National Library of Energy BETA

Sample records for fiber project cxs

  1. Hot Springs-Garrison Fiber Optic Project

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

  2. McCullough to Liberty fiber optics project

    SciTech Connect (OSTI)

    1997-05-01

    The US Department of Energy, Western Area Power Administration (Western) proposes to replace an existing overhead static wire with a shield wire that contains optical fibers (OPGW) on transmission lines from McCullough Substation, south of Las Vegas, Nevada, to Liberty Substation near Phoenix, Arizona. The replacement will occur on the McCullough-Davis, Davis-Parker No. 2, and Parker-Liberty No. 1 230-kV transmission lines. Western is responsible for the operation and maintenance of the lines. Western prepared an Environmental Assessment (EA) entitled ``McCullough to Liberty Fiber Optics Project`` (DOE/EA-1202). The EA contains the analysis of the proposed construction, operation, and maintenance of the OPGW. Based on the analysis in the EA, Western finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. The preparation of an environmental impact statement (EIS) is not required, and therefore, Western is issuing this Findings of No Significant Impact (FONSI).

  3. Natural Fiber Composite Retting, Preform Manufacture and Molding (Project 18988/Agreement 16313)

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Howe, Daniel T.; Laddha, Sachin; Fifield, Leonard S.

    2009-12-31

    Plant-based natural fibers can be used in place of glass in fiber reinforced automotive composites to reduce weight, cost and provide environmental benefits. Current automotive applications use natural fibers in injection molded thermoplastics for interior, non-structural applications. Compression molded natural fiber reinforced thermosets have the opportunity to extend natural fiber composite applications to structural and semi-structural parts and exterior parts realizing further vehicle weight savings. The development of low cost molding and fiber processing techniques for large volumes of natural fibers has helped in understanding the barriers of non-aqueous retting. The retting process has a significant effect on the fiber quality and its processing ability that is related to the natural fiber composite mechanical properties. PNNL has developed a compression molded fiber reinforced composite system of which is the basis for future preforming activities and fiber treatment. We are using this process to develop preforming techniques and to validate fiber treatment methods relative to OEM provided application specifications. It is anticipated for next fiscal year that demonstration of larger quantities of SMC materials and molding of larger, more complex components with a more complete testing regimen in coordination with Tier suppliers under OEM guidance.

  4. An Archaeological Survey for the Richards, Texas Farm-to-Market Road 149 Fiber Optic Cable Project in Montgomery County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-07-31

    An archaeological survey for the proposed Richards, Texas Farm-to-Market Road 149 fiber optic cable project in northwest Montgomery County, Texas was performed by Brazos Valley Research Associates (BVRA) on December 2 and 3, 2011 for United...

  5. Fiber composite flywheel rim

    DOE Patents [OSTI]

    Davis, D.E.; Ingham, K.T.

    1987-04-28

    A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

  6. Assessing Deterioration of ADSS Fiber Optic Cables

    E-Print Network [OSTI]

    Assessing Deterioration of ADSS Fiber Optic Cables Due to Corona Discharge Final Project Report of ADSS Fiber Optic Cables Due to Corona Discharge Final Project Report George G. Karady, Project Leader-Supporting) fiber optic cables installed on high voltage lines. The high electric field on those lines generates

  7. Multiparameter Fiber Optic Sensing System for Monitoring Enhanced...

    Open Energy Info (EERE)

    Multiparameter Fiber Optic Sensing System for Monitoring Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  8. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  9. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  10. Fiber Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    said Todd Eckman, vice president of Information Management for MSA. "This new fiber optics will benefit DOE, Benton PUD and NoaNet (Northwest Open Access Network) users. This,...

  11. Carbon Fiber Consortium | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Fiber Consortium SHARE Carbon Fiber Consortium Oak Ridge Carbon Fiber Composites Consortium The Oak Ridge Carbon Fiber Composites Consortium was established in 2011 to...

  12. Polyethylene fiber drawing optimization

    E-Print Network [OSTI]

    Chiloyan, Vazrik

    2011-01-01

    Polymer fiber drawing creates fibers with enhanced thermal conductivity and strength compared to bulk polymer because drawing aligns the molecular chains. I optimize the polymer fiber drawing method in order to achieve ...

  13. Fiber Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergyfeature photoTheory ChalkboardFiber Lasers NIF

  14. CX-012191: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bell-Boundary Fiber Project (update to previous CX issued on 6/11/13) CX(s) Applied: B4.7 Date: 05/14/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  15. CX-008682: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    South Tacoma-Frederickson Fiber Project (Update) CX(s) Applied: B4.7 Date: 07/13/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  16. An Archaeological Survey for the Southwest Texas Telephone Company Farm-to-Market Road 470 Fiber Optic Project in Bandera County Texas 

    E-Print Network [OSTI]

    Moore, William; Baxter, Edward

    2015-07-30

    indicated that there are no known previously recorded archaeological sites within the Area of Potential Effect (APE). Archaeologists from SWCA Environmental Consultants of Austin had surveyed a small portion of the western end of the project area in 2005...

  17. Ceramic fiber reinforced filter

    DOE Patents [OSTI]

    Stinton, David P. (Knoxville, TN); McLaughlin, Jerry C. (Oak Ridge, TN); Lowden, Richard A. (Powell, TN)

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  18. Multimaterial fiber electronics

    E-Print Network [OSTI]

    Lestoquoy, Guillaume

    2014-01-01

    As the number of materials that are thermally-drawable into fibers is rapidly expending, numerous new multimaterial fiber architectures can be envisioned and fabricated. High-melting temperature metals, compound materials, ...

  19. Omnidirectional fiber optic tiltmeter

    DOE Patents [OSTI]

    Benjamin, B.C.; Miller, H.M.

    1983-06-30

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  20. Fiber draw synthesis

    E-Print Network [OSTI]

    Orf, Nicholas D.

    The synthesis of a high-melting temperature semiconductor in a low-temperature fiber drawing process is demonstrated, substantially expanding the set of materials that can be incorporated into fibers. Reagents in the solid ...

  1. Carbon Fiber Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    precursors Textile polyacrylonitrile (PAN) aka acrylic fiber. Polyolefin Lignin Develop processing methodologies to convert low-cost precursors to usable...

  2. Helical Fiber Amplifier

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (Washington, DC); Kliner, Dahy (San Ramon, CA); Goldberg, Lew (Fairfax, VA)

    2002-12-17

    A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).

  3. Hybrid matrix fiber composites

    DOE Patents [OSTI]

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  4. Fiber optic laser rod

    DOE Patents [OSTI]

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  5. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, Joseph B. (Harriman, TN); Muhs, Jeffrey D. (Lenoir City, TN); Tobin, Kenneth W. (Harriman, TN)

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  6. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  7. Fiber optic moisture sensor

    DOE Patents [OSTI]

    Kirkham, R.R.

    1984-08-03

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  8. Optical Fibers Optics and Photonics

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    Optical Fibers Optics and Photonics Dr. Palffy-Muhoray Ines Busuladzic Department of Theoretical and Applied Mathematics The University of Akron April 21, 2008 #12;Outline · History of optical fibers · What are optical fibers? · How are optical fibers made? · Light propagation through optical fibers · Application

  9. Fiber optic compass development 

    E-Print Network [OSTI]

    Park, Kyongtae

    2005-11-01

    magnetometer based on this principle, a single mode optical fiber coated with nickel [6] 3 or wrapped around a Metglas cylinder [7] experiences a strain which is dependent on the external magnetic field [8-10]. The fiber is deployed in one arm of a Michelson...

  10. Super capacitor with fibers

    DOE Patents [OSTI]

    Farmer, Joseph Collin; Kaschmitter, James

    2015-02-17

    An electrical cell apparatus includes a first current collector made of a multiplicity of fibers, a second current collector spaced from the first current collector; and a separator disposed between the first current collector and the second current collector. The fibers are contained in a foam.

  11. Fiber optic hydrophone

    DOE Patents [OSTI]

    Kuzmenko, Paul J. (Livermore, CA); Davis, Donald T. (Livermore, CA)

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  12. Fiber optic hydrophone

    DOE Patents [OSTI]

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  13. Fiber optic hydrogen sensor

    DOE Patents [OSTI]

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  14. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    of the main achievements of this thesis project. Evaluation of the measurement results indicates that fiberDegree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden M O Z H G A N for small cell backhaul. This thesis project investigates if a small cell network's requirements can

  15. Fiber bundle phase conjugate mirror

    DOE Patents [OSTI]

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  16. Fiber alignment apparatus and method

    DOE Patents [OSTI]

    Kravitz, Stanley H. (Placitas, NM); Warren, Mial Evans (Albuquerque, NM); Snipes, Jr., Morris Burton (Albuquerque, NM); Armendariz, Marcelino Guadalupe (Albuquerque, NM); Word, V., James Cole (Albuqueruqe, NM)

    1997-01-01

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring.

  17. Fiber alignment apparatus and method

    DOE Patents [OSTI]

    Kravitz, S.H.; Warren, M.E.; Snipes, M.B. Jr.; Armendariz, M.G.; Word, J.C. V

    1997-08-19

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring. 8 figs.

  18. Introgression & mapping Fiber cell

    E-Print Network [OSTI]

    Germplasm Introgression Genomics & mapping Fiber cell initiation Radiation hybrid (RH) mapping and breeding. Research activities commonly include plant breeding, genetics, genomics, cytogenetics, molecular methods. (C, S) · Contribute uniquely to genomics and its relevance to genetic improvement (C,S) · Harness

  19. Optoelectronic fiber interface design

    E-Print Network [OSTI]

    Spencer, Matthew Edmund

    2008-01-01

    Recent developments in materials science have led to the development of an exciting, new class of fibers which integrate metals, semiconductors and insulators in the same codrawing process. Various electrical devices have ...

  20. Multimaterial rectifying device fibers

    E-Print Network [OSTI]

    Orf, Nicholas D

    2009-01-01

    Electronic and optoelectronic device processing is commonly thought to be incompatible with much simpler thermal drawing techniques used in optical fiber production. The incorporation of metals, polymer insulators, and ...

  1. Dark Soliton Fiber Laser

    E-Print Network [OSTI]

    H. Zhang; D. Y. Tang; L. M. Zhao; X. Wu; Q. L. Bao; K. P. Loh

    2009-05-08

    We report on the experimental observation of stable dark solitons in an all normal dispersion fiber laser. We found experimentally that dark soliton formation is a generic feature of the fiber laser under strong continuous wave (CW) emission. However, only under appropriate pump strength and negative cavity feedback, stable single or multiple dark soliton could be achieved. Furthermore, we show that the features of the observed dark solitons could be well understood based on the nonlinear Schrodinger equation (NLSE).

  2. Grizzly Substation Fiber Optics : Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1998-02-01

    This notice announces BPA`s decision to construct, operate, and maintain the Grizzly Substation Fiber Optic Project (Project). This Project is part of a continuing effort by BPA to complete a regionwide upgrade of its existing telecommunications system. The US Forest Service and BPA jointly prepared the Grizzly Substation Fiber Optic Project Environmental Assessment (EA) (DOE/EA-1241) evaluating the potential environmental impacts of the Proposed Action, the Underground Installation Alternative, and the No Action Alternative. Based on the analysis in the EA, the US Forest Service and BPA have determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI. The US Forest Service has separately issued a FONSI and Decision Notice authorizing BPA to construct, operate, and maintain the Project within the Crooked River National Grassland (Grassland).

  3. Optical fiber switch

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  4. Development and Commercialization of Alternative Carbon Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Carbon Fiber Precursors and Conversion Technologies - Advanced Conversion Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion...

  5. Distributed optical fiber vibration sensing 

    E-Print Network [OSTI]

    Yu, Hui

    2001-01-01

    This thesis presents a distributed optical fiber vibration sensor. The purpose of this sensing system is to monitor, in real time, the status of railcars by burying an optical fiber underground beside the rails. Using a coherent homodyne technique...

  6. Genetics of Cotton Fiber Elongation 

    E-Print Network [OSTI]

    Ng, Eng Hwa

    2013-05-29

    for growers to produce high elongation cotton; lack of research interests among breeders; and absence of a reliable fiber testing system for elongation. This study was conducted to determine the genetics of cotton fiber elongation via a diallel and generation...

  7. Automated fiber pigtailing machine

    DOE Patents [OSTI]

    Strand, O.T.; Lowry, M.E.

    1999-01-05

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  8. Automated fiber pigtailing machine

    DOE Patents [OSTI]

    Strand, Oliver T. (Castro Valley, CA); Lowry, Mark E. (Castro Valley, CA)

    1999-01-01

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  9. Silicon fiber optic sensors

    DOE Patents [OSTI]

    Pocha, Michael D. (Livermore, CA); Swierkowski, Steve P. (Livermore, CA); Wood, Billy E. (Livermore, CA)

    2007-10-02

    A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

  10. Ship Effect Measurements With Fiber Optic Neutron Detector

    SciTech Connect (OSTI)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  11. Large core fiber optic cleaver

    DOE Patents [OSTI]

    Halpin, J.M.

    1996-03-26

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 {micro}m. 30 figs.

  12. OF CARBON FIBERS TURBINE BLADE

    E-Print Network [OSTI]

    THE USE IN WIND DESIGN: OF CARBON FIBERS TURBINE BLADE A SERI-8BLADE EXAMPLE Cheng Printed March 2000 The Use of Carbon Fibers in Wind Turbine Blade Design: a SERI-8 Blade Example Cheng represent different volumes of carbon fibers in the blade, were also studied for two design options

  13. Large core fiber optic cleaver

    DOE Patents [OSTI]

    Halpin, John M. (Livermore, CA)

    1996-01-01

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 .mu.m.

  14. Aerogel-clad optical fiber

    SciTech Connect (OSTI)

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  15. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOE Patents [OSTI]

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  16. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  17. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, David W. (9253 Glenoaks Blvd., Sun Valley, CA 91352)

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  18. Separation of Corn Fiber and Conversion to Fuels and Chemicals: Pilot-Scale Operation

    SciTech Connect (OSTI)

    None

    2006-04-01

    This project focuses on the development and pilot-scale testing of technologies that will enable the development of a biorefinery capable of economically deriving high-value chemicals and oils from lower value corn fiber.

  19. Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to produce low cost CF from novel PO polymer precursors in higher yield and at lower cost than the incumbent CF made from specialty- grade PAN fiber. This project intended to...

  20. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S. Michael (Livermore, CA)

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  1. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  2. Multiparameter Fiber Optic Sensing System for Monitoring Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Demonstrate reliability of fiber and distributed temperature; strain and vibration sensing sub-systems for EGS at 374şC and 220 bar in the presence of hydrogen. Develop a high accuracy point pressure gauge and distributed pressure sensor to meet EGS requirements.

  3. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    SciTech Connect (OSTI)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  4. Fiber optic geophysical sensors

    DOE Patents [OSTI]

    Homuth, Emil F. (Los Alamos, NM)

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  5. Carbon Fiber Technology Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Departmentof Energy CaliforniaContentsForumCarbon Fiber

  6. Fiber optic sensor and method for making

    DOE Patents [OSTI]

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  7. Preparation of silicon carbide fibers

    DOE Patents [OSTI]

    Wei, G.C.

    1983-10-12

    Silicon carbide fibers suitable for use in the fabrication of dense, high-strength, high-toughness SiC composites or as thermal insulating materials in oxidizing environments are fabricated by a new, simplified method wherein a mixture of short-length rayon fibers and colloidal silica is homogenized in a water slurry. Water is removed from the mixture by drying in air at 120/sup 0/C and the fibers are carbonized by (pyrolysis) heating the mixture to 800 to 1000/sup 0/C in argon. The mixture is subsequently reacted at 1550 to 1900/sup 0/C in argon to yield pure ..beta..-SiC fibers.

  8. Carbon Fiber Cluster Strategy | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Fiber Cluster Strategy SHARE Carbon Fiber Cluster Strategy ORNL has a 40-year history in R&D on fiber-reinforced composite materials, and has been leading DOE's low-cost...

  9. Fiber optic geophysical sensors

    DOE Patents [OSTI]

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  10. Dark Fiber Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet HanfordDOEDaniel Shechtman andDark Fiber Testbed Network

  11. Carbon Fiber Technology Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Carbon Fiber Technology Facility 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  12. Natural Fiber Composites: Retting, Preform Manufacture & Molding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Fiber Composites: Retting, Preform Manufacture & Molding Natural Fiber Composites: Retting, Preform Manufacture & Molding 2009 DOE Hydrogen Program and Vehicle Technologies...

  13. CFTF | Carbon Fiber Technology Facility | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

  14. Pleated Ceramic Fiber Diesel Particulate Filter | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pleated Ceramic Fiber Diesel Particulate Filter Pleated Ceramic Fiber Diesel Particulate Filter 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  15. Fiber Grating Environmental Sensing System

    DOE Patents [OSTI]

    Schulz, Whitten L. (Fairview, OR); Udd, Eric (Fairview, OR)

    2003-07-29

    Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.

  16. NEW EDITION! The most comprehensive review of international trade in wood fiber, for the pulp, MDF and biomass industries.

    E-Print Network [OSTI]

    in the business of international trade of woodchips, pulplogs and biomass fiber. This annual report examines in more than 35 countries. This study also includes data on specialized woodchip carriers, examines the international market for biomass wood fiber and provides projections for the Asian woodchip markets in 2010

  17. Mesh-based spherical deconvolution: A flexible approach to reconstruction of non-negative fiber orientation distributions

    E-Print Network [OSTI]

    Thompson, Paul

    : those which estimate the diffusion orientation distribution function (dODF), i.e., the radial projection-weighted MRI has enabled the imaging of white matter architecture in vivo. Fiber orientations have classically. We demonstrate how this formulation enables the estimation of fiber orientation distributions which

  18. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    SciTech Connect (OSTI)

    William A. Challener

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ���±5���°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

  19. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2001 Project Team Faculty: Grace Brush, Geography & Environmental Engineering, Whiting School of Engineering Fellow: Dan Bain, Geography & Environmental Engineering, Whiting School. Through this project, the team proposes to develop a variety of resources: a set of general, web

  20. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  1. Methods of producing continuous boron carbide fibers

    DOE Patents [OSTI]

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  2. Ethanol extraction of phytosterols from corn fiber

    DOE Patents [OSTI]

    Abbas, Charles (Champaign, IL); Beery, Kyle E. (Decatur, IL); Binder, Thomas P. (Decatur, IL); Rammelsberg, Anne M. (Decatur, IL)

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  3. Fiber Laser Based Nonlinear Spectroscopy

    E-Print Network [OSTI]

    Adany, Peter

    2012-08-31

    To date, nonlinear spectroscopy has been considered an expensive technique and confined mostly to experimental laboratory settings. Over recent years, optical-fiber lasers that are highly reliable, simple to operate and relatively inexpensive have...

  4. Scintillator fiber optic long counter

    DOE Patents [OSTI]

    McCollum, Tom (Sterling, VA); Spector, Garry B. (Fairfax, VA)

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  5. High repetition rate fiber lasers

    E-Print Network [OSTI]

    Chen, Jian, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    This thesis reports work in high repetition rate femtosecond fiber lasers. Driven by the applications including optical arbitrary waveform generation, high speed optical sampling, frequency metrology, and timing and frequency ...

  6. Scintillator fiber optic long counter

    DOE Patents [OSTI]

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  7. Buried fiber optic intrusion sensor 

    E-Print Network [OSTI]

    Maier, Eric William

    2004-09-30

    piezoelectric transducer to produce a controllable optical phase shift at the 2 km point of a 12 km path length. Interrogation of the distributed sensor was accomplished by repetitively gating light pulses from the stable laser into the sensing fiber...

  8. Optical fiber sensor having a sol-gel fiber core and a method of making

    DOE Patents [OSTI]

    Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.

    2006-06-06

    A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.

  9. Optical fiber inspection system

    DOE Patents [OSTI]

    Moore, F.W.

    1985-04-05

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected. 10 figs.

  10. Fiber optic temperature sensor

    SciTech Connect (OSTI)

    Rabold, D.

    1995-12-01

    Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

  11. A LASER-BASED MONODISPERSE CARBON FIBER GENERATOR

    E-Print Network [OSTI]

    Loo, Billy W.

    2013-01-01

    BASED MONODISPERSE CARBON FIBER GENERATOR Billy W. Loo,BASED MONODISPERSE CARBON FIBER GENERATOR Billy W. Loo,BASED MONODISPERSE CARBON FIBER GENERATOR Billy W. Loo,

  12. Tennessee: Oak Ridge National Laboratory Optimizes Carbon Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Oak Ridge National Laboratory Optimizes Carbon Fiber Production, Reduces Carbon Fiber Costs by 30% Tennessee: Oak Ridge National Laboratory Optimizes Carbon Fiber...

  13. Carbon nanotube fiber spun from wetted ribbon

    DOE Patents [OSTI]

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  14. Continuous Fiber Ceramic Composites (CFCC)

    SciTech Connect (OSTI)

    R. A. Wagner

    2002-12-18

    This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

  15. Modeling Time-dependent Responses of Piezoelectric Fiber Composite 

    E-Print Network [OSTI]

    Li, Kuo-An

    2011-02-22

    overall performance of PFCs having unidirectional piezoceramic fibers, such as PZT fibers, dispersed in viscoelastic polymer matrix. Two types of PFCs are studied, which are active fiber composites (AFCs) and macro fiber composites (MFCs). AFCs and MFCs...

  16. Fiber Optic Based Thermometry System for Superconducting RF Cavities

    SciTech Connect (OSTI)

    Dr. Kochergin, Vladimir [Microxact Inc.] [Microxact Inc.

    2013-05-06

    Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

  17. Fiber networks amplify active stress

    E-Print Network [OSTI]

    Pierre Ronceray; Chase Broedersz; Martin Lenz

    2015-07-22

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks, and find that local active forces are rectified towards isotropic contraction and strongly amplified as fibers collectively buckle in the vicinity of the active units. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  18. Breakthrough: Better Fiber for Better Products

    ScienceCinema (OSTI)

    Griffith, George; Garnier, John;

    2013-05-28

    Researchers at Idaho National Laboratory have developed a cost-effective method for the continuous production of alpha silicon carbide fiber. The exceptionally strong, lightweight fiber could enable significant performance improvements in many everyday products.

  19. Breakthrough: Better Fiber for Better Products

    SciTech Connect (OSTI)

    Griffith, George; Garnier, John;

    2012-01-01

    Researchers at Idaho National Laboratory have developed a cost-effective method for the continuous production of alpha silicon carbide fiber. The exceptionally strong, lightweight fiber could enable significant performance improvements in many everyday products.

  20. Fiber optic diffraction grating maker

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Ward, Michael B. (Idaho Falls, ID)

    1991-01-01

    A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.

  1. Fiber optic diffraction grating maker

    DOE Patents [OSTI]

    Deason, V.A.; Ward, M.B.

    1991-05-21

    A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.

  2. Development of a FiberDevelopment of a Fiber Continuity and LightContinuity and Light

    E-Print Network [OSTI]

    Minnesota, University of

    Development of a FiberDevelopment of a Fiber Continuity and LightContinuity and Light Calibration of light is collected by a WLS fiber;The flash of light is collected by a WLS fiber; the core contains a dye that shifts the bluethe core contains a dye that shifts the blue light wavelength to green.light

  3. Methanosaeta fibers in anaerobic migrating blanket reactors

    E-Print Network [OSTI]

    Angenent, Lars T.

    An anaerobic migrating blanket reactor (AMBR) was seeded with flocculent biomass from a digester and fedMethanosaeta fibers in anaerobic migrating blanket reactors L.T. Angenent,* D. Zheng,* S. Sung in these fibers. Keywords Anaerobic migrating blanket reactor; AMBR; fibers; oligonucleotide hybridization probes

  4. Moisture Penetration Through Optical Fiber Coatings

    E-Print Network [OSTI]

    Matthewson, M. John

    Moisture Penetration Through Optical Fiber Coatings J. L. Armstrong, M. J. Matthewson and C. R Fiber Coatings Janet L. Armstrong, 1 M. John Matthewson, 1 Charles R. Kurkjian 2 1 Rutgers University for measuring the diffusion coefficients of water vapor through optical fiber polymer coatings has been

  5. Officials launch Carbon Fiber Technology Facility, announce

    E-Print Network [OSTI]

    Pennycook, Steve

    to reduce carbon fiber's high cost, Danielson noted: "Many of these new clean energy technologies are withinSCIENCE Officials launch Carbon Fiber Technology Facility, announce new manufacturing initiative and a large crowd of local business and civic leaders came to the Carbon Fiber Technology Facility (CFTF

  6. Monolithic fiber optic sensor assembly

    DOE Patents [OSTI]

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  7. Scintillating fiber ribbon --- tungsten calorimeter

    SciTech Connect (OSTI)

    Bross, A.; Crisler, M.; Kross, B.; Wrbanek, J.

    1989-07-14

    We describe an ultra-high density scintillating fiber and tungsten calorimeter used as an active beam-dump for electrons. Data showing the calorimeter response to electrons with momenta between 50 and 350 GeV/c are presented. 9 figs.

  8. Fiber-type dosimeter with improved illuminator

    DOE Patents [OSTI]

    Fox, R.J.

    1985-12-23

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  9. Fiber-type dosimeter with improved illuminator

    DOE Patents [OSTI]

    Fox, Richard J. (Oak Ridge, TN)

    1987-01-01

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  10. Interfacial Studies of Sized Carbon Fiber

    SciTech Connect (OSTI)

    Shahrul, S. N.; Hartini, M. N.; Hilmi, E. A.; Nizam, A. [Nanomaterials Program, Advance Materials Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech Park, 09000, Kulim, Kedah (Malaysia)

    2010-03-11

    This study was performed to investigate the influence of sizing treatment on carbon fiber in respect of interfacial adhesion in composite materials, Epolam registered 2025. Fortafil unsized carbon fiber was used to performed the experiment. The fiber was commercially surface treated and it was a polyacrylonitrile based carbon fiber with 3000 filament per strand. Epicure registered 3370 was used as basic sizing chemical and dissolved in two types of solvent, ethanol and acetone for the comparison purpose. The single pull out test has been used to determine the influence of sizing on carbon fiber. The morphology of carbon fiber was observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The apparent interfacial strength IFSS values determined by pull out test for the Epicure registered 3370/ethanol sized carbon fiber pointed to a good interfacial behaviour compared to the Epicure registered 3370/acetone sized carbon fiber. The Epicure registered 3370/ethanol sizing agent was found to be effective in promoting adhesion because of the chemical reactions between the sizing and Epolam registered 2025 during the curing process. From this work, it showed that sized carbon fiber using Epicure registered 3370 with addition of ethanol give higher mechanical properties of carbon fiber in terms of shear strength and also provided a good adhesion between fiber and matrix compared to the sizing chemical that contain acetone as a solvent.

  11. Optical fiber sensors for harsh environments

    DOE Patents [OSTI]

    Xu, Juncheng; Wang, Anbo

    2007-02-06

    A diaphragm optic sensor comprises a ferrule including a bore having an optical fiber disposed therein and a diaphragm attached to the ferrule, the diaphragm being spaced apart from the ferrule to form a Fabry-Perot cavity. The cavity is formed by creating a pit in the ferrule or in the diaphragm. The components of the sensor are preferably welded together, preferably by laser welding. In some embodiments, the entire ferrule is bonded to the fiber along the entire length of the fiber within the ferrule; in other embodiments, only a portion of the ferrule is welded to the fiber. A partial vacuum is preferably formed in the pit. A small piece of optical fiber with a coefficient of thermal expansion chosen to compensate for mismatches between the main fiber and ferrule may be spliced to the end of the fiber.

  12. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    SciTech Connect (OSTI)

    Nguyen Thi, T. B., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Yokoyama, A., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp [Department of Advanced Fibro-Science, Kyoto Institute of Technology (Japan); Ota, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Kodama, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Yamashita, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Isogai, Y., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Furuichi, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Nonomura, C., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp [Toyobo Co., LTD. Research Center (Japan)

    2014-05-15

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment ?-CT. The simulation results showed a good agreement with experiment results.

  13. All-fiber Passively Q-switched Laser Based on Tm3+-doped Tellurite Fiber

    E-Print Network [OSTI]

    Kuan, Pei-Wen; Li, Kefeng; Zhang, Lei; Fan, Xiaokang; Hasan, Tawfique; Wang, Fengqiu; Hu, Lili

    2014-12-24

    the tellurite-based erbium-doped fiber and high numerical aperture (NA) silica fiber [20]. In practice, though commercial fusion splicers are available, the process of splicing two different fibers is complex. Due to this, ~2 µm tellurite fiber lasers have... monolithic single frequency 1.97 m Tm-doped fiber amplifier,” High Power Laser Sci. Eng., vol. 1, no 3-4, pp. 123-125, 2013. [4]. X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “Bursts with shape-alterable pulses in a compact Tm-doped fiber laser...

  14. Fort Meade demonstration test LEDS in freezer rooms, fiber optics in display cases

    SciTech Connect (OSTI)

    Parker, Steven; Parker, Graham B.

    2008-10-25

    Demonstration projects at Fort George G. Meade, MD, substituted LED lighting for incandescent bulbs in commisary wal-in freezers and fiber optic lighting in reach-in display cases. The goal was to reduce energy consumption and the results were positive. Journal article published in Public Works Digest

  15. REQUEST FOR PROPOSALS Rehabilitation of Deteriorated Timber Piles using Fiber Reinforced

    E-Print Network [OSTI]

    Harms, Kyle E.

    1 REQUEST FOR PROPOSALS Rehabilitation of Deteriorated Timber Piles using Fiber Reinforced Polymer project is to develop and verify simplified design methods for rehabilitating deteriorated timber piles, the following tasks: Task 1 Review literature pertaining to the use for FRP in rehabilitating deteriorated

  16. Interferometric fiber optic displacement sensor

    DOE Patents [OSTI]

    Farah, J.

    1999-04-06

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 23 figs.

  17. Interferometric fiber optic displacement sensor

    DOE Patents [OSTI]

    Farah, John (M.I.T. Branch P.O. Box 301, Cambridge, MA 02139)

    1995-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  18. Interferometric fiber optic displacement sensor

    DOE Patents [OSTI]

    Farah, J.

    1995-05-30

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 29 figs.

  19. Interferometric fiber optic displacement sensor

    DOE Patents [OSTI]

    Farah, John (M.I.T. P.O. Box 397301, Cambridge, MA 02139)

    1999-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  20. A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites

    SciTech Connect (OSTI)

    TuckerIII, Charles L. [University of Illinois, Urbana-Champaign; Phelps, Jay H [University of Illinois, Urbana-Champaign; El-Rahman, Ahmed Abd [University of Illinois, Urbana-Champaign; Kunc, Vlastimil [ORNL

    2013-01-01

    Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, and a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1

  1. Lignin-Derived Carbon Fiber as a Co-Product of Refining Cellulosic Biomass

    SciTech Connect (OSTI)

    Langholtz, Matthew H; Downing, Mark; Graham, Robin Lambert; Baker, Fred S; Compere, A L; Griffith, William {Bill} L; Boeman, Raymond G; Keller, Martin

    2014-01-01

    Lignin by-products from biorefineries has the potential to provide a low-cost alternative to petroleum-based precursors to manufacture carbon fiber, which can be combined with a binding matrix to produce a structural material with much greater specific strength and specific stiffness than conventional materials such as steel and aluminum. The market for carbon fiber is universally projected to grow exponentially to fill the needs of clean energy technologies such as wind turbines and to improve the fuel economies in vehicles through lightweighting. In addition to cellulosic biofuel production, lignin-based carbon fiber production coupled with biorefineries may provide $2,400 to $3,600 added value dry Mg-1 of biomass for vehicle applications. Compared to producing ethanol alone, the addition of lignin-derived carbon fiber could increase biorefinery gross revenue by 30% to 300%. Using lignin-derived carbon fiber in 15 million vehicles per year in the US could reduce fossil fuel consumption by 2-5 billion liters year-1, reduce CO2 emissions by about 6.7 million Mg year-1, and realize fuel savings through vehicle lightweighting of $700 to $1,600 per Mg biomass processed. The value of fuel savings from vehicle lightweighting becomes economical at carbon fiber price of $6.60 kg-1 under current fuel prices, or $13.20 kg-1 under fuel prices of about $1.16 l-1.

  2. Programmable optic-fiber delay line 

    E-Print Network [OSTI]

    Fang, Shin-Puu

    1991-01-01

    . Motion of coupled pendula . 4. Circuit schematic of temperature control 5. Basic configuration of electric arc fusion splicer . . . 6. The arrangement of heater 7. The output optical power from one port versus the temperature of the heater 8... ( stripping tool ) and chemical stripping ( acetone or methylene chloride ) technique can be used to remove the protective polymer fiber coating. A commercial Fujikura ct-40 fiber cleaver used skillfully can produce an end surface suitable for fiber fusion...

  3. The effects of fiber waviness on the compressive response of fiber reinforced composite materials 

    E-Print Network [OSTI]

    Davis, John Jerome

    1989-01-01

    mathematical models, based on Euler- Bernoulli beams supported by elastic matrix layers, are developed for predicting the compressive behavior of composites with some initial waviness. The models include several single fiber models and one series of fibers... stability for the long slender fibers. Considerable effort has been spent studying the compressive response of composite materials, and the research presented herein focuses on the behavior of composite materials under compressive loads. Fiber waviness...

  4. Natural Fiber Composites: Retting, Preform Manufacture & Molding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Fiber Composites: Retting, Preform Manufacture & Molding FY 2008 Progress Report for Lightweighting Materials - 8. Polymer Composites Research and Development FY 2009...

  5. The Influences of Fiber Feature and Polymer Melt Index on Mechanical Properties of Sugarcane Fiber/Polymer

    E-Print Network [OSTI]

    The Influences of Fiber Feature and Polymer Melt Index on Mechanical Properties of Sugarcane Fiber/Polymer.interscience.wiley.com). ABSTRACT: The fiber characteristics (i.e., the fiber type, morphology, and dimension) and polymer melt flow sugarcane fiber/polymer composites, the HDPE resins with a low MFI value presented high tensile and impact

  6. Fiber optic temperature sensor using a grating on an angled fiber tip 

    E-Print Network [OSTI]

    Varadarajan, Harini

    2000-01-01

    A fiber optic temperature sensor intended to sense temperatures up to 1400°C was investigated experimentally. A key element of the sensor is a grating on the 45°-angled tip of a single mode fiber. When light propagating in the fiber reaches the tip...

  7. FIBER OPTIC SENSING OF A CARBON FIBER PRESfRESSED CONCRETE HIGHWAY BRIDGE

    E-Print Network [OSTI]

    FIBER OPTIC SENSING OF A CARBON FIBER PRESfRESSED CONCRETE HIGHWAY BRIDGE R. M. Measuresl , T. Rizkalla5 1Fiber Optic Smart Structures Lab: UTlAS, 4925 Dufferin St., Downsview, Ontario, CANADA 2 Con ofsteel within large concrete structures, such as bridges are leading to consideration ofcarbonfiber based

  8. Efficiency of pump absorption in double-clad fiber amplifiers. I. Fiber with circular symmetry

    E-Print Network [OSTI]

    Kouznetsov, Dmitrii

    Efficiency of pump absorption in double-clad fiber amplifiers. I. Fiber with circular symmetry with an absorbing core is treated as a model for pump absorption in a double-clad optical fiber amplifier. Mode the pump absorption and is analyzed in the speckle-mode approximation for the example of a Kerr

  9. Failure of Carbon Fibers at a Crease in a Fiber-Reinforced Silicone Sheet

    E-Print Network [OSTI]

    Pellegrino, Sergio

    -based Weibull modulus of tensile failure mB Weibull modulus of bending failure M bending moment n number of 1 mm decrease the maximum strain in the fibers near the compression surface. This paper shows's modulus Et tensile Young's modulus of fiber Ec compressive Young's modulus of fiber F end force on looped

  10. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    SciTech Connect (OSTI)

    Rawls, G.

    2012-10-10

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  11. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    & Sciences Project Title Visualize Physical Principles with Virtual Lab Modules Audience Undergraduate provide easy access to digital information, but don't provide experience with right- hand screws, electric of the last generation of physics students. The result is that today's students don't have an intuitive

  12. Project Year Project Title

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    . Pedagogical Issue One of the challenges in teaching the Introduction to Computer Music course is the lack flow and practices. These resources will provide an online space through which students will be able piece of this project will be an animated studio walkthrough requiring user interaction and providing

  13. Carbon Fiber and Clean Energy: 4 Uses for Industry | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber and Clean Energy: 4 Uses for Industry Carbon Fiber and Clean Energy: 4 Uses for Industry February 7, 2014 - 3:27pm Addthis Oxidized fibers move to a high temperature...

  14. Starting pitch for carbon fibers

    SciTech Connect (OSTI)

    Uemura, S.; Takashima, H.; Kato, O.; Harakawa, M.

    1986-04-01

    This patent describes a starting pitch for producing carbon fiber. This pitch essentially consists of a mixture of (a) 100 parts by weight of a petroleum pitch and (b) 5 to 500 parts by weight of a methanol-insoluble and benzene-soluble component contained in a heavy oil obtained in a fluid catalytic cracking of petroleum. The heavy oil has a boiling range not lower than 200/sup 0/C. The component has been obtained by treating the heavy oil with methanol and benzene so as to remove methanol soluble and benzene insoluble fractions therefrom while retaining therein methanol-insoluble and benzene-soluble fractions.

  15. Evaluation of the performance of polypropylene fibers on soil stabilization 

    E-Print Network [OSTI]

    Sangineni, Srinivas Meherji

    1992-01-01

    the reinforcement or reinforcing material, whereas the continuous phase is termed as matrix (11). Composites having short fibers as reinforcement are termed as short-fiber composites. Composites having long fibers as reinforcement are termed as long or continuous-fiber... composites. The reinforcing material for this study is polypropylene fibers. The matrix material consists of clay, sand, clay/lime, and sand/cement. Bond - It is the interfacial bond between the fibers and the matrix material. If no slippage occurs...

  16. The mechanical properties of individual, electrospun fibrinogen fibers Christine R. Carlisle a

    E-Print Network [OSTI]

    Welch, Greg

    electrostatically into nanoscopic fibers. In this tech- nique, termed ``electrospinning'', fibers are formed from

  17. Fiber-Reinforced Polymer Composites: Pursuing the Promise

    SciTech Connect (OSTI)

    2014-02-01

    Fiber-reinforced polymer composites are made by combining a plastic polymer resin together with strong reinforcing fibers, which forms a new composite material with enhanced overall performance.

  18. SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER LASER...

    Office of Scientific and Technical Information (OSTI)

    SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER LASER STRUCTURING Citation Details In-Document Search Title: SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER...

  19. Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report This report outlines the final...

  20. Oak Ridge National Laboratory Carbon Fiber Technology Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory Carbon Fiber Technology Facility Low-Cost Carbon Fiber | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single spaced...

  1. Fiber Reinforced Polymer Composite Manufacturing - RFI Part 2...

    Broader source: Energy.gov (indexed) [DOE]

    6 More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA-0000980: Summary of...

  2. Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA...

    Broader source: Energy.gov (indexed) [DOE]

    80 More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Fiber Reinforced Polymer Composite Manufacturing - RFI Part 2 DE-FOA-0001056: Summary of...

  3. The Importance of Carbon Fiber to Polymer Additive Manufacturing...

    Office of Scientific and Technical Information (OSTI)

    The Importance of Carbon Fiber to Polymer Additive Manufacturing Citation Details In-Document Search Title: The Importance of Carbon Fiber to Polymer Additive Manufacturing...

  4. Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same

    DOE Patents [OSTI]

    O`Rourke, P.E.; Livingston, R.R.

    1995-03-28

    A fiber optic probe is disclosed for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers. 3 figures.

  5. Transverse lightwave circuits in microstructured optical fibers

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    ´Ecole Polytechnique de Montr´eal, G´enie Physique, C.P. 6079, succ. Centre-Ville Montreal, Qu´ebec H3C3A, rather than proximity, energy transfer via transverse lightguides built into a fiber cross-core crosstalk via proximity coupling. Controllable energy transfer between fiber cores is then achieved

  6. Lee McGetrick Director, Carbon Fiber

    E-Print Network [OSTI]

    rayon and high-modulus PAN precursors. It is designed to process materials in either tow or web forms fiber and is designed to also spin lignin and pitch-based precursors in either tow or web forms speed · Melt-blown web production up to 300 mm width, packaged or direct-fed to carbon fiber line

  7. Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection

    DOE Patents [OSTI]

    Wood, C.B.

    1992-12-15

    A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.

  8. Method for preparing polyaniline fibers

    DOE Patents [OSTI]

    Mattes, Benjamin R. (Santa Fe, NM); Wang, Hsing-Lin (Los Alamos, NM)

    2000-01-01

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  9. Remotely readable fiber optic compass

    DOE Patents [OSTI]

    Migliori, A.; Swift, G.W.; Garrett, S.L.

    1985-04-30

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  10. Accelerated stress rupture lifetime assessment for fiber composites

    SciTech Connect (OSTI)

    Groves, S.E.; DeTeresa, S.J.; Sanchez, R.J.; Zocher, M.A.; Christensen, R.M.

    1997-02-01

    Objective was to develop a theoretical and experimental framework for predicting stress rupture lifetime for fiber polymer composites based on short-term accelerated testing. Originally a 3-year project, it was terminated after the first year, which included stress rupture experiments and viscoelastic material characterization. In principle, higher temperature, stress, and saturated environmental conditions are used to accelerate stress rupture. Two types of specimens were to be subjected to long-term and accelerated static tensile loading at various temperatures, loads in order to quantify both fiber and matrix dominated failures. Also, we were to apply state-of-the-art analytical and experimental characterization techniques developed under a previous DOE/DP CRADA for capturing and tracking incipient degradation mechanisms associated with mechanical performance. Focus was increase our confidence to design, analyze, and build long-term composite structures such as flywheels and hydrogen gas storage vessels; other applications include advanced conventional weapons, infrastructures, marine and offshore systems, and stockpile stewardship and surveillance. Capabilities developed under this project, though not completed or verified, are being applied to NIF, AVLIS, and SSMP programs.

  11. Methods And Apparatus For Acoustic Fiber Fractionation

    DOE Patents [OSTI]

    Brodeur, Pierre (Smyrna, GA)

    1999-11-09

    Methods and apparatus for acoustic fiber fractionation using a plane ultrasonic wave field interacting with water suspended fibers circulating in a channel flow using acoustic radiation forces to separate fibers into two or more fractions based on fiber radius, with applications of the separation concept in the pulp and paper industry. The continuous process relies on the use of a wall-mounted, rectangular cross-section piezoelectric ceramic transducer to selectively deflect flowing fibers as they penetrate the ultrasonic field. The described embodiment uses a transducer frequency of approximately 150 kHz. Depending upon the amount of dissolved gas in water, separation is obtained using a standing or a traveling wave field.

  12. Carbon fiber manufacturing via plasma technology

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN); Yarborough, Kenneth D. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  13. Long glass fiber orientation in thermoplastic composites using a model that accounts for the flexibility of the fibers

    E-Print Network [OSTI]

    Wapperom, Peter

    Long glass fiber orientation in thermoplastic composites using a model that accounts, thermoplastics are reinforced with fibers to increase their stiffness, strength, and impact toughness

  14. Project Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  15. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    SciTech Connect (OSTI)

    Michael J. Haun

    2005-07-15

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  16. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOE Patents [OSTI]

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  17. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOE Patents [OSTI]

    Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Farragut, TN)

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  18. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - Second FY 2015 Quarterly Report

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Kijewski, Seth A.; Sangid, Michael D.; Wang, Jin; Costa, Franco; Tucker, III, Charles L.; Mathur, Raj N.; Gandhi, Umesh N.; Mori, Steven

    2015-05-19

    During the second quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Autodesk reviewed 3D fiber orientation distribution (FOD) comparisons and provided support on improving accuracy. 2) Autodesk reviewed fiber length distribution (FLD) data comparisons and provided suggestions, assisted PNNL in FOD and FLD parameter settings optimization, and advised PNNL on appropriate through thickness thermal conductivity for improved frozen layer effect on FOD predictions. Autodesk also participated in project review meetings including preparations and discussions towards passing the go/no-go decision point. 3) Autodesk implemented an improved FOD inlet profile specification method through the part thickness for 3D meshes and provided an updated ASMI research version to PNNL. 4) The University of Illinois (Prof. C.L. Tucker) provided Autodesk with ideas to improve fiber orientation modeling 5) Purdue University re-measured fiber orientation for the fast-fill 50wt% LCF/PA66 edge-gated plaque, and delivered the fiber orientation data for this plaque at the selected locations (named A, B, and C, Figure 1) to PNNL. Purdue also re-measured fiber orientation for locations A on the fast-fill 30wt% LCF/PP and 50wt% LCF/PA66 center-gated plaques, which exhibited anomalous fiber orientation behavior. 6) Purdue University conducted fiber length measurements and delivered the length data to PNNL for the purge materials (slow-fill 30wt% LCF/PP and 30wt% LCF/PA66 purge materials) and PlastiComp plaques selected on the go/no-go list for fiber length model validation (i.e., slow-fill edge-gated 30wt% LCF/PP and 30wt% LCF/PA66 plaques, Locations A, B, and C). 7) PNNL developed a method to recover intact carbon fibers from LCF/PA66 materials. Isolated fibers were shipped to Purdue for length distribution analysis. 8) PNNL completed ASMI mid-plane analyses for all the PlastiComp plaques defined on the go/no-go list for fiber orientation (FO) model validation and compared the predicted fiber orientations with the measured data provided by Purdue at Locations A, B, and C on these plaques. The 15% accuracy criterion based on evaluation of tensile and bending stiffness was used to assess the accuracy in fiber orientation predictions. 9) PNNL completed ASMI mid-plane analyses for all the PlastiComp plaques defined on the go/no-go list for fiber length distribution (FLD) model validation and compared the predicted length distributions with the measured data provided by Purdue at Locations A, B, and C on these plaques. The 15% accuracy criterion based on evaluation of tensile and bending stiffness was used to assess the accuracy in fiber orientation predictions. 10) PNNL tested the new ASMI version received from Autodesk in March 2015, examined and discussed 3D fiber orientation predictions for PlastiComp plaques. 11) PlastiComp, Inc. (PlastiComp), Toyota Research Institute North America (Toyota) and Magna Exteriors and Interiors Corporation (Magna) participated in discussions with team members on the go/no-go plan. Toyota continued the discussion with Magna on tool modification for molding the complex part in order to achieve the target fiber length in the part.

  19. Coated Fiber Neutron Detector Test

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  20. 2 micron femtosecond fiber laser

    DOE Patents [OSTI]

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  1. Fiber optic D dimer biosensor

    DOE Patents [OSTI]

    Glass, R.S.; Grant, S.A.

    1999-08-17

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy. 4 figs.

  2. Subsea fiber-optic communications

    SciTech Connect (OSTI)

    High, G.; Wright, P.J.

    1997-05-01

    High-cost and hazardous nature of recovering hydrocarbons offshore have led to the trend towards growth in subsea production control. The extended step-out distances of subsea completions is increasing the volume and complexity of subsea data communications beyond the capacity of conventional systems. Improved reservoir management using intelligent sensors, metering, and process equipment, requiring real-time monitoring and control, dictates the use of wideband communication. Fiber optics offers the necessary volume of data transmission, with the high-noise immunity needed for data integrity and safe operation, under the severe Electro-Magnetic Interference (EMI) environments created where high power motors and power cables are used subsea. The marinizing of optical, opto-electronic communication components for production control, data acquisition of subsea completions for the offshore oil industry are described.

  3. Commercialization of New Carbon Fiber Materials Based on Sustainable Resources for Energy Applications

    SciTech Connect (OSTI)

    Eberle, Cliff; Webb, Daniel C; Albers, Tracy; Chen, Chong

    2013-03-01

    Oak Ridge National Laboratory (ORNL) and GrafTech International have collaborated to develop and demonstrate the performance of high temperature thermal insulation prototypes made from lignin-based carbon fibers. This project will potentially lead to the first commercial application of lignin-based carbon fibers (LBCF). The goal of the commercial application is to replace expensive, Chinese-sourced isotropic pitch carbon fibers with lower cost carbon fibers made from a domestically sourced, bio-derived (renewable) feedstock. LBCF can help recapture jobs that were previously exported to China while resolving a supply chain vulnerability and reducing the production cost for GrafTech s high temperature thermal insulation. The performance of the LBCF prototypes was measured and found to be comparable to that of the current commercial product. During production of the insulation prototypes, ORNL and GrafTech demonstrated lignin compounding/pelletization, fiber production, heat treatment, and compositing at scales far surpassing those previously demonstrated in LBCF R&D or production. A plan was developed for the commercialization of LBCF thermal insulation, with key milestones including qualification of multiple scalable lignin sources in 2013, tons-scale production and field testing by customers in 2014, and product launch as soon thereafter as production capabilities can be constructed and commissioned.

  4. Activation and micropore structure determination of activated carbon-fiber composites

    SciTech Connect (OSTI)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-09-05

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. These novel monolithic adsorbents can be produced in single pieces to a given size and shape. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The carbon fiber composites are produced at the ORNL and activated at the CAER using different methods, with the aims of producing a uniform degree of activation, and of closely controlling pore structure and adsorptive properties. The main focus of the present work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites and produce controlled pore structures. Several environmental applications have been explored for the activated carbon fiber composites. One of these was to evaluate the activated composites for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus was constructed specifically for this purpose. The composites were further evaluated in the cyclic recovery of volatile organics. The activated carbon fiber composites have also been tested for possible water treatment applications by studying the adsorption of sodium pentachlorophenolate, PCP.

  5. Dynamics of flexible fibers in shear flow

    E-Print Network [OSTI]

    Agnieszka M. Slowicka; Eligiusz Wajnryb; Maria L. Ekiel-Jezewska

    2015-04-03

    Dynamics of flexible non-Brownian fibers in shear flow at low-Reynolds-number are analyzed numerically for a wide range of the ratios A of the fiber bending force to the viscous drag force. Initially, the fibers are aligned with the flow, and later they move in the plane perpendicular to the flow vorticity. A surprisingly rich spectrum of different modes is observed when the value of A is systematically changed, with sharp transitions between coiled and straightening out modes, period-doubling bifurcations from periodic to migrating solutions, irregular dynamics and chaos.

  6. Microbend fiber-optic chemical sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2002-01-01

    A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

  7. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  8. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  9. Effects of fiber direction on heat conduction in unidirectionally aligned fiber composites 

    E-Print Network [OSTI]

    Havis, Clark Reagan

    1987-01-01

    of MASTER OF SCIENCE December 1987 Major Subject: Mechanical Engineering EFFECTS OF FIBER DIRECTION ON HEAT CONDUCTION IN UNIDIRECTIONALLY ALIGNED FIBER COMPOSITES A Thesis CLARK REAGAN HAVIS Approved as to style and content by: G. P. Peterson... classification the fibers are woven into a fabric in which the weave occurs at predetermined angles, normally 90 . This fabric is then impregnated with a resin and stacked in layers prior to curing. This type of composite material has fairly uniform mechanical...

  10. Optical fiber pressure and acceleration sensor fabricated on a fiber endface

    DOE Patents [OSTI]

    Zhu, Yizheng; Wang, Xingwei; Xu, Juncheng; Wang, Anbo

    2006-05-30

    A fiber optic sensor has a hollow tube bonded to the endface of an optical fiber, and a diaphragm bonded to the hollow tube. The fiber endface and diaphragm comprise an etalon cavity. The length of the etalon cavity changes when applied pressure or acceleration flexes the diaphragm. The entire structure can be made of fused silica. The fiber, tube, and diaphragm can be bonded with a fusion splice. The present sensor is particularly well suited for measuring pressure or acceleration in high temperature, high pressure and corrosive environments (e.g., oil well downholes and jet engines). The present sensors are also suitable for use in biological and medical applications.

  11. The morphological and chemical characteristics of respirable mineral wool fibers 

    E-Print Network [OSTI]

    Butler, Donnie Ray

    1976-01-01

    12 17 18 18 21 23 27 38 46 REFERENCES APPENDIX A TABLE OF CONTENTS continued ~Pa e 48 PHYSICAL CHARACTERISTICS OF OBSERVED FIBERS APPENDIX B X-RAY COUNT DATA OF OBSERVED FIBERS APPENDIX C PUMP CALIBRATION APPENDIX D COATING... LIST OF FIGURES continued 16. Lengths of fibers present in the respirable sample 17. Widths of fibers present in the respirable sample 18. Ternary diagram showing the Magnesium:Silicon: Calcium ratio of the observed fibers 19. Ternary diagram...

  12. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    SciTech Connect (OSTI)

    Pickrell, Gary; Scott, Brian

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70?m) with a hollow core was successfully constructed with lead-in and lead-out 50?m diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber geometry to optical properties, and the development of a sensor packaging prototype for laboratory testing. Analysis and experiments determined that a bonding technique using a CO2 laser is the most suitable joining technique. Pore morphology alteration showed that transmission improved with increasing annealing temperature (producing smaller pores), while the sensor response time increased and the mechanical strength decreased with increasing annealing temperature. Software was developed for data acquisition and signal processing to collect and interpret spectral gas absorption data. Gas detection on porous glass sensors was completed and the detection limit was evaluated using acetylene and was found to be around 1- 200ppm. A complete materials package for porous glass sensors was manufactured for testing.

  13. Distributed Light Sensing with Convex Potential Fibers

    E-Print Network [OSTI]

    Sorin, Fabien

    We report on a photoconductive fiber that supports decaying and convex electrical potential profiles capable of localizing a point of illumination, and propose a scheme to perform distributed optical sensing.

  14. Structural retrofitting using fiber reinforced polymers

    E-Print Network [OSTI]

    Dumas, Pierre, M. Eng. Massachusetts Institute of Technology

    2012-01-01

    Over the past decades, fiber reinforced polymers (FRP) have been widely used in the aeronautical and naval industries. Being more costly than conventional Civil Engineering materials such as steel or concrete, they have ...

  15. Fiber coupled optical spark delivery system

    DOE Patents [OSTI]

    Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO)

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  16. Fiber laser coupled optical spark delivery system

    DOE Patents [OSTI]

    Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO); Joshi, Sachin (Fort Collins, CO); Reynolds, Adam (Fort Collins, CO)

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  17. Fiber gasket and method of making same

    DOE Patents [OSTI]

    Bruck, Gerald Joseph (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Smeltzer, Eugene E. (Export, PA)

    2003-01-01

    A gasket (1) is made by repetitively spirally winding a fiber (3) back on itself in a closed path. The gasket (1) so made has a multi-layer spiral winding (1) formed in a loop (5). The fiber (3) can be wound at a constant wrap rate to form a gasket with a uniform cross-section around the loop. Alternatively, the wrap rate can be varied, increased to increase cross-sectional bulk, and decreased to reduce cross-section bulk around the loop (5). Also, the spiral winding (7) can be applied over a core (13) of either strands of the fiber (3) or a dissimilar material providing a desired property such as resiliency, stiffness or others. For high temperature applications, a ceramic fiber (3) can be used. The gasket (1) can have any of various geometric configurations with or without a core (13).

  18. Temperature compensated two-mode fiber interferometer 

    E-Print Network [OSTI]

    Doma, Jagdish Ramchandra

    1993-01-01

    In this thesis we propose an innovative approach of designing and implementing a temperature compensated two-mode optical fiber interferometer in a control system of stabilizing the wavelength of a laser. We give the procedure for designing...

  19. Trapping cold rubidium in a fiber

    E-Print Network [OSTI]

    Brown, David Ross, S.B. Massachusetts Institute of Technology

    2007-01-01

    In this thesis, we demonstrate the novel technique of loading cold ??Rb into a red-detuned optical dipole trap within a hollow core photonic fiber. This confines the atoms to 6 microns in two dimensions. We initially cooled ...

  20. Ammonia fiber explosion (AFEX) treatment of grass 

    E-Print Network [OSTI]

    Ashok, Ganesh

    1991-01-01

    AMMONIA FIBER EXPLOSION (AFEX) TREATMENT OF GRASS A Thesis by GANESH ASHOK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1991... Major Subject: Chemical Engineering AMMONIA FIBER EXPLOSION (AFEX) TREATMENT OF GRASS A Thesis by GANESH ASHOK Approved as to style and content by: M. T. 1 e (Chair of Committee) R. W. Flumerfelt (Member) F. M, By (Membe C. R. Engler (Member...

  1. Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

    Broader source: Energy.gov [DOE]

    Project objectives: 1. Optical fibers that resist hydrogen Ťdarkening? for several months instead of hours and days at 300 deg. C and higher. 2. Tube encapsulated cable (TEC) construction that functions as a distributed temperature sensor (DTS) and a power source for a downhole pressure sensor.

  2. Optical fiber sensor technique for strain measurement

    DOE Patents [OSTI]

    Butler, Michael A. (Albuquerque, NM); Ginley, David S. (Albuquerque, NM)

    1989-01-01

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.

  3. Fiber optic probe for light scattering measurements

    DOE Patents [OSTI]

    Nave, Stanley E. (Evans, GA); Livingston, Ronald R. (Aiken, SC); Prather, William S. (Augusta, GA)

    1995-01-01

    A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  4. Fiber optic probe for light scattering measurements

    DOE Patents [OSTI]

    Nave, S.E.; Livingston, R.R.; Prather, W.S.

    1993-01-01

    This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  5. The effect of irregular fiber distribution and error in assumed transverse fiber CTE on thermally induced fiber/matrix interfacial stresses 

    E-Print Network [OSTI]

    Zu, Seung-Don

    2006-08-16

    Thermally induced interfacial stress states between fiber and matrix at cryogenic temperature were studied using three-dimensional finite element based micromechanics. Mismatch of the coefficient of thermal expansion between fiber and matrix...

  6. CX-008993: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-008993: Categorical Exclusion Determination "Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets CX(s) Applied: A9, B3.6 Date: 0822...

  7. CX-012808: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LURR 20140504 Ross Substation Comcast Fiber Installation CX(s) Applied: B4.9Date: 41906 Location(s): WashingtonOffices(s): Bonneville Power Administration

  8. Formation and applications of nanoparticles in silica optical fibers

    E-Print Network [OSTI]

    Blanc, Wilfried

    2015-01-01

    Optical fibers are the basis for applications that have grown considerably in recent years (telecommunications, sensors, fiber lasers, etc). Despite undeniable successes, it is necessary to develop new generations of amplifying optical fibers that will overcome some limitations typical of silica glass. In this sense, the amplifying Transparent Glass Ceramics (TGC), and particularly the fibers based on this technology, open new perspectives that combine the mechanical and chemical properties of a glass host with the augmented spectroscopic properties of embedded nanoparticles. This paper is an opportunity to make a state of the art on silica-based optical fibers containing nanoparticles of various types, particularly rare-earth-doped oxide nanoparticles, and on the methods for making such fibers. In the first section of this article, we will review basics on standard optical fibers and on nanoparticle-doped fibers. In the second section we will recall some fabrication methods used for standard optical fibers, ...

  9. Soft capacitor fibers using conductive polymers for electronic textiles

    E-Print Network [OSTI]

    Gu, Jian Feng; Skorobogatiy, Maksim

    2010-01-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its crossection the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometres of fibers can be obtained from a single preform with fiber diameters ranging between 500um -1000um. A typical measured capacitance of our fibers is 60-100 nF/m and it is independent of the fiber diameter. For comparison, a coaxial cable of the comparable dimensions would have only ~0.06nF/m capacitance. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kOhm/L, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials...

  10. Activated carbon fibers and engineered forms from renewable resources

    DOE Patents [OSTI]

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  11. Activated carbon fibers and engineered forms from renewable resources

    DOE Patents [OSTI]

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  12. Scale-up of Novel Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch

    SciTech Connect (OSTI)

    Spalding, Mark A

    2014-08-27

    The project started in September, 2012 with the goal of scaling up from the existing laboratory scale process for producing carbon fiber (CF) from polyolefin (PO) based precursor fiber using a Dow proprietary sulfonation-desulfonation stabilization process. The award was used to develop a process that was capable of producing market development quantities of CF from PO precursor fiber at a rate of 4 kg/h of CF. The CF would target properties that met or exceeded the Department of Energy (DOE) Vehicles Technology [1] standard; i.e., 172 GPa modulus and 1.72 GPa strength at greater than or equal to 1% strain. The Dow proprietary process was capable of meeting and exceeding these targets properties. Project DE-EE0005760 resulted from a Collaborative Research and Development Agreement (CRADA) between Dow and Oak Ridge National Laboratory (ORNL) with support from the Michigan Economic Development Corporation (MEDC) and DOE. In the first budget period, the main goal was to design a sulfonation-desulfonation market development plant capable of stabilizing PO precursor fiber at a rate of 5 kg/h using a sulfonation solution. The detailed design, location, and cost estimate were determined as scheduled in the Project Management Plan (PMP). In parallel with this DOE award project was a fundamentals and economic evaluation funded by The Dow Chemical Company (Dow). The goal of the Dow sponsored project was to finalize the mass balances, energy balances, and levelized cost to produce CF using the Dow process. A Go-No-Go decision was scheduled in June, 2013 based on the findings of the DOE sponsored scale up project and the Dow sponsored project. In June, 2013, Dow made the No-Go decision to halt and abandon the Dow proprietary sulfonation-desulfonation process for stabilizing PO precursor fibers for the manufacturing of CF. This No-Go decision was identified in the original proposal and at the start of this project, and the decision was made as scheduled. The decision was based on the high levelized economic cost of the process relative to the manufacture of CF from polyacrylonitrile (PAN) precursor fibers. The capital required to sulfonate the fibers adds a significant cost to the process due to the need for investment in a sulfuric acid recovery plant. This high additional capital over the capital for a PAN based CF plant, reduces the levelized economic cost to slightly advantaged over PAN based CF. The sulfonation-desulfonation stabilization route failed to meet the Dow’s return on investment criterion and the cost advantage target set forth for the DOE project. The DOE and Dow decided to halt spending on the project until a new PO fiber stabilization process could be identified that met the DOE physical properties standard and the levelized economic cost constraints of Dow. When the new technology was developed, then award DE-EE0005760 would be re-started with the same goals of the development of a market development plant capable of producing CF at 4 kg/h with the properties that met or exceed those set forth by the Department of Energy Vehicles Technology standard. Progress on the development of the new process has been slow and thus has delayed the scale up project. Dow’s efforts to date have not progressed to the point of demonstrating a commercially-viable process for production of low cost CF from PO precursors for Dow’s rigorous economic constraints. After extensive discussions within Dow and consultation with DOE’s Advanced Manufacturing Office (AMO) Headquarters and Golden Field Office teams, Dow has decided to proceed with the formal recommendation to terminate subject project. DOE’s AMO Headquarters and Golden Field Office teams agreed with the termination of the project.

  13. UPTAKE OF RADIONUCLIDE METALS BY SPME FIBERS

    SciTech Connect (OSTI)

    Duff, M; S Crump, S; Robert02 Ray, R; Keisha Martin, K; Donna Beals, D

    2006-08-28

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.

  14. project management

    National Nuclear Security Administration (NNSA)

    3%2A en Project Management and Systems Support http:www.nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  15. Project Complete

    Broader source: Energy.gov [DOE]

    DOE has published its Record of Decision announcing and explaining DOE’s chosen project alternative and describing any commitments for mitigating potential environmental impacts. The NEPA process...

  16. Project Construction

    Broader source: Energy.gov [DOE]

    Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

  17. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    projects that involve UCSD faculty members and graduate students from the structural engineering (SE), mechanical and aerospace engineering (MAE), electrical and computer...

  18. RESEARCH PROJECTS February 13

    E-Print Network [OSTI]

    Schenato, Luca

    RESEARCH PROJECTS FP7 February 13 #12; FP7 COOPERATION #12; INTERNATIONAL RESEARCH PROJECTS FP7 COOPERATION ENERGY PROJECT ACRONYM: EFONET PROJECT TITLE: Energy foresight network PROJECT

  19. Concentric core optical fiber with multiple-mode signal transmission

    DOE Patents [OSTI]

    Muhs, J.D.

    1997-05-06

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.

  20. CREOL Affiliates Day Presentation: 7th March 2014 A brief history of fiber lasers

    E-Print Network [OSTI]

    Van Stryland, Eric

    fibers has been critical to help grow fiber laser market · Multiple suppliers of the same standard DC fiber design (Snitzer et al.) 1988. · Ybdoped fiber lasers proposed as a viable alternative to Nddoped

  1. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    SciTech Connect (OSTI)

    Repasky, Kevin

    2013-09-30

    A fiber sensor array for sub-surface CO{sub 2} concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 􀁐m. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO{sub 2} to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from the DFB laser interacts with the CO{sub 2} before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO{sub 2} absorption features where a transmission measurement is made allowing the CO{sub 2} concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO{sub 2} concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO{sub 2} concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO{sub 2}/day began on July 10, 2012. The elevated subsurface CO{sub 2} concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program

  2. CARBON FIBER COMPOSITES IN HIGH VOLUME

    SciTech Connect (OSTI)

    Warren, Charles David; Das, Sujit; Jeon, Dr. Saeil

    2014-01-01

    Vehicle lightweighting represents one of several design approaches that automotive and heavy truck manufacturers are currently evaluating to improve fuel economy, lower emissions, and improve freight efficiency (tons-miles per gallon of fuel). With changes in fuel efficiency and environmental regulations in the area of transportation, the next decade will likely see considerable vehicle lightweighting throughout the ground transportation industry. Greater use of carbon fiber composites and light metals is a key component of that strategy. This paper examines the competition between candidate materials for lightweighting of heavy vehicles and passenger cars. A 53-component, 25 % mass reduction, body-in-white cost analysis is presented for each material class, highlighting the potential cost penalty for each kilogram of mass reduction and then comparing the various material options. Lastly, as the cost of carbon fiber is a major component of the elevated cost of carbon fiber composites, a brief look at the factors that influence that cost is presented.

  3. Interlayer toughening of fiber composite flywheel rotors

    DOE Patents [OSTI]

    Groves, S.E.; Deteresa, S.J.

    1998-07-14

    An interlayer toughening mechanism is described to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0{degree} to 90{degree} to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles. 2 figs.

  4. Interlayer toughening of fiber composite flywheel rotors

    DOE Patents [OSTI]

    Groves, Scott E. (Brentwood, CA); Deteresa, Steven J. (Livermore, CA)

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  5. Simulations of carbon fiber composite delamination tests

    SciTech Connect (OSTI)

    Kay, G

    2007-10-25

    Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-state testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.

  6. Carbon Fiber Damage in Particle Beam

    E-Print Network [OSTI]

    Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

    2011-01-01

    Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

  7. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Glaser, Paul; Bhandari, Dhaval; Narang, Kristi; McCloskey, Pat; Singh, Surinder; Ananthasayanam, Balajee; Howson, Paul; Lee, Julia; Wroczynski, Ron; Stewart, Frederick; Orme, Christopher; Klaehn, John; McNally, Joshua; Rownaghi, Ali; Lu, Liu; Koros, William; Goizueta, Roberto; Sethi, Vijay

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was more dynamic than initially hypothesized. These phenomena are believed to be associated with the physical and mechanical properties of the separation material, rather than chemical degradation by flue gas or one of its constituents. Strategies to improve the composite systems via alternate chemistries and processing techniques were only partially successful in creating a more robust system, but the research provided critical insight into the barriers to engineering sophisticated composite systems for gas separation. Promising concepts, including a re-engineering of the separation material with interpenetrating polymer networks were identified which may prove useful to future efforts in this field.

  8. Partial-Flow Diesel Particulate Filter of Sintered Metal Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partial-Flow Diesel Particulate Filter of Sintered Metal Fiber Fleece Partial-Flow Diesel Particulate Filter of Sintered Metal Fiber Fleece Poster presented at the 16th Directions...

  9. Higher-order mode suppression in chalcogenide negative curvature fibers

    E-Print Network [OSTI]

    Maryland, Baltimore County, University of

    . Sřndergaard, and A. Bjarklev, "Analysis of air-guiding photonic bandgap fibers," Opt. Lett. 25(2), 96­98 (2000, "Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses," Opt. Express

  10. Natural fiber reinforced aerated concrete : an experimental investigation

    E-Print Network [OSTI]

    Garbis, Leonidia Maria

    2013-01-01

    The purpose of this study is to compare existing research with aerated concrete and fiber reinforcement to original experiments completed investigating the benefits of adding natural fiber tensile reinforcement to aerated ...

  11. Fiber Sizing Sensor and Controller | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sample size is large and usually consists of hundreds of fibers. FibrSizr consists of a laser instrument developed for the accurate real-time and in-situ determination of fiber...

  12. Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process

    E-Print Network [OSTI]

    Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process J. Z. Lu,1 Q. Wu,1 I. I parameters for the wood-fiber/high-density-polyethylene blends at 60 rpm were a temperature of 180°C

  13. Distributed fiber optic intrusion sensor system for monitoring long perimeters 

    E-Print Network [OSTI]

    Juarez, Juan C.

    2009-06-02

    A distributed sensor using an optical fiber for detecting and locating intruders over long perimeters (>10 km) is described. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from...

  14. Boll and fiber development in long staple upland cotton 

    E-Print Network [OSTI]

    Braden, Chris Alan

    2001-01-01

    contributes to reduced yield and reduced fiber length, thus minimizing the profitability for the grower and the competitiveness of the fiber for the textile industry. For dryland cotton to remain a viable commodity for Texas producers its quality properties...

  15. 18-1165-29AA selectingHollow Fiber

    E-Print Network [OSTI]

    Lebendiker, Mario

    18-1165-29AA selectingHollow Fiber Cartridges and Systems #12;#12;introduction About this guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 chapter 1 - Selecting a hollow fiber cross flow membrane cartridge Introduction . . . . . . . . . . . . . 12 Cartridge selection illustrated with process examples

  16. Optimal Design Refrigeration System for a Mucilage Glue Fiber Factory 

    E-Print Network [OSTI]

    Tan, C.; Liu, J.; Tang, F.; Liu, Y.

    2006-01-01

    In a mucilage glue fiber factory, the design of the refrigeration system takes into account the characteristics of mucilage glue fiber production and fully uses the refrigeration compressor heat to economize energy and reduce the production cost...

  17. Intrinsic Fabry-Perot optical fiber sensors and their multiplexing

    DOE Patents [OSTI]

    Wang, Anbo (Blacksburg, VA)

    2007-12-11

    An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

  18. Fiber optic mounted laser driven flyer plates

    SciTech Connect (OSTI)

    Paisley, Dennis L.

    1991-01-01

    A laser driven flyer plate where the flyer plate is deposited directly onto the squared end of an optical fiber. The plasma generated by a laser pulse drives the flyer plate toward a target. In another embodiment, a first metal layer is deposited onto the squared end of an optical fiber, followed by a layer of a dielectric material and a second metal layer. The laser pulse generates a plasma in the first metal layer, but the plasma is kept away from the second metal layer by the dielectric layer until the pressure reaches the point where shearing occurs.

  19. Fiber optic mounted laser driven flyer plates

    SciTech Connect (OSTI)

    Paisley, D.L.

    1990-12-31

    This invention is comprised of a laser driven flyer plate where the flyer plate is deposited directly onto the squared end of an optical fiber. The plasma generated by a laser pulse drives the flyer plate toward a target. In another embodiment, a first metal layer is deposited onto the squared end of an optical fiber, followed by a layer of a dielectric material and a second metal layer. The laser pulse generates a plasma in the first metal layer, but the plasma is kept away from the second metal layer by the dielectric layer until the pressure reaches the point where shearing occurs. 2 figs.

  20. Fiber optic mounted laser driven flyer plates

    SciTech Connect (OSTI)

    Paisley, D.L.

    1991-07-09

    A laser driven flyer plate is described where the flyer plate is deposited directly onto the squared end of an optical fiber. The plasma generated by a laser pulse drives the flyer plate toward a target. In another embodiment, a first metal layer is deposited onto the squared end of an optical fiber, followed by a layer of a dielectric material and a second metal layer. The laser pulse generates a plasma in the first metal layer, but the plasma is kept away from the second metal layer by the dielectric layer until the pressure reaches the point where shearing occurs.

  1. Fiber optic mounted laser driven flyer plates

    SciTech Connect (OSTI)

    Paisley, D.L.

    1990-01-01

    This invention is comprised of a laser driven flyer plate where the flyer plate is deposited directly onto the squared end of an optical fiber. The plasma generated by a laser pulse drives the flyer plate toward a target. In another embodiment, a first metal layer is deposited onto the squared end of an optical fiber, followed by a layer of a dielectric material and a second metal layer. The laser pulse generates a plasma in the first metal layer, but the plasma is kept away from the second metal layer by the dielectric layer until the pressure reaches the point where shearing occurs. 2 figs.

  2. Fiber-optic displacement sensor system 

    E-Print Network [OSTI]

    Cava, Norayda Nora

    1990-01-01

    FIBER-OPTIC DISPLACEMENT SENSOR SYSTEM A Thesis by NORAYDA NORA CAVA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject...: Electrical Engineering FIBER-OPTIC DISPLACEMENT SENSOR SYSTEM A Thesis by NORAYDA NORA CAVA Approved as to style and content by: H nry F. Taylor (Chair of Committee) Brian Y ng (Member) Raghve n ey ( ember) Sohi Rastegar (Member) Jo owze (Head...

  3. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    SciTech Connect (OSTI)

    Hai Xiao; Junhang Dong; Jerry Lin; Van Romero

    2011-12-31

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project â??DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases.â?ť This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  4. Manufacture of thermoelectric generator structures by fiber drawing

    DOE Patents [OSTI]

    McIntyre, Timothy J; Simpson, John T; West, David L

    2014-11-18

    Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

  5. Energy localization in nonlinear fiber arrays: Collapse-effect compressor

    SciTech Connect (OSTI)

    Aceves, A.B.; Luther, G.G.; De Angelis, C.; Turitsyn, S.K.

    1995-07-03

    We analyze a collapse mechanism of energy localization in nonlinear fiber arrays. The nonlinear fiber array is suggested as a device to amplify and compress optical pulses. Pulse propagation in one-dimensional fiber arrays has features of collapse (self-focusing) dynamics. Collapse-type compression leads to the localization of all energy initially dispersed in array into a few fibers. Numerical simulations demonstrate the robustness of the suggested compression mechanism.

  6. Fiber optically isolated and remotely stabilized data transmission system

    DOE Patents [OSTI]

    Nelson, Melvin A. (Santa Barbara, CA)

    1992-01-01

    A fiber optically isolated and remotely stabilized data transmission system s described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber.

  7. Fiber optically isolated and remotely stabilized data transmission system

    DOE Patents [OSTI]

    Nelson, M.A.

    1992-11-10

    A fiber optically isolated and remotely stabilized data transmission systems described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber. 3 figs.

  8. Fiber-optical analogue of the event horizon: Appendices

    E-Print Network [OSTI]

    Thomas G. Philbin; Chris Kuklewicz; Scott Robertson; Stephen Hill; Friedrich Konig; Ulf Leonhardt

    2007-12-13

    We explain the theory behind our fiber-optical analogue of the event horizon and present the experiment in detail.

  9. Characterization of carbon fibers: coefficient of thermal expansion and microstructure 

    E-Print Network [OSTI]

    Kulkarni, Raghav Shrikant

    2006-04-12

    and transverse CTE. The orthotropy in the CTE is tested by rotating the fibers through 45? about their axis. The method is validated by testing standard tungsten filaments of known CTE. Additionally, the microstructure of the fibers is studied in a field... strain vs. temperature for tungsten................................... 40 Figure 3.3 Strain vs. temperature for P55 fiber.................................................... 42 Figure 3.4 Cross sectional images of IM7 fibers failed in bending...

  10. Long period fiber gratings induced by mechanical resonance

    E-Print Network [OSTI]

    Shahal, Shir; Duadi, Hamootal; Fridman, Moti

    2015-01-01

    We present a simple, and robust method for writing long period fiber gratings with low polarization dependent losses. Our method is based on utilizing mechanical vibrations of the tapered fiber while pooling it. Our method enables real-time tunability of the periodicity, efficiency and length of the grating. We also demonstrate complex grating by writing multiple gratings simultaneously. Finally, we utilized the formation of the gratings in different fiber diameters to investigate the Young's modulus of the fiber.

  11. Communication Electric polarization in carbon fiber-reinforced cement

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Communication Electric polarization in carbon fiber-reinforced cement Sihai Wen, D.D.L. Chung-reinforced cement paste during resistivity measurement. The effect was diminished by increasing the conductivity of the cement paste through the use of carbon fibers that were more crystalline, the increase of the fiber

  12. Effective Splices for a Carbon Fiber-Reinforced Polymer

    E-Print Network [OSTI]

    r Effective Splices for a Carbon Fiber-Reinforced Polymer Strengthening System for Steel Bridges and Structures Mina Dawood. Murthy GUddati. and Sami Rizkalla Carbon fiber-reinforced polymer (CFRP) materials to strengthen steel bridges and structures. Fiber-reinforced polymer (FRP) materials have been successfully used

  13. Hybrid carbon fiber composite lattice truss structures T. George a,

    E-Print Network [OSTI]

    Wadley, Haydn

    June 2014 Accepted 14 June 2014 Available online 22 June 2014 Keywords: A. Carbon fiber A. Polymer­matrix composites (PMCs) D. Mechanical testing a b s t r a c t Carbon fiber reinforced polymer (CFRP) composite carbon fiber braids and Divinycell H250 polymer foam trapezoids. These have been stitched to 3D woven

  14. STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS

    E-Print Network [OSTI]

    Kasman, Alex

    STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS ST´EPHANE LAFORTUNE Summary The study is crucial in applications such as lasers and optical fibers. In this proposal I will focus on a model of fiber optics: the Manakov system. This system consists of two differential equations, that is two

  15. EFFECTS OF FIBER WAVINESS ON COMPOSITES FOR WIND TURBINE BLADES

    E-Print Network [OSTI]

    EFFECTS OF FIBER WAVINESS ON COMPOSITES FOR WIND TURBINE BLADES J.F. Mandell D.D. Samborsky and L Composite materials of interest for wind turbine blades use relatively low cost fibers, resins and processes WORDS: Composite Materials, Fiber Waviness, Compressive Strength #12;1. INTRODUCTION Wind turbine blades

  16. Thermal Decomposition of Natural Fibers: Global Kinetic Modeling with Nonisothermal

    E-Print Network [OSTI]

    with consideration of fiber as one pseudocomponent. Ma´lek method with activation energy values previously obtainedThermal Decomposition of Natural Fibers: Global Kinetic Modeling with Nonisothermal.interscience.wiley.com). ABSTRACT: The modeling of thermal decomposition process of ten natural fibers commonly used in polymer

  17. Thermal Phenomena in Fiber-reinforced Thermoplastic Tape Winding Process

    E-Print Network [OSTI]

    Daraio, Chiara

    Thermal Phenomena in Fiber-reinforced Thermoplastic Tape Winding Process: Computational Simulations-reinforced thermoplastic tapes, thermal simulation, convective coefficient of gas torches, fiber-reinforced thermoplastic a pre-impregnated fiber-reinforced thermoplastic tape is bounded on-line to the substrate. The bonding

  18. A study of micro fiber dispersion using digital image analysis 

    E-Print Network [OSTI]

    Hendrarsakti, Jooned

    2004-11-15

    of this dissertation is to investigate the use of texture analysis as a tool to micro fiber dispersion measurement. Micro fiber dispersion can be found in many applications such as in paper and industry powder engineering. Three cases related to micro fiber...

  19. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    SciTech Connect (OSTI)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  20. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOE Patents [OSTI]

    Kramer, Daniel P. (Centerville, OH)

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements.

  1. Cortical Projection Topography of the Human Splenium: Hemispheric Asymmetry and Individual Differences

    E-Print Network [OSTI]

    Gazzaniga, Michael

    Cortical Projection Topography of the Human Splenium: Hemispheric Asymmetry and Individual topography of the human splenium. Homotopic and heterotopic connections were revealed between the splenium difficult to trace the cortical projection topographies of long white matter fiber tracts of the human brain

  2. Single-fiber multi-color pyrometry

    DOE Patents [OSTI]

    Small, IV, Ward; Celliers, Peter

    2004-01-27

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  3. Single-fiber multi-color pyrometry

    DOE Patents [OSTI]

    Small, IV, Ward (Livermore, CA); Celliers, Peter (Berkeley, CA)

    2000-01-01

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  4. Special fiber elements for thermal analysis

    E-Print Network [OSTI]

    Qin, Qinghua

    of this paper is to present a new special element model for thermal analysis of composites. Design analysis, Hybrid FEM, Fundamental solution, Special inclusion element, Representative volume cell Paper type Research paper 1. Introduction Fiber-reinforced composites (Chung, 1994) are structural materials

  5. Fiber metal interlayer improves ceramic coating performance

    SciTech Connect (OSTI)

    Jarrabet, G.P.

    1994-11-01

    This article is a review of the use of a compliant fiber metal inner layer between a ceramic coating and metal. The material used is Zirconia with phase stabilizers of magnesium oxide, calcium oxide, and yttrium oxide. Design, fabrication, and testing of the stabilized zirconia is discussed.

  6. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    SciTech Connect (OSTI)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.

  7. Long glass fiber orientation in thermoplastic composites using a model that accounts for the flexibility of the fibers

    E-Print Network [OSTI]

    Wapperom, Peter

    Long glass fiber orientation in thermoplastic composites using a model that accounts Mechanical properties of long glass fiber composites, used in various industrial applications, are dependant are explored to predict the orientation of long glass fibers in the concentrated regime that take the flexible

  8. Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems

    SciTech Connect (OSTI)

    Anbo Wang; Gary Pickrell

    2011-12-31

    This report summarizes technical progress on the program â??Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systemsâ?ť funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

  9. Special purpose modes in photonic band gap fibers

    DOE Patents [OSTI]

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  10. Fiber-bragg grating-loop ringdown method and apparatus

    SciTech Connect (OSTI)

    Wang, Chuji

    2008-01-29

    A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

  11. Determination of mechanisms by which soluble fibers lower serum cholesterol 

    E-Print Network [OSTI]

    Sun, Xiao-Qing

    1991-01-01

    differ between fibers. We tested the efi'ect of five fiber sources on serum and liver cholesterol and hepatic cholesterol biosynthesis. Also, we tested the effect of fiber sources on fecal neutral sterol and bile acid excretion. Six groups of 12... Sprague Dawley rats were each fed either a fiber-free (FF) cholesterol and cholic acid supplemented diet or the same diet uniformly diluted by the addition of 8% dietary fiber from cellulose (C), pectin (P), oat bran (OB), whole amaranth (WA...

  12. Method of producing a hybrid matrix fiber composite

    DOE Patents [OSTI]

    Deteresa, Steven J. (Livermore, CA); Lyon, Richard E. (Absecon, NJ); Groves, Scott E. (Brentwood, CA)

    2006-03-28

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  13. Method for enhancing signals transmitted over optical fibers

    DOE Patents [OSTI]

    Ogle, James W. (Goleta, CA); Lyons, Peter B. (Whiterock, NM)

    1983-01-01

    A method for spectral equalization of high frequency spectrally broadband signals transmitted through an optical fiber. The broadband signal input is first dispersed by a grating. Narrow spectral components are collected into an array of equalizing fibers. The fibers serve as optical delay lines compensating for material dispersion of each spectral component during transmission. The relative lengths of the individual equalizing fibers are selected to compensate for such prior dispersion. The output of the equalizing fibers couple the spectrally equalized light onto a suitable detector for subsequent electronic processing of the enhanced broadband signal.

  14. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOE Patents [OSTI]

    Weeks, Jr., Joseph K. (Salt Lake City, UT); Gensse, Chantal (Salt Lake City, UT)

    1993-01-01

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.

  15. Learning from history: Adaptive calibration of 'tilting spine' fiber positioners

    E-Print Network [OSTI]

    Gilbert, James

    2015-01-01

    This paper discusses a new approach for determining the calibration parameters of independently-actuated optical fibers in multi-object astronomical fiber positioning systems. This work comes from the development of a new type of piezoelectric motor intended to enhance the 'tilting spine' fiber positioning technology originally created by the Australian Astronomical Observatory. Testing has shown that the motor's performance can vary depending on the fiber's location within its accessible field, meaning that an individual fiber is difficult calibrate with a one-time routine. Better performance has resulted from constantly updating calibration parameters based on the observed movements of the fiber during normal closed-loop positioning. Over time, location-specific historical data is amassed that can be used to better predict the results of a future fiber movement. This is similar to a technique previously proposed by the Australian Astronomical Observatory, but with the addition of location-specific learning....

  16. Fiber optic moisture sensor with moisture-absorbing reflective target

    DOE Patents [OSTI]

    Kirkham, Randy R. (Richland, WA)

    1987-01-01

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  17. PROJECT MANGEMENT PLAN EXAMPLES

    Broader source: Energy.gov (indexed) [DOE]

    accelerates the project schedule and significantly reduces the project total life cycle cost. Current Baseline (FY99 MYWP) Revised Project Baseline Project Scope: ...

  18. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    2008-01-15

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  19. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  20. Project Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference) | SciTechProjectITER Project

  1. Project Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference)Project Tour Project Tour See NMSSUP from

  2. Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and posted for universal access at www.nreca.coop/smartgrid. This research is available for widespread distribution to both cooperative members and non-members. These reports are listed in Table 1.2. Interoperability: The deliverable in this area was the advancement of the MultiSpeak™ interoperability standard from version 4.0 to version 5.0, and improvement in the MultiSpeak™ documentation to include more than 100 use cases. This deliverable substantially expanded the scope and usability of MultiSpeak, ™ the most widely deployed utility interoperability standard, now in use by more than 900 utilities. MultiSpeak™ documentation can be accessed only at www.multispeak.org. Cyber Security: NRECA’s starting point was to develop cyber security tools that incorporated succinct guidance on best practices. The deliverables were: cyber security extensions to MultiSpeak,™ which allow more security message exchanges; a Guide to Developing a Cyber Security and Risk Mitigation Plan; a Cyber Security Risk Mitigation Checklist; a Cyber Security Plan Template that co-ops can use to create their own cyber security plans; and Security Questions for Smart Grid Vendors.

  3. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  4. Magnetomechanically induced long period fiber gratings

    SciTech Connect (OSTI)

    Causado-Buelvas, Jesus D.; Gomez-Cardona, Nelson D.; Torres, Pedro

    2008-04-15

    In this work, we report a simple, flexible method to create long period fiber gratings mechanically by controlling the repulsion/attraction force between two magnets that pressing a plate with a periodic array of small glass cylinders to a short length of optical fiber. Via the photoelastic effect, the pressure points induce the required periodic refractive index modulation to create the LPFG. We found that the induced device exhibits spectral characteristics similar to those of other types of LPFG. As the optical properties of LPFGs are directly related to the nature of the applied perturbations, we show, to our knowledge for the frrst time, how is the evolution of birefringence effects in mechanically induced LPFGs.

  5. Fiber-optic shock position sensor

    SciTech Connect (OSTI)

    Weiss, J.D.

    1993-03-01

    This report describes work performed for the development of a fiber-optic shock position sensor used to measure the location of a shock front in the neighborhood of a nuclear explosion. Such a measurement would provide a hydrodynamic determination of nuclear yield. The original proposal was prompted by the Defense Nuclear Agency's interest in replacing as many electrical sensors as possible with their optical counterparts for the verification of a treaty limiting the yield of a nuclear device used in underground testing. Immunity to electromagnetic pulse is the reason for the agency's interest; unlike electrical sensors and their associated cabling, fiber-optic systems do not transmit to the outside world noise pulses from the device containing secret information.

  6. Exploiting Genetic Variation of Fiber Components and Morphology in Juvenile Loblolly Pine.

    SciTech Connect (OSTI)

    Hou-min Chang, John F. Kadla, Bailian Li, Ron Sederoff,

    2005-06-30

    In order to ensure the global competitiveness of the Pulp and Paper Industry in the Southeastern U.S., more wood with targeted characteristics have to be produced more efficiently on less land. The objective of the research project is to provide a molecular genetic basis for tree breeding of desirable traits in juvenile loblolly pine, using a multidisciplinary research approach. We developed micro analytical methods for determine the cellulose and lignin content, average fiber length, and coarseness of a single ring in a 12 mm increment core. These methods allow rapid determination of these traits in micro scale. Genetic variation and genotype by environment interaction (GxE) were studied in several juvenile wood traits of loblolly pine (Pinus taeda L.). Over 1000 wood samples of 12 mm increment cores were collected from 14 full-sib families generated by a 6-parent half-diallel mating design (11-year-old) in four progeny tests. Juvenile (ring 3) and transition (ring 8) for each increment core were analyzed for cellulose and lignin content, average fiber length, and coarseness. Transition wood had higher cellulose content, longer fiber and higher coarseness, but lower lignin than juvenile wood. General combining ability variance for the traits in juvenile wood explained 3 to 10% of the total variance, whereas the specific combining ability variance was negligible or zero. There were noticeable full-sib family rank changes between sites for all the traits. This was reflected in very high specific combining ability by site interaction variances, which explained from 5% (fiber length) to 37% (lignin) of the total variance. Weak individual-tree heritabilities were found for cellulose, lignin content and fiber length at the juvenile and transition wood, except for lignin at the transition wood (0.23). Coarseness had moderately high individual-tree heritabilities at both the juvenile (0.39) and transition wood (0.30). Favorable genetic correlations of volume and stem straightness were found with cellulose content, fiber length and coarseness, suggesting that selection on growth or stem straightness would results in favorable response in chemical wood traits. We have developed a series of methods for application of functional genomics to understanding the molecular basis of traits important to tree breeding for improved chemical and physical properties of wood. Two types of technologies were used, microarray analysis of gene expression, and profiling of soluble metabolites from wood forming tissues. We were able to correlate wood property phenotypes with expression of specific genes and with the abundance of specific metabolites using a new database and appropriate statistical tools. These results implicate a series of candidate genes for cellulose content, lignin content, hemicellulose content and specific extractible metabolites. Future work should integrate such studies in mapping populations and genetic maps to make more precise associations of traits with gene locations in order to increase the predictive power of molecular markers, and to distinguish between different candidate genes associated by linkage or by function. This study has found that loblolly pine families differed significantly for cellulose yield, fiber length, fiber coarseness, and less for lignin content. The implication for forest industry is that genetic testing and selection for these traits is possible and practical. With sufficient genetic variation, we could improve cellulose yield, fiber length, fiber coarseness, and reduce lignin content in Loblolly pine. With the continued progress in molecular research, some candidate genes may be used for selecting cellulose content, lignin content, hemicellulose content and specific extractible metabolites. This would accelerate current breeding and testing program significantly, and produce pine plantations with not only high productivity, but desirable wood properties as well.

  7. Photonic bandgap narrowing in conical hollow core Bragg fibers

    SciTech Connect (OSTI)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet; Bayindir, Mehmet

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  8. Method for optical and mechanically coupling optical fibers

    DOE Patents [OSTI]

    Toeppen, John S. (Livermore, CA)

    1996-01-01

    A method and apparatus for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass.

  9. DOE, City of Richland and Benton PUD Increase Fiber Optic Telecommunication Capacity in Benton County- Upgrade improves communications at Hanford Site, schools and libraries

    Office of Energy Efficiency and Renewable Energy (EERE)

    RICHLAND, Wash. ? The Department of Energy (DOE), city of Richland, and Benton County’s Public Utility District (Benton PUD) jointly implemented a high-capacity fiber optic cable in Richland and at the Hanford Site. The project will improve communications throughout the area.

  10. Low-Cost Fiber Optic Pressure Sensor

    DOE Patents [OSTI]

    Sheem, Sang K. (Pleasanton, CA)

    2004-05-18

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  11. Low-Cost Fiber Optic Pressure Sensor

    DOE Patents [OSTI]

    Sheem, Sang K. (Pleasanton, CA)

    2003-07-22

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  12. Ternary liquid scintillator for optical fiber applications

    DOE Patents [OSTI]

    Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA)

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  13. Liquid scintillators for optical fiber applications

    DOE Patents [OSTI]

    Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA)

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2, 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudo-cumene. The use of BIBUQ as an additional or primary solute is also disclosed.

  14. Testing of Performance of Optical Fibers Under Irradiation in Intense Radiation Fields, When Subjected to Very High Temperatures

    SciTech Connect (OSTI)

    Blue, Thomas; Windl, Wolfgang; Dickerson, Bryan

    2013-01-03

    The primary objective of this project is to measure and model the performance of optical fibers in intense radiation fields when subjected to very high temperatures. This research will pave the way for fiber optic and optically based sensors under conditions expected in future high-temperature gas-cooled reactors. Sensor life and signal-to-noise ratios are susceptible to attenuation of the light signal due to scattering and absorbance in the fibers. This project will provide an experimental and theoretical study of the darkening of optical fibers in high-radiation and high-temperature environments. Although optical fibers have been studied for moderate radiation fluence and flux levels, the results of irradiation at very high temperatures have not been published for extended in-core exposures. Several previous multi-scale modeling efforts have studied irradiation effects on the mechanical properties of materials. However, model-based prediction of irradiation-induced changes in silica�s optical transport properties has only recently started to receive attention due to possible applications as optical transmission components in fusion reactors. Nearly all damage-modeling studies have been performed in the molecular-dynamics domain, limited to very short times and small systems. Extended-time modeling, however, is crucial to predicting the long-term effects of irradiation at high temperatures, since the experimental testing may not encompass the displacement rate that the fibers will encounter if they are deployed in the VHTR. The project team will pursue such extended-time modeling, including the effects of the ambient and recrystallization. The process will be based on kinetic MC modeling using the concept of amorphous material consisting of building blocks of defect-pairs or clusters, which has been successfully applied to kinetic modeling in amorphized and recrystallized silicon. Using this procedure, the team will model compensation for rate effects, and the interplay of rate effects with the effects of annealing, to accurately predict the fibers� reliability and expected lifetime

  15. Full Scale Coated Fiber Neutron Detector Measurements

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Stromswold, David C.; Woodring, Mitchell L.

    2010-03-17

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. Reported here are the results of tests of the full-scale 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT) and Saint Gobain, and is a follow-up report to an earlier one on a smaller prototype system.

  16. Lemon Project Spring Symposium

    E-Print Network [OSTI]

    Fashing, Norman

    Lemon Project: A Journey of Reconciliation." The BOV defined Lemon "as a long- term research project

  17. Functionally-graded fiber-reinforced cement composite: Processing, microstructure, and properties

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    Functionally-graded fiber-reinforced cement composite: Processing, microstructure, and properties-graded fiber-reinforced cement composite (FGFRCC). Fiber volume fractions were increased linearly from 0: Fiber-reinforced cement composite (FRCC); Functionally-graded fiber-reinforced cement composite (FGFRCC

  18. Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation

    E-Print Network [OSTI]

    Wang, Siqun

    fibers such as glass, carbon or aramid fibers and talc [1­4]. Natural fibers have numerous advantages of carbon dioxide and can aid in the conservation of petroleum. Natural fiber-reinforced polymer composites (NFRPC) have also attracted attention as a method of recycling natural fibers and plastic waste

  19. Transgressive Segregation for Fiber Properties of Three Selected Populations in Cotton 

    E-Print Network [OSTI]

    Meritt, Benjamin Tyler

    2014-12-16

    SEGREGATION FOR FIBER PROPERTIES OF THREE POPULATIONS IN COTTON A Thesis by BENJAMIN TYLER MERITT Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree... ACKNOWLEDGEMENTS I would first like to thank Dr. Smith, Dr. Hague, Dr. Percy, Dr. Thomas, Dawn Deno and any graduate and undergraduate students that have helped with my project over the years. I could not have done it without any of them. It has been rough...

  20. Progress in the development of scintillating optical fibers

    SciTech Connect (OSTI)

    Borenstein, S.R.; Strand, R.C.

    1983-01-01

    Starting with 1 inch diameter PVT scintillator as a preform, the authors have drawn fibers of several diameters ranging from 1 to 4 mm. These fibers have been coated in line with the draw to form optical fibers. Several cladding materials whose index of refraction ranges from 1.35 to 1.55 have been used. The most successful fiber has been obtained with an extra thick (200 micron) cladding of silicone in combination with a linear draw, as opposed to a spool draw. This fiber is acceptable, but it is extremely fragile and its quality is difficult to control. The authors are currently constructing a 12 channel hodoscope with 1 mm spatial resolution using 4 mm diameter fibers. An account is also given of the progress made in using the Avalanche Photo Diode (APD) operated in the Geiger mode as the photo detector.

  1. Passive CO{sub 2} removal using a carbon fiber composite molecular sieve

    SciTech Connect (OSTI)

    Burchell, T.D.; Judkins, R.R.

    1995-12-01

    Manufacture and characterization of a carbon fiber composite molecular sieve (CFCMS), and its efficacy as a CO{sub 2} gas adsorbent are reported. The CFCMS consists of an isotropic pitch derived carbon fiber and a phenolic resin derived carbon binder. Activation (selective gasification) of the CFCMS creates microporosity in the carbon fibers, yielding high micropore volumes (>0.5 cm{sup 3}/g) and BET surface areas (>1000 m{sup 2}/g). Moreover, the CFCMS material is a rigid, strong, monolith with an open structure that allows the free-flow of fluids through the material. This combination of properties provides an adsorbent material that has several distinct advantages over granular adsorbents in gas separation systems such as pressure swing adsorption (PSA) units. The results of our initial evaluations of the CO{sub 2} adsorption capacity and kinetics of CFCMS are reported. The room temperature CO{sub 2} adsorption capacity of CFCMS is >120 mg of CO{sub 2} per g of CFCMS. A proposed project is described that targets the development, over a three-year period, of a demonstration separation system based on CFCMS for the removal of CO{sub 2} from a flue gas slip stream at a coal-fired power plant. The proposed program would be conducted jointly with industrial and utility partners.

  2. Fabry-Perot fiber optic sensor using multimode laser diode 

    E-Print Network [OSTI]

    Chu, Siu Yi Andrew

    1993-01-01

    irm. CD laser diodes are a candidate to be considered as a light source for our proposed fiber optic sensing scheme. A cost effective fiber sensing scheme would enable production of high volume affordable sensing devices for commercial... etc. The input light source of a fiber optic sensing scheme is usually a semiconductor singlemode laser diode, a high coherence light source; or a LED, a low coherence light source. The input optical power is launched into a singlemode or multimode...

  3. Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

    SciTech Connect (OSTI)

    Goyal, Amit

    2012-07-24

    A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.

  4. Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

    DOE Patents [OSTI]

    Goyal, Amit

    2013-07-09

    A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.

  5. Hydropower Projects

    SciTech Connect (OSTI)

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  6. PROJECT SUMMARY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - . . -Pathways)PROJECT SUMMARY 1 TITLE

  7. Hallmark Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing Programs |ReferencePowerHaier: OrderProject

  8. Resolving optical illumination distributions along an axially symmetric photodetecting fiber

    E-Print Network [OSTI]

    Lestoquoy, Guillaume

    2012-01-01

    Photodetecting fibers of arbitrary length with internal metal, semiconductor and insulator domains have recently been demonstrated. These semiconductor devices display a continuous translational symmetry which presents ...

  9. Resolving optical illumination distributions along an axially symmetric photodetecting fiber

    E-Print Network [OSTI]

    Sorin, Fabien

    Photodetecting fibers of arbitrary length with internal metal, semiconductor and insulator domains have recently been demonstrated. These semiconductor devices exhibit a continuous translational symmetry which presents ...

  10. Fiber Reinforced Polymer Composite Manufacturing RFI, DE-FOA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technology is the next wave of productivity...The acceleration of this trend in carbon fiber manufacturing will impact three workforce development trends. First is the need for...

  11. Fiber delivered probe for efficient CARS imaging of tissues

    E-Print Network [OSTI]

    Balu, Mihaela; Liu, Gangjun; Chen, Zhongping; Tromberg, Bruce J; Potma, Eric O

    2010-01-01

    atherosclerotic lesions by CARS-based multimoddal nonlinearanti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl.fiber for interferometric CARS microscopy,” Opt. Express 14,

  12. Optimization Online - Wavelength Assignment in Multi-Fiber WDM ...

    E-Print Network [OSTI]

    Arie M.C.A. Koster

    2005-03-17

    Mar 17, 2005 ... By this relation, we show that for a network with an even number of fibers ... proceedings of the International Network Optimization Conference, ...

  13. Fiber-Optic Sensor for Industrial Process Measurement and Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiber-Optic Sensor for Industrial Process Measurement and Control Reliable Advanced Laser Sensor Helps Control High Temperature Gas Combustion Through a marketing agreement...

  14. Method and apparatus for assaying wood pulp fibers

    DOE Patents [OSTI]

    Gustafson, Richard (Bellevue, WA); Callis, James B. (Seattle, WA); Mathews, Jeffrey D. (Neenah, WI); Robinson, John (Issaquah, WA); Bruckner, Carsten A. (San Mateo, CA); Suvamakich, Kuntinee (Seattle, WA)

    2009-05-26

    Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp fiber. Before the fiber slurry enters the flow cell it is mixed with a dilution water of bleach to reduce background fluorescence. The fluorescent light is collimated and directed through a dichroic filter onto a fluorescence splitting dichroic filter.

  15. Sandia Energy - Sandia and EMCORE: Solar Photovoltaics, Fiber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency Home Renewable Energy Energy Partnership Concentrating Solar Power Photovoltaic Research & Capabilities Solar...

  16. Fiber optics interface for a dye laser oscillator and method

    DOE Patents [OSTI]

    Johnson, Steve A. (Tracy, CA); Seppala, Lynn G. (Pleasanton, CA)

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  17. Contact Lee McGetrick Director, Carbon Fiber Technology Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    www.ornl.govmanufacturing Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Oak Ridge National Laboratory is home to the...

  18. GENERIC FIBER RINGS OF MIXED POWER SERIES/POLYNOMIAL ...

    E-Print Network [OSTI]

    fibers encode important information about the structure of R. For example, the. local ring R is ... National Security Agency for its support. Typeset by AMS-TEX. 1

  19. Manufacturing Demonstration Facility Low-Cost Carbon Fiber Available...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Cost Carbon Fiber Available to US Manufacturers for Market Development and Demonstration Oak Ridge National Laboratory (ORNL) is making available market development quantities...

  20. Fiber optics interface for a dye laser oscillator and method

    DOE Patents [OSTI]

    Johnson, S.A.; Seppala, L.G.

    1984-06-13

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  1. Corn fiber hulls as a food additive or animal feed

    DOE Patents [OSTI]

    Abbas, Charles (Champaign, IL); Beery, Kyle E. (Decatur, IN); Cecava, Michael J. (Decatur, IN); Doane, Perry H. (Decatur, IN)

    2010-12-21

    The present invention provides a novel animal feed or food additive that may be made from thermochemically hydrolyzed, solvent-extracted corn fiber hulls. The animal feed or food additive may be made, for instance, by thermochemically treating corn fiber hulls to hydrolyze and solubilize the hemicellulose and starch present in the corn fiber hulls to oligosaccharides. The residue may be extracted with a solvent to separate the oil from the corn fiber, leaving a solid residue that may be prepared, for instance by aggolmerating, and sold as a food additive or an animal feed.

  2. Glass fiber composition. [for use as thermal insulation

    DOE Patents [OSTI]

    Wolf, G.A.; Kupfer, M.J.

    1980-12-19

    The invention relates to a glass fiber composition useful for thermal insulation having a low melting temperature and high chemical durability.

  3. Kenaf Bast Fibers—Part I: Hermetical Alkali Digestion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, Jinshu; Shi, Sheldon Q.; Barnes, H. Michael; Horstemeyer, Mark; Wang, Jinwu; Hassan, El-Barbary M.

    2011-01-01

    The objective of this study was to develop a hermetical alkali digestion process to obtain single cellulosic fibers from kenaf bast. Kenaf bast were hermetically digested into single fiber using a 5% sodium hydroxide solution for one hour at four different temperatures (80 ° C, 110 ° C, 130 ° C, and 160 ° C). The hermetical digestion process used in this study produced fibers with high cellulose content (84.2–92.3%) due to the removal of lignin and hemicelluloses. The surface hardness and elastic modulus of the fibers digested at 130 ° C and 160 ° C were improved significantlymore »compared with those digested at 80 ° C. The tensile modulus and tensile strength of the individual fibers reduced as the digestion temperature increased from 110 ° C to 160 ° C. Micropores were generated in fiber cell wall when the fibers were digested at 130 ° C and 160 ° C. The studies on the composites that were made from polypropylene reinforced with the digested fibers indicated that the compatibility between the digested fibers and polypropylene matrix was poor. « less

  4. High power 938 nanometer fiber laser and amplifier

    DOE Patents [OSTI]

    Dawson, Jay W. (Livermore, CA); Liao, Zhi Ming (Pleasanton, CA); Beach, Raymond J. (Livermore, CA); Drobshoff, Alexander D. (Livermore, CA); Payne, Stephen A. (Castro Valley, CA); Pennington, Deanna M. (Livermore, CA); Hackenberg, Wolfgang (Munich, DE); Calia, Domenico Bonaccini (Garching, DE); Taylor, Luke (Montauban de Bretagne, FR)

    2006-05-02

    An optical fiber amplifier includes a length of silica optical fiber having a core doped with neodymium, a first cladding and a second cladding each with succeeding lower refractive indices, where the first cladding diameter is less than 10 times the diameter of the core. The doping concentration of the neodymium is chosen so that the small signal absorption for 816 nm light traveling within the core is less than 15 dB/m above the other fiber losses. The amplifier is optically pumped with one laser into the fiber core and with another laser into the first cladding.

  5. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOE Patents [OSTI]

    Kramer, D.P.

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.

  6. Advanced Metal Fiber Wall-Flow DPF For Diesel Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Fiber Wall-Flow DPF For Diesel Emission Control Advanced Metal Fiber Wall-Flow DPF For Diesel Emission Control A new metal fiber wall-flow DPF with up to 99% efficiency and...

  7. Characterization of interphase in natural fiber reinforced polymer composites using nano-

    E-Print Network [OSTI]

    Gray, Matthew

    1 Characterization of interphase in natural fiber reinforced polymer composites using nano Results · Future works INTRODUCTION Natural fiberNatural fiber--reinforcedreinforced polymer consumption,properties, low energy consumption, carbon dioxide neutral, no residuescarbon dioxide neutral

  8. PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER COMMUNICATIONS LABORATORY Andrew M. Weiner and Ehsan Hamidi

    E-Print Network [OSTI]

    Purdue University

    PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER COMMUNICATIONS LABORATORY Andrew M. Weiner ULTRAFAST OPTICS & OPTICAL FIBER COMMUNICATIONS LABORATORY Ultrawideband (UWB) Radio-frequency Photonics UWB;PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER COMMUNICATIONS LABORATORY Femtosecond Pulse Shaping A

  9. Development of a Seed Cotton Fiber Quality Sensing System For Cotton Fiber Quality Mapping 

    E-Print Network [OSTI]

    Schielack, Vincent Paul

    2012-02-14

    .......................................................................................... 5 Cotton Quality Variation ...................................................................... 5 Fiber Quality Mapping ......................................................................... 6 Objectives... ................................................................................. 19 Figure 5 Transmission curve for the 1450-nm band-pass filter with 12-nm FWHM ................................................................................. 20 Figure 6 Transmission curve for the 1550-nm band-pass filter with 12-nm...

  10. Low Cost Carbon Fiber Produc on Carbon Fiber Manufacturing Cost Modeling

    E-Print Network [OSTI]

    a lengthy and energy intensive oxidative stabilization step so that the fibers can endure the high be developed in order to evaluate the cost- effectiveness of alternative manufacturing pathways being considered by the industry today. Approach ORNL is investigating various alternative precursors and advanced

  11. Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefinesMay 4,ofLeifer-29,CoalSunShotDepartmentFiber

  12. Fiber Characterization and Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) | SciTechSubmitted MoreTrafficFerrin Moore,FerryFiber

  13. Custom Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in ActinideRailCurrent ResearchInnovationCustom-Projects

  14. Project Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefineEnergy NationalDepartmentProjectNE I&C

  15. Project Gnome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference) | SciTechProject Gnome Double Beta Decay

  16. Project Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference) | SciTechProjectITERFebruaryStorage

  17. About Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act Recovery ActARM OverviewAbout GEDOE Projects

  18. Line Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H2015Tray and|Projects Pages default

  19. PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples

    Energy Savers [EERE]

    is responsible for supporting the FDH and RL project offices with adequate day-to-day planning and review technical management, coordination, control, and reporting of project...

  20. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 First Quarterly Report

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Sanborn, Scott E.; Simmons, Kevin L.; Mathur, Raj N.; Sangid, Michael D.; Jin, Xiaoshi; Costa, Franco; Gandhi, Umesh N.; Mori, Steven; Tucker III, Charles L.

    2014-02-19

    The CRADA between PNNL, Autodesk, Toyota and Magna has been effective since October 28th, 2013. The whole team including CRADA and subcontract partners kicked off the project technically on November 1st, 2013. This report describes work performed during the first quarter of FY 2014. The following technical progresses have been made toward project milestones: 1) The project kickoff meeting was organized at PlastiComp, Inc. in Winona on November 13th, 2013 involving all the project partners. During this meeting the research plan and Gantt chart were discussed and refined. The coordination of the research activities among the partners was also discussed to ensure that the deliverables and timeline will be met. 2) Autodesk delivered a research version of ASMI to PNNL for process modeling using this tool under the project. PNNL installed this research version on a PNNL computer and tested it. Currently, PNNL is using ASMI to prepare the models for PlastiComp plaques. 3) PlastiComp has compounded long carbon-fiber reinforced polypropylene and polyamide 6,6 compounds for rheological and thermal characterization tests by the Autodesk laboratories in Melbourne, Australia. 4) Initial mold flow analysis was carried out by PlastiComp to confirm that the 3D complex part selected by Toyota as a representative automotive part is moldable. 5) Toyota, Magna, PlastiComp and PNNL finalized the planning for molding the Toyota 3D complex part. 6) Purdue University worked with PNNL to update and specify the test matrix for characterization of fiber length/orientation. 7) Purdue University developed tools to automate the data collection and analysis of fiber length and orientation measurements. 8) Purdue University designed and specified equipment to replace the need for equipment using the technology established by the University of Leeds at General Motors.

  1. Development of Fiber Bragg Grating Strain, Thermal, and Magnetic Sensors for Smart Structure Applications

    E-Print Network [OSTI]

    Emmons, Michael

    2012-01-01

    for Actuators and Sensors,” Journal of Intelligent MaterialOptical Fiber Sensors,” Journal of Intelligent Materialcoatings for intelligent structure fiber optic sensors,” San

  2. Low-Cost Carbon-Fiber Integration / Users Facility and Commercializati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Carbon-Fiber Integration Users Facility and Commercialization of Textile Precursors Low-Cost Carbon-Fiber Integration Users Facility and Commercialization of Textile...

  3. Evaluation of microstructure and properties deterioration in short fiber reinforced thermoplastics

    E-Print Network [OSTI]

    Sevostianov, Igor

    Evaluation of microstructure and properties deterioration in short fiber reinforced thermoplastics. Effective elastic stiffnesses and thermal diffusivities of glass fiber reinforced thermoplastic are measured

  4. Low-Cost Bio-Based Carbon Fibers for High-Temperature Processing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    resources such as Carbon Fiber Technology Facility (CFTF). Approach Lignin, a biopolymer, has potential to be a low-cost carbon fiber precursor if certain technical...

  5. Categorical Exclusion Determinations: Office of River Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 CX-012329: Categorical Exclusion Determination PNNL Projects Involving Small-Scale Research and Development, Laboratory Operations, and Pilot Projects in the 300 Area CX(s)...

  6. Communication Seebeck effect in steel fiber reinforced cement

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Communication Seebeck effect in steel fiber reinforced cement Sihai Wen, D.D.L. Chung* Composite Abstract Cement pastes containing short steel fibers, which contribute to electron conduction, exhibit.0% by mass of cement gives a higher value of the absolute thermoelectric power than a content of 0.5% by mass

  7. Fiber delivered probe for efficient CARS imaging of tissues

    E-Print Network [OSTI]

    Potma, Eric Olaf

    Fiber delivered probe for efficient CARS imaging of tissues Mihaela Balu1, Gangjun Liu1, Zhongping-Stokes Raman scattering (CARS) signal in biological tissues. We discuss the design challenges including capturing the back- scattered forward generated CARS signal in the sample and the effects of fiber

  8. Ferry Slik Economic Botany -UBD What are fibers?

    E-Print Network [OSTI]

    Slik, Ferry

    treatment for dying - Attacked by fungi, molds and termites - Not elastic - Generally water absorbant #12 material - Drying makes the material breakable - Rolling breaks the woody parts, but does not affect that swells the fibers - The process prevents the shrinking of the fibers after washing #12;Seed and f

  9. Flexible fiber batteries for applications in smart textiles

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    Flexible fiber batteries for applications in smart textiles Hang Qu1 , Oleg Semenikhin2 and Maksim as electrolyte, and it is introduced into the battery after the drawing process. The capacity of a 1 m long fiber battery is measured to be 10 mAh. We also detail assembly and optimization of the electrical circuitry

  10. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOE Patents [OSTI]

    Murphy, Kent A. (Roanoke, VA); Gunther, Michael F. (Blacksburg, VA); Vengsarkar, Ashish M. (Scotch Plains, NJ); Claus, Richard O. (Christiansburg, VA)

    1994-01-01

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.

  11. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOE Patents [OSTI]

    Murphy, K.A.; Gunther, M.F.; Vengsarkar, A.M.; Claus, R.O.

    1994-04-05

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer. 14 figures.

  12. Organically modified silicate coatings for optical fibers A. B. Wojcik

    E-Print Network [OSTI]

    Matthewson, M. John

    Organically modified silicate coatings for optical fibers A. B. Wojcik L. C. Klein V. V. Rondinella been prepared to be used as protective coatings for optical fibers. The synthesis involves the reaction, solvent-free resins were obtained that hardened in seconds when exposed to UV radiation. The coating

  13. Pulse confinement in optical fibers with random dispersion

    E-Print Network [OSTI]

    Gabitov, Ildar

    Pulse confinement in optical fibers with random dispersion M. Chertkov , I. Gabitov, and J. Moeser and eventually destroys all initially ultra-short pulses. However, under the con- straint that the integral- periodically along the fiber, the dynamics of the pulse propagation changes dramatically. For the case

  14. Evaluation of Plasma Resistant Hollow Fiber Membranes For Artificial Lungs

    E-Print Network [OSTI]

    Federspiel, William J.

    Evaluation of Plasma Resistant Hollow Fiber Membranes For Artificial Lungs HEIDE J. EASH,* HEATHER in artificial lungs (ox- ygenators) undergo plasma leakage (or wetting) in which blood plasma slowly fills2 gas permeance of a plasma resistant fiber imposes the greatest constraint upon artificial lung

  15. Method for forming hermetic coatings for optical fibers

    DOE Patents [OSTI]

    Michalske, Terry A. (P.O. Box 1042, Cedar Crest, NM 87008); Rye, Robert R. (1304 Espanola NE., Albuquerque, NM 87110); Smith, William L. (9916 Fostoria Rd., NE., Albuquerque, NM 87111)

    1993-01-01

    A method for forming hermetic coatings on optical fibers by hot filament assisted chemical vapor deposition advantageously produces a desirable coating while maintaining the pristine strength of the pristine fiber. The hermetic coatings may be formed from a variety of substances, such as, for example, boron nitride and carbon.

  16. Design implications of fiber orientation in molded thermoplastic composites 

    E-Print Network [OSTI]

    Boulios, Konstantinos Elephtherios

    1991-01-01

    for the degree of MASTERS OF SCIENCE May 1991 Major Subject: Mechanical Engineering DESIGN IMPLICATIONS OF FIBER ORIENTATION IN MOLDED THERMOPLASTIC COMPOSITES A Thesis by KONSTANTINOS ELEPHTHERIOS BOULIOS Approved as to style and content by: Alan... Test. PAGE . . . . 69 . . . . 76 IV MECHANICAL BEHAVIOR SIMULATION OF A COMPRESSION MOLDING FIBER REINFORCED STRUCTURE. . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . IV. I Description of the Finite Element Model. IV. 2 Discussion...

  17. Fiber Optic Sensors for PEM Fuel Cells Nigel David

    E-Print Network [OSTI]

    Victoria, University of

    Fiber Optic Sensors for PEM Fuel Cells by Nigel David B.Sc., Simon Fraser University, 2004 M or other means, without the permission of the author. #12;ii Fiber Optic Sensors for PEM Fuel Cells Fyles, Outside Member (Department of Chemistry) ABSTRACT Fibre-optic sensing techniques for application

  18. Mechanisms, Models, and Simulations of Metal-Coated Fiber Consolidation

    E-Print Network [OSTI]

    Wadley, Haydn

    pro-gas turbine engines and other aerospace structures because cess.[6] Recent micromechanicalMechanisms, Models, and Simulations of Metal-Coated Fiber Consolidation R. VANCHEESWARAN, J of Ti-6Al-4V­coated SiC fibers contained in cylindrical canisters have revealed an unexpectedly high

  19. Photocatalytic Self Cleaning Textile Fibers by Coaxial Electrospinning

    E-Print Network [OSTI]

    Cincinnati, University of

    Photocatalytic Self Cleaning Textile Fibers by Coaxial Electrospinning N. M. Bedford,§ and A. J Photocatalytic self-cleaning textile fibers have been created using coaxial electrospinning. This is accomplished by electrospinning cellulose acetate as the core phase and a dispersion of nanocrystalline TiO2, a well

  20. Developments in Oxide Fiber Composites Frank W. Zokw

    E-Print Network [OSTI]

    Zok, Frank

    are contingent on the development of durable high-per- formance ceramic composites. With recent discoveries, and toughness, continuous-fiber ceramic composites (CFCCs) offer the greatest potential for enabling elevations that are volatilized by oxidation after composite fabrica- tion, leaving a narrow gap at the fiber­matrix boundary (Fig

  1. Brief Report Replacement of Adenovirus Type 5 Fiber Shaft

    E-Print Network [OSTI]

    Hemminki, Akseli

    Brief Report Replacement of Adenovirus Type 5 Fiber Shaft Heparan Sulfate Proteoglycan-binding domain of the fiber shaft to GATK results in liver transduction detargeting, but it is not compatible shaft location efficiently enhances the infectivity of adenovirus and improves the tumor

  2. PROJECT MANGEMENT PLAN EXAMPLES

    Broader source: Energy.gov (indexed) [DOE]

    125E, 126, 126A, and 126B. Room 116 contains the connection point to the plant fiber optics system. Asbestos containing materials are expected to exist in building components...

  3. Fiber-optic sensors and geothermal reservoir engineering

    SciTech Connect (OSTI)

    Angel, S.M.; Kasameyer, P.W. )

    1988-12-01

    Perhaps the first demonstrations of fiber-optic sensors in a geothermal well occurred in early 1988 on the Island of Hawaii. The first of two fiber-optic optrode tests was at the HGP-A well and 3-megawatt power plant facility managed by the Hawaii National Energy Institute at the University of Hawaii. The second test was in a nearby geothermal exploratory well, Geothermal Test Well 2. Both sites are in the Kilauea East Rift zone. A fiber-optic temperature sensor test will be undertaken soon in a deeper, hotter geothermal well. Problems will be examined that may occur with a stainless steel-sleeved, fiber-optic cable. The paper describes fiber optic technology and its use in geothermal reservoir engineering.

  4. A Fiber Interferometer for the Magnetized Shock Experiment

    SciTech Connect (OSTI)

    Yoo, Christian [Los Alamos National Laboratory

    2012-08-30

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.

  5. Tunable transport of drops on a vibrating inclined fiber

    E-Print Network [OSTI]

    Bick, Alison; Sauret, Alban; Stone, Howard A

    2015-01-01

    Transport of liquid drops in fibrous media occurs in various engineering systems such as fog harvesting or cleaning of textiles. The ability to tune or to control liquid movement can increase the system efficiency and enable new engineering applications. In this Letter, we experimentally investigate how partially wetting drops on a single fiber can be manipulated by vibrating the fiber. We show that a sliding motion along the fiber or a dripping of the drop can be triggered by standing waves. We identify the conditions on the drop volume, the fiber tilt angle and the amplitude and frequency of oscillations to observe these different behaviors. Finally, we experimentally illustrate that vibrations can be used to control the transport and the collection of water drops along a fiber using a combination of the sliding and dripping transitions.

  6. Measurement of large strains in ropes using plastic optical fibers

    DOE Patents [OSTI]

    Williams, Jerry Gene; Smith, David Barton; Muhs, Jeffrey David

    2006-02-14

    A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.

  7. Low-temperature hermetic sealing of optical fiber components

    SciTech Connect (OSTI)

    Kramer, D.P.

    1995-12-31

    A method for manufacturing low-temperature hermetically sealed optical fiber components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber.

  8. Fine-grained hodoscopes based on scintillating optical fibers

    SciTech Connect (OSTI)

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    In order to exploit the high event rates at ISABELLE, it will be necessary to have fast detection with fine spatial resolution. The authors are currently constructing a prototype fine-grained hodoscope, the elements of which are scintillating optical fibers. The fibers have been drawn from commercially available plastic scintillator which has been clad with a thin layer of silicone. So far it has been demonstrated with one mm diameter fibers, that with a photodetector at each end, the fibers are more than 99% efficient for lengths of about 60 cm. The readout will be accomplished either with small diameter photomultiplier tubes or avalanche photodiodes used either in the linear or Geiger mode. The program of fiber development and evaluation is described. The status of the APD as a readout element is discussed, and an optical encoding readout scheme is described for events of low multiplicity.

  9. Apparatus and method for carbon fiber surface treatment

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN); Sherman, Daniel M. (Knoxville, TN)

    2012-07-24

    An apparatus and method for enhancing the surface energy and/or surface chemistry of carbon fibers involves exposing the fibers to direct or indirect contact with atmospheric pressure plasma generated using a background gas containing at least some oxygen or other reactive species. The fiber may be exposed directly to the plasma, provided that the plasma is nonfilamentary, or the fiber may be exposed indirectly through contact with gases exhausting from a plasma discharge maintained in a separate volume. In either case, the process is carried out at or near atmospheric pressure, thereby eliminating the need for vacuum equipment. The process may be further modified by moistening the fibers with selected oxygen-containing liquids before exposure to the plasma.

  10. Low-temperature hermetic sealing of optical fiber components

    DOE Patents [OSTI]

    Kramer, D.P.

    1996-10-22

    A method for manufacturing low-temperature hermetically sealed optical fiber components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber. 5 figs.

  11. PROJECT MANAGEMENT Professional Organizations

    E-Print Network [OSTI]

    Acton, Scott

    PROJECT MANAGEMENT Professional Organizations: Association of Collegiate Computing Services) Project Management Institute (PMI) Events & Training: UVA Local Support Partners (LSP) program training Project Management Institute webinars Project Management Institute events Scrum Alliance events Learning

  12. Project Management Lessons Learned

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-05

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

  13. PROJECT MANAGEMENT Professional Organizations

    E-Print Network [OSTI]

    Acton, Scott

    PROJECT MANAGEMENT Professional Organizations: Project Management Institute International Association of Project and Program Management (IAPPM) Events & Training: UVa Center for Leadership Excellence classes SkillSoft classes PMO Symposium through PMI Project Management Institute (PMI) webinars American

  14. The effect of second phase particles in the fiber/matrix interfacial strength of carbon fiber reinforced thermoset composites 

    E-Print Network [OSTI]

    Lu, Chung-Yuan

    1996-01-01

    The fiber/matrix interfacial strength of graphite fiber reinforced epoxy (DGEBF cured with diprimary amine (9,9-bis[3-methyl-4-aminophenyl]fluorene) has been studied to determine the effect of second phase additions of rubber and glass...

  15. Achieving "Green" Concrete Through The Use Of High Performance FiberThe Use Of High Performance Fiber

    E-Print Network [OSTI]

    Chao, Shih-Ho

    : rapid increase in the permeability occurred for plain concrete under stress; increasep y p ; remainedAchieving "Green" Concrete Through The Use Of High Performance FiberThe Use Of High Performance Fiber Reinforced Concrete ShihShih--Ho Chao,Ho Chao, Ph.DPh.D Assistant Professor, Department of Civil

  16. Hybrid glass coatings for optical fibers: effect of coating thickness on strength and dynamic fatigue characteristics of silica fibers

    E-Print Network [OSTI]

    Matthewson, M. John

    Hybrid glass coatings for optical fibers: effect of coating thickness on strength and dynamic coatings. Recently developed sol-gel derived inorganic- organic hybrid materials called hybrid glass offered improved protective performance as compared to standard dual polymer coated fibers [1

  17. Perspectives on Project Finance

    Broader source: Energy.gov [DOE]

    Plenary III: Project Finance and Investment Perspectives on Project Finance John May, Managing Partner, Stern Brothers & Co.

  18. Community Renewables Projects

    Broader source: Energy.gov [DOE]

    This webinar covered introduction and barriers to individual renewable projects, resources for community and group buy projects, and permitting guidelines.

  19. Computer Vision Project Topics Project Reports

    E-Print Network [OSTI]

    Zhu, Zhigang

    (contour projection?). step5: choose a tolerance value(3 or 5 pixels) to evaluate the image with eachComputer Vision Project Topics CSc I6716 Spring2011 #12;Project Reports 1. Introduction (problem up with Nikolaos Markou? · Key Components ­ The project is to find a target image from bunch

  20. Project Final Report UBC LBS Project Services1 Project Final Report UBC LBS Project Services2

    E-Print Network [OSTI]

    is used as a foundation for all development, land use, and transportation activities at UBC. LBS Project Services is a fee-for-service provider of development, design, and project management servicesProject Final Report UBC LBS Project Services1 #12;Project Final Report UBC LBS Project Services2

  1. Fiber optical assembly for fluorescence spectrometry

    DOE Patents [OSTI]

    Carpenter, II, Robert W. (Pagosa Springs, CO); Rubenstein, Richard (Staten Island, NY); Piltch, Martin (Los Alamos, NM); Gray, Perry (Los Alamos, NM)

    2010-12-07

    A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

  2. Carbon fiber electrode for redox flow battery

    SciTech Connect (OSTI)

    Inoue, M.; Tsuzuki, Y.; Iizuka, Y.; Shimada, M.

    1987-03-01

    Advanced secondary batteries have been developed as electrical energy storage systems for use in electrical utility load-levelling and stand-alone photovoltaic installations. Among them, the redox flow system based on aqueous iron and chromium redox couple is one of the most advanced. An important key to its feasibility is electrode fabrication. Woven and non-woven fabrics of carbon fibers have been used as thin but three dimensional electrodes of the redox flow system in view of their electric conductivity, chemical stability, and economy. One of the electrochemical problems of iron-chromium redox battery related to the electrode is the slow reaction rate of reduction and oxidation of chromium complex ion. As the electron transfer rate of chromium complex ion is lower than that of iron ion, the voltaic efficiency of the battery tends to decrease.

  3. Stable nonlinear Mach-Zehnder fiber switch

    DOE Patents [OSTI]

    Digonnet, Michel J. F. (Palo Alto, CA); Shaw, H. John (Palo Alto, CA); Pantell, Richard H. (Menlo Park, CA); Sadowski, Robert W. (Camp Doha, KW)

    1999-01-01

    An all-optical fiber switch is implemented within a short Mach-Zehnder interferometer configuration. The Mach-Zehnder switch is constructed to have a high temperature stability so as to minimize temperature gradients and other thermal effects which result in undesirable instability at the output of the switch. The Mach-Zehnder switch of the preferred embodiment is advantageously less than 2 cm in length between couplers to be sufficiently short to be thermally stable, and full switching is accomplished by heavily doping one or both of the arms between the couplers so as to provide a highly nonlinear region within one or both of the arms. A pump input source is used to affect the propagation characteristics of one of the arms to control the output coupling ratio of the switch. Because of the high nonlinearity of the pump input arm, low pump powers can be used, thereby alleviating difficulties and high cost associated with high pump input powers.

  4. RADIATION EFFECTS ON EPOXY CARBON FIBER COMPOSITE

    SciTech Connect (OSTI)

    Hoffman, E

    2008-05-30

    Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 50, 100, and 200 Mrad. Irradiated and baseline samples were tested for tensile strength, hardness and evaluated using FTIR (Fourier transform infrared) spectroscopy and DSC (differential scanning calorimetry) for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and FTIR results with increasing gamma irradiation. The results suggest the epoxy within the composite can be affected by exposure to gamma irradiation.

  5. Raman fiber optic probe assembly for use in hostile environments

    DOE Patents [OSTI]

    Schmucker, John E. (Hurt, VA); Falk, Jon C. (Pittsburgh, PA); Archer, William B. (Bethel Park, PA); Blasi, Raymond J. (Harrison City, PA)

    2000-01-01

    This invention provides a device for Raman spectroscopic measurement of composition and concentrations in a hostile environment by the use of a first fiber optic as a means of directing high intensity monochromatic light from a laser to the hostile environment and a second fiber optic to receive the lower intensity scattered light for transmittal to a monochromator for analysis. To avoid damage to the fiber optics, they are protected from the hostile environment. A preferred embodiment of the Raman fiber optic probe is able to obtain Raman spectra of corrosive gases and solutions at temperatures up to 600.degree. F. and pressures up to 2000 psi. The incident exciting fiber optic cable makes an angle of substantially 90.degree. with the collecting fiber optic cable. This 90.degree. geometry minimizes the Rayleigh scattering signal picked up by the collecting fiber, because the intensity of Rayleigh scattering is lowest in the direction perpendicular to the beam path of the exciting light and therefore a 90.degree. scattering geometry optimizes the signal to noise ratio.

  6. Carbon fiber composite characterization in adverse thermal environments.

    SciTech Connect (OSTI)

    Gomez-Vasquez, Sylvia; Brown, Alexander L.; Hubbard, Joshua A.; Ramirez, Ciro J.; Dodd, Amanda B.

    2011-05-01

    The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities.

  7. CREEP MODELING FOR INJECTION-MOLDED LONG-FIBER THERMOPLASTICS

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.

    2008-06-30

    This paper proposes a model to predict the creep response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the nonlinear viscoelastic behavior described by the Schapery’s model. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber length and orientation distributions were measured and used in the analysis that applies the Eshelby’s equivalent inclusion method, the Mori-Tanaka assumption (termed as the Eshelby-Mori-Tanaka approach) and the fiber orientation averaging technique to compute the overall strain increment resulting from an overall constant applied stress during a given time increment. The creep model for LFTs has been implemented in the ABAQUS finite element code via user-subroutines and has been validated against the experimental creep data obtained for long-glass-fiber/polypropylene specimens. The effects of fiber orientation and length distributions on the composite creep response are determined and discussed.

  8. Product formulations using recycled tire crumb rubber. Final report/project accomplishments summary

    SciTech Connect (OSTI)

    Lula, J.W.; Bohnert, G.W.

    1998-02-01

    The objective of this project was to combine crumb rubber and synthetic fiber obtained from scrap tires with thermoplastic polymers and convert these materials into commercially useful, high-value products. A specific goal was to use these materials for roofing, while remaining cognizance of other potential applications.

  9. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOE Patents [OSTI]

    Besmann, T.M.; Lowden, R.A.

    1990-05-29

    An improved cathode structure is described for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 C can be used.

  10. Observation of images in graded-index multimode fiber 

    E-Print Network [OSTI]

    Begum, Sultana

    1992-01-01

    . As the length of the multimode fiber changes, the reflection from the multimode fiber end also changes periodically with a constant beat length. This is accomplished by hand polishing the multimode fiber on I tun grit size aluminium oxide paper. The experiment... holds the glued tubing and it goes inside another block of materials which has a threaded cylindrical brass block (32 threads per inch) at the bottom and a marked aluminium round slab at the top. The slab has a total of 12g divisions along its...

  11. Nonlinear transmission through a tapered fiber in rubidium vapor

    E-Print Network [OSTI]

    S. M. Hendrickson; T. B. Pittman; J. D. Franson

    2008-12-01

    Sub-wavelength diameter tapered optical fibers surrounded by rubidium vapor can undergo a substantial decrease in transmission at high atomic densities due to the accumulation of rubidium atoms on the surface of the fiber. Here we demonstrate the ability to control these changes in transmission using light guided within the taper. We observe transmission through a tapered fiber that is a nonlinear function of the incident power. This effect can also allow a strong control beam to change the transmission of a weak probe beam.

  12. Use of a fiber optic probe for organic species determination

    DOE Patents [OSTI]

    Ekechukwu, Amy A. (Augusta, GA)

    1996-01-01

    A fiber optic probe for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe's distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device.

  13. Distributed Fiber Optic Gas Sensing for Harsh Environment

    SciTech Connect (OSTI)

    Juntao Wu

    2008-03-14

    This report summarizes work to develop a novel distributed fiber-optic micro-sensor that is capable of detecting common fossil fuel gases in harsh environments. During the 32-month research and development (R&D) program, GE Global Research successfully synthesized sensing materials using two techniques: sol-gel based fiber surface coating and magnetron sputtering based fiber micro-sensor integration. Palladium nanocrystalline embedded silica matrix material (nc-Pd/Silica), nanocrystalline palladium oxides (nc-PdO{sub x}) and palladium alloy (nc-PdAuN{sub 1}), and nanocrystalline tungsten (nc-WO{sub x}) sensing materials were identified to have high sensitivity and selectivity to hydrogen; while the palladium doped and un-doped nanocrystalline tin oxide (nc-PdSnO{sub 2} and nc-SnO{sub 2}) materials were verified to have high sensitivity and selectivity to carbon monoxide. The fiber micro-sensor comprises an apodized long-period grating in a single-mode fiber, and the fiber grating cladding surface was functionalized by above sensing materials with a typical thickness ranging from a few tens of nanometers to a few hundred nanometers. GE found that the morphologies of such sensing nanomaterials are either nanoparticle film or nanoporous film with a typical size distribution from 5-10 nanometers. nc-PdO{sub x} and alloy sensing materials were found to be highly sensitive to hydrogen gas within the temperature range from ambient to 150 C, while nc-Pd/Silica and nc-WO{sub x} sensing materials were found to be suitable to be operated from 150 C to 500 C for hydrogen gas detection. The palladium doped and un-doped nc-SnO{sub 2} materials also demonstrated sensitivity to carbon monoxide gas at approximately 500 C. The prototyped fiber gas sensing system developed in this R&D program is based on wavelength-division-multiplexing technology in which each fiber sensor is identified according to its transmission spectra features within the guiding mode and cladding modes. The interaction between the sensing material and fossil fuel gas results in a refractive index change and optical absorption in the sensing layer. This induces mode coupling strength and boundary conditions changes and thereby shifts the central wavelengths of the guiding mode and cladding modes propagation. GE's experiments demonstrated that such an interaction between the fossil fuel gas and sensing material not only shifts the central wavelengths of the guide mode and cladding modes propagation, but also alters their power loss characteristics. The integrated fiber gas sensing system includes multiple fiber gas sensors, fiber Bragg grating-based temperature sensors, fiber optical interrogator, and signal processing software.

  14. Activated carbon fiber composite material and method of making

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  15. Activated carbon fiber composite material and method of making

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  16. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOE Patents [OSTI]

    Besmann, Theodore M. (Knoxville, TN); Lowden, Richard A. (Knoxville, TN)

    1990-01-01

    An improved cathode structure for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 deg. C can be used.

  17. Fabrication of fiber supported ionic liquids and methods of use

    DOE Patents [OSTI]

    Luebke, David R; Wickramanayake, Shan

    2013-02-26

    One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

  18. Communication Origin of the thermoelectric behavior of steel fiber cement paste

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Communication Origin of the thermoelectric behavior of steel fiber cement paste Sihai Wen, D fiber cement. The scattering sites include the fiber­matrix interface, which is like a pn junction, since the fiber and cement paste have opposite signs of the absolute thermoelectric power

  19. 12/22/2000 State of Art Fiber Optic 1 UTILITY APPLICATION OF

    E-Print Network [OSTI]

    12/22/2000 State of Art Fiber Optic 1 UTILITY APPLICATION OF FIBER OPTIC CABLES George G. Karady Arizona State University 2000 © Arizona State University. All rights reserved. #12;12/22/2000 State of Art) Wrap-type · 3) ADSS (all dielectric self supporting #12;12/22/2000 State of Art Fiber Optic 3 FIBER

  20. Effect of optically modified polyethylene terephthalate fiber socks on chronic foot pain

    E-Print Network [OSTI]

    York, Robyn MB; Gordon, Ian L

    2009-01-01

    of optically modified polyethylene terephthalate fiber sockswhether socks made from polyethylene terephthalate (PET)

  1. Fibers and fabrics with insulating, water-proofing, and flame-resistant properties

    DOE Patents [OSTI]

    Hrubesh, Lawrence W.; Poco, John F.; Coronado, Paul R.

    2004-04-20

    Fibers, and fabrics produced from the fibers, are made water repellent, fire-retardant and/or thermally insulating by filling void spaces in the fibers and/or fabrics with a powdered material. When the powder is sufficiently finely divided, it clings tenaciously to the fabric's fibers and to itself, resisting the tendency to be removed from the fabric.

  2. Effect of Solvent Evaporation on Fiber Morphology in Rotary Jet Holly McIlwee Golecki,,

    E-Print Network [OSTI]

    Parker, Kevin Kit

    and solvent evaporation enables production of nanoscale polymer fibers. RJS surpasses the electrospinning

  3. Method of making a continuous ceramic fiber composite hot gas filter

    DOE Patents [OSTI]

    Hill, Charles A. (Lynchburg, VA); Wagner, Richard A. (Lynchburg, VA); Komoroski, Ronald G. (Lynchburg, VA); Gunter, Greg A. (Lynchburg, VA); Barringer, Eric A. (Lynchburg, VA); Goettler, Richard W. (Lynchburg, VA)

    1999-01-01

    A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.

  4. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOE Patents [OSTI]

    Woodward, J.

    1998-12-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered. 6 figs.

  5. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOE Patents [OSTI]

    Woodward, Jonathan (Kingston, TN)

    1998-01-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered.

  6. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOE Patents [OSTI]

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  7. Design of 9-meter carbon-fiberglass prototype blades : CX-100 and TX-100 : final project report.

    SciTech Connect (OSTI)

    Berry, Derek

    2007-09-01

    TPI Composites, Inc. (TPI), Global Energy Concepts, LLC (GEC), and MDZ Consulting (MDZ) have collaborated on a project to design, manufacture, and test prototype carbon-fiberglass hybrid wind turbine blades of 9-m length. The project, funded by Sandia National Laboratories, involves prototype blades in both conventional (unidirectional spar fibers running along the blade span) and ''adaptive'' (carbon fibers in off-axis orientation to achieve bend-twist-coupling) configurations. After manufacture, laboratory testing is being conducted to determine the static and fatigue strength of the prototypes, in conjunction with field testing to evaluate the performance under operational conditions.

  8. Projective ML Didier Remy

    E-Print Network [OSTI]

    RĂ©my, Didier

    Projective ML Didier Remy INRIA-Rocquencourt Apr 10, 1992 Abstract We propose a projective lambda calculus as the ba- sis for operations on records. Projections operate on elevations, that is, records projective ML from this calculus by adding the ML Let typing rule to the simply typed projective calculus. We

  9. Project Reports for Haida Corporation- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Reynolds Creek Hydroelectric Project ("Reynolds Creek" or the "Project") is a 5 MW hydroelectric resource to be constructed on Prince of Wales Island, Alaska, approximately 10 miles east of Hydaburg.

  10. Masters Thesis Optimization of fiber-based optical microcavities

    E-Print Network [OSTI]

    Hänsch, Theodor W.

    -machining of optical fibers - characterization of surface profiles with a home-built white light interferometer spatio-temporal confinement of light, i.e. the combination of a large quality factor and a microscopic

  11. Design and implementation of nanoscale fiber mechanical testing apparatus

    E-Print Network [OSTI]

    Brayanov, Jordan, 1981-

    2004-01-01

    The rapid growth in the synthetic manufacturing industry demands higher resolution mechanical testing devices, capable of working with nanoscale fibers. A new device has been developed to perform single-axis tensile tests ...

  12. Holographic imaging of natural-fiber-containing materials

    DOE Patents [OSTI]

    Bunch, Kyle J [Richland, WA; Tucker, Brian J [Pasco, WA; Severtsen, Ronald H [Richland, WA; Hall, Thomas E [Kennewick, WA; McMakin, Douglas L [Richland, WA; Lechelt, Wayne M [West Richland, WA; Griffin, Jeffrey W [Kennewick, WA; Sheen, David M [Richland, WA

    2010-12-21

    The present invention includes methods and apparatuses for imaging material properties in natural-fiber-containing materials. In particular, the images can provide quantified measures of localized moisture content. Embodiments of the invention utilize an array of antennas and at least one transceiver to collect amplitude and phase data from radiation interacting with the natural-fiber-containing materials. The antennas and the transceivers are configured to transmit and receive electromagnetic radiation at one or more frequencies, which are between 50 MHz and 1 THz. A conveyance system passes the natural-fiber-containing materials through a field of view of the array of antennas. A computing device is configured to apply a synthetic imaging algorithm to construct a three-dimensional image of the natural-fiber-containing materials that provides a quantified measure of localized moisture content. The image and the quantified measure are both based on the amplitude data, the phase data, or both.

  13. Synthesis of electromagnetic modes in photonic band gap fibers

    E-Print Network [OSTI]

    Hu, Qichao

    2007-01-01

    In this paper, we report on the successful synthesis of three individual modes, HE11, TEo0, and TE02 for transmission in photonic band gap fibers at near infrared wavelengths. We measure the propagation losses of the HE11 ...

  14. Natural stiffening increases flaw tolerance of biological fibers

    E-Print Network [OSTI]

    Giesa, Tristan

    Many fibers in biomaterials such as tendon, elastin, or silk feature a nonlinear stiffening behavior of the stress-strain relationship, where the rigidity of the material increases severely as the material is being stretched. ...

  15. Hermetic fiber optic-to-metal connection technique

    DOE Patents [OSTI]

    Kramer, Daniel P. (Centerville, OH)

    1992-09-01

    A glass-to-glass hermetic sealing technique is disclosed which can be used to splice lengths of glass fibers together. A solid glass preform is inserted into the cavity of a metal component which is then heated to melt the glass. An end of an optical fiber is then advanced into the molten glass and the entire structure cooled to solidify the glass in sealing engagement with the optical fiber end and the metal cavity. The surface of the re-solidified glass may be machined for mating engagement with another component to make a spliced fiber optic connection. The resultant structure has a helium leak rate of less than 1.times.10.sup.-8 cm.sup.3 /sec.

  16. Hollow-Fiber Membrane Compressed Air Drying System

    Broader source: Energy.gov [DOE]

    With the support of a NICE3 grant, a new hollow-fiber membrane for dehydrating gases has been developed by Air Products and Chemicals, Inc. The membrane has 5 times higher water vapor permeation...

  17. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1993-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  18. Method for dissolution and stabilization of silica-rich fibers

    DOE Patents [OSTI]

    Jantzen, C.M.

    1997-11-11

    A method is described for dissolving silica-rich fibers such as borosilicate fibers, fiberglass and asbestos to stabilize them for disposal. The method comprises (1) immersing the fibers in hot, five-weight-percent sodium hydroxide solution until the concentration of dissolved silica reaches equilibrium and a only a residue is left (about 48 hours), then immersing the residue in hot, five-weight-percent nitric acid until the residue dissolves (about 96 hours). After adjusting the pH of the dissolved fibers to be caustic, the solution can then be added to a waste vitrification stream for safe disposal. The method is useful in disposing contaminated HEME and HEPA filters. 1 fig.

  19. Loading rubidium atoms into a hollow core fiber

    E-Print Network [OSTI]

    Chu, Yiwen

    2007-01-01

    We demonstrate a procedure for cooling, trapping, and transferring rubidium atoms into a hollow core photonic band gap fiber. The atoms are first collected in a magneto-optical trap (MOT) and then cooled using polarization ...

  20. Transverse lightwave circuits in microstructured optical fibers: resonator

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    Skorobogatiy ´Ecole Polytechnique de Montr´eal, G´enie Physique, C.P. 6079, succ. Centre-Ville Montreal, Qu Abstract: Novel type of microstructured optical fiber couplers is introduced where energy transfer

  1. Calling all “Fiberhoods”: Google Fiber and the Politics of Visibility

    E-Print Network [OSTI]

    Halegoua, Germaine R.

    2014-01-01

    and use, and experiment with new deployment models for large scale fiber optic infrastructure in the US. However, the author focuses on how the process of transformation rendered certain pre-existing digital divides and inequities more visible rather than...

  2. Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    would need to be developed. Previous work has sought to use lignin from pulp and paper mills as a feedstock for carbon fiber, with varying levels of success. Current...

  3. Fabrication and characterization of thermally drawn fiber capacitors

    E-Print Network [OSTI]

    Lestoquoy, Guillaume

    We report on the fabrication of all-in-fiber capacitors with poly(vinylidene fluoride) (PVDF) as the dielectric material. Electrodes made of conductive polymer are separated by a PVDF thin film within a polycarbonate casing ...

  4. Fiber optic diagnostic techniques for the electrical discharge machining process 

    E-Print Network [OSTI]

    Pillans, Brandon William

    1998-01-01

    Plasma sparks from an electrical discharge machining phics. (EDM) process were observed using fiber optics positioned the dielectric oil. New measurement techniques were developed to observe the spark in the extremely noisy environment. Optical data...

  5. On healable polymers and fiber-reinforced composites

    E-Print Network [OSTI]

    Nielsen, Christian Eric

    2012-01-01

    124 Figure 8.3 A PTFE mold designed to apply pressure toA polytetrafluoroethylene (PTFE) mold was designed to allowTo minimize fiber Figure 8.3 A PTFE mold designed to apply

  6. Low Cost Carbon Fiber Research in the ALM Materials Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ALM Materials Program Low Cost Carbon Fiber Research in the ALM Materials Program Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February...

  7. Demonstrating Innovative Low-Cost Carbon Fiber for Energy and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for...

  8. Fatigue Enhancement of a Carbon Fiber Reinforced Nanocomposite 

    E-Print Network [OSTI]

    Wilkerson, Justin W.

    2008-08-19

    The primary objective of the present investigation is to study the fatigue characteristics of a woven carbon fiber reinforced polymer which has been modified with either amine or fluorine functionalized carbon nanotubes ...

  9. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1995-04-18

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  10. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, Mark M. (Aiken, SC)

    1995-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  11. SPECTRALLY EFFICIENT MULTICARRIER SYSTEMS FOR FIBER-OPTIC TRANSMISSION

    E-Print Network [OSTI]

    Zhang, Yuanyuan

    2012-05-31

    The purpose of this research is to provide a comprehensive study of spectrally efficient multicarrier systems for fiber-optic transmission. Multicarrier optical systems partition a high-data rate digital signal in a wavelength channel into multiple...

  12. Optical fiber based ultrashort pulse multispectral nonlinear optical microscopy 

    E-Print Network [OSTI]

    Larson, Adam Michael

    2009-05-15

    Nonlinear optical microscopy (NLOM) utilizing femtosecond laser pulses is well suited for imaging living tissues. This work reports on the design and development of an optical fiber based multispectral NLOM developed around ...

  13. Specialty Fibers for Terahertz Generation and Transmission: A Review

    E-Print Network [OSTI]

    Barh, Ajanta; Agrawal, G P; Varshney, R K; Rahman, B M A

    2015-01-01

    Terahertz (THz) frequency range, lying between the optical and microwave range covers a significant portion of the electro-magnetic spectrum. Though its initial usage started in the 1960s, active research in the THz field started only in the 1990s by researchers from both optics and microwaves disciplines. The use of optical fibers for THz application has attracted considerable attention in recent years. In this article, we review the progress and current status of optical fiber-based techniques for THz generation and transmission. The first part of this review focuses on THz sources. After a review on various types of THz sources, we discuss how specialty optical fibers can be used for THz generation. The second part of this review focuses on the guided wave propagation of THz waves for their transmission. After discussing various wave guiding schemes, we consider new fiber designs for THz transmission.

  14. Tennessee: Oak Ridge National Laboratory Optimizes Carbon Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from a melt-spun process and will continue to develop and optimize the process. Further optimization of these processes has the potential to result in carbon fibers with...

  15. Sandia's new fiber optic network is world's largest | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    passive optical networks, building the largest fiber optical local area network in the world. The Sandia network pulls together 265 buildings and 13,000 computer network ports and...

  16. Lightweight concrete : investigations into the production of natural fiber reinforcement

    E-Print Network [OSTI]

    Garbis, Leonidia Maria

    2013-01-01

    The purpose of this study is to investigate the benefits of adding natural fiber tensile reinforcement to aerated concrete. Concrete is a great composite material which can be created in various proportions and with various ...

  17. Novel method for carbon nanofilament growth on carbon fibers

    SciTech Connect (OSTI)

    Phillips, Johathan; Luhrs, Claudia; Terani, Mehran; Al - Haik, Marwan; Garcia, Daniel; Taha, Mahmoud R

    2009-01-01

    Fiber reinforced structural composites such as fiber reinforced polymers (FRPs) have proven to be key materials for blast mitigation due to their enhanced mechanical performance. However, there is a need to further increase total energy absorption of the composites in order to retain structural integrity in high energy environments, for example, blast events. Research has shown that composite failure in high energy environments can be traced to their relatively low shear strength attributed to the limited bond strength between the matrix and the fibers. One area of focus for improving the strength of composite materials has been to create 'multi-scale' composites. The most common approach to date is to introduce carbon nanotubes into a more traditional composite consisting of epoxy with embedded micron scale fibers. The inclusion of carbon nanotubes (CNT) clearly toughens different matrices. Depositing CNT in brittle matrix increases stiffness by orders of magnitude. Currently, this approach to create multiscale composites is limited due to the difficulty of dispersing significant amounts of nanotubes. It has repeatedly been reported that phase separation occurs above relatively low weight percent loading (ca. 3%) due to the strong van der Waals forces between CNTs compared with that between CNT and polymer. Hence, the nanotubes tend to segregate and form inclusions. One means to prevent nanotube or nanofilament agglomeration is to anchor one end of the nanostructure, thereby creating a stable multi-phase structure. This is most easily done by literally growing the CNTs directly on micron scale fibers. Recently, CNT were grown on carbon fibers, both polyacrylonitrile- (PAN-) and pitch-based, by hot filament chemical vapor deposition (HFCVD) using H2 and CH4 as precursors. Nickel clusters were electrodeposited on the fiber surfaces to catalyze the growth and uniform CNT coatings were obtained on both the PAN- and pitch-based carbon fibers. Multiwalled CNTs with smooth walls and low impurity content were grown. Carbon nanofibers were also grown on a carbon fiber cloth using plasma enhanced chemical vapor deposition (CVD) from a mixture of acetylene and ammonia. In this case, a cobalt colloid was used to achieve a good coverage of nanofibers on carbon fibers in the cloth. Caveats to CNT growth include damage in the carbon fiber surface due to high-temperatures (>800 C). More recently, Qu et al. reported a new method for uniform deposition of CNT on carbon fibers. However, this method requires processing at 1100 C in the presence of oxygen and such high temperature is anticipated to deepen the damage in the carbon fibers. In the present work, multi-scale filaments (herein, linear carbon structures with multi-micron diameter are called 'fibers', all structures with sub-micron diameter are called 'filaments') were created with a low temperature (ca. 550 C) alternative to CVD growth of CNTs. Specifically, nano-scale filaments were rapidly generated (> 10 microns/hour) on commercial micron scale fibers via catalytic (Pd particles) growth from a fuel rich combustion environment at atmospheric pressure. This atmospheric pressure process, derived from the process called Graphitic Growth by Design (GSD), is rapid, the maximum temperature low enough (below 700 C) to avoid structural damage and the process inexpensive and readily scalable. In some cases, a significant and unexpected aspect of the process was the generation of 'three scale' materials. That is, materials with these three size characteristics were produced: (1) micrometer scale commercial PAN fibers, (2) a layer of 'long' sub-micrometer diameter scale carbon filaments, and (3) a dense layer of 'short' nanometer diameter filaments.

  18. Signal processing for fiber optic acoustic sensor system 

    E-Print Network [OSTI]

    Zhu, Juhong

    2000-01-01

    pulses from a single mode laser. Signals from multiple sensors in the array are separated and demultiplexed. The acoustic pressure information is determined by processing the returned optical pulses using a fiber Mach-Zehnder interferometer as an optical...

  19. Demonstrating Innovative Low-Cost Carbon Fiber for Energy

    E-Print Network [OSTI]

    -volume industrial applications such as automobiles, wind energy, oil and gas, and infrastructure is limited because Low-Cost Carbon Fiber? · Energy Independence Increase the nation's investment in energy technologies

  20. Use of fiber reinforced polymer composite in bridge structures

    E-Print Network [OSTI]

    Tuakta, Chakrapan, 1980-

    2005-01-01

    Fiber reinforced polymer composite (FRP) is a new construction material, gradually gaining acceptance from civil engineers. Bridge engineering is among the fields in civil engineering benefiting from the introduction of ...

  1. SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER LASER STRUCTURING

    SciTech Connect (OSTI)

    Sabau, Adrian S; Chen, Jian; Jones, Jonaaron F.; Alexandra, Hackett; Jellison Jr, Gerald Earle; Daniel, Claus; Warren, Charles David; Rehkopf, Jackie D.

    2015-01-01

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.

  2. RELATING FIBER CROSSING IN HARDI TO INTELLECTUAL FUNCTION

    E-Print Network [OSTI]

    RELATING FIBER CROSSING IN HARDI TO INTELLECTUAL FUNCTION By Iman Aganj, Neda Jahanshad, Christophe in HARDI to Intellectual Function Iman Aganj,1 Neda Jahanshad,2 Christophe Lenglet,1,3 Arthur W. Toga,2

  3. Accelerated Aging Effects on Kevlar KM2 Fiber Survivability 

    E-Print Network [OSTI]

    Yang, Tony

    2013-04-12

    good replacement for single filament tests and estimation techniques can determine the bundle Weibull parameters. Furthermore, the survival function for treated fibers is better if the bundle is lubricated. The accelerated aging experiments show...

  4. Fiber Reinforced Polymer Composite Manufacturing Workshop “Save the Date”

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Advanced Manufacturing Office plans to host a Fiber Reinforced Polymer Composite Manufacturing Workshop in the Washington D.C. area on Monday January 13, 2014.

  5. SABIC's Carbon Fiber-Reinforced Material used to Produce the...

    Broader source: Energy.gov (indexed) [DOE]

    a Car: A Team Effort in Innovation 3D-printed Car by Local Motors - The Strati 3D-Printed Car by Local Motors - The Strati Fiber-Reinforced Polymer Composites: Pursuing the Promise...

  6. Low-temperature hermetic sealing of optical fiber components

    DOE Patents [OSTI]

    Kramer, Daniel P. (Centerville, OH)

    1996-10-22

    A method for manufacturing low-temperature hermetically sealed optical fi components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber.

  7. Ammonia fiber explosion (AFEX) pretreatment of municipal solid waste components 

    E-Print Network [OSTI]

    Lundeen, Joseph Eric

    1991-01-01

    AMMONIA FIBER EXPLOSION (AFEX) PRETREATMENT OF MUNICIPAL SOLID WASTE COMPONENTS A Thesis by JOSEPH ERIC LUNDEEN Submitted to the Oflice of Graduate Studies of Texas A&M University in partial fulfdlment of the requirements for the degree... of MASTER OF SCIENCE December 1991 Major Subject: Chemical Engineering AMMONIA FIBER EXPLOSION (AFEX) PRETREATMENT OF MUNICIPAL SOLID WASTE COMPONENTS A Thesis Joseph Eric Lundeen Approved as to style and content by: Mark Hol pie ( tte R. W...

  8. Repairs for damaged bolt holes in continuous fiber reinforced plastics 

    E-Print Network [OSTI]

    Copps, Kevin Daniel

    1992-01-01

    of fastened joints and to investigate previous techniques for the repair of continuous fiber reinforced plastics. LITERATURE REVIEW Characterizing Failure Modes There is very little agreement about what conditions constitute failure in composite joints... of possible methods for preventing and repairing fastener hole defects. Proper drilling technique The optimal drilling conditions for fiber reinforced parts are hard to control, and can differ depending on the structural application. The proper technique...

  9. Clad fiber capacitor and method of making same

    DOE Patents [OSTI]

    Tuncer, Enis

    2013-11-26

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; a ductile, electrically conductive sleeve positioned over the cladding. One or more of the preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  10. Clad fiber capacitor and method of making same

    DOE Patents [OSTI]

    Tuncer, Enis

    2012-12-11

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  11. Fiber Bragg Gratings Embedded in 3D-Printed Scaffolds

    E-Print Network [OSTI]

    Liacouras, Peter; Choudhry, Khazar; Strouse, G F; Ahmed, Zeeshan

    2015-01-01

    In recent years there has been considerable interest in utilizing embedded fiber optic based sensors for fabricating smart materials. One of the primary motivations is to provide real-time information on the structural integrity of the material so as to enable proactive actions that prevent catastrophic failure. In this preliminary study we have examined the impact of embedding on the temperature-dependent response of fiber Bragg gratings.

  12. High-power optical-fiber transport network

    SciTech Connect (OSTI)

    Cohen, S.J; Paris, R.D.

    1994-12-31

    In the U-AVLIS Program, organic dye laser chains generate the high-power, tunable laser light required by the uranium photoionization process. Up to fifteen chains of large-bore copper vapor lasers (CVLs) serve as the excitation source for these dye laser chains. Due to physical constraints and other considerations, the copper and dye laser systems are physically separated within the U-AVLIS Program`s Laser Demonstration Facility (LDF). An optical network is therefore required that serves as the conduit to efficiently transport the multi-kilowatt CVL beams to the dye lasers chains. Approximately ten years ago, the program began investigating the use of large-core optical-fiber cables as an alternative means of transporting CVL light. At that time, it was decided to separate the portion of the discrete delivery network that transported laser light to the dye master oscillators (DMOs) of the dye laser chains and convert that to an optical-fiber delivery approach. This first step in using optical fibers to transport CVL light to the low-power `front end` of the system was very successful and to date, several hundred thousand hours of routine, fiber-pumped DMO operation have been recorded. A key advantage in using optical fibers to deliver pump light to the DMOs is that the alignment of the optical fiber to the laser cavity is fixed, eliminating the need to make adjustments after the initial setup. Based on the experience gained pumping the DMOs with light delivered by optical fibers, nearly four years ago the more challenging task of converting the entire discrete copper laser delivery system to an optical-fiber-based network was begun.

  13. A 1-Joule laser for a 16-fiber injection system

    SciTech Connect (OSTI)

    Honig, J

    2004-04-06

    A 1-J laser was designed to launch light down 16, multi-mode fibers (400-{micro}m-core dia.). A diffractive-optic splitter was designed in collaboration with Digital Optics Corporation (DOC), and was delivered by DOC. Using this splitter, the energy injected into each fiber varied <1%. The spatial profile out of each fiber was such that there were no ''hot spots,'' a flyer could successfully be launched and a PETN pellet could be initiated. Preliminary designs of the system were driven by system efficiency where a pristine TEM{sub 00} laser beam would be required. The laser is a master oscillator, power amplifier (MOPA) consisting of a 4-mm-dia. Nd:YLF rod in the stable, q-switched oscillator and a 9.5-mm-dia. Nd:YLF rod in the double-passed amplifier. Using a TEM{sub 00} oscillator beam resulted in excellent transmission efficiencies through the fibers at lower energies but proved to be quite unreliable at higher energies, causing premature fiber damage, flyer plate rupture, stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS). Upon further investigation, it was found that both temporal and spatial beam formatting of the laser were required to successfully initiate the PETN. Results from the single-mode experiments, including fiber damage, SRS and SBS losses, will be presented. In addition, results showing the improvement that can be obtained by proper laser beam formatting will also be presented.

  14. Project Selection - Record Keeping 

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10

    4-H members have many project areas to choose from, depending on where they live. Members should consult with their parents and 4-H leaders when choosing a project. This publication outlines project considerations.

  15. High density array fabrication and readout method for a fiber optic biosensor

    DOE Patents [OSTI]

    Pinkel, Daniel (Walnut Creek, CA); Gray, Joe (San Francisco, CA); Albertson, Donna G. (Lafayette, CA)

    2002-01-01

    The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.

  16. High density array fabrication and readout method for a fiber optic biosensor

    DOE Patents [OSTI]

    Pinkel, Daniel (Walnut Creek, CA); Gray, Joe (San Francisco, CA); Albertson, Donna G. (Lafayette, CA)

    2000-01-01

    The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.

  17. High density array fabrication and readout method for a fiber optic biosensor

    DOE Patents [OSTI]

    Pinkel, Daniel (Walnut Creek, CA); Gray, Joe (San Francisco, CA)

    1997-01-01

    The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.

  18. High density array fabrication and readout method for a fiber optic biosensor

    DOE Patents [OSTI]

    Pinkel, D.; Gray, J.

    1997-11-25

    The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its ``sensor end`` biological ``binding partners`` (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor. 9 figs.

  19. Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration

    SciTech Connect (OSTI)

    Challener, William

    2014-12-31

    This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

  20. PROJECT SELECTIONS FOR DOE PHASE ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    preforms made with dry fiber and foam, with final mechanical properties achieved via infusion molding. TYCOR delivers comparable or better blade structural performance to balsa...

  1. Clean Coal Projects (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

  2. 2016 Technology Innovation Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects FY 2016 Technology Innovation Project Briefs Demand Response TIP 292: Advanced Heat Pump Water Heater Research TIP 336: Scaled Deployment and Demonstration of Demand...

  3. Contract/Project Management

    Office of Environmental Management (EM)

    Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011...

  4. Contract/Project Management

    Office of Environmental Management (EM)

    and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- &...

  5. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY 2010 Pre- &...

  6. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY 2010 Pre- &...

  7. Contract/Project Management

    Energy Savers [EERE]

    and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP...

  8. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Final FY 2012 Pre- & Post-CAP Final...

  9. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

  10. Contract/Project Management

    Office of Environmental Management (EM)

    1 st Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

  11. Contract/Project Management

    Office of Environmental Management (EM)

    3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

  12. Contract/Project Management

    Energy Savers [EERE]

    Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast...

  13. Project 1640 Palomar Procedures

    E-Print Network [OSTI]

    Project 1640 Palomar Procedures Version 0.1 7/7/08 2:11:08 PM #12;2 Project 1640 Design..................................................................................................................... 1 Palomar Procedures

  14. Project Finance and Investments

    Broader source: Energy.gov [DOE]

    Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

  15. Falls Creek Hydroelectric Project

    SciTech Connect (OSTI)

    Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

    2007-06-12

    This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

  16. Lithium Loaded Glass Fiber Neutron Detector Tests

    SciTech Connect (OSTI)

    Ely, James H.; Erikson, Luke E.; Kouzes, Richard T.; Lintereur, Azaree T.; Stromswold, David C.

    2009-11-12

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of the lithium-loaded glass fibers option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a small system manufactured by Nucsafe (Oak Ridge, TN).

  17. New Manufacturing Method for Paper Filler and Fiber Material

    SciTech Connect (OSTI)

    Doelle, Klaus

    2013-08-25

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings over $12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts? or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons annually. If the new technology could be implemented for bleaching process a total annual estimated energy savings potential of 64 trillion buts? or 11 million barrel of oil equivalent (BOE) equal to 3% of the paper industries energy demand could be realized. This could lead to a increase of renewable energy usage from 56% to close to 60% for the industry. CO{sub 2} emissions could be lowered by over 7.4 million tons annually. It is estimated that an installed system could also yield a 75 to 100% return of investment (ROI) rate for the capital equipment that need to be installed for the fiber filler composite manufacturing process.

  18. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOE Patents [OSTI]

    White, Terry L. (Knoxville, TN) [Knoxville, TN; Paulauskas, Felix L. (Knoxville, TN) [Knoxville, TN; Bigelow, Timothy S. (Knoxville, TN) [Knoxville, TN

    2010-11-02

    A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.

  19. EA-1002: Bonneville Power Administration's Hot Springs- Garrison Fiber Optic Project, Montana

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Bonneville Power Administration's proposal to upgrade its operational telecommunications system between the Hot...

  20. CX-008588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Petersburg Solar Pilot Project CX(s) Applied: B5.1 Date: 07/19/2012 Location(s): Florida Offices(s): Golden Field Office

  1. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  2. CX-010618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: 0 Date: 07/19/2013 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  3. CX-008438: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 06/27/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  4. CX-008282: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 05/01/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  5. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...

  6. CX-008799: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Jack Case Showers Projects CX(s) Applied: B1.3 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  7. CX-009923: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-009923: Categorical Exclusion Determination CX-009923: Categorical Exclusion Determination Project Icebreaker CX(s) Applied: A9, B3.1 Date: 01072013 Location(s): Ohio...

  8. CX-012097: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Microgrid Demonstration Project CX(s) Applied: B5.15 Date: 03/24/2014 Location(s): Idaho Offices(s): Idaho Operations Office

  9. CX-012122: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    OCGen Module Mooring Project CX(s) Applied: B5.25 Date: 04/29/2014 Location(s): Maine Offices(s): Golden Field Office

  10. CX-010109: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    09: Categorical Exclusion Determination CX-010109: Categorical Exclusion Determination Curecanti-Poncha 230 Kilovolt Transmission Line Cross Bar Ranch Project CX(s) Applied: B1.3...

  11. CX-008683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shaniko Radio Station Replacement Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  12. CX-010155: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Augspurger Radio Tower Replacement Project CX(s) Applied: B1.19 Date: 04/03/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  13. CX-011630: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    9831 Wall Construction Project CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  14. CX-012482: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mid-Atlantic Regional Infrastructure Development Project CX(s) Applied: B5.22Date: 41862 Location(s): MarylandOffices(s): National Energy Technology Laboratory

  15. CX-008803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  16. CX-012632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LURR 20140456 - Salmon Creek Avenue Pathway Project CX(s) Applied: B4.9Date: 41885 Location(s): WashingtonOffices(s): Bonneville Power Administration

  17. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Energy Savers [EERE]

    Mountain Region August 14, 2014 CX-012767: Categorical Exclusion Determination Medicine Bow Substation Control Building Installation Project Carbon County, Wyoming CX(s)...

  18. CX-012474: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Refractories/Ceramics Project CX(s) Applied: B3.6Date: 41870 Location(s): OregonOffices(s): National Energy Technology Laboratory

  19. CX-011626: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Line Yard Fence Project CX(s) Applied: B1.11 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  20. Fiber-Base Duality and Global Symmetry Enhancement

    E-Print Network [OSTI]

    Vladimir Mitev; Elli Pomoni; Masato Taki; Futoshi Yagi

    2014-11-10

    We show that the 5D Nekrasov partition functions enjoy the enhanced global symmetry of the UV fixed point. The fiber-base duality is responsible for the global symmetry enhancement. For $SU(2)$ with $N_f\\leq 7$ flavors the fiber-base symmetry together with the manifest flavor $SO(2N_f)$ symmetry generate the $E_{N_f+1}$ global symmetry, while in the higher rank case the manifest global symmetry of the two dual theories related by the fiber-base duality map generate the symmetry enhancement. The symmetry enhancement at the level of the partition function is manifest once we chose an appropriate reparametrization for the Coulomb moduli.

  1. Use of a fiber optic probe for organic species determination

    DOE Patents [OSTI]

    Ekechukwu, A.A.

    1996-12-10

    A fiber optic probe is described for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe`s distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device. 5 figs.

  2. Expanded beam non-imaging fiber optic connector

    DOE Patents [OSTI]

    Jannson, T.; Jannson, J.; Yeung, P.

    1990-02-06

    There is disclosed an expanded beam fiber to fiber connector, based on non-imaging optic principles for coupling light beams from one optical fiber to another. The system consists of two identical connector parts, referred to herein as a collimating part and a concentrating part, each having a preferred partially curved reflective boundary surface for minimizing power loss and surrounding either a hollow space or a space filled with a uniform transparent medium. In one embodiment the boundary is metallic while in a second embodiment the boundary is in the form of an interface allowing total internal reflection. In both the hollow and filled case a lens may be located at the expanded end of both the collimator part and the concentrator part forming the connector. The connector is preferably located in a housing in order to protect and preserve the mechanical stability of the coupler. 13 figs.

  3. Coupling Mode of Dual-Core Micro Structured Fibers

    E-Print Network [OSTI]

    Debbal, Mohammed

    2015-01-01

    The photonic crystal fibers (PCF) or air-silica microstructured fibers consist of a periodic array of dielectric transverse. By introducing a defect in this structure, it is possible to guide the light by a photonic bandgap effect, whose properties are different fundamentally from the guide by total internal reflection that takes place in conventional fibers. PCF with two cores have significant potential, and this is one of the main motivations witches led us to approach this theme in this article. Analysis of the inter-core coupling was also necessary to study the problem of crosstalk. Their knowledge is important because it is a preliminary work to the study and understanding of multi-core PCF or an array of guides in the microstructured cladding. It then presents the main results on the effects of beating between the various modes under linear conditions.

  4. Superconductor fiber elongation with a heated injected gas

    DOE Patents [OSTI]

    Zeigler, Douglas D. (Atwater, OH); Conrad, Barry L. (Alliance, OH); Gleixner, Richard A. (North Canton, OH)

    2001-01-16

    An improved method and apparatus for producing flexible fibers (30) of superconducting material includes a crucible (12) for containing a charge of the superconducting material. The material is melted in the crucible (12) and falls in a stream (18) through a bottom hole (16) in the crucible (12). The stream (18) falls through a protecting collar (22) which maintains the stream (18) at high temperatures. The stream (18) is then supplied through a downwardly directed nozzle (26) where it is subjected to a high velocity of a heated gas (36') which breaks the melted superconducting material into ligaments which solidify into the flexible fibers (30). The fibers (30) are collected by directing them against a collection filter (32).

  5. Durability of waste glass flax fiber reinforced mortar

    SciTech Connect (OSTI)

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G. [School of Mechanical Engineering, Dublin City University (Ireland); Messeiry, M. [Dept of Engineering Physics, Faculty of Engineering, Cairo University (Egypt)

    2011-01-17

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.

  6. Livingston Campus Geothermal Project The Project

    E-Print Network [OSTI]

    Delgado, Mauricio

    Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes

  7. 2-D Simulations of Orientation in Highly Concentrated Short Glass Fiber Thermoplastic Composites Made by Injection Molding

    E-Print Network [OSTI]

    Wapperom, Peter

    2-D Simulations of Orientation in Highly Concentrated Short Glass Fiber Thermoplastic Composites microscopy. Introduction Injection molded, short-glass fiber thermoplastic composites are an attractive

  8. Design and measurements of novel electromagnetic properties in spiral transmission fibers

    E-Print Network [OSTI]

    Shemuly, Dana

    2012-01-01

    One dimensional photonic band gap fibers have proven to be fascinating and versatile devices, as demonstrated by many applications. The ability to control and design these fibers to achieve specific functionalities will ...

  9. Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch...

  10. Lorentz force actuator and carbon fiber co-winding design, construction and characterization

    E-Print Network [OSTI]

    Chen, Yi, S. B. Massachusetts Institute of Technology

    2008-01-01

    Carbon fiber composites are materials that present many benefits to engineering applications, ranging from aerospace to medicine. This thesis provides background on carbon fiber properties and manufacturing techniques, and ...

  11. A system for automatic positioning and alignment of fiber-tip interferometers 

    E-Print Network [OSTI]

    Jalan, Mahesh

    2004-11-15

    The research described in this thesis involves the design, development, and implementation of an automated positioning system for fiber-optic interferometric sensors. The Fiber-Tip Interferometer (FTI) is an essential component in the proven Thermo...

  12. A Multi-scale Framework for Thermo-viscoelastic Analysis of Fiber Metal Laminates 

    E-Print Network [OSTI]

    Sawant, Sourabh P.

    2010-01-14

    Fiber Metal Laminates (FML) are hybrid composites with alternate layers of orthotropic fiber reinforced polymers (FRP) and isotropic metal alloys. FML can exhibit a nonlinear thermo-viscoelastic behavior under the influence ...

  13. Ultrafast Optics and Optical Fiber Communications Laboratory http://purcell.ecn.purdue.edu/~fsoptics/

    E-Print Network [OSTI]

    Purdue University

    Ultrafast Optics and Optical Fiber Communications Laboratory http, A. M. Weiner Purdue University C. Lin Avanex Corporation Conference on Lasers and Electro Optics;Ultrafast Optics and Optical Fiber Communications Laboratory http://purcell.ecn.purdue.edu/~fsoptics/ 2

  14. PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER COMMUNICATIONS LABORATORY Photonic RF Waveform Synthesis,

    E-Print Network [OSTI]

    Purdue University

    PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER COMMUNICATIONS LABORATORY Photonic RF Waveform, Shijun Xiao Funding from ARO, DARPA, and NSF #12;PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER performance (spectral engineering, dispersion compensation) #12;PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL

  15. Morphology and mechanical properties of electrospun polymeric fibers and their nonwoven fabrics

    E-Print Network [OSTI]

    Pai, Chia-Ling

    2011-01-01

    Electrospinning is a straight forward method to produce fibers with diameter on the order of a few tens of nanometers to the size approaching commercial fibers (on the order of 10 prm or larger). Recently, the length scale ...

  16. An instrument for high-throughput measurements of fiber mechanical properties

    E-Print Network [OSTI]

    Kristofek, Grant William, 1980-

    2005-01-01

    In this thesis, an instrument is designed and constructed for the purpose of measuring the mechanical properties of single fibers. The instrument is intended to provide high throughput measurement of single fiber geometric ...

  17. Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL...

    Office of Environmental Management (EM)

    Carbon Fiber Research at ORNL May 16, 2013 - 12:00am Addthis EERE provided funding to Dow Chemical, Ford Motor Company, and ORNL to demonstrate a novel polymer fiber material and...

  18. MICROSTRUCTURED OPTICAL FIBER BRAGG GRATING SENSORS FOR STRUCTURAL HEALTH MONITORING APPLICATIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MICROSTRUCTURED OPTICAL FIBER BRAGG GRATING SENSORS FOR STRUCTURAL HEALTH MONITORING APPLICATIONS optical fiber Bragg grating (MOFBG) sensors for structural health monitoring applications. We then focus. We subsequently discuss the potential of our MOFBG sensors for structural health monitoring related

  19. A line-of-sight voice communication system with optoelectric fibers

    E-Print Network [OSTI]

    Yang, Paul L

    2009-01-01

    Recently developed multi-material optoelectric fibers have showed great potential for use as photodetectors [1]. Such light-sensitive fibers are flexible and can be weaved through clothing with a seamless interface. Our ...

  20. Spark-plug-mounted fiber optic sensor for measuring in-cylinder pressure in engines 

    E-Print Network [OSTI]

    Bae, Taehan

    2001-01-01

    A new design for an in-cylinder fiber Fabry-Perot interferometer (FFPI) pressure sensor suitable for automotive engines has been investigated experimentally. The FFPI sensor consists of a single mode fiber containing two internal mirrors which form...