air filter fiberglass samples, the most significant species present in the samples were methylene chloride, phenol, phenol-d6, and 2-fluorophenol. These species were all known to be present in the extracts, but were expected to have evaporated during the preparation of the mounts, as the mounts appeared to be dry before any vapor was collected. These species were present at the following percentages of their respective occupational exposure limits: methylene chloride, 2%; phenol, 0.4%; and phenol-d6, 0.6%. However, there is no established limit for 2-fluorophenol. Several other compounds were detected at low levels for which, as in the case of 2-fluorophenol, there are no established permissible exposure limits. These compounds include 2-chlorophenol; N-nitroso-1-propanamine; 2-fluoro-1,1{prime}-biphenyl; 1,2-dihydroacenaphthylene; 2,5-cyclohexadiene-1,4-dione,2,6-bis(1,1-dimethylethyl); trimethyl oxirane; n-propylpropanamine; 2-(Propylamino)ethanol; 4-methoxy-1-butene; 6-methyl-5-hepten-2-one; and 3,4-dimethylpyridine. Some of these were among those added as surrogates or spike standards as part ofthe Advanced Technologies and Laboratories International, Inc. preparation ofthe extract of the HEPA filter media and are indicated as such in the data tables in Section 2, Results; other compounds found were not previously known to be present. The main inorganic species detected (sulfate, sodium, and sulfur) are also consistent with species added in the preparation of the methylene chloride extract of the high-efficiency particulate air sample.

  7. Design of 9-meter carbon-fiberglass prototype blades : CX-100 and TX-100 : final project report.

    SciTech Connect (OSTI)

    Berry, Derek

    2007-09-01

    TPI Composites, Inc. (TPI), Global Energy Concepts, LLC (GEC), and MDZ Consulting (MDZ) have collaborated on a project to design, manufacture, and test prototype carbon-fiberglass hybrid wind turbine blades of 9-m length. The project, funded by Sandia National Laboratories, involves prototype blades in both conventional (unidirectional spar fibers running along the blade span) and ''adaptive'' (carbon fibers in off-axis orientation to achieve bend-twist-coupling) configurations. After manufacture, laboratory testing is being conducted to determine the static and fatigue strength of the prototypes, in conjunction with field testing to evaluate the performance under operational conditions.

  8. Reduction in the thermal resistance (R-value) of loose-fill insulation and fiberglass batts due to compression

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Wright, J.H.

    1981-04-01

    A method is presented for calculating the thickness reduction of loose-fill insulations and fiberglass batts that result from compressive forces exerted by additional insulation. The thickness reduction is accompanied by an increase in density and a reduction in the R value of the compressed layer. Calculations for thermal resistance of two layers of insulation are given. Information in 4 appendices includes: identification of products tested (products from 3 companies); experimental values for thickness as a function of loading; Fortran programs and output; and calculated R values for stacked insulations. (MCW)

  9. Numerical analysis of heat transfer by conduction and natural convection in loose-fill fiberglass insulation--effects of convection on thermal performance

    SciTech Connect (OSTI)

    Delmas, A.A.; Wilkes, K.E.

    1992-04-01

    A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.

  10. Black Pine Engineering

    Broader source: Energy.gov [DOE]

    Black Pine Engineering is commercializing a disruptive technology in the turbomachinery industry. Using a patented woven composite construction, Black Pine Engineering can make turbomachines (turbines, compressors) that are cheaper and lighter than competing technologies. Using this technology, Black Pine Engineering will sell turbo-compressors which solve the problem of wasted steam in geothermal power plants.

  11. BLACK HISTORY MONTH

    Broader source: Energy.gov [DOE]

    Black History Month is an annual celebration of achievements by black Americans and a time for recognizing the central role of African Americans in U.S. history. The event grew out of “Negro History Week,” created by historian Carter G. Woodson and other prominent African Americans. Other countries around the world, including Canada and the United Kingdom, also devote a month to celebrating black history.

  12. ULTRAMASSIVE BLACK HOLE COALESCENCE

    SciTech Connect (OSTI)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter E-mail: k.holley@vanderbilt.edu

    2015-01-10

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production.

  13. ARM - Black Forest News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Forest News ARM Mobile Facility Completes Field Campaign in Germany January 15, 2008 Microwave Radiometers Put to the Test in Germany September 15, 2007 Zeppelin NT Flies for ...

  14. Acorn Technology Corporation | Open Energy Information

    Open Energy Info (EERE)

    23103 Miles Road Place: Cleveland, Ohio Zip: 44128 Sector: Biofuels, Services, Solar, Wind energy Phone Number: 216-663-1244 Website: acorntechnology.com Coordinates: 41.42461,...

  15. Aspects of hairy black holes

    SciTech Connect (OSTI)

    Anabalón, Andrés; Astefanesei, Dumitru

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  16. Lumens Placard (Black) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    File lumensplacard-black.eps More Documents & Publications Lumens Placard (Black) Lumens Placard (Green) Lumens Placard (Green)

  17. Gasification of black liquor

    DOE Patents [OSTI]

    Kohl, Arthur L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

  18. Black hole magnetospheres

    SciTech Connect (OSTI)

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-20

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  19. Gasification of black liquor

    DOE Patents [OSTI]

    Kohl, A.L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  20. Black Pine Circle Project

    ScienceCinema (OSTI)

    Mytko, Christine

    2014-09-15

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  1. Black Pine Circle Project

    SciTech Connect (OSTI)

    Mytko, Christine

    2014-03-31

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  2. Black Forest Partners | Open Energy Information

    Open Energy Info (EERE)

    Black Forest Partners Jump to: navigation, search Name: Black Forest Partners Place: San Francisco, California Zip: 94111 Product: San Francisco-based project developer focused on...

  3. BlackGold Biofuels | Open Energy Information

    Open Energy Info (EERE)

    BlackGold Biofuels Jump to: navigation, search Name: BlackGold Biofuels Place: Philadelphia, Pennsylvania Zip: 19107 Product: Philadelphia-based developer of a waste...

  4. Black optic display

    DOE Patents [OSTI]

    Veligdan, James T.

    1997-01-01

    An optical display includes a plurality of stacked optical waveguides having first and second opposite ends collectively defining an image input face and an image screen, respectively, with the screen being oblique to the input face. Each of the waveguides includes a transparent core bound by a cladding layer having a lower index of refraction for effecting internal reflection of image light transmitted into the input face to project an image on the screen, with each of the cladding layers including a cladding cap integrally joined thereto at the waveguide second ends. Each of the cores is beveled at the waveguide second end so that the cladding cap is viewable through the transparent core. Each of the cladding caps is black for absorbing external ambient light incident upon the screen for improving contrast of the image projected internally on the screen.

  5. Black Warrior, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    or Black Warrior Spring coordinates Black Warrior is a property in Washoe County and Churchill County, Nevada that is south and east of Black Warrior Peak. References Nevada...

  6. Black hole mimickers: Regular versus singular behavior

    SciTech Connect (OSTI)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2008-07-15

    Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal {epsilon}-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal {epsilon}-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to

  7. Charged rotating dilaton black strings

    SciTech Connect (OSTI)

    Dehghani, M.H.; Farhangkhah, N.

    2005-02-15

    In this paper we, first, present a class of charged rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with zero and Liouville-type potentials. We find that these solutions can present a black hole/string with two regular horizons, an extreme black hole or a naked singularity provided the parameters of the solutions are chosen suitable. We also compute the conserved and thermodynamic quantities, and show that they satisfy the first law of thermodynamics. Second, we obtain the (n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. We find that these solutions can present black branes, naked singularities or spacetimes with cosmological horizon if one chooses the parameters of the solutions correctly. Again, we find that the thermodynamic quantities of these solutions satisfy the first law of thermodynamics.

  8. Quantum Criticality and Black Holes

    ScienceCinema (OSTI)

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2009-09-01

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  9. Black Engineer of the Year Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Engineer of the Year Award - Sandia Energy Energy Search Icon Sandia Home Locations ... Twitter Google + Vimeo GovDelivery SlideShare Black Engineer of the Year Award Home...

  10. From Pinholes to Black Holes

    SciTech Connect (OSTI)

    Fenimore, Edward E.

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of coded apertures. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  11. Close encounters of three black holes

    SciTech Connect (OSTI)

    Campanelli, Manuela; Lousto, Carlos O.; Zlochower, Yosef

    2008-05-15

    We present the first fully relativistic long-term numerical evolutions of three equal-mass black holes in a system consisting of a third black hole in a close orbit about a black-hole binary. These close-three-black-hole systems have very different merger dynamics from black-hole binaries; displaying complex trajectories, a redistribution of energy that can impart substantial kicks to one of the holes, distinctive waveforms, and suppression of the emitted gravitational radiation. In one configuration the binary is quickly disrupted and the individual holes follow complicated trajectories and merge with the third hole in rapid succession, while in another, the binary completes a half-orbit before the initial merger of one of the members with the third black hole, and the resulting two-black-hole system forms a highly elliptical, well separated binary that shows no significant inspiral for (at least) the first t{approx}1000M of evolution.

  12. Complexity, action, and black holes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2016-04-18

    In an earlier paper "Complexity Equals Action" we conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.

  13. Multi-clad black display panel

    SciTech Connect (OSTI)

    Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin

    2002-01-01

    A multi-clad black display panel, and a method of making a multi-clad black display panel, are disclosed, wherein a plurality of waveguides, each of which includes a light-transmissive core placed between an opposing pair of transparent cladding layers and a black layer disposed between transparent cladding layers, are stacked together and sawed at an angle to produce a wedge-shaped optical panel having an inlet face and an outlet face.

  14. Boson shells harboring charged black holes

    SciTech Connect (OSTI)

    Kleihaus, Burkhard; Kunz, Jutta; Laemmerzahl, Claus; List, Meike

    2010-11-15

    We consider boson shells in scalar electrodynamics coupled to Einstein gravity. The interior of the shells can be empty space, or harbor a black hole or a naked singularity. We analyze the properties of these types of solutions and determine their domains of existence. We investigate the energy conditions and present mass formulae for the composite black hole-boson shell systems. We demonstrate that these types of solutions violate black hole uniqueness.

  15. Black hole birth captured by cosmic voyeurs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black hole birth captured by cosmic voyeurs Black hole birth captured by cosmic voyeurs The RAPTOR system is a network of small robotic observatories that scan the skies for optical anomalies such as flashes emanating from a star in its death throes as it collapses and becomes a black hole. November 21, 2013 Los Alamos National Laboratory astrophysicist Tom Vestrand poses with a telescope array that is part of the RAPTOR (RAPid Telescopes for Optical Response) system. RAPTOR is an intelligent

  16. National Conference of Black Mayors, Inc.

    Broader source: Energy.gov [DOE]

    The cooperative agreement enhances the National Conference of Black Mayors, Inc., members' capacity for energy and environmental planning through computer-based technology, Internet access, and a...

  17. Black Coral Capital | Open Energy Information

    Open Energy Info (EERE)

    Coral Capital Jump to: navigation, search Name: Black Coral Capital Address: 55 Union Street, 3rd Floor Place: Boston, Massachusetts Zip: 02108 Region: Greater Boston Area Product:...

  18. Black Mountain Insulation | Open Energy Information

    Open Energy Info (EERE)

    Mountain Insulation Jump to: navigation, search Name: Black Mountain Insulation Place: United Kingdom Sector: Carbon Product: UK-based manufacturer of sheeps wool insulation which...

  19. Black carbon contribution to global warming

    SciTech Connect (OSTI)

    Chylek, P.; Johnson, B.; Kou, L.; Wong, J.

    1996-12-31

    Before the onset of industrial revolution the only important source of black carbon in the atmosphere was biomass burning. Today, black carbon production is divided between the biomass and fossil fuel burning. Black carbon is a major agent responsible for absorption of solar radiation by atmospheric aerosols. Thus black carbon makes other aerosols less efficient in their role of reflecting solar radiation and cooling the earth-atmosphere system. Black carbon also contributes to the absorption of solar radiation by clouds and snow cover. The authors present the results of black carbon concentrations measurements in the atmosphere, in cloud water, in rain and snow melt water collected during the 1992--1996 time period over the southern Nova Scotia. Their results are put into the global and historical perspective by comparing them with the compilation of past measurements at diverse locations and with their measurements of black carbon concentrations in the Greenland and Antarctic ice cores. Black carbon contribution to the global warming is estimated, and compared to the carbon dioxide warming, using the radiative forcing caused by the black carbon at the top of the atmosphere.

  20. Black Hills Energy (Electric) - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heater: 450 Refrigerator: 30unit Freezer: 30unit Dishwasher: 30unit Television: 25unit CFLLED Bulbs: In-store rebates Summary Black Hills Energy (BHE) offers...

  1. Strengthening Our Partnerships with Historically Black Colleges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Strengthening Our Partnerships with Historically Black Colleges and Universities Secretary Chu Secretary Chu Former Secretary of Energy Last February, President Obama ...

  2. Efficient Nanostructured Silicon (Black Silicon) PV Devices ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Traditional AR coatings however, add significant cost to the solar cell manufacturing process. NREL scientists have devised a method and created a nanostructured Si wafer, or black ...

  3. Causticizing for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    Scott Sinquefeld; James Cantrell; Xiaoyan Zeng; Alan Ball; Jeff Empie

    2009-01-07

    The cost-benefit outlook of black liquor gasification (BLG) could be greatly improved if the smelt causticization step could be achieved in situ during the gasification step. Or, at a minimum, the increase in causticizing load associated with BLG could be mitigated. A number of chemistries have been proven successful during black liquor combustion. In this project, three in situ causticizing processes (titanate, manganate, and borate) were evaluated under conditions suitable for high temperature entrained flow BLG, and low temperature steam reforming of black liquor. The evaluation included both thermodynamic modeling and lab experimentation. Titanate and manganate were tested for complete direct causticizing (to thus eliminate the lime cycle), and borates were evaluated for partial causticizing (to mitigate the load increase associated with BLG). Criteria included high carbonate conversion, corresponding hydroxide recovery upon hydrolysis, non process element (NPE) removal, and economics. Of the six cases (three chemistries at two BLG conditions), only two were found to be industrially viable: titanates for complete causticizing during high temperature BLG, and borates for partial causticizing during high temperature BLG. These two cases were evaluated for integration into a gasification-based recovery island. The Larsen [28] BLG cost-benefit study was used as a reference case for economic forecasting (i.e. a 1500 tpd pulp mill using BLG and upgrading the lime cycle). By comparison, using the titanate direct causticizing process yielded a net present value (NPV) of $25M over the NPV of BLG with conventional lime cycle. Using the existing lime cycle plus borate autocausticizing for extra capacity yielded a NPV of $16M.

  4. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Jun Wei

    2005-03-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  5. Extraordinary vacuum black string solutions

    SciTech Connect (OSTI)

    Kim, Hyeong-Chan; Lee, Jungjai

    2008-01-15

    In addition to the boosted static solution there are two other classes of stationary stringlike solutions of the vacuum Einstein equation in (4+1) dimensions. Each class is characterized by three parameters of mass, tension, and momentum flow along the fifth coordinate. We analyze the metric properties of one of the two classes, which was previously assumed to be naked singular, and show that the solution spectrum contains black string and wormhole in addition to the known naked singularity as the momentum flow to mass ratio increases. Interestingly, there does not exist new zero momentum solution in these cases.

  6. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-04-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  7. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  8. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-10-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected/developed that either react with the gasifier environment to form protective surfaces in-situ; and

  9. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-07-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  10. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-01-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  11. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  12. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr.; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  13. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie; Xiaoting Liang; Musa Karakus; Jun Wei

    2005-12-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected or developed that reacted with the gasifier environment to form protective surfaces in-situ; and

  14. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie

    2003-08-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  15. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    Robert E. Moore; William L. Headrick; Alireza Rezaie

    2003-03-31

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  16. Big Island Demonstration Project - Black Liquor

    SciTech Connect (OSTI)

    2006-08-01

    Black liquor is a papermaking byproduct that also serves as a fuel for pulp and paper mills. This project involves the design, construction, and operation of a black liquor gasifier that will be integrated into Georgia-Pacific's Big Island facility in Virginia, a mill that has been in operation for more than 100 years.

  17. Normal Modes of Black Hole Accretion Disks (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    the modes for different values of the mass and angular momentum of the central black hole. ... PARTICLES AND FIELDS; ACCRETION DISKS; ANGULAR MOMENTUM; BLACK HOLES; EIGENFUNCTIONS; ...

  18. Barrow Black Carbon Source and Impact Study Final Campaign Report...

    Office of Scientific and Technical Information (OSTI)

    Barrow Black Carbon Source and Impact Study Final Campaign Report Citation Details In-Document Search Title: Barrow Black Carbon Source and Impact Study Final Campaign Report The ...

  19. Cuttings Analysis At Black Warrior Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Black Warrior Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Black Warrior Area (DOE GTP) Exploration...

  20. Energy and information near black hole horizons (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Energy and information near black hole horizons Citation Details In-Document Search Title: Energy and information near black hole horizons The central challenge in trying to ...

  1. Novel mechanism for vorticity generation in black-hole accretion...

    Office of Scientific and Technical Information (OSTI)

    Novel mechanism for vorticity generation in black-hole accretion disks Prev Next Title: Novel mechanism for vorticity generation in black-hole accretion disks Authors: ...

  2. Water telescope's first sky map shows flickering black holes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released ...

  3. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Laing

    2005-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  4. Early black hole signals at the LHC

    SciTech Connect (OSTI)

    Koch, Ben; Bleicher, Marcus; Stoecker, Horst

    2007-10-26

    The production of mini black holes due to large extra dimensions is a speculative but possible scenario. We survey estimates for di-jet suppression, and multi-mono-jet emission due to black hole production. We further look for a possible sub-scenario which is the formation of a stable or meta-stable black hole remnant (BHR). We show that the beauty of such objects is, that they are relatively easy to observe, even in the early phase of LHC running.

  5. Department of Energy Research Opportunities for Historically Black Colleges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Universities | Department of Energy Department of Energy Research Opportunities for Historically Black Colleges and Universities Department of Energy Research Opportunities for Historically Black Colleges and Universities Information about the Department's laboratories, funding opportunities, partnerships with Historically Black Colleges and Universities, WDTS Program Mission. Department of Energy Research Opportunities for Historically Black Colleges and Universities (472.61 KB) More

  6. black out | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  7. Spectral line broadening in magnetized black holes

    SciTech Connect (OSTI)

    Frolov, Valeri P.; Shoom, Andrey A.; Tzounis, Christos E-mail: ashoom@ualberta.ca

    2014-07-01

    We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach 6M radius. The sharp spectral line Fe α, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.

  8. Black Emerald Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Black Emerald Group Address: 4 Park Place Place: London, United Kingdom Zip: SW1A 1LP Product: Investment banking firm specializing in...

  9. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge April 11, 2014 - 11:20am Addthis Black Pine Engineering's pilot compressor in California. The team won the Clean Energy Trust Clean Energy Challenge, securing its spot as a regional finalist in the National Clean Energy Business Plan Competition. | Photo courtesy of Black Pine Engineering Black Pine Engineering's pilot compressor in

  10. Black Silicon Etching - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Black Silicon Etching Award-winning, efficient, and inexpensive photovoltaic technology National Renewable Energy Laboratory Contact NREL About This Technology Three silicon wafers, showing absorbed light: (left) micron-scale texture, (center) NREL’s Black Silicon Etch, and (right) micron-scale texture with an antireflective coating. Three silicon wafers, showing absorbed light: (left) micron-scale texture,

  11. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment...

    Broader source: Energy.gov (indexed) [DOE]

    PROBLEM: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server. PLATFORM: * BlackBerry Enterprise Server Express version...

  12. Rotating black hole thermodynamics with a particle probe

    SciTech Connect (OSTI)

    Gwak, Bogeun; Lee, Bum-Hoon

    2011-10-15

    The thermodynamics of Myers-Perry black holes in general dimensions are studied using a particle probe. When undergoing particle absorption, the changes of the entropy and irreducible mass are shown to be dependent on the particle radial momentum. The black hole thermodynamic behaviors are dependent on dimensionality for specific rotations. For a 4-dimensional Kerr black hole, its black hole properties are maintained for any particle absorption. 5-dimensional black holes can avoid a naked ring singularity by absorbing a particle in specific momenta ranges. Black holes over 6 dimensions become ultraspinning black holes through a specific form of particle absorption. The microscopical changes are interpreted in limited cases of Myers-Perry black holes using Kerr/CFT correspondence. We systematically describe the black hole properties changed by particle absorption in all dimensions.

  13. THE BLACK HOLE FORMATION PROBABILITY

    SciTech Connect (OSTI)

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P {sub BH}(M {sub ZAMS}). Although we find that it is difficult to derive a unique P {sub BH}(M {sub ZAMS}) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P {sub BH}(M {sub ZAMS}) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P {sub BH}(M {sub ZAMS}) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  14. Rotating black lens solution in five dimensions

    SciTech Connect (OSTI)

    Chen Yu; Teo, Edward

    2008-09-15

    It has recently been shown that a stationary, asymptotically flat vacuum black hole in five space-time dimensions with two commuting axial symmetries must have an event horizon with either a spherical, ring or lens-space topology. In this paper, we study the third possibility, a so-called black lens with L(n,1) horizon topology. Using the inverse scattering method, we construct a black-lens solution with the simplest possible rod structure, and possessing a single asymptotic angular momentum. Its properties are then analyzed; in particular, it is shown that there must either be a conical singularity or a naked curvature singularity present in the space-time.

  15. Electric field effect in ultrathin black phosphorus

    SciTech Connect (OSTI)

    Koenig, Steven P.; Schmidt, Hennrik; Doganov, Rostislav A.; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-10

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO{sub 2} and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm{sup 2}/Vs and drain current modulation of over 10{sup 3}. At low temperatures, the on-off ratio exceeds 10{sup 5}, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  16. Black Friday Savings All Year 'Round | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Black Friday Savings All Year 'Round Black Friday Savings All Year 'Round November 21, 2011 - 3:58pm Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy ...

  17. Black River Farm Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Facility Black River Farm Solar Project Sector Solar Facility Type Fixed Tilt Ground-Mount & Roof-Mount Owner EnXco Developer EnXco Energy Purchaser Black River Farm...

  18. Water telescope's first sky map shows flickering black holes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released its first map of the sky, including the first measurements of how often black holes flicker on and off. It has also caught pulsars, supernova remnants, and other bizarre cosmic beasts. April 24, 2016 Water telescope's first sky map shows flickering black holes Three new sources of gamma rays spotted by HAWC. Credit:

  19. Gravitational waves found, black-hole models led the way

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gravitational waves found, black-hole models led the way Gravitational waves found, black-hole models led the way Gravitational waves were predicted by Einstein's theory of general relativity in 1916, and now, almost exactly 100 years later, the faint ripples across space-time have been found. February 11, 2016 A simulation of two merging black holes, creating gravitational waves. Photo courtesy of LIGO. A simulation of two merging black holes, creating gravitational waves. Photo courtesy of

  20. Modified carbon black materials for lithium-ion batteries

    DOE Patents [OSTI]

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  1. Semiclassical S-matrix for black holes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey

    2015-12-01

    In this study, we propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(–B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states.more » The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. As a result, our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.« less

  2. SLIM DISKS AROUND KERR BLACK HOLES REVISITED

    SciTech Connect (OSTI)

    Sadowski, Aleksander

    2009-08-01

    We investigate stationary slim accretion disks around Kerr black holes. We construct a new numerical method based on the relaxation technique. We systematically cover the whole parameter space relevant to stellar mass X-ray binaries. We also notice some non-monotonic features in the disk structure, overlooked in previous studies.

  3. Bubbling supertubes and foaming black holes

    SciTech Connect (OSTI)

    Bena, Iosif; Warner, Nicholas P.

    2006-09-15

    We construct smooth BPS three-charge geometries that resolve the zero-entropy singularity of the U(1)xU(1) invariant black ring. This singularity is resolved by a geometric transition that results in geometries without any branes sources or singularities but with nontrivial topology. These geometries are both ground states of the black ring, and nontrivial microstates of the D1-D5-P system. We also find the form of the geometries that result from the geometric transition of N zero-entropy black rings, and argue that, in general, such geometries give a very large number of smooth bound-state three-charge solutions, parametrized by 6N functions. The generic microstate solution is specified by a four-dimensional hyper-Kaehler geometry of a certain signature, and contains a 'foam' of nontrivial two-spheres. We conjecture that these geometries will account for a significant part of the entropy of the D1-D5-P black hole, and that Mathur's conjecture might reduce to counting certain hyper-Kaehler manifolds.

  4. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server

    Broader source: Energy.gov [DOE]

    BlackBerry advisory describes a security issue that the BlackBerry Attachment Service component of the BlackBerry Enterprise Server is susceptible to. The issue relates to a known vulnerability in the PDF distiller component of the BlackBerry Attachment Service that affects how the BlackBerry Attachment Service processes PDF files.

  5. Trumpet-puncture initial data for black holes

    SciTech Connect (OSTI)

    Immerman, Jason D.; Baumgarte, Thomas W.

    2009-09-15

    We propose a new approach, based on the puncture method, to construct black hole initial data in the so-called trumpet geometry, i.e. on slices that asymptote to a limiting surface of nonzero areal radius. Our approach is easy to implement numerically and, at least for nonspinning black holes, does not require any internal boundary conditions. We present numerical results, obtained with a uniform-grid finite-difference code, for boosted black holes and binary black holes. We also comment on generalizations of this method for spinning black holes.

  6. Quasi-black holes: Definition and general properties

    SciTech Connect (OSTI)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2007-10-15

    Objects that are on the verge of being extremal black holes but actually are distinct in many ways are called quasi-black holes. Quasi-black holes are defined here and treated in a unified way by displaying their properties. Their main properties are as follows: (i) there are infinite redshift whole regions (ii) the spacetimes exhibit degenerate, almost singular, features but their curvature invariants remain perfectly regular everywhere (iii) in the limit under discussion, outer and inner regions become mutually impenetrable and disjoint, although, in contrast to the usual black holes, this separation is of a dynamical nature, rather than purely causal, and (iv) for external faraway observers the spacetime is virtually indistinguishable from that of extremal black holes. In addition, we show that quasi-black holes must be extremal. Connections with black hole and wormhole physics are also drawn.

  7. Astrophysical black holes in screened modified gravity

    SciTech Connect (OSTI)

    Davis, Anne-Christine; Jha, Rahul; Muir, Jessica; Gregory, Ruth E-mail: r.a.w.gregory@durham.ac.uk E-mail: jlmuir@umich.edu

    2014-08-01

    Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.

  8. Hanford Site Black-tailed Jackrabbit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Revision 0 Hanford Site Black-tailed Jackrabbit Monitoring Report for Fiscal Year 2013 Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management Contractor for the U.S. Department of Energy under Contract DE-AC06-09RL14728 P.O. Box 650 Richland, Washington 99352 Approved for Public Release Further Dissemination Unlimited HNF- 56710 Revision 0 TRADEMARK DISCLAIMER Reference herein to any specific commercial product, process, or service by trade name,

  9. Phenomenological loop quantum geometry of the Schwarzschild black hole

    SciTech Connect (OSTI)

    Chiou, D.-W.

    2008-09-15

    The interior of a Schwarzschild black hole is investigated at the level of phenomenological dynamics with the discreteness corrections of loop quantum geometry implemented in two different improved quantization schemes. In one scheme, the classical black hole singularity is resolved by the quantum bounce, which bridges the black hole interior with a white hole interior. In the other scheme, the classical singularity is resolved and the event horizon is also diffused by the quantum bounce. Jumping over the quantum bounce, the black hole gives birth to a baby black hole with a much smaller mass. This lineage continues as each classical black hole brings forth its own descendant in the consecutive classical cycle, giving the whole extended spacetime fractal structure, until the solution eventually descends into the deep Planck regime, signaling a breakdown of the semiclassical description. The issues of scaling symmetry and no-hair theorem are also discussed.

  10. Multiscalar black holes with contingent primary hair: Mechanics and stability

    SciTech Connect (OSTI)

    Mignemi, Salvatore; Wiltshire, David L.

    2004-12-15

    We generalize a class of magnetically charged black holes nonminimally coupled to two scalar fields previously found by one of us to the case of multiple scalar fields. The black holes possess a novel type of primary scalar hair, which we call a contingent primary hair: although the solutions possess degrees of freedom which are not completely determined by the other charges of the theory, the charges necessarily vanish in the absence of the magnetic monopole. Only one constraint relates the black hole mass to the magnetic charge and scalar charges of the theory. We obtain a Smarr-type thermodynamic relation, and the first law of black hole thermodynamics for the system. We further explicitly show in the two-scalar-field case that, contrary to the case of many other hairy black holes, the black hole solutions are stable to radial perturbations.

  11. The Black Mesa coal/water slurry pipeline system

    SciTech Connect (OSTI)

    Brolick, H.J.

    1994-12-31

    The Black Mesa Pipeline is a 273 mile (439 km) long, 18-inch (457 mm) coal/water slurry pipeline, originating on the Black Mesa in the Northeastern part of Arizona, USA. The system delivers coal from the Peabody Coal Company`s Black Mesa open pit mine to the Mohave Generating Station which is a 1580 mw steam powered electric generating plant located in Laughlin, Nevada.

  12. Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Year Awards | Department of Energy Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards February 19, 2013 - 8:54am Addthis Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy, with a professional achievement award at the Black Engineer of the Year Awards conference this February. Photo

  13. Searching for tiny black holes during cold fusion

    SciTech Connect (OSTI)

    Matsumoto, T. . Dept. of Nuclear Engineering)

    1992-09-01

    A previous technical note suggests that cold fusion is a small-scale simulation of events that occur in cold stars far-away in the universe. Therefore, it is expected that tiny black holes might be produced during cold fusion. In this paper, a search for tiny black holes whose traces might have been recorded on nuclear emulsions is described. Several traces suggesting the production and evaporation of tiny black holes have been successfully observed.

  14. Funds Awarded to Historically Black Colleges and Universities...

    Broader source: Energy.gov (indexed) [DOE]

    Research by Historically Black Colleges and Universities and Other Minority Institutions (HBCUOMI), recently announced awards to institutions under the HBCUOMI designation. ...

  15. File:EIA-BlackWarrior-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    applicationpdf) Description Black Warrior Basin By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  16. Savannah River National Laboratory Meets with Historically Black...

    Energy Savers [EERE]

    Last week, student and faculty leaders at seven Historically Black Colleges and Universities (HBCUs) spent the day at the Center for Hydrogen Research at Savannah River National ...

  17. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    U.S. Energy Information Administration (EIA) Indexed Site

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian ...

  18. Black Hawk County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Solutions Places in Black Hawk County, Iowa Cedar Falls, Iowa Dunkerton, Iowa Elk Run Heights, Iowa Evansdale, Iowa Gilbertville, Iowa Hudson, Iowa Janesville, Iowa Jesup,...

  19. Variation of the radiative properties during black carbon aging...

    Office of Scientific and Technical Information (OSTI)

    A theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, coated BC by soluble material, and BC ...

  20. Black Hills Energy (Gas) - Commercial Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    sq ft. Infiltration Control: 70% of installed cost Doors: 25 or 50 Pool Cover: 250 Spa Cover: 50 Summary Black Hills Energy offers commercial and industrial customers...

  1. BlackLight Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Name: BlackLight Power Inc Place: Cranbury, New Jersey Zip: 8512 Sector: Hydro, Hydrogen Product: Researching a means of producing energy by catalysing the reaction of...

  2. Black Forest, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Black Forest, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0130484, -104.7008083 Show Map Loading map... "minzoom":false,"mappi...

  3. Black Hole Remnants in the Early Universe (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Title: Black Hole Remnants in the Early Universe Authors: Scardigli, Fabio ; Gruber, Christine ; Taiwan, Natl. Taiwan U. ; Chen, Pisin ; Taiwan, Natl. Taiwan U. KIPAC, Menlo ...

  4. Black Hills Energy (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy also offers the custom rebate program to commercial and industrial customers for projects that reduce energy usage. Eligible projects include chillers, unitary HVAC equipment,...

  5. SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL...

    Office of Scientific and Technical Information (OSTI)

    THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE Citation Details In-Document Search Title: SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY ...

  6. Acoustic analogues of black hole singularities

    SciTech Connect (OSTI)

    Cadoni, Mariano; Mignemi, Salvatore

    2005-10-15

    We search for acoustic analogues of a spherical symmetric black hole with a pointlike source. We show that the gravitational system has a dynamical counterpart in the constrained, steady motion of a fluid with a planar source. The equations governing the dynamics of the gravitational system can be exactly mapped in those governing the motion of the fluid. The different meaning that singularities and sources have in fluid dynamics and in general relativity is also discussed. Whereas in the latter a pointlike source is always associated with a (curvature) singularity in the former the presence of sources does not necessarily imply divergences of the fields.

  7. T-579: BlackBerry Device Software Bug in WebKit Lets Remote Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or instant messages. BlackBerry has described a workaround (disabling the use of JavaScript in the BlackBerry Browser) in their advisory. BlackBerry Device storage space...

  8. T-602: BlackBerry Enterprise Server Input Validation Flaw in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    02: BlackBerry Enterprise Server Input Validation Flaw in BlackBerry Web Desktop Manager Permits Cross-Site Scripting Attacks T-602: BlackBerry Enterprise Server Input Validation...

  9. BLACK HOLE FORAGING: FEEDBACK DRIVES FEEDING

    SciTech Connect (OSTI)

    Dehnen, Walter; King, Andrew, E-mail: wd11@leicester.ac.uk, E-mail: ark@astro.le.ac.uk [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)] [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2013-11-10

    We suggest a new picture of supermassive black hole (SMBH) growth in galaxy centers. Momentum-driven feedback from an accreting hole gives significant orbital energy, but little angular momentum to the surrounding gas. Once central accretion drops, the feedback weakens and swept-up gas falls back toward the SMBH on near-parabolic orbits. These intersect near the black hole with partially opposed specific angular momenta, causing further infall and ultimately the formation of a small-scale accretion disk. The feeding rates into the disk typically exceed Eddington by factors of a few, growing the hole on the Salpeter timescale and stimulating further feedback. Natural consequences of this picture include (1) the formation and maintenance of a roughly toroidal distribution of obscuring matter near the hole; (2) random orientations of successive accretion disk episodes; (3) the possibility of rapid SMBH growth; (4) tidal disruption of stars and close binaries formed from infalling gas, resulting in visible flares and ejection of hypervelocity stars; (5) super-solar abundances of the matter accreting on to the SMBH; and (6) a lower central dark-matter density, and hence annihilation signal, than adiabatic SMBH growth implies. We also suggest a simple subgrid recipe for implementing this process in numerical simulations.

  10. Black holes can have curly hair

    SciTech Connect (OSTI)

    Bronnikov, K. A.; Zaslavskii, O. B.

    2008-07-15

    We study equilibrium conditions between a static, spherically symmetric black hole and classical matter in terms of the radial pressure to density ratio p{sub r}/{rho}=w(u), where u is the radial coordinate. It is shown that such an equilibrium is possible in two cases: (i) the well-known case w{yields}-1 as u{yields}u{sub h} (the horizon), i.e., 'vacuum' matter, for which {rho}(u{sub h}) can be nonzero; (ii) w{yields}-1/(1+2k) and {rho}{approx}(u-u{sub h}){sup k} as u{yields}u{sub h}, where k>0 is a positive integer (w=-1/3 in the generic case k=1). A noninteracting mixture of these two kinds of matter can also exist. The whole reasoning is local, hence the results do not depend on any global or asymptotic conditions. They mean, in particular, that a static black hole cannot live inside a star with nonnegative pressure and density. As an example, an exact solution for an isotropic fluid with w=-1/3 (that is, a fluid of disordered cosmic strings), with or without vacuum matter, is presented.

  11. Gas Sampling At Black Warrior Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Black Warrior Area (DOE GTP) Exploration Activity Details Location Black...

  12. Slim Holes At Black Warrior Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Black Warrior Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Black Warrior Area (DOE GTP) Exploration Activity...

  13. Core Analysis At Black Warrior Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Black Warrior Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Black Warrior Area (DOE GTP) Exploration Activity...

  14. 2-M Probe At Black Warrior Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Black Warrior Area (DOE GTP) Exploration Activity Details Location Black...

  15. Flow Test At Black Warrior Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Black Warrior Area (DOE GTP) Exploration Activity Details Location Black Warrior...

  16. U-228: BlackBerry Tablet OS Flash Player Multiple Vulnerabilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis PROBLEM: BlackBerry Tablet OS Flash Player Multiple Vulnerabilities PLATFORM: Adobe Flash Player versions included with BlackBerry PlayBook tablet software versions...

  17. Nonuniform black strings in various dimensions

    SciTech Connect (OSTI)

    Sorkin, Evgeny

    2006-11-15

    The nonuniform black-strings branch, which emerges from the critical Gregory-Laflamme string, is numerically constructed in dimensions 6{<=}D{<=}11 and extended into the strongly nonlinear regime. All the solutions are more massive and less entropic than the marginal string. We find the asymptotic values of the mass, the entropy and other physical variables in the limit of large horizon deformations. By explicit metric comparison we verify that the local geometry around the waist of our most nonuniform solutions is conelike with less than 10% deviation. We find evidence that in this regime the characteristic length scale has a power-law dependence on a parameter along the branch of the solutions, and estimate the critical exponent.

  18. Modeling the black hole excision problem

    SciTech Connect (OSTI)

    Szilagyi, B.; Winicour, J.; Kreiss, H.-O.

    2005-05-15

    We analyze the excision strategy for simulating black holes. The problem is modeled by the propagation of quasilinear waves in a 1-dimensional spatial region with timelike outer boundary, spacelike inner boundary and a horizon in between. Proofs of well-posed evolution and boundary algorithms for a second differential order treatment of the system are given for the separate pieces underlying the finite-difference problem. These are implemented in a numerical code which gives accurate long term simulations of the quasilinear excision problem. Excitation of long wavelength exponential modes, which are latent in the problem, are suppressed using conservation laws for the discretized system. The techniques are designed to apply directly to recent codes for the Einstein equations based upon the harmonic formulation.

  19. Charged black holes in generalized teleparallel gravity

    SciTech Connect (OSTI)

    Rodrigues, M.E.; Houndjo, M.J.S.; Tossa, J.; Momeni, D.; Myrzakulov, R. E-mail: sthoundjo@yahoo.fr E-mail: d.momeni@yahoo.com

    2013-11-01

    In this paper we investigate charged static black holes in 4D for generalized teleparallel models of gravity, based on torsion as the geometric object for describing gravity according to the equivalence principle. As a motivated idea, we introduce a set of non-diagonal tetrads and derive the full system of non linear differential equations. We prove that the common Schwarzschild gauge is applicable only when we study linear f(T) case. We reobtain the Reissner-Nordstrom-de Sitter (or RN-AdS) solution for the linear case of f(T) and perform a parametric cosmological reconstruction for two nonlinear models. We also study in detail a type of the no-go theorem in the framework of this modified teleparallel gravity.

  20. Varying fine structure 'constant' and charged black holes

    SciTech Connect (OSTI)

    Bekenstein, Jacob D.; Schiffer, Marcelo

    2009-12-15

    Speculation that the fine-structure constant {alpha} varies in spacetime has a long history. We derive, in 4-D general relativity and in isotropic coordinates, the solution for a charged spherical black hole according to the framework for dynamical {alpha} J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982).. This solution coincides with a previously known one-parameter extension of the dilatonic black hole family. Among the notable properties of varying-{alpha} charged black holes are adherence to a 'no hair' principle, the absence of the inner (Cauchy) horizon of the Reissner-Nordstroem black holes, the nonexistence of precisely extremal black holes, and the appearance of naked singularities in an analytic extension of the relevant metric. The exteriors of almost extremal electrically (magnetically) charged black holes have simple structures which makes their influence on applied magnetic (electric) fields transparent. We rederive the thermodynamic functions of the modified black holes; the otherwise difficult calculation of the electric potential is done by a shortcut. We confirm that variability of {alpha} in the wake of expansion of the universe does not threaten the generalized second law.

  1. Black phosphorus saturable absorber for ultrashort pulse generation

    SciTech Connect (OSTI)

    Sotor, J. Sobon, G.; Abramski, K. M.; Macherzynski, W.; Paletko, P.

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  2. KCP's Carey honored as 2014 Black Achiever | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) KCP's Carey honored as 2014 Black Achiever Monday, February 10, 2014 - 11:00am KCP's Carey honored as 2014 Black Achiever Anthony Carey is not just focused on developing the next generation of Test Systems for our nation's military; he's also focused on developing the next generation of young leaders. A Technical Manager for the Kansas City Plant, Anthony was honored Jan. 16 at the annual Black Achievers Society of Kansas City event for his leadership both in the

  3. ARM - Field Campaign - Black Carbon at the Mt. Bachelor Observatory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBlack Carbon at the Mt. Bachelor Observatory Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Black Carbon at the Mt. Bachelor Observatory 2016.06.15 - 2016.10.01 Lead Scientist : Daniel Jaffe Abstract Black carbon (BC) is a key component in the earth system and a significant climate forcing agent. Observations at remote sites and in free-tropospheric air are extremely sparse. We propose to utilize one of the ARM SP2 (Single

  4. ARM - Field Campaign - Characterization of Black Carbon Mixing State

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCharacterization of Black Carbon Mixing State Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Characterization of Black Carbon Mixing State 2012.11.01 - 2013.06.14 Lead Scientist : Arthur Sedlacek For data sets, see below. Abstract The objective of the proposed experiments was to characterize the mixing state of black carbon produced in biomass burning

  5. Paramont's Black Bear No. 4 mine does it right, again

    SciTech Connect (OSTI)

    Sanda, A.

    2007-07-15

    The Paramont Coal Company Virginia, LLC, a subsidiary of Alpha Natural Resources, recently won the '2007 overall award for excellence in mining and reclamation from the Virginia Division of Mined Land Reclamation and the Virginia Mining Association. Coal People Magazine recently visited Black Bear No. 4 mine where a settling pond was being removed and stream bed placed to drain the area, part of the 451-acre award winning reclamation project. The article recounts discussions with mining engineers about the company's operations with emphasis on the Black Bear No. 4 mine. Black Bear No. 1 mine won five state and national awards last year for conservation and land management practices. 8 photos.

  6. Back reaction on a Reissner-Nordstro''m black hole

    SciTech Connect (OSTI)

    Wang, Bobo; Huang, Chao-guang

    2001-06-15

    The perturbed (''dressed'') metric of the conformally invariant scalar field in a Reissner-Nordstroem (RN) black hole is given by solving the semiclassical Einstein and Maxwell equations according to York's back-reaction approach. Some properties of the ''dressed'' black hole are obtained, such as its ''dressed'' mass, the location of the event horizon, and its surface gravity. It will also be found that the hypersurfaces of r{sub +} and r{sub {minus}} which are the event and Cauchy horizons in the ''naked'' RN black hole, become spacelike in the perturbed geometry.

  7. Modified clock inequalities and modified black hole lifetime

    SciTech Connect (OSTI)

    Yang Rongjia; Zhang Shuangnan

    2009-06-15

    Based on a generalized uncertainty principle, Salecker-Wigner inequalities are modified. When applied to black holes, they give a modified black hole lifetime: T{sub MB}{approx}(M{sup 3}/m{sub p}{sup 3})(1-m{sub p}{sup 2}/M{sup 2})t{sub p}, and the number of bits required to specify the information content of the black hole as the event horizon area in Planck units N{approx}(M{sup 2}/m{sub p}{sup 2})(1-m{sub p}{sup 2}/M{sup 2})

  8. Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton-Gauss-Bonnet black holes

    SciTech Connect (OSTI)

    Pani, Paolo; Cardoso, Vitor

    2009-04-15

    It is generally accepted that Einstein's theory will get some as yet unknown corrections, possibly large in the strong-field regime. An ideal place to look for these modifications is in the vicinities of compact objects such as black holes. Here, we study dilatonic black holes, which arise in the framework of Gauss-Bonnet couplings and one-loop corrected four-dimensional effective theory of heterotic superstrings at low energies. These are interesting objects as a prototype for alternative, yet well-behaved gravity theories: they evade the 'no-hair' theorem of general relativity but were proven to be stable against radial perturbations. We investigate the viability of these black holes as astrophysical objects and try to provide some means to distinguish them from black holes in general relativity. We start by extending previous works and establishing the stability of these black holes against axial perturbations. We then look for solutions of the field equations describing slowly rotating black holes and study geodesic motion around this geometry. Depending on the values of mass, dilaton charge, and angular momentum of the solution, one can have differences in the innermost-stable-circular-orbit location and orbital frequency, relative to black holes in general relativity. In the most favorable cases, the difference amounts to a few percent. Given the current state-of-the-art, we discuss the difficulty of distinguishing the correct theory of gravity from electromagnetic observations or even with gravitational-wave detectors.

  9. Proceedings of the black liquor research program review fourth meeting held July 28--30, 1987

    SciTech Connect (OSTI)

    Emerson, D. B.; Whitworth, B. A.

    1987-10-01

    Research programs, presented at the black liquor review meeting are described. Research topics include the following: Cooperative Program in Kraft Recovery; Black Liquor Physical Properties; Viscosity of Strong Black Liquor; Ultrafiltration of Kraft Black Liquor; Molecular Weight Distribution of Kraft Lignin; Black Liquor Droplet Formation Project; Fundamental Studies of Black Liquor Combustion; Black Liquor Combustion Sensors; Flash X-ray Imagining of Black Liquor Sprays; Laser Induced Fluorescence For Process Control In The Pulp and Paper Industry; Recovery Boiler Optimization; Black Liquor Gasification and Use of the Products in Combined-Cycle Cogeneration; Black Liquor Steam Plasma Automization; The B and W Pyrosonic 2000R System; Monsteras Boiler Control System; and Cooperative Program Project Reviews. Individual projects are processed separately for the data bases.

  10. Generic features of Einstein-Aether black holes

    SciTech Connect (OSTI)

    Tamaki, Takashi; Miyamoto, Umpei

    2008-01-15

    We reconsider spherically symmetric black hole solutions in Einstein-Aether theory with the condition that this theory has identical parametrized post-Newtonian parameters as those for general relativity, which is the main difference from the previous research. In contrast with previous study, we allow superluminal propagation of a spin-0 Aether-gravity wave mode. As a result, we obtain black holes having a spin-0 'horizon' inside an event horizon. We allow a singularity at a spin-0 horizon since it is concealed by the event horizon. If we allow such a configuration, the kinetic term of the Aether field can be large enough for black holes to be significantly different from Schwarzschild black holes with respect to Arnowitt-Deser-Misner mass, innermost stable circular orbit, Hawking temperature, and so on. We also discuss whether or not the above features can be seen in more generic vector-tensor theories.

  11. MLK Day/Black History Month DOE Celebration

    Broader source: Energy.gov [DOE]

    Join us as the Department honors both Dr. King and Black History Month with a dialogue on the history of civil rights for all. Secretary Ernest Moniz will open our program.

  12. The Role of Circulation Features on Black Carbon Transport into...

    Office of Scientific and Technical Information (OSTI)

    Carbon Transport into the Arctic in the Community Atmosphere Model Version 5 (CAM5) Citation Details In-Document Search Title: The Role of Circulation Features on Black Carbon ...

  13. Black hole evaporation in a noncommutative charged Vaidya model

    SciTech Connect (OSTI)

    Sharif, M. Javed, W.

    2012-06-15

    We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstroem-like solution of this model, which leads to an exact (t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.

  14. Black Hills Energy (Gas) - Residential Energy Efficiency Program...

    Broader source: Energy.gov (indexed) [DOE]

    70% of cost Duct Repair and Sealing: 70% of cost Doors: 25 Summary Black Hills Energy (BHE) offers a variety of rebates for residential Colorado customers who purchase and...

  15. Paleoecology of the Devonian-Mississippian black-shale sequence...

    Office of Scientific and Technical Information (OSTI)

    The black shales contain abundant evidence of life from upper parts of the water column such as fish fossils, conodonts, algae and other phytoplankton; however, there is a lack of ...

  16. Atmospheric Radiation Measurement (ARM) Data from Black Forest...

    Office of Scientific and Technical Information (OSTI)

    ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility (AMF) to other sites as determined. In 2007 the AMF operated in the Black Forest ...

  17. Black Diamond, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Black Diamond is a city in King County, Washington. It falls under Washington's 8th congressional district.12...

  18. Black Branes in Flux Compactifications (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Black Branes in Flux Compactifications Citation Details ... Report Number(s): SLAC-PUB-15462 arXiv:1306.3982 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article ...

  19. Celebrating Black History Month with DOE's Christopher Smith | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Black History Month with DOE's Christopher Smith Celebrating Black History Month with DOE's Christopher Smith February 16, 2011 - 12:08pm Addthis Christopher A. Smith Christopher A. Smith Assistant Secretary for Fossil Energy Throughout the month of February, we've been introducing remarkable African Americans who are working to advance the President's clean energy agenda. This week we're highlighting Christopher Smith, the Department's Deputy Assistant Secretary for Oil and

  20. Funds Awarded to Historically Black Colleges and Universities for Fossil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Research | Department of Energy Funds Awarded to Historically Black Colleges and Universities for Fossil Energy Research Funds Awarded to Historically Black Colleges and Universities for Fossil Energy Research October 7, 2014 - 10:26am Addthis Washington, D.C. - The U.S. Department of Energy (DOE) has selected four research projects that will provide educational and research training opportunities for minority students while advancing key technical areas in fossil fuel utilization.

  1. Black holes in supergravity: the non-BPS branch

    SciTech Connect (OSTI)

    Gimon, Eric; Gimon, Eric G.; Larsen, Finn; Simon, Joan

    2007-10-25

    We construct extremal, spherically symmetric black hole solutions to 4D supergravity with charge assignments that preclude BPS-saturation. In particular, we determine the ground state energy as a function of charges and moduli. We find that the mass of the non-BPS black hole remains that of a marginal bound state of four basic constituents throughout the entire moduli space and that there is always a non-zero gap above the BPS bound.

  2. Historically Black Colleges and Universities Receive Funds for Fossil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Research | Department of Energy Historically Black Colleges and Universities Receive Funds for Fossil Energy Research Historically Black Colleges and Universities Receive Funds for Fossil Energy Research August 15, 2013 - 1:18pm Addthis Washington, D.C. - Five fossil energy-related projects that will help maintain the nation's energy portfolio while also providing educational and research training opportunities for tomorrow's scientists and engineers have been selected for funding by

  3. Students, Faculty from Historically Black Colleges and Universities Share

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research with EM Laboratory in Successful Exchange | Department of Energy Students, Faculty from Historically Black Colleges and Universities Share Research with EM Laboratory in Successful Exchange Students, Faculty from Historically Black Colleges and Universities Share Research with EM Laboratory in Successful Exchange February 5, 2013 - 12:00pm Addthis South Carolina State University students William Dumpson, left, and Alejandra Chirino, center, talk with Savannah River National

  4. Choice of an equivalent black body solar temperature

    SciTech Connect (OSTI)

    Parrott, J.E. )

    1993-09-01

    In the course of modeling the performance of photovoltaic solar cells for space use, it became desirable to set up a black body spectrum equivalent to the standard Air Mass Zero (AMO) solar spectrum. A method of calculating the equivalent black body solar surface temperature, based on irradiance and photon number flux derived from the AMO spectrum, is presented. It does not require knowledge of the angle subtended by the sun at the earth's surface. The value obtained is 5730 +/- 90 K.

  5. Drum drying of black liquor using superheated steam impinging jets

    SciTech Connect (OSTI)

    Shiravi, A.H.; Mujumdar, A.S.; Kubes, G.J. [McGill Univ., Montreal, Quebec (Canada)

    1997-05-01

    A novel drum dryer for black liquor utilizing multiple impinging jets of superheated steam was designed and built to evaluate the performance characteristics and effects of various operating parameters thereon. Appropriate ranges of parameters such as steam jet temperature and velocity were examined experimentally to quantify the optimal operating conditions for the formation of black liquor film on the drum surface as well as the drying kinetics.

  6. Carbon black and carbon black-conducting polymer composites for environmental applications

    SciTech Connect (OSTI)

    Rajeshwar, K.; Wampler, W.A.; Goeringer, S.; Gerspacher, M.; Richardson, S.

    1996-10-01

    The preparation and use of the title materials for the treatment of Cr(VI) in aqueous media will be described. The carcinogenic Cr(VI) will be shown to be efficiently reduced to the less toxic specie Cr(III). The preparation and process variables will be described using a furnace black (N135) and polypyrrole as model candidates. Other aspects to be discussed include reaction kinetics, mechanism and thermodynamics. Finally, the practical implications of this new Cr(VI) pollution abatement approach are discussed.

  7. Controlled Sculpture of Black Phosphorus Nanoribbons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; Parkin, William M.; Liang, Liangbo; Kharche, Neerav; Ling, Xi; Huang, Shengxi; Dresselhaus, Mildred S.; Meunier, Vincent; et al

    2016-05-18

    Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with high promise for fast functional electronics and optoelectronics. We demonstrate that high-resolution and controlled structural modification of few-layer BP along arbitrary crystal direction can be achieved with nanometer-scale precision on a few-minute timescales leading to the formation of sub-nm wide armchair and zigzag BP nanoribbons. The nanoribbons are assembled, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscope (TEM) and scanning TEM nanosculpting. Here we report time-dependent structural properties of the one-dimensional systems under electron irradiation and probe their oxidation propertiesmore » with electron energy-loss spectroscopy (EELS). Finally, we demonstrate the use of STEM to controllably narrow and thin the nanoribbons until they break into nanogaps. The observations are rationalized using density functional theory for transition state calculations and electronic band-structure evolution for the various stages of the narrowing procedure. In particular, we predict that the sub- and few-nm wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. We find the demonstration of this procedure is key for the development of BP-based electronic, optoelectronic, thermoelectric, and other applications in reduced dimensions.« less

  8. Mechanical properties of reconstituted Australian black coal

    SciTech Connect (OSTI)

    Jasinge, D.; Ranjith, P.G.; Choi, S.K.; Kodikara, J.; Arthur, M.; Li, H.

    2009-07-15

    Coal is usually highly heterogeneous. Great variation in properties can exist among samples obtained even at close proximity within the same seam or within the same core sample. This makes it difficult to establish a correlation between uniaxial compressive strength (UCS) and point load index for coal. To overcome this problem, a method for making reconstituted samples for laboratory tests was developed. Samples were made by compacting particles of crushed coal mixed with cement and water. These samples were allowed to cure for four days. UCS and point load tests were performed to measure the geomechanical properties of the reconstituted coal. After four days curing, the average UCS was found to be approximately 4 MPa. This technical note outlines some experimental results and correlations that were developed to predict the mechanical properties of the reconstituted black coal samples. By reconstituting the samples from crushed coal, it is hoped that the samples will retain the important mechanical and physicochemical properties of coal, including the swelling, fluid transport, and gas sorption properties of coal. The aim is to be able to produce samples that are homogeneous with properties that are highly reproducible, and the reconstituted coal samples can be used for a number of research areas related to coal, including the long-term safe storage of CO{sub 2} in coal seams.

  9. Thermodynamics of Sultana-Dyer black hole

    SciTech Connect (OSTI)

    Majhi, Bibhas Ranjan

    2014-05-01

    The thermodynamical entities on the dynamical horizon are not naturally defined like the usual static cases. Here I find the temperature, Smarr formula and the first law of thermodynamics for the Sultana-Dyer metric which is related to the Schwarzschild spacetime by a time dependent conformal factor. To find the temperature (T), the chiral anomaly expressions for the two dimensional spacetime are used. This shows an application of the anomaly method to study Hawking effect for a dynamical situation. Moreover, the analysis singles out one expression for temperature among two existing expressions in the literature. Interestingly, the present form satisfies the first law of thermodynamics. Also, it relates the Misner-Sharp energy (Ē) and the horizon entropy ( S-bar ) by an algebraic expression Ē = 2 S-bar T which is the general form of the Smarr formula. This fact is similar to the usual static black hole cases in Einstein's gravity where the energy is identified as the Komar conserved quantity.

  10. Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Kan; Fu, Joshua S.; Prikhodko, Vitaly Y.; Storey, John M.; Romanov, Alexander; Hodson, Elke L.; Cresko, Joe; Morozova, Irina; Ignatieva, Yulia; Cabaniss, John

    2015-10-02

    Development of reliable source emission inventories is needed to advance the understanding of the origin of Arctic haze using chemical transport modeling. This paper develops a regional anthropogenic black carbon (BC) emission inventory for the Russian Federation, the largest country by land area in the Arctic Council. Activity data from combination of local Russia information and international resources, emission factors based on either Russian documents or adjusted values for local conditions, and other emission source data are used to approximate the BC emissions. Emissions are gridded at a resolution of 0.1° × 0.1° and developed into a monthly temporal profile.more » Total anthropogenic BC emission of Russia in 2010 is estimated to be around 224 Gg. Gas flaring, a commonly ignored black carbon source, contributes a significant fraction of 36.2% to Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 25.0%, 20.3%, 13.1%, and 5.4%, respectively. Three major BC hot spot regions are identified: the European part of Russia, the southern central part of Russia where human population densities are relatively high, and the Urals Federal District where Russia's major oil and gas fields are located but with sparse human population. BC simulations are conducted using the hemispheric version of Community Multi-scale Air Quality Model with emission inputs from a global emission database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulation using the new Russian BC emission inventory could improve 30–65% of absorption aerosol optical depth measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four ground monitoring sites (Zeppelin, Barrow, Alert

  11. Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation

    SciTech Connect (OSTI)

    Huang, Kan; Fu, Joshua S.; Prikhodko, Vitaly Y.; Storey, John M.; Romanov, Alexander; Hodson, Elke L.; Cresko, Joe; Ignatieva, Yulia; Cabaniss, John

    2015-10-02

    Development of reliable source emission inventories is needed to advance the understanding of the origin of Arctic haze using chemical transport modeling. This paper develops a regional anthropogenic black carbon (BC) emission inventory for the Russian Federation, the largest country by land area in the Arctic Council. Activity data from combination of local Russia information and international resources, emission factors based on either Russian documents or adjusted values for local conditions, and other emission source data are used to approximate the BC emissions. Emissions are gridded at a resolution of 0.1° × 0.1° and developed into a monthly temporal profile. Total anthropogenic BC emission of Russia in 2010 is estimated to be around 224 Gg. Gas flaring, a commonly ignored black carbon source, contributes a significant fraction of 36.2% to Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 25.0%, 20.3%, 13.1%, and 5.4%, respectively. Three major BC hot spot regions are identified: the European part of Russia, the southern central part of Russia where human population densities are relatively high, and the Urals Federal District where Russia's major oil and gas fields are located but with sparse human population. BC simulations are conducted using the hemispheric version of Community Multi-scale Air Quality Model with emission inputs from a global emission database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulation using the new Russian BC emission inventory could improve 30–65% of absorption aerosol optical depth measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four ground monitoring sites (Zeppelin, Barrow, Alert, and

  12. Stellar black holes and the origin of cosmic acceleration

    SciTech Connect (OSTI)

    Prescod-Weinstein, Chanda; Afshordi, Niayesh; Balogh, Michael L.

    2009-08-15

    The discovery of cosmic acceleration has presented a unique challenge for cosmologists. As observational cosmology forges ahead, theorists have struggled to make sense of a standard model that requires extreme fine-tuning. This challenge is known as the cosmological constant problem. The theory of gravitational aether is an alternative to general relativity that does not suffer from this fine-tuning problem, as it decouples the quantum field theory vacuum from geometry, while remaining consistent with other tests of gravity. In this paper, we study static black hole solutions in this theory and show that it manifests a UV-IR coupling: Aether couples the space-time metric close to the black hole horizon, to metric at infinity. We then show that using the trans-Planckian ansatz (as a quantum gravity effect) close to the black hole horizon, leads to an accelerating cosmological solution, far from the horizon. Interestingly, this acceleration matches current observations for stellar-mass black holes. Based on our current understanding of the black hole accretion history in the Universe, we then make a prediction for how the effective dark energy density should evolve with redshift, which can be tested with future dark energy probes.

  13. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    SciTech Connect (OSTI)

    Doganov, Rostislav A.; zyilmaz, Barbaros; Koenig, Steven P.; Yeo, Yuting; Watanabe, Kenji; Taniguchi, Takashi

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitridean atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400?K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  14. Can reducing black carbon emissions counteract global warming?

    SciTech Connect (OSTI)

    Tami C. Bond; Haolin Sun

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. Black carbon is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The authors review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. It is argued that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. Results from published climate-modeling studies are synthesized to obtain a global warming potential for black carbon relative to that of CO{sub 2} (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. It is found that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, a role for black carbon in climate mitigation strategies is proposed that is consistent with the apparently conflicting arguments raised during the discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement. 31 refs., 3 figs., 1 tab.

  15. Topological black holes in Lovelock-Born-Infeld gravity

    SciTech Connect (OSTI)

    Dehghani, M. H.; Alinejadi, N.; Hendi, S. H.

    2008-05-15

    In this paper, we present topological black holes of third order Lovelock gravity in the presence of cosmological constant and nonlinear electromagnetic Born-Infeld field. Depending on the metric parameters, these solutions may be interpreted as black hole solutions with inner and outer event horizons, an extreme black hole or naked singularity. We investigate the thermodynamics of asymptotically flat solutions and show that the thermodynamic and conserved quantities of these black holes satisfy the first law of thermodynamic. We also endow the Ricci flat solutions with a global rotation and calculate the finite action and conserved quantities of these class of solutions by using the counterterm method. We compute the entropy through the use of the Gibbs-Duhem relation and find that the entropy obeys the area law. We obtain a Smarr-type formula for the mass as a function of the entropy, the angular momenta, and the charge, and compute temperature, angular velocities, and electric potential and show that these thermodynamic quantities coincide with their values which are computed through the use of geometry. Finally, we perform a stability analysis for this class of solutions in both the canonical and the grand-canonical ensemble and show that the presence of a nonlinear electromagnetic field and higher curvature terms has no effect on the stability of the black branes, and they are stable in the whole phase space.

  16. Hard, infrared black coating with very low outgassing

    SciTech Connect (OSTI)

    Kuzmenko, P J; Behne, D M; Casserly, T; Boardman, W; Upadhyaya, D; Boinapally, K; Gupta, M; Cao, Y

    2008-06-02

    Infrared astronomical instruments require absorptive coatings on internal surfaces to trap scattered and stray photons. This is typically accomplished with any one of a number of black paints. Although inexpensive and simple to apply, paint has several disadvantages. Painted surfaces can be fragile, prone to shedding particles, and difficult to clean. Most importantly, the vacuum performance is poor. Recently a plasma enhanced chemical vapor deposition (PECVD) process was developed to apply thick (30 {micro}m) diamond-like carbon (DLC) based protective coatings to the interior of oil pipelines. These DLC coatings show much promise as an infrared black for an ultra high vacuum environment. The coatings are very robust with excellent cryogenic adhesion. Their total infrared reflectivity of < 10% at normal incidence approaches that of black paints. We measured outgas rates of <10{sup -12} Torr liter/sec cm{sup 2}, comparable to bare stainless steel.

  17. Planck-Size Black Hole Remnants as Dark Matter

    SciTech Connect (OSTI)

    Chen, P

    2004-09-13

    While there exist various candidates, the nature of dark matter remains unresolved. Recently it was argued that the generalized uncertainty principle (GUP) may prevent a black hole from evaporating completely, and as a result there should exist a Planck-size black hole remnant (BHR) at the end of its evaporation. If a sufficient amount of small black holes can be produced in the early universe, then the resultant BHRs can be an interesting candidate for DM. We demonstrate that this is indeed the case for the hybrid inflation model. By assuming BHR as DM, our notion imposes a constraint on the hybrid inflation potential. We show that such a constraint is not so fine-tuned. Possible observational signatures are briefly discussed.

  18. Safeguards Approaches for Black Box Processes or Facilities

    SciTech Connect (OSTI)

    Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John; Miller, Erin; Wylie, Joann

    2013-09-25

    The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. This analysis identified the necessary conditions for safeguardability of black box processes and facilities.

  19. Black holes in a box: Toward the numerical evolution of black holes in AdS space-times

    SciTech Connect (OSTI)

    Witek, Helvi; Nerozzi, Andrea; Cardoso, Vitor; Herdeiro, Carlos; Sperhake, Ulrich; Zilhao, Miguel

    2010-11-15

    The evolution of black holes in ''confining boxes'' is interesting for a number of reasons, particularly because it mimics the global structure of anti-de Sitter geometries. These are nonglobally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data are supplemented by boundary conditions at the timelike conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirrorlike boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is observed only in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing boundary conditions, both of the Newman-Penrose scalars {Psi}{sub 4} and {Psi}{sub 0} are nontrivial in our setup, and we show that the numerical data verifies the expected relations between them.

  20. Greybody factors for Myers–Perry black holes

    SciTech Connect (OSTI)

    Boonserm, Petarpa; Chatrabhuti, Auttakit Ngampitipan, Tritos; Visser, Matt

    2014-11-15

    The Myers–Perry black holes are higher-dimensional generalizations of the usual (3+1)-dimensional rotating Kerr black hole. They are of considerable interest in Kaluza–Klein models, specifically within the context of brane-world versions thereof. In the present article, we shall consider the greybody factors associated with scalar field excitations of the Myers–Perry spacetimes, and develop some rigorous bounds on these greybody factors. These bounds are of relevance for characterizing both the higher-dimensional Hawking radiation, and the super-radiance, that is expected for these spacetimes.

  1. Black liquor gasification phase 2D final report

    SciTech Connect (OSTI)

    Kohl, A.L.; Stewart, A.E.

    1988-06-01

    This report covers work conducted by Rockwell International under Amendment 5 to Subcontract STR/DOE-12 of Cooperative Agreement DE-AC-05-80CS40341 between St. Regis Corporation (now Champion International) and the Department of Energy (DOE). The work has been designated Phase 2D of the overall program to differentiate it from prior work under the same subcontract. The overall program is aimed at demonstrating the feasibility of and providing design data for the Rockwell process for gasifying Kraft black liquor. In this process, concentrated black liquor is converted into low-Btu fuel gas and reduced melt by reaction with air in a specially designed gasification reactor.

  2. We the Geeks: Celebrating Black History Month | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Geeks: Celebrating Black History Month We the Geeks: Celebrating Black History Month February 24, 2014 - 9:40am Addthis President Barack Obama talks with Evan Jackson, 10, Alec Jackson, 8, and Caleb Robinson, 8, from McDonough, Ga., while looking at exhibits at the White House Science Fair in the State Dining Room, April 22, 2013. The sports-loving grade-schoolers created a new product concept to keep athletes cool and helps players maintain safe body temperatures on the field. | Official

  3. Black and gray Helmholtz-Kerr soliton refraction

    SciTech Connect (OSTI)

    Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.

    2011-01-15

    Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposal of positive or negative lensing operations on soliton arrays at planar boundaries.

  4. SP2 Deployment at Boston College-Aerodyne-Led Coated Black Carbon...

    Office of Scientific and Technical Information (OSTI)

    Coated Black Carbon Study (BC4) Final Campaign Summary Citation Details In-Document Search Title: SP2 Deployment at Boston College-Aerodyne-Led Coated Black Carbon Study (BC4) ...

  5. Stability of Hořava-Lifshitz black holes in the context of AdS...

    Office of Scientific and Technical Information (OSTI)

    Stability of Hoava-Lifshitz black holes in the context of AdSCFT Citation Details In-Document Search Title: Stability of Hoava-Lifshitz black holes in the context of AdSCFT ...

  6. V-069: BlackBerry Tablet OS Adobe Flash Player and Samba Multiple...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: BlackBerry Tablet OS Adobe Flash Player and Samba Multiple Vulnerabilities V-069: BlackBerry Tablet OS Adobe Flash Player and Samba Multiple Vulnerabilities January 15, 2013 -...

  7. BLACK HOLE MASS ESTIMATES AND RAPID GROWTH OF SUPERMASSIVE BLACK HOLES IN LUMINOUS z ∼ 3.5 QUASARS

    SciTech Connect (OSTI)

    Zuo, Wenwen; Wu, Xue-Bing; Fan, Xiaohui; Green, Richard; Wang, Ran; Bian, Fuyan

    2015-02-01

    We present new near-infrared (IR) observations of the Hβ λ4861 and Mg II λ2798 lines for 32 luminous quasars with 3.2 < z < 3.9 using the Palomar Hale 200 inch telescope and the Large Binocular Telescope. We find that the Mg II FWHM is well correlated with the Hβ FWHM, confirming itself as a good substitute for the Hβ FWHM in the black hole mass estimates. The continuum luminosity at 5100 Å well correlates with the continuum luminosity at 3000 Å and the broad emission line luminosities (Hβ and Mg II). With simultaneous near-IR spectroscopy of the Hβ and Mg II lines to exclude the influences of flux variability, we are able to evaluate the reliability of estimating black hole masses based on the Mg II line for high redshift quasars. With the reliable Hβ line based black hole mass and Eddington ratio estimates, we find that the z ∼ 3.5 quasars in our sample have black hole masses 1.90 × 10{sup 9} M {sub ☉} ≲ M {sub BH} ≲ 1.37 × 10{sup 10} M {sub ☉}, with a median of ∼5.14 × 10{sup 9} M {sub ☉} and are accreting at Eddington ratios between 0.30 and 3.05, with a median of ∼1.12. Assuming a duty cycle of 1 and a seed black hole mass of 10{sup 4} M {sub ☉}, we show that the z ∼ 3.5 quasars in this sample can grow to their estimated black hole masses within the age of the universe at their redshifts.

  8. WBA-15-0009 - In the Matter of Sandra Black | Department of Energy

    Energy Savers [EERE]

    9 - In the Matter of Sandra Black WBA-15-0009 - In the Matter of Sandra Black On December 31, 2015, OHA denied an Appeal involving a Complaint filed by Sandra Black against Savannah River Nuclear Solutions, LLC (SRNS) under the DOE's Contractor Employee Protection Program, 10 CFR Part 708. In her Complaint, Black alleged SRNS terminated her for engaging in protected activities, specifically citing her participation in a Government Accountability Office review as a protected disclosure. An OHA

  9. NREL's Black Silicon Increases Solar Cell Efficiency by Reducing Reflected Sunlight (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    A fact sheet detailing the R&D 100 Award-winning Black Silicon Nanocatalytic Wet-Chemical Etch technology.

  10. Dissipative effects in the worldline approach to black hole dynamics

    SciTech Connect (OSTI)

    Goldberger, Walter D.; Rothstein, Ira Z.

    2006-05-15

    We derive a long wavelength effective point-particle description of four-dimensional Schwarzschild black holes. In this effective theory, absorptive effects are incorporated by introducing degrees of freedom localized on the worldline that mimic the interaction between the horizon and bulk fields. The correlation functions of composite operators in this worldline theory can be obtained by standard matching calculations. For example, we obtain the low frequency two-point function of multipole worldline operators by relating them to the long wavelength graviton black hole absorptive cross section. The effective theory is then used to predict the leading effects of absorption in several astrophysically motivated examples, including the dynamics of nonrelativistic black hole binary inspirals and the motion of a small black hole in an arbitrary background geometry. Our results can be written compactly in terms of absorption cross sections, and can be easily applied to the dissipative dynamics of any compact object, e.g. neutron stars. The relation of our methodology to that developed in the context of the AdS/CFT correspondence is discussed.

  11. Entanglement entropy of two black holes and entanglement entropic force

    SciTech Connect (OSTI)

    Shiba, Noburo

    2011-03-15

    We study the entanglement entropy S{sub C} of the massless free scalar field on the outside region C of two black holes A and B whose radii are R{sub 1} and R{sub 2} and how it depends on the distance r(>>R{sub 1},R{sub 2}) between two black holes. If we can consider the entanglement entropy as thermodynamic entropy, we can see the entropic force acting on the two black holes from the r dependence of S{sub C}. We develop the computational method based on that of Bombelli et al. to obtain the r dependence of S{sub C} of scalar fields whose Lagrangian is quadratic with respect to the scalar fields. First, we study S{sub C} in (d+1)-dimensional Minkowski spacetime. In this case the state of the massless free scalar field is the Minkowski vacuum state, and we replace two black holes by two imaginary spheres and take the trace over the degrees of freedom residing in the imaginary spheres. We obtain the leading term of S{sub C} with respect to 1/r. The result is S{sub C}=S{sub A}+S{sub B}+(1/r{sup 2d-2})G(R{sub 1},R{sub 2}), where S{sub A} and S{sub B} are the entanglement entropy on the inside region of A and B, respectively, and G(R{sub 1},R{sub 2}){<=}0. We do not calculate G(R{sub 1},R{sub 2}) in detail, but we show how to calculate it. In the black hole case we use the method used in the Minkowski spacetime case with some modifications. We show that S{sub C} can be expected to be the same form as that in the Minkowski spacetime case. But in the black hole case, S{sub A} and S{sub B} depend on r, so we do not fully obtain the r dependence of S{sub C}. Finally, we assume that the entanglement entropy can be regarded as thermodynamic entropy and consider the entropic force acting on two black holes. We argue how to separate the entanglement entropic force from other forces and how to cancel S{sub A} and S{sub B} whose r dependences are not obtained. Then we obtain the physical prediction, which can be tested experimentally in principle.

  12. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect (OSTI)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and

  13. All or nothing: On the small fluctuations of two-dimensional string theoretic black holes

    SciTech Connect (OSTI)

    Gilbert, Gerald; Raiten, Eric

    1992-10-01

    A comprehensive analysis of small fluctuations about two-dimensional string-theoretic and string-inspired black holes is presented. It is shown with specific examples that two-dimensional black holes behave in a radically different way from all known black holes in four dimensions. For both the SL(2,R)/U(1) black hole and the two-dimensional black hole coupled to a massive dilaton with constant field strength, it is shown that there are a {\\it continuous infinity} of solutions to the linearized equations of motion, which are such that it is impossible to ascertain the classical linear response. It is further shown that the two-dimensional black hole coupled to a massive, linear dilaton admits {\\it no small fluctuations at all}. We discuss possible implications of our results for the Callan-Giddings-Harvey-Strominger black hole.

  14. T-668: Vulnerability in a BlackBerry Enterprise Server component could allow information disclosure and partial denial of service

    Broader source: Energy.gov [DOE]

    This advisory describes a security issue in the BlackBerry Administration API component. Successful exploitation of the vulnerability could result in information disclosure and partial denial of service (DoS). The BlackBerry Administration API is a BlackBerry Enterprise Server component that is installed on the server that hosts the BlackBerry Administration Service. The BlackBerry Administration API contains multiple web services that receive API requests from client applications. The BlackBerry Administration API then translates requests into a format that the BlackBerry Administration Service can process.

  15. PRECISE BLACK HOLE MASSES FROM MEGAMASER DISKS: BLACK HOLE-BULGE RELATIONS AT LOW MASS

    SciTech Connect (OSTI)

    Greene, Jenny E.; Peng, Chien Y.; Kim, Minjin; Kuo, Cheng-Yu; Braatz, James A.; Impellizzeri, C. M. Violette; Condon, James J.; Lo, K. Y.; Henkel, Christian; Reid, Mark J.

    2010-09-20

    The black hole (BH)-bulge correlations have greatly influenced the last decade of efforts to understand galaxy evolution. Current knowledge of these correlations is limited predominantly to high BH masses (M{sub BH{approx}}>10{sup 8} M{sub sun}) that can be measured using direct stellar, gas, and maser kinematics. These objects, however, do not represent the demographics of more typical L < L* galaxies. This study transcends prior limitations to probe BHs that are an order of magnitude lower in mass, using BH mass measurements derived from the dynamics of H{sub 2}O megamasers in circumnuclear disks. The masers trace the Keplerian rotation of circumnuclear molecular disks starting at radii of a few tenths of a pc from the central BH. Modeling of the rotation curves, presented by Kuo et al., yields BH masses with exquisite precision. We present stellar velocity dispersion measurements for a sample of nine megamaser disk galaxies based on long-slit observations using the B and C spectrograph on the Dupont telescope and the Dual Imaging Spectrograph on the 3.5 m telescope at Apache Point. We also perform bulge-to-disk decomposition of a subset of five of these galaxies with Sloan Digital Sky Survey imaging. The maser galaxies as a group fall below the M{sub BH}-{sigma}{sub *} relation defined by elliptical galaxies. We show, now with very precise BH mass measurements, that the low-scatter power-law relation between M{sub BH} and {sigma}{sub *} seen in elliptical galaxies is not universal. The elliptical galaxy M{sub BH}-{sigma}{sub *} relation cannot be used to derive the BH mass function at low mass or the zero point for active BH masses. The processes (perhaps BH self-regulation or minor merging) that operate at higher mass have not effectively established an M{sub BH}-{sigma}{sub *} relation in this low-mass regime.

  16. Instability of black hole formation in gravitational collapse

    SciTech Connect (OSTI)

    Joshi, Pankaj S.; Malafarina, Daniele

    2011-01-15

    We consider here the classic scenario given by Oppenheimer, Snyder, and Datt, for the gravitational collapse of a massive matter cloud, and examine its stability under the introduction of small tangential stresses. We show, by offering an explicit class of physically valid tangential stress perturbations, that an introduction of tangential pressure, however small, can qualitatively change the final fate of collapse from a black hole final state to a naked singularity. This shows instability of black hole formation in collapse and sheds important light on the nature of cosmic censorship hypothesis and its possible formulations. The key effect of these perturbations is to alter the trapped surface formation pattern within the collapsing cloud and the apparent horizon structure. This allows the singularity to be visible, and implications are discussed.

  17. Void morphology in polyethylene/carbon black composites

    SciTech Connect (OSTI)

    Marr, D.W.M.; Wartenberg, M.; Schwartz, K.B.

    1996-12-31

    A combination of small angle neutron scattering (SANS) and contrast matching techniques is used to determine the size and quantity of voids incorporated during fabrication of polyethylene/carbon black composites. The analysis used to extract void morphology from SANS data is based on the three-phase model of microcrack determination via small angle x-rayscattering (SAXS) developed by W.Wu{sup 12} and applied to particulate reinforced composites.

  18. Method of comparison equations for Schwarzschild black holes

    SciTech Connect (OSTI)

    Casadio, Roberto; Luzzi, Mattia

    2006-10-15

    We employ the method of comparison equations to study the propagation of a massless minimally coupled scalar field on the Schwarzschild background. In particular, we show that this method allows us to obtain explicit approximate expressions for the radial modes with energy below the peak of the effective potential which are fairly accurate over the whole region outside the horizon. This case can be of particular interest, for example, for the problem of black hole evaporation.

  19. Global solutions for higher-dimensional stretched small black holes

    SciTech Connect (OSTI)

    Chen, C.-M.; Gal'tsov, Dmitri V.; Ohta, Nobuyoshi; Orlov, Dmitry G.

    2010-01-15

    Small black holes in heterotic string theory have a vanishing horizon area at the supergravity level, but the horizon is stretched to the finite radius AdS{sub 2}xS{sup D-2} geometry once higher curvature corrections are turned on. This has been demonstrated to give good agreement with microscopic entropy counting. Previous considerations, however, were based on the classical local solutions valid only in the vicinity of the event horizon. Here we address the question of global existence of extremal black holes in the D-dimensional Einstein-Maxwell-Dilaton theory with the Gauss-Bonnet term introducing a variable dilaton coupling a as a parameter. We show that asymptotically flat black holes exist only in a bounded region of the dilaton couplings 0=}5 (but not for D=4) the allowed range of a includes the heterotic string values. For a>a{sub cr} numerical solutions meet weak naked singularities at finite radii r=r{sub cusp} (spherical cusps), where the scalar curvature diverges as |r-r{sub cusp}|{sup -1/2}. For D{>=}7 cusps are met in pairs, so that solutions can be formally extended to asymptotically flat infinity choosing a suitable integration variable. We show, however, that radial geodesics cannot be continued through the cusp singularities, so such a continuation is unphysical.

  20. Barrow Black Carbon Source and Impact Study Final Campaign Report

    SciTech Connect (OSTI)

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.

  1. Petroleum geology of Azov-Black Sea region

    SciTech Connect (OSTI)

    Lukin, A.; Trofimenko, G.

    1995-08-01

    The main features of tectonics, stratigraphy, paleogeography, lithology, hydrogeology, geothermics and hydrocarbon-bearingness of Azov-Black Sea Region are characterized on the basis of present-day data. Among the most prospective petroliferous complexes one ought to mention: Paleozoic (S - D - C{sub 1}) of Near-Dobrudga foredeep, Triassic - Jurassic of the Black Sea (shelf and continental slope); Lower Cretaceous of the various parts of the Region; Upper Cretaceous of the Black Sea shelf; Paleocene-Eocene of Azov Sea. In addition certain prospects are connected with Precambrian and Paleozoic basements within conjunction zone between Eastern-Europe platform and Scythian plate. Geodynamic evolution of the Region is considered with determination of tension and compression stages and characteristic of the main regularities of diapirs, mud volcanos, swells, horsts and grabens distribution. There determined the most interesting types of hydrocarbon traps connected with various tectonic forms, river and deltaic channels, bars, conturites, carbonate reefs, etc. Paleogeothermic and paleogeodynamic reconstructions allow to determine the main phases of oil and gas accumulation. The most prospective oil-gas-bearing zones and areas are mapped.

  2. Regular black holes: Electrically charged solutions, Reissner-Nordstroem outside a de Sitter core

    SciTech Connect (OSTI)

    Lemos, Jose P. S.; Zanchin, Vilson T.

    2011-06-15

    To have the correct picture of a black hole as a whole, it is of crucial importance to understand its interior. The singularities that lurk inside the horizon of the usual Kerr-Newman family of black hole solutions signal an endpoint to the physical laws and, as such, should be substituted in one way or another. A proposal that has been around for sometime is to replace the singular region of the spacetime by a region containing some form of matter or false vacuum configuration that can also cohabit with the black hole interior. Black holes without singularities are called regular black holes. In the present work, regular black hole solutions are found within general relativity coupled to Maxwell's electromagnetism and charged matter. We show that there are objects which correspond to regular charged black holes, whose interior region is de Sitter, whose exterior region is Reissner-Nordstroem, and the boundary between both regions is made of an electrically charged spherically symmetric coat. There are several types of solutions: regular nonextremal black holes with a null matter boundary, regular nonextremal black holes with a timelike matter boundary, regular extremal black holes with a timelike matter boundary, and regular overcharged stars with a timelike matter boundary. The main physical and geometrical properties of such charged regular solutions are analyzed.

  3. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (3/3)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  4. Does the mass of a black hole decrease due to the accretion of phantom energy?

    SciTech Connect (OSTI)

    Gao Changjun; Chen Xuelei; Faraoni, Valerio; Shen Yougen

    2008-07-15

    According to Babichev et al., the accretion of a phantom test fluid onto a Schwarzschild black hole will induce the mass of the black hole to decrease, however the backreaction was ignored in their calculation. Using new exact solutions describing black holes in a background Friedmann-Robertson-Walker universe, we find that the physical black hole mass may instead increase due to the accretion of phantom energy. If this is the case, and the future universe is dominated by phantom dark energy, the black hole apparent horizon and the cosmic apparent horizon will eventually coincide and, after that, the black hole singularity will become naked in finite comoving time before the big rip occurs, violating the cosmic censorship conjecture.

  5. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (2/3)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  6. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (1/3)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  7. FIA-16-0040 - In the Matter of Kathy L. Black | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 - In the Matter of Kathy L. Black FIA-16-0040 - In the Matter of Kathy L. Black On June 27, 2016, OHA denied a Freedom of Information Act Appeal (FOIA) filed by Kathy L. Black (Appellant) of a determination issued by the DOE Office of Information Resources (OIR). In the Appeal, the Appellant challenged OIR's withholding under FOIA Exemption 5. OHA reviewed the withheld information and concluded that OIR properly withheld the information under Exemption 5's deliberative process privilege. OHA

  8. Gas Flux Sampling At Black Warrior Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Black Warrior Area (DOE GTP) Exploration Activity Details Location...

  9. Searching for mini black holes signatures in cosmic rays air shower

    SciTech Connect (OSTI)

    Lamri, S.; Kalli, S.; Mimouni, J.

    2012-06-27

    Theories with extra dimensions at low Planck scale, offer the exciting possibility of mini black holes production in ultra high-energy particles interactions. In particular, cosmic neutrinos interaction can produce black holes deep in the Earth's atmosphere. These mini black holes then decay and produce 'characteristic' air showers. In this paper, we examine the properties of the mini black holes (mBH) air showers and compare them to the standard model (mSM) ones. We point out to some possible criteria that help distinguishing mBH air showers.

  10. Surface geometry of a rotating black hole in a magnetic field...

    Office of Scientific and Technical Information (OSTI)

    Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BLACK HOLES; KERR FIELD; ROTATION; DIFFERENTIAL GEOMETRY; EINSTEIN-MAXWELL EQUATIONS; EQUATIONS; FIELD EQUATIONS; ...

  11. Five-dimensional black strings in Einstein-Gauss-Bonnet gravity

    SciTech Connect (OSTI)

    Kobayashi, Tsutomu; Tanaka, Takahiro

    2005-04-15

    We consider black-string-type solutions in five-dimensional Einstein-Gauss-Bonnet gravity. Numerically constructed solutions under static, axially symmetric and translationally invariant metric ansatz are presented. The solutions are specified by two asymptotic charges: mass of a black string and a scalar charge associated with the radion part of the metric. Regular black string solutions are found if and only if the two charges satisfy a fine-tuned relation, and otherwise the spacetime develops a singular event horizon or a naked singularity. We can also generate bubble solutions from the black strings by using a double Wick rotation.

  12. Navy legend Carl Brashear speaks at JLab's Black History Month event |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Navy legend Carl Brashear speaks at JLab's Black History Month event Carl Brashear poster Carl Brashear will speak at JLab's Black History Month event on Wednesday, February 19 at 2p.m. Navy legend Carl Brashear speaks at JLab's Black History Month event February 6, 2003 U.S. Naval legend Carl Brashear will be at Jefferson Lab on Wednesday, February 19, as the Lab's guest speaker for Black History Month Directions to the Lab Enter through Onnes Dr. from Jefferson Ave. Anyone 16

  13. Generalized uncertainty principle in f(R) gravity for a charged black hole

    SciTech Connect (OSTI)

    Said, Jackson Levi; Adami, Kristian Zarb

    2011-02-15

    Using f(R) gravity in the Palatini formularism, the metric for a charged spherically symmetric black hole is derived, taking the Ricci scalar curvature to be constant. The generalized uncertainty principle is then used to calculate the temperature of the resulting black hole; through this the entropy is found correcting the Bekenstein-Hawking entropy in this case. Using the entropy the tunneling probability and heat capacity are calculated up to the order of the Planck length, which produces an extra factor that becomes important as black holes become small, such as in the case of mini-black holes.

  14. Black Warrior: Sub-soil Gas and Fluid Inclusion Exploration and...

    Open Energy Info (EERE)

    up flow zone drilling targets in a blind geothermal prospect at Black Warrior, Churchill and Washoe Counties, Nevada. Awardees (Company Institution) Nevada Geothermal...

  15. V-158: BlackBerry Tablet OS Flash Player Multiple Vulnerabilities

    Broader source: Energy.gov [DOE]

    Multiple vulnerabilities have been reported in BlackBerry Tablet OS, which can be exploited by malicious people to bypass certain security restrictions and compromise a user's system.

  16. Climate Impacts of Atmospheric Sulfate and Black Carbon Aerosols

    SciTech Connect (OSTI)

    Qian, Yun; Song, Qingyuan; Menon, Surabi; Yu, Shaocai; Liu, Shaw C.; Shi, Guangyu; Leung, Lai R.; Luo, Yunfeng

    2008-09-19

    Although the global average surface temperature has increased by about 0.6°C during the last century (IPCC, 2001), some regions such as East Asia, Eastern North America, and Western Europe have cooled rather than warmed during the past decades (Jones, 1988; Qian and Giorgi, 2000). Coherent changes at the regional scale may reflect responses to different climate forcings that need to be understood in order to predict the future net climate response at the global and regional scales under different emission scenarios. Atmospheric aerosols play an important role in global climate change (IPCC 2001). They perturb the earth’s radiative budget directly by scattering and absorbing solar and long wave radiation, and indirectly by changing cloud reflectivity, lifetime, and precipitation efficiency via their role as cloud condensation nuclei. Because aerosols have much shorter lifetime (days to weeks) compared to most greenhouse gases, they tend to concentrate near their emission sources and distribute very unevenly both in time and space. This non-uniform distribution of aerosols, in conjunction with the greenhouse effect, may lead to differential net heating in some areas and net cooling in others (Penner et al. 1994). Sulfate aerosols come mainly from the oxidation of sulfur dioxide (SO2) emitted from fossil fuel burning. Black carbon aerosols are directly emitted during incomplete combustion of biomass, coal, and diesel derived sources. Due to the different optical properties, sulfate and black carbon affect climate in different ways. Because of the massive emissions of sulfur and black carbon that accompany the rapid economic expansions in East Asia, understanding the effects of aerosols on climate is particularly important scientifically and politically in order to develop adaptation and mitigation strategies.

  17. Barrow Black Carbon Source and Impact Study Final Campaign Report

    SciTech Connect (OSTI)

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact campaign was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility site in Barrow, Alaska. The carbonaceous component was characterized by measuring the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the PM, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine PM fractions (PM2.5) and 49 coarse (PM10) PM fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the Barrow Black Carbon Source and Impact (BBCSI) study used standard Tisch “hi-vol” motors that have a known lifetime of approximately 1 month under constant use; this necessitated monthly maintenance, and it is suggested that, for future deployment in the Arctic, the motors be upgraded to industrial blowers. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric PM samples from Barrow, Alaska, from July 2012 to June 2013. Preliminary analysis of the OC and BC concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer. However, the annual OC concentrations had a very different seasonal pattern with the highest concentrations during the summer, lowest concentrations during the fall, and increased concentrations during the winter and spring (Figure 1).

  18. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    U.S. Energy Information Administration (EIA) Indexed Site

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian OH-PA (2) Appalachian Eastern PA (3) Appalachian Southern OH (4) Appalachian Eastern WV (5) Appalachian WV-VA (6) Appalachian TN-KY (7) Piceance Greater Green River Eastern OR-WA Ventura Williston Williston NE (2) Williston NW (1) Williston South (3) Eastern Great Basin Ventura West, Central, East Eastern OR-WA Eastern

  19. Minimum length, extra dimensions, modified gravity and black hole remnants

    SciTech Connect (OSTI)

    Maziashvili, Michael

    2013-03-01

    We construct a Hilbert space representation of minimum-length deformed uncertainty relation in presence of extra dimensions. Following this construction, we study corrections to the gravitational potential (back reaction on gravity) with the use of correspondingly modified propagator in presence of two (spatial) extra dimensions. Interestingly enough, for r?0 the gravitational force approaches zero and the horizon for modified Schwarzschild-Tangherlini space-time disappears when the mass approaches quantum-gravity energy scale. This result points out to the existence of zero-temperature black hole remnants in ADD brane-world model.

  20. Black hole temperature: Minimal coupling vs conformal coupling

    SciTech Connect (OSTI)

    Fazel, Mohamadreza; Mirza, Behrouz; Mansoori, Seyed Ali Hosseini

    2014-05-15

    In this article, we discuss the propagation of scalar fields in conformally transformed spacetimes with either minimal or conformal coupling. The conformally coupled equation of motion is transformed into a one-dimensional Schrödinger-like equation with an invariant potential under conformal transformation. In a second stage, we argue that calculations based on conformal coupling yield the same Hawking temperature as those based on minimal coupling. Finally, it is conjectured that the quasi normal modes of black holes are invariant under conformal transformation.

  1. Entropy localization and extensivity in the semiclassical black hole evaporation

    SciTech Connect (OSTI)

    Casini, H.

    2009-01-15

    I aim to quantify the distribution of information in the Hawking radiation and inside the black hole in the semiclassical evaporation process. The structure of relativistic quantum field theory does not allow one to define a localized entropy unambiguously, but rather forces one to consider the shared information (mutual information) between two different regions of space-time. Using this tool, I first show that the entropy of a thermal gas at the Unruh temperature underestimates the actual amount of (shared) information present in a region of the Rindler space. Then, I analyze the mutual information between the black hole and the late time radiation region. A well-known property of the entropy implies that this is monotonically increasing with time. This means that in the semiclassical picture it is not possible to recover the eventual purity of the initial state in the final Hawking radiation through subtle correlations established during the whole evaporation period, no matter the interactions present in the theory. I find extensivity of the entropy as a consequence of a reduction to a two dimensional conformal problem in a simple approximation. However, the extensivity of information in the radiation region in a full four dimensional calculation seems not to be guaranteed on general grounds. I also analyze the localization of shared information inside the black hole finding that a large amount of it is contained in a small, approximately flat region of space-time near the point where the horizon begins. This gives place to large violations of the entropy bounds. I show that this problem is not eased by backscattering effects and argue that a breaking of conformal invariance is necessary to delocalize the entropy. Finally, I indicate that the mutual information could lead to a way to understand the Bekenstein-Hawking black hole entropy which does not require a drastic reduction in degrees of freedom in order to regulate the entanglement entropy. On the contrary

  2. Primordial Black Holes: Observational characteristics of the final evaporation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ukwatta, T. N.; Stump, D. R.; Linnemann, J. T.; MacGibbon, J. H.; Marinelli, S. S.; Yapici, T.; Tollefson, K.

    2016-07-01

    For many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 105 solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. Moreover, the final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigatemore » the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. Finally, the implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5–10 TeV range.« less

  3. CALIBRATING C-IV-BASED BLACK HOLE MASS ESTIMATORS

    SciTech Connect (OSTI)

    Park, Daeseong; Woo, Jong-Hak; Shin, Jaejin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Denney, Kelly D., E-mail: pds2001@astro.snu.ac.kr, E-mail: woo@astro.snu.ac.kr, E-mail: jjshin@astro.snu.ac.kr, E-mail: kelly@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark)

    2013-06-20

    We present the single-epoch black hole mass estimators based on the C IV {lambda}1549 broad emission line, using the updated sample of the reverberation-mapped active galactic nuclei and high-quality UV spectra. By performing multi-component spectral fitting analysis, we measure the C IV line widths (FWHM{sub C{sub IV}} and line dispersion, {sigma}{sub C{sub IV}}) and the continuum luminosity at 1350 A (L{sub 1350}) to calibrate the C-IV-based mass estimators. By comparing with the H{beta} reverberation-based masses, we provide new mass estimators with the best-fit relationships, i.e., M{sub BH}{proportional_to}L{sub 1350}{sup 0.50{+-}0.07}{sigma}{sub C{sub IV}{sup 2}} and M{sub BH}{proportional_to}L{sub 1350}{sup 0.52{+-}0.09} FWHM{sub C{sub IV}{sup 0.56{+-}0.48}}. The new C-IV-based mass estimators show significant mass-dependent systematic difference compared to the estimators commonly used in the literature. Using the published Sloan Digital Sky Survey QSO catalog, we show that the black hole mass of high-redshift QSOs decreases on average by {approx}0.25 dex if our recipe is adopted.

  4. GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE

    SciTech Connect (OSTI)

    Cerd-Durn, Pablo; DeBrye, Nicolas; Aloy, Miguel A.; Font, Jos A.; Obergaulinger, Martin

    2013-12-20

    We present general relativistic numerical simulations of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). By analyzing the spectrogram of our simulations we are able to identify the frequencies associated with the presence of g-modes and with the SASI motions at the PNS surface. We note that the gravitational waves emitted reach large enough amplitudes to be detected with third-generation detectors such as the Einstein Telescope within a Virgo Cluster volume at rates ? 0.1yr{sup 1}.

  5. Effects of intermediate mass black holes on nuclear star clusters

    SciTech Connect (OSTI)

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B.; Loeb, Abraham

    2014-11-20

    Nuclear star clusters (NSCs) are dense stellar clusters observed in galactic nuclei, typically hosting a central massive black hole. Here we study the possible formation and evolution of NSCs through the inspiral of multiple star clusters hosting intermediate mass black holes (IMBHs). Using an N-body code, we examine the dynamics of the IMBHs and their effects on the NSC. We find that IMBHs inspiral to the core of the newly formed NSC and segregate there. Although the IMBHs scatter each other and the stars, none of them is ejected from the NSC. The IMBHs are excited to high eccentricities and their radial density profile develops a steep power-law cusp. The stars also develop a power-law cusp (instead of the central core that forms in their absence), but with a shallower slope. The relaxation rate of the NSC is accelerated due to the presence of IMBHs, which act as massive perturbers. This in turn fills the loss cone and boosts the tidal disruption rate of stars both by the MBH and the IMBHs to a value excluded by rate estimates based on current observations. Rate estimates of tidal disruptions can therefore provide a cumulative constraint on the existence of IMBHs in NSCs.

  6. Strengthening Our Partnerships with Historically Black Colleges and Universities

    Broader source: Energy.gov [DOE]

    Secretary Chu meets with Annie Whatley, Acting Chief of Staff in the Office of Economic Impact and Diversity, and Dr. William Harvey. Last February, President Obama renewed the White House Initiative on Historically Black Colleges and Universities to encourage collaboration between government agencies, educational associations, philanthropic organizations, the private sector and others to increase the capacity of HBCUs to provide high-quality education to a greater number of students.  The Department of Energy is committed to supporting education at HBCUs and has partnered with HBCUs on a variety of projects. As part of that commitment, today I met with Dr. William Harvey, Chairman of the President’s Board of Advisors on Historically Black Colleges and Universities and President of Hampton University, as well as Langston University President JoAnn Haysbert and Morgan State University President David Wilson. The presidents and I discussed how the Department can better engage HBCUs in our science and laboratory projects, and what lessons we can learn from the many ongoing and successful partnerships we have in place.

  7. Hawking radiation of scalar particles from accelerating and rotating black holes

    SciTech Connect (OSTI)

    Gillani, Usman A.; Rehman, Mudassar; Saifullah, K. E-mail: mudassar051@yahoo.com

    2011-06-01

    Hawking radiation of uncharged and charged scalar particles from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using this method we recover the correct Hawking temperature as well.

  8. AmeriFlux CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce

    SciTech Connect (OSTI)

    Margolis, Hank A.

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce. Site Description - 49.69247° N / 74.34204° W, elevation of 387 mm, 90 - 100 yr old Black Spruce, Jack Pine, feather moss

  9. X-ray technology behind NASA's black-hole hunter (NuSTAR)

    ScienceCinema (OSTI)

    Craig, Bill

    2014-05-22

    Livermore Lab astrophysicist Bill Craig describes his team's role in developing X-ray imaging technology for the NASA Nuclear Spectroscopic Telescope Array (NuSTAR) mission. The black-hole-hunting spacecraft bagged its first 10 supermassive black holes this week

  10. X-ray technology behind NASA's black-hole hunter (NuSTAR)

    SciTech Connect (OSTI)

    Craig, Bill

    2013-09-10

    Livermore Lab astrophysicist Bill Craig describes his team's role in developing X-ray imaging technology for the NASA Nuclear Spectroscopic Telescope Array (NuSTAR) mission. The black-hole-hunting spacecraft bagged its first 10 supermassive black holes this week

  11. Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from November 1985 through December 1996. The six-station network provided 5-minute averaged measurements of global and diffuse horizontal solar irradiance. The data were processed at the National Renewable Energy Laboratory (NREL) to improve the assessment of the solar radiation resources in the southeastern United States. Three of the stations also measured the direct-normal solar irradiance with a pyrheliometer mounted in an automatic sun tracker. All data are archived in the Standard Broadband Format (SBF) with quality-assessment indicators. Monthly data summaries and plots are also available for each month. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network.

  12. The genome of black cottonwood, Populus trichocarpa (Torr.&Gray)

    SciTech Connect (OSTI)

    Tuskan, G.A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev,I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; Schein, J.; Sterck, L.; Aerts, A.; Bhalerao, R.R.; Bhalerao, R.P.; Blaudez, D.; Boerjan, W.; Brun, A.; Brunner, A.; Busov, V.; Campbell, M.; Carlson, J.; Chalot, M.; Chapman, J.; Chen, G.-L.; Cooper, D.; Coutinho,P.M.; Couturier, J.; Covert, S.; Cronk, Q.; Cunningham, R.; Davis, J.; Degroeve, S.; Dejardin, A.; dePamphillis, C.; Detter, J.; Dirks, B.; Dubchak, I.; Duplessis, S.; Ehiting, J.; Ellis, B.; Gendler, K.; Goodstein, D.; Gribskov, M.; Grimwood, J.; Groover, A.; Gunter, L.; Hamberger, B.; Heinze, B.; Helariutta, Y.; Henrissat, B.; Holligan, D.; Holt, R.; Huang, W.; Islam-Faridi, N.; Jones, S.; Jones-Rhoades, M.; Jorgensen, R.; Joshi, C.; Kangasjarvi, J.; Karlsson, J.; Kelleher, C.; Kirkpatrick, R.; Kirst, M.; Kohler, A.; Kalluri, U.; Larimer, F.; Leebens-Mack, J.; Leple, J.-C.; Locascio, P.; Lou, Y.; Lucas, S.; Martin,F.; Montanini, B.; Napoli, C.; Nelson, D.R.; Nelson, D.; Nieminen, K.; Nilsson, O.; Peter, G.; Philippe, R.; Pilate, G.; Poliakov, A.; Razumovskaya, J.; Richardson, P.; Rinaldi, C.; Ritland, K.; Rouze, P.; Ryaboy, D.; Schmutz, J.; Schrader, J.; Segerman, B.; Shin, H.; Siddiqui,A.; Sterky, F.; Terry, A.; Tsai, C.; Uberbacher, E.; Unneberg, P.; Vahala, J.; Wall, K.; Wessler, S.; Yang, G.; Yin, T.; Douglas, C.; Marra,M.; Sandberg, G.; Van der Peer, Y.; Rokhsar, D.

    2006-09-01

    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. Over 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event, with approximately 8,000 pairs of duplicated genes from that event surviving in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication and gross chromosomal rearrangement appear to proceed substantially slower in Populus relative to Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average between 1.4-1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with disease resistance, meristem development, metabolite transport and lignocellulosic wall biosynthesis.

  13. Recoiling supermassive black holes: a search in the nearby universe

    SciTech Connect (OSTI)

    Lena, D.; Robinson, A.; Axon, D. J.; Merritt, D.; Marconi, A.; Capetti, A.; Batcheldor, D.

    2014-11-10

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (? 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  14. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    SciTech Connect (OSTI)

    Liu, F. K.; Wang Dong; Chen Xian

    2012-02-20

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q {approx}> 0.3 with a minimum possible value q{sub min} {approx_equal} 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s{sup -1} in the direction within an angle {approx}< 40 Degree-Sign relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  15. Constraining the spin and the deformation parameters from the black hole shadow

    SciTech Connect (OSTI)

    Tsukamoto, Naoki; Li, Zilong; Bambi, Cosimo E-mail: zilongli@fudan.edu.cn

    2014-06-01

    Within 5–10 years, very-long baseline interferometry (VLBI) facilities will be able to directly image the accretion flow around SgrA*, the super-massive black hole candidate at the center of the Galaxy, and observe the black hole ''shadow''. In 4-dimensional general relativity, the no-hair theorem asserts that uncharged black holes are described by the Kerr solution and are completely specified by their mass M and by their spin parameter a. In this paper, we explore the possibility of distinguishing Kerr and Bardeen black holes from their shadow. In Hioki and Maeda (2009), under the assumption that the background geometry is described by the Kerr solution, the authors proposed an algorithm to estimate the value of a/M by measuring the distortion parameter δ, an observable quantity that characterizes the shape of the shadow. Here, we try to extend their approach. Since the Hioki-Maeda distortion parameter is degenerate with respect to the spin and possible deviations from the Kerr solution, one has to measure another quantity to test the Kerr black hole hypothesis. We study a few possibilities. We find that it is extremely difficult to distinguish Kerr and Bardeen black holes from the sole observation of the shadow, and out of reach for the near future. The combination of the measurement of the shadow with possible accurate radio observations of a pulsar in a compact orbit around SgrA* could be a more promising strategy to verify the Kerr black hole paradigm.

  16. Sulfide-Driven Arsenic Mobilization from Arsenopyrite and Black Shale Pyrite

    SciTech Connect (OSTI)

    Zhu, W.; Young, L; Yee, N; Serfes, M; Rhine, E; Reinfelder, J

    2008-01-01

    We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black

  17. Formation of carbon black as a byproduct of pyrolysis of light hydrocarbons in plasma jet

    SciTech Connect (OSTI)

    Chen, H.G.; Zhang, X.B.; Li, F.; Xie, K.C.; Dai, B.; Fan, Y.S.

    1997-12-31

    The light hydrocarbons undergo a complex reaction of flash hydropyrolysis in a DC arc H{sub 2}/Ar plasma jet at atmospheric pressure and average temperatures between 1,500 K and 4,000 K. The raw material was LPG. Acetylene is the major product. Carbon black is a byproduct. Carbon black is characterized with XRD, TEM, and adsorption-and-desorption of liquid nitrogen, respectively. The present work proposes to use the plasma process to replace the classical thermal process in order to produce acetylene directly from LPG with carbon black being a byproduct.

  18. FIA-16-0034 - In the Matter of Leo Conor Black | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 - In the Matter of Leo Conor Black FIA-16-0034 - In the Matter of Leo Conor Black On June 13, 2016, OHA denied a FOIA Appeal filed by Leo Conor Black from a determination issued by the Office of Information Resources (OIR) of the Department of Energy. In the Appeal, the Appellant challenged the adequacy of OIR's search for responsive documents. OHA found, however, that OIR conducted a search reasonably calculated to uncover the materials sought by the Appellant. FIA-16-0034.pdf (139.28 KB)

  19. Legendary Tuskegee Airmen to Speak at Jefferson Lab's Black History Month

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event | Jefferson Lab Legendary Tuskegee Airmen to Speak at Jefferson Lab's Black History Month Event Legendary Tuskegee Airmen to Speak at Jefferson Lab's Black History Month Event February 3, 2004 Three members of the legendary, World War II era Tuskegee Airmen will speak at Jefferson Lab's Black History Month celebration at 2:30 p.m. on Thursday, Feb. 19. The public is invited to the event. The program will start with footage from the 1996 movie based on the true story of the Tuskegee

  20. General Nonextremal Rotating Black Holes in Minimal Five-Dimensional Gauged Supergravity

    SciTech Connect (OSTI)

    Chong, Z.-W.; Lue, H.; Pope, C.N.; Cvetic, M.

    2005-10-14

    We construct the general solution for nonextremal charged rotating black holes in five-dimensional minimal gauged supergravity. They are characterized by four nontrivial parameters: namely, the mass, the charge, and the two independent rotation parameters. The metrics in general describe regular rotating black holes, providing the parameters lie in appropriate ranges so that naked singularities and closed timelike curves (CTCs) are avoided. We calculate the conserved energy, angular momenta, and charge for the solutions, and show how supersymmetric solutions arise in a Bogomol'nyi-Prasad-Sommerfield limit. These have naked CTCs in general, but for special choices of the parameters we obtain new regular supersymmetric black holes or smooth topological solitons.

  1. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect (OSTI)

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  2. Stringy stability of charged dilaton black holes with flat event horizon

    SciTech Connect (OSTI)

    Ong, Yen Chin; Chen, Pisin

    2015-01-15

    Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Critical to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilation arises naturally in the context of string theory, we study the effect of coupling dilation to Maxwell field on the stability of flat charged AdS black holes.

  3. Arctic Black Carbon Loading and Profile Using the Single-Particle...

    Office of Scientific and Technical Information (OSTI)

    Single-Particle Soot Photometer (SP2) Field Campaign Report Citation Details In-Document Search Title: Arctic Black Carbon Loading and Profile Using the Single-Particle Soot ...

  4. DOE/SC-ARM-14-017 Barrow Black Carbon Source and Impact Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Barrow Black Carbon Source and Impact Study Final Campaign Report July 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither...

  5. Final/Technical Report on The National Conference of Black Physics Students

    SciTech Connect (OSTI)

    Williams, Elvira

    2001-06-01

    The 14th Annual Conference of the Society of Black Physics Students (NCBPS) was held March 16-19, 2000 at North Carolina A&T State University. The conference was held jointly with the National Society of Black Physicists. The students had the opportunity to interact and network with each other and the members of the profesional organization (NSBP). There are two attachments: Findings from the survey of participants of the 14th Annual National Conference of Black Physics Students, and XXVII Day of Scientific Lectures and 23rd Annual Meeting of The National Society of Black Physicists, March 15-18, 2000. The theme of the meeting was 'Physics: The science that shapes the future.'

  6. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    SciTech Connect (OSTI)

    Bromley, Benjamin C.; Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R. E-mail: skenyon@cfa.harvard.edu E-mail: wbrown@cfa.harvard.edu

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  7. Thermodynamics of black holes in (n+1)-dimensional Einstein-Born-Infeld-dilaton gravity

    SciTech Connect (OSTI)

    Sheykhi, A.; Riazi, N.

    2007-01-15

    We construct a new class of (n+1)-dimensional (n{>=}3) black hole solutions in Einstein-Born-Infeld-dilaton gravity with Liouville-type potential for the dilaton field and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can represent black holes, with inner and outer event horizons, an extreme black hole, or a naked singularity provided the parameters of the solutions are chosen suitably. We compute the thermodynamic quantities of the black hole solutions and find that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis and investigate the effect of dilaton on the stability of the solutions.

  8. Hidden symmetries, null geodesics, and photon capture in the Sen black hole

    SciTech Connect (OSTI)

    Hioki, Kenta; Miyamoto, Umpei

    2008-08-15

    Important classes of null geodesics and hidden symmetries in the Sen black hole are investigated. First, we obtain the principal null geodesics and circular photon orbits. Then, an irreducible rank-two Killing tensor and a conformal Killing tensor are derived, which represent the hidden symmetries. Analyzing the properties of Killing tensors, we clarify why the Hamilton-Jacobi and wave equations are separable in this spacetime. We also investigate the gravitational capture of photons by the Sen black hole and compare the result with those by the various charged/rotating black holes and naked singularities in the Kerr-Newman family. For these black holes and naked singularities, we show the capture regions in a two dimensional impact parameter space (or equivalently the 'shadows' observed at infinity) to form a variety of shapes such as the disk, circle, dot, arc, and their combinations.

  9. Thermodynamics of asymptotically flat charged black holes in third order Lovelock gravity

    SciTech Connect (OSTI)

    Dehghani, M.H.; Shamirzaie, M.

    2005-12-15

    We present a new class of asymptotically flat charge static solutions in third order Lovelock gravity. These solutions present black hole solutions with two inner and outer event horizons, extreme black holes, or naked singularities provided the parameters of the solutions are chosen suitable. We find that the uncharged asymptotically flat solutions can present black holes with two inner and outer horizons. This kind of solution does not exist in Einstein or Gauss-Bonnet gravity, and it is a special effect in third order Lovelock gravity. We compute temperature, entropy, charge, electric potential, and mass of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the determinant of the Hessian matrix of the mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that there exists only an intermediate stable phase.

  10. Causal extraction of black hole rotational energy by various kinds of electromagnetic fields

    SciTech Connect (OSTI)

    Koide, Shinji; Baba, Tamon

    2014-09-10

    Recent general relativistic magnetohydrodynamics (MHD) simulations have suggested that relativistic jets from active galactic nuclei (AGNs) have been powered by the rotational energy of central black holes. Some mechanisms for extraction of black hole rotational energy have been proposed, like the Penrose process, Blandford-Znajek mechanism, MHD Penrose process, and superradiance. The Blandford-Znajek mechanism is the most promising mechanism for the engines of the relativistic jets from AGNs. However, an intuitive interpretation of this mechanism with causality is not yet clarified, while the Penrose process has a clear interpretation for causal energy extraction from a black hole with negative energy. In this paper, we present a formula to build physical intuition so that in the Blandford-Znajek mechanism, as well as in other electromagnetic processes, negative electromagnetic energy plays an important role in causal extraction of the rotational energy of black holes.

  11. Thin-layer black phosphorous/GaAs heterojunction p-n diodes

    SciTech Connect (OSTI)

    Gehring, Pascal; Urcuyo, Roberto; Duong, Dinh Loc; Burghard, Marko; Kern, Klaus

    2015-06-08

    Owing to its high carrier mobility and thickness-tunable direct band gap, black phosphorous emerges as a promising component of optoelectronic devices. Here, we evaluate the device characteristics of p-n heterojunction diodes wherein thin black phosphorous layers are interfaced with an underlying, highly n-doped GaAs substrate. The p-n heterojunctions exhibit close-to-ideal diode behavior at low bias, while under illumination they display a photoresponse that is evenly distributed over the entire junction area, with an external quantum efficiency of up to 10% at zero bias. Moreover, the observed maximum open circuit voltage of 0.6 V is consistent with the band gap estimated for a black phosphorous sheet with a thickness on the order of 10?nm. Further analysis reveals that the device performance is limited by the structural quality of the black phosphorous surface.

  12. Higgs production and decay from TeV scale black holes at the...

    Office of Scientific and Technical Information (OSTI)

    We compare our results with the standard model backgrounds. We find that Higgs production from black holes is dominant over standard model production for psub Tsup H>100 GeV, ...

  13. File:Black.Warrior.Basin usgs.map.pdf | Open Energy Information

    Open Energy Info (EERE)

    usgs.map.pdf Jump to: navigation, search File File history File usage Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Size...

  14. Savannah River National Laboratory Meets with Historically Black Colleges and Universities

    Broader source: Energy.gov [DOE]

    Student and faculty leaders at Historically Black Colleges and Universities (HBCUs) spent the day at the Center for Hydrogen Research at Savannah River National Laboratory, reporting on their work to professional scientists and engineers at the Laboratory.

  15. Superradiance and black hole bomb in five-dimensional minimal ungauged supergravity

    SciTech Connect (OSTI)

    Aliev, Alikram N.

    2014-11-01

    We examine the black hole bomb model which consists of a rotating black hole of five-dimenensional minimal ungauged supergravity and a reflecting mirror around it. For low-frequency scalar perturbations, we find solutions to the Klein-Gordon equation in the near-horizon and far regions of the black hole spacetime. To avoid solutions with logarithmic terms, we assume that the orbital quantum number l takes on nearly, but not exactly, integer values and perform the matching of these solutions in an intermediate region. This allows us to calculate analytically the frequency spectrum of quasinormal modes, taking the limits as l approaches even or odd integers separately. We find that all l modes of scalar perturbations undergo negative damping in the regime of superradiance, resulting in exponential growth of their amplitudes. Thus, the model under consideration would exhibit the superradiant instability, eventually behaving as a black hole bomb in five dimensions.

  16. Black History Month: Former Energy Secretary Broke Barriers and Advanced Clean Energy

    Broader source: Energy.gov [DOE]

    Black History Month celebrates the many vital contributions African Americans have made in America’s history.  Today, we’re highlighting African Americans who have helped advance energy efficiency...

  17. Quasinormal modes, scattering, and Hawking radiation of Kerr-Newman black holes in a magnetic field

    SciTech Connect (OSTI)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2011-01-15

    We perform a comprehensive analysis of the spectrum of proper oscillations (quasinormal modes), transmission/reflection coefficients, and Hawking radiation for a massive charged scalar field in the background of the Kerr-Newman black hole immersed in an asymptotically homogeneous magnetic field. There are two main effects: the Zeeman shift of the particle energy in the magnetic field and the difference of values of an electromagnetic potential between the horizon and infinity, i.e. the Faraday induction. We have shown that 'turning on' the magnetic field induces a stronger energy-emission rate and leads to 'recharging' of the black hole. Thus, a black hole immersed in a magnetic field evaporates much quicker, achieving thereby an extremal state in a shorter period of time. Quasinormal modes are moderately affected by the presence of a magnetic field which is assumed to be relatively small compared to the gravitational field of the black hole.

  18. SUPER-CRITICAL GROWTH OF MASSIVE BLACK HOLES FROM STELLAR-MASS SEEDS

    SciTech Connect (OSTI)

    Madau, Piero; Haardt, Francesco; Dotti, Massimo

    2014-04-01

    We consider super-critical accretion with angular momentum onto stellar-mass black holes as a possible mechanism for growing billion-solar-mass black holes from light seeds at early times. We use the radiatively inefficient ''slim disk'' solutionadvective, optically thick flows that generalize the standard geometrically thin disk modelto show how mildly super-Eddington intermittent accretion may significantly ease the problem of assembling the first massive black holes when the universe was less than 0.8Gyr old. Because of the low radiative efficiencies of slim disks around non-rotating as well as rapidly rotating black holes, the mass e-folding timescale in this regime is nearly independent of the spin parameter. The conditions that may lead to super-critical growth in the early universe are briefly discussed.

  19. AmeriFlux CA-Man Manitoba - Northern Old Black Spruce (former BOREAS Northern Study Area)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Amiro, Brian [University of Manitoba

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Man Manitoba - Northern Old Black Spruce (former BOREAS Northern Study Area). Site Description - 55.880° N, 98.481° W, elevation of 259 m, Boreal coniferous: Black spruce; occasional larch present in poorly-drained areas. Groundcover is moss (feathermosses and Sphagnum), Labrador Tea, Vaccinium, and willows are a main component of the understory. It was established in 1993 as a BOREAS site.

  20. Wet-chemical systems and methods for producing black silicon substrates

    DOE Patents [OSTI]

    Yost, Vernon; Yuan, Hao-Chih; Page, Matthew

    2015-05-19

    A wet-chemical method of producing a black silicon substrate. The method comprising soaking single crystalline silicon wafers in a predetermined volume of a diluted inorganic compound solution. The substrate is combined with an etchant solution that forms a uniform noble metal nanoparticle induced Black Etch of the silicon wafer, resulting in a nanoparticle that is kinetically stabilized. The method comprising combining with an etchant solution having equal volumes acetonitrile/acetic acid:hydrofluoric acid:hydrogen peroxide.

  1. Analysis of the Sultana-Dyer cosmological black hole solution of the Einstein equations

    SciTech Connect (OSTI)

    Faraoni, Valerio

    2009-08-15

    The Sultana-Dyer solution of general relativity representing a black hole embedded in a special cosmological background is analyzed. We find an expanding (weak) spacetime singularity instead of the reported conformal Killing horizon, which is covered by an expanding black hole apparent horizon (internal to a cosmological apparent horizon) for most of the history of the Universe. This singularity was naked early on. The global structure of the solution is studied as well.

  2. Energy Department Announces New Technical Review to Assess Black Cells at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford's Waste Treatment Plant | Department of Energy Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant August 2, 2012 - 12:15pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Department of Energy announced today that Secretary of Energy Steven Chu has assembled a group of independent technical experts to assess the Hanford Site's Waste

  3. HOW IMPORTANT IS THE DARK MATTER HALO FOR BLACK HOLE GROWTH?

    SciTech Connect (OSTI)

    Volonteri, Marta; Gueltekin, Kayhan; Natarajan, Priyamvada

    2011-08-20

    In this paper, we examine whether the properties of central black holes in galactic nuclei correlate with their host dark matter halos. We analyze the entire sample of galaxies where black hole mass, velocity dispersion {sigma}, and asymptotic circular velocity V{sub c} have all been measured. We fit M{sub BH}-{sigma} and M{sub BH}-V{sub c} to a power law, and find that in both relationships the scatter and slope are similar. This model-independent analysis suggests that although the black hole masses are not uniquely determined by dark matter halo mass, when considered for the current sample as a whole, the M{sub BH}-V{sub c} correlation may be as strong (or as weak) as M{sub BH}-{sigma}. Although the data are sparse, there appears to be more scatter in the correlation for both {sigma} and V{sub c} at the low-mass end. This is not unexpected given our current understanding of galaxy and black hole assembly. In fact, there are several compelling reasons that account for this: (1) supermassive black hole (SMBH) formation is likely less efficient in low-mass galaxies with large angular momentum content, (2) SMBH growth is less efficient in low-mass disk galaxies that have not experienced major mergers, and (3) dynamical effects, such as gravitational recoil, increase scatter preferentially at the low-mass end. Therefore, the recent observational claim of the absence of central SMBHs in bulgeless, low-mass galaxies, or deviations from the correlations defined by high-mass black holes in large galaxies today is, in fact, predicated by current models of black hole growth. We show how this arises as a direct consequence of the coupling between dark matter halos and central black holes at the earliest epochs.

  4. Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges

    ScienceCinema (OSTI)

    None

    2011-10-06

    A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

  5. Red & Black Ball raises nearly $82,000 for youth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Red & Black Ball raises $81,000 for youth Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Red & Black Ball raises nearly $82,000 for youth The Family YMCA receives windfall for Española and Los Alamos teen centers. April 4, 2016 From left: LANL Government Affairs Office Director Patrick Woehrle, LANL Community Programs Office Director Kathy Keith, Laboratory Director Charles

  6. COLLOQUIUM: The Observation of Gravitational Waves from a Binary Black Hole

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Merger | Princeton Plasma Physics Lab 29, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: The Observation of Gravitational Waves from a Binary Black Hole Merger Dr. Duncan Brown Syracuse University On September 14, 2015 the the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed gravitational waves from a binary black hole merger. The gravitational waves observed match the waveform predicted by general

  7. T-602: BlackBerry Enterprise Server Input Validation Flaw in BlackBerry Web Desktop Manager Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    The BlackBerry Web Desktop Manager not properly filter HTML code from user-supplied input before displaying the input. A remote user can cause arbitrary scripting code to be executed by the target user's browser. The code will originate from the site running the BlackBerry Web Desktop Manager software and will run in the security context of that site. As a result, the code will be able to access the target user's cookies (including authentication cookies), if any, associated with the site, access data recently submitted by the target user via web form to the site, or take actions on the site acting as the target user.

  8. Very large radiative transfer over small distances from a black body for thermophotovoltaic applications

    SciTech Connect (OSTI)

    Pan, J.L.; Choy, H.K.H.; Fonstad, C.G. Jr.

    2000-01-01

    The maximum amount of radiated heat intensity which can be transferred from a black body of refractive index n{sub BB} to an object of refractive index n{sub OBJ} located a short distance away is shown to be n{sup 2}{sub smaller} times the free space Planck distribution, where n{sub smaller} is the smaller of n{sub BB} and n{sub OBJ}, and where n{sub BB} and n{sub OBJ} are assumed greater than unity. The implication is that the radiative power spectral density within a thermophotovoltaic cell could be designed to be much greater than the free space Planck distribution. The maximum radiative intensity transferred occurs when the index of the black body matches that of the object at wavelengths where the Planck distribution is sizeable. A simple expression is found for the transferred radiative intensity as a function of the refractive indices of, and the distance separating, the black body and the object. The expression is interpreted in terms of the specific black body modes which are evanescent in the space between the black body and the object and which make the largest contribution to the transmission of radiation. The black body, the object, and the gap region are all modeled as lossless dielectrics.

  9. Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole

    SciTech Connect (OSTI)

    Wei, Shao-Wen; Liu, Yu-Xiao E-mail: liuyx@lzu.edu.cn

    2013-11-01

    In this paper, the shadows cast by Einstein-Maxwell-Dilaton-Axion black hole and naked singularity are studied. The shadow of a rotating black hole is found to be a dark zone covered by a deformed circle. For a fixed value of the spin a, the size of the shadow decreases with the dilaton parameter b. The distortion of the shadow monotonically increases with b and takes its maximal when the black hole approaches to the extremal case. Due to the optical properties, the area of the black hole shadow is supposed to equal to the high-energy absorption cross section. Based on this assumption, the energy emission rate is investigated. For a naked singularity, the shadow has a dark arc and a dark spot or straight, and the corresponding observables are obtained. These results show that there is a significant effect of the spin a and dilaton parameter b on these shadows. Moreover, we examine the observables of the shadow cast by the supermassive black hole at the center of the Milky Way, which is very useful for us to probe the nature of the black hole through the astronomical observations in the near future.

  10. BPS-like bound and thermodynamics of the charged BTZ black hole

    SciTech Connect (OSTI)

    Cadoni, Mariano; Monni, Cristina

    2009-07-15

    The charged Banados-Teitelboim-Zanelli (BTZ) black hole is plagued by several pathologies: (a) Divergent boundary terms are present in the action; hence, we have a divergent black-hole mass. (b) Once a finite, renormalized, mass M is defined, black-hole states exist for arbitrarily negative values of M. (c) There is no upper bound on the charge Q. We show that these pathological features are an artifact of the renormalization procedure. They can be completely removed by using an alternative renormalization scheme leading to a different definition M{sub 0} of the black-hole mass, which is the total energy inside the horizon. The new mass satisfies a BPS-like bound M{sub 0}{>=}({pi}/2)Q{sup 2}, and the heat capacity of the hole is positive. We also discuss the black-hole thermodynamics that arises when M{sub 0} is interpreted as the internal energy of the system. We show, using three independent approaches (black-hole thermodynamics, Einstein equations, and Euclidean action formulation), that M{sub 0} satisfies the first law if a term describing the mechanical work done by the electrostatic pressure is introduced.

  11. Linking the spin evolution of massive black holes to galaxy kinematics

    SciTech Connect (OSTI)

    Sesana, A.; Barausse, E.; Dotti, M.; Rossi, E. M. E-mail: barausse@iap.fr E-mail: emr@strw.leidenuniv.nl

    2014-10-20

    We present the results of a semianalytical model that evolves the masses and spins of massive black holes together with the properties of their host galaxies across the cosmic history. As a consistency check, our model broadly reproduces a number of observations, e.g., the cosmic star formation history; the black hole mass, luminosity, and galaxy mass functions at low redshift; the black hole-bulge mass relation; and the morphological distribution at low redshift. For the first time in a semianalytical investigation, we relax the simplifying assumptions of perfect coherency or perfect isotropy of the gas fueling the black holes. The dynamics of gas is instead linked to the morphological properties of the host galaxies, resulting in different spin distributions for black holes hosted in different galaxy types. We compare our results with the observed sample of spin measurements obtained through broad K? iron line fitting. The observational data disfavor both accretion along a fixed direction and isotropic fueling. Conversely, when the properties of the accretion flow are anchored to the kinematics of the host galaxy, we obtain a good match between theoretical expectations and observations. A mixture of coherent accretion and phases of activity in which the gas dynamics is similar to that of the stars in bulges (i.e., with a significant velocity dispersion superimposed to a net rotation) best describes the data, adding further evidence in support of the coevolution of massive black holes and their hosts.

  12. WHAT'S INSIDE THE BLACK BOX - EXPLAINING PERFORMANCE ASSESSMENT TO STAKEHOLDERS

    SciTech Connect (OSTI)

    Seitz, R; Elmer Wilhite, E

    2009-01-06

    The performance assessment (PA) process is being applied to support an increasing variety of waste management decisions that involve the whole spectrum of stakeholders. As with many technical tools, the PA process can be seen as a black box, which can be difficult to understand when implemented. Recognizing the increasing use of PA and the concerns about difficulties with understanding, the Savannah River Site Citizens Advisory Board (CAB) made a recommendation that the U.S. Department of Energy (DOE) provide a Public Educational Forum on PAs. The DOE-Headquarters Environmental Management (DOE-EM) Office of Compliance and the DOE-Savannah River (DOE-SR) responded to this recommendation by supporting the Savannah River National Laboratory (SRNL) in developing several presentation modules that can be used to describe different aspects of the PA process. For the Public Educational Forum, the PA modules were combined with presentations on DOE perspectives, historical modeling efforts at the Savannah River Site, and review perspectives from the U.S. Nuclear Regulatory Commission (NRC). The overall goals are to help the public understand how PAs are implemented and the rigor that is applied, and to provide insight into the use of PAs for waste management decision-making.

  13. First principles study of metal contacts to monolayer black phosphorous

    SciTech Connect (OSTI)

    Chanana, Anuja; Mahapatra, Santanu

    2014-11-28

    Atomically thin layered black phosphorous (BP) has recently appeared as an alternative to the transitional metal dichalcogenides for future channel material in a metal-oxide-semiconductor transistor due to its lower carrier effective mass. Investigation of the electronic property of source/drain contact involving metal and two-dimensional material is essential as it impacts the transistor performance. In this paper, we perform a systematic and rigorous study to evaluate the Ohmic nature of the side-contact formed by the monolayer BP (mBP) and metals (gold, titanium, and palladium), which are commonly used in experiments. Employing the Density Functional Theory, we analyse the potential barrier, charge transfer and atomic orbital overlap at the metal-mBP interface in an optimized structure to understand how efficiently carriers could be injected from metal contact to the mBP channel. Our analysis shows that gold forms a Schottky contact with a higher tunnel barrier at the interface in comparison to the titanium and palladium. mBP contact with palladium is found to be purely Ohmic, where as titanium contact demonstrates an intermediate behaviour.

  14. Black carbon aerosols and the third polar ice cap

    SciTech Connect (OSTI)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  15. The mass of the black hole in LMC X-3

    SciTech Connect (OSTI)

    Orosz, Jerome A.; Steiner, James F.; McClintock, Jeffrey E.; Buxton, Michelle M.; Bailyn, Charles D.; Steeghs, Danny; Guberman, Alec; Torres, Manuel A. P. E-mail: jsteiner@cfa.harvard.edu E-mail: michelle.buxton@yale.edu E-mail: D.T.H.Steeghs@warwick.ac.uk E-mail: M.Torres@sron.nl

    2014-10-20

    We analyze a large set of new and archival photometric and spectroscopic observations of LMC X-3 to arrive at a self-consistent dynamical model for the system. Using echelle spectra obtained with the Magellan Inamori Kyocera Echelle instrument on the 6.5 m Magellan Clay telescope and the UVES instrument on the second 8.2 m Very Large Telescope, we find a velocity semiamplitude for the secondary star of K {sub 2} = 241.1 6.2 km s{sup 1}, where the uncertainty includes an estimate of the systematic error caused by X-ray heating. Using the spectra, we also find a projected rotational velocity of V {sub rot}sin i = 118.5 6.6 km s{sup 1}. From an analysis of archival B and V light curves as well as new B and V light curves from the SMARTS 1.3 m telescope, we find an inclination of i = 69.84 0.37 for models that do not include X-ray heating and an inclination of i = 69.24 0.72 for models that incorporate X-ray heating. Adopting the latter inclination measurement, we find masses of 3.63 0.57 M {sub ?} and 6.98 0.56 M {sub ?} for the companion star and the black hole, respectively. We briefly compare our results with earlier work and discuss some of their implications.

  16. BLINDLY DETECTING MERGING SUPERMASSIVE BLACK HOLES WITH RADIO SURVEYS

    SciTech Connect (OSTI)

    Kaplan, D. L.; O'Shaughnessy, R.; Sesana, A.; Volonteri, M. E-mail: oshaughn@gravity.phys.uwm.edu E-mail: martav@umich.edu

    2011-06-20

    Supermassive black holes (SMBHs) presumably grow through numerous mergers throughout cosmic time. During each merger, SMBH binaries are surrounded by a circumbinary accretion disk that imposes a significant ({approx}10{sup 4} G for a binary of 10{sup 8} M{sub sun}) magnetic field. The motion of the binary through that field will convert the field energy to Poynting flux, with a luminosity {approx}10{sup 43} erg s{sup -1} (B/10{sup 4} G){sup 2}(M/10{sup 8} M{sub sun}){sup 2}, some of which may emerge as synchrotron emission at frequencies near 1 GHz where current and planned wide-field radio surveys will operate. We find that the short timescales of many mergers will limit their detectability with most planned blind surveys to <1 per year over the whole sky, independent of the details of the emission process and flux distribution. Including an optimistic estimate for the radio flux makes detection even less likely, with <0.1 mergers per year over the whole sky. However, wide-field radio instruments may be able to localize systems identified in advance of merger by gravitational waves. Further, radio surveys may be able to detect the weaker emission produced by the binary's motion as it is modulated by spin-orbit precession and inspiral well in advance of merger.

  17. Black Carbon Radiative Forcing over the Tibetan Plateau

    SciTech Connect (OSTI)

    He, Cenlin; Li, Qinbin; Liou, K. N.; Takano, Y.; Gu, Yu; Qi, L.; Mao, Yuhao; Leung, Lai-Yung R.

    2014-11-28

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. Our best estimate of the annual BC snow albedo forcing in the Plateau is 2.9 W m-2 (uncertainty: 1.55.0 W m-226 ). We find that BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing and coated BC increases the forcing by 30-50% compared with uncoated BC, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. Our best estimate of the annual BC DRF at the top of the atmosphere is 2.3 W m-2 (uncertainty: 0.74.3 W m-230 ) in the Plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network (AERONET) observations. The BC forcings are attributed to emissions from different regions.

  18. Spectrum of relativistic radiation from electric charges and dipoles as they fall freely into a black hole

    SciTech Connect (OSTI)

    Shatskiy, A. A. Novikov, I. D.; Lipatova, L. N.

    2013-06-15

    The motion of electric charges and dipoles falling radially and freely into a Schwarzschild black hole is considered. The inverse effect of the electromagnetic fields on the black hole is neglected. Since the dipole is assumed to be a point particle, the deformation due to the action of tidal forces on it is neglected. According to the theorem stating that 'black holes have no hair', the multipole electromagnetic fields should be completely radiated as a multipole falls into a black hole. The electromagnetic radiation power spectrum for these multipoles (a monopole and a dipole) has been found. Differences have been found in the spectra for different orientations of the falling dipole. A general method has been developed to find the radiated multipole electromagnetic fields for multipoles (including higher-order multipoles-quadrupoles, etc.) falling freely into a black hole. The calculated electromagnetic spectra can be compared with observational data from stellar-mass and smaller black holes.

  19. Selection and Characterization of Carbon Black and Surfactants for Development of Small Scale Uranium Oxicarbide Kernels

    SciTech Connect (OSTI)

    Contescu, Cristian I

    2006-01-01

    This report supports the effort for development of small scale fabrication of UCO (a mixture of UO{sub 2} and UC{sub 2}) fuel kernels for the generation IV high temperature gas reactor program. In particular, it is focused on optimization of dispersion conditions of carbon black in the broths from which carbon-containing (UO{sub 2} {center_dot} H{sub 2}O + C) gel spheres are prepared by internal gelation. The broth results from mixing a hexamethylenetetramine (HMTA) and urea solution with an acid-deficient uranyl nitrate (ADUN) solution. Carbon black, which is previously added to one or other of the components, must stay dispersed during gelation. The report provides a detailed description of characterization efforts and results, aimed at identification and testing carbon black and surfactant combinations that would produce stable dispersions, with carbon particle sizes below 1 {micro}m, in aqueous HMTA/urea and ADUN solutions. A battery of characterization methods was used to identify the properties affecting the water dispersability of carbon blacks, such as surface area, aggregate morphology, volatile content, and, most importantly, surface chemistry. The report introduces the basic principles for each physical or chemical method of carbon black characterization, lists the results obtained, and underlines cross-correlations between methods. Particular attention is given to a newly developed method for characterization of surface chemical groups on carbons in terms of their acid-base properties (pK{sub a} spectra) based on potentiometric titration. Fourier-transform infrared (FTIR) spectroscopy was used to confirm the identity of surfactants, both ionic and non-ionic. In addition, background information on carbon black properties and the mechanism by which surfactants disperse carbon black in water is also provided. A list of main physical and chemical properties characterized, samples analyzed, and results obtained, as well as information on the desired trend or

  20. Linearity of Climate Response to Increases in Black Carbon Aerosols

    SciTech Connect (OSTI)

    Mahajan, Salil; Evans, Katherine J.; Hack, James J.; Truesdale, John

    2013-04-19

    The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $ W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $ W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $W^{-1}m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $ PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

  1. U-012: BlackBerry Enterprise Server Collaboration Service Bug Lets Remote Users Impersonate Intra-organization Messages

    Office of Energy Efficiency and Renewable Energy (EERE)

    A vulnerability was reported in BlackBerry Enterprise Server. A remote user can impersonate another messaging user within the same organization.

  2. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  3. THE ANGULAR MOMENTA OF NEUTRON STARS AND BLACK HOLES AS A WINDOW ON SUPERNOVAE

    SciTech Connect (OSTI)

    Miller, J. M.; Miller, M. C.; Reynolds, C. S.

    2011-04-10

    It is now clear that a subset of supernovae displays evidence for jets and is observed as gamma-ray bursts (GRBs). The angular momentum distribution of massive stellar endpoints provides a rare means of constraining the nature of the central engine in core-collapse explosions. Unlike supermassive black holes, the spin of stellar-mass black holes in X-ray binary systems is little affected by accretion and accurately reflects the spin set at birth. A modest number of stellar-mass black hole angular momenta have now been measured using two independent X-ray spectroscopic techniques. In contrast, rotation-powered pulsars spin down over time, via magnetic braking, but a modest number of natal spin periods have now been estimated. For both canonical and extreme neutron star parameters, statistical tests strongly suggest that the angular momentum distributions of black holes and neutron stars are markedly different. Within the context of prevalent models for core-collapse supernovae, the angular momentum distributions are consistent with black holes typically being produced in GRB-like supernovae with jets and with neutron stars typically being produced in supernovae with too little angular momentum to produce jets via magnetohydrodynamic processes. It is possible that neutron stars are with high spin initially and rapidly spun down shortly after the supernova event, but the available mechanisms may be inconsistent with some observed pulsar properties.

  4. Reservoir heterogeneity in carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-06-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  5. Transition from adiabatic inspiral to plunge into a spinning black hole

    SciTech Connect (OSTI)

    Kesden, Michael

    2011-05-15

    A test particle of mass {mu} on a bound geodesic of a Kerr black hole of mass M>>{mu} will slowly inspiral as gravitational radiation extracts energy and angular momentum from its orbit. This inspiral can be considered adiabatic when the orbital period is much shorter than the time scale on which energy is radiated, and quasicircular when the radial velocity is much less than the azimuthal velocity. Although the inspiral always remains adiabatic provided {mu}<black hole's spin changes following a test-particle merger, and can be extrapolated to help predict the mass and spin of the final black hole produced in finite-mass-ratio black-hole mergers. Our new contribution is particularly important for nearly maximally spinning black holes, as it can affect whether a merger produces a naked singularity.

  6. Evaluation of Black Carbon Estimations in Global Aerosol Models

    SciTech Connect (OSTI)

    Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

    2009-11-27

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the

  7. Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery

    SciTech Connect (OSTI)

    Adriaan van Heiningen

    2007-06-30

    MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and agglomeration problems of

  8. Noether charges and black hole mechanics in Einstein-aether theory

    SciTech Connect (OSTI)

    Foster, Brendan Z.

    2006-01-15

    The Noether charge method for defining the Hamiltonian of a diffeomorphism-invariant field theory is applied to 'Einstein-aether' theory, in which gravity couples to a dynamical, timelike, unit-norm vector field. Using the method, expressions are obtained for the total energy, momentum, and angular momentum of an Einstein-aether space-time. The method is also used to discuss the mechanics of Einstein-aether black holes. The derivation of Wald, and Iyer and Wald, of the first law of black hole thermodynamics fails for this theory because the unit-vector is necessarily singular at the bifurcation surface of the Killing horizon. A general identity relating variations of energy and angular momentum to a surface integral at the horizon is obtained, but a thermodynamic interpretation, including a definitive expression for the black hole entropy, is not found.

  9. Uniqueness theorem for Kaluza-Klein black holes in five-dimensional minimal supergravity

    SciTech Connect (OSTI)

    Tomizawa, Shinya

    2010-11-15

    We show a uniqueness theorem for Kaluza-Klein black holes in the bosonic sector of five-dimensional minimal supergravity. More precisely, under the assumptions of the existence of two commuting axial isometries and a nondegenerate connected event horizon of the cross-section topology S{sup 3}, or lens space, we prove that a stationary charged rotating Kaluza-Klein black hole in five-dimensional minimal supergravity is uniquely characterized by its mass, two independent angular momenta, electric charge, magnetic flux, and nut charge, provided that there exists neither a nut nor a bolt (a bubble) in the domain of outer communication. We also show that under the assumptions of the same symmetry, same asymptotics, and the horizon cross section of S{sup 1}xS{sup 2}, a black ring within the same theory--if it exists--is uniquely determined by its dipole charge and rod intervals besides the charges and magnetic flux.

  10. Inflation Induced Planck-Size Black Hole Remnants as Dark Matter

    SciTech Connect (OSTI)

    Chen, P

    2004-07-06

    While there exist various candidates, the identification of dark matter remains unresolved. Recently it was argued that the generalized uncertainty principle (GUP) may prevent a black hole from evaporating completely, and as a result there should exist a Planck-size BHR at the end of its evaporation. We speculate that the stability of BHR may be further protected by supersymmetry in the form of extremal black hole. If this is indeed the case and if a sufficient amount of small black holes can be produced in the early universe, then the resultant BHRs can be an interesting candidate for DM. We demonstrate that this is the case in the hybrid inflation model. By assuming BHR as DM, our notion imposes a constraint on the hybrid inflation potential. We show that such a constraint is not fine-tuned. Possible observational signatures are briefly discussed.

  11. Gravitational waves from the collision of tidally disrupted stars with massive black holes

    SciTech Connect (OSTI)

    East, William E.

    2014-11-10

    We use simulations of hydrodynamics coupled with full general relativity to investigate the gravitational waves produced by a star colliding with a massive black hole when the star's tidal disruption radius lies far outside of the black hole horizon. We consider both main-sequence and white-dwarf compaction stars, and nonspinning black holes, as well as those with near-extremal spin. We study the regime in between where the star can be accurately modeled by a point particle, and where tidal effects completely suppress the gravitational wave signal. We find that nonnegligible gravitational waves can be produced even when the star is strongly affected by tidal forces, as well as when it collides with large angular momentum. We discuss the implications that these results have for the potential observation of gravitational waves from these sources with future detectors.

  12. Violation of the first law of black hole thermodynamics in f(T) gravity

    SciTech Connect (OSTI)

    Miao, Rong-Xin; Li, Miao; Miao, Yan-Gang E-mail: mli@itp.ac.cn

    2011-11-01

    We prove that, in general, the first law of black hole thermodynamics, ?Q = T?S, is violated in f(T) gravity. As a result, it is possible that there exists entropy production, which implies that the black hole thermodynamics can be in non-equilibrium even in the static spacetime. This feature is very different from that of f(R) or that of other higher derivative gravity theories. We find that the violation of first law results from the lack of local Lorentz invariance in f(T) gravity. By investigating two examples, we note that f''(0) should be negative in order to avoid the naked singularities and superluminal motion of light. When f''(T) is small, the entropy of black holes in f(T) gravity is approximatively equal to f'(T)/4 A.

  13. The Equations of Motion of Compact Binaries in the Neighborhood of Supermassive Black Hole

    SciTech Connect (OSTI)

    Gorbatsievich, Alexander; Bobrik, Alexey

    2010-03-24

    By the use of Einstein-Infeld-Hoffmann method, the equations of motion of a binary star system in the field of a supermassive black hole are derived. In spite of the fact that the motion of a binary system as a whole can be relativistic or even ultra-relativistic with respect to the supermassive black hole, it is shown, that under the assumption of non-relativistic relative motion of the stars in binary system, the motion of the binary system as a whole satisfies the Mathisson-Papapetrou equations with additional terms depending on quadrupole moments. Exemplary case of ultrarelativistic motion of a binary neutron star in the vicinity of non-rotating black hole is considered. It it shown that the motion of binary's center of mass may considerably differ from geodesic motion.

  14. Stable and 'bounded excursion' gravastars, and black holes in Einstein's theory of gravity

    SciTech Connect (OSTI)

    Rocha, P; Da Silva, M F A; Wang, Anzhong; Chan, R E-mail: chan@on.br E-mail: anzhong_wang@baylor.edu

    2008-11-15

    Dynamical models of prototype gravastars are constructed and studied. The models are the Visser-Wiltshire three-layer gravastars, in which an infinitely thin spherical shell of a perfect fluid with the equation of state p = (1-{gamma}){sigma} divides the whole spacetime into two regions, where the internal region is de Sitter, and the external one is Schwarzschild. When {gamma}<1 and {Lambda}{ne}0, it is found that in some cases the models represent stable gravastars, and in some cases they represent 'bounded excursion' stable gravastars, where the thin shell is oscillating between two finite radii, while in some other cases they collapse until the formation of black holes occurs. However, when {gamma}{>=}1, even with {Lambda}{ne}0, only black holes are found. In the phase space, the region for both stable gravastars and 'bounded excursion' gravastars is very small in comparison to that for black holes, although it is not completely empty.

  15. SPIN-PRECESSION: BREAKING THE BLACK HOLE-NEUTRON STAR DEGENERACY

    SciTech Connect (OSTI)

    Chatziioannou, Katerina; Cornish, Neil; Klein, Antoine; Yunes, Nicols

    2015-01-01

    Mergers of compact stellar remnants are prime targets for the LIGO/Virgo gravitational wave detectors. The gravitational wave signals from these merger events can be used to study the mass and spin distribution of stellar remnants, and provide information about black hole horizons and the material properties of neutron stars. However, it has been suggested that degeneracies in the way that the star's mass and spin are imprinted in the waveforms may make it impossible to distinguish between black holes and neutron stars. Here we show that the precession of the orbital plane due to spin-orbit coupling breaks the mass-spin degeneracy, and allows us to distinguish between standard neutron stars and alternative possibilities, such as black holes or exotic neutron stars with large masses and spins.

  16. A population of relic intermediate-mass black holes in the halo of the Milky Way

    SciTech Connect (OSTI)

    Rashkov, Valery; Madau, Piero

    2014-01-10

    If 'seed' central black holes were common in the subgalactic building blocks that merged to form present-day massive galaxies, then relic intermediate-mass black holes (IMBHs) should be present in the Galactic bulge and halo. We use a particle tagging technique to dynamically populate the N-body Via Lactea II high-resolution simulation with black holes, and assess the size, properties, and detectability of the leftover population. The method assigns a black hole to the most tightly bound central particle of each subhalo at infall according to an extrapolation of the M {sub BH}-?{sub *} relation, and self-consistently follows the accretion and disruption of Milky Way progenitor dwarfs and their holes in a cosmological 'live' host from high redshift to today. We show that, depending on the minimum stellar velocity dispersion, ? {sub m}, below which central black holes are assumed to be increasingly rare, as many as ?2000 (? {sub m} = 3 km s{sup 1}) or as few as ?70 (? {sub m} = 12 km s{sup 1}) IMBHs may be left wandering in the halo of the Milky Way today. The fraction of IMBHs forced from their hosts by gravitational recoil is ? 20%. We identify two main Galactic subpopulations, 'naked' IMBHs, whose host subhalos were totally destroyed after infall, and 'clothed' IMBHs residing in dark matter satellites that survived tidal stripping. Naked IMBHs typically constitute 40%-50% of the total and are more centrally concentrated. We show that, in the ? {sub m} = 12 km s{sup 1} scenario, the clusters of tightly bound stars that should accompany naked IMBHs would be fainter than m{sub V} = 16 mag, spatially resolvable, and have proper motions of 0.1-10 mas yr{sup 1}. Their detection may provide an observational tool to constrain the formation history of massive black holes in the early universe.

  17. Hidden conformal symmetry of rotating black holes in minimal five-dimensional gauged supergravity

    SciTech Connect (OSTI)

    Setare, M. R.; Kamali, V.

    2010-10-15

    In the present paper we show that for a low frequency limit the wave equation of a massless scalar field in the background of nonextremal charged rotating black holes in five-dimensional minimal gauged and ungauged supergravity can be written as the Casimir of an SL(2,R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. Also the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional conformal field theory.

  18. Comparative results of the combustion of lignin briquettes and black coal

    SciTech Connect (OSTI)

    V.G. Lurii

    2008-12-15

    A new type of biofuel - hydrolytic lignin briquettes - was tested as compared with ordinary SS coal from the Kuznetsk Basin in fuel-bed firing in a Universal-6 boiler. It was found that the (total) efficiency of the boiler with the firing of lignin briquettes was 38% higher than that with the use of black coal. Carbon loss in the combustion of briquettes was 1%, whereas it was 48.2% in the combustion of black coal. The emission of harmful gas pollutants into the environment in the combustion of briquettes was lower than that in the combustion of coal by a factor of 4.5.

  19. In Celebration of Black History Month, Energy Secretary Moniz and Director

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the National Museum of African Art Dr. Cole Discuss the Art of Science | Department of Energy In Celebration of Black History Month, Energy Secretary Moniz and Director of the National Museum of African Art Dr. Cole Discuss the Art of Science In Celebration of Black History Month, Energy Secretary Moniz and Director of the National Museum of African Art Dr. Cole Discuss the Art of Science February 23, 2015 - 1:50am Addthis News Media Contact 202 586 4940 RSVP@hq.doe.gov In Celebration of

  20. Are You Planning to Buy Energy-Efficient Products on Black Friday? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Are You Planning to Buy Energy-Efficient Products on Black Friday? Are You Planning to Buy Energy-Efficient Products on Black Friday? November 23, 2011 - 5:09am Addthis This week, Chris gave us some great information on shopping for energy-efficient products. He reminded us that the cost to run appliances and home office and electronics is just as important as the purchase price, and posted a new Energy Savers graphic that shows you how to read the EnergyGuide and Energy

  1. A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report

    SciTech Connect (OSTI)

    Fricke, A.L.; Zaman, A.A.

    1998-05-01

    The overall objective of the program was to develop correlations to predict physical properties within requirements of engineering precision from a knowledge of pulping conditions and of kraft black liquor composition, if possible. These correlations were to include those relating thermodynamic properties to pulping conditions and liquor composition. The basic premise upon which the research was based is the premise that black liquor behaves as a polymer solution. This premise has proven to be true, and has been used successfully in developing data reduction methods and in interpreting results. A three phase effort involving pulping, analysis of liquor composition, and measurement of liquor properties was conducted.

  2. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment

    SciTech Connect (OSTI)

    Bond, Tami C.; Doherty, Sarah J.; Fahey, D. W.; Forster, Piers; Berntsen, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, Steven J.; Karcher, B.; Koch, Dorothy; Kinne, Stefan; Kondo, Yutaka; Quinn, P. K.; Sarofim, Marcus; Schultz, Martin; Schulz, M.; Venkataraman, C.; Zhang, Hua; Zhang, Shiqiu; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, Joshua P.; Shindell, Drew; Storelvmo, Trude; Warren, Stephen G.; Zender, C. S.

    2013-06-06

    Black carbon aerosol plays a unique and important role in Earth’s climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. Predominant sources are combustion related; namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption, influence on liquid, mixed-phase, and ice clouds, and deposition on snow and ice. These effects are calculated with models, but when possible, they are evaluated with both microphysical measurements and field observations. Global atmospheric absorption attributable to black carbon is too low in many models, and should be increased by about about 60%. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of black carbon is +0.43 W m-2 with 90% uncertainty bounds of (+0.17, +0.68) W m-2. Total direct forcing by all black carbon sources in the present day is estimated as +0.49 (+0.20, +0.76) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings and their rapid responses and feedbacks. The best estimate of industrial-era (1750 to 2005) climate forcing of black carbon through all forcing mechanisms is +0.77 W m-2 with 90% uncertainty bounds of +-0.06 to +1.53 W m-2. Thus, there is a 96% probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. With a value of +0.77 W m-2, black carbon is likely the second

  3. Overspinning a nearly extreme black hole and the weak cosmic censorship conjecture

    SciTech Connect (OSTI)

    Richartz, Mauricio; Saa, Alberto

    2008-10-15

    We revisit here the recent proposal for overspinning a nearly extreme black hole by means of a quantum tunneling process. We show that electrically neutral massless fermions evade possible backreaction effects related to superradiance, confirming the view that it would be indeed possible to form a naked singularity due to quantum effects.

  4. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    SciTech Connect (OSTI)

    Virbhadra, K. S.; Keeton, C. R.

    2008-06-15

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginally strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.

  5. Thermodynamics of rotating charged black branes in third order lovelock gravity and the counterterm method

    SciTech Connect (OSTI)

    Dehghani, M.H.; Mann, R.B.

    2006-05-15

    We generalize the quasilocal definition of the stress-energy tensor of Einstein gravity to the case of third order Lovelock gravity, by introducing the surface terms that make the action well-defined. We also introduce the boundary counterterm that removes the divergences of the action and the conserved quantities of the solutions of third order Lovelock gravity with zero curvature boundary at constant t and r. Then, we compute the charged rotating solutions of this theory in n+1 dimensions with a complete set of allowed rotation parameters. These charged rotating solutions present black hole solutions with two inner and outer event horizons, extreme black holes or naked singularities provided the parameters of the solutions are suitably chosen. We compute temperature, entropy, charge, electric potential, mass and angular momenta of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We find a Smarr-type formula and perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable. This is commensurate with the fact that there is no Hawking-Page phase transition for black objects with zero curvature horizon.

  6. Black holes in an asymptotically safe gravity theory with higher derivatives

    SciTech Connect (OSTI)

    Cai, Yi-Fu; Easson, Damien A. E-mail: easson@asu.edu

    2010-09-01

    We present a class of spherically symmetric vacuum solutions to an asymptotically safe theory of gravity containing high-derivative terms. We find quantum corrected Schwarzschild-(anti)-de Sitter solutions with running gravitational coupling parameters. The evolution of the couplings is determined by their corresponding renormalization group flow equations. These black holes exhibit properties of a classical Schwarzschild solution at large length scales. At the center, the metric factor remains smooth but the curvature singularity, while softened by the quantum corrections, persists. The solutions have an outer event horizon and an inner Cauchy horizon which equate when the physical mass decreases to a critical value. Super-extremal solutions with masses below the critical value correspond to naked singularities. The Hawking temperature of the black hole vanishes when the physical mass reaches the critical value. Hence, the black holes in the asymptotically safe gravitational theory never completely evaporate. For appropriate values of the parameters such stable black hole remnants make excellent dark matter candidates.

  7. Entropy of near-extremal black holes in AdS5

    SciTech Connect (OSTI)

    Simon, Joan; Balasubramanian, Vijay; de Boer, Jan; Jejjala, Vishnu; Simon, Joan

    2007-07-24

    We construct the microstates of near-extremal black holes in AdS_5 x S5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS_3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS_2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities.

  8. Summation over histories for a particle in spherical orbit around a black hole

    SciTech Connect (OSTI)

    Bernido, C.C.; Aguarte, G.

    1997-08-01

    An exact path integral treatment of a relativistic scalar particle in a spherical orbit around a Reissner-Nordstr{umlt o}m and Schwarzschild black hole is presented. A closed form for the Green function and the energy spectrum are obtained. {copyright} {ital 1997} {ital The American Physical Society}

  9. Cold black holes in the Harlow–Hayden approach to firewalls

    SciTech Connect (OSTI)

    Ong, Yen Chin; McInnes, Brett; Chen, Pisin

    2014-12-31

    Firewalls are controversial principally because they seem to imply departures from general relativistic expectations in regions of spacetime where the curvature need not be particularly large. One of the virtues of the Harlow–Hayden approach to the firewall paradox, concerning the time available for decoding of Hawking radiation emanating from charged AdS black holes, is precisely that it operates in the context of cold black holes, which are not strongly curved outside the event horizon. Here we clarify this point. The approach is based on ideas borrowed from applications of the AdS/CFT correspondence to the quark–gluon plasma. Firewalls aside, our work presents a detailed analysis of the thermodynamics and evolution of evaporating charged AdS black holes with flat event horizons. We show that, in one way or another, these black holes are always eventually destroyed in a time which, while long by normal standards, is short relative to the decoding time of Hawking radiation.

  10. Cold black holes in the Harlow–Hayden approach to firewalls

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ong, Yen Chin; McInnes, Brett; Chen, Pisin

    2014-12-31

    Firewalls are controversial principally because they seem to imply departures from general relativistic expectations in regions of spacetime where the curvature need not be particularly large. One of the virtues of the Harlow–Hayden approach to the firewall paradox, concerning the time available for decoding of Hawking radiation emanating from charged AdS black holes, is precisely that it operates in the context of cold black holes, which are not strongly curved outside the event horizon. Here we clarify this point. The approach is based on ideas borrowed from applications of the AdS/CFT correspondence to the quark–gluon plasma. Firewalls aside, our workmore » presents a detailed analysis of the thermodynamics and evolution of evaporating charged AdS black holes with flat event horizons. We show that, in one way or another, these black holes are always eventually destroyed in a time which, while long by normal standards, is short relative to the decoding time of Hawking radiation.« less

  11. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    SciTech Connect (OSTI)

    Fornetti, Micheal; Freeman, Douglas

    2012-10-31

    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  12. Coal stratigraphy of deeper part of Black Warrior basin in Alabama

    SciTech Connect (OSTI)

    Thomas, W.A.; Womack, S.H.

    1983-09-01

    The Warrior coal field of Alabama is stratigraphically in the upper part of the Lower Pennsylvanian Pottsville Formation and structurally in the eastern part of the Black Warrior foreland basin. The productive coal beds extend southwestward from the mining area downdip into the deeper part of the Black Warrior structural basin. Because the deep part of the basin is beyond the limits of conventional coal exploration, study of the stratigraphy of coal beds must rely on data from petroleum wells. Relative abundance of coal can be stated in terms of numbers of beds, but because of the limitations of the available data, thicknesses of coals presently are not accurately determined. The lower sandstone-rich coal-poor part of the Pottsville has been interpreted as barrier sediments in the mining area. To the southwest in the deeper Black Warrior basin, coal beds are more numerous within the sandstone-dominated sequence. The coal-productive upper Pottsville is informally divided into coal groups each of which includes several coal beds. The Black Creek, Mary Lee, and Utley coal groups are associated with northeast-trending delta-distributary sandstones. The areas of most numerous coals also trend northeastward and are laterally adjacent to relatively thick distributary sandstones, suggesting coal accumulation in backswamp environments. The most numerous coals in the Pratt coal group are in an area that trends northwestward parallel with and southwest of a northwest-trending linear sandstone, suggesting coal accumulation in a back-barrier environment. Equivalents of the Cobb, Gwin, and Brookwood coal groups contain little coal in the deep part of the Black Warrior basin.

  13. Black liquor combustion validated recovery boiler modeling, five-year report

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1996-08-01

    The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

  14. Model predictions of the results of interferometric observations for stars under conditions of strong gravitational scattering by black holes and wormholes

    SciTech Connect (OSTI)

    Shatskiy, A. A. Kovalev, Yu. Yu.; Novikov, I. D.

    2015-05-15

    The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations.

  15. Paleoecology of the Devonian-Mississippian black-shale sequence in eastern Kentucky with an atlas of some common fossils

    SciTech Connect (OSTI)

    Barron, L.S.; Ettensohn, F.R.

    1981-04-01

    The Devonian-Mississippian black-shale sequence of eastern North America is a distinctive stratigraphic interval generally characterized by low clastic influx, high organic production in the water column, anaerobic bottom conditions, and the relative absence of fossil evidence for biologic activity. The laminated black shales which constitute most of the black-shale sequence are broken by two major sequences of interbedded greenish-gray, clayey shales which contain bioturbation and pyritized micromorph invertebrates. The black shales contain abundant evidence of life from upper parts of the water column such as fish fossils, conodonts, algae and other phytoplankton; however, there is a lack of evidence of benthic life. The rare brachiopods, crinoids, and molluscs that occur in the black shales were probably epiplanktic. A significant physical distinction between the environment in which the black sediments were deposited and that in which the greenish-gray sediments were deposited was the level of dissolved oxygen. The laminated black shales point to anaerobic conditions and the bioturbated greenish-gray shales suggest dysaerobic to marginally aerobic-dysaerobic conditions. A paleoenvironmental model in which quasi-estuarine circulation compliments and enhances the effect of a stratified water column can account for both depletion of dissolved oxygen in the bottom environments and the absence of oxygen replenishment during black-shale deposition. Periods of abundant clastic influx from fluvial environments to the east probably account for the abundance of clays in the greenish-gray shale as well as the small amounts of oxygen necessary to support the depauparate, opportunistic, benthic faunas found there. These pulses of greenish-gray clastics were short-lived and eventually were replaced by anaerobic conditions and low rates of clastic sedimentation which characterized most of black-shale deposition.

  16. Charged annular disks and Reissner-Nordstroem type black holes from extremal dust

    SciTech Connect (OSTI)

    Lora-Clavijo, F. D.; Ospina-Henao, P. A.; Pedraza, J. F.

    2010-10-15

    We present the first analytical superposition of a charged black hole with an annular disk of extremal dust. In order to obtain the solutions, we first solve the Einstein-Maxwell field equations for sources that represent disklike configurations of matter in confomastatic spacetimes by assuming a functional dependence among the metric function, the electric potential, and an auxiliary function, which is taken as a solution of the Laplace equation. We then employ the Lord Kelvin inversion method applied to models of finite extension in order to obtain annular disks. The structures obtained extend to infinity, but their total masses are finite and all the energy conditions are satisfied. Finally, we observe that the extremal Reissner-Nordstroem black hole can be embedded into the center of the disks by adding a boundary term in the inversion.

  17. Black holes and neutron stars in the generalized tensor-vector-scalar theory

    SciTech Connect (OSTI)

    Lasky, Paul D.

    2009-10-15

    Bekenstein's tensor-vector-scalar (TeVeS) theory has had considerable success as a relativistic theory of modified Newtonian dynamics. However, recent work suggests that the dynamics of the theory are fundamentally flawed and numerous authors have subsequently begun to consider a generalization of TeVeS where the vector field is given by an Einstein-Aether action. Herein, I develop strong-field solutions of the generalized TeVeS theory, in particular exploring neutron stars as well as neutral and charged black holes. I find that the solutions are identical to the neutron star and black hole solutions of the original TeVeS theory, given a mapping between the parameters of the two theories, and hence provide constraints on these values of the coupling constants. I discuss the consequences of these results in detail including the stability of such spacetimes as well as generalizations to more complicated geometries.

  18. AdS Black Disk Model for Small-x Deep Inelastic Scattering

    SciTech Connect (OSTI)

    Cornalba, Lorenzo; Costa, Miguel S.; Penedones, Joao

    2010-08-13

    Using the approximate conformal invariance of QCD at high energies we consider a simple anti-de Sitter black disk model to describe saturation in deep inelastic scattering. Deep inside saturation the structure functions have the same power law scaling, F{sub T}{approx}F{sub L}{approx}x{sup -{omega}}, where {omega} is related to the expansion rate of the black disk with energy. Furthermore, the ratio F{sub L}/F{sub T} is given by the universal value (1+{omega}/3+{omega}), independently of the target. For {gamma}*-{gamma}* scattering at high energies we obtain explicit expressions and ratios for the total cross sections of transverse and longitudinal photons in terms of the single parameter {omega}.

  19. Thermodynamics of charged rotating black branes in Brans-Dicke theory with quadratic scalar field potential

    SciTech Connect (OSTI)

    Dehghani, M. H.; Pakravan, J.; Hendi, S. H.

    2006-11-15

    We construct a class of charged rotating solutions in (n+1)-dimensional Maxwell-Brans-Dicke theory with flat horizon in the presence of a quadratic potential and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can present black brane, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute the finite Euclidean action through the use of counterterm method, and obtain the conserved and thermodynamic quantities by using the relation between the action and free energy in grand-canonical ensemble. We find that these quantities satisfy the first law of thermodynamics, and the entropy does not follow the area law.

  20. Black GE based on crystalline/amorphous core/shell nanoneedle arrays

    DOE Patents [OSTI]

    Javey, Ali; Chueh, Yu-Lun; Fan, Zhiyong

    2014-03-04

    Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips (.about.4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties. Specifically, minimal optical reflectance (<1%) is observed, even for high angles of incidence (.about.75.degree.) and for relatively short nanoneedle lengths (.about.1 .mu.m). Furthermore, the material exhibits high optical absorption efficiency with an effective band gap of .about.1 eV. The reported black Ge can have important practical implications for efficient photovoltaic and photodetector applications on nonconventional substrates.

  1. Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity

    SciTech Connect (OSTI)

    Molina, C.; Pani, Paolo; Cardoso, Vitor; Gualtieri, Leonardo

    2010-06-15

    Dynamical Chern-Simons gravity is an extension of general relativity in which the gravitational field is coupled to a scalar field through a parity-violating Chern-Simons term. In this framework, we study perturbations of spherically symmetric black hole spacetimes, assuming that the background scalar field vanishes. Our results suggest that these spacetimes are stable, and small perturbations die away as a ringdown. However, in contrast to standard general relativity, the gravitational waveforms are also driven by the scalar field. Thus, the gravitational oscillation modes of black holes carry imprints of the coupling to the scalar field. This is a smoking gun for Chern-Simons theory and could be tested with gravitational-wave detectors, such as LIGO or LISA. For negative values of the coupling constant, ghosts are known to arise, and we explicitly verify their appearance numerically. Our results are validated using both time evolution and frequency domain methods.

  2. Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity

    SciTech Connect (OSTI)

    Amarilla, Leonardo; Eiroa, Ernesto F.; Giribet, Gaston

    2010-06-15

    The Chern-Simons modification to general relativity in four dimensions consists of adding to the Einstein-Hilbert term a scalar field that couples to the first-class Pontryagin density. In this theory, which has attracted considerable attention recently, the Schwarzschild metric persists as an exact solution, and this is why this model resists several observational constraints. In contrast, the spinning black hole solution of the theory is not given by the Kerr metric but by a modification of it, so far only known for slow rotation and small coupling constant. In the present paper, we show that, in this approximation, the null geodesic equation can be integrated, and this allows us to investigate the shadow cast by a black hole. We discuss how, in addition to the angular momentum of the solution, the coupling to the Chern-Simons term deforms the shape of the shadow.

  3. Results from Undergraduate PV Projects at Seven Historically Black Colleges and Universities

    SciTech Connect (OSTI)

    McConnell, R. D.

    1999-03-03

    In 1995, the NREL/Department of Energy (DOE) National Photovoltaics Program funded seven Historically Black Colleges and Universities (HBCUs) in its HBCU Photovoltaic Research Associates Program for a period of three years. The program's purpose is to advance HBCU undergraduate knowledge of photovoltaics, primarily as a result of research investigations performed, and to encourage students to pursue careers in photovoltaics. This paper presents results from PV projects ranging from fundamental materials research on PV materials to field projects of PV systems.

  4. AmeriFlux US-Prr Poker Flat Research Range Black Spruce Forest

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Suzuki, Rikie [Japan Agency for Marine-Earth Science and Technology

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Prr Poker Flat Research Range Black Spruce Forest. Site Description - This site is located in a blackspruce forest within the property of the Poker Flat Research Range, University of Alaska, Fairbanks. Time-lapse image of the canopy is measured at the same time to relate flux data to satellite images.

  5. THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION

    SciTech Connect (OSTI)

    MacLeod, Morgan; Guillochon, James; Ramirez-Ruiz, Enrico E-mail: jfg@ucolick.org

    2012-10-01

    Sun-like stars are thought to be regularly disrupted by supermassive black holes (SMBHs) within galactic nuclei. Yet, as stars evolve off the main sequence their vulnerability to tidal disruption increases drastically as they develop a bifurcated structure consisting of a dense core and a tenuous envelope. Here we present the first hydrodynamic simulations of the tidal disruption of giant stars and show that the core has a substantial influence on the star's ability to survive the encounter. Stars with more massive cores retain large fractions of their envelope mass, even in deep encounters. Accretion flares resulting from the disruption of giant stars should last for tens to hundreds of years. Their characteristic signature in transient searches would not be the t {sup -5/3} decay typically associated with tidal disruption events, but a correlated rise over many orders of magnitude in brightness on timescales of months to years. We calculate the relative disruption rates of stars of varying evolutionary stages in typical galactic centers, then use our results to produce Monte Carlo realizations of the expected flaring event populations. We find that the demographics of tidal disruption flares are strongly dependent on both stellar and black hole mass, especially near the limiting SMBH mass scale of {approx}10{sup 8} M{sub Sun }. At this black hole mass, we predict a sharp transition in the SMBH flaring diet beyond which all observable disruptions arise from evolved stars, accompanied by a dramatic cutoff in the overall tidal disruption flaring rate. Black holes less massive than this limiting mass scale will show observable flares from both main-sequence and evolved stars, with giants contributing up to 10% of the event rate. The relative fractions of stars disrupted at different evolutionary states can constrain the properties and distributions of stars in galactic nuclei other than our own.

  6. Hydrogen atom donor compounds as contrast enhancers for black-and-white photothermographic and thermographic elements

    DOE Patents [OSTI]

    Harring, Lori S.; Simpson, Sharon M.; Sansbury, Francis H.

    1997-01-01

    Hydrogen atom donor compounds are useful as contrast enhancers when used in combination with (i) hindered phenol developers, and (ii) trityl hydrazide and/or formyl-phenyl hydrazine co-developers, to produce ultra-high contrast black-and-white photothermographic and thermographic elements. The photothermographic and thermographic elements may be used as a photomask in a process where there is a subsequent exposure of an ultraviolet or short wavelength visible radiation-sensitive imageable medium.

  7. Megaparsec relativistic jets launched from an accreting supermassive black hole in an extreme spiral galaxy

    SciTech Connect (OSTI)

    Bagchi, Joydeep; Vivek, M.; Srianand, Raghunathan; Gopal-Krishna; Vikram, Vinu; Hota, Ananda; Biju, K. G.; Sirothia, S. K.; Jacob, Joe

    2014-06-20

    The radio galaxy phenomenon is directly connected to mass-accreting, spinning supermassive black holes found in the active galactic nuclei. It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kiloparsec scales form and why they are nearly always launched from the nuclei of bulge-dominated elliptical galaxies and not flat spirals. Here we present the discovery of the giant radio source J23450449 (z = 0.0755), a clear and extremely rare counterexample where relativistic jets are ejected from a luminous and massive spiral galaxy on a scale of ?1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infrared luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity, are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 10{sup 8} M {sub ?}. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection-dominated, magnetized accretion flow at a low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast spinning central black hole. Therefore, J23450449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and the formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk-relativistic jet coupling processes.

  8. String loops in the field of braneworld spherically symmetric black holes and naked singularities

    SciTech Connect (OSTI)

    Stuchlk, Z.; Kolo, M. E-mail: martin.kolos@fpf.slu.cz

    2012-10-01

    We study motion of current-carrying string loops in the field of braneworld spherically symmetric black holes and naked singularities. The spacetime is described by the Reissner-Nordstrm geometry with tidal charge b reflecting the non-local tidal effects coming from the external dimension; both positive and negative values of the spacetime parameter b are considered. We restrict attention to the axisymmetric motion of string loops when the motion can be fully governed by an appropriately defined effective potential related to the energy and angular momentum of the string loops. In dependence on these two constants of the motion, the string loops can be captured, trapped, or can escape to infinity. In close vicinity of stable equilibrium points at the centre of trapped states the motion is regular. We describe how it is transformed to chaotic motion with growing energy of the string loop. In the field of naked singularities the trapped states located off the equatorial plane of the system exist and trajectories unable to cross the equatorial plane occur, contrary to the trajectories in the field of black holes where crossing the equatorial plane is always admitted. We concentrate our attention to the so called transmutation effect when the string loops are accelerated in the deep gravitational field near the black hole or naked singularity by transforming the oscillatory energy to the energy of the transitional motion. We demonstrate that the influence of the tidal charge can be substantial especially in the naked singularity spacetimes with b > 1 where the acceleration to ultrarelativistic velocities with Lorentz factor ? ? 100 can be reached, being more than one order higher in comparison with those obtained in the black hole spacetimes.

  9. Synthesis and characterization of black, red and yellow nanoparticles pigments from the iron sand

    SciTech Connect (OSTI)

    Mufti, Nandang Atma, T. Fuad, A.; Sutadji, E.

    2014-09-25

    The aim of this research is to synthesize nanoparticles of black pigment of Magnetite (Fe{sub 3}O{sub 4}), red pigment of hematite (α-Fe{sub 2}O{sub 3}), and yellow pigment of ghoetite (α-FeOOH) from the iron sand. The black pigment of Fe{sub 3}O{sub 4} and the yellow pigment α-FeOOH nanoparticles were synthesized by coprecipitation method with variation of pH. Whereas, the red pigment Fe{sub 2}O{sub 3} was synthesized by sintering Fe{sub 3}O{sub 4} nanoparticles at temperature between 400 °C and 700 7°C for 1 hour. All the pigments has been characterized using X-ray diffraction and SEM. The XRD results shown that the particle size of the black pigmen Fe{sub 3}O{sub 4}, red pigment Fe{sub 3}O{sub 4} and yellow pigment α-FeOOH are around 12, 32, and 30 nm respectively. The particle size of Fe{sub 2}O{sub 3} nanoparticles increase by increasing sintering temperature from 32 nm at 400 °C to 39 nm at 700 °C. For yellow pigment of α-FeOOH, the particle size increase by increasing pH from 30,54 nm at pH 4 to 48,60 nm at pH 7. The SEM results shown that the morphologies of black, yellow and red pigments are aglomarated.

  10. The Neutrino Signal from Protoneutron Star Accretion and Black Hole Formation

    SciTech Connect (OSTI)

    Fischer, T.; Whitehouse, S.; Mezzacappa, Anthony; Thielemann, F.-K.; Liebendoerfer, M.

    2009-01-01

    We discuss the formation of stellar mass black holes via protoneutron star (PNS) collapse. In the absence of an earlier explosion, the PNS collapses to a black hole due to the continued mass accretion onto the PNS. We present an analysis of the emitted neutrino spectra of all three flavors during the PNS contraction. Special attention is given to the physical conditions which depend on the input physics, e.g. the equation of state (EoS) and the progenitor model. The PNSs are modeled as the central object in core collapse simulations using general relativistic three-flavor Boltzmann neutrino transport in spherical symmetry. The simulations are launched from several massive progenitors of 40 M{omicron} and 50 M{omicron}. We analyze the electron-neutrino luminosity dependencies and construct a simple approximation for the electron-neutrino luminosity, which depends only on the physical conditions at the electron-neutrinosphere. In addition, we analyze different ({mu}, {tau})-neutrino pair-reactions separately and compare the differences during the post-bounce phases of failed core collapse supernova explosions of massive progenitors. We also investigate the connection between the increasing {mu},{tau}-neutrino luminosity and the PNS contraction during the accretion phase before black hole formation. Comparing the different post bounce phases of the progenitor models under investigation, we find large differences in the emitted neutrino spectra. These differences and the analysis of the electron-neutrino luminosity indicate a strong progenitor model dependency of the emitted neutrino signal.

  11. The mass of the central black hole in the nearby Seyfert galaxy NGC 5273

    SciTech Connect (OSTI)

    Bentz, Misty C.; Horenstein, Daniel; Bazhaw, Craig; Manne-Nicholas, Emily R.; Ou-Yang, Benjamin J.; Anderson, Matthew; Jones, Jeremy; Norris, Ryan P.; Parks, J. Robert; Saylor, Dicy; Teems, Katherine G.; Turner, Clay

    2014-11-20

    We present the results of a reverberation-mapping program targeting NGC 5273, a nearby early-type galaxy with a broad-lined active galactic nucleus (AGN). Over the course of the monitoring program, NGC 5273 showed strong variability that allowed us to measure time delays in the responses of the broad optical recombination lines to changes in the continuum flux. A weighted average of these measurements results in a black hole mass determination of M {sub BH} = (4.7 ± 1.6) × 10{sup 6} M {sub ☉}. An estimate of the size of the black hole sphere of influence in NGC 5273 puts it just at the limit of the resolution achievable with current ground-based large aperture telescopes. NGC 5273 is therefore an important future target for a black hole mass determination from stellar dynamical modeling, especially because it is the only nearby early-type galaxy hosting an AGN with a reverberation-based mass, allowing the best comparison for the masses determined from these two techniques.

  12. 17.1%-Efficient Multi-Scale-Textured Black Silicon Solar Cells without Dielectric Antireflection Coating

    SciTech Connect (OSTI)

    Toor, F.; Page, M. R.; Branz, H. M.; Yuan, H. C.

    2011-01-01

    In this work we present 17.1%-efficient p-type single crystal Si solar cells with a multi-scale-textured surface and no dielectric antireflection coating. Multi-scale texturing is achieved by a gold-nanoparticle-assisted nanoporous etch after conventional micron scale KOH-based pyramid texturing (pyramid black etching). By incorporating geometric enhancement of antireflection, this multi-scale texturing reduces the nanoporosity depth required to make silicon `black' compared to nanoporous planar surfaces. As a result, it improves short-wavelength spectral response (blue response), previously one of the major limiting factors in `black-Si' solar cells. With multi-scale texturing, the spectrum-weighted average reflectance from 350- to 1000-nm wavelength is below 2% with a 100-nm deep nanoporous layer. In comparison, roughly 250-nm deep nanopores are needed to achieve similar reflectance on planar surface. Here, we characterize surface morphology, reflectivity and solar cell performance of the multi-scale textured solar cells.

  13. UNIVERSAL BEHAVIOR OF X-RAY FLARES FROM BLACK HOLE SYSTEMS

    SciTech Connect (OSTI)

    Wang, F. Y.; Dai, Z. G.; Yi, S. X.; Xi, S. Q. E-mail: dzg@nju.edu.cn

    2015-01-01

    X-ray flares have been discovered in black hole systems such as gamma-ray bursts, the tidal disruption event Swift J1644+57, the supermassive black hole Sagittarius A* at the center of our Galaxy, and some active galactic nuclei. Occurrences of X-ray flares are always accompanied by relativistic jets. However, it is still unknown whether or not there is a physical analogy among such X-ray flares produced in black hole systems spanning nine orders of magnitude in mass. Here, we report observed data of X-ray flares and show that they have three statistical properties similar to solar flares, including power-law distributions of their energies, durations, and waiting times, which can be explained by a fractal-diffusive, self-organized criticality model. These statistical similarities, together with the fact that solar flares are triggered by a magnetic reconnection process, suggest that all of the X-ray flares are consistent with magnetic reconnection events, implying that their concomitant relativistic jets may be magnetically dominated.

  14. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 4 (Appendix IV)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 4 contains the following appendix sections: Radiative heat transfer properties for black liquor combustion -- Facilities and techniques and Spectral absorbance and emittance data; and Radiate heat transfer determination of the optical constants of ash samples from kraft recovery boilers -- Calculation procedure; Computation program; Density determination; Particle diameter determination; Optical constant data; and Uncertainty analysis.

  15. Application of the sup 187 Re- sup 187 Os system to black shale geochronometry

    SciTech Connect (OSTI)

    Ravizza, G.; Turekain, K.K. )

    1989-12-01

    The decay of {sup 187}Re to {sup 187}Os provides a tool for determining depositional ages of black shales. Re and Os concentrations and Os isotopic compositions of whole rock samples of the Bakken Shale, a Mississippian/Devonian boundary black shale, yield a whole rock isochron with an age of 354 {plus minus} 49 Ma. This age is in agreement with the accepted age of the Bakken Shale ({approx}360 Ma). The initial {sup 187}Os/{sup 186}Os ratio of the isochron is 6.2 {plus minus} 3.3. This value is indistinguishable from the {sup 187}Os/{sup 186}Os ratios observed in modern Black Sea sediments. The concentration of common Os in Bakken Shale samples is strongly correlated with total nitrogen, indicating that a large fraction of the Os in these samples is associated with a hydrogenous component, which overwhelms any Os supplied to the sediment in association with detrital material or cosmic dust. The dominance of the hydrogenous component imparts a relatively homogeneous initial {sup 187}Os/{sup 186}Os ratio to the sediment at the time of deposition. The degree of scatter about the isochron exceeds the degree of scatter expected from either analytical error or from the estimated degree of initial isotopic heterogeneity. The pattern of scatter is consistent with postdepositional mobilization of Re and/or Os on a small spatial scale. The author suggest that this mobilization may be a consequence of petroleum formation and migration in the Bakken Shale.

  16. Inducing chaos by breaking axial symmetry in a black hole magnetosphere

    SciTech Connect (OSTI)

    Kopáček, O.; Karas, V.

    2014-06-01

    While the motion of particles near a rotating, electrically neutral (Kerr), and charged (Kerr-Newman) black hole is always strictly regular, a perturbation in the gravitational or the electromagnetic field generally leads to chaos. The transition from regular to chaotic dynamics is relatively gradual if the system preserves axial symmetry, whereas non-axisymmetry induces chaos more efficiently. Here we study the development of chaos in an oblique (electro-vacuum) magnetosphere of a magnetized black hole. Besides the strong gravity of the massive source represented by the Kerr metric, we consider the presence of a weak, ordered, large-scale magnetic field. An axially symmetric model consisting of a rotating black hole embedded in an aligned magnetic field is generalized by allowing an oblique direction of the field having a general inclination with respect to the rotation axis of the system. The inclination of the field acts as an additional perturbation to the motion of charged particles as it breaks the axial symmetry of the system and cancels the related integral of motion. The axial component of angular momentum is no longer conserved and the resulting system thus has three degrees of freedom. Our primary concern within this contribution is to find out how sensitive the system of bound particles is to the inclination of the field. We employ the method of the maximal Lyapunov exponent to distinguish between regular and chaotic orbits and to quantify their chaoticity. We find that even a small misalignment induces chaotic motion.

  17. Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld gravity

    SciTech Connect (OSTI)

    Dehghani, M. H.; Sedehi, H. R. Rastegar

    2006-12-15

    We construct a new class of charged rotating solutions of (n+1)-dimensional Einstein-Born-Infeld gravity with cylindrical or toroidal horizons in the presence of cosmological constant and investigate their properties. These solutions are asymptotically (anti)-de Sitter and reduce to the solutions of Einstein-Maxwell gravity as the Born-Infeld parameters goes to infinity. We find that these solutions can represent black branes, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute temperature, mass, angular momentum, entropy, charge and electric potential of the black brane solutions. We obtain a Smarr-type formula and show that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass of the system with infinite boundary with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable in the whole phase space. Also, we find that there exists an unstable phase when the finite size effect is taken into account.

  18. Super massive black hole in galactic nuclei with tidal disruption of stars

    SciTech Connect (OSTI)

    Zhong, Shiyan; Berczik, Peter; Spurzem, Rainer

    2014-09-10

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  19. Three-dimensional stationary cyclic symmetric Einstein-Maxwell solutions; black holes

    SciTech Connect (OSTI)

    Garcia, Alberto A.

    2009-09-15

    From a general metric for stationary cyclic symmetric gravitational fields coupled to Maxwell electromagnetic fields within the (2 + 1)-dimensional gravity the uniqueness of wide families of exact solutions is established. Among them, all uniform electromagnetic solutions possessing electromagnetic fields with vanishing covariant derivatives, all fields having constant electromagnetic invariants F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} and T{sub {mu}}{sub {nu}}T{sup {mu}}{sup {nu}}, the whole classes of hybrid electromagnetic solutions, and also wide classes of stationary solutions are derived for a third-order nonlinear key equation. Certain of these families can be thought of as black hole solutions. For the most general set of Einstein-Maxwell equations, reducible to three nonlinear equations for the three unknown functions, two new classes of solutions - having anti-de Sitter spinning metric limit - are derived. The relationship of various families with those reported by different authors' solutions has been established. Among the classes of solutions with cosmological constant a relevant place is occupied by the electrostatic and magnetostatic Peldan solutions, the stationary uniform and spinning Clement classes, the constant electromagnetic invariant branches with the particular Kamata-Koikawa solution, the hybrid cyclic symmetric stationary black hole fields, and the non-less important solutions generated via SL(2,R)-transformations where the Clement spinning charged solution, the Martinez-Teitelboim-Zanelli black hole solution, and Dias-Lemos metric merit mention.

  20. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K

    SciTech Connect (OSTI)

    Lee, Sangwook; Yang, Fan; Suh, Joonki; Yang, Sijie; Lee, Yeonbae; Li, Guo; Sung Choe, Hwan; Suslu, Aslihan; Chen, Yabin; Ko, Changhyun; Park, Joonsuk; Liu, Kai; Li, Jingbo; Hippalgaonkar, Kedar; Urban, Jeffrey J.; Tongay, Sefaattin; Wu, Junqiao

    2015-10-16

    Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phonon dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Lastly, our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.

  1. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Sangwook; Yang, Fan; Suh, Joonki; Yang, Sijie; Lee, Yeonbae; Li, Guo; Sung Choe, Hwan; Suslu, Aslihan; Chen, Yabin; Ko, Changhyun; et al

    2015-10-16

    Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phononmore » dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Lastly, our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.« less

  2. Breit-Wigner resonances and the quasinormal modes of anti-de Sitter black holes

    SciTech Connect (OSTI)

    Berti, Emanuele; Cardoso, Vitor; Pani, Paolo

    2009-05-15

    We show that the theory of Breit-Wigner resonances can be used as an efficient numerical tool to compute black hole quasinormal modes. For illustration, we focus on the Schwarzschild anti-de Sitter (SAdS) spacetime. The resonance method is better suited to small SAdS black holes than the traditional series expansion method, allowing us to confirm that the damping time scale of small SAdS black holes for scalar and gravitational fields is proportional to r{sub +}{sup -2l-2}, where r{sub +} is the horizon radius. The proportionality coefficients are in good agreement with analytic calculations. We also examine the eikonal limit of SAdS quasinormal modes, confirming quantitatively Festuccia and Liu's [arXiv:0811.1033] prediction of the existence of very long-lived modes. Our results are particularly relevant for the AdS/CFT correspondence, since long-lived modes presumably dominate the decay time scale of the perturbations.

  3. THE BLACK HOLE MASS-GALAXY LUMINOSITY RELATIONSHIP FOR SLOAN DIGITAL SKY SURVEY QUASARS

    SciTech Connect (OSTI)

    Salviander, S.; Shields, G. A.; Bonning, E. W. E-mail: shields@astro.as.utexas.edu

    2015-02-01

    We investigate the relationship between the mass of the central supermassive black hole, M {sub BH}, and the host galaxy luminosity, L {sub gal}, in a sample of quasars from the Sloan Digital Sky Survey Data Release 7. We use composite quasar spectra binned by black hole mass and redshift to assess galaxy features that would otherwise be overwhelmed by noise in individual spectra. The black hole mass is calculated using the photoionization method, and the host galaxy luminosity is inferred from the depth of the Ca II H+K features in the composite spectra. We evaluate the evolution in the M {sub BH}-L {sub gal} relationship by examining the redshift dependence of ? log M {sub BH}, the offset in M {sub BH} from the local M {sub BH}-L {sub gal} relationship. There is little systematic trend in ? log M {sub BH} out to z = 0.8. Using the width of the [O III] emission line as a proxy for the stellar velocity dispersion, ?{sub *}, we find agreement of our derived host luminosities with the locally observed Faber-Jackson relation. This supports the utility of the width of the [O III] line as a proxy for ?{sub *} in statistical studies.

  4. SWIFT OBSERVATIONS OF MAXI J1659-152: A COMPACT BINARY WITH A BLACK HOLE ACCRETOR

    SciTech Connect (OSTI)

    Kennea, J. A.; Romano, P.; Mangano, V.; Beardmore, A. P.; Evans, P. A.; Curran, P. A.; Markwardt, C. B.; Yamaoka, K.

    2011-07-20

    We report on the detection and follow-up high-cadence monitoring observations of MAXI J1659-152, a bright Galactic X-ray binary transient with a likely black hole accretor, by Swift over a 27 day period after its initial outburst detection. MAXI J1659-152 was discovered almost simultaneously by Swift and the Monitor of All-sky X-ray Image on 2010 September 25, and was monitored intensively from the early stages of the outburst through the rise to a brightness of {approx}0.5 Crab by the Swift X-ray, UV/Optical, and the hard X-ray Burst Alert Telescopes. We present temporal and spectral analysis of the Swift observations. The broadband light curves show variability characteristic of black hole candidate transients. We present the evolution of thermal and non-thermal components of the 0.5-150 keV combined X-ray spectra during the outburst. MAXI J1659-152 displays accretion state changes typically associated with black hole binaries, transitioning from its initial detection in the hard state, to the steep power-law state, followed by a slow evolution toward the thermal state, signified by an increasingly dominant thermal component associated with the accretion disk, although this state change did not complete before Swift observations ended. We observe an anti-correlation between the increasing temperature and decreasing radius of the inner edge of the accretion disk, suggesting that the inner edge of the accretion disk infalls toward the black hole as the disk temperature increases. We observed significant evolution in the absorption column during the initial rise of the outburst, with the absorption almost doubling, suggestive of the presence of an evolving wind from the accretion disk. We detect quasi-periodic oscillations that evolve with the outburst, as well as irregular shaped dips that recur with a period of 2.42 {+-} 0.09 hr, strongly suggesting an orbital period that would make MAXI J1659-152 the shortest period black hole binary yet known.

  5. Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering

    SciTech Connect (OSTI)

    Jin, Lixin; Ryan, Mathur; Rother, Gernot; Cole, David; Bazilevskaya, Ekaterina; Williams, Jennifer; Alex, Carone; Brantley, S. L.

    2013-01-01

    Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt.% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are eitherfilled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7% while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered

  6. Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering

    SciTech Connect (OSTI)

    Jin, Lixin; Mathur, Ryan; Rother, Gernot; Cole, David; Bazilevskaya, Ekaterina; Williams, Jennifer; Carone, Alex; Brantley, Susan L

    2013-01-01

    Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are either filled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7 % while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the

  7. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect (OSTI)

    Douglas G. Patchen; Katharine Lee Avary; John M. Bocan; Michael Hohn; John B. Hickman; Paul D. Lake; James A. Drahovzal; Christopher D. Laughrey; Jaime Kostelnik; Taury Smith; Ron Riley; Mark Baranoski

    2005-04-01

    The Trenton-Black River Appalachian Basin Research Consortium has made significant progress toward their goal of producing a geologic play book for the Trenton-Black River gas play. The final product will include a resource assessment model of Trenton-Black River reservoirs; possible fairways within which to concentrate further studies and seismic programs; and a model for the origin of Trenton-Black River hydrothermal dolomite reservoirs. All seismic data available to the consortium have been examined. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 15 stratigraphic units determined from well logs to seismic profiles in New York, Pennsylvania, Ohio, West Virginia and Kentucky. In addition, three surfaces for the area have been depth converted, gridded and mapped. A 16-layer velocity model has been developed to help constrain time-to-depth conversions. Considerable progress was made in fault trend delineation and seismic-stratigraphic correlation within the project area. Isopach maps and a network of gamma-ray cross sections supplemented with core descriptions allowed researchers to more clearly define the architecture of the basin during Middle and Late Ordovician time, the control of basin architecture on carbonate and shale deposition and eventually, the location of reservoirs in Trenton Limestone and Black River Group carbonates. The basin architecture itself may be structurally controlled, and this fault-related structural control along platform margins influenced the formation of hydrothermal dolomite reservoirs in original limestone facies deposited in high energy environments. This resulted in productive trends along the northwest margin of the Trenton platform in Ohio. The continuation of this platform margin into New York should provide further areas with good exploration potential. The focus of the petrographic study shifted from cataloging a broad spectrum of carbonate rocks that occur in the

  8. Sowing the seeds of massive black holes in small galaxies: Young clusters as the building blocks of ultracompact dwarf galaxies

    SciTech Connect (OSTI)

    Amaro-Seoane, Pau; Konstantinidis, Symeon; Freitag, Marc Dewi; Coleman Miller, M.; Rasio, Frederic A. E-mail: simos@ari.uni-heidelberg.de E-mail: miller@astro.umd.edu

    2014-02-20

    Interacting galaxies often have complexes of hundreds of young stellar clusters of individual masses ∼10{sup 4}-10{sup 6} M {sub ☉} in regions that are a few hundred parsecs across. These cluster complexes interact dynamically, and their coalescence is a candidate for the origin of some ultracompact dwarf galaxies. Individual clusters with short relaxation times are candidates for the production of intermediate-mass black holes of a few hundred solar masses, via runaway stellar collisions prior to the first supernovae in a cluster. It is therefore possible that a cluster complex hosts multiple intermediate-mass black holes that may be ejected from their individual clusters due to mergers or binary processes, but bound to the complex as a whole. Here we explore the dynamical interaction between initially free-flying massive black holes and clusters in an evolving cluster complex. We find that, after hitting some clusters, it is plausible that the massive black hole will be captured in an ultracompact dwarf forming near the center of the complex. In the process, the hole typically triggers electromagnetic flares via stellar disruptions, and is also likely to be a prominent source of gravitational radiation for the advanced ground-based detectors LIGO and VIRGO. We also discuss other implications of this scenario, notably that the central black hole could be considerably larger than expected in other formation scenarios for ultracompact dwarfs.

  9. THE FAINT 'HEARTBEATS' OF IGR J17091-3624: AN EXCEPTIONAL BLACK HOLE CANDIDATE

    SciTech Connect (OSTI)

    Altamirano, D.; Van der Klis, M.; Wijnands, R.; Kalamkar, M.; Belloni, T.; Stiele, H.; Motta, S.; Munoz-Darias, T.; Linares, M.; Curran, P. A.; Krimm, H.

    2011-12-15

    We report on the first 180 days of Rossi X-Ray Timing Explorer observations of the outburst of the black hole candidate IGR J17091-3624. This source exhibits a broad variety of complex light curve patterns including periods of strong flares alternating with quiet intervals. Similar patterns in the X-ray light curves have been seen in the (up to now) unique black hole system GRS 1915+105. In the context of the variability classes defined by Belloni et al. for GRS 1915+105, we find that IGR J17091-3624 shows the {nu}, {rho}, {alpha}, {lambda}, {beta}, and {mu} classes as well as quiet periods which resemble the {chi} class, all occurring at 2-60 keV count rate levels which can be 10-50 times lower than observed in GRS 1915+105. The so-called {rho} class 'heartbeats' occur as fast as every few seconds and as slow as {approx}100 s, tracing a loop in the hardness-intensity diagram which resembles that previously seen in GRS 1915+105. However, while GRS 1915+105 traverses this loop clockwise, IGR J17091-3624 does so in the opposite sense. We briefly discuss our findings in the context of the models proposed for GRS 1915+105 and find that either all models requiring near Eddington luminosities for GRS 1915+105-like variability fail, or IGR J17091-3624 lies at a distance well in excess of 20 kpc, or it harbors one of the least massive black holes known (<3 M{sub Sun }).

  10. INTERACTION OF RECOILING SUPERMASSIVE BLACK HOLES WITH STARS IN GALACTIC NUCLEI

    SciTech Connect (OSTI)

    Li Shuo; Liu, F. K.; Berczik, Peter; Spurzem, Rainer; Chen Xian E-mail: fkliu@bac.pku.edu.cn

    2012-03-20

    Supermassive black hole binaries (SMBHBs) are the products of frequent galaxy mergers. The coalescence of the SMBHBs is a distinct source of gravitational wave (GW) radiation. The detections of the strong GW radiation and their possible electromagnetic counterparts are essential. Numerical relativity suggests that the post-merger supermassive black hole (SMBH) gets a kick velocity up to 4000 km s{sup -1} due to the anisotropic GW radiations. Here, we investigate the dynamical coevolution and interaction of the recoiling SMBHs and their galactic stellar environments with one million direct N-body simulations including the stellar tidal disruption by the recoiling SMBHs. Our results show that the accretion of disrupted stars does not significantly affect the SMBH dynamical evolution. We investigate the stellar tidal disruption rates as a function of the dynamical evolution of oscillating SMBHs in the galactic nuclei. Our simulations show that most stellar tidal disruptions are contributed by the unbound stars and occur when the oscillating SMBHs pass through the galactic center. The averaged disruption rate is {approx}10{sup -6} M{sub Sun} yr{sup -1}, which is about an order of magnitude lower than that by a stationary SMBH at similar galactic nuclei. Our results also show that a bound star cluster is around the oscillating SMBH of about {approx}0.7% the black hole mass. In addition, we discover a massive cloud of unbound stars following the oscillating SMBH. We also investigate the dependence of the results on the SMBH masses and density slopes of the galactic nuclei.

  11. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  12. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  13. Formation resistivity as an indicator of oil generation in black shales

    SciTech Connect (OSTI)

    Hester, T.C.; Schmoker, J.W.

    1987-08-01

    Black, organic-rich shales of Late Devonian-Early Mississippi age are present in many basins of the North American craton and, where mature, have significant economic importance as hydrocarbon source rocks. Examples drawn from the upper and lower shale members of the Bakken Formation, Williston basin, North Dakota, and the Woodford Shale, Anadarko basin, Oklahoma, demonstrate the utility of formation resistivity as a direct in-situ indicator of oil generation in black shales. With the onset of oil generation, nonconductive hydrocarbons begin to replace conductive pore water, and the resistivity of a given black-shale interval increases from low levels associated with thermal immaturity to values approaching infinity. Crossplots of a thermal-maturity index (R/sub 0/ or TTI) versus formation resistivity define two populations representing immature shales and shales that have generated oil. A resistivity of 35 ohm-m marks the boundary between immature and mature source rocks for each of the three shales studied. Thermal maturity-resistivity crossplots make possible a straightforward determination of thermal maturity at the onset of oil generation, and are sufficiently precise to detect subtle differences in source-rock properties. For example, the threshold of oil generation in the upper Bakken shale occurs at R/sub 0/ = 0.43-0.45% (TTI = 10-12). The threshold increases to R/sub 0/ = 0.48-0.51% (TTI = 20-26) in the lower Bakken shale, and to R/sub 0/ = 0.56-0.57% (TTI = 33-48) in the most resistive Woodford interval.

  14. Environmental planning as a tool for economic development: The black brook watershed experience

    SciTech Connect (OSTI)

    Ryner, P.C.; Heller, G.B.

    1995-12-01

    The Keene, New Hampshire Planning Department has attempted to use environmental planning as a tool to facilitate industrial development of the Black Brook Watershed. The City has established detailed modeling of drainage, floodplains and groundwater, and has placed that information on accurate computer-based maps. When provided to developers at the beginning of the development process, this environmental information expidites design and permitting while also improving the likelihood of protecting sensitive environmental areas. Starting in 1987 as part of a Master Plan revision process, the Planning Department decided to concentrate on the Black Brook Watershed in northwestern Keene as a target area for a new approach to economic development and environmental protection. The entire watershed was chosen as the boundary for this study area and detailed studies were conducted. During this effort the City formulated a new Economic Development Master Plan which called for the creation of approximately 300 acres of new industrial development within the next ten years. The Black Brook basin was identified as the preferred site. Because of pro-active environmental planning, the City is now able to work in active, cooperative partnership with the private sector in the development of this area. It is clear from this first specific development project that the project development and permitting process will be shortened by at least 60 days, and a minimum of $5,000 to $10,000 in preliminary site information costs will be saved. The availability of good information on wetlands and floodplains has already had a dramatic impact upon proposed site design and has achieved the desired objective of avoiding these sensitive areas whenever possible. The City is now working on the design of an Industrial Design and Permitting System which will be applied to the entire City, based upon what has been learned from this effort.

  15. PIT 9: From "Black Eye" to Part of DOE Cleanup Success

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PIT 9: From "Black Eye" to Part of DOE Cleanup Success There was a time back in the late 1990s and early 2000s when the words "Pit 9" were synonymous with failure. Failure on the part of a large company to execute its contract to clean up Pit 9. Failure on the part of the Federal government to meet the deadlines to clean up nuclear waste. And failure of a new approach to government contracting - "privatization" - that was supposed to make contractors more

  16. An ethanolic extract of black cohosh causes hematological changes but not estrogenic effects in female rodents

    SciTech Connect (OSTI)

    Mercado-Feliciano, Minerva; Cora, Michelle C.; Witt, Kristine L.; Granville, Courtney A.; Hejtmancik, Milton R.; Fomby, Laurene; Knostman, Katherine A.; Ryan, Michael J.; Newbold, Retha; Smith, Cynthia; Foster, Paul M.; Vallant, Molly K.; Stout, Matthew D.

    2012-09-01

    Black cohosh rhizome (Actaea racemosa) is used as a remedy for pain and gynecological ailments; modern preparations are commonly sold as ethanolic extracts available as dietary supplements. Black cohosh was nominated to the National Toxicology Program (NTP) for toxicity testing due to its widespread use and lack of safety data. Several commercially available black cohosh extracts (BCE) were characterized by the NTP, and one with chemical composition closest to formulations available to consumers was used for all studies. Female B6C3F1/N mice and Wistar Han rats were given 0, 15 (rats only), 62.5 (mice only), 125, 250, 500, or 1000 mg/kg/day BCE by gavage for 90 days starting at weaning. BCE induced dose-dependent hematological changes consistent with a non-regenerative macrocytic anemia and increased frequencies of peripheral micronucleated red blood cells (RBC) in both species. Effects were more severe in mice, which had decreased RBC counts in all treatment groups and increased micronucleated RBC at doses above 125 mg/kg. Dose-dependent thymus and liver toxicity was observed in rats but not mice. No biologically significant effects were observed in other organs. Puberty was delayed 2.9 days at the highest treatment dose in rats; a similar magnitude delay in mice occurred in the 125 and 250 mg/kg groups but not at the higher doses. An additional uterotrophic assay conducted in mice exposed for 3 days to 0.001, 0.01, 0.1, 1, 10, 100 and 500 mg/kg found no estrogenic or anti-estrogenic activity. These are the first studies to observe adverse effects of BCE in rodents. -- Highlights: ? Mice and rats were dosed with black cohosh extract for 90 days starting at weaning. ? Hematological changes were consistent with a non-regenerative macrocytic anemia. ? Peripheral micronucleated red blood cell frequencies increased. ? Puberty was delayed 2.9 days in rats. ? No estrogenic/anti-estrogenic activity was seen in the uterotrophic assay.

  17. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    SciTech Connect (OSTI)

    Silk, Joseph

    2013-08-01

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis.

  18. Solar collector panel

    SciTech Connect (OSTI)

    Gessford, J.D.

    1980-11-11

    A solar collector panel and method of making same are disclosed. The solar collector panel has four layers of fiberglass mat which are each saturated with a catalyzed liquiform resin. Between the first two layers, unimpregnated kraft honeycomb paper having an open cellular structure is placed so as to form a resinated honeycomb core between these first two layers. A black gel coat is sprayed onto the second layer of resin-saturated fiberglass mat and a plurality of copper tubes are then placed onto the black gel coat so as to be bonded in heat-transfer relation thereto. The third layer of resin-saturated fiberglass mat is draped over the copper tubes so as to insulate them. A second layer of kraft honeycomb paper is then placed between the third and forth layers of resin-saturated fiberglass mat, and a clear gel coat mixed with an ultraviolet inhibitor solution is rolled out over the top of the solar collector panel to partially screen out ultraviolet rays.

  19. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  20. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  1. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  2. A parallax distance to the microquasar GRS 1915+105 and a revised estimate of its black hole mass

    SciTech Connect (OSTI)

    Reid, M. J.; McClintock, J. E.; Steiner, J. F.; Narayan, R.; Steeghs, D.; Remillard, R. A.; Dhawan, V.

    2014-11-20

    Using the Very Long Baseline Array, we have measured a trigonometric parallax for the microquasar GRS 1915+105, which contains a black hole and a K-giant companion. This yields a direct distance estimate of 8.6{sub ?1.6}{sup +2.0} kpc and a revised estimate for the mass of the black hole of 12.4{sub ?1.8}{sup +2.0} M {sub ?}. GRS 1915+105 is at about the same distance as some H II regions and water masers associated with high-mass star formation in the Sagittarius spiral arm of the Galaxy. The absolute proper motion of GRS 1915+105 is 3.19 0.03 mas yr{sup 1} and 6.24 0.05 mas yr{sup 1} toward the east and north, respectively, which corresponds to a modest peculiar speed of 22 24 km s{sup 1} at the parallax distance, suggesting that the binary did not receive a large velocity kick when the black hole formed. On one observational epoch, GRS 1915+105 displayed superluminal motion along the direction of its approaching jet. Considering previous observations of jet motions, the jet in GRS 1915+105 can be modeled with a jet inclination to the line of sight of 60 5 and a variable flow speed between 0.65c and 0.81c, which possibly indicates deceleration of the jet at distances from the black hole ? 2000 AU. Finally, using our measurements of distance and estimates of black hole mass and inclination, we provisionally confirm our earlier result that the black hole is spinning very rapidly.

  3. UPDATED MASS SCALING RELATIONS FOR NUCLEAR STAR CLUSTERS AND A COMPARISON TO SUPERMASSIVE BLACK HOLES

    SciTech Connect (OSTI)

    Scott, Nicholas; Graham, Alister W.

    2013-02-15

    We investigate whether or not nuclear star clusters and supermassive black holes (SMBHs) follow a common set of mass scaling relations with their host galaxy's properties, and hence can be considered to form a single class of central massive object (CMO). We have compiled a large sample of galaxies with measured nuclear star cluster masses and host galaxy properties from the literature and fit log-linear scaling relations. We find that nuclear star cluster mass, M {sub NC}, correlates most tightly with the host galaxy's velocity dispersion: log M {sub NC} = (2.11 {+-} 0.31)log ({sigma}/54) + (6.63 {+-} 0.09), but has a slope dramatically shallower than the relation defined by SMBHs. We find that the nuclear star cluster mass relations involving host galaxy (and spheroid) luminosity and stellar and dynamical mass, intercept with but are in general shallower than the corresponding black hole scaling relations. In particular, M {sub NC}{proportional_to}M {sup 0.55{+-}0.15} {sub Gal,dyn}; the nuclear cluster mass is not a constant fraction of its host galaxy or spheroid mass. We conclude that nuclear stellar clusters and SMBHs do not form a single family of CMOs.

  4. X-RAY CONSTRAINTS ON THE LOCAL SUPERMASSIVE BLACK HOLE OCCUPATION FRACTION

    SciTech Connect (OSTI)

    Miller, Brendan P.; Gallo, Elena; Baldassare, Vivienne; Greene, Jenny E.; Kelly, Brandon C.; Treu, Tommaso; Woo, Jong-Hak

    2015-01-20

    Distinct seed formation mechanisms are imprinted upon the fraction of dwarf galaxies currently containing a central supermassive black hole. Seeding by Population III remnants is expected to produce a higher occupation fraction than is generated with direct gas collapse precursors. Chandra observations of nearby early-type galaxies can directly detect even low-level supermassive black hole activity, and the active fraction immediately provides a firm lower limit to the occupation fraction. Here, we use the volume-limited AMUSE surveys of ?200 optically selected early-type galaxies to characterize simultaneously, for the first time, the occupation fraction and the scaling of L {sub X} with M {sub star}, accounting for intrinsic scatter, measurement uncertainties, and X-ray limits. For early-type galaxies with M {sub star} < 10{sup 10} M {sub ?}, we obtain a lower limit to the occupation fraction of >20% (at 95% confidence), but full occupation cannot be excluded. The preferred dependence of log L {sub X} upon log M {sub star} has a slope of ?0.7-0.8, consistent with the ''downsizing'' trend previously identified from the AMUSE data set, and a uniform Eddington efficiency is disfavored at ?2?. We provide guidelines for the future precision with which these parameters may be refined with larger or more sensitive samples.

  5. Quantum compositeness of gravity: black holes, AdS and inflation

    SciTech Connect (OSTI)

    Dvali, Gia; Gomez, Cesar E-mail: cesar.gomez@uam.es

    2014-01-01

    Gravitational backgrounds, such as black holes, AdS, de Sitter and inflationary universes, should be viewed as composite of N soft constituent gravitons. It then follows that such systems are close to quantum criticality of graviton Bose-gas to Bose-liquid transition. Generic properties of the ordinary metric description, including geodesic motion or particle-creation in the background metric, emerge as the large-N limit of quantum scattering of constituent longitudinal gravitons. We show that this picture correctly accounts for physics of large and small black holes in AdS, as well as reproduces well-known inflationary predictions for cosmological parameters. However, it anticipates new effects not captured by the standard semi-classical treatment. In particular, we predict observable corrections that are sensitive to the inflationary history way beyond last 60 e-foldings. We derive an absolute upper bound on the number of e-foldings, beyond which neither de Sitter nor inflationary Universe can be approximated by a semi-classical metric. However, they could in principle persist in a new type of quantum eternity state. We discuss implications of this phenomenon for the cosmological constant problem.

  6. Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment

    SciTech Connect (OSTI)

    Kevin Whitty

    2008-06-30

    The University of Utah's project 'Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment' (U.S. DOE Cooperative Agreement DE-FC26-04NT42261) was a response to U.S. DOE/NETL solicitation DE-PS36-04GO94002, 'Biomass Research and Development Initiative' Topical Area 4-Kraft Black Liquor Gasification. The project began September 30, 2004. The objective of the project was to improve the understanding of black liquor conversion in high pressure, high temperature reactors that gasify liquor through partial oxidation with either air or oxygen. The physical and chemical characteristics of both the gas and condensed phase were to be studied over the entire range of liquor conversion, and the rates and mechanisms of processes responsible for converting the liquor to its final smelt and syngas products were to be investigated. This would be accomplished by combining fundamental, lab-scale experiments with measurements taken using a new semi-pilot scale pressurized entrained-flow gasifier. As a result of insufficient availability of funds and changes in priority within the Office of Biomass Programs of the U.S. Department of Energy, the research program was terminated in its second year. In total, only half of the budgeted funding was made available for the program, and most of this was used during the first year for construction of the experimental systems to be used in the program. This had a severe impact on the program. As a consequence, most of the planned research was unable to be performed. Only studies that relied on computational modeling or existing experimental facilities started early enough to deliver useful results by the time to program was terminated Over the course of the program, small scale (approx. 1 ton/day) entrained-flow gasifier was designed and installed at the University of Utah's off-campus Industrial Combustion and Gasification Research Facility. The system is designed to operate at

  7. Self-similar cosmological solutions with dark energy. II. Black holes, naked singularities, and wormholes

    SciTech Connect (OSTI)

    Maeda, Hideki; Harada, Tomohiro; Carr, B. J.

    2008-01-15

    We use a combination of numerical and analytical methods, exploiting the equations derived in a preceding paper, to classify all spherically symmetric self-similar solutions which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=({gamma}-1){mu} with 0<{gamma}<2/3. The expansion of the Friedmann universe is accelerated in this case. We find a one-parameter family of self-similar solutions representing a black hole embedded in a Friedmann background. This suggests that, in contrast to the positive pressure case, black holes in a universe with dark energy can grow as fast as the Hubble horizon if they are not too large. There are also self-similar solutions which contain a central naked singularity with negative mass and solutions which represent a Friedmann universe connected to either another Friedmann universe or some other cosmological model. The latter are interpreted as self-similar cosmological white hole or wormhole solutions. The throats of these wormholes are defined as two-dimensional spheres with minimal area on a spacelike hypersurface and they are all nontraversable because of the absence of a past null infinity.

  8. Quantum compositeness of gravity: black holes, AdS and inflation

    SciTech Connect (OSTI)

    Dvali, Gia; Gomez, Cesar

    2014-01-14

    Gravitational backgrounds, such as black holes, AdS, de Sitter and inflationary universes, should be viewed as composite of N soft constituent gravitons. It then follows that such systems are close to quantum criticality of graviton Bose-gas to Bose-liquid transition. Generic properties of the ordinary metric description, including geodesic motion or particle-creation in the background metric, emerge as the large-N limit of quantum scattering of constituent longitudinal gravitons. We show that this picture correctly accounts for physics of large and small black holes in AdS, as well as reproduces well-known inflationary predictions for cosmological parameters. However, it anticipates new effects not captured by the standard semi-classical treatment. In particular, we predict observable corrections that are sensitive to the inflationary history way beyond last 60 e-foldings. We derive an absolute upper bound on the number of e-foldings, beyond which neither de Sitter nor inflationary Universe can be approximated by a semi-classical metric. However, they could in principle persist in a new type of quantum eternity state. We discuss implications of this phenomenon for the cosmological constant problem.

  9. THE MISSING GOLIATH'S SLINGSHOT: MASSIVE BLACK HOLE RECOIL AT M83

    SciTech Connect (OSTI)

    Dottori, Horacio; Diaz, Ruben J.; Facundo Albacete-Colombo, Juan

    2010-07-01

    The Fanaroff-Riley II radio source J133658.3-295105, which is also an X-ray source, appears to be projected onto the disk of the barred-spiral galaxy M83 at about 60'' from the galaxy's optical nucleus. J133658.3-295105 and its radio lobes are aligned with the optical nucleus of M 83 and two other radio sources, neither of which are supernova remnants or H II regions. Due to this peculiar on-the-sky projection, J133658.3-295105 was previously studied by Gemini+GMOS optical spectroscopy, which marginally revealed the presence of H{alpha} in emission receding at 130 km s{sup -1} with respect to the optical nucleus. In this Letter, we reanalyze the Chandra spectroscopy carried out in 2000. We show that J133658.3-295105 presents an Fe K{alpha} emission line at a redshift of z = 0.018. This redshift is compatible with a black hole at the distance of M 83. We discuss similarities to the recently reported micro-quasar in NGC 5408. This finding reinforces the kicked-off black hole scenario for J133658.3-295105.

  10. Bulk scalar emission from a rotating black hole pierced by a tense brane

    SciTech Connect (OSTI)

    Kobayashi, Tsutomu; Nozawa, Masato; Takamizu, Yu-ichi

    2008-02-15

    We study the emission of scalar fields into the bulk from a six-dimensional rotating black hole pierced by a 3-brane. We determine the angular eigenvalues in the presence of finite brane tension by using the continued fraction method. The radial equation is integrated numerically, giving the absorption probability (graybody factor) in a wider frequency range than in the preexisting literature. We then compute the power and angular momentum emission spectra for different values of the rotation parameter and brane tension, and compare their relative behavior in detail. As is expected from the earlier result for a nonrotating black hole, the finite brane tension suppresses the emission rates. As the rotation parameter increases, the power spectra are reduced at low frequencies due to the smaller Hawking temperature and are enhanced at high frequencies due to superradiance. The angular momentum spectra are enhanced over the whole frequency range as the rotation parameter increases. The spectra and the amounts of energy and angular momentum radiated away into the bulk are thus determined by the interplay of these effects.

  11. A PRECISION TEST FOR AN EXTRA SPATIAL DIMENSION USING BLACK-HOLE-PULSAR BINARIES

    SciTech Connect (OSTI)

    Simonetti, John H.; Minic, Djordje; Surani, Umair; Vijayan, Vipin; Kavic, Michael

    2011-08-20

    We discuss the observable effects of enhanced black hole mass loss in a black hole-neutron star (BH-NS) binary, due to the presence of a warped extra spatial dimension of curvature radius L in the braneworld scenario. For some masses and orbital parameters in the expected ranges the binary components would outspiral-the opposite of the behavior due to energy loss from gravitational radiation alone. If the NS is a pulsar, observations of the rate of change of the orbital period with a precision obtained for the binary pulsar B1913+16 could easily detect the effect of mass loss. For M{sub BH} = 7 M{sub sun}, M{sub NS} = 1.4 M{sub sun}, eccentricity e = 0.1, and L = 10 {mu}m, the critical orbital period dividing systems that inspiral from systems that outspiral is P {approx} 6.5 hr, which is within the range of expected orbital periods; this value drops to P {approx} 4.2 hr for M{sub BH} = 5 M{sub sun}. Observations of a BH-pulsar system could set considerably better limits on L in these braneworld models than could be determined by torsion-balance gravity experiments in the foreseeable future.

  12. TEM Observations of Corrosion Behaviors of Platinized Carbon Blacks under Thermal and Electrochemical Conditions

    SciTech Connect (OSTI)

    Liu, Z.Y.; Zhang, J.L.; Yu, P.T.; Zhang, J.X.; Makharia, R.; More, Karren Leslie; Stach, Eric

    2010-01-01

    Carbon blacks such as Vulcan XC-72 are widely used to support platinum (Pt) or Pt alloy catalysts in proton exchange membrane fuel cells. Despite their widespread use, carbon blacks are susceptible to corrosion during fuel cell operations. In this work, the corrosion behaviors of platinized Vulcan XC-72 nanoparticles under thermal and electrochemical conditions were monitored by transmission electron microscopy (TEM). The thermal corrosion experiment was carried out in a gas-cell TEM, which allows for a direct observation of the thermal oxidation behavior of the nanoparticles. The electrochemical corrosion experiment was performed outside of the TEM by loading the nanoparticles on a TEM grid and then electrochemically corroding them step by step followed by taking TEM images from exactly the same nanoparticles after each step. This work revealed four types of structural changes: (i) total removal of structurally weak aggregates, (ii) breakdown of aggregates via neck-breaking, (iii) center-hollowed primary particles caused by an inside-out corrosion starting from the center to outer region, and (iv) gradual decrease in the size of primary particles caused by a uniform removal of material from the surface. These structural changes took place in sequence or simultaneously depending on the competition of carbon corrosion dynamical processes. The results obtained from this work provide insight on carbon corrosion and its effects on fuel cells' long-term performance and durability.

  13. Milagro limits and HAWC sensitivity for the rate-density of evaporating primordial black holes

    SciTech Connect (OSTI)

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B. T.; Alvarez, C.; Alvarez, J. D.; Arceo, R.; Arteaga-Velazquez, J. C.; Aune, T.; H. A. Ayala Solares; Barber, A. S.; Baughman, B. M.; Bautista-Elivar, N.; Gonzalez, J. Becerra; Belmont, E.; BenZvi, S. Y.; Berley, D.; Bonilla Rosales, M.; Braun, J.; Caballero-Lopez, R. A.; Caballero-Mora, K. S.; Carraminana, A.; Castillo, M.; Christopher, G. E.; Cotti, U.; Cotzomi, J.; de la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Diaz-Cruz, L.; Díaz-Vélez, J. C.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Fiorino, D. W.; Fraija, N.; Galindo, A.; Garfias, F.; González, M. M.; Goodman, J. A.; Grabski, V.; Gussert, M.; Hampel-Arias, Z.; Harding, J. P.; Hays, E.; Hoffman, C. M.; Hui, C. M.; Hüntemeyer, P.; Imran, A.; Iriarte, A.; Karn, P.; Kieda, D.; Kolterman, B. E.; Kunde, G. J.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; Vargas, H. Leon; Linares, E. C.; Linnemann, J. T.; Longo, M.; Luna-GarcIa, R.; MacGibbon, J. H.; Marinelli, A.; Marinelli, S. S.; Martinez, H.; Martinez, O.; Martínez-Castro, J.; J. A.J. Matthews; McEnery, J.; Mendoza Torres, E.; Mincer, A. I.; Miranda-Romagnoli, P.; Moreno, E.; Morgan, T.; Mostafa, M.; Nellen, L.; Nemethy, P.; Newbold, M.; Noriega-Papaqui, R.; Oceguera-Becerra, T.; Patricelli, B.; Pelayo, R.; Perez-Perez, E. G.; Pretz, J.; Riviere, C.; Rosa-Gonzalez, D.; Ruiz-Velasco, E.; Ryan, J.; Salazar, H.; Salesa, F.; Sandoval, A.; Saz Parkinson, P. M.; Schneider, M.; Silich, S.; Sinnis, G.; Smith, A. J.; Stump, D.; Sparks Woodle, K.; Springer, R. W.; Taboada, I.; Toale, P. A.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vasileiou, V.; Villasenor, L.; Weisgarber, T.; Westerhoff, S.; Williams, D. A.; Wisher, I. G.; Wood, J.; Yodh, G. B.; Younk, P. W.; Zaborov, D.; Zepeda, A.; Zhou, H.

    2015-04-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ~ 5.0 × 10¹⁴ g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV – TeV energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.

  14. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; Wilkins, Stephen; Feng, Yu; Tucker, Evan; DeGraf, Colin; Liu, Mao -Sheng

    2015-04-24

    We investigate the properties and clustering of halos, galaxies and blackholes to z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII evolves a ΛCDM cosmology in a cubical comoving volume Vbox = (100Mpc/h)³. It is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the halos, subhalos and their properties and publicly release our galaxy catalogs to the scientific community. Our analysis of the halo mass function in MBII reveals thatmore » baryons have strong effects with changes in the halo abundance of 20–35% below the knee of the mass function (Mhalo 1013.2 M⊙ h at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations.« less

  15. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    SciTech Connect (OSTI)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  16. Milagro limits and HAWC sensitivity for the rate-density of evaporating primordial black holes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B. T.; Alvarez, C.; Alvarez, J. D.; Arceo, R.; Arteaga-Velazquez, J. C.; Aune, T.; H. A. Ayala Solares; et al

    2015-04-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ~ 5.0 × 10¹⁴ g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV – TeV energy range. The Milagro high energy observatory, which operated from 2000 tomore » 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.« less

  17. SUPERMASSIVE BLACK HOLE FORMATION AT HIGH REDSHIFTS THROUGH A PRIMORDIAL MAGNETIC FIELD

    SciTech Connect (OSTI)

    Sethi, Shiv; Pandey, Kanhaiya; Haiman, Zoltan E-mail: kanhaiya@rri.res.i

    2010-09-20

    It has been proposed that primordial gas in early dark matter halos, with virial temperatures T{sub vir} {approx}> 10{sup 4} K, can avoid fragmentation and undergo rapid collapse, possibly resulting in a supermassive black hole. This requires the gas to avoid cooling and to remain at temperatures near T {approx} 10{sup 4} K. We show that this condition can be satisfied in the presence of a sufficiently strong primordial magnetic field, which heats the collapsing gas via ambipolar diffusion. If the field has a strength above |B | {approx}>3.6 (comoving) nG, the collapsing gas is kept warm (T {approx} 10{sup 4} K) until it reaches the critical density n{sub crit} {approx} 10{sup 3} cm{sup -3} at which the rotovibrational states of H{sub 2} approach local thermodynamic equilibrium. H{sub 2} cooling then remains inefficient and the gas temperature stays near {approx}10{sup 4} K, even as it continues to collapse at higher densities. The critical magnetic field strength required to permanently suppress H{sub 2} cooling is somewhat higher than the upper limit of {approx}2 nG from the cosmic microwave background. However, it can be realized in the rare {approx}>(2-3){sigma} regions of the spatially fluctuating B field; these regions contain a sufficient number of halos to account for z {approx} 6 quasar black holes.

  18. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0

    SciTech Connect (OSTI)

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; Wilkins, Stephen; Feng, Yu; Tucker, Evan; DeGraf, Colin; Liu, Mao -Sheng

    2015-04-24

    We investigate the properties and clustering of halos, galaxies and blackholes to z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII evolves a ?CDM cosmology in a cubical comoving volume Vbox = (100Mpc/h). It is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the halos, subhalos and their properties and publicly release our galaxy catalogs to the scientific community. Our analysis of the halo mass function in MBII reveals that baryons have strong effects with changes in the halo abundance of 2035% below the knee of the mass function (Mhalo 1013.2 M? h at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations.

  19. Black carbon emissions in the United Kingdom during the past four decades: An empirical analysis

    SciTech Connect (OSTI)

    Novakov, T.; Hansen, J.E.

    2004-04-22

    We use data from a unique 40-year record of 150 urban and rural stations in the ''Black Smoke and SO2 Network'' in Great Britain to infer information about sources of atmospheric black carbon (BC). The data show a rapid decline of ambient atmospheric BC between 1962 and the early 1990s that exceeds the decline in official estimates of BC emissions based only on amount of fuel use and mostly fixed emission factors. This provides empirical confirmation of the existence and large impact of a time-dependent ''technology factor'' that must multiply the rate of fossil fuel use. Current ambient BC amounts in Great Britain comparable to those in western and central Europe, with diesel engines being the principal present source. From comparison of BC and SO2 data we infer that current BC emission inventories understate true emissions in the U.K. by about a factor of two. The results imply that there is the potential for improved technology to achieve large reduction of global ambient BC. There is a need for comparable monitoring of BC in other countries.

  20. Quantification of black carbon mixing state from traffic: Implications for aerosol optical properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; West, Matthew; Wang, Jon M.; Jeong, Cheol -Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.; Lee, Alex K. Y.

    2016-04-14

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) inmore » two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was  < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Lastly, significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.« less

  1. Soliton and black hole solutions of su(N) Einstein-Yang-Mills theory in anti-de Sitter space

    SciTech Connect (OSTI)

    Baxter, J. E.; Winstanley, Elizabeth; Helbling, Marc

    2007-11-15

    We present new soliton and hairy black hole solutions of su(N) Einstein-Yang-Mills theory in asymptotically anti-de Sitter space. These solutions are described by N+1 independent parameters, and have N-1 gauge field degrees of freedom. We examine the space of solutions in detail for su(3) and su(4) solitons and black holes. If the magnitude of the cosmological constant is sufficiently large, we find solutions where all the gauge field functions have no zeros. These solutions are of particular interest because we anticipate that at least some of them will be linearly stable.

  2. The Use of Tritiated Wastewater from NPP Cernavoda to Estimate Maximum Soluble Pollutants on Danube-Black Sea Channel

    SciTech Connect (OSTI)

    Varlam, Carmen; Stefanescu, Ioan; Patrascub, Vasile; Varlam, Mihai; Raceanu, Mircea; Enache, Adrian; Bucur, Cristina

    2005-07-15

    In this paper we propose to use tritiated liquid effluents from a CANDU type reactor as a tracer, to study hydrodynamics on Danube-Black Sea Channel. Tritiated water can be used to simulate the transport and dispersion of solutes in mentioned Channel, because it has the same physical characteristic as water. Measured tracer response curves produced from controlled evacuations provide an efficient method of obtaining necessary data. This paper presents the establishing of proper mixing length, and the base line of tritium concentration in studied area. These first steps were used to construct the unit-peak attenuation (UPA) curve for a sector of the Danube-Black Sea Channel.

  3. Quantum of area {Delta}A=8{pi}l{sub P}{sup 2} and a statistical interpretation of black hole entropy

    SciTech Connect (OSTI)

    Ropotenko, Kostiantyn

    2010-08-15

    In contrast to alternative values, the quantum of area {Delta}A=8{pi}l{sub P}{sup 2} does not follow from the usual statistical interpretation of black hole entropy; on the contrary, a statistical interpretation follows from it. This interpretation is based on the two concepts: nonadditivity of black hole entropy and Landau quantization. Using nonadditivity a microcanonical distribution for a black hole is found and it is shown that the statistical weight of a black hole should be proportional to its area. By analogy with conventional Landau quantization, it is shown that quantization of a black hole is nothing but the Landau quantization. The Landau levels of a black hole and their degeneracy are found. The degree of degeneracy is equal to the number of ways to distribute a patch of area 8{pi}l{sub P}{sup 2} over the horizon. Taking into account these results, it is argued that the black hole entropy should be of the form S{sub bh}=2{pi}{center_dot}{Delta}{Gamma}, where the number of microstates is {Delta}{Gamma}=A/8{pi}l{sub P}{sup 2}. The nature of the degrees of freedom responsible for black hole entropy is elucidated. The applications of the new interpretation are presented. The effect of noncommuting coordinates is discussed.

  4. Galaxy Formation with Self-Consistently Modeled Stars and Massive Black Holes. I: Feedback-Regulated Star Formation and Black Hole Growth

    SciTech Connect (OSTI)

    Kim, Ji-hoon; Wise, John H.; Alvarez, Marcelo A.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys. Dept.

    2011-11-04

    There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto an MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full three-dimensional adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2 x 10{sup 11} M {circle_dot} galactic halo and its 10{sup 5} {circle_dot} M embedded MBH at redshift 3 in a cosmological CDM simulation. The MBH feedback heats the surrounding interstellar medium (ISM) up to 10{sup 6} K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

  5. Chandra spectroscopy of MAXI J1305704: Detection of an infalling black hole disk wind?

    SciTech Connect (OSTI)

    Miller, J. M.; Maitra, D.; Reynolds, M. T.; Degenaar, N.; King, A. L.; Raymond, J.; Kallman, T. R.; Fabian, A. C.; Proga, D.; Reynolds, C. S.; Cackett, E. M.; Kennea, J. A.; Beardmore, A.

    2014-06-10

    We report on a high-resolution Chandra/HETG X-ray spectrum of the transient X-ray binary MAXI J1305704. A rich absorption complex is detected in the Fe L band, including density-sensitive lines from Fe XX, Fe XXI, and Fe XXII. Spectral analysis over three wavelength bands with a large grid of XSTAR photoionization models generally requires a gas density of n ? 10{sup 17} cm{sup 3}. Assuming a luminosity of L = 10{sup 37} erg s{sup 1}, fits to the 10-14 band constrain the absorbing gas to lie within r = (3.9 0.7) 10{sup 3} km from the central engine, or about r = 520 90 (M/5 M {sub ?}) r{sub g} , where r{sub g} = GM/c {sup 2}. At this small distance from the compact object, gas in stable orbits should have a gravitational redshift of z = v/c ? (3 1) 10{sup 3} (M/5 M {sub ?}), and any tenuous inflowing gas should have a free-fall velocity of v/c ? (6 1) 10{sup 2} (M/5 M {sub ?}){sup 1/2}. The best-fit single-zone photoionization models measure a redshift of v/c = (2.6-3.2) 10{sup 3}. Models with two absorbing zones provide significantly improved fits, and the additional zone is measured to have a redshift of v/c = (4.6-4.9) 10{sup 2} (models including two zones suggest slightly different radii and may point to lower densities). Thus, the observed shifts are broadly consistent with those expected at the photoionization radius. The absorption spectrum revealed in MAXI J1305704 may be best explained in terms of a 'failed wind' like those predicted in some recent numerical simulations of black hole accretion flows. The robustness of the velocity shifts was explored through detailed simulations with the Chandra/MARX ray-tracing package and analysis of the zeroth-order ACIS-S3 spectrum. These tests are particularly important given the anomalously large angle between the source and the optical axis in this observation. The simulations and ACIS spectrum suggest that the shifts are not instrumental; however, strong caution is warranted. We discuss

  6. Investigation of refractory black carbon-containing particle morphologies using the single-particle soot photometer (SP2)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.; Lambe, Andrew T.; Davidovits, Paul

    2015-07-24

    An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate),more » and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.« less

  7. CONSTRAINTS ON THE SPACETIME GEOMETRY AROUND 10 STELLAR-MASS BLACK HOLE CANDIDATES FROM THE DISK'S THERMAL SPECTRUM

    SciTech Connect (OSTI)

    Kong, Lingyao; Li, Zilong; Bambi, Cosimo

    2014-12-20

    In a previous paper, one of us (C. Bambi) described a code to compute the thermal spectrum of geometrically thin and optically thick accretion disks around generic stationary and axisymmetric black holes, which are not necessarily of the Kerr type. As the structure of the accretion disk and the propagation of electromagnetic radiation from the disk to the distant observer depend on the background metric, the analysis of the thermal spectrum of thin disks can be used to test the actual nature of black hole candidates. In this paper, we consider the 10 stellar-mass black hole candidates for which the spin parameter has already been estimated from the analysis of the disk's thermal spectrum under the assumption of the Kerr background, and we translate the measurements reported in the literature into constraints on the spin parameter-deformation parameter plane. The analysis of the disk's thermal spectrum can be used to estimate only one parameter of the geometry close to the compact object; therefore, it is not possible to get independent measurements of both the spin and the deformation parameters. The constraints obtained here will be used in combination with other measurements in future work with the final goal of breaking the degeneracy between the spin and possible deviations from the Kerr solution and thus test the Kerr black hole hypothesis.

  8. Investigation of refractory black carbon-containing particle morphologies using the single-particle soot photometer (SP2)

    SciTech Connect (OSTI)

    Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.; Lambe, Andrew T.; Davidovits, Paul

    2015-07-24

    An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate), and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.

  9. Stability and Regeneration of Catalysts for the Destruction of Tars from Bio-mass Black Liquor Gasification

    SciTech Connect (OSTI)

    Pradeep Agrawal

    2004-09-07

    The goal of this project was to develop catalytic materials and processes that would be effective in the destruction of tars formed during the gasification of black liquor and biomass. We report here the significant results obtained at the conclusion of this two year project.

  10. A Study of the Optical Properties of Ice Crystals with Black Carbon Inclusions

    SciTech Connect (OSTI)

    Arienti, Marco; Yang, Xiaoyuan; Kopacz, Adrian M; Geier, Manfred

    2015-09-01

    The report focu ses on the modification of the optical properties of ice crystals due to atmospheric black car bon (BC) contamination : the objective is to advance the predictive capabilities of climate models through an improved understanding of the radiative properties of compound particles . The shape of the ice crystal (as commonly found in cirrus clouds and cont rails) , the volume fraction of the BC inclusion , and its location inside the crystal are the three factors examined in this study. In the multiscale description of this problem, where a small absorbing inclusion modifies the optical properties of a much la rger non - absorbing particle, state - of - the - art discretization techniques are combined to provide the best compromise of flexibility and accuracy over a broad range of sizes .

  11. Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ling, Xi; Liang, Liangbo; Huang, Shengxi; Puretzky, Alexander A.; Geohegan, David B.; Sumpter, Bobby G.; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S.

    2015-05-08

    As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and nano-optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand low-frequency (LF) interlayer breathing modes (<100 cm-1) in few-layer BP for the first time. Using laser polarization dependence study and group theory analysis the breathing modes are assigned to Ag symmetry. Compared to the high-frequency (HF) Raman modes, the LF breathing modes are considerably more sensitive to interlayer coupling and thus their frequencies show stronger dependence on the number of layers. Hence, they constitute an effective means to probe both themore » crystalline orientation and thickness of few-layer BP. Furthermore, the temperature dependence shows that the breathing modes have a harmonic behavior, in contrast to HF Raman modes which exhibit anharmonicity.« less

  12. AmeriFlux CA-Qcu Quebec - Eastern Boreal, Black Spruce/Jack Pine Cutover

    SciTech Connect (OSTI)

    Margolis, Hank A.

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Qcu Quebec - Eastern Boreal, Black Spruce/Jack Pine Cutover. Site Description - The ground is gently rolling with a weak slope (<5%). In mesic areas (designated as well to moderately well drained areas, according to the Canadian System of Soil Classification (Agriculture Canada Expert Committee on Soil Survey, 1983)), the soil is a ferro-humic to humic podzol covered by an organic layer having an average depth of 26 cm (Fig. 1). In humid areas, the soil is organic (imperfectly to poorly drained) with an average organic layer of 125 cm. Mesic areas accounted for approximately 75% of the total surface area of the footprint and humid areas accounted for 25%. Full-time continuous measurements eneded in 2011. Intermittent measurements are on-going as resources permit.

  13. Radiating black holes in Einstein-Yang-Mills theory and cosmic censorship

    SciTech Connect (OSTI)

    Ghosh, Sushant G.; Dadhich, Naresh

    2010-08-15

    Exact nonstatic spherically symmetric black-hole solutions of the higher dimensional Einstein-Yang-Mills equations for a null dust with Yang-Mills gauge charge are obtained by employing Wu-Yang ansatz, namely, HD-EYM Vaidya solution. It is interesting to note that gravitational contribution of Yang-Mills (YM) gauge charge for this ansatz is indeed opposite (attractive rather than repulsive) that of Maxwell charge. It turns out that the gravitational collapse of null dust with YM gauge charge admits strong curvature shell focusing naked singularities violating cosmic censorship. However, there is significant shrinkage of the initial data space for a naked singularity of the HD-Vaidya collapse due to presence of YM gauge charge. The effect of YM gauge charge on structure and location of the apparent and event horizons is also discussed.

  14. Small black holes on branes: Is the horizon regular or singular?

    SciTech Connect (OSTI)

    Karasik, D.; Sahabandu, C.; Suranyi, P.; Wijewardhana, L.C.R.

    2004-09-15

    We investigate the following question: Consider a small mass, with {epsilon} (the ratio of the Schwarzschild radius and the bulk curvature length) much smaller than 1, that is confined to the TeV brane in the Randall-Sundrum I scenario. Does it form a black hole with a regular horizon, or a naked singularity? The metric is expanded in {epsilon} and the asymptotic form of the metric is given by the weak field approximation (linear in the mass). In first order of {epsilon} we show that the iteration of the weak field solution, which includes only integer powers of the mass, leads to a solution that has a singular horizon. We find a solution with a regular horizon but its asymptotic expansion in the mass also contains half integer powers.

  15. Low-frequency Interlayer Breathing Modes in Few-layer Black Phosphorus

    SciTech Connect (OSTI)

    Huang, Shengxi; Puretzky, Alexander A; Geohegan, David B; Sumpter, Bobby G; Kong, Jing; Dresselhaus, M; Meunier, V.; Liang, Liangbo; Ling, Xi

    2015-01-01

    As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and nano-optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand low-frequency (LF) interlayer breathing modes (<100 cm-1) in few-layer BP for the first time. Using laser polarization dependence study and group theory analysis the breathing modes are assigned to Ag symmetry. Compared to the high-frequency (HF) Raman modes, the LF breathing modes are considerably more sensitive to interlayer coupling and thus their frequencies show stronger dependence on the number of layers. Hence, they constitute an effective means to probe both the crystalline orientation and thickness of few-layer BP. Furthermore, the temperature dependence shows that the breathing modes have a harmonic behavior, in contrast to HF Raman modes which exhibit anharmonicity.

  16. The importance of China's household sector for black carbon emissions - article no. L12708

    SciTech Connect (OSTI)

    Streets, D.G.; Aunan, K.

    2005-06-30

    The combustion of coal and biofuels in Chinese households is a large source of black carbon (BC), representing about 10-15% of total global emissions during the past two decades, depending on the year. How the Chinese household sector develops during the next 50 years will have an important bearing on future aerosol concentrations, because the range of possible outcomes (about 550 Gg yr{sup -1}) is greater than total BC emissions in either the United States or Europe (each about 400-500 Gg yr{sup -1}). In some Intergovernmental Panel on Climate Change scenarios biofuels persist in rural China for at least the next 50 years, whereas in other scenarios a transition to cleaner fuels and technologies effectively mitigates BC emissions. This paper discusses measures and policies that would help this transition and also raises the possibility of including BC emission reductions as a post-Kyoto option for China and other developing countries.

  17. Decadal growth of black carbon emissions in India - article no. L02807

    SciTech Connect (OSTI)

    Sahu, S.K.; Beig, G.; Sharma, C.

    2008-01-15

    A Geographical Information System (GIS) based methodology has been used to construct the black carbon (BC) emission inventory for the Indian geographical region. The distribution of emissions from a broader level to a spatial resolution of 1{sup o} x 1{sup o} grid has been carried out by considering micro level details and activity data of fossil fuels and bio-fuels. Our calculated total BC emissions were 1343.78 Gg and 835.50 Gg for the base years 2001 and 1991 respectively with a decadal growth of around 61%, which is highly significant. The district level analysis shows a diverse spatial distribution with the top 10% emitting districts contributing nearly 50% of total BC emission. Coal contributes more than 50% of total BC emission. All the metropolitan cities show high BC emissions due to high population density giving rise to high vehicular emissions and more demand of energy.

  18. Variation of Radiative Properties During Black Carbon Aging. Theoretical and Experimental Intercomparison

    SciTech Connect (OSTI)

    He, Cenlin; Liou, K. N.; Takano, Y.; Zhang, Renyi; Zamora, Misty L.; Yang, Ping; Li, Qinbin; Leung, Lai-Yung R.

    2015-10-28

    A theoretical model is developed to account for black carbon (BC) aging during three major evolution stages, i.e., freshly emitted aggregates, coated particles by soluble materials, and those after further hygroscopic growth. The geometric-optics surface-wave approach is employed to compute BC single-scattering properties at each stage, which are compared with laboratory measurements. Theoretical predictions using input parameters determined from experiments are consistent with measurements in extinction and scattering cross sections for coated BC (within 30 20%) and absorption enhancement from coating (within 15%). The calculated scattering cross sections of fresh BC aggregates are larger than those experimentally measured, because of uncertainties in measurements and calculations. We apply the aging model to compute BC direct radiative forcing (DRF) over the LA Basin using the CalNex 2010 field measurements. Our results demonstrate that accounting for the interactive radiative properties during BC aging is essential in obtaining reliable DRF estimates within a regional context.

  19. Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus

    SciTech Connect (OSTI)

    Ling, Xi; Liang, Liangbo; Huang, Shengxi; Puretzky, Alexander A.; Geohegan, David B.; Sumpter, Bobby G.; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S.

    2015-05-08

    As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and nano-optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand low-frequency (LF) interlayer breathing modes (<100 cm-1) in few-layer BP for the first time. Using laser polarization dependence study and group theory analysis the breathing modes are assigned to Ag symmetry. Compared to the high-frequency (HF) Raman modes, the LF breathing modes are considerably more sensitive to interlayer coupling and thus their frequencies show stronger dependence on the number of layers. Hence, they constitute an effective means to probe both the crystalline orientation and thickness of few-layer BP. Furthermore, the temperature dependence shows that the breathing modes have a harmonic behavior, in contrast to HF Raman modes which exhibit anharmonicity.

  20. Black Bear Prep plant replaces high-frequency screens with fine wire sieves

    SciTech Connect (OSTI)

    Barbee, C.J.; Nottingham, J.

    2007-12-15

    At the Black Bear prep plant (near Wharncliffe, WV, USA) the clean coal from the spirals traditionally reported to high-frequency screens, which removed high-ash clay fines. Screens have inherent inefficiencies that allow clean coal to report to the screen underflow. The goal of this project was to capture the maximum amount of spiral clean coal while still removing the high-ash clay material found in the spiral product. The reduction of the circulating load and plant downtime for unscheduled maintenance were projected as additional benefits. After the plant upgrade, the maintenance related to the high frequency screens was eliminated and an additional 2.27 tons per hour (tph) of fine coal was recovered, which resulted in a payback period of less than one year. The article was adapted from a paper presented at Coal Prep 2007 in April 2007, Lexington, KY, USA. 1 ref., 1 fig., 1 tab.

  1. Imaging the supermassive black hole shadow and jet base of M87 with the event horizon telescope

    SciTech Connect (OSTI)

    Lu, Ru-Sen; Fish, Vincent L.; Doeleman, Sheperd S.; Pankratius, Victor; Broderick, Avery E.; Baron, Fabien; Monnier, John D.

    2014-06-20

    The Event Horizon Telescope (EHT) is a project to assemble a Very Long Baseline Interferometry (VLBI) network of millimeter wavelength dishes that can resolve strong field general relativistic signatures near a supermassive black hole. As planned, the EHT will include enough dishes to enable imaging of the predicted black hole 'shadow', a feature caused by severe light bending at the black hole boundary. The center of M87, a giant elliptical galaxy, presents one of the most interesting EHT targets as it exhibits a relativistic jet, offering the additional possibility of studying jet genesis on Schwarzschild radius scales. Fully relativistic models of the M87 jet that fit all existing observational constraints now allow horizon-scale images to be generated. We perform realistic VLBI simulations of M87 model images to examine the detectability of the black shadow with the EHT, focusing on a sequence of model images with a changing jet mass load radius. When the jet is launched close to the black hole, the shadow is clearly visible both at 230 and 345 GHz. The EHT array with a resolution of 20-30 ?as resolution (?2-4 Schwarzschild radii) is able to image this feature independent of any theoretical models and we show that imaging methods used to process data from optical interferometers are applicable and effective for EHT data sets. We demonstrate that the EHT is also capable of tracing real-time structural changes on a few Schwarzschild radii scales, such as those implicated by very high-energy flaring activity of M87. While inclusion of ALMA in the EHT is critical for shadow imaging, the array is generally robust against loss of a station.

  2. NEW CONSTRAINTS ON THE BLACK HOLE LOW/HARD STATE INNER ACCRETION FLOW WITH NuSTAR

    SciTech Connect (OSTI)

    Miller, J. M.; King, A. L.; Tomsick, J. A.; Boggs, S. E.; Bachetti, M.; Wilkins, D.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Kara, E.; Grefenstette, B. W.; Harrison, F. A.; Hailey, C. J.; Stern, D. K; Zhang, W. W.

    2015-01-20

    We report on an observation of the Galactic black hole candidate GRS 1739–278 during its 2014 outburst, obtained with NuSTAR. The source was captured at the peak of a rising ''low/hard'' state, at a flux of ∼0.3 Crab. A broad, skewed iron line and disk reflection spectrum are revealed. Fits to the sensitive NuSTAR spectra with a number of relativistically blurred disk reflection models yield strong geometrical constraints on the disk and hard X-ray ''corona''. Two models that explicitly assume a ''lamp post'' corona find its base to have a vertical height above the black hole of h=5{sub −2}{sup +7} GM/c{sup 2} and h = 18 ± 4 GM/c {sup 2} (90% confidence errors); models that do not assume a ''lamp post'' return emissivity profiles that are broadly consistent with coronae of this size. Given that X-ray microlensing studies of quasars and reverberation lags in Seyferts find similarly compact coronae, observations may now signal that compact coronae are fundamental across the black hole mass scale. All of the models fit to GRS 1739–278 find that the accretion disk extends very close to the black hole—the least stringent constraint is r{sub in}=5{sub −4}{sup +3} GM/c{sup 2}. Only two of the models deliver meaningful spin constraints, but a = 0.8 ± 0.2 is consistent with all of the fits. Overall, the data provide especially compelling evidence of an association between compact hard X-ray coronae and the base of relativistic radio jets in black holes.

  3. Thermodynamics of Taub-NUT/bolt-AdS black holes in Einstein-Gauss-Bonnet gravity

    SciTech Connect (OSTI)

    Khodam-Mohammadi, A.; Monshizadeh, M.

    2009-02-15

    We give a review of the existence of Taub-NUT/bolt solutions in Einstein Gauss-Bonnet gravity with the parameter {alpha} in six dimensions. Although the spacetime with base space S{sup 2}xS{sup 2} has a curvature singularity at r=N, which does not admit NUT solutions, we may proceed with the same computations as in the CP{sup 2} case. The investigation of thermodynamics of NUT/bolt solutions in six dimensions is carried out. We compute the finite action, mass, entropy, and temperature of the black hole. Then the validity of the first law of thermodynamics is demonstrated. It is shown that in NUT solutions all thermodynamic quantities for both base spaces are related to each other by substituting {alpha}{sup CP{sup k}}=[(k+1)/k]{alpha}{sup S{sup 2}}{sup xS{sup 2}}{sup x...S{sub k}{sup 2}}. So, no further information is given by investigating NUT solutions in the S{sup 2}xS{sup 2} case. This relation is not true for bolt solutions. A generalization of the thermodynamics of black holes to arbitrary even dimensions is made using a new method based on the Gibbs-Duhem relation and Gibbs free energy for NUT solutions. According to this method, the finite action in Einstein Gauss-Bonnet is obtained by considering the generalized finite action in Einstein gravity with an additional term as a function of {alpha}. Stability analysis is done by investigating the heat capacity and entropy in the allowed range of {alpha}, {lambda}, and N. For NUT solutions in d dimensions, there exists a stable phase at a narrow range of {alpha}. In six-dimensional bolt solutions, the metric is completely stable for B=S{sup 2}xS{sup 2} and is completely unstable for the B=CP{sup 2} case.

  4. Thermodynamics of Taub-NUT/bolt black holes in Einstein-Maxwell gravity

    SciTech Connect (OSTI)

    Dehghani, M.H.; Khodam-Mohammadi, A.

    2006-06-15

    First, we construct the Taub-NUT/bolt solutions of (2k+2)-dimensional Einstein-Maxwell gravity, when all the factor spaces of 2k-dimensional base space B have positive curvature. These solutions depend on two extra parameters, other than the mass and the NUT charge. These are electric charge q and electric potential at infinity V. We investigate the existence of Taub-NUT solutions and find that in addition to the two conditions of uncharged NUT solutions, there exist two extra conditions. These two extra conditions come from the regularity of vector potential at r=N and the fact that the horizon at r=N should be the outer horizon of the NUT charged black hole. We find that the NUT solutions in 2k+2 dimensions have no curvature singularity at r=N, when the 2k-dimensional base space is chosen to be CP{sup 2k}. For bolt solutions, there exists an upper limit for the NUT parameter which decreases as the potential parameter increases. Second, we study the thermodynamics of these spacetimes. We compute temperature, entropy, charge, electric potential, action and mass of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We perform a stability analysis by computing the heat capacity, and show that the NUT solutions are not thermally stable for even k's, while there exists a stable phase for odd k's, which becomes increasingly narrow with increasing dimensionality and wide with increasing V. We also study the phase behavior of the 4 and 6 dimensional bolt solutions in canonical ensemble and find that these solutions have a stable phase, which becomes smaller as V increases.

  5. Taub-NUT/bolt black holes in Gauss-Bonnet-Maxwell gravity

    SciTech Connect (OSTI)

    Dehghani, M.H.; Hendi, S. H.

    2006-04-15

    We present a class of higher-dimensional solutions to Gauss-Bonnet-Maxwell equations in 2k+2 dimensions with a U(1) fibration over a 2k-dimensional base space B. These solutions depend on two extra parameters, other than the mass and the Newman-Unti-Tamburino charge, which are the electric charge q and the electric potential at infinity V. We find that the form of metric is sensitive to geometry of the base space, while the form of electromagnetic field is independent of B. We investigate the existence of Taub-Newman-Unti-Tamburino/bolt solutions and find that in addition to the two conditions of uncharged Newman-Unti-Tamburino solutions, there exist two other conditions. These two extra conditions come from the regularity of vector potential at r=N and the fact that the horizon at r=N should be the outer horizon of the black hole. We find that for all nonextremal Newman-Unti-Tamburino solutions of Einstein gravity having no curvature singularity at r=N, there exist Newman-Unti-Tamburino solutions in Gauss-Bonnet-Maxwell gravity. Indeed, we have nonextreme Newman-Unti-Tamburino solutions in 2+2k dimensions only when the 2k-dimensional base space is chosen to be CP{sup 2k}. We also find that the Gauss-Bonnet-Maxwell gravity has extremal Newman-Unti-Tamburino solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature, even though there a curvature singularity exists at r=N. We also find that one can have bolt solutions in Gauss-Bonnet-Maxwell gravity with any base space. The only case for which one does not have black hole solutions is in the absence of a cosmological term with zero curvature base space.

  6. EXTREME CORONAL LINE EMITTERS: TIDAL DISRUPTION OF STARS BY MASSIVE BLACK HOLES IN GALACTIC NUCLEI?

    SciTech Connect (OSTI)

    Wang Tinggui; Zhou Hongyan; Wang Huiyuan; Yang Chenwei; Komossa, S.

    2012-04-20

    Tidal disruption of stars by supermassive black holes at the centers of galaxies is expected to produce unique emission-line signatures, which have not yet been explored adequately. Here we report the discovery of extremely strong coronal lines from [Fe X] up to [Fe XIV] in a sample of seven galaxies (including two recently reported cases), which we interpret as such signatures. This is the first systematic search for objects of this kind, by making use of the immense database of the Sloan Digital Sky Survey. The galaxies, which are non-active as evidenced by the narrow line ratios, show broad emission lines of complex profiles in more than half of the sample. Both the high-ionization coronal lines and the broad lines are fading on timescales of years in objects observed with spectroscopic follow-ups, suggesting their transient nature. Variations of inferred non-stellar continua, which have absolute magnitudes of at least -16 to -18 mag in the g band, are also detected in more than half of the sample. The coronal line emitters reside in sub-L{sub *} disk galaxies (-21.3 < M{sub i} < -18.5) with small stellar velocity dispersions. The sample seems to form two distinct types based on the presence or absence of the [Fe VII] lines, with the latter having relatively low luminosities of [O III], [Fe XI], and the host galaxies. These characteristics can most naturally be understood in the context of transient accretion onto intermediate-mass black holes at galactic centers following tidal disruption of stars in a gas-rich environment. We estimate the incidence of such events to be around 10{sup -5} yr{sup -1} for a galaxy with -21.3 < M{sub i} < -18.5.

  7. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-07-27

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys tomore » understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.« less

  8. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    SciTech Connect (OSTI)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-07-27

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys to understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.

  9. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the

  10. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  11. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf

  13. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-18

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  14. Collection efficiency of the Soot-Particle Aerosol Mass Spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-05-26

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of two. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  15. Star formation and cosmic massive black hole formation, a universal process organized by angular momenta

    SciTech Connect (OSTI)

    Colgate, S. A.

    2004-01-01

    It is suggested that star formation is organized following the same principles as we have applied in a recent explanation of galaxy and massive black hole formation. In this scenario angular momentum is randomly distributed by tidal torquing among condensations, Lyman-{alpha} clouds or cores for star formation during the initial non-linear phase of collapse. This angular momentum is characterized by the parameter, {lambda}, the ratio of the angular momentum of the cloud to that of a Keplerian orbit with the same central mass and radius. This parameter is calculated in very many simulations of structure formation of the universe as well as core formation and appears to be universal and independent of any scale. The specific angular momentum during the collapse of every cloud is locally conserved and universally produces a near flat rotation curve M{sub black hole, 10{sup 8} M{sub o}, ({sup -}10{sup -3} of the galactic disk mass) or 1 M{sub o} ({sup -}0.03 of the core or of the protostellar disk mass). The inviscid collapse of a protosteller core with the same average {lambda} = 0.05 leads to the formation of a flat rotation curve (protostellar) disk of mass M{sub dsk} {sup -}30 M{sub o} of radius R{sub dsk} {approx_equal} 1100 AU or 5.4 x 10{sup -3} pc. In such a disk {Sigma} {proportional_to} 1/R and reaches the RVI condition at R{sub crit} {approx_equal} 40 AU where M{sub

  16. Applications of Geophysical and Geological Techniques to Identify Areas for Detailed Exploration in Black Mesa Basin, Arizona

    SciTech Connect (OSTI)

    George, S.; Reeves, T.K.; Sharma, Bijon; Szpakiewicz, M.

    1999-04-29

    A recent report submitted to the U.S. Department of Energy (DOE) (NIPER/BDM-0226) discussed in considerable detail, the geology, structure, tectonics, and history of oil production activities in the Black Mesa basin in Arizona. As part of the final phase of wrapping up research in the Black Mesa basin, the results of a few additional geophysical studies conducted on structure, stratigraphy, petrophysical analysis, and oil and gas occurrences in the basin are presented here. A second objective of this study is to determine the effectiveness of relatively inexpensive, noninvasive techniques like gravity or magnetic in obtaining information on structure and tectonics in sufficient detail for hydrocarbon exploration, particularly by using the higher resolution satellite data now becoming available to the industry.

  17. Geometry of a naked singularity created by standing waves near a Schwarzschild horizon, and its application to the binary black hole problem

    SciTech Connect (OSTI)

    Mandel, Ilya

    2005-10-15

    The most promising way to compute the gravitational waves emitted by binary black holes (BBHs) in their last dozen orbits, where post-Newtonian techniques fail, is a quasistationary approximation introduced by Detweiler and being pursued by Price and others. In this approximation the outgoing gravitational waves at infinity and downgoing gravitational waves at the holes' horizons are replaced by standing waves so as to guarantee that the spacetime has a helical Killing vector field. Because the horizon generators will not, in general, be tidally locked to the holes' orbital motion, the standing waves will destroy the horizons, converting the black holes into naked singularities that resemble black holes down to near the horizon radius. This paper uses a spherically symmetric, scalar-field model problem to explore in detail the following BBH issues: (i) The destruction of a horizon by the standing waves. (ii) The accuracy with which the resulting naked singularity resembles a black hole. (iii) The conversion of the standing-wave spacetime (with a destroyed horizon) into a spacetime with downgoing waves by the addition of a 'radiation-reaction field'. (iv) The accuracy with which the resulting downgoing waves agree with the downgoing waves of a true black-hole spacetime (with horizon). The model problem used to study these issues consists of a Schwarzschild black hole endowed with spherical standing waves of a scalar field, whose wave frequency and near-horizon energy density are chosen to match those of the standing gravitational waves of the BBH quasistationary approximation. It is found that the spacetime metric of the singular, standing-wave spacetime, and its radiation-reaction-field-constructed downgoing waves are quite close to those for a Schwarzschild black hole with downgoing waves--sufficiently close to make the BBH quasistationary approximation look promising for non-tidally-locked black holes.

  18. Complete multiwavelength evolution of Galactic black hole transients during outburst decay. I. Conditions for 'compact' jet formation

    SciTech Connect (OSTI)

    Kalemci, E.; Diner, T.; Chun, Y. Y.; Tomsick, J. A.; Buxton, M. M.; Bailyn, C. D.

    2013-12-20

    Compact, steady jets are observed in the near infrared and radio bands in the hard state of Galactic black hole transients as their luminosity decreases and the source moves toward a quiescent state. Recent radio observations indicate that the jets turn off completely in the soft state; therefore, multiwavelength monitoring of black hole transients is essential to probe the formation of jets. In this work, we conducted a systematic study of all black hole transients with near infrared and radio coverage during their outburst decays. We characterized the timescales of changes in X-ray spectral and temporal properties and also in near infrared and/or in radio emission. We confirmed that state transitions occur in black hole transients at a very similar fraction of their respective Eddington luminosities. We also found that the near infrared flux increase that could be due to the formation of a compact jet is delayed by a time period of days with respect to the formation of a corona. Finally, we found a threshold disk Eddington luminosity fraction for the compact jets to form. We explain these results with a model such that the increase in the near infrared flux corresponds to a transition from a patchy, small-scale height corona along with an optically thin outflow to a large-scale height corona that allows for collimation of a steady compact jet. We discuss the timescale of jet formation in terms of transport of magnetic fields from the outer parts of the disk, and we also consider two alternative explanations for the multiwavelength emission: hot inner accretion flows and irradiation.

  19. Facilitated Discussion Questions (in blue font) and input from meeting participants, categorized and summarized by the Facilitator (in black font)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting on Data/Communication Standards and Interoperability of Building Appliances, Equipment, and Systems Facilitated Discussion Questions (in blue font) and input from meeting participants, categorized and summarized by the Facilitator (in black font) Question 1: Biggest challenge to integration and alignment- For information exchange to prosper between buildings devices, systems, and outside parties, such as other buildings and electric system operators, technology must integrate easily and

  20. CONSTRAINTS ON COMPTON-THICK WINDS FROM BLACK HOLE ACCRETION DISKS: CAN WE SEE THE INNER DISK?

    SciTech Connect (OSTI)

    Reynolds, Christopher S.

    2012-11-01

    Strong evidence is emerging that winds can be driven from the central regions of accretion disks in both active galactic nuclei and Galactic black hole binaries. Direct evidence for highly ionized, Compton-thin inner-disk winds comes from observations of blueshifted (v {approx} 0.05-0.1c) iron-K X-ray absorption lines. However, it has been suggested that the inner regions of black hole accretion disks can also drive Compton-thick winds-such winds would enshroud the inner disk, preventing us from seeing direct signatures of the accretion disk (i.e., the photospheric thermal emission, or the Doppler/gravitationally broadened iron K{alpha} line). Here, we show that, provided the source is sub-Eddington, the well-established wind-driving mechanisms fail to launch a Compton-thick wind from the inner disk. For the accelerated region of the wind to be Compton-thick, the momentum carried in the wind must exceed the available photon momentum by a factor of at least 2/{lambda}, where {lambda} is the Eddington ratio of the source, ruling out radiative acceleration unless the source is very close to the Eddington limit. Compton-thick winds also carry large mass fluxes, and a consideration of the connections between the wind and the disk shows this to be incompatible with magneto-centrifugal driving. Finally, thermal driving of the wind is ruled out on the basis of the large Compton radii that typify black hole systems. In the absence of some new acceleration mechanisms, we conclude that the inner regions of sub-Eddington accretion disks around black holes are indeed naked.

  1. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    SciTech Connect (OSTI)

    Bagchi, Manjari; Torres, Diego F. E-mail: dtorres@ieec.uab.es

    2014-08-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.

  2. Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol - article no. L14701

    SciTech Connect (OSTI)

    Jones, G.S.; Jones, A.; Roberts, D.L.; Stott, P.A.; Williams, K.D.

    2005-07-16

    It is likely that greenhouse gas emissions caused most of the global mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black carbon, could be underestimated. Here we include fossil fuel black carbon aerosol in a detection and attribution analysis with greenhouse gas and sulphate aerosols. We find that most of the warming of the 20th Century is attributable to changes in greenhouse gases offset by net aerosol cooling. However the pattern of temperature change due to black carbon is currently indistinguishable from the sulphate aerosol pattern of temperature change. The attribution of temperature change due to greenhouse gases is not sensitive to the inclusion of black carbon. We can be confident about the overall attribution of total aerosols, but less so about the contributions of black carbon emissions to 20th century climate change. This work presents no evidence that black carbon aerosol forcing outweighed the cooling due to sulphate aerosol.

  3. Atmospheric Radiation Measurement (ARM) Data from Black Forest Germany for the Convective and Orographically Induced Precipitation Study (COPS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility (AMF) to other sites as determined. In 2007 the AMF operated in the Black Forest region of Germany as part of the Convective and Orographically Induced Precipitation Study (COPS). Scientists studied rainfall resulting from atmospheric uplift (convection) in mountainous terrain, otherwise known as orographic precipitation. This was part of a six -year duration of the German Quantitative Precipitation Forecasting (QPF) Program. COPS was endorsed as a Research and Development Project by the World Weather Research Program. This program was established by the World Meteorological Organization to develop improved and cost-effective forecasting techniques, with an emphasis on high-impact weather. A large collection of data plots based on data streams from specific instruments used at Black Forest are available via a link from ARM's Black Forest site information page. Users will be requested to create a password, but the plots and the data files in the ARM Archive are free for viewing and downloading.

  4. IS THERE AN INTERMEDIATE MASSIVE BLACK HOLE IN THE GALACTIC CENTER: IMPRINTS ON THE STELLAR TIDAL-DISRUPTION RATE

    SciTech Connect (OSTI)

    Chen, Xian; Liu, F. K. E-mail: fkliu@pku.edu.cn

    2013-01-10

    It has been suggested that an intermediate-massive black hole (IMBH) with mass 10{sup 3-5} M {sub Sun} could fall into the galactic center (GC) and form a massive black hole binary (MBHB) with the central supermassive black hole, but current observations are not sensitive to constrain all mass and distance ranges. Motivated by the recent discovery that MBHBs could enhance the rate of tidal-disruption events (TDEs) of stellar objects, we investigate the prospect of using stellar-disruption rate to probe IMBHs in the GC. We incorporated the perturbation by an IMBH into the loss-cone theory and calculated the stellar-disruption rates in the GC. We found that an IMBH heavier than 2000 M {sub Sun} could distinguishably enhance the stellar-disruption rate. By comparing observations of Sgr A* with the fall-back model for stellar debris, we suggested that the TDE rate in our Galaxy should not significantly exceed 0.002 yr{sup -1}, therefore a fraction of the parameter space for the IMBH, concentrating at the high-mass end, can already be excluded. To derive constraint in the remaining parameter space, it is crucial to observationally confirm or reject the stellar-disruption rate between 10{sup -4} and 10{sup -2} yr{sup -1}, and we discussed possible strategies to make such measurements.

  5. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 2 (Appendices I, section 5 and II, section 1)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 2 contains the last section of Appendix I, Radiative heat transfer in kraft recovery boilers, and the first section of Appendix II, The effect of temperature and residence time on the distribution of carbon, sulfur, and nitrogen between gaseous and condensed phase products from low temperature pyrolysis of kraft black liquor.

  6. 17.1%-Efficient Multi-Scale-Textured Black Silicon Solar Cells without Dielectric Antireflection Coating: Preprint

    SciTech Connect (OSTI)

    Toor, F.; Page, M. R.; Branz, H. M.; Yuan, H. C.

    2011-07-01

    In this work we present 17.1%-efficient p-type single crystal Si solar cells with a multi-scale-textured surface and no dielectric antireflection coating. Multi-scale texturing is achieved by a gold-nanoparticle-assisted nanoporous etch after conventional micron scale KOH-based pyramid texturing (pyramid black etching). By incorporating geometric enhancement of antireflection, this multi-scale texturing reduces the nanoporosity depth required to make silicon 'black' compared to nanoporous planar surfaces. As a result, it improves short-wavelength spectral response (blue response), previously one of the major limiting factors in 'black-Si' solar cells. With multi-scale texturing, the spectrum-weighted average reflectance from 350- to 1000-nm wavelength is below 2% with a 100-nm deep nanoporous layer. In comparison, roughly 250-nm deep nanopores are needed to achieve similar reflectance on planar surface. Here, we characterize surface morphology, reflectivity and solar cell performance of the multi-scale textured solar cells.

  7. Genetic improvement and evaluation of black cottonwood for short- rotation biomass production. Final report, 1987--1992

    SciTech Connect (OSTI)

    Stettler, R.F.; Hinckley, T.M.; Heilman, P.E.; Bradshaw, H.D. Jr.

    1993-04-30

    This project was initiated in 1978 to serve three objectives: (1) develop genetically improved poplar cultivars offering increased productivity under short-rotation culture; (2) identify the major components of productivity in poplar and determine ways in which they can be manipulated, genetically and culturally; and (3) engage in technology transfer to regional industry and agencies so as to make poplar culture in the Pacific Northwest economically feasible. The project is aimed at capturing natural variation in the native black cottonwood. Populus trichocarpa T & G, and enhancing it through selective breeding. Major emphasis has been placed on hybridization of black cottonwood with P deltoides and P maximowiczii, more recently with p nigra. First-generation (F{sub 1}) hybrids have consistently outperformed black cottonwood by a factor of 1.5.-2. The high yields of woody biomass obtained from these clonally propagated hybrids, in rotations of 4-7 years, have fostered the establishment of large-scale plantations by the pulp and paper industry in the region. Physiological studies have helped to elucidate hybrid superiority and several of the underlying mechanisms.

  8. Impact of mergers on LISA parameter estimation for nonspinning black hole binaries

    SciTech Connect (OSTI)

    McWilliams, Sean T.; Thorpe, James Ira; Baker, John G.; Kelly, Bernard J.

    2010-03-15

    We investigate the precision with which the parameters describing the characteristics and location of nonspinning black hole binaries can be measured with the Laser Interferometer Space Antenna (LISA). By using complete waveforms including the inspiral, merger, and ringdown portions of the signals, we find that LISA will have far greater precision than previous estimates for nonspinning mergers that ignored the merger and ringdown. Our analysis covers nonspinning waveforms with moderate mass ratios, q{>=}1/10, and total masses 10{sup 5} < or approx. M/M{sub {center_dot}}< or approx. 10{sup 7}. We compare the parameter uncertainties using the Fisher-matrix formalism, and establish the significance of mass asymmetry and higher-order content to the predicted parameter uncertainties resulting from inclusion of the merger. In real-time observations, the later parts of the signal lead to significant improvements in sky-position precision in the last hours and even the final minutes of observation. For comparable-mass systems with total mass M/M{sub {center_dot}{approx}1}0{sup 6}, we find that the increased precision resulting from including the merger is comparable to the increase in signal-to-noise ratio. For the most precise systems under investigation, half can be localized to within O(10 arcmin), and 10% can be localized to within O(1 arcmin).

  9. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    SciTech Connect (OSTI)

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.

  10. A tidal disruption event in a nearby galaxy hosting an intermediate mass black hole

    SciTech Connect (OSTI)

    Donato, D.; Troja, E.; Pursimo, T.; Cheung, C. C.; Kutyrev, A.; Landt, H.; Butler, N. R.

    2014-02-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a factor of ?2300 over a time span of 6 yr, following a power-law decay with index ?2.44 0.40. The Chandra data alone vary by a factor of ?20. The spectrum is well fit by a blackbody with a constant temperature of kT ? 0.09 keV (?10{sup 6} K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1? level with the cluster (z = 0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log (M {sub BH}/M {sub ?}) ? 5.5 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  11. Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ling, Xi; Huang, Shengxi; Hasdeo, Eddwi; Liang, Liangbo; Parkin, William; Tatsumi, Yuki; Nugraha, Ahmad; Puretzky, Alexander A; Das, Paul; Sumpter, Bobby G; et al

    2016-03-10

    Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to-date, as shown by a number of inconsistencies in the recent literatures. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron-photon and electron-phonon interactions in BP. We highlight a non-trivial dependence between anisotropies andmore » flake thickness, photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.« less

  12. Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes

    SciTech Connect (OSTI)

    Unver, O.; Gurtug, O.

    2010-10-15

    Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence, the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.

  13. Gene expression profiling--Opening the black box of plant ecosystem responses to global change

    SciTech Connect (OSTI)

    Leakey, A.D.B.; Ainsworth, E.A.; Bernard, S.M.; Markelz, R.J.C.; Ort, D.R.; Placella, S.A.P.; Rogers, A.; Smith, M.D.; Sudderth, E.A.; Weston, D.J.; Wullschleger, S.D.; Yuan, S.

    2009-11-01

    The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Since the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the 'black box' of unknown mechanism. Various tools and approaches are available for assessing gene expression in model and non-model species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context.

  14. TIME EVOLUTION OF FLARES IN GRB 130925A: JET PRECESSION IN A BLACK HOLE ACCRETION SYSTEM

    SciTech Connect (OSTI)

    Hou, Shu-Jin; Liu, Tong; Gu, Wei-Min; Sun, Mou-Yuan; Lu, Ju-Fu [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Lin, Da-Bin [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning, Guangxi 530004 (China); Wu, Xue-Feng, E-mail: tongliu@xmu.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-01-20

    GRB 130925A, composed of three gamma-ray emission episodes and a series of orderly flares, has been detected by Swift, Fermi, Konus-Wind, and INTEGRAL. If the third weakest gamma-ray episode can be considered a giant flare, we find that after the second gamma-ray episode observed by INTEGRAL located at about 2000s, a positive relation exists between the time intervals of the adjacent flares and the time since the episode. We suggest that the second gamma-ray episode and its flares originate from the resumption of the accretion process due to the fragments from the collapsar falling back; such a relation may be related to a hyperaccretion disk around a precessed black hole (BH). We propose that the origin and time evolution of the flares, and the approximately symmetrical temporal structure and spectral evolution of the single flare can be explained well by a jet precession model. In addition, the mass and spin of the BH can be constrained, which indicates a stellar-mass, fast-rotating BH located in the center of GRB 130925A.

  15. NUCLEOSYNTHESIS CONSTRAINTS ON THE NEUTRON STAR-BLACK HOLE MERGER RATE

    SciTech Connect (OSTI)

    Bauswein, A. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Ardevol Pulpillo, R.; Janka, H.-T. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Goriely, S., E-mail: bauswein@MPA-Garching.MPG.DE [Institut d'Astronomie et d'Astrophysique, Universit Libre de Bruxelles, C.P. 226, B-1050 Brussels (Belgium)

    2014-11-01

    We derive constraints on the time-averaged event rate of neutron star-black hole (NS-BH) mergers by using estimates of the population-integrated production of heavy rapid neutron-capture (r-process) elements with nuclear mass numbers A > 140 by such events in comparison to the Galactic repository of these chemical species. Our estimates are based on relativistic hydrodynamical simulations convolved with theoretical predictions of the binary population. This allows us to determine a strict upper limit of the average NS-BH merger rate of ?6 10{sup 5} per year. We quantify the uncertainties of this estimate to be within factors of a few mostly because of the unknown BH spin distribution of such systems, the uncertain equation of state of NS matter, and possible errors in the Galactic content of r-process material. Our approach implies a correlation between the merger rates of NS-BH binaries and of double NS systems. Predictions of the detection rate of gravitational-wave signals from such compact object binaries by Advanced LIGO and Advanced Virgo on the optimistic side are incompatible with the constraints set by our analysis.

  16. Investigation of primordial black hole bursts using interplanetary network gamma-ray bursts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ukwatta, Tilan Niranjan; Hurley, Kevin; MacGibbon, Jane H.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal'Shin, V. D.; Goldsten, J.; Boynton, W.; et al

    2016-07-25

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected bymore » the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 1013–1018 cm (7–105 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Furthermore, assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.« less

  17. Superior mechanical flexibility of phosphorene and few-layer black phosphorus

    SciTech Connect (OSTI)

    Wei, Qun; Peng, Xihong

    2014-06-23

    Recently, fabricated two dimensional (2D) phosphorene crystal structures have demonstrated great potential in applications of electronics. Mechanical strain was demonstrated to be able to significantly modify the electronic properties of phosphorene and few-layer black phosphorus. In this work, we employed first principles density functional theory calculations to explore the mechanical properties of phosphorene, including ideal tensile strength and critical strain. It was found that a monolayer phosphorene can sustain tensile strain up to 27% and 30% in the zigzag and armchair directions, respectively. This enormous strain limit of phosphorene results from its unique puckered crystal structure. We found that the tensile strain applied in the armchair direction stretches the pucker of phosphorene, rather than significantly extending the P-P bond lengths. The compromised dihedral angles dramatically reduce the required strain energy. Compared to other 2D materials, such as graphene, phosphorene demonstrates superior flexibility with an order of magnitude smaller Young's modulus. This is especially useful in practical large-magnitude-strain engineering. Furthermore, the anisotropic nature of phosphorene was also explored. We derived a general model to calculate the Young's modulus along different directions for a 2D system.

  18. Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Erwin, Peter; Gadotti, Dimitri Alexei

    2012-01-01

    Smore » tudies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that whileMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio M NSC / M ⋆ ,  tot for NSCs in spirals (at least those with Hubble typesc and later) is typically an order of magnitude smaller than the mass ratio M BH / M ⋆ ,  bul ofMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for bothMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation, galaxies with Hubble types earlier thanbc appear to host systematically more massive NSCs than do typesc and later.« less

  19. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension

    SciTech Connect (OSTI)

    Wang, Yingwei; Huang, Guanghui; Chen, Jiazhang; Xiao, Si He, Jun; Mu, Haoran; Bao, Qiaoliang; Lin, Shenghuang

    2015-08-31

    As a new type of two-dimensional crystal material, black phosphorus (BP) exhibits excellent electronics and optical performance. Herein, we focus on carrier relaxation dynamics and nonlinear optical properties of BP suspension. Atomic force microscopy, transmission electron microscopy, and optical transmission spectrum are employed to characterize the structure and linear optical properties of the BP. Additionally, pump-probe experiments at wavelength of 1550 nm were carried out to study the carrier dynamics in BP suspension, and ultrafast recovery time was observed (τ{sub s} = 24 ± 2 fs). Furthermore, we demonstrate the saturable absorption signals by open aperture Z-scan experiments at wavelengths of 1550 nm, 532 nm, and 680 nm. The results indicate that BP has broadband saturable absorption properties and the nonlinear absorption coefficients were determined to be β{sub 2} = −0.20 ± 0.08 × 10{sup −3 }cm/GW (532 nm), β{sub 2} = −0.12 ± 0.05 × 10{sup −3 }cm/GW (680 nm), and β{sub 2} = −0.15 ± 0.09 × 10{sup −3 }cm/GW (1550 nm)

  20. Numerical simulations of optically thick accretion onto a black hole. II. Rotating flow

    SciTech Connect (OSTI)

    Fragile, P. Chris; Olejar, Ally; Anninos, Peter

    2014-11-20

    In this paper, we report on recent upgrades to our general relativistic radiation magnetohydrodynamics code, Cosmos++, including the development of a new primitive inversion scheme and a hybrid implicit-explicit solver with a more general M {sub 1} closure relation for the radiation equations. The new hybrid solver helps stabilize the treatment of the radiation source terms, while the new closure allows for a much broader range of optical depths to be considered. These changes allow us to expand by orders of magnitude the range of temperatures, opacities, and mass accretion rates, and move a step closer toward our goal of performing global simulations of radiation-pressure-dominated black hole accretion disks. In this work, we test and validate the new method against an array of problems. We also demonstrate its ability to handle super-Eddington, quasi-spherical accretion. Even with just a single proof-of-principle simulation, we already see tantalizing hints of the interesting phenomenology associated with the coupling of radiation and gas in super-Eddington accretion flows.

  1. What happens to Petrov classification, on horizons of axisymmetric dirty black holes

    SciTech Connect (OSTI)

    Tanatarov, I. V.; Zaslavskii, O. B.

    2014-02-15

    We consider axisymmetric stationary dirty black holes with regular non-extremal or extremal horizons, and compute their on-horizon Petrov types. The Petrov type (PT) in the frame of the observer crossing the horizon can be different from that formally obtained in the usual (but singular in the horizon limit) frame of an observer on a circular orbit. We call this entity the boosted Petrov type (BPT), as the corresponding frame is obtained by a singular boost from the regular one. The PT off-horizon can be more general than PT on-horizon and that can be more general than the BPT on horizon. This is valid for all regular metrics, irrespective of the extremality of the horizon. We analyze and classify the possible relations between the three characteristics and discuss the nature and features of the underlying singular boost. The three Petrov types can be the same only for space-times of PT D and O off-horizon. The mutual alignment of principal null directions and the generator in the vicinity of the horizon is studied in detail. As an example, we also analyze a special class of metrics with utra-extremal horizons (for which the regularity conditions look different from the general case) and compare their off-horizon and on-horizon algebraic structure in both frames.

  2. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; et al

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less

  3. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in

  4. Direct Causticizing for Black Liquor Gasification in a Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Scott Sinquefield; Xiaoyan Zeng, Alan Ball

    2010-03-02

    Gasification of black liquor (BLG) has distinct advantages over direct combustion in Tomlinson recovery boilers. In this project we seek to resolve causticizing issues in order to make pressurized BLG even more efficient and cost-effective. One advantage of BLG is that the inherent partial separation of sulfur and sodium during gasification lends itself to the use of proven high yield variants to conventional kraft pulping which require just such a separation. Processes such as polysulfide, split sulfidity, ASAQ, and MSSAQ can increase pulp yield from 1% to 10% over conventional kraft but require varying degrees of sulfur/sodium separation, which requires additional [and costly] processing in a conventional Tomlinson recovery process. However during gasification, the sulfur is partitioned between the gas and smelt phases, while the sodium all leaves in the smelt; thus creating the opportunity to produce sulfur-rich and sulfur-lean white liquors for specialty pulping processes. A second major incentive of BLG is the production of a combustible product gas, rich in H2 and CO. This product gas (a.k.a. “syngas”) can be used in gas turbines for combined cycle power generation (which is twice as efficient as the steam cycle alone), or it can be used as a precursor to form liquid fuels, such as dimethyl ether or Fischer Tropsh diesel. There is drawback to BLG, which has the potential to become a third major incentive if this work is successful. The causticizing load is greater for gasification of black liquor than for combustion in a Tomlinson boiler. So implementing BLG in an existing mill would require costly increases to the causticizing capacity. In situ causticizing [within the gasifier] would handle the entire causticizing load and therefore eliminate the lime cycle entirely. Previous work by the author and others has shown that titanate direct causticizing (i.e. in situ) works quite well for high-temperature BLG (950°C), but was limited to pressures below

  5. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    SciTech Connect (OSTI)

    Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production

  6. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect (OSTI)

    Douglas G. Patchen; Chris Laughrey; Jaime Kostelnik; James Drahovzal; John B. Hickman; Paul D. Lake; John Bocan; Larry Wickstrom; Taury Smith; Katharine Lee Avary

    2004-10-01

    The ''Trenton-Black River Appalachian Basin Exploration Consortium'' has reached the mid-point in a two-year research effort to produce a play book for Trenton-Black River exploration. The final membership of the Consortium includes 17 exploration and production companies and 6 research team members, including four state geological surveys, the New York State Museum Institute and West Virginia University. Seven integrated research tasks and one administrative and technology transfer task are being conducted basin-wide by research teams organized from this large pool of experienced professionals. All seismic data available to the consortium have been examined at least once. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 10 stratigraphic units determined from well logs to seismic profiles in New York and Pennsylvania. In addition, three surfaces in that area have been depth converted, gridded and mapped. In the Kentucky-Ohio-West Virginia portion of the study area, a velocity model has been developed to help constrain time-to-depth conversions. Fifteen formation tops have been identified on seismic in that area. Preliminary conclusions based on the available seismic data do not support the extension of the Rome Trough into New York state. Members of the stratigraphy task team measured, described and photographed numerous cores from throughout the basin, and tied these data back to their network of geophysical log cross sections. Geophysical logs were scanned in raster files for use in detailed well examination and construction of cross sections. Logs on these cross sections that are only in raster format are being converted to vector format for final cross section displays. The petrology team measured and sampled one classic outcrop in Pennsylvania and ten cores in four states. More than 600 thin sections were prepared from samples in those four states. A seven-step procedure is being used to analyze all thin

  7. ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES

    SciTech Connect (OSTI)

    Yu Wenfei; Zhang Wenda, E-mail: wenfei@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2013-06-20

    We found that the black hole candidate MAXI J1659-152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.

  8. ENHANCED OFF-CENTER STELLAR TIDAL DISRUPTIONS BY SUPERMASSIVE BLACK HOLES IN MERGING GALAXIES

    SciTech Connect (OSTI)

    Liu, F. K.; Chen, Xian E-mail: chenxian@pku.edu.cn

    2013-04-10

    Off-center stellar tidal disruption flares have been suggested to be a powerful probe of recoiling supermassive black holes (SMBHs) out of galactic centers due to anisotropic gravitational wave radiations. However, off-center tidal flares can also be produced by SMBHs in merging galaxies. In this paper, we computed the tidal flare rates by dual SMBHs in two merging galaxies before the SMBHs become self-gravitationally bounded. We employ an analytical model to calculate the tidal loss-cone feeding rates for both SMBHs, taking into account two-body relaxation of stars, tidal perturbations by the companion galaxy, and chaotic stellar orbits in triaxial gravitational potential. We show that for typical SMBHs with masses 10{sup 7} M{sub Sun }, the loss-cone feeding rates are enhanced by mergers up to {Gamma} {approx} 10{sup -2} yr{sup -1}, about two orders of magnitude higher than those by single SMBHs in isolated galaxies and about four orders of magnitude higher than those by recoiling SMBHs. The enhancements are mainly due to tidal perturbations by the companion galaxy. We suggest that off-center tidal flares are overwhelmed by those from merging galaxies, making the identification of recoiling SMBHs challenging. Based on the calculated rates, we estimate the relative contributions of tidal flare events by single, binary, and dual SMBH systems during cosmic time. Our calculations show that the off-center tidal disruption flares by un-bound SMBHs in merging galaxies contribute a fraction comparable to that by single SMBHs in isolated galaxies. We conclude that off-center tidal disruptions are powerful tracers of the merging history of galaxies and SMBHs.

  9. The black hole binary V4641 Sagitarii: Activity in quiescence and improved mass determinations

    SciTech Connect (OSTI)

    MacDonald, Rachel K. D.; Bailyn, Charles D.; Buxton, Michelle; Cantrell, Andrew G.; Chatterjee, Ritaban; Kennedy-Shaffer, Ross; Orosz, Jerome A.; Markwardt, Craig B.; Swank, Jean H.

    2014-03-20

    We examine ?10 yr of photometric data and find that the black hole X-ray binary V4641 Sgr has two optical states, passive and active, during X-ray quiescence. The passive state is dominated by ellipsoidal variations and is stable in the shape and variability of the light curve. The active state is brighter and more variable. Emission during the active state varies over the course of the orbital period and is redder than the companion star. These optical/infrared states last for weeks or months. V4641 Sgr spends approximately 85% of X-ray quiescence in the passive state and 15% in the active. We analyze passive colors and spectroscopy of V4641 Sgr and show that they are consistent with a reddened B9III star (with E(B V) = 0.37 0.19) with little or no contribution from the accretion disk. We use X-ray observations with an updated ephemeris to place an upper limit on the duration of an X-ray eclipse of <8.3 in phase (?1.6 hr). High-resolution spectroscopy yields a greatly improved measurement of the rotational velocity of the companion star of V {sub rot}sin i = 100.9 0.8 km s{sup 1}. We fit ellipsoidal models to the passive state data and find an inclination angle of i = 72.3 4.1, a mass ratio of Q = 2.2 0.2, and component masses for the system of M {sub BH} = 6.4 0.6 M {sub ?} and M {sub 2} = 2.9 0.4 M {sub ?}. Using these values we calculate an updated distance to V4641 Sgr of 6.2 0.7 kpc.

  10. A NEW DYNAMICAL MODEL FOR THE BLACK HOLE BINARY LMC X-1

    SciTech Connect (OSTI)

    Orosz, Jerome A.; Steeghs, Danny; McClintock, Jeffrey E. E-mail: D.T.H.Steeghs@warwick.ac.uk

    2009-05-20

    We present a dynamical model of the high mass X-ray binary LMC X-1 based on high-resolution optical spectroscopy and extensive optical and near-infrared photometry. From our new optical data we find an orbital period of P = 3.90917 {+-} 0.00005 days. We present a refined analysis of the All Sky Monitor data from RXTE and find an X-ray period of P = 3.9094 {+-} 0.0008 days, which is consistent with the optical period. A simple model of Thomson scattering in the stellar wind can account for the modulation seen in the X-ray light curves. The V - K color of the star (1.17 {+-} 0.05) implies A{sub V} = 2.28 {+-} 0.06, which is much larger than previously assumed. For the secondary star, we measure a radius of R {sub 2} = 17.0 {+-} 0.8 R {sub sun} and a projected rotational velocity of V {sub rot}sin i = 129.9 {+-} 2.2 km s{sup -1}. Using these measured properties to constrain the dynamical model, we find an inclination of i = 36.{sup 0}38 {+-} 1.{sup 0}92, a secondary star mass of M {sub 2} = 31.79 {+-} 3.48 M {sub sun}, and a black hole mass of 10.91 {+-} 1.41 M {sub sun}. The present location of the secondary star in a temperature-luminosity diagram is consistent with that of a star with an initial mass of 35 M {sub sun} that is 5 Myr past the zero-age main sequence. The star nearly fills its Roche lobe ({approx}90% or more), and owing to the rapid change in radius with time in its present evolutionary state, it will encounter its Roche lobe and begin rapid and possibly unstable mass transfer on a timescale of a few hundred thousand years.

  11. The pulmonary response of white and black adults to six concentrations of ozone

    SciTech Connect (OSTI)

    Seal, E. Jr.; McDonnell, W.F.; House, D.E.; Salaam, S.A.; Dewitt, P.J.; Butler, S.O.; Green, J.; Raggio, L. )

    1993-04-01

    Many early studies of respiratory responsiveness to ozone (O3) were done on healthy, young, white males. The purpose of this study was to determine whether gender or race differences in O3 response exist among white and black, males and females, and to develop concentration-response curves for each of the gender-race groups. Three hundred seventy-two subjects (n > 90 in each gender-race group), ages 18 to 35 yr, were exposed once for 2.33 h to 0.0 (purified air), 0.12, 0.18, 0.24, 0.30, or 0.40 ppm O3. Each exposure was preceded by baseline pulmonary function tests and a symptom questionnaire. The first 2 h of exposure included alternating 15-min periods of rest and exercise on a motorized treadmill producing a minute ventilation (VE) of 25 L/min/m2 body surface area (BSA). After exposure, subjects completed a set of pulmonary function tests and a symptom questionnaire. Lung function and symptom responses were expressed as percent change from baseline and analyzed using a nonparametric two factor analysis of variance. Three primary variables were analyzed: FEV1, specific airway resistance (SRaw), and cough. Statistical analysis demonstrated no significant differences in response to O3 among the individual gender-race groups. For the group as a whole, changes in the variables FEV1, SRaw, and cough were first noted at 0.12, 0.18, and 0.18 ppm O3, respectively. Adjusted for exercise difference, concentration-response curves for FEV1 and cough among white males were consistent with previous reports (1).

  12. Effect of vitrification temperature upon the solar average absorptance properties of Pyromark Series 2500 black paint

    SciTech Connect (OSTI)

    Nelson, C.; Mahoney, A.R.

    1986-06-01

    A significant drop in production efficiency has occurred over time at the Solar One facility at Barstow, California, primarily as a result of the degradation of the Pyromark Series 2500 black paint used as the absorptive coating on the receiver panels. As part of the investigation of the problem, the solar-averaged adsorptance properties of the paint were determined as a function of vitrification temperature, since it is known that a significant amount of the panel surface area at Solar One was vitrified at temperatures below those recommended by the paint manufacturer (540/sup 0/C, 1000/sup 0/F). Painted samples initially vitrified at 230/sup 0/C (450/sup 0/F), 315/sup 0/C (600/sup 0/F), 371/sup 0/C (700/sup 0/F), and 480/sup 0/C (900/sup 0/F) exhibited significantly lower solar-averaged absorptance values (0.02 absorptance units) compared to samples vitrified at 540/sup 0/C (1000/sup 0/F). Thus, Solar One began its service life below optimal levels. After 140 h of thermal aging at 370/sup 0/C (700/sup 0/F) and 540/sup 0/C (1000/sup 0/F), all samples regardless of their initial vitrification temperatures, attained the same solar-averaged absorptance value (..cap alpha../sub s/ = 0.973). Therefore, both the long-term low-temperature vitrification and the short-term high-temperature vitrification can be used to obtain optimal or near-optimal absorptance of solar flux. Futher thermal aging of vitrified samples did not result in paint degradation, clearly indicating that high solar flux is required to produce this phenomenon. The panels at Solar One never achieved optimal absorptance because their exposure to high solar flux negated the effect of long-term low-temperature vitrification during operation. On future central receiver projects, every effort should be made to properly vitrify the Pyromark coating before its exposure to high flux conditions.

  13. THE ORIGIN OF BLACK HOLE SPIN IN GALACTIC LOW-MASS X-RAY BINARIES

    SciTech Connect (OSTI)

    Fragos, T.; McClintock, J. E.

    2015-02-10

    Galactic field black hole (BH) low-mass X-ray binaries (LMXBs) are believed to form in situ via the evolution of isolated binaries. In the standard formation channel, these systems survived a common envelope phase, after which the remaining helium core of the primary star and the subsequently formed BH are not expected to be highly spinning. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters. We propose here that the BH spin in LMXBs is acquired through accretion onto the BH after its formation. In order to test this hypothesis, we calculated extensive grids of detailed binary mass-transfer sequences. For each sequence, we examined whether, at any point in time, the calculated binary properties are in agreement with their observationally inferred counterparts of 16 Galactic LMXBs. The ''successful'' sequences give estimates of the mass that the BH has accreted since the onset of Roche-Lobe overflow. We find that in all Galactic LMXBs with measured BH spin, the origin of the spin can be accounted for by the accreted matter, and we make predictions about the maximum BH spin in LMXBs where no measurement is yet available. Furthermore, we derive limits on the maximum spin that any BH can have depending on current properties of the binary it resides in. Finally we discuss the implication that our findings have on the BH birth-mass distribution, which is shifted by ∼1.5 M {sub ☉} toward lower masses, compared to the currently observed one.

  14. CHANDRA HIGH-RESOLUTION OBSERVATIONS OF CID-42, A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE

    SciTech Connect (OSTI)

    Civano, F.; Elvis, M.; Lanzuisi, G.; Aldcroft, T.; Trichas, M.; Fruscione, A.; Bongiorno, A.; Brusa, M.; Blecha, L.; Loeb, A.; Comastri, A.; Gilli, R.; Salvato, M.; Komossa, S.; Koekemoer, A.; Mainieri, V.; Piconcelli, E.; Vignali, C.

    2012-06-10

    We present Chandra High Resolution Camera observations of CID-42, a candidate recoiling supermassive black hole (SMBH) at z = 0.359 in the COSMOS survey. CID-42 shows two optical compact sources resolved in the HST/ACS image embedded in the same galaxy structure and a velocity offset of {approx}1300 km s{sup -1} between the H{beta} broad and narrow emission line, as presented by Civano et al. Two scenarios have been proposed to explain the properties of CID-42: a gravitational wave (GW) recoiling SMBH and a double Type 1/Type 2 active galactic nucleus (AGN) system, where one of the two is recoiling because of slingshot effect. In both scenarios, one of the optical nuclei hosts an unobscured AGN, while the other one, either an obscured AGN or a star-forming compact region. The X-ray Chandra data allow us to unambiguously resolve the X-ray emission and unveil the nature of the two optical sources in CID-42. We find that only one of the optical nuclei is responsible for the whole X-ray unobscured emission observed and a 3{sigma} upper limit on the flux of the second optical nucleus is measured. The upper limit on the X-ray luminosity plus the analysis of the multiwavelength spectral energy distribution indicate the presence of a star-forming region in the second source rather than an obscured SMBH, thus favoring the GW recoil scenario. However, the presence of a very obscured SMBH cannot be fully ruled out. A new X-ray feature, in a SW direction with respect to the main source, is discovered and discussed.

  15. The black hole mass scale of classical and pseudo bulges in active galaxies

    SciTech Connect (OSTI)

    Ho, Luis C.; Kim, Minjin

    2014-07-01

    The mass estimator used to calculate black hole (BH) masses in broad-line active galactic nuclei (AGNs) relies on a virial coefficient (the 'f factor') that is determined by comparing reverberation-mapped (RM) AGNs with measured bulge stellar velocity dispersions against the M {sub BH}-σ{sub *} relation of inactive galaxies. It has recently been recognized that only classical bulges and ellipticals obey a tight M {sub BH}-σ{sub *} relation; pseudobulges have a different zero point and much larger scatter. Motivated by these developments, we reevaluate the f factor for RM AGNs with available σ{sub *} measurements, updated Hβ RM lags, and new bulge classifications based on detailed decomposition of high-resolution ground-based and space-based images. Separate calibrations are provided for the two bulge types, whose virial coefficients differ by a factor of ∼2: f = 6.3 ± 1.5 for classical bulges and ellipticals and f = 3.2 ± 0.7 for pseudobulges. The structure and kinematics of the broad-line region, at least as crudely encoded in the f factor, seems to be related to the large-scale properties or formation history of the bulge. Lastly, we investigate the bulge stellar masses of the RM AGNs, show evidence for recent star formation in the AGN hosts that correlates with Eddington ratio, and discuss the potential utility of the M {sub BH}-M {sub bulge} relation as a more promising alternative to the conventionally used M {sub BH}-σ{sub *} relation for future refinement of the virial mass estimator for AGNs.

  16. Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu

    2015-09-18

    We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 1043.0 erg s–1 while the low redshifts (z ≤ 0.3) show an excessmore » in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 1041.6 erg s–1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [OII] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from –3 to –2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)–1 at z ≤ 2 while the faint end evolves as ~3(z + 1)–1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.« less

  17. Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation

    SciTech Connect (OSTI)

    Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu

    2015-09-18

    We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ? z ? 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 1043.0 erg s1 while the low redshifts (z ? 0.3) show an excess in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 1041.6 erg s1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ? 1), we forecast the evolution of the [OII] LF at high redshift (z ? 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from 3 to 2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)1 at z ? 2 while the faint end evolves as ~3(z + 1)1 at 0.6 ? z ? 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.

  18. Offset active galactic nuclei as tracers of galaxy mergers and supermassive black hole growth

    SciTech Connect (OSTI)

    Comerford, Julia M.; Greene, Jenny E.

    2014-07-10

    Offset active galactic nuclei (AGNs) are AGNs that are in ongoing galaxy mergers, which produce kinematic offsets in the AGNs relative to their host galaxies. Offset AGNs are also close relatives of dual AGNs. We conduct a systematic search for offset AGNs in the Sloan Digital Sky Survey by selecting AGN emission lines that exhibit statistically significant line-of-sight velocity offsets relative to systemic. From a parent sample of 18,314 Type 2 AGNs at z < 0.21, we identify 351 offset AGN candidates with velocity offsets of 50 km s{sup 1} < |?v| < 410 km s{sup 1}. When we account for projection effects in the observed velocities, we estimate that 4%-8% of AGNs are offset AGNs. We designed our selection criteria to bypass velocity offsets produced by rotating gas disks, AGN outflows, and gravitational recoil of supermassive black holes, but follow-up observations are still required to confirm our candidates as offset AGNs. We find that the fraction of AGNs that are offset candidates increases with AGN bolometric luminosity, from 0.7% to 6% over the luminosity range 43 < log (L{sub bol}) [erg s{sup 1}] <46. If these candidates are shown to be bona fide offset AGNs, then this would be direct observational evidence that galaxy mergers preferentially trigger high-luminosity AGNs. Finally, we find that the fraction of AGNs that are offset AGN candidates increases from 1.9% at z = 0.1 to 32% at z = 0.7, in step with the growth in the galaxy merger fraction over the same redshift range.

  19. Environmental baseline survey report for West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge and parcel 21D in the vicinity of the East Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    King, David A.

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy?s (DOE?s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only no-further-investigation (NFI) reports. Groundwater sampling was also conducted to support a Parcel 21d decision. Based on available data West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, and West Pine Ridge are not impacted by site operations and are not subject to actions per the Federal Facility Agreement (FFA). This determination is supported by visual inspections, records searches and interviews, groundwater conceptual modeling, approved NFI reports, analytical data, and risk analysis results. Parcel 21d data, however, demonstrate impacts from site

  20. THE QUASAR SDSS J153636.22+044127.0: A DOUBLE-PEAKED EMITTER IN A CANDIDATE BINARY BLACK HOLE SYSTEM

    SciTech Connect (OSTI)

    Tang Sumin; Grindlay, Jonathan

    2009-10-20

    Double-peaked emission lines are believed to be originated from accretion disks around supermassive black holes (SMBHs), and about 3% of z < 0.33 active galactic nuclei (AGNs) are found to be double-peaked emitters. The quasar SDSS J153636.22+044127.0 has recently been identified with peculiar broad-line emission systems exhibiting multiple redshifts. We decompose the Halpha and Hbeta profiles into a circular Keplerian disk-line component and other Gaussian components. We propose that the system is both a double-peaked emitter and a binary SMBH system, where the extra flux in the blue peaks of the broad lines comes from the region around the secondary black hole. We suggest that such black hole binary systems might also exist in many known double-peaked emitters, where the tidal torques from the secondary black hole clear the outer region of the disk around the primary black hole, similar to the gap in a protostellar disk due to the process of planetary migration, and might also stimulate the formation of a vertical extended source in the inner region around the primary which illuminates the disk. However, most secondary SMBHs in such systems might be too small to maintain a detectable broad-line region (BLR), so that the disk line from the primary dominates.

  1. ULTRAVIOLET EMISSION-LINE CORRELATIONS IN HST/COS SPECTRA OF ACTIVE GALACTIC NUCLEI: SINGLE-EPOCH BLACK HOLE MASSES

    SciTech Connect (OSTI)

    Tilton, Evan M.; Shull, J. Michael, E-mail: evan.tilton@colorado.edu, E-mail: michael.shull@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States)

    2013-09-01

    Effective methods of measuring supermassive black hole masses in active galactic nuclei (AGNs) are of critical importance to studies of galaxy evolution. While there has been much success in obtaining masses through reverberation mapping, the extensive observing time required by this method has limited the practicality of applying it to large samples at a variety of redshifts. This limitation highlights the need to estimate these masses using single-epoch spectroscopy of ultraviolet (UV) emission lines. We use UV spectra of 44 AGNs from HST/COS, the International Ultraviolet Explorer, and the Far Ultraviolet Spectroscopic Explorer of the C IV {lambda}1549, O VI {lambda}1035, O III] {lambda}1664, He II {lambda}1640, C II {lambda}1335, and Mg II {lambda}2800 emission lines and explore their potential as tracers of the broad-line region and supermassive black hole mass. The higher signal-to-noise ratio and better spectral resolution of the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) resolve AGN intrinsic absorption and produce more accurate line widths. From these, we test the viability of mass-scaling relationships based on line widths and luminosities and carry out a principal component analysis based on line luminosities, widths, skewness, and kurtosis. At L{sub 1450} {<=} 10{sup 45} erg s{sup -1}, the UV line luminosities correlate well with H{beta}, as does the 1450 A continuum luminosity. We find that C IV, O VI, and Mg II can be used as reasonably accurate estimators of AGN black hole masses, while He II and C II are uncorrelated.

  2. Causes and solutions for cracking of coextruded and weld overlay floor tubes in black liquor recovery boilers

    SciTech Connect (OSTI)

    Keiser, J.R.; Taljat, B.; Wang, X.L.

    1998-09-01

    Cracking of coextruded, black liquor recovery boiler floor tubes is both a safety and an economic issue to mill operators. In an effort to determine the cause of the cracking and to identify a solution, extensive studies, described in this and three accompanying papers, are being conducted. In this paper, results of studies to characterize both the cracking and the chemical and thermal environment are reported. Based on the results described in this series of papers, a possible mechanism is presented and means to lessen the likelihood of cracking or to totally avoid cracking of floor tubes are offered.

  3. Synthesis and characterization of zinc doped nano TiO{sub 2} for efficient photocatalytic degradation of Eriochrome Black T

    SciTech Connect (OSTI)

    Singla, Pooja; Singh, Kulvir; Pandey, O. P.; Sharma, Manoj

    2013-06-03

    Sol-gel method was used to synthesize undoped and zinc doped TiO{sub 2} with varied dopant concentrations using titanium tetraisopropoxide and zinc acetate as precursors. The synthesized catalyst samples were characterized by various techniques such as X-ray powder diffraction (XRD), UV-vis diffuse reflectance (DRS). The photocatalytic activity was determined by means of degradation of azo dye Eriochrome Black T. The results revealed that Zn doped TiO{sub 2} nanoparticles exhibited better results as compared to undoped TiO{sub 2} nanoparticles. Zn doped TiO{sub 2} (0.7mol %) nanoparticles exhibited the highest photocatalytic activity.

  4. Chemical migration by contact metamorphism between pegmatite/country rocks: natural analogs for radionuclides migration. [Black Hills, South Dakota

    SciTech Connect (OSTI)

    Laul, J.C.; Walker, R.J.; Shearer, C.K.; Papike, J.J.; Simon, S.B.

    1983-10-01

    Comparison of trace element signatures of country rocks as a function of distance from the contact with two pegmatites, Tin Mountain and Etta, in the Black Hills of South Dakota, suggests that some elements such as K, Li, Rb, Cs, As, Sb, Zn and Pb, have migrated to distances of 4 to 40 meters during contact metamorphism. The relative degree of migration varies depending on the element. On the other hand, there is virtually no migration of rare earth elements (REE), Al, Sc, Cr, Hf, U, and Th. Biotite and muscovite are effective trace element traps for Li, Rb and Cs. Biotite has a greater affinity for Rb, Cs and Li than muscovite.

  5. Enhanced Solar Energy Absorption by Internally-mixed Black Carbon in Snow Grains

    SciTech Connect (OSTI)

    Flanner, M. G.; Liu, Xiaohong; Zhou, Cheng; Penner, Joyce E.; Jiao, C.

    2012-05-30

    Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0:05-109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chylek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8-2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only {approx}2% of the atmospheric BC burden is cloud-borne, 71-83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32-73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43-86%, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism

  6. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    SciTech Connect (OSTI)

    Zhang, Rudong; Wang, Hailong; Qian, Yun; Rasch, Philip J.; Easter, Richard C.; Ma, Po-Lun; Singh, Balwinder; Huang, Jianping; Fu, Qiang

    2015-01-01

    Black carbon (BC)particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source-receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fate of BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation of the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source- receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on seasons and the locations in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in Himalayas and Central Tibetan Plateau, while East Asia FF and BB contribute the most to Northeast Plateau in all seasons and Southeast Plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching Northwest Plateau, especially in the summer. Although the HTP local emissions only contribute about 10% of BC in

  7. Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, C.; Liou, K.-N.; Takano, Y.; Zhang, R.; Levy Zamora, M.; Yang, P.; Li, Q.; Leung, L. R.

    2015-10-28

    A theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, BC coated by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Theoretical calculations are consistent with measurements in extinction and absorption cross sections for fresh BC aggregates with different BC sizes (i.e., mobility diameters of 155, 245, and 320 nm), with differences of ≤ 25 %. The measured optical cross sections for BC coated bymore » sulfuric acid and for that undergoing further hygroscopic growth are generally captured (differences < 30 %) by theoretical calculations using a concentric core-shell structure, with an overestimate in extinction and absorption of the smallest BC size and an underestimate in scattering of the largest BC size. We find that the absorption and scattering cross sections of fresh BC aggregates vary by 20–40 and 50–65 %, respectively, due to the use of upper (1.95–0.79i) and lower (1.75–0.63i) bounds of BC refractive index, while the variations are < 20 % in absorption and < 50 % in scattering in the case of coated BC particles. Sensitivity analyses of the BC morphology show that the optical properties of fresh BC aggregates are more sensitive to fractal dimension than primary spherule size. The absorption and scattering cross sections of coated BC particles vary by more than a factor of 2 due to different coating structures. We find an increase of 20–250 % in absorption and a factor of 3–15 in scattering during aging, significantly depending on coating morphology and aging stages. This study suggests that an accurate estimate of BC radiative effects requires the incorporation of a dynamic BC aging process that accounts for realistic coating structures in

  8. Effects of warming on the structure and function of a boreal black spruce forest

    SciTech Connect (OSTI)

    Stith T.Gower

    2010-03-03

    A strong argument can be made that there is a greater need to study the effect of warming on boreal forests more than on any other terrestrial biome. Boreal forests, the second largest forest biome, are predicted to experience the greatest warming of any forest biome in the world, but a process-based understanding of how warming will affect the structure and function of this economically and ecologically important forest biome is lacking. The effects of warming on species composition, canopy structure and biogeochemical cycles are likely to be complex; elucidating the underlying mechanisms will require long-term whole-ecosystem manipulation to capture all the complex feedbacks (Shaver et al. 2000, Rustad et al. 2001, Stromgren 2001). The DOE Program for Ecosystem Research funded a three year project (2002-2005) to use replicated heated chambers on soil warming plots in northern Manitoba to examine the direct effects of whole-ecosystem warming. We are nearing completion of our first growing season of measurements (fall 2004). In spite of the unforeseen difficulty of installing the heating cable, our heating and irrigation systems worked extremely well, maintaining environmental conditions within 5-10% of the specified design 99% of the time. Preliminary data from these systems, all designed and built by our laboratory at the University of Wisconsin, support our overall hypothesis that warming will increase the carbon sink strength of upland boreal black spruce forests. I request an additional three years of funding to continue addressing the original objectives: (1) Examine the effect of warming on phenology of overstory, understory and bryophyte strata. Sap flux systems and dendrometer bands, monitored by data loggers, will be used to quantify changes in phenology and water use. (2) Quantify the effects of warming on nitrogen and water use by overstory, understory and bryophytes. (3) Compare effects of warming on autotrophic respiration and above- and belowground

  9. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    SciTech Connect (OSTI)

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by

  10. A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?

    SciTech Connect (OSTI)

    Civano, F.; Elvis, M.; Lanzuisi, G.; Hao, H.; Aldcroft, T.; Jahnke, K.; Zamorani, G.; Comastri, A.; Bolzonella, M.; Blecha, L.; Loeb, A.; Bongiorno, A.; Brusa, M.; Leauthaud, A.; Mainieri, V.; Piconcelli, E.; Salvato, M.; Scoville, N.; Trump, J.; Vignali, C.

    2010-07-01

    We present a detailed study of a peculiar source detected in the COSMOS survey at z = 0.359. Source CXOC J100043.1+020637, also known as CID-42, has two compact optical sources embedded in the same galaxy. The distance between the two, measured in the HST/ACS image, is 0.''495 {+-} 0.''005 that, at the redshift of the source, corresponds to a projected separation of 2.46 {+-} 0.02 kpc. A large ({approx}1200 km s{sup -1}) velocity offset between the narrow and broad components of H{beta} has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also the only X-ray source in COSMOS, having in its X-ray spectra a strong redshifted broad absorption iron line and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM-Newton data show that the absorption line is variable in energy by {Delta}E = 500 eV over four years and that the absorber has to be highly ionized in order not to leave a signature in the soft X-ray spectrum. That these features-the morphology, the velocity offset, and the inverted P-Cygni profile-occur in the same source is unlikely to be a coincidence. We envisage two possible explanations, both exceptional, for this system: (1) a gravitational wave (GW) recoiling black hole (BH), caught 1-10 Myr after merging; or (2) a Type 1/Type 2 system in the same galaxy where the Type 1 is recoiling due to the slingshot effect produced by a triple BH system. The first possibility gives us a candidate GW recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured active galactic nuclei (AGNs), and possibly universal in AGNs.

  11. Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, C.; Liou, K.-N.; Takano, Y.; Zhang, R.; Zamora, M. L.; Yang, P.; Li, Q.; Leung, L. R.

    2015-07-20

    A theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, coated BC by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Theoretical calculations are consistent with measurements in extinction and absorption cross sections for fresh BC aggregates, but overestimate the scattering cross sections for BC mobility diameters of 155, 245, and 320 nm, because of uncertainties associated with theoretical calculations for small particles as wellmore » as laboratory scattering measurements. The measured optical cross sections for coated BC by sulfuric acid and for those undergoing further hygroscopic growth are captured by theoretical calculations using a concentric core-shell structure, with differences of less than 20 %. This suggests that the core-shell shape represents the realistic BC coating morphology reasonably well in this case, which is consistent with the observed strong structure compaction during aging. We find that the absorption and scattering properties of fresh BC aggregates vary by up to 60 % due to uncertainty in the BC refractive index, which, however, is a factor of two smaller in the case of coated BC particles. Sensitivity analyses on the BC morphology show that the optical properties of fresh BC aggregates are more sensitive to fractal dimension than primary spherule size. The absorption and scattering cross sections of coated BC particles vary by more than a factor of two due to different coating structures. We find an increase of 20–250 % in absorption and a factor of 3–15 in scattering during aging, significantly depending on coating morphology and aging stages. Applying the aging model to CalNex 2010 field measurements, we show that the resulting BC

  12. Quantifying sources, transport, deposition and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, R.; Wang, H.; Qian, Y.; Rasch, P. J.; Easter, R. C.; Ma, P. -L.; Singh, B.; Huang, J.; Fu, Q.

    2015-01-07

    Black carbon (BC) particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source–receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fatemore » of BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation of the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source–receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on seasons and the locations in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in Himalayas and Central Tibetan Plateau, while East Asia FF and BB contribute the most to Northeast Plateau in all seasons and Southeast Plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching Northwest Plateau, especially in the summer. Although local emissions only contribute about 10% to

  13. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, R.; Wang, H.; Qian, Y.; Rasch, P. J.; Easter, R. C.; Ma, P. -L.; Singh, B.; Huang, J.; Fu, Q.

    2015-06-08

    Black carbon (BC) particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source–receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source-tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fate ofmore » BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation in the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source–receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on season and location in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer, when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in the Himalayas and central Tibetan Plateau, while East Asia FF and BB contribute the most to the northeast plateau in all seasons and southeast plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching the northwest plateau, especially in the summer. Although local emissions only contribute about

  14. Star formation and black hole growth at z ? 4.8

    SciTech Connect (OSTI)

    Netzer, Hagai; Mor, Rivay; Trakhtenbrot, Benny; Shemmer, Ohad; Lira, Paulina

    2014-08-10

    We report Herschel/SPIRE, Spitzer and Wide-field Infrared Survey Explorer observations of 44 z ? 4.8 optically selected active galactic nuclei (AGNs). This flux-limited sample contains the highest mass black holes (BHs) at this redshift. Ten of the objects were detected by Herschel and five show emission that is not clearly associated with the AGNs. The star formation (SF) luminosity (L{sub SF}) obtained by fitting the spectral energy distribution (SED) with standard SF templates, taking into account AGN contribution, is in the range 10{sup 46.62}-10{sup 47.21} erg s{sup 1} corresponding to SF rates of 1090-4240 M{sub ?} yr{sup 1}. Fitting with very luminous submillimeter galaxy SEDs gives SF rates that are smaller by 0.05 dex when using all bands and 0.1 dex when ignoring the 250 ?m band. A 40 K graybody fits to only the 500 ?m fluxes reduce L{sub SF} by about a factor of two. A stacking analysis of 29 undetected sources gives significant signals in all three bands. A SF template fit indicates L{sub SF} = 10{sup 46.19-46.23} erg s{sup 1} depending on the assumed AGN contribution. A 40 K fit to the stacked 500 ?m flux gives L{sub SF} = 10{sup 45.95} erg s{sup 1}. The mean BH mass (M{sub BH}) and AGN luminosity (L{sub AGN}) of the detected sources are significantly higher than those of the undetected ones. The spectral differences are seen all the way from UV to far infrared wavelengths. The mean optical-UV spectra are similar to those predicted for thin accretion disks around BHs with similar masses and accretion rates. We suggest two alternative explanations to the correlation of L{sub SF}, L{sub AGN} and M{sub BH}, one involving no AGN feedback and the second involving moderate feedback that affects, but does not totally quench, SF in three-quarters of the sources. We compare our L{sub SF} and L{sub AGN} to lower redshift samples and show a new correlation between L{sub SF} and M{sub BH}. We also examine several rather speculative ideas about the host galaxy

  15. DUAL SUPERMASSIVE BLACK HOLE CANDIDATES IN THE AGN AND GALAXY EVOLUTION SURVEY

    SciTech Connect (OSTI)

    Comerford, Julia M.; Schluns, Kyle; Greene, Jenny E.; Cool, Richard J.

    2013-11-01

    Dual supermassive black holes (SMBHs) with kiloparsec-scale separations in merger-remnant galaxies are informative tracers of galaxy evolution, but the avenue for identifying them in large numbers for such studies is not yet clear. One promising approach is to target spectroscopic signatures of systems where both SMBHs are fueled as dual active galactic nuclei (AGNs), or where one SMBH is fueled as an offset AGN. Dual AGNs may produce double-peaked narrow AGN emission lines, while offset AGNs may produce single-peaked narrow AGN emission lines with line-of-sight velocity offsets relative to the host galaxy. We search for such dual and offset systems among 173 Type 2 AGNs at z < 0.37 in the AGN and Galaxy Evolution Survey (AGES), and we find two double-peaked AGNs and five offset AGN candidates. When we compare these results to a similar search of the DEEP2 Galaxy Redshift Survey and match the two samples in color, absolute magnitude, and minimum velocity offset, we find that the fraction of AGNs that are dual SMBH candidates increases from z = 0.25 to z = 0.7 by a factor of ?6 (from 2/70 to 16/91, or 2.9{sup +3.6}{sub -1.9}% to 18{sup +5}{sub -5}%). This may be associated with the rise in the galaxy merger fraction over the same cosmic time. As further evidence for a link with galaxy mergers, the AGES offset and dual AGN candidates are tentatively ?3 times more likely than the overall AGN population to reside in a host galaxy that has a companion galaxy (from 16/173 to 2/7, or 9{sup +3}{sub -2}% to 29{sub -19}{sup +26}%). Follow-up observations of the seven offset and dual AGN candidates in AGES will definitively distinguish velocity offsets produced by dual SMBHs from those produced by narrow-line region kinematics, and will help sharpen our observational approach to detecting dual SMBHs.

  16. Geohydrological feasibility study of the Black Warrior Basin for the potential applicability of Jack W. McIntyre`s patented process

    SciTech Connect (OSTI)

    Reed, P.D.

    1994-03-01

    Geraghty & Miller, Inc. of Midland, Texas conducted geological and hydrological feasibility studies of the potential applicability of Jack W. Mclntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Black Warrior Basin of Mississippi and Alabama through literature surveys. Methane gas from coalbeds in the Black Warrior Basin is confined to the coal fields of northern Alabama. Produced water from degasification of coalbeds is currently disposed by surface discharge. Treatment prior to discharge consists of short-term storage and in-stream dilution. Mr. Mclntyre`s process appears to be applicable to the Black Warrior Basin and could provide an environmentally sound alternative for produced water production.

  17. An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars)

    SciTech Connect (OSTI)

    Harvey, Omar R.; Kuo, Li-Jung; Zimmerman, Andrew R.; Louchouarn, Patrick; Amonette, James E.; Herbert, Bruce

    2012-01-10

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R{sub 50}, for assessing biochar quality for carbon sequestration is proposed. The R{sub 50} is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R{sub 50}, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R{sub 50} and biochar recalcitrance. As presented here, the R{sub 50} is immediately applicable to pre-land application screening of biochars into Class A (R{sub 50} {>=} 0.70), Class B (0.50 {<=} R{sub 50} < 0.70) or Class C (R{sub 50} < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, while Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R{sub 50}, to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.

  18. Controlling emissions from a black liquor fluidized bed evaporator (Copeland reactor) using a regenerative thermal oxidizer and a prefilter

    SciTech Connect (OSTI)

    Grzanka, R.

    1997-12-31

    This paper reports on an intriguing pilot project developed to control air emissions from a pulp mill. Testing is complete, and the results show favorable emissions reductions. Stone Container Corporation, REECO, NCASI, the Ohio DEP, and the US EPA, have all worked together and approved the installation of control equipment, for VOC and HAP emissions under Presumptive MACT, setting the standard for the Copeland Reactor process in a semi chem pulp mill. The equipment, once operational, will reduce VOC and CO emissions by greater than 90%. This installation will be done at one seventh the cost of the significant process modifications required to accomplish the same emission reduction. In addition, increased process operating efficiency will be achieved with the use of an energy recovery system. The process is a black liquor fluidized bed boiler, which is used to generate sodium carbonate from the black liquor. The vapor emissions were high in VOCs, CO and particulate. After much study and testing, a wet electrostatic precipitator was chosen as the filter system for particulate control, followed by a regenerative thermal oxidizer for VOC and HAP control, finally an air-to-air heat exchanger is being used to preheat the combustion air entering the process.

  19. TIDAL DISRUPTIONS OF WHITE DWARFS FROM ULTRA-CLOSE ENCOUNTERS WITH INTERMEDIATE-MASS SPINNING BLACK HOLES

    SciTech Connect (OSTI)

    Haas, Roland; Bode, Tanja; Laguna, Pablo; Shcherbakov, Roman V.

    2012-04-20

    We present numerical relativity results of tidal disruptions of white dwarfs from ultra-close encounters with a spinning, intermediate-mass black hole (IMBH). These encounters require a full general relativistic treatment of gravity. We show that the disruption process and prompt accretion of the debris strongly depend on the magnitude and orientation of the black hole (BH) spin. However, the late-time accretion onto the BH follows the same decay, M-dot {proportional_to} t{sup -5/3}, estimated from Newtonian gravity disruption studies. We compute the spectrum of the disk formed from the fallback material using a slim disk model. The disk spectrum peaks in the soft X-rays and sustains Eddington luminosity for 1-3 yr after the disruption. For arbitrary BH spin orientations, the disrupted material is scattered away from the orbital plane by relativistic frame dragging, which often leads to obscuration of the inner fallback disk by the outflowing debris. The disruption events also yield bursts of gravitational radiation with characteristic frequencies of {approx}3.2 Hz and strain amplitudes of {approx}10{sup -18} for galactic IMBHs. The optimistic rate of considered ultra-close disruptions is consistent with no sources found in the ROSAT all-sky survey. Future missions like Wide-Field X-ray Telescope could observe dozens of events.

  20. Disruption of a red giant star by a supermassive black hole and the case of PS1-10jh

    SciTech Connect (OSTI)

    Bogdanovi?, Tamara; Cheng, Roseanne M.; Amaro-Seoane, Pau E-mail: rcheng@gatech.edu

    2014-06-20

    The development of a new generation of theoretical models for tidal disruptions is timely, as increasingly diverse events are being captured in surveys of the transient sky. Recently, Gezari et al. reported a discovery of a new class of tidal disruption events: the disruption of a helium-rich stellar core, thought to be a remnant of a red giant (RG) star. Motivated by this discovery and in anticipation of others, we consider tidal interaction of an RG star with a supermassive black hole (SMBH) which leads to the stripping of the stellar envelope and subsequent inspiral of the compact core toward the black hole. Once the stellar envelope is removed the inspiral of the core is driven by tidal heating as well as the emission of gravitational radiation until the core either falls into the SMBH or is tidally disrupted. In the case of the tidal disruption candidate PS1-10jh, we find that there is a set of orbital solutions at high eccentricities in which the tidally stripped hydrogen envelope is accreted by the SMBH before the helium core is disrupted. This places the RG core in a portion of parameter space where strong tidal heating can lift the degeneracy of the compact remnant and disrupt it before it reaches the tidal radius. We consider how this sequence of events explains the puzzling absence of the hydrogen emission lines from the spectrum of PS1-10jh and gives rise to its other observational features.

  1. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 3 (Appendices II, sections 2--3 and III)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 3 contains the following appendix sections: Formation and destruction of nitrogen oxides in recovery boilers; Sintering and densification of recovery boiler deposits laboratory data and a rate model; and Experimental data on rates of particulate formation during char bed burning.

  2. Pulmonary function and symptoms of Nigerian workers exposed to carbon black in dry cell battery and tire factories

    SciTech Connect (OSTI)

    Oleru, U.G.; Elegbeleye, O.O.; Enu, C.C.; Olumide, Y.M.

    1983-02-01

    The pulmonary function and symptoms of 125 workers exposed to carbon black in dry cell battery and tire manufacturing plants were investigated. There was no significant difference in the pulmonary function of the subjects in the two plants. There was good agreement in the symptoms reported in the two different factories: cough with phlegm production, tiredness, chest pain, catarrh, headache, and skin irritation. The symptoms also corroborate those reported in the few studies on the pulmonary effects of carbon black. The suspended particulate levels in the dry cell battery plant ranged from 25 to 34 mg/m/sup 3/ and the subjects with the highest probable exposure level had the most impaired pulmonary function. The pulmonary function of the exposed subjects was significantly lower than that of a control, nonindustrially exposed population. The drop in the lung function from the expected value per year of age was relatively constant for all the study subgroups but the drop per year of duration of employment was more severe in the earlier years of employment. This study has underscored the need for occupational health regulations in the industries of developing countries.

  3. Bibliography of the paleontology and paleoecology of the Devonian-Mississippian black-shale sequence in North America

    SciTech Connect (OSTI)

    Barron, L.S.; Ettensohn, F.R.

    1980-06-01

    The Devonian-Mississippian black-shale sequence is one of the most prominent and well-known stratigraphic horizons in the Paleozoic of the United States, yet the paleontology and its paleoecologic and paleoenvironmental implications are poorly known. This is in larger part related to the scarcity of fossils preserved in the shale - in terms of both diversity and abundance. Nonetheless, that biota which is preserved is well-known and much described, but there is little synthesis of this data. The first step in such a synthesis is the compilation of an inclusive bibliography such as this one. This bibliography contains 1193 entries covering all the major works dealing with Devonian-Mississippian black-shale paleontology and paleoecology in North America. Articles dealing with areas of peripheral interest, such as paleogeography, paleoclimatology, ocean circulation and chemistry, and modern analogues, are also cited. In the index, the various genera, taxonomic groups, and other general topics are cross-referenced to the cited articles. It is hoped that this compilation will aid in the synthesis of paleontologic and paleoecologic data toward a better understanding of these unique rocks and their role as a source of energy.

  4. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000 - article no. GB2018

    SciTech Connect (OSTI)

    Bond, T.C.; Bhardwaj, E.; Dong, R.; Jogani, R.; Jung, S.K.; Roden, C.; Streets, D.G.; Trautmann, N.M.

    2007-05-15

    We present an emission inventory of primary black carbon (BC) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We reconstruct fossil fuel consumption and represent changes in technology on a national and sectoral basis. Our estimates rely on new estimates of biofuel consumption, and updated emission factors for old technologies. Emissions of black carbon increase almost linearly, totaling about 1000 Gg in 1850, 2200 Gg in 1900, 3000 Gg in 1950, and 4400 Gg in 2000. Primary organic carbon shows a similar pattern, with emissions of 4100 Gg, 5800 Gg, 6700 Gg, and 8700 Gg in 1850, 1900, 1950, and 2000, respectively. Biofuel is responsible for over half of BC emission until about 1890, and dominates energy-related primary OC emission throughout the entire period. Coal contributes the greatest fraction of BC emission between 1880 and 1975, and is overtaken by emissions from biofuel around 1975, and by diesel engines around 1990. Previous work suggests a rapid rise in BC emissions between 1950 and 2000. This work supports a more gradual increase between 1950 and 2000, similar to the increase between 1850 and 1925; implementation of clean technology is a primary reason.

  5. HYPERACCRETING BLACK HOLE AS GAMMA-RAY BURST CENTRAL ENGINE. I. BARYON LOADING IN GAMMA-RAY BURST JETS

    SciTech Connect (OSTI)

    Lei Weihua; Zhang Bing; Liang Enwei E-mail: zhang@physics.unlv.edu

    2013-03-10

    A hyperaccreting stellar-mass black hole has been long speculated as the best candidate for the central engine of gamma-ray bursts (GRBs). Recent rich observations of GRBs by space missions such as Swift and Fermi pose new constraints on GRB central engine models. In this paper, we study the baryon-loading processes of a GRB jet launched from a black hole central engine. We consider a relativistic jet powered by {nu} {nu}-bar -annihilation or by the Blandford-Znajek (BZ) mechanism. We consider baryon loading from a neutrino-driven wind launched from a neutrino-cooling-dominated accretion flow. For a magnetically dominated BZ jet, we consider neutron drifting from the magnetic wall surrounding the jet and subsequent positron capture and proton-neutron inelastic collisions. The minimum baryon loads in both types of jet are calculated. We find that in both cases a more luminous jet tends to be more baryon poor. A neutrino-driven ''fireball'' is typically ''dirtier'' than a magnetically dominated jet, while a magnetically dominated jet can be much cleaner. Both models have the right scaling to interpret the empirical {Gamma}-L{sub iso} relation discovered recently. Since some neutrino-driven jets have too much baryon loading as compared with the data, we suggest that at least a good fraction of GRBs should have a magnetically dominated central engine.

  6. Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe

    SciTech Connect (OSTI)

    Wang, Jian-Min; Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Netzer, Hagai; Kaspi, Shai [Wise Observatory, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Bai, Jin-Ming; Wang, Fang [Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011, Yunnan (China); Lu, Kai-Xing [Astronomy Department, Beijing Normal University, Beijing 100875 (China); Collaboration: SEAMBH collaboration

    2014-10-01

    This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

  7. ON THE COSMIC EVOLUTION OF THE SCALING RELATIONS BETWEEN BLACK HOLES AND THEIR HOST GALAXIES: BROAD-LINE ACTIVE GALACTIC NUCLEI IN THE zCOSMOS SURVEY

    SciTech Connect (OSTI)

    Merloni, A.; Bongiorno, A.; Brusa, M.; Bolzonella, M.; Comastri, A.; Gilli, R.; Lusso, E.; Mignoli, M.; Civano, F.; Elvis, M.; Hao, H.; Fiore, F.; Jahnke, K.; Koekemoer, A. M.; Mainieri, V.; Miyaji, T.; Renzini, A.; Salvato, M.; Silverman, J.; Trump, J.

    2010-01-01

    We report on the measurement of the physical properties (rest-frame K-band luminosity and total stellar mass) of the hosts of 89 broad-line (type-1) active galactic nuclei (AGNs) detected in the zCOSMOS survey in the redshift range 1 < z < 2.2. The unprecedented multi-wavelength coverage of the survey field allows us to disentangle the emission of the host galaxy from that of the nuclear black hole in their spectral energy distributions (SEDs). We derive an estimate of black hole masses through the analysis of the broad Mg II emission lines observed in the medium-resolution spectra taken with VIMOS/VLT as part of the zCOSMOS project. We found that, as compared to the local value, the average black hole to host-galaxy mass ratio appears to evolve positively with redshift, with a best-fit evolution of the form (1+z){sup 0.68+}-{sup 0.12+0.6{sub -0.3}}, where the large asymmetric systematic errors stem from the uncertainties in the choice of initial mass function, in the calibration of the virial relation used to estimate BH masses and in the mean QSO SED adopted. On the other hand, if we consider the observed rest-frame K-band luminosity, objects tend to be brighter, for a given black hole mass, than those on the local M{sub BH}-M{sub K} relation. This fact, together with more indirect evidence from the SED fitting itself, suggests that the AGN hosts are likely actively star-forming galaxies. A thorough analysis of observational biases induced by intrinsic scatter in the scaling relations reinforces the conclusion that an evolution of the M{sub BH}-M{sub *} relation must ensue for actively growing black holes at early times: either its overall normalization, or its intrinsic scatter (or both) appear to increase with redshift. This can be interpreted as signature of either a more rapid growth of supermassive black holes at high redshift, a change of structural properties of AGN hosts at earlier times, or a significant mismatch between the typical growth times of

  8. An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice

    SciTech Connect (OSTI)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S.; Bellouin, N.; Berntsen, T.; Bian, Huisheng; Carslaw, K. S.; Chin, Mian; De Luca, N.; Diehl, Thomas; Ghan, Steven J.; Iversen, T.; Kirkevag, A.; Koch, Dorothy; Liu, Xiaohong; Mann, G. W.; Penner, Joyce E.; Pitari, G.; Schulz, M.; Seland, O.; Skeie, R. B.; Steenrod, Stephen D.; Stier, P.; Takemura, T.; Tsigaridis, Kostas; van Noije, T.; Yun, Yuxing; Zhang, Kai

    2014-03-07

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea-ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea-ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004-2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng g−1 for an earlier Phase of AeroCom models (Phase I), and +4.1 (-13.0 to +21.4) ng g−1 for a more recent Phase of AeroCom models (Phase II), compared to the observational mean of 19.2 ng g−1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60-90◦N) atmospheric residence time for BC in Phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition

  9. Analysis of Devonian Black Shales in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production

    SciTech Connect (OSTI)

    Brandon C. Nuttall; Cortland F. Eble; James A. Drahovzal; R. Marc Bustin

    2005-09-30

    Carbonaceous (black) Devonian gas shales underlie approximately two-thirds of Kentucky. In these shales, natural gas occurs in the intergranular and fracture porosity and is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO2 is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO2. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine both CO2 and CH4 adsorption isotherms. Sidewall core samples were acquired to investigate CO2 displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO2 adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton in the more organic-rich zones. There is a direct linear correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO2 adsorption capacity increases with increasing organic carbon content. Initial volumetric estimates based on these data indicate a CO2 sequestration capacity of as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. In the Big Sandy Gas Field area of eastern Kentucky, calculations using the net thickness of shale with 4 percent or greater total organic carbon, indicate that 6.8 billion tonnes of CO2 could be sequestered in the five county area. Discounting the uncertainties in reservoir volume and injection efficiency, these results indicate that the black shales of Kentucky are a potentially large geologic sink for CO2. Moreover, the extensive occurrence of gas shales in Paleozoic and Mesozoic

  10. ENHANCED ACCRETION RATES OF STARS ON SUPERMASSIVE BLACK HOLES BY STAR-DISK INTERACTIONS IN GALACTIC NUCLEI

    SciTech Connect (OSTI)

    Just, Andreas; Yurin, Denis; Makukov, Maxim; Berczik, Peter; Omarov, Chingis; Spurzem, Rainer; Vilkoviskij, Emmanuil Y.

    2012-10-10

    We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential

  11. ENVIRONMENTAL BASELINE SURVEY REPORT FOR WEST BLACK OAK RIDGE, EAST BLACK OAK RIDGE, MCKINNEY RIDGE, WEST PINE RIDGE, AND PARCEL 21D IN THE VICINITY OF THE EAST TENNESSEE TECHNOLOGY PARK, OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    David A. King

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy’s (DOE’s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. The goal is to obtain all media no-further-investigation (NFI) determinations for the subject parcels considering existing soils. To augment the existing soils-only NFI determinations, samples of groundwater, surface water, soil, and sediment were collected to support all media NFI decisions. The only updates presented here are those that were made after the original issuance of the NFI documents. In the subject parcel where the soils NFI determination was not completed for approval (Parcel 21d), the full process has been performed to address the soils as well. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only NFI

  12. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 1 (Main text and Appendix I, sections 1--4)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 1 contains the main body of the report and the first 4 sections of Appendix 1: Modeling of black liquor recovery boilers -- summary report; Flow and heat transfer modeling in the upper furnace of a kraft recovery boiler; Numerical simulation of black liquor combustion; and Investigation of turbulence models and prediction of swirling flows for kraft recovery furnaces.

  13. Daily growth increments in otoliths of juvenile black rockfish, Sebastes melanops: an evaluation of autoradiography as a new method of validation

    SciTech Connect (OSTI)

    Not Available

    1988-10-01

    This study evaluates the commonly used oxytetracycline hydrochloride (OTC) and an alternate chemical, the radioisotope calcium-45, in terms of their success as time-markers to validate daily growth increment formation in the otoliths of juvenile black rockfish, Sebastes melanops.

  14. The big ban on bituminous coal sales revisited: Serious epidemics and pronounced trends feign excess mortality previously attributed to heavy black-smoke exposure

    SciTech Connect (OSTI)

    Wittmaack, K.

    2007-07-01

    The effect of banning bituminous coal sales on the black-smoke concentration and the mortality rates in Dublin, Ireland, has been analyzed recently. Based on the application of standard epidemiological procedures, the authors concluded that, as a result of the ban, the total nontrauma death rate was reduced strongly (-8.0% unadjusted, -5.7% adjusted). The purpose of this study was to reanalyze the original data with the aim of clarifying the three most important aspects of the study, (a) the effect of epidemics, (b) the trends in mortality rates due to advances in public health care, and (c) the correlation between mortality rates and black-smoke concentrations. Particular attention has been devoted to a detailed evaluation of the time dependence of mortality rates, stratified by season. Death rates were found to be strongly enhanced during three severe pre-ban winter-spring epidemics. The cardiovascular mortality rates exhibited a continuous decrease over the whole study period, in general accordance with trends in the rest of Ireland. These two effects can fully account for the previously identified apparent correlation between reduced mortality and the very pronounced ban-related lowering of the black-smoke concentration. The third important finding was that in nonepidemic pre-ban seasons even large changes in the concentration of black smoke had no detectable effect on mortality rates. The reanalysis suggests that epidemiological studies exploring the effect of ambient particulate matter on mortality require improved tools allowing proper adjustment for epidemics and trends.

  15. Secondary oil recovery from selected Carter sandstone oilfields, Black Warrior basin, Alabama. [Annual] yearly report, December 1, 1992--November 30, 1993

    SciTech Connect (OSTI)

    Anderson, J.C.

    1994-03-01

    In this Class I PON, Anderman/Smith Operating Company is targeting three Carter sandstone oilfields (Black Warrior basin) for secondary recovery. Waterfloods are underway in two of the areas -- Central Bluff and North Fairview units. For the third area, South Bluff, negotiations are underway to unitize the field. Once South Bluff is unitized, waterflooding will commence.

  16. THE DYNAMICS, APPEARANCE, AND DEMOGRAPHICS OF RELATIVISTIC JETS TRIGGERED BY TIDAL DISRUPTION OF STARS IN QUIESCENT SUPERMASSIVE BLACK HOLES

    SciTech Connect (OSTI)

    De Colle, Fabio; Guillochon, James; Naiman, Jill; Ramirez-Ruiz, Enrico E-mail: jfg@ucolick.org E-mail: enrico@ucolick.org

    2012-12-01

    We examine the consequences of a model in which relativistic jets can be triggered in quiescent massive black holes when a geometrically thick and hot accretion disk forms as a result of the tidal disruption of a star. To estimate the power, thrust, and lifetime of the jet, we use the mass accretion history onto the black hole as calculated by detailed hydrodynamic simulations of the tidal disruption of stars. We go on to determine the states of the interstellar medium in various types of quiescent galactic nuclei, and describe how this external matter can affect jets propagating through it. We use this information, together with a two-dimensional hydrodynamic model of the structure of the relativistic flow, to study the dynamics of the jet, the propagation of which is regulated by the density stratification of the environment and by its injection history. The breaking of symmetry involved in transitioning from one to two dimensions is crucial and leads to qualitatively new phenomena. At early times, as the jet power increases, the high pressure of the cocoon collimates the jet, increasing its shock velocity as compared to that of spherical models. We show that small velocity gradients, induced near or at the source, steepen into internal shocks and provide a source of free energy for particle acceleration and radiation along the jet's channel. The jets terminate at a working surface where they interact strongly with the surrounding medium through a combination of shock waves and instabilities; a continuous flow of relativistic fluid emanating from the nucleus supplies this region with mass, momentum, and energy. Information about the t {sup -5/3} decrease in power supply propagates within the jet at the internal sound speed. As a result, the internal energy at the jet head continues to accumulate until long after the peak feeding rate is reached. An appreciable time delay is thus expected between peaks in the short-wavelength radiation emanating near the jet

  17. Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development

    SciTech Connect (OSTI)

    Jacobson, Arne; Bond, Tami C.; Lam, Nicholoas L.; Hultman, Nathan

    2013-04-15

    Replacing inefficient kerosene lighting with electric lighting or other clean alternatives can rapidly achieve development and energy access goals, save money and reduce climate warming. Many of the 250 million households that lack reliable access to electricity rely on inefficient and dangerous simple wick lamps and other kerosene-fueled light sources, using 4 to 25 billion liters of kerosene annually to meet basic lighting needs. Kerosene costs can be a significant household expense and subsidies are expensive. New information on kerosene lamp emissions reveals that their climate impacts are substantial. Eliminating current annual black carbon emissions would provide a climate benefit equivalent to 5 gigatons of carbon dioxide reductions over the next 20 years. Robust and low-cost technologies for supplanting simple wick and other kerosene-fueled lamps exist and are easily distributed and scalable. Improving household lighting offers a low-cost opportunity to improve development, cool the climate and reduce costs.

  18. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology and Waste Management Consortium annual report, 1990--1991

    SciTech Connect (OSTI)

    1991-12-31

    The HBCU/MI Environmental Technology and Waste Management Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among the member institutions. This group of research-oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MI) agreed to work together to initiate research, technology development and education programs to address the nation`s critical environmental problems. As a group the HBCU/MI Consortium is uniquely positioned to reach women and the minority populations of African Americans, Hispanics and American Indians. As part of their initial work, they developed the Research, Education, and Technology Transfer (RETT) Plan to actualize the Consortium`s guiding principles. In addition to developing a comprehensive research agenda, four major programs were begun to meet these goals. This report summarizes the 1990--1991 progress.

  19. Acceleration of relativistic electrons by magnetohydrodynamic turbulence: Implications for non-thermal emission from black hole accretion disks

    SciTech Connect (OSTI)

    Lynn, Jacob W.; Quataert, Eliot; Chandran, Benjamin D. G.; Parrish, Ian J.

    2014-08-10

    We use analytic estimates and numerical simulations of test particles interacting with magnetohydrodynamic (MHD) turbulence to show that subsonic MHD turbulence produces efficient second-order Fermi acceleration of relativistic particles. This acceleration is not well described by standard quasi-linear theory but is a consequence of resonance broadening of wave-particle interactions in MHD turbulence. We provide momentum diffusion coefficients that can be used for astrophysical and heliospheric applications and discuss the implications of our results for accretion flows onto black holes. In particular, we show that particle acceleration by subsonic turbulence in radiatively inefficient accretion flows can produce a non-thermal tail in the electron distribution function that is likely important for modeling and interpreting the emission from low-luminosity systems such as Sgr A* and M87.

  20. Primordial black holes with mass 10{sup 16}?10{sup 17} g and reionization of the Universe

    SciTech Connect (OSTI)

    Belotsky, K.M.; Kirillov, A.A. E-mail: kirillov-aa@yandex.ru

    2015-01-01

    Primordial black holes (PBHs) with mass 10{sup 16}?10{sup 17} g almost escape constraints from observations so could essentially contribute to dark matter density. Hawking evaporation of such PBHs produces with a steady rate ?- and e{sup }-radiations in MeV energy range, which can be absorbed by ordinary matter. Simplified estimates show that a small fraction of evaporated energy had to be absorbed by baryonic matter what can turn out to be enough to heat the matter so it is fully ionized at the redshift z?5...10. The result is found to be close to a borderline case where the effect appears, what makes it sensitive to the approximation used. In our approximation, degree of gas ionization reaches 50-100% by z?5 for PBH mass (3...7)נ10{sup 16} g with their abundance corresponding to the upper limit.

  1. THE MOST MASSIVE ACTIVE BLACK HOLES AT z ∼ 1.5-3.5 HAVE HIGH SPINS AND RADIATIVE EFFICIENCIES

    SciTech Connect (OSTI)

    Trakhtenbrot, Benny

    2014-07-01

    The radiative efficiencies (η) of 72 luminous unobscured active galactic nuclei at z ∼ 1.5-3.5, powered by some of the most massive black holes (BHs), are constrained. The analysis is based on accretion disk (AD) models, which link the continuum luminosity at rest-frame optical wavelengths and the BH mass (M {sub BH}) to the accretion rate through the AD, M-dot {sub AD}. The data are gathered from several literature samples with detailed measurements of the Hβ emission line complex, observed at near-infrared bands. When coupled with standard estimates of bolometric luminosities (L {sub bol}), the analysis suggests high radiative efficiencies, with most of the sources showing η > 0.2, that is, higher than the commonly assumed value of 0.1, and the expected value for non-spinning BHs (η = 0.057). Even under more conservative assumptions regarding L {sub bol} (i.e., L {sub bol} = 3 × L {sub 5100}), most of the extremely massive BHs in the sample (i.e., M {sub BH} ≳ 3 × 10{sup 9} M {sub ☉}) show radiative efficiencies which correspond to very high BH spins (a {sub *}), with typical values well above a {sub *} ≅ 0.7. These results stand in contrast to the predictions of a ''spin-down'' scenario, in which a series of randomly oriented accretion episodes leads to a {sub *} ∼ 0. Instead, the analysis presented here strongly supports a ''spin-up'' scenario, which is driven by either prolonged accretion or a series of anisotropically oriented accretion episodes. Considering the fact that these extreme BHs require long-duration or continuous accretion to account for their high masses, it is argued that the most probable scenario for the super-massive black holes under study is that of an almost continuous sequence of randomly yet not isotropically oriented accretion episodes.

  2. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  3. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  4. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  5. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  6. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  7. GRB060218 AS A TIDAL DISRUPTION OF A WHITE DWARF BY AN INTERMEDIATE-MASS BLACK HOLE

    SciTech Connect (OSTI)

    Shcherbakov, Roman V.; Reynolds, Christopher S.; Pe'er, Asaf; Haas, Roland; Bode, Tanja; Laguna, Pablo

    2013-06-01

    The highly unusual pair of a gamma-ray burst (GRB) GRB060218 and an associated supernova, SN2006aj, has puzzled theorists for years. A supernova shock breakout and a jet from a newborn stellar mass compact object have been proposed to explain this pair's multiwavelength signature. Alternatively, we propose that the source is naturally explained by another channel: the tidal disruption of a white dwarf (WD) by an intermediate-mass black hole (IMBH). This tidal disruption is accompanied by a tidal pinching, which leads to the ignition of a WD and a supernova. Some debris falls back onto the IMBH, forms a disk, which quickly amplifies the magnetic field, and launches a jet. We successfully fit soft X-ray spectra with the Comptonized blackbody emission from a jet photosphere. The optical/UV emission is consistent with self-absorbed synchrotron emission from the expanding jet front. The temporal dependence of the accretion rate M-dot (t) in a tidal disruption provides a good fit to the soft X-ray light curve. The IMBH mass is found to be about 10{sup 4} M{sub Sun} in three independent estimates: (1) fitting the tidal disruption M-dot (t) to the soft X-ray light curve, (2) computing the jet base radius in a jet photospheric emission model, and (3) inferring the mass of the central black hole based on the host dwarf galaxy's stellar mass. The position of the supernova is consistent with the center of the host galaxy, while the low supernova ejecta mass is consistent with that of a WD. The high expected rate of tidal disruptions in dwarf galaxies is consistent with one source observed by the Swift satellite over several years at a distance of 150 Mpc measured for GRB060218. Encounters with WDs provide much fuel for the growth of IMBHs.

  8. PROSPECTS FOR JOINT GRAVITATIONAL-WAVE AND ELECTROMAGNETIC OBSERVATIONS OF NEUTRON-STAR-BLACK-HOLE COALESCING BINARIES

    SciTech Connect (OSTI)

    Pannarale, Francesco; Ohme, Frank E-mail: frank.ohme@ligo.org

    2014-08-10

    Coalescing neutron-star-black-hole (NS-BH) binaries are a promising source of gravitational-wave (GW) signals detectable with large-scale laser interferometers such as the Advanced Laser Interferometer Gravitational-Wave Observatory and Virgo. They are also one of the main short gamma-ray burst (SGRB) progenitor candidates. If the black hole (BH) tidally disrupts its companion, an SGRB may be ignited when a sufficiently massive accretion disk forms around the remnant BH. Detecting an NS-BH coalescence both in the GW and electromagnetic (EM) spectrum offers a wealth of information about the nature of the source. How much can actually be inferred from a joint detection is unclear, however, as a mass/spin degeneracy may reduce the GW measurement accuracy. To shed light on this problem and on the potential of joint EM+GW observations, we here combine recent semi-analytical predictions for the remnant disk mass with estimates of the parameter-space portion that is selected by a GW detection. We identify cases in which an SGRB ignition is supported, others in which it can be excluded, and finally others in which the outcome depends on the chosen model for the currently unknown NS equation of state. We pinpoint a range of systems that would allow us to place lower bounds on the equation of state stiffness if both the GW emission and its EM counterpart are observed. The methods we develop can broaden the scope of existing GW detection and parameter-estimation algorithms and could allow us to disregard about half of the templates in an NS-BH search following an SGRB trigger, increasing its speed and sensitivity.

  9. CATCH ME IF YOU CAN: IS THERE A 'RUNAWAY-MASS' BLACK HOLE IN THE ORION NEBULA CLUSTER?

    SciTech Connect (OSTI)

    Subr, Ladislav; Kroupa, Pavel; Baumgardt, Holger

    2012-09-20

    We investigate the dynamical evolution of the Orion Nebula Cluster (ONC) by means of direct N-body integrations. A large fraction of residual gas was probably expelled when the ONC formed, so we assume that the ONC was much more compact when it formed compared with its current size, in agreement with the embedded cluster radius-mass relation from Marks and Kroupa. Hence, we assume that few-body relaxation played an important role during the initial phase of evolution of the ONC. In particular, three-body interactions among OB stars likely led to their ejection from the cluster and, at the same time, to the formation of a massive object via 'runaway' physical stellar collisions. The resulting depletion of the high-mass end of the stellar mass function in the cluster is one of the important points where our models fit the observational data. We speculate that the runaway-mass star may have collapsed directly into a massive black hole (M{sub .} {approx}> 100 M{sub Sun }). Such a dark object could explain the large velocity dispersion of the four Trapezium stars observed in the ONC core. We further show that the putative massive black hole is likely to be a member of a binary system with Almost-Equal-To 70% probability. In such a case, it could be detected either due to short periods of enhanced accretion of stellar winds from the secondary star during pericentre passages, or through a measurement of the motion of the secondary whose velocity would exceed 10 km s{sup -1} along the whole orbit.

  10. The direct collapse of a massive black hole seed under the influence of an anisotropic Lyman-Werner source

    SciTech Connect (OSTI)

    Regan, John A.; Johansson, Peter H.; Wise, John H.

    2014-11-10

    The direct collapse model of supermassive black hole seed formation requires that the gas cools predominantly via atomic hydrogen. To this end we simulate the effect of an anisotropic radiation source on the collapse of a halo at high redshift. The radiation source is placed at a distance of 3 kpc (physical) from the collapsing object and is set to emit monochromatically in the center of the Lyman-Werner (LW) band. The LW radiation emitted from the high redshift source is followed self-consistently using ray tracing techniques. Due to self-shielding, a small amount of H{sub 2} is able to form at the very center of the collapsing halo even under very strong LW radiation. Furthermore, we find that a radiation source, emitting >10{sup 54} (∼ 10{sup 3} J{sub 21}) photons s{sup –1}, is required to cause the collapse of a clump of M ∼ 10{sup 5} M {sub ☉}. The resulting accretion rate onto the collapsing object is ∼0.25 M {sub ☉} yr{sup –1}. Our results display significant differences, compared to the isotropic radiation field case, in terms of the H{sub 2} fraction at an equivalent radius. These differences will significantly affect the dynamics of the collapse. With the inclusion of a strong anisotropic radiation source, the final mass of the collapsing object is found to be M ∼ 10{sup 5} M {sub ☉}. This is consistent with predictions for the formation of a supermassive star or quasi-star leading to a supermassive black hole.

  11. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and

  12. FORMATION OF MASSIVE BLACK HOLES IN DENSE STAR CLUSTERS. II. INITIAL MASS FUNCTION AND PRIMORDIAL MASS SEGREGATION

    SciTech Connect (OSTI)

    Goswami, Sanghamitra; Umbreit, Stefan; Rasio, Frederic A.; Bierbaum, Matt

    2012-06-10

    A promising mechanism to form intermediate-mass black holes is the runaway merger in dense star clusters, where main-sequence stars collide and form a very massive star (VMS), which then collapses to a black hole (BH). In this paper, we study the effects of primordial mass segregation and the importance of the stellar initial mass function (IMF) on the runaway growth of VMSs using a dynamical Monte Carlo code for N-body systems with N as high as 10{sup 6} stars. Our code now includes an explicit treatment of all stellar collisions. We place special emphasis on the possibility of top-heavy IMFs, as observed in some very young massive clusters. We find that both primordial mass segregation and the shape of the IMF affect the rate of core collapse of star clusters and thus the time of the runaway. When we include primordial mass segregation, we generally see a decrease in core-collapse time (t{sub cc}). Although for smaller degrees of primordial mass segregation this decrease in t{sub cc} is mostly due to the change in the density profile of the cluster, for highly mass-segregated (primordial) clusters, it is the increase in the average mass in the core which reduces the central relaxation time decreasing t{sub cc}. The final mass of the VMS formed is always close to {approx}10{sup -3} of the total cluster mass, in agreement with previous studies and is reminiscent of the observed correlation between the central BH mass and the bulge mass of the galaxies. As the degree of primordial mass segregation is increased, the mass of the VMS increases at most by a factor of three. Flatter IMFs generally increase the average mass in the whole cluster, which increases t{sub cc}. For the range of IMFs investigated in this paper, this increase in t{sub cc} is to some degree balanced by stellar collisions, which accelerate core collapse. Thus, there is no significant change in t{sub cc} for the somewhat flatter global IMFs observed in very young massive clusters.

  13. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    SciTech Connect (OSTI)

    Deaton, M. Brett; Duez, Matthew D.; Foucart, Francois; O'Connor, Evan; Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela; Kidder, Lawrence E.; Muhlberger, Curran D. E-mail: m.duez@wsu.edu

    2013-10-10

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M{sub ?} neutron star, 5.6 M{sub ?} black hole), high-spin (black hole J/M {sup 2} = 0.9) system with the K{sub 0} = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M{sub ?} of nuclear matter is ejected from the system, while another 0.3 M{sub ?} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y{sub e} of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ? 6 MeV) and luminous in neutrinos (L{sub ?} ? 10{sup 54} erg s{sup 1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.

  14. Severe constraints on the loop-quantum-gravity energy-momentum dispersion relation from the black-hole area-entropy law

    SciTech Connect (OSTI)

    Amelino-Camelia, Giovanni; Procaccini, Andrea; Arzano, Michele

    2004-11-15

    We explore a possible connection between two aspects of loop quantum gravity which have been extensively studied in the recent literature: the black-hole area-entropy law and the energy-momentum dispersion relation. We observe that the original Bekenstein argument for the area-entropy law implicitly requires information on the energy-momentum dispersion relation and on the position-momentum uncertainty relation. Recent results show that in first approximation black-hole entropy in loop quantum gravity depends linearly on the area, with small correction terms which have logarithmic or inverse-power dependence on the area. And it has been argued that in loop quantum gravity the dispersion relation should include terms that depend linearly on the Planck length, while no evidence of modification of the position-momentum uncertainty relation has been found. We observe that this scenario with Planck-length-linear modification of the dispersion relation and unmodified position-momentum uncertainty relation is incompatible with the black-hole-entropy results, since it would give rise to a term in the entropy formula going like the square root of the area.

  15. SPOON-FEEDING GIANT STARS TO SUPERMASSIVE BLACK HOLES: EPISODIC MASS TRANSFER FROM EVOLVING STARS AND THEIR CONTRIBUTION TO THE QUIESCENT ACTIVITY OF GALACTIC NUCLEI

    SciTech Connect (OSTI)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Grady, Sean; Guillochon, James

    2013-11-10

    Stars may be tidally disrupted if, in a single orbit, they are scattered too close to a supermassive black hole (SMBH). Tidal disruption events are thought to power luminous but short-lived accretion episodes that can light up otherwise quiescent SMBHs in transient flares. Here we explore a more gradual process of tidal stripping where stars approach the tidal disruption radius by stellar evolution while in an eccentric orbit. After the onset of mass transfer, these stars episodically transfer mass to the SMBH every pericenter passage, giving rise to low-level flares that repeat on the orbital timescale. Giant stars, in particular, will exhibit a runaway response to mass loss and 'spoon-feed' material to the black hole for tens to hundreds of orbital periods. In contrast to full tidal disruption events, the duty cycle of this feeding mode is of order unity for black holes M{sub bh} ?> 10{sup 7} M{sub ?}. This mode of quasi-steady SMBH feeding is competitive with indirect SMBH feeding through stellar winds, and spoon-fed giant stars may play a role in determining the quiescent luminosity of local SMBHs.

  16. The velocity dispersion profile of NGC 6388 from resolved-star spectroscopy: No evidence of a central cusp and new constraints on the black hole mass

    SciTech Connect (OSTI)

    Lanzoni, B.; Mucciarelli, A.; Ferraro, F. R.; Miocchi, P.; Dalessandro, E.; Pallanca, C.; Massari, D.; Valenti, E.

    2013-06-01

    By combining high spatial resolution and wide-field spectroscopy performed, respectively, with SINFONI and FLAMES at the ESO/VLT we measured the radial velocities of more than 600 stars in the direction of NGC 6388, a Galactic globular cluster which is suspected to host an intermediate-mass black hole. Approximately 55% of the observed targets turned out to be cluster members. The cluster velocity dispersion has been derived from the radial velocity of individual stars: 52 measurements in the innermost 2'', and 276 stars located between 18'' and 600''. The velocity dispersion profile shows a central value of ?13 km s{sup 1}, a flat behavior out to ?60'' and a decreasing trend outward. The comparison with spherical and isotropic models shows that the observed density and velocity dispersion profiles are inconsistent with the presence of a central black hole more massive than ?2000 M {sub ?}. These findings are at odds with recent results obtained from integrated light spectra, showing a velocity dispersion profile with a steep central cusp of 23-25 km s{sup 1} at r < 2'' and suggesting the presence of a black hole with a mass of ?1.7 10{sup 4} M {sub ?}. We also found some evidence of systemic rotation with amplitude A {sub rot} ? 8 km s{sup 1} in the innermost 2'' (0.13 pc), decreasing to A {sub rot} = 3.2 km s{sup 1} at 18'' < r < 160''.

  17. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    2015-07-10

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In-situ observations of snow cover fraction since the 1960s suggest that the snow pack in the region have retreated significantly, accompanied by a surface warming of 22.5 C observed over the peak altitudes (5000 m). Using a high-resolution oceanatmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover fraction to various anthropogenic factors. Atmorethe Tibetan Plateau altitudes, the increase of atmospheric CO2 concentration exerted a warming of 1.7 C, BC 1.3 C where as cooling aerosols cause about 0.7 C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO2 has contributed to the snow retreat trends. Especially, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow are coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. These findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.less

  18. Complete multiwavelength evolution of galactic black hole transients during outburst decay. II. Compact jets and X-ray variability properties

    SciTech Connect (OSTI)

    Diner, T.; Kalemci, E.; Tomsick, J. A.; Buxton, M. M.; Bailyn, C. D.

    2014-11-01

    We investigated the relation between compact jet emission and X-ray variability properties of all black hole transients with multiwavelength coverage during their outburst decays. We studied the evolution of all power spectral components (including low-frequency quasi-periodic oscillations; QPOs), and related this evolution to changes in jet properties tracked by radio and infrared observations. We grouped sources according to their tracks in the radio/X-ray luminosity relation and show that the standards show stronger broadband X-ray variability than outliers at a given X-ray luminosity when the compact jet turns on. This trend is consistent with the internal shock model and can be important for the understanding of the presence of tracks in the radio/X-ray luminosity relation. We also observed that the total and the QPO rms amplitudes increase together during the earlier part of the outburst decay, but after the compact jet turns, either the QPO disappears or its rms amplitude decreases significantly while the total rms amplitudes remain high. We discuss these results with a scenario including a variable corona and a non-variable disk with a mechanism for the QPO separate from the mechanism that creates broad components. Finally, we evaluated the timing predictions of the magnetically dominated accretion flow model that can explain the presence of tracks in the radio/X-ray luminosity relation.

  19. Optimization of Acetylene Black Conductive Additive andPolyvinylidene Difluoride Composition for High Power RechargeableLithium-Ion Cells

    SciTech Connect (OSTI)

    Liu, G.; Zheng, H.; Battaglia, V.S.; Simens, A.S.; Minor, A.M.; Song, X.

    2007-07-01

    Fundamental electrochemical methods were applied to study the effect of the acetylene black (AB) and the polyvinylidene difluoride (PVDF) polymer binder on the performance of high-power designed rechargeable lithium ion cells. A systematic study of the AB/PVDF long-range electronic conductivity at different weight ratios is performed using four-probe direct current tests and the results reported. There is a wide range of AB/PVDF ratios that satisfy the long-range electronic conductivity requirement of the lithium-ion cathode electrode; however, a significant cell power performance improvement is observed at small AB/PVDF composition ratios that are far from the long-range conductivity optimum of 1 to 1.25. Electrochemical impedance spectroscopy (EIS) tests indicate that the interfacial impedance decreases significantly with increase in binder content. The hybrid power pulse characterization results agree with the EIS tests and also show improvement for cells with a high PVDF content. The AB to PVDF composition plays a significant role in the interfacial resistance. We believe the higher binder contents lead to a more cohesive conductive carbon particle network that results in better overall all local electronic conductivity on the active material surface and hence reduced charge transfer impedance.

  20. Chemical Bonding and Structural Information of Black CarbonReference Materials and Individual Carbonaceous AtmosphericAerosols

    SciTech Connect (OSTI)

    Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

    2007-04-25

    The carbon-to-oxygen ratios and graphitic nature of a rangeof black carbon standard reference materials (BC SRMs), high molecularmass humic-like substances (HULIS) and atmospheric particles are examinedusing scanning transmission X-ray microscopy (STXM) coupled with nearedge X-ray absorption fine structure (NEXAFS) spectroscopy. UsingSTXM/NEXAFS, individual particles with diameter>100 nm are studied,thus the diversity of atmospheric particles collected during a variety offield missions is assessed. Applying a semi-quantitative peak fittingmethod to the NEXAFS spectra enables a comparison of BC SRMs and HULIS toparticles originating from anthropogenic combustion and biomass burns,thus allowing determination of the suitability of these materials forrepresenting atmospheric particles. Anthropogenic combustion and biomassburn particles can be distinguished from one another using both chemicalbonding and structural ordering information. While anthropogeniccombustion particles are characterized by a high proportion ofaromatic-C, the presence of benzoquinone and are highly structurallyordered, biomass burn particles exhibit lower structural ordering, asmaller proportion of aromatic-C and contain a much higher proportion ofoxygenated functional groups.