Sample records for fiber project cxs

  1. McCullough to Liberty fiber optics project

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The US Department of Energy, Western Area Power Administration (Western) proposes to replace an existing overhead static wire with a shield wire that contains optical fibers (OPGW) on transmission lines from McCullough Substation, south of Las Vegas, Nevada, to Liberty Substation near Phoenix, Arizona. The replacement will occur on the McCullough-Davis, Davis-Parker No. 2, and Parker-Liberty No. 1 230-kV transmission lines. Western is responsible for the operation and maintenance of the lines. Western prepared an Environmental Assessment (EA) entitled ``McCullough to Liberty Fiber Optics Project`` (DOE/EA-1202). The EA contains the analysis of the proposed construction, operation, and maintenance of the OPGW. Based on the analysis in the EA, Western finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. The preparation of an environmental impact statement (EIS) is not required, and therefore, Western is issuing this Findings of No Significant Impact (FONSI).

  2. Fabrication of Optical Fiber Mechanical Shock Sensors for the Los Alamos HERT (High Explosive Radio Telemetry) Project

    SciTech Connect (OSTI)

    P. E. Klingsporn

    2005-11-14T23:59:59.000Z

    This document lists the requirements for the fiber optic mechanical shock sensor for the Los Alamos HERT (High Explosive Radio Telemetry) project and provides detailed process steps for fabricating, testing, and assembling the fiber shock sensors for delivery to Los Alamos.

  3. Continuous Fiber Ceramic Composite (CFCC) Program. Inventory of federally funded CFCC R&D projects

    SciTech Connect (OSTI)

    Richlen, S. [USDOE Assistant Secretary for Energy Efficiency and Renewable Energy, Washington, DC (United States). Office of Industrial Technologies; Caton, G.M.; Karnitz, M.A.; Cox, T.D. [Oak Ridge National Lab., TN (United States); Hong, W. [Institute for Defense Analyses, Alexandria, VA (United States)

    1993-05-01T23:59:59.000Z

    Continuous Fiber Ceramic Composites (CFCC) are a new class of materials that are lighter, stronger, more corrosion resistant, and capable of performing at elevated temperatures. This new type of material offers the potential to meet the demands of a variety of industrial, military, and aerospace applications. The Department of Energy Office of Industrial Technologies (OIT) has a new program on CFCCs for industrial applications and this program has requested an inventory of all federal projects on CFCCs that relate to their new program. The purpose of this project is to identify all other ongoing CFCC research to avoid redundancy in the OIT Program. The inventory will be used as a basis for coordinating with the other ongoing ceramic composite projects. The inventory is divided into two main parts. The first part is concerned with CFCC supporting technologies projects and is organized by the categories listed below. (1) Composite Design; (2) Materials Characterization; (3) Test Methods; (4) Non-Destructive Evaluation; (5) Environmental Effects; (6) Mechanical Properties; (7) Database Life Prediction; (8) Fracture/Damage; and (9) Joining. The second part has information on component development, fabrication, and fiber-related projects.

  4. GFOC Project results: High Temperature / High Pressure, Hydrogen Tolerant Optical Fiber

    SciTech Connect (OSTI)

    E. Burov; A. Pastouret; E. Aldea; B. Overton; F. Gooijer; A. Bergonzo

    2012-02-12T23:59:59.000Z

    Tests results are given for exposure of multimode optical fiber to high temperatures (300 deg. C) and high partial pressure (15 bar) hydrogen. These results demonstrate that fluorine down doped optical fibers are much more hydrogen tolerant than traditional germanium doped multimode optical fibers. Also demonstrated is the similar hydrogen tolerance of carbon coated and non-carbon coated fibers. Model for reversible H2 impact in fiber versus T{sup o}C and H2 pressure is given. These results have significant impact for the longevity of use for distributed temperature sensing applications in harsh environments such as geothermal wells.

  5. Continuous fiber ceramic composite cladding for commercial water reactor fuel; Final Project

    SciTech Connect (OSTI)

    Herbert Feinroth

    2001-04-30T23:59:59.000Z

    This project is a research effort to develop and demonstrate the feasibility of an improved ceramics-based cladding material for water reactor fuel, which will be significantly more resistant to structural damage during a LOCA accident than the current Zircaloy cladding material. Specifically, the goal of this NERI project is to determine, via engineering type tests, the feasibility of substituting such advanced ceramic materials for the Zircaloy cladding now in use. This report presents the project research and development activities, which included prototype material design, fabrication, characterization, LOCA type of thermal shock testing, and in-reactor irradiation/corrosion testing. The report also presents the technical finding and discussions of results. The technical task were performed in collaboration with four subcontractors: The Advanced Materials Section of McDermott Technology Incorporated (MTI), the Nuclear Reactor Laboratory of Massachusetts Institute of Technology (MTI), Swales Aerospace Inc., and the Thin Film Laboratory of Northwestern University.

  6. CX-009210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Silver Butte Fiber Burial Project CX(s) Applied: B.47 Date: 08/28/2012 Location(s): Montana, Montana Offices(s): Bonneville Power Administration

  7. Fiber composite flywheel rim

    DOE Patents [OSTI]

    Davis, D.E.; Ingham, K.T.

    1987-04-28T23:59:59.000Z

    A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

  8. Fiber composite flywheel rim

    DOE Patents [OSTI]

    Davis, Donald E. (Thousand Oaks, CA); Ingham, Kenneth T. (Woodland Hills, CA)

    1987-01-01T23:59:59.000Z

    A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.

  9. Assessing Deterioration of ADSS Fiber Optic Cables

    E-Print Network [OSTI]

    Assessing Deterioration of ADSS Fiber Optic Cables Due to Corona Discharge Final Project Report of ADSS Fiber Optic Cables Due to Corona Discharge Final Project Report George G. Karady, Project Leader-Supporting) fiber optic cables installed on high voltage lines. The high electric field on those lines generates

  10. Lower Cost Carbon Fiber Precursors

    Broader source: Energy.gov (indexed) [DOE]

    1 Lower Cost Carbon Fiber Precursors P.I. Name: Dave Warren Presenter: Dr. Amit K. Naskar Oak Ridge National Laboratory 05162012 Project ID LM004 This presentation does not...

  11. Personnel Grounding and Safety: Issues and Solutions Related to Servicing Optical Fiber

    E-Print Network [OSTI]

    Personnel Grounding and Safety: Issues and Solutions Related to Servicing Optical Fiber Telecommunication Circuits in Optical Ground Wire (OPGW) Final Project Report Power Systems Engineering Research to Servicing Optical Fiber Telecommunication Circuits in Optical Ground Wire (OPGW) Final Project Report

  12. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  13. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  14. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden Z I Y I X I O N G Fiber till hemmet (Fiber-to-the-Home, FTTH) har talats om sedan fiber introducerades på 1970-talet. Det

  15. CX-012191: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bell-Boundary Fiber Project (update to previous CX issued on 6/11/13) CX(s) Applied: B4.7 Date: 05/14/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  16. CX-011836: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Franklin to Hatwai Fiber Project CX(s) Applied: B4.7 Date: 01/17/2014 Location(s): Washington, Washington, Washington, Idaho Offices(s): Bonneville Power Administration

  17. Specific Effects of Fiber Size and Fiber Swelling on Biomass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Fiber Size and Fiber Swelling on Biomass Substrate Surface Area and Enzymatic Digestibility. Specific Effects of Fiber Size and Fiber Swelling on Biomass Substrate...

  18. Polyethylene fiber drawing optimization

    E-Print Network [OSTI]

    Chiloyan, Vazrik

    2011-01-01T23:59:59.000Z

    Polymer fiber drawing creates fibers with enhanced thermal conductivity and strength compared to bulk polymer because drawing aligns the molecular chains. I optimize the polymer fiber drawing method in order to achieve ...

  19. Multimaterial acoustic fibers

    E-Print Network [OSTI]

    Chocat, Noémie

    2012-01-01T23:59:59.000Z

    The emergence of multimaterial fibers that combine a multiplicity of solid materials with disparate electrical, optical, and mechanical properties into a single fiber presents new opportunities for extending fiber applications ...

  20. Fiber Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, Programs and EventsFiber Lasers NIF

  1. Carbon Fiber Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    The Carbon Fiber Technology Facility is relevant in proving the scale- up of low-cost carbon fiber precursor materials and advanced manufacturing technologies * Significant...

  2. Omnidirectional fiber optic tiltmeter

    DOE Patents [OSTI]

    Benjamin, B.C.; Miller, H.M.

    1983-06-30T23:59:59.000Z

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  3. Multimaterial fiber electronics

    E-Print Network [OSTI]

    Lestoquoy, Guillaume

    2014-01-01T23:59:59.000Z

    As the number of materials that are thermally-drawable into fibers is rapidly expending, numerous new multimaterial fiber architectures can be envisioned and fabricated. High-melting temperature metals, compound materials, ...

  4. Fiber optic coupled optical sensor

    DOE Patents [OSTI]

    Fleming, Kevin J. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  5. Helical Fiber Amplifier

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (Washington, DC); Kliner, Dahy (San Ramon, CA); Goldberg, Lew (Fairfax, VA)

    2002-12-17T23:59:59.000Z

    A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).

  6. Microsoft Word - GrandCouleeFiber_CX_2014.docx

    Broader source: Energy.gov (indexed) [DOE]

    it into compliance. The fiber would be moved underground through a new conduit of 4-foot PVC pipe that would be installed as part of this project. The conduit would be 130 feet...

  7. Demonstrating LED and Fiber Optic Lighting in Commissary Applications

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—covers goals of the project and applications for light-emitting diodes (LEDs) and fiber optic lighting.

  8. Quantitive DNA Fiber Mapping

    E-Print Network [OSTI]

    Lu, Chun-Mei

    2009-01-01T23:59:59.000Z

    of California. Lu et al. : DNA Fiber Mapping page - 35 Lu etal. : DNA Fiber Mapping page - 36 a b c d e f g OV P1 cloneSp6 end T7 end Lu et al. : DNA Fiber Mapping page - 37 a b c

  9. Hybrid matrix fiber composites

    DOE Patents [OSTI]

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15T23:59:59.000Z

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  10. Fiber optic laser rod

    DOE Patents [OSTI]

    Erickson, G.F.

    1988-04-13T23:59:59.000Z

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  11. Fiber coating method

    DOE Patents [OSTI]

    Corman, Gregory Scot (Ballston Lake, NY)

    2001-01-01T23:59:59.000Z

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

  12. Fiber optic moisture sensor

    DOE Patents [OSTI]

    Kirkham, R.R.

    1984-08-03T23:59:59.000Z

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  13. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, Joseph B. (Harriman, TN); Muhs, Jeffrey D. (Lenoir City, TN); Tobin, Kenneth W. (Harriman, TN)

    1995-01-01T23:59:59.000Z

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  14. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10T23:59:59.000Z

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  15. Optical Fibers Optics and Photonics

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    Optical Fibers Optics and Photonics Dr. Palffy-Muhoray Ines Busuladzic Department of Theoretical and Applied Mathematics The University of Akron April 21, 2008 #12;Outline · History of optical fibers · What are optical fibers? · How are optical fibers made? · Light propagation through optical fibers · Application

  16. Fiber optic micro accelerometer

    DOE Patents [OSTI]

    Swierkowski, Steve P.

    2005-07-26T23:59:59.000Z

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  17. Continuous Fiber Ceramic Composites

    SciTech Connect (OSTI)

    None

    2002-09-01T23:59:59.000Z

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  18. Carbon Fiber SMC

    Broader source: Energy.gov (indexed) [DOE]

    confidential, or otherwise restricted information. ACC932 Materials and Processes Technology Development Carbon Fiber SMC 5-20-09 Charles Knakal USCAR C. S. Wang General Motors...

  19. Fiber Mesh Diagnostic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiber Mesh Diagnostic for Transverse Profile Measurements RadiaBeam Technologies October 2010 ATF User's Meeting R. Agustsson (PI), G. Andonian, A. Murokh, R. Tikhoplav Funded by...

  20. Carbon Fiber Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    conventional and alternative precursors to carbon fiber Advance high-volume composite design and manufacturing capabilities Transition technology to industry partners...

  1. Multimode optical fiber

    DOE Patents [OSTI]

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04T23:59:59.000Z

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  2. Fiber optic hydrophone

    DOE Patents [OSTI]

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10T23:59:59.000Z

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  3. Fiber optic hydrogen sensor

    DOE Patents [OSTI]

    Buchanan, B.R.; Prather, W.S.

    1991-01-01T23:59:59.000Z

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  4. Fiber optic compass development

    E-Print Network [OSTI]

    Park, Kyongtae

    2005-11-01T23:59:59.000Z

    is illustrated schematically in Fig. 3-1. The light source is an erbium doped fiber (EDF) laser in the ring configuration [11-12]. Total amplified spontaneous emission (ASE) power is 7 mW at 45 mW pump power. The laser is spectrally scanned in the 1525 ~ 1565... optic modulator and amplified by a commercial erbium- doped fiber amplifier (EDFA). The spectrum of the laser after amplification at 6 different wavelengths is shown in Fig. 3-3. After amplification, the light passes through a fiber coupler...

  5. Fiber bundle phase conjugate mirror

    DOE Patents [OSTI]

    Ward, Benjamin G.

    2012-05-01T23:59:59.000Z

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  6. Fiber alignment apparatus and method

    DOE Patents [OSTI]

    Kravitz, Stanley H. (Placitas, NM); Warren, Mial Evans (Albuquerque, NM); Snipes, Jr., Morris Burton (Albuquerque, NM); Armendariz, Marcelino Guadalupe (Albuquerque, NM); Word, V., James Cole (Albuqueruqe, NM)

    1997-01-01T23:59:59.000Z

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring.

  7. Introgression & mapping Fiber cell

    E-Print Network [OSTI]

    Germplasm Introgression Genomics & mapping Fiber cell initiation Radiation hybrid (RH) mapping and breeding. Research activities commonly include plant breeding, genetics, genomics, cytogenetics, molecular methods. (C, S) · Contribute uniquely to genomics and its relevance to genetic improvement (C,S) · Harness

  8. Optoelectronic fiber interface design

    E-Print Network [OSTI]

    Spencer, Matthew Edmund

    2008-01-01T23:59:59.000Z

    Recent developments in materials science have led to the development of an exciting, new class of fibers which integrate metals, semiconductors and insulators in the same codrawing process. Various electrical devices have ...

  9. Multimaterial rectifying device fibers

    E-Print Network [OSTI]

    Orf, Nicholas D

    2009-01-01T23:59:59.000Z

    Electronic and optoelectronic device processing is commonly thought to be incompatible with much simpler thermal drawing techniques used in optical fiber production. The incorporation of metals, polymer insulators, and ...

  10. Dark Soliton Fiber Laser

    E-Print Network [OSTI]

    H. Zhang; D. Y. Tang; L. M. Zhao; X. Wu; Q. L. Bao; K. P. Loh

    2009-05-08T23:59:59.000Z

    We report on the experimental observation of stable dark solitons in an all normal dispersion fiber laser. We found experimentally that dark soliton formation is a generic feature of the fiber laser under strong continuous wave (CW) emission. However, only under appropriate pump strength and negative cavity feedback, stable single or multiple dark soliton could be achieved. Furthermore, we show that the features of the observed dark solitons could be well understood based on the nonlinear Schrodinger equation (NLSE).

  11. Carbon Fiber Pilot Plant and Research Facilities

    Broader source: Energy.gov (indexed) [DOE]

    for the U.S. Department of Energy Presentationname Carbon Fiber Facilities Materials Carbon Fiber Research Facility Type Production Fiber Types Tow Size Tensioning Line...

  12. Grizzly Substation Fiber Optics : Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1998-02-01T23:59:59.000Z

    This notice announces BPA`s decision to construct, operate, and maintain the Grizzly Substation Fiber Optic Project (Project). This Project is part of a continuing effort by BPA to complete a regionwide upgrade of its existing telecommunications system. The US Forest Service and BPA jointly prepared the Grizzly Substation Fiber Optic Project Environmental Assessment (EA) (DOE/EA-1241) evaluating the potential environmental impacts of the Proposed Action, the Underground Installation Alternative, and the No Action Alternative. Based on the analysis in the EA, the US Forest Service and BPA have determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI. The US Forest Service has separately issued a FONSI and Decision Notice authorizing BPA to construct, operate, and maintain the Project within the Crooked River National Grassland (Grassland).

  13. Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation

    SciTech Connect (OSTI)

    Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan

    2007-09-28T23:59:59.000Z

    The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.

  14. Ship Effect Measurements With Fiber Optic Neutron Detector

    SciTech Connect (OSTI)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10T23:59:59.000Z

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  15. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, P.B.; Looney, L.D.

    1993-11-30T23:59:59.000Z

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  16. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, Peter B. (Los Alamos, NM); Looney, Larry D. (Los Alamos, NM)

    1993-01-01T23:59:59.000Z

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  17. Innovative Composites Through Reinforcement Morphology Design - a Bone-Shaped-Short-Fiber Composite

    SciTech Connect (OSTI)

    Zhu, Y.T.; Valdez, J.A.; Beyerlain, I.J.; Stout, M.G.; Zhou, S.; Shi, N.; Lowe, T.C.

    1999-06-29T23:59:59.000Z

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this project is to improve the strength and toughness of conventional short-fiber composites by using innovative bone-shaped-short (BSS) fibers as reinforcement. We fabricated a model polyethylene BSS fiber-reinforced polyester-matrix composite to prove that fiber morphology, instead of interfacial strength, solves the problem. Experimental tensile and fracture toughness test results show that BSS fibers can bridge matrix cracks more effectively, and consume many times more energy when pulled out, than conventional-straight-short (CSS) fibers. This leads to both higher strength and fracture toughness for the BSS-fiber composites. A computational model was developed to simulate crack propagation in both BSS- and CSS-fiber composites, accounting for stress concentrations, interface debonding, and fiber pullout. Model predictions were validated by experimental results and will be useful in optimizing BSS-fiber morphology and other material system parameters.

  18. Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling

    E-Print Network [OSTI]

    to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able associated with both the manufacture of carbon fibers themselves as well as their composites. Traditional

  19. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOE Patents [OSTI]

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13T23:59:59.000Z

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  20. Optical and optoelectronic fiber devices

    E-Print Network [OSTI]

    Shapira, Ofer, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    The ability to integrate materials with disparate electrical, thermal, and optical properties into a single fiber structure enabled the realization of fiber devices with diverse and complex functionalities. Amongst those, ...

  1. Distributed optical fiber vibration sensing 

    E-Print Network [OSTI]

    Yu, Hui

    2001-01-01T23:59:59.000Z

    This thesis presents a distributed optical fiber vibration sensor. The purpose of this sensing system is to monitor, in real time, the status of railcars by burying an optical fiber underground beside the rails. Using a coherent homodyne technique...

  2. Fiber Supply Associate Company Overview

    E-Print Network [OSTI]

    Mazzotti, Frank

    materials acquisition, harvesting, logistics coordination, contract negotiations, and inventory management, Purchasing, Industrial Engineering, Operations management, Materials Management, Supply Chain) Authorized leadership roles such as Fiber Specialist, Fiber Supply Manager, Region Manager, Director, General Manager

  3. Automated fiber pigtailing machine

    DOE Patents [OSTI]

    Strand, O.T.; Lowry, M.E.

    1999-01-05T23:59:59.000Z

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  4. Automated fiber pigtailing machine

    DOE Patents [OSTI]

    Strand, Oliver T. (Castro Valley, CA); Lowry, Mark E. (Castro Valley, CA)

    1999-01-01T23:59:59.000Z

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  5. Silicon fiber optic sensors

    DOE Patents [OSTI]

    Pocha, Michael D. (Livermore, CA); Swierkowski, Steve P. (Livermore, CA); Wood, Billy E. (Livermore, CA)

    2007-10-02T23:59:59.000Z

    A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

  6. Genetics of Cotton Fiber Elongation

    E-Print Network [OSTI]

    Ng, Eng Hwa

    2013-05-29T23:59:59.000Z

    ability GxE Genotype by environment interaction HVI High volume instrument Mic Micronaire (HVI) SCA Specific combining ability Str-H Fiber strength (HVI) Str-S Fiber strength (Stelometer) UHML Upper-half mean length (HVI) UI Uniformity index... Station, TX .................................................................................... 38 5 Mean squares of GCA and SCA for HVI fiber properties in 2010 and 2011 in College Station, TX...

  7. Aerogel-clad optical fiber

    DOE Patents [OSTI]

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04T23:59:59.000Z

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  8. Large core fiber optic cleaver

    DOE Patents [OSTI]

    Halpin, J.M.

    1996-03-26T23:59:59.000Z

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 {micro}m. 30 figs.

  9. Large core fiber optic cleaver

    DOE Patents [OSTI]

    Halpin, John M. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 .mu.m.

  10. RECIPIENT: Paulsson, Inc. u.s. DEPARTJl.iENT OF ENERGY EERE PROJECT...

    Broader source: Energy.gov (indexed) [DOE]

    STATE: CA PROJECT TITLE: Development of a 300C, 200 level , 3C Fiber Optic Downhole Seismic Receiver Array for Surveying and Monitoring of Geothermal Reservoirs Funding...

  11. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, David W. (9253 Glenoaks Blvd., Sun Valley, CA 91352)

    1997-01-01T23:59:59.000Z

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  12. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, D.W.

    1997-04-15T23:59:59.000Z

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  13. Multiparameter Fiber Optic Sensing System for Monitoring Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Demonstrate reliability of fiber and distributed temperature; strain and vibration sensing sub-systems for EGS at 374ºC and 220 bar in the presence of hydrogen. Develop a high accuracy point pressure gauge and distributed pressure sensor to meet EGS requirements.

  14. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    SciTech Connect (OSTI)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29T23:59:59.000Z

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  15. Optical and mechanical behavior of the optical fiber infrasound sensor

    E-Print Network [OSTI]

    DeWolf, Scott

    2009-01-01T23:59:59.000Z

    1.2 The Optical Fiber Infrasound Sensor . . . . . . .Fiber Infrasound Sensor Optical fibers are well known forSchnidrig. An optical fiber infrasound sensor: A new lower

  16. Tools for quantum optics : pulsed polarization-maintaining Er-doped fiber laser and spatial mode manipulation in spontaneous parametric downconversion

    E-Print Network [OSTI]

    Venkatraman, Dheera

    2007-01-01T23:59:59.000Z

    Two separate projects were undertaken to improve technology for entangled photon sources, useful for quantum optics. In one project, a pulsed, mode-locked erbium-doped fiber laser, designed to be used as a seed laser for ...

  17. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S.M.

    1987-02-27T23:59:59.000Z

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  18. Buried fiber optic sensor

    E-Print Network [OSTI]

    Park, Jaehee

    1992-01-01T23:59:59.000Z

    , and TMom modes. Otherwise vm gives the HEv hm and EHv-hm modest20] 18 Table I. Parameters of the laser source and the fused silica fiber which are used in this experiment. n=n1=1. 4527 n2= 1. 4483 D (core diameter )= 8 um Cladding Diameter = 125 um... Interferometer . B. Frequency Chirping of Laser Diode C. Pressure Sensitivity to Uniform Pressure . . . . . . . . . . D. Pressure Sensitivity to Transverse Pressure . . . . E. Pressure Sensitivity to Longitudinal Pressure . . . . . . . . . . I 3 . . . . 20...

  19. Fiber optic sensor and method for making

    DOE Patents [OSTI]

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18T23:59:59.000Z

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  20. Fiber laser development for LISA

    E-Print Network [OSTI]

    Kenji Numata; Jeffrey R. Chen; Jordan Camp

    2010-03-18T23:59:59.000Z

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  1. System for testing optical fibers

    DOE Patents [OSTI]

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15T23:59:59.000Z

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  2. CX-012747: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alcova-Miracle Mile East 115 Kilovolt Transmission Line Fiber Optic Ground Wire and Structure Replacement Project Natrona and Carbon Counties, Wyoming CX(s) Applied: B1.3, B4.7Date: 41855 Location(s): WyomingOffices(s): Western Area Power Administration-Rocky Mountain Region

  3. Low Cost Carbon Fiber Overview

    Broader source: Energy.gov (indexed) [DOE]

    and Processing (IT) Lignin-Based Low-Cost Carbon Fiber Precursors * Structural Materials for Vehicles (VT) * Graphite Electrodes for Arc Furnaces (IT) * Nanoporous CF for...

  4. Lower Cost Carbon Fiber Precursors

    Broader source: Energy.gov (indexed) [DOE]

    production and conversion parameters must be optimized. Lower cost fiber enable CF composite applications. Approach: 1. Complete previous effort by scaling to the CF production...

  5. Carbon Fiber Consortium | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 2011 to accelerate the development and deployment of new, lower cost carbon fiber composite materials. The Consortium draws on the broad experience that the Oak Ridge National...

  6. Carbon Fiber Cluster Strategy | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Fiber Cluster Strategy ORNL has a 40-year history in R&D on fiber-reinforced composite materials, and has been leading DOE's low-cost carbon fiber initiative for more than...

  7. Carbon Fiber Composite Cellular A Dissertation

    E-Print Network [OSTI]

    Wadley, Haydn

    Carbon Fiber Composite Cellular Structures ____________________________________ A Dissertation and honeycombs. However, for weight sensitive, ambient temperature applications, carbon fiber composites have emerged as a promising material due to its high specific strength and low density. Carbon fiber reinforced

  8. Project Year Project Title

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2011-2012 Project Title Using M-Health and GIS Technology in the Field to Improve-specialized, but practically useless skill. Solution One goal of this summer's Applied Geographic Information Systems in Public lessons about observational epidemiology. Technologies Used Geographic Info System (GIS), Blackboard

  9. Project Summary Report 0-4392-S PROJECTSUMMARYREPORT CENTER FOR TRANSPORTATION RESEARCH

    E-Print Network [OSTI]

    Texas at Austin, University of

    testing that validates the effect of fibers on typical concrete paving mixes Provide the Texas Department THE UNIVERSITY OF TEXAS AT AUSTIN Project Summary Report 0-4392-S Project 0-4392: Use of Fibers in Concrete in Continuously Reinforced Concrete Pavements: A Summary Continuously reinforced concrete pavement (CRCP

  10. Fiber optic geophysical sensors

    DOE Patents [OSTI]

    Homuth, E.F.

    1991-03-19T23:59:59.000Z

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  11. Dark Fiber Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDaniel Wood Dark Fiber Testbed

  12. CFTF | Carbon Fiber Technology Facility | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

  13. Fiber Laser Based Nonlinear Spectroscopy

    E-Print Network [OSTI]

    Adany, Peter

    2012-08-31T23:59:59.000Z

    Figure 31. Varied output spectrum of NL-PM-750 (spectrograms) .................................72 Figure 32. Comparison of four dispersion profiles. ..........................................................75 Figure 33. Simulations of four dispersion... characteristics of three photonic crystal fibers. 82 Figure 39. Simulation of NL-PM-750............................................................................... 83 Figure 40. Varying the input wavelength in NL-PM-750 fiber...

  14. Buried fiber optic intrusion sensor

    E-Print Network [OSTI]

    Maier, Eric William

    2004-09-30T23:59:59.000Z

    to the buried sensor induces a phase shift in light propagating along the fiber which allows for the detection and localization of intrusions. Through the use of an ultra-stable erbium-doped fiber laser and phase sensitive optical time domain reflectometry...

  15. Project Fact Sheet Project Update

    E-Print Network [OSTI]

    & Figures: Budget: £51,074,000 Funding Source: Capital Plan Construction Project Programme: Start on SiteProject Fact Sheet Project Update: Project Brief: The concept of the new scheme is to redevelop Gardens project http://www.imperial.ac.uk/princesgardens/ Construction Project Team: Project Facts

  16. Fiber Grating Environmental Sensing System

    DOE Patents [OSTI]

    Schulz, Whitten L. (Fairview, OR); Udd, Eric (Fairview, OR)

    2003-07-29T23:59:59.000Z

    Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.

  17. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    SciTech Connect (OSTI)

    William A. Challener

    2014-12-04T23:59:59.000Z

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ���±5���°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

  18. Project Funding

    Broader source: Energy.gov [DOE]

    Federal energy projects require funding to generate results. Carefully matching available funding options with specific project needs can make the difference between a stalled, unfunded project and a successful project generating energy and cost savings.

  19. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14T23:59:59.000Z

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  20. Apparatus and method for combining light from two or more fibers into a single fiber

    DOE Patents [OSTI]

    Klingsporn, Paul Edward

    2007-02-20T23:59:59.000Z

    An apparatus and method for combining light signals carried on a plurality of input fibers onto a single receiving fiber with a high degree of efficiency. The apparatus broadly comprises the receiving fiber and a plurality of input fiber-lens assemblies, with each fiber lens assembly including an input fiber; a collimating lens interposed between the input fiber and the receiving fiber and adapted to collimate the light signal; and a focusing lens interposed between the collimating lens and the receiving fiber and adapted to focus the collimated light signal onto the face of the receiving fiber. The components of each fiber-lens assembly are oriented along an optic axis that is inclined relative to the receiving fiber, with the inclination angle depending at least in part on the input fiber's numerical aperture and the focal lengths and diameters of the collimating and focusing lenses.

  1. Apparatus and method for combining light from two or more fibers into a single fiber

    SciTech Connect (OSTI)

    Klingsporn, Paul Edward

    2006-03-14T23:59:59.000Z

    An apparatus and method for combining light signals carried on a plurality of input fibers onto a single receiving fiber with a high degree of efficiency. The apparatus broadly comprises the receiving fiber and a plurality of input fiber-lens assemblies, with each fiber lens assembly including an input fiber; a collimating lens interposed between the input fiber and the receiving fiber and adapted to collimate the light signal; and a focusing lens interposed between the collimating lens and the receiving fiber and adapted to focus the collimated light signal onto the face of the receiving fiber. The components of each fiber-lens assembly are oriented along an optic axis that is inclined relative to the receiving fiber, with the inclination angle depending at least in part on the input fiber's numerical aperture and the focal lengths and diameters of the collimating and focusing lenses.

  2. High performance fibers. Final report

    SciTech Connect (OSTI)

    Economy, J.

    1994-01-01T23:59:59.000Z

    A two and a half year ONR/ARPA funded program to develop a low cost process for manufacture of a high strength/high modulus sigma/E boron nitride (BN) fiber was initiated on 7/1/90 and ended on 12/31/92. The preparation of high sigma/E BN fibers had been demonstrated in the late 1960's by the PI using a batch nitriding of B2O3 fiber with NH3 followed by stress graphitization at approx. 2000 deg C. Such fibers displayed values comparable to PAN based carbon fibers but the mechanicals were variable most likely because of redeposition of volatiles at 2000 deg C. In addition, the cost of the fibers was very high due to the need for many hours of nitriding necessary to convert the B2O3 fibers. The use of batch nitriding negated two possible cost advantages of this concept, namely, the ease of drawing very fine, multi-filament yarn of B2O3 and more importantly the very low cost of the starting materials.

  3. Infrared Fiber Optics James A. Harrington

    E-Print Network [OSTI]

    1 Infrared Fiber Optics James A. Harrington Ceramic & Materials Engineering Rutgers University Piscataway, NJ 08854-8065 1. Introduction Infrared (IR) optical fibers may be defined as fiber optics IR fiber optics may logically be divided into three broad categories: glass, crystalline, and hollow

  4. Optical fiber reliability models M. John Matthewson

    E-Print Network [OSTI]

    Matthewson, M. John

    3 Optical fiber reliability models M. John Matthewson Fiber Optic Materials Research Program Systems containing optical fiber have design lives on the order of decades so that models for assessing and promising areas for future work are proposed. 1. INTRODUCTION Mechanical failure of optical fiber must

  5. Ethanol extraction of phytosterols from corn fiber

    DOE Patents [OSTI]

    Abbas, Charles (Champaign, IL); Beery, Kyle E. (Decatur, IL); Binder, Thomas P. (Decatur, IL); Rammelsberg, Anne M. (Decatur, IL)

    2010-11-16T23:59:59.000Z

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  6. Fiber felts as low density structural materials

    SciTech Connect (OSTI)

    Milewski, J.V.; Newfield, S.E.

    1981-01-01T23:59:59.000Z

    Short fiber felts structures can be made which provide improvements in properties over foams. In applications where resistance to compression set or stress relaxation are important, bonded fiber felts excel due to the flexing of individual fibers within their elastic limit. Felts of stainless steel and polyester fibers were prepared by deposition from liquid slurries. Compressive properties were determined as a function of felt parent material, extent of bonding, felt density, and length-to-diameter (L/D) ratio of starting fibers.

  7. Scintillator fiber optic long counter

    DOE Patents [OSTI]

    McCollum, T.; Spector, G.B.

    1994-03-29T23:59:59.000Z

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  8. Mobile fiber optic emission spectrograph

    SciTech Connect (OSTI)

    Spencer, W.A.; Coleman, C.J.; McCarty, J.E.; Beck, R.S.

    1997-05-01T23:59:59.000Z

    Technical Assistance Request HLW/DWPF-TAR-970064 asked SRTC to evaluate the use of a fiber optic coupled emission spectrometer. The spectrometer would provide additional ICP analyses in the DWPF laboratory.

  9. Low Cost Carbon Fiber Overview

    Broader source: Energy.gov (indexed) [DOE]

    UT-Battelle for the U.S. Department of Energy Presentationname CARBON FIBER OVERVIEW Materials LM002 Task FY 2010 Budget Industry Cost Share FY 2011 Budget Industry Cost Share...

  10. LongviewCowlitzFiberCX

    Broader source: Energy.gov (indexed) [DOE]

    new ground disturbance. To accommodate the additional weight of the fiber cable on the transmission line, BPA would need to rebuild eight towers to a higher pole class: 110, 2...

  11. Buried fiber optic intrusion sensor 

    E-Print Network [OSTI]

    Maier, Eric William

    2004-09-30T23:59:59.000Z

    A distributed fiber optic intrusion sensor capable of detecting intruders from the pressure of their weight on the earth's surface was investigated in the laboratory and in field tests. The presence of an intruder above or in proximity...

  12. High repetition rate fiber lasers

    E-Print Network [OSTI]

    Chen, Jian, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    This thesis reports work in high repetition rate femtosecond fiber lasers. Driven by the applications including optical arbitrary waveform generation, high speed optical sampling, frequency metrology, and timing and frequency ...

  13. Optical fiber sensor having a sol-gel fiber core and a method of making

    DOE Patents [OSTI]

    Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.

    2006-06-06T23:59:59.000Z

    A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.

  14. anchored carbon fiber: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material. It is important that a carbon fiber manufacturing cost model 4 Carbon Fiber Composite Cellular A Dissertation Materials Science Websites Summary: Carbon Fiber Composite...

  15. Project Title:

    Broader source: Energy.gov (indexed) [DOE]

    Repair flowline 61-66-SX-3 DOE Code: Project Lead: Wes Riesland NEPA COMPLIANCE SURVEY 291 Project Information Date: 31 12010 Contractor Code: Project Overview In order to...

  16. Optical fiber inspection system

    DOE Patents [OSTI]

    Moore, F.W.

    1985-04-05T23:59:59.000Z

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected. 10 figs.

  17. Ceramic composites: Roles of fiber and interface

    SciTech Connect (OSTI)

    Singh, J.P.; Singh, D. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-09-01T23:59:59.000Z

    Results are presented that elucidate (a) the effects of fiber coating on retained fiber strength and mechanical properties of Nicalon-fiber-reinforced SiC matrix composites, and (b) the role of residual stresses in the interfacial bond strength of SiC-fiber-reinforced reaction-bonded Si{sub 3}N{sub 4} matrix composites. For Nicalon-fiber-reinforced SiC matrix composites that were fractured in a flexural mode, retained in-situ fiber strength, ultimate strength, and work-of-fracture (WOF) of the composites increased with increasing thickness of the fiber coating and reached maximum values at a coating thickness of {approx} 0.3 {micro}m. A direct correlation between the variation of in-situ fiber strength and the variation of ultimate strength and WOF of the composites clearly indicates the critical role of the retained in-situ strength of reinforcing fibers in composites. Fiber pushout tests performed on SiC-fiber-reinforced reaction-bonded Si{sub 3}N{sub 4} matrix composites indicate that both debonding and frictional shear stresses decreased with increasing fiber content. These variations are consistent with the variation of residual radial stress on fibers, as measured by neutron diffraction, i.e., residual stresses decreased with increasing fiber content. Because fracture behavior is strongly controlled by interfacial bond strength, which is proportional to the residual radial stress, appropriate control of residual stress is critical in the design of composites with desired fracture properties.

  18. Carbon nanotube fiber spun from wetted ribbon

    DOE Patents [OSTI]

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29T23:59:59.000Z

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  19. Fiber Optic Based Thermometry System for Superconducting RF Cavities

    SciTech Connect (OSTI)

    Dr. Kochergin, Vladimir [Microxact Inc.] [Microxact Inc.

    2013-05-06T23:59:59.000Z

    Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

  20. Graphitized-carbon fiber/carbon char fuel

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2007-08-28T23:59:59.000Z

    A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.

  1. advanced sic fiber: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 24 25 Next Page Last Page Topic Index 1 Photonic Crystal Fibers Advances in Fiber Optics Physics Websites Summary: Photonic Crystal Fibers Advances in Fiber Optics Elliott L....

  2. Project Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  3. Continuous Fiber Ceramic Composites (CFCC)

    SciTech Connect (OSTI)

    R. A. Wagner

    2002-12-18T23:59:59.000Z

    This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

  4. Inheritance of cotton fiber length and distribution

    E-Print Network [OSTI]

    Braden, Chris Alan

    2006-10-30T23:59:59.000Z

    Fiber quality data from five upland cotton (Gossypium hirsutum L.) genotypes, which were grown at College Station, TX during 2001 and 2002, were subjected to diallel and generation means analyses to determine the potential for improvement of fiber...

  5. Breakthrough: Better Fiber for Better Products

    ScienceCinema (OSTI)

    Griffith, George; Garnier, John;

    2013-05-28T23:59:59.000Z

    Researchers at Idaho National Laboratory have developed a cost-effective method for the continuous production of alpha silicon carbide fiber. The exceptionally strong, lightweight fiber could enable significant performance improvements in many everyday products.

  6. Novel fiber optic polarimetric torsion sensor based on polarization-maintaining photonic crystal fiber

    E-Print Network [OSTI]

    Wai, Ping-kong Alexander

    Novel fiber optic polarimetric torsion sensor based on polarization- maintaining photonic crystal other engineering applications. Compared with conventional torsion sensors, the fiber optic torsion sensors have the distinct advantages of all-fiber-optical sensing. The fiber optic torsion sensors based

  7. Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber H. Qu,1); published August 13, 2014 We demonstrate an interferometric fiber-optic bending/nano-displacement sensor for sensing the displacement. © 2014 Optical Society of America OCIS codes: (060.2370) Fiber optics sensors

  8. Project Fact Sheet Project Update

    E-Print Network [OSTI]

    Project Fact Sheet Project Update: Project Brief: The works cover the refurbishment of floors 4, 5, with `wet' labs for molecular biology, materials characterisation, cell culture and flow studies, and `dry operating theatre. The Bionanotechnology Centre is one of the projects funded from the UK Government's £20

  9. Project Fact Sheet Project Brief

    E-Print Network [OSTI]

    .union.ic.ac.uk/marketing/building Construction Project Team: Project Facts & Figures: Budget: £1,400,000 Funding Source: Capital PlanProject Fact Sheet Project Brief: In the first phase of the Union Building re that it adapts to meet the needs of a changing student body. The re-development plans are grounded in a full

  10. Project Fact Sheet Project Brief

    E-Print Network [OSTI]

    Facts & Figures: Budget: £3,500,000 Funding Source: SRIF III Construction Project Programme: StartProject Fact Sheet Project Brief: This project refurbished half of the 5th and 7th floors of work includes: · Building fabric replacement and revised space planning · New mechanical and electrical

  11. Microsoft Word - Central Ferry Fiber Project CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    machinery or helicopters will be operated between towers 214 and 231 as well as between towers 92 and 104 of the Little Goose-Lower Granite transmission lines until either it...

  12. Applications of fiber optics in physical protection

    SciTech Connect (OSTI)

    Buckle, T.H. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01T23:59:59.000Z

    The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors.

  13. High pressure fiber optic sensor system

    SciTech Connect (OSTI)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26T23:59:59.000Z

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  14. Fiber-optic displacement sensor system

    E-Print Network [OSTI]

    Cava, Norayda Nora

    1990-01-01T23:59:59.000Z

    . Light pulses from a light emitting diode (LED) were coupled into a multimode fiber. The displacement of a mirror positioned near the end of the fiber was measured by monitoring the amplitude of the reflected pulses. A reference reflection from a... emitting diode (LED) were coupled into a multimode fiber. The displacement of a mirror positioned near the end of the fiber was measured by monitoring the amplitude...

  15. Fiber optic diffraction grating maker

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Ward, Michael B. (Idaho Falls, ID)

    1991-01-01T23:59:59.000Z

    A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.

  16. Fiber optic diffraction grating maker

    DOE Patents [OSTI]

    Deason, V.A.; Ward, M.B.

    1991-05-21T23:59:59.000Z

    A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.

  17. Officials launch Carbon Fiber Technology Facility, announce

    E-Print Network [OSTI]

    Pennycook, Steve

    to reduce carbon fiber's high cost, Danielson noted: "Many of these new clean energy technologies are withinSCIENCE Officials launch Carbon Fiber Technology Facility, announce new manufacturing initiative and a large crowd of local business and civic leaders came to the Carbon Fiber Technology Facility (CFTF

  18. Hardware authentication using transmission spectra modified optical fiber.

    SciTech Connect (OSTI)

    Grubbs, Robert K.; Romero, Juan A.

    2010-09-01T23:59:59.000Z

    The ability to authenticate the source and integrity of data is critical to the monitoring and inspection of special nuclear materials, including hardware related to weapons production. Current methods rely on electronic encryption/authentication codes housed in monitoring devices. This always invites the question of implementation and protection of authentication information in an electronic component necessitating EMI shielding, possibly an on board power source to maintain the information in memory. By using atomic layer deposition techniques (ALD) on photonic band gap (PBG) optical fibers we will explore the potential to randomly manipulate the output spectrum and intensity of an input light source. This randomization could produce unique signatures authenticating devices with the potential to authenticate data. An external light source projected through the fiber with a spectrometer at the exit would 'read' the unique signature. No internal power or computational resources would be required.

  19. Fiber-type dosimeter with improved illuminator

    DOE Patents [OSTI]

    Fox, R.J.

    1985-12-23T23:59:59.000Z

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  20. Side-emitting fiber optic position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2008-02-12T23:59:59.000Z

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  1. Optical fiber sensors for harsh environments

    DOE Patents [OSTI]

    Xu, Juncheng; Wang, Anbo

    2007-02-06T23:59:59.000Z

    A diaphragm optic sensor comprises a ferrule including a bore having an optical fiber disposed therein and a diaphragm attached to the ferrule, the diaphragm being spaced apart from the ferrule to form a Fabry-Perot cavity. The cavity is formed by creating a pit in the ferrule or in the diaphragm. The components of the sensor are preferably welded together, preferably by laser welding. In some embodiments, the entire ferrule is bonded to the fiber along the entire length of the fiber within the ferrule; in other embodiments, only a portion of the ferrule is welded to the fiber. A partial vacuum is preferably formed in the pit. A small piece of optical fiber with a coefficient of thermal expansion chosen to compensate for mismatches between the main fiber and ferrule may be spliced to the end of the fiber.

  2. Lignin-Derived Carbon Fiber as a Co-Product of Refining Cellulosic Biomass

    SciTech Connect (OSTI)

    Langholtz, Matthew H [ORNL; Downing, Mark [ORNL; Graham, Robin Lambert [ORNL; Baker, Fred S [ORNL; Compere, A L [ORNL; Griffith, William {Bill} L [ORNL; Boeman, Raymond G [ORNL; Keller, Martin [ORNL

    2014-01-01T23:59:59.000Z

    Lignin by-products from biorefineries has the potential to provide a low-cost alternative to petroleum-based precursors to manufacture carbon fiber, which can be combined with a binding matrix to produce a structural material with much greater specific strength and specific stiffness than conventional materials such as steel and aluminum. The market for carbon fiber is universally projected to grow exponentially to fill the needs of clean energy technologies such as wind turbines and to improve the fuel economies in vehicles through lightweighting. In addition to cellulosic biofuel production, lignin-based carbon fiber production coupled with biorefineries may provide $2,400 to $3,600 added value dry Mg-1 of biomass for vehicle applications. Compared to producing ethanol alone, the addition of lignin-derived carbon fiber could increase biorefinery gross revenue by 30% to 300%. Using lignin-derived carbon fiber in 15 million vehicles per year in the US could reduce fossil fuel consumption by 2-5 billion liters year-1, reduce CO2 emissions by about 6.7 million Mg year-1, and realize fuel savings through vehicle lightweighting of $700 to $1,600 per Mg biomass processed. The value of fuel savings from vehicle lightweighting becomes economical at carbon fiber price of $6.60 kg-1 under current fuel prices, or $13.20 kg-1 under fuel prices of about $1.16 l-1.

  3. Remote generation of entanglement for individual atoms via optical fibers

    E-Print Network [OSTI]

    Y. Q. Guo; H. Y. Zhong; Y. H. Zhang; H. S. Song

    2008-05-29T23:59:59.000Z

    The generation of atomic entanglement is discussed in a system that atoms are trapped in separate cavities which are connected via optical fibers. Two distant atoms can be projected to Bell-state by synchronized turning off the local laser fields and then performing a single quantum measurement by a distant controller. The distinct advantage of this scheme is that it works in a regime that $\\Delta\\approx\\kappa\\gg g$, which makes the scheme insensitive to cavity strong leakage. Moreover, the fidelity is not affected by atomic spontaneous emission.

  4. A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites

    SciTech Connect (OSTI)

    TuckerIII, Charles L. [University of Illinois, Urbana-Champaign; Phelps, Jay H [University of Illinois, Urbana-Champaign; El-Rahman, Ahmed Abd [University of Illinois, Urbana-Champaign; Kunc, Vlastimil [ORNL

    2013-01-01T23:59:59.000Z

    Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, and a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1

  5. Interferometric fiber optic displacement sensor

    DOE Patents [OSTI]

    Farah, J.

    1999-04-06T23:59:59.000Z

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 23 figs.

  6. Interferometric fiber optic displacement sensor

    DOE Patents [OSTI]

    Farah, John (M.I.T. P.O. Box 397301, Cambridge, MA 02139)

    1999-01-01T23:59:59.000Z

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  7. Magnesium Projects

    Broader source: Energy.gov (indexed) [DOE]

    cyberinfrastructure projects and will be augmented by original research in Computer Science and Software Engineering towards the creation of large, distributed, autonomic and...

  8. Project Construction

    Broader source: Energy.gov [DOE]

    Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

  9. ON THE GAGE FACTOR FOR OPTICAL FIBER GRATING STRAIN GAGES

    E-Print Network [OSTI]

    Park, Yong-Lae

    ON THE GAGE FACTOR FOR OPTICAL FIBER GRATING STRAIN GAGES Richard J. Black1 , David Zare1 , Levy Oblea1 , Yong-Lae Park1 , Behzad Moslehi1 , and Craig Neslen2 1 Intelligent Fiber Optic Systems of grating and fiber types. KEY WORDS: Fiber-Optic Gratings, Fiber-Optic Sensors, Strain Gage Factor 1

  10. Rugged fiber optic probe for raman measurement

    DOE Patents [OSTI]

    O'Rourke, Patrick E. (Martinez, GA); Toole, Jr., William R. (Aiken, SC); Nave, Stanley E. (Evans, GA)

    1998-01-01T23:59:59.000Z

    An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.

  11. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    SciTech Connect (OSTI)

    Rawls, G.

    2012-10-10T23:59:59.000Z

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  12. ROOM TEMPERATURE STRENGTH DEGRADATION OF OPTICAL FIBERS

    E-Print Network [OSTI]

    Matthewson, M. John

    temperatures. 6 :4 Aging Time (s) Fig. 2. Residual strength of fiber B after aging in deionized water. Aging Time (s) Fig. 4. Data of Griffioen3 for residual strength (strain to failure) of fiber aged in water. 1) Fig. 1 . Residual strength of fiber A after aging in distilled water. io 10 i0 106 io 108 1.0 0.9 0 (0

  13. Programmable optic-fiber delay line

    E-Print Network [OSTI]

    Fang, Shin-Puu

    1991-01-01T23:59:59.000Z

    . Motion of coupled pendula . 4. Circuit schematic of temperature control 5. Basic configuration of electric arc fusion splicer . . . 6. The arrangement of heater 7. The output optical power from one port versus the temperature of the heater 8... ( stripping tool ) and chemical stripping ( acetone or methylene chloride ) technique can be used to remove the protective polymer fiber coating. A commercial Fujikura ct-40 fiber cleaver used skillfully can produce an end surface suitable for fiber fusion...

  14. Fiber-optic displacement sensor system 

    E-Print Network [OSTI]

    Cava, Norayda Nora

    1990-01-01T23:59:59.000Z

    . 54 CHAPTER I INTRODUCTION The implementation of fiber optics in sensor systems is not a new idea; its popularity has steadily increased through the years. Although technological advances have much to do with this, certain characteristic.... The microbending scheme for displacement measurements [10], [11] takes advantage of the fact that when optical fibers are bent at sharp angles, energy will escape through the bent fiber walls. Maximum sensitivity for this scheme is achieved by minimizing...

  15. Fiber optic temperature sensor using a grating on an angled fiber tip

    E-Print Network [OSTI]

    Varadarajan, Harini

    2000-01-01T23:59:59.000Z

    CHAPTER Page 2. Spinning the Photo Resist. 20 3. Laser Exposure 21 4. Photo Resist Developing. . . . 25 5. Etching the Fiber. 26 B. Testing 29 1. Test Setup. 2. Test Results 29 30 V CONCLUSIONS. . 40 VI RECOMMENDED FUTURE RESEARCH . . 41.... Reusable Polishing Puck. . 14 . 17 11. Fibers in the Polishing Puck. 12. Polish Pad Surfaces. 13. Profile of Polished Fibers. 14. Photograph of Polished Fibers on Metal Puck 18 19 . 19 . 20 15. Argon Laser Setup. 22 16. Laser Setup Details. 23...

  16. The Influences of Fiber Feature and Polymer Melt Index on Mechanical Properties of Sugarcane Fiber/Polymer

    E-Print Network [OSTI]

    The Influences of Fiber Feature and Polymer Melt Index on Mechanical Properties of Sugarcane Fiber/Polymer.interscience.wiley.com). ABSTRACT: The fiber characteristics (i.e., the fiber type, morphology, and dimension) and polymer melt flow sugarcane fiber/polymer composites, the HDPE resins with a low MFI value presented high tensile and impact

  17. Natural Fiber Composites: Retting, Preform Manufacture & Molding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm12smith.pdf More Documents & Publications Natural Fiber Composites: Retting, Preform...

  18. Compound droplet manipulations on fiber arrays

    E-Print Network [OSTI]

    Weyer, Floriane; Dreesen, Laurent; Vandewalle, Nicolas

    2015-01-01T23:59:59.000Z

    Recent works demonstrated that fiber arrays may constitue the basis of an open digital microfluidics. Various processes, such as droplet motion, fragmentation, trapping, release, mixing and encapsulation, may be achieved on fiber arrays. However, handling a large number of tiny droplets resulting from the mixing of several liquid components is still a challenge for developing microreactors, smart sensors or microemulsifying drugs. Here, we show that the manipulation of tiny droplets onto fiber networks allows for creating compound droplets with a high complexity level. Moreover, this cost-effective and flexible method may also be implemented with optical fibers in order to develop fluorescence-based biosensor.

  19. Natural Fiber Composites: Retting, Preform Manufacture & Molding...

    Energy Savers [EERE]

    "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08smith3.pdf More Documents & Publications Natural Fiber Composites: Retting, Preform...

  20. Lower Cost, Higher Performance Carbon Fiber

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Presentationname Questions for Today Materials How can the cost of carbon fiber suitable for higher performance applications (H 2 Storage) be developed? H 2...

  1. Efficiency of pump absorption in double-clad fiber amplifiers. I. Fiber with circular symmetry

    E-Print Network [OSTI]

    Kouznetsov, Dmitrii

    Efficiency of pump absorption in double-clad fiber amplifiers. I. Fiber with circular symmetry with an absorbing core is treated as a model for pump absorption in a double-clad optical fiber amplifier. Mode the pump absorption and is analyzed in the speckle-mode approximation for the example of a Kerr

  2. Fiber ReinforcedFiber Reinforced CementitiousCementitious CompositesComposites B. Mobasher

    E-Print Network [OSTI]

    Mobasher, Barzin

    prefabricated shapes panels shotcrete curtain walls Slabs on grade precast elements Composite decks Vaults Continuous and discontinuous fibers Natural, Asbestos, Wood, rock wool. Synthetic, Steel, E-glass, AR Glass of Interface Weak Zone Steel fibers, high w/c, CH formation Glass fibers strand effect, embrittlement, filling

  3. SBIR Final Report. Liquid Core Optical Scintillating Fibers

    SciTech Connect (OSTI)

    Beetz, C.P.; Steinbeck, J.; Buerstler, R.

    2000-05-16T23:59:59.000Z

    This Phase I SBIR project focused on developing flexible scintillating liquid core optical fibers, with potential uses in high-energy calorimetry, tracking, preradiators, active targets or other fast detectors. Progress on the six tasks of the project is summarized. The technical developments involve three technology components: (1) highly flexible capillaries or tubes of relatively low n (index of refraction) to serve as cladding and liquid core containment; (2) scintillator (and clear) fluids of relatively high n to serve as a core-- these fluids must have a high light transmission and, for some applications, radiation hardness; (3) optical end plugs, plug insertion, and plug-cladding tube sealing technology to contain the core fluids in the tubes, and to transmit the light.

  4. Low-coherent WDM reflectometry for accurate fiber length monitoring

    E-Print Network [OSTI]

    Hui, Rongqing; Thomas, J.; Allen, Christopher Thomas; Fu, B.; Gao, S.

    2003-01-01T23:59:59.000Z

    A fiber-optic low-coherent reflectometer was developed to accurately monitor fiber length variation. A large length-coverage range was obtained by using a fiber Bragg grating array in a wavelength-division-multiplexing ...

  5. auxiliary optical fiber: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Fiber receptacle Collection optics Computer Technologies and Information Sciences Websites Summary: Fiber receptacle ...

  6. acontinuous fiber optic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Fiber receptacle Collection optics Computer Technologies and Information Sciences Websites Summary: Fiber receptacle ...

  7. absolute fiber optic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R S; Neto, P A Maia; Nussenzveig, H M 2014-01-01 2 Fiber receptacle Collection optics Computer Technologies and Information Sciences Websites Summary: Fiber receptacle ...

  8. advanced fiber composites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next (more) Chen, Zheyi 2008-01-01 6 Multilayer composite photonic bandgap fibers ; Composite photonic bandgap fiber materials and fabrication . Open Access Theses and...

  9. alcohol fiber reinforced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND SHM OF CARBON FIBER REINFORCED POLYMER PART I : IMPEDANCE ANALYSIS-performance composite materials based on carbon fiber are increasingly used in critical security areas...

  10. Fiber Reinforced Polymer Composite Manufacturing - RFI Part 2...

    Broader source: Energy.gov (indexed) [DOE]

    1056 More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA-0000980: Summary of...

  11. Oak Ridge National Laboratory Carbon Fiber Technology Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory Carbon Fiber Technology Facility Low-Cost Carbon Fiber | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single spaced...

  12. Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report This report outlines the final...

  13. Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same

    DOE Patents [OSTI]

    O`Rourke, P.E.; Livingston, R.R.

    1995-03-28T23:59:59.000Z

    A fiber optic probe is disclosed for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers. 3 figures.

  14. CX-011237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lightspeed Networks Inc. Fiber Installation CX(s) Applied: B4.9 Date: 10/24/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  15. CX-010338: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Fiber Interconnection CX(s) Applied: B4.7 Date: 05/21/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-011013: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Distributed Fiber Optic Arrays: Integrated Temperature and Seismic Sensing for Detection of Carbon Dioxide Flow.. CX(s) Applied: A1, A9 Date: 09112013...

  17. CX-012136: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Distributed Fiber Optic Arrays: Integrated Temperature and Seismic Sensing for Detection of Carbon Dioxide Flow.. CX(s) Applied: B3.11 Date: 05272014...

  18. CX-010245: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Development of a 300 Degree, 200 Level, 3C Fiber Optic Downhole Seismic Receiver Array for Surveying and Monitoring of Geothermal Reservoirs CX(s) Applied:...

  19. CX-007886: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Development of a 300C, 200 level, 3C Fiber Optic Downhole Seismic Receiver Array for Surveying and Monitoring of Geothermal Reservoirs CX(s) Applied:...

  20. Project Manager

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as a project manager in the Fuel Cell Technologies Office in the DOE-EERE Office of Transportation responsible for a wide variety of highly...

  1. RENOTER Project

    Broader source: Energy.gov [DOE]

    Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE materials, as well as efficient material integration and production process.

  2. Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection

    DOE Patents [OSTI]

    Wood, C.B.

    1992-12-15T23:59:59.000Z

    A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.

  3. Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection

    DOE Patents [OSTI]

    Wood, Charles B. (Lakewood, CO)

    1992-01-01T23:59:59.000Z

    A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.

  4. Microbend fiber-optic temperature sensor

    DOE Patents [OSTI]

    Weiss, J.D.

    1995-05-30T23:59:59.000Z

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber`s transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature. 5 figs.

  5. Moisture Penetration Through Optical Fiber Coatings

    E-Print Network [OSTI]

    Matthewson, M. John

    Moisture Penetration Through Optical Fiber Coatings J. L. Armstrong, M. J. Matthewson and C. R for measuring the diffusion coefficients of water vapor through optical fiber polymer coatings has been. Kurkjian #12;732 International Wire & Cable Symposium Proceedings 1998 Moisture Penetration Through Optical

  6. TRS-Fiber Optic Classifier Sensor Installation

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    TRS-Fiber Optic Classifier Sensor Installation The sensor that the Traffic Recording System (TRS) uses is the Flexsense Portable Fiberoptic Sensor System by Optical Sensor Systems. This includes two is undetected by the TRS. The user must make sure that the sensors do not get bent or twisted or the fiber optic

  7. The transport properties of activated carbon fibers

    SciTech Connect (OSTI)

    di Vittorio, S.L. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Dept. of Materials Science and Engineering); Dresselhaus, M.S. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA (USA). Dept. of Physics); Endo, M. (Shinshu Univ., Nagano (Japan). Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01T23:59:59.000Z

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  8. The purpose of this project is to provide DOTD match funding for the proposed research. This project is associated with the LTRC/Southern partnership with Research on Concrete

    E-Print Network [OSTI]

    Stephens, Jacqueline

    methods, fibers and recycled materials, and the use of internal curing. The proposed project of concrete materials are proposed for investigation in this project, including adaptive rheology concrete "Bill" King, Jr., P.E. Materials Research Administrator 225-767-9129 DOTD Support for UTC Project

  9. Carbon fiber manufacturing via plasma technology

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN); Yarborough, Kenneth D. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    2002-01-01T23:59:59.000Z

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  10. Solar light transmission of polymer optical fibers

    SciTech Connect (OSTI)

    Tekelioglu, Murat [Mechanical Engineering Department, University of Nevada, Reno, NV 89557 (United States); Wood, Byard D. [Mechanical and Aerospace Engineering Department, Utah State University, Logan, UT 84322 (United States)

    2009-11-15T23:59:59.000Z

    Light transfer (10 m) has been shown in recent experiments that used large-core optical fibers. Theoretical models are not extensive, however, and a further correlation between the theory and experiments has not been given. In this paper, straight and bent fiber subsystem models are introduced with skew and meridional rays to predict the light transmission of POFs (plastic optical fibers). Such fibers have been realized, for example, in HSL (hybrid solar lighting) systems. The purpose of this paper is to combine the straight and bent fiber subsystems to estimate the light transmission of HSL systems. It is shown that meridional rays, for which the optical-loss parameters were estimated, better represent the experimental results compared to skew rays ({+-}5.3% vs {+-}24.7% of %-difference). Model predictions were compared with the results of a commercial software. Sensitivity analysis on the subsystems indicated the most-to-least significant parameters in light transmission. (author)

  11. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    SciTech Connect (OSTI)

    Michael J. Haun

    2005-07-15T23:59:59.000Z

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  12. Remotely readable fiber optic compass

    DOE Patents [OSTI]

    Migliori, Albert (Santa Fe, NM); Swift, Gregory W. (Los Alamos, NM); Garrett, Steven L. (Pebble Beach, CA)

    1986-01-01T23:59:59.000Z

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  13. Remotely readable fiber optic compass

    DOE Patents [OSTI]

    Migliori, A.; Swift, G.W.; Garrett, S.L.

    1985-04-30T23:59:59.000Z

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  14. Method for preparing polyaniline fibers

    DOE Patents [OSTI]

    Mattes, Benjamin R. (Santa Fe, NM); Wang, Hsing-Lin (Los Alamos, NM)

    2000-01-01T23:59:59.000Z

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  15. Commercialization of New Carbon Fiber Materials Based on Sustainable Resources for Energy Applications

    SciTech Connect (OSTI)

    Eberle, Cliff [ORNL; Webb, Daniel C [ORNL; Albers, Tracy [GrafTech International; Chen, Chong [GrafTech International

    2013-03-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) and GrafTech International have collaborated to develop and demonstrate the performance of high temperature thermal insulation prototypes made from lignin-based carbon fibers. This project will potentially lead to the first commercial application of lignin-based carbon fibers (LBCF). The goal of the commercial application is to replace expensive, Chinese-sourced isotropic pitch carbon fibers with lower cost carbon fibers made from a domestically sourced, bio-derived (renewable) feedstock. LBCF can help recapture jobs that were previously exported to China while resolving a supply chain vulnerability and reducing the production cost for GrafTech s high temperature thermal insulation. The performance of the LBCF prototypes was measured and found to be comparable to that of the current commercial product. During production of the insulation prototypes, ORNL and GrafTech demonstrated lignin compounding/pelletization, fiber production, heat treatment, and compositing at scales far surpassing those previously demonstrated in LBCF R&D or production. A plan was developed for the commercialization of LBCF thermal insulation, with key milestones including qualification of multiple scalable lignin sources in 2013, tons-scale production and field testing by customers in 2014, and product launch as soon thereafter as production capabilities can be constructed and commissioned.

  16. Activation and micropore structure determination of activated carbon-fiber composites

    SciTech Connect (OSTI)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-09-05T23:59:59.000Z

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. These novel monolithic adsorbents can be produced in single pieces to a given size and shape. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The carbon fiber composites are produced at the ORNL and activated at the CAER using different methods, with the aims of producing a uniform degree of activation, and of closely controlling pore structure and adsorptive properties. The main focus of the present work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites and produce controlled pore structures. Several environmental applications have been explored for the activated carbon fiber composites. One of these was to evaluate the activated composites for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus was constructed specifically for this purpose. The composites were further evaluated in the cyclic recovery of volatile organics. The activated carbon fiber composites have also been tested for possible water treatment applications by studying the adsorption of sodium pentachlorophenolate, PCP.

  17. Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

    Broader source: Energy.gov [DOE]

    Project objectives: 1. Optical fibers that resist hydrogen darkening? for several months instead of hours and days at 300 deg. C and higher. 2. Tube encapsulated cable (TEC) construction that functions as a distributed temperature sensor (DTS) and a power source for a downhole pressure sensor.

  18. Microbend fiber-optic temperature sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber's transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature.

  19. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  20. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    SciTech Connect (OSTI)

    Pickrell, Gary; Scott, Brian

    2014-06-30T23:59:59.000Z

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70?m) with a hollow core was successfully constructed with lead-in and lead-out 50?m diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber geometry to optical properties, and the development of a sensor packaging prototype for laboratory testing. Analysis and experiments determined that a bonding technique using a CO2 laser is the most suitable joining technique. Pore morphology alteration showed that transmission improved with increasing annealing temperature (producing smaller pores), while the sensor response time increased and the mechanical strength decreased with increasing annealing temperature. Software was developed for data acquisition and signal processing to collect and interpret spectral gas absorption data. Gas detection on porous glass sensors was completed and the detection limit was evaluated using acetylene and was found to be around 1- 200ppm. A complete materials package for porous glass sensors was manufactured for testing.

  1. 2 micron femtosecond fiber laser

    DOE Patents [OSTI]

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29T23:59:59.000Z

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  2. Fiber optic D dimer biosensor

    DOE Patents [OSTI]

    Glass, R.S.; Grant, S.A.

    1999-08-17T23:59:59.000Z

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy. 4 figs.

  3. Coated Fiber Neutron Detector Test

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23T23:59:59.000Z

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  4. Distributed fiber optic intrusion sensor system for monitoring long perimeters

    E-Print Network [OSTI]

    Juarez, Juan C.

    2009-06-02T23:59:59.000Z

    Perturbation ........................ 17 G. Frequency Drift Measurement................................................................... 19 III ERBIUM DOPED FIBER LASER CHARACTERIZATION........................ 22 A. Er:Fiber Laser... .................................................................................................... 22 12. Experimental setup for fiber laser used in the intrusion sensor system ............. 24 13. Spectral linewidth scan of Erbium doped fiber laser ......................................... 24 14. Delayed self-heterodyne test setup...

  5. Compact, stable 1 ghz femtosecond er-doped fiber lasers

    E-Print Network [OSTI]

    Byun, Hyunil

    We demonstrate a high-repetition-rate soliton fiber laser that is based on highly-doped anomalously-dispersive erbium-doped fiber. By splicing an 11-mm single mode fiber to the erbium-doped fiber, thermal damage of the ...

  6. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25T23:59:59.000Z

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  7. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2007-10-23T23:59:59.000Z

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  8. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2006-07-26T23:59:59.000Z

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  9. Microbend fiber-optic chemical sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

  10. Characterization of Fiber Optic CMM Probe System

    SciTech Connect (OSTI)

    K.W.Swallow

    2007-05-15T23:59:59.000Z

    This report documents a study completed on the fiber optic probe system that is a part of the Werth optical CMM. This study was necessary due to a lack of documentation from the vendor for the proper use and calibration of the fiber probe, and was performed in support of the Lithographie Galvanoformung Abformung (LIGA) development program at the FM&T. As a result of this study, a better understanding of the fiber optic probe has been developed, including guidelines for its proper use and calibration.

  11. Dynamics of flexible fibers in shear flow

    E-Print Network [OSTI]

    Agnieszka M. Slowicka; Eligiusz Wajnryb; Maria L. Ekiel-Jezewska

    2015-04-03T23:59:59.000Z

    Dynamics of flexible non-Brownian fibers in shear flow at low-Reynolds-number are analyzed numerically for a wide range of the ratios A of the fiber bending force to the viscous drag force. Initially, the fibers are aligned with the flow, and later they move in the plane perpendicular to the flow vorticity. A surprisingly rich spectrum of different modes is observed when the value of A is systematically changed, with sharp transitions between coiled and straightening out modes, period-doubling bifurcations from periodic to migrating solutions, irregular dynamics and chaos.

  12. Oxidation induced stress-rupture of fiber bundles

    SciTech Connect (OSTI)

    Lara-Curzio, E.

    1997-03-01T23:59:59.000Z

    The effect of oxidation on the stress-rupture behavior of fiber bundles was modeled. It is shown that oxidation-induced fiber strength degradation results in the delayed failure of the associated fiber bundle and that the fiber bundle strength decreases with time as t{sup {minus}1/4}. It is also shown that the temperature dependence of the bundle loss of strength reflects the thermal dependence of the mechanism controlling the oxidation of the fibers. The effect of gauge length on the fiber bundle strength was also analyzed. Numerical examples are presented for the special case of Nicalon{trademark} fibers.

  13. ERIS Project 

    E-Print Network [OSTI]

    Hunter, Philip

    repositories. If these (generally) smaller institutions wished to continue to have access to these hosted repository spaces after the end of the project, it was proposed that these repository-lite services would be administered by the SDLC (the Scottish Digital...

  14. Introduction The Fiber-Lite MI-150 is a 150 Watt quartz halogen fiber optic illuminator designed for general microscopy

    E-Print Network [OSTI]

    Kleinfeld, David

    Introduction ® The Fiber-Lite MI-150 is a 150 Watt quartz halogen fiber optic illuminator designed for general microscopy use. When used with specialty fiber optic cables the MI-150 illuminator can also Illuminator from the carton and retain the manual and any additional documents. ! Remove the fiber optic cable

  15. The effects of fiber waviness on the compressive response of fiber reinforced composite materials

    E-Print Network [OSTI]

    Davis, John Jerome

    1989-01-01T23:59:59.000Z

    equation (5) yields an expression for the fiber strain energy: Uf =EftfL [Z + ? Z( ? ) (A + 2AA ) t L + ? ( ? ) (A+4AA+4AA )]+ ( ? ) A (21) Matrix Dlsplacements The matrix displacements are determined in terms of the fiber displacements. The bending... on the lower sur- face of the fiber and uf?corresponds to the displacement on the upper surface of the fiber. These are also shown in Figure 5. The mathematical expressions for these quantities are given by: XX ufu = u (x, tr) = ? tf A ? cos (24) uti = u...

  16. Optical fiber pressure and acceleration sensor fabricated on a fiber endface

    DOE Patents [OSTI]

    Zhu, Yizheng; Wang, Xingwei; Xu, Juncheng; Wang, Anbo

    2006-05-30T23:59:59.000Z

    A fiber optic sensor has a hollow tube bonded to the endface of an optical fiber, and a diaphragm bonded to the hollow tube. The fiber endface and diaphragm comprise an etalon cavity. The length of the etalon cavity changes when applied pressure or acceleration flexes the diaphragm. The entire structure can be made of fused silica. The fiber, tube, and diaphragm can be bonded with a fusion splice. The present sensor is particularly well suited for measuring pressure or acceleration in high temperature, high pressure and corrosive environments (e.g., oil well downholes and jet engines). The present sensors are also suitable for use in biological and medical applications.

  17. Inheritance of Cotton Fiber Length and Strength

    E-Print Network [OSTI]

    Joy, Kolbyn Seth

    2014-04-23T23:59:59.000Z

    hybrids. General combining ability (GCA) and specific combining ability (SCA) were estimated according to Griffing’s diallel Model I, Method 4 for lint percent, high volume instrument (HVI) upper half mean length (UHML), fiber bundle strength (Str...

  18. Multi-Scale Reinforced Carbon Fiber Nanocomposites 

    E-Print Network [OSTI]

    VanRooyen, Ainsley

    2008-08-19T23:59:59.000Z

    Carbon fiber polymer composites are utilized in many industries including in commercial and military aircraft and space vehicles because of their lighter weight and superior strength compared to aluminum and steel. Due to the insulating nature...

  19. Fiber coupled optical spark delivery system

    DOE Patents [OSTI]

    Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO)

    2008-08-12T23:59:59.000Z

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  20. Fiber laser coupled optical spark delivery system

    DOE Patents [OSTI]

    Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO); Joshi, Sachin (Fort Collins, CO); Reynolds, Adam (Fort Collins, CO)

    2008-03-04T23:59:59.000Z

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  1. Sandia National Laboratories: composite fibers typically aligned...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    composite fibers typically aligned in a 45 pattern with respect to the blade axis New Material Tests Show Biaxial Laminate Creep Is Important for Large Wind-Turbine Blades On...

  2. Fiber-Optic Sources of Quantum Entanglement

    E-Print Network [OSTI]

    P. Kumar; X. Li; M. Fiorentino; P. L. Voss; J. E. Sharping; G. A. Barbosa

    2002-09-20T23:59:59.000Z

    We present a fiber-based source of polarization-entangled photon pairs that is well suited for quantum communication applications in the 1.5$\\mu$m band of standard telecommunication fiber. Quantum-correlated signal and idler photon pairs are produced when a nonlinear-fiber Sagnac interferometer is pumped in the anomalous-dispersion region of the fiber. Recently, we have demonstrated nonclassical properties of such photon pairs by using Geiger-mode InGaAs/InP avalanche photodiodes. Polarization entanglement in the photon pairs can be created by pumping the Sagnac interferometer with two orthogonally polarized pulses. In this case the parametrically scattered signal-idler photons yield biphoton interference with $>$90% visibility in coincidence detection, while no interference is observed in direct detection of either the signal or the idler photons.

  3. Structural retrofitting using fiber reinforced polymers

    E-Print Network [OSTI]

    Dumas, Pierre, M. Eng. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Over the past decades, fiber reinforced polymers (FRP) have been widely used in the aeronautical and naval industries. Being more costly than conventional Civil Engineering materials such as steel or concrete, they have ...

  4. Project Fact Sheet Project Brief

    E-Print Network [OSTI]

    Name: Centre for Assisted Robotic Surgery Number: BESS1002b Project Champion: Professor Guang-Zong Yang of the refurbishment is to renew and expand the laboratory space for Robotic Assisted Surgery at the South Kensington Campus as par to the Hamlyn Centre for Robotic Surgery. The overall programme incorpo- rates both core

  5. Fiber optics welder having movable aligning mirror

    DOE Patents [OSTI]

    Higgins, Robert W. (Los Alamos, NM); Robichaud, Roger E. (Jemez Springs, NM)

    1981-01-01T23:59:59.000Z

    A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  6. Fiber optic probe for light scattering measurements

    DOE Patents [OSTI]

    Nave, Stanley E. (Evans, GA); Livingston, Ronald R. (Aiken, SC); Prather, William S. (Augusta, GA)

    1995-01-01T23:59:59.000Z

    A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  7. Fiber optic probe for light scattering measurements

    DOE Patents [OSTI]

    Nave, S.E.; Livingston, R.R.; Prather, W.S.

    1993-01-01T23:59:59.000Z

    This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  8. Scale-up of Novel Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch

    SciTech Connect (OSTI)

    Spalding, Mark A [The Dow Chemical Company

    2014-08-27T23:59:59.000Z

    The project started in September, 2012 with the goal of scaling up from the existing laboratory scale process for producing carbon fiber (CF) from polyolefin (PO) based precursor fiber using a Dow proprietary sulfonation-desulfonation stabilization process. The award was used to develop a process that was capable of producing market development quantities of CF from PO precursor fiber at a rate of 4 kg/h of CF. The CF would target properties that met or exceeded the Department of Energy (DOE) Vehicles Technology [1] standard; i.e., 172 GPa modulus and 1.72 GPa strength at greater than or equal to 1% strain. The Dow proprietary process was capable of meeting and exceeding these targets properties. Project DE-EE0005760 resulted from a Collaborative Research and Development Agreement (CRADA) between Dow and Oak Ridge National Laboratory (ORNL) with support from the Michigan Economic Development Corporation (MEDC) and DOE. In the first budget period, the main goal was to design a sulfonation-desulfonation market development plant capable of stabilizing PO precursor fiber at a rate of 5 kg/h using a sulfonation solution. The detailed design, location, and cost estimate were determined as scheduled in the Project Management Plan (PMP). In parallel with this DOE award project was a fundamentals and economic evaluation funded by The Dow Chemical Company (Dow). The goal of the Dow sponsored project was to finalize the mass balances, energy balances, and levelized cost to produce CF using the Dow process. A Go-No-Go decision was scheduled in June, 2013 based on the findings of the DOE sponsored scale up project and the Dow sponsored project. In June, 2013, Dow made the No-Go decision to halt and abandon the Dow proprietary sulfonation-desulfonation process for stabilizing PO precursor fibers for the manufacturing of CF. This No-Go decision was identified in the original proposal and at the start of this project, and the decision was made as scheduled. The decision was based on the high levelized economic cost of the process relative to the manufacture of CF from polyacrylonitrile (PAN) precursor fibers. The capital required to sulfonate the fibers adds a significant cost to the process due to the need for investment in a sulfuric acid recovery plant. This high additional capital over the capital for a PAN based CF plant, reduces the levelized economic cost to slightly advantaged over PAN based CF. The sulfonation-desulfonation stabilization route failed to meet the Dow’s return on investment criterion and the cost advantage target set forth for the DOE project. The DOE and Dow decided to halt spending on the project until a new PO fiber stabilization process could be identified that met the DOE physical properties standard and the levelized economic cost constraints of Dow. When the new technology was developed, then award DE-EE0005760 would be re-started with the same goals of the development of a market development plant capable of producing CF at 4 kg/h with the properties that met or exceed those set forth by the Department of Energy Vehicles Technology standard. Progress on the development of the new process has been slow and thus has delayed the scale up project. Dow’s efforts to date have not progressed to the point of demonstrating a commercially-viable process for production of low cost CF from PO precursors for Dow’s rigorous economic constraints. After extensive discussions within Dow and consultation with DOE’s Advanced Manufacturing Office (AMO) Headquarters and Golden Field Office teams, Dow has decided to proceed with the formal recommendation to terminate subject project. DOE’s AMO Headquarters and Golden Field Office teams agreed with the termination of the project.

  9. The effect of irregular fiber distribution and error in assumed transverse fiber CTE on thermally induced fiber/matrix interfacial stresses

    E-Print Network [OSTI]

    Zu, Seung-Don

    2006-08-16T23:59:59.000Z

    Thermally induced interfacial stress states between fiber and matrix at cryogenic temperature were studied using three-dimensional finite element based micromechanics. Mismatch of the coefficient of thermal expansion between fiber and matrix...

  10. Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery

    SciTech Connect (OSTI)

    Wang, a.; Pickrell, G.; Xiao, H.; May, r.

    2003-02-27T23:59:59.000Z

    The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

  11. Effect of Fiber Orientation and Ply Mix on Fiber Reinforced Polymer-Confined Concrete

    E-Print Network [OSTI]

    Entekhabi, Dara

    concrete by testing under uniaxial compression a designed array of plain concrete cylinders wrappedEffect of Fiber Orientation and Ply Mix on Fiber Reinforced Polymer-Confined Concrete Ching Au, A concrete lateral strain while the kink stress was found to upshift with increasing jacket stiffness

  12. FIBER OPTIC SENSING OF A CARBON FIBER PRESfRESSED CONCRETE HIGHWAY BRIDGE

    E-Print Network [OSTI]

    composite material replacementsfor steel. These carbon fiber reinforced polymers are practically immune of the civil infrastructure [Dunker and Rabbat 1993]. Carbon fiber based composite materials are practically to corrosion. Since composite materials are unproven in their substitution for steel in concrete structures

  13. All-fiber Passively Q-switched Laser Based on Tm3+-doped Tellurite Fiber

    E-Print Network [OSTI]

    Kuan, Pei-Wen; Li, Kefeng; Zhang, Lei; Fan, Xiaokang; Hasan, Tawfique; Wang, Fengqiu; Hu, Lili

    2014-12-24T23:59:59.000Z

    ]. The composite has been prepared from the CNT aqueous dispersions according to the procedure described in Ref. [21]. The total length of the fiber laser cavity is ~2.8 m. The tellurite fiber output end, which has a ~11.9% Fresnel reflection, is used...

  14. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    SciTech Connect (OSTI)

    Hai Xiao; Junhang Dong; Jerry Lin; Van Romero

    2011-12-31T23:59:59.000Z

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project â??DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases.â? This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  15. PROJECT SUMMARY

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverviewEfficiencyofHSSPIAProperty Management PlanPROJECT SUMMARY 1

  16. Hallmark Project

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopmentHEADQUARTERSOutreachApril 23, 2013Project

  17. Project Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program DirectionProject ATHENA creates

  18. Project Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program DirectionProject ATHENAManagement

  19. Projects | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program DirectionProject ATHENAManagementIn ThisPages

  20. Project Gnome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject Final Report: HPC-Colony IIProject Gnome

  1. Project Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluids |Storage Research and

  2. NEPA COMPLIANCE SURVEY Project Information Project Title:

    Broader source: Energy.gov (indexed) [DOE]

    Boxes Date: Nov. 11 , 2010 DOE Code: 6740.010.00000 Contractor Code: 8067-451 Project Lead: Anthony Bowler Project Overview 1. Brief project description include anything that...

  3. Activated carbon fibers and engineered forms from renewable resources

    DOE Patents [OSTI]

    Baker, Frederick S.

    2010-06-01T23:59:59.000Z

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  4. Evaluations of fiber optic sensors for interior applications

    SciTech Connect (OSTI)

    Sandoval, M.W.; Malone, T.P.

    1996-02-01T23:59:59.000Z

    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  5. Activated carbon fibers and engineered forms from renewable resources

    DOE Patents [OSTI]

    Baker, Frederick S

    2013-02-19T23:59:59.000Z

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  6. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    SciTech Connect (OSTI)

    Repasky, Kevin

    2013-09-30T23:59:59.000Z

    A fiber sensor array for sub-surface CO{sub 2} concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 􀁐m. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO{sub 2} to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from the DFB laser interacts with the CO{sub 2} before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO{sub 2} absorption features where a transmission measurement is made allowing the CO{sub 2} concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO{sub 2} concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO{sub 2} concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO{sub 2}/day began on July 10, 2012. The elevated subsurface CO{sub 2} concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program

  7. advanced fiber-optic monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 24 25 Next Page Last Page Topic Index 1 Photonic Crystal Fibers Advances in Fiber Optics Physics Websites Summary: Photonic Crystal Fibers Advances in Fiber Optics Elliott L....

  8. MICROSTRUCTURED OPTICAL FIBER BRAGG GRATING SENSORS FOR STRUCTURAL HEALTH MONITORING APPLICATIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MICROSTRUCTURED OPTICAL FIBER BRAGG GRATING SENSORS FOR STRUCTURAL HEALTH MONITORING APPLICATIONS optical fiber Bragg grating (MOFBG) sensors for structural health monitoring applications. We then focus, optical fiber sensor, fiber Bragg grating, structural health monitoring INTRODUCTION Microstructured

  9. UPTAKE OF RADIONUCLIDE METALS BY SPME FIBERS

    SciTech Connect (OSTI)

    Duff, M; S Crump, S; Robert02 Ray, R; Keisha Martin, K; Donna Beals, D

    2006-08-28T23:59:59.000Z

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.

  10. The effect of neutron irradiation on silicon carbide fibers

    SciTech Connect (OSTI)

    Newsome, G.A. [Lockheed Martin Corp., Schenectady, NY (United States)

    1997-01-01T23:59:59.000Z

    Nine types of SiC fiber have been exposed to neutron radiation in the Advanced Test Reactor at 250 C for various lengths of time ranging from 83 to 128 days. The effects of these exposures have been initially determined using scanning electron microscopy. The fibers tested were Nicalon{trademark} CG, Tyranno, Hi-Nicalon{trademark}, Dow Corning SiC, Carborundum SiC, Textron SCS-6, polymethysilane (PMS) derived SiC from the University of Michigan, and two types of MER SiC fiber. This covers a range of fibers from widely used commercial fibers to developmental fibers. Consistent with previous radiation experiments, Nicalon fiber was severely degraded by the neutron irradiation. Similarly, Tyranno suffered severe degradation. The more advanced fibers which approach the composition and properties of SiC performed well under irradiation. Of these, the Carborundum SiC fiber appeared to perform the best. The Hi-Nicalon and Dow Corning Fibers exhibited good general stability, but also appear to have some surface roughening. The MER fibers and the Textron SCS-6 fibers both had carbon cores which adversely influenced the overall stability of the fibers.

  11. The effect of processing on strength of Nicalon fibers in Nicalon fiber-SiC matrix composites

    SciTech Connect (OSTI)

    Singh, D.; Singh, J.P.

    1991-12-01T23:59:59.000Z

    Degradation of strength of Nicalon (silicon carbide) fibers during processing of Nicalon fiber-SiC matrix composites was studied. Strength distribution of as-fabricated Nicalon fibers was obtained via bundle tests. Whereas, strengths of fractured fibers in Nicalon fiber-reinforced SiC matrix composite specimens were estimated by measuring fracture mirror radii. Comparison of fracture probability plots indicate significant differences in the behavior of the as-fabricated fibers and those in the composite. Possible causes leading to these differences are discussed.

  12. Communication Uniaxial compression in carbon fiber-reinforced cement, sensed by

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    -based and unsized, as obtained from Ashland Petroleum (Ashland, KY). The fiber diameter was 15 mm. The nominal fiber

  13. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    SciTech Connect (OSTI)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30T23:59:59.000Z

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  14. Project Management Lessons Learned

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-05T23:59:59.000Z

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

  15. Interlayer toughening of fiber composite flywheel rotors

    DOE Patents [OSTI]

    Groves, S.E.; Deteresa, S.J.

    1998-07-14T23:59:59.000Z

    An interlayer toughening mechanism is described to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0{degree} to 90{degree} to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles. 2 figs.

  16. Interlayer toughening of fiber composite flywheel rotors

    DOE Patents [OSTI]

    Groves, Scott E. (Brentwood, CA); Deteresa, Steven J. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  17. Imaging techniques utilizing optical fibers and tomography

    SciTech Connect (OSTI)

    Wilke, M.; King, N.S.P.; Gray, N.; Johnson, D.; Esquibel, D.; Nedrow, P.; Ishiwata, S.

    1985-01-01T23:59:59.000Z

    Two-dimensional, time-dependent images generated by neutrons, gamma rays, and x-rays incident on fast scintillators are relayed to streak and video cameras over optical fibers. Three dimensions, two spatial and one temporal, have been reduced to two, one in space and time utilizing sampling methods permitting reconstruction of a time-dependent, two-dimensional image subsequent to data recording. The manner in which the sampling is done optimized the ability to reconstruct the image via a maximization of entropy algorithm. This method uses four linear fiber optic arrays typically 30 meters long and up to 35 elements each. A further refinement of this technique collapses the linear array information into four single fibers by wavelength multiplexing. This permits economical transmission of the data over kilometer distances to the recording equipment.

  18. Carbon Fiber Damage in Particle Beam

    E-Print Network [OSTI]

    Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

    2011-01-01T23:59:59.000Z

    Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

  19. Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems

    SciTech Connect (OSTI)

    Anbo Wang; Gary Pickrell

    2011-12-31T23:59:59.000Z

    This report summarizes technical progress on the program â??Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systemsâ? funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

  20. THROUGH THICKNESS LASER JOINING OF CONTINUOUS GLASS FIBER FABRIC REINFORCEMENT

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    THROUGH THICKNESS LASER JOINING OF CONTINUOUS GLASS FIBER FABRIC REINFORCEMENT Paper Number 405 Huade Tan, Gen Satoh, Y. Lawrence Yao Manufacturing Research Laboratory Department of Mechanical and propagation is a major failure mode in structural composite applications. Manufacturing induced fiber

  1. Characterization by mercury porosimetry of nonwoven fiber media with deformation

    E-Print Network [OSTI]

    Rutledge, Gregory C.

    The porosity and pore diameter distribution are important characteristics of nonwoven fiber media. With the advent of electrospinning, the production of mats of nonwoven fibrous materials with fiber diameters in the 0.1-10 ...

  2. Frequency-dissymmetric parametric sideband generation in a microstructured fiber

    E-Print Network [OSTI]

    Boyer, Edmond

    to all-fiber quantum communication devices useful in the field of quantum communication net- works [7]. The development of photonic crystal fibers (PCFs) [8] led to a leap forward in the field of nonlinear optics

  3. Partial-Flow Diesel Particulate Filter of Sintered Metal Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partial-Flow Diesel Particulate Filter of Sintered Metal Fiber Fleece Partial-Flow Diesel Particulate Filter of Sintered Metal Fiber Fleece Poster presented at the 16th Directions...

  4. alloy fiber reinforced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of FRPs Conditioned FRP-RC Beams Using FiberOptic Sensors, Slenderness Efle 3 Carbon Fiber Reinforced Polymer (CFRP) as Reinforcement for Concrete Beam CiteSeer Summary:...

  5. Optical fiber smart structures applied to secure containers

    SciTech Connect (OSTI)

    Sliva, P.; Gordon, N.R.; Stahl, K.A.; Simmon, K.L.; Anheier, N.C.

    1994-07-01T23:59:59.000Z

    A prototype secure container was prepared that uses continually monitored optical fiber as the smart structure. A small ({approx}7.6 cm {times} 10.2 cm {times} 12.7 cm), matchbox-shaped container consisting of an inner drawer within an outer shell was fabricated from polymer resin. The optical fiber was sandwiched between additional non-optical, strength-promoting fibers and embedded into the polymer. The additional non-optical fiber provides strength to the container, protects the optical fiber from damage, hides the fiber and acts as a decoy. The optical fiber was wound with a winding density such that a high probability of fiber damage would be expected if the container was penetrated.

  6. Intrinsic Fabry-Perot optical fiber sensors and their multiplexing

    DOE Patents [OSTI]

    Wang, Anbo (Blacksburg, VA)

    2007-12-11T23:59:59.000Z

    An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

  7. Fiber Supercapacitors DOI: 10.1002/anie.201006062

    E-Print Network [OSTI]

    Wang, Zhong L.

    Fiber Supercapacitors DOI: 10.1002/anie.201006062 Fiber Supercapacitors Made of Nanowire storage devices such as batteries and supercapacitors need to be explored, but future develop- ment. In recent years, electrochemical supercapacitors have attracted much attention as novel energy

  8. Fatigue Enhancement of a Carbon Fiber Reinforced Nanocomposite

    E-Print Network [OSTI]

    Wilkerson, Justin W.

    2008-08-19T23:59:59.000Z

    The primary objective of the present investigation is to study the fatigue characteristics of a woven carbon fiber reinforced polymer which has been modified with either amine or fluorine functionalized carbon nanotubes on the fiber-matrix interface...

  9. Natural fiber reinforced aerated concrete : an experimental investigation

    E-Print Network [OSTI]

    Garbis, Leonidia Maria

    2013-01-01T23:59:59.000Z

    The purpose of this study is to compare existing research with aerated concrete and fiber reinforcement to original experiments completed investigating the benefits of adding natural fiber tensile reinforcement to aerated ...

  10. Distributed fiber optic intrusion sensor system for monitoring long perimeters 

    E-Print Network [OSTI]

    Juarez, Juan C.

    2009-06-02T23:59:59.000Z

    A distributed sensor using an optical fiber for detecting and locating intruders over long perimeters (>10 km) is described. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from...

  11. SABIC's Carbon Fiber-Reinforced Material used to Produce the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SABIC's Carbon Fiber-Reinforced Material used to Produce the World's First 3D-Printed Vehicle at IMTS 2014 SABIC's Carbon Fiber-Reinforced Material used to Produce the World's...

  12. Hybrid carbon fiber composite lattice truss structures T. George a,

    E-Print Network [OSTI]

    Wadley, Haydn

    carbon fiber face sheets and infused with an epoxy resin using a vacuum assisted resin transfer molding that was stitched to CFRP faces using Kevlar fiber to form a resin infused sandwich panel. The nodes of the braided

  13. advanced dti fiber: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L, Baley C. Influence of the sampling area of the stem on the mechanical properties of hemp fibers Paris-Sud XI, Universit de 27 Fiber Optic Sensor Interrogation Advancements...

  14. Livingston Solar Canopy Project The Project

    E-Print Network [OSTI]

    Delgado, Mauricio

    ,000 high efficiency solar panels on canopy structures over two major surface parking areasLivingston Solar Canopy Project The Project: This project entails the installation of more than 40. In conjunction with the existing 1.4 megawatt solar energy facility on this campus, this project will generate

  15. Information Visualization Graduate Project (Group Project)

    E-Print Network [OSTI]

    Rusu, Adrian

    Information Visualization Fall 2011 Graduate Project (Group Project) (100 points total) Handed out:59PM Research Article due by online submission on Sunday, December 11, 2011, 11:59PM Project Demo due last week of classes The idea of the project is to take the knowledge and background that you

  16. Effects of fiber direction on heat conduction in unidirectionally aligned fiber composites

    E-Print Network [OSTI]

    Havis, Clark Reagan

    1987-01-01T23:59:59.000Z

    Composites, " Journal of Applied Mechanics, Vol. 46, pp. 563-567. 44 APPENDIX A NOMENCI ATURE 2G A A d If k k?k, Iy kf km k?k, k? k?, y, k? kgs~ k~v~ kss i, m) B qs 9cai~ q~s S T W s&p~s /f 'y lF V Vf im r fiber spacing... of MASTER OF SCIENCE December 1987 Major Subject: Mechanical Engineering EFFECTS OF FIBER DIRECTION ON HEAT CONDUCTION IN UNIDIRECTIONALLY ALIGNED FIBER COMPOSITES A Thesis CLARK REAGAN HAVIS Approved as to style and content by: G. P. Peterson...

  17. Effects of fiber direction on heat conduction in unidirectionally aligned fiber composites 

    E-Print Network [OSTI]

    Havis, Clark Reagan

    1987-01-01T23:59:59.000Z

    APPENDIX D: EXPERIMENTAL DATA. . . . . . . . . . 52 VITA . 128 LIST OF FIGURES Figure 1. Composite fiber types . 2. Aligned fiber coxnposites 3. Fiber alignment 4. Principal conductivities 5. Fundamental element used in the analogy between... difference form of the governing equation k ? (T'+'+ T' ' ? 2T') +e2 +, 2~6, y + ? s(2 ~t+T' rD ? 22 ) =0 ks which. when solved for Ti' becomes '=-'(':. ". ') +- 4 (as/A ) y A?(ar/as) 1 (Tj~t+T&', ) 2 (1+(Asa, )-r J (23) where A?wss the aspect...

  18. Manufacture of thermoelectric generator structures by fiber drawing

    DOE Patents [OSTI]

    McIntyre, Timothy J; Simpson, John T; West, David L

    2014-11-18T23:59:59.000Z

    Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

  19. Fiber-optical analogue of the event horizon: Appendices

    E-Print Network [OSTI]

    Thomas G. Philbin; Chris Kuklewicz; Scott Robertson; Stephen Hill; Friedrich Konig; Ulf Leonhardt

    2007-12-13T23:59:59.000Z

    We explain the theory behind our fiber-optical analogue of the event horizon and present the experiment in detail.

  20. Fiber optically isolated and remotely stabilized data transmission system

    DOE Patents [OSTI]

    Nelson, M.A.

    1992-11-10T23:59:59.000Z

    A fiber optically isolated and remotely stabilized data transmission systems described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber. 3 figs.

  1. Optimal Design Refrigeration System for a Mucilage Glue Fiber Factory

    E-Print Network [OSTI]

    Tan, C.; Liu, J.; Tang, F.; Liu, Y.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-4 Optimal Design Refrigeration System for a Mucilage Glue Fiber Factory Chaoyi Tan Jianlong Liu Fennan Tang Yang Liu Hunan University of Technology... fiber ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-4 2. REFRIGERATION SYSTEM SUPERIOR DESIGN PROPOSAL IN MUCILAGE GLUE FIBER FACTORY 2.1 Refrigeration system superior design proposal in mucilage glue fiber factory...

  2. Designing the properties of dispersion-flattened photonic crystal fibers

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    crystal fibers," Electron. Lett. 35, 63-64 (1999). 4. P. J. Bennet, T. M. Monro, and D. J. Richardson

  3. Photon pair generation in birefringent optical fibers

    E-Print Network [OSTI]

    Brian J. Smith; P. Mahou; Offir Cohen; J. S. Lundeen; I. A. Walmsley

    2010-02-09T23:59:59.000Z

    We study both experimentally and theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in standard birefringent optical fibers. The ability to produce a range of two-photon spectral states, from highly correlated (entangled) to completely factorable, by means of cross-polarized birefringent phase matching, is explored. A simple model is developed to predict the spectral state of the photon pair which shows how this can be adjusted by choosing the appropriate pump bandwidth, fiber length and birefringence. Spontaneous Raman scattering is modeled to determine the tradeoff between SFWM and background Raman noise, and the predicted results are shown to agree with experimental data.

  4. Cluster state quantum computing in optical fibers

    E-Print Network [OSTI]

    Yasaman Soudagar; Felix Bussieres; Guido Berlin; Suzanne Lacroix; Jose M. Fernandez; Nicolas Godbout

    2006-05-12T23:59:59.000Z

    A scheme for the implementation of the cluster state model of quantum computing in optical fibers, which enables the feedforward feature, is proposed. This scheme uses the time-bin encoding of qubits. Following previously suggested methods of applying arbitrary one-qubit gates in optical fibers, two different ways for the realization of fusion gate types I and II for cluster production are proposed: a fully time-bin based encoding scheme and a combination of time-bin and polarization based encoding scheme. Also the methods of measurement in any desired bases for the purpose of the processing of cluster state computing for both these encodings are explained.

  5. Fiber optic mounted laser driven flyer plates

    DOE Patents [OSTI]

    Paisley, Dennis L. (Santa Fe, NM)

    1991-01-01T23:59:59.000Z

    A laser driven flyer plate where the flyer plate is deposited directly onto the squared end of an optical fiber. The plasma generated by a laser pulse drives the flyer plate toward a target. In another embodiment, a first metal layer is deposited onto the squared end of an optical fiber, followed by a layer of a dielectric material and a second metal layer. The laser pulse generates a plasma in the first metal layer, but the plasma is kept away from the second metal layer by the dielectric layer until the pressure reaches the point where shearing occurs.

  6. Optical transmittance degradation in tapered fibers

    E-Print Network [OSTI]

    Masazumi Fujiwara; Kiyota Toubaru; Shigeki Takeuchi

    2012-07-27T23:59:59.000Z

    We investigated the cause of optical transmittance degradation in tapered fibers. Degradation commences immediately after fabrication and it eventually reduces the transmittance to almost zero. It is a major problem that limits applications of tapered fibers. We systematically investigated the effect of the dust-particle density and the humidity on the degradation dynamics. The results clearly show that the degradation is mostly due to dust particles and that it is not related to the humidity. In a dust free environment it is possible to preserve the transmittance with a degradation of less than the noise (+/- ?0.02) over 1 week.

  7. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    SciTech Connect (OSTI)

    Shiquan Tao

    2006-12-31T23:59:59.000Z

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.

  8. Novel oxide-oxide fiber reinforced hot gas filter development

    SciTech Connect (OSTI)

    Wagner, R.A.

    1995-12-01T23:59:59.000Z

    The objective of this program is to fabricate and test oxide fiber reinforced composite hot gas filter elements for advanced power generation systems. The level of mechanical durability exhibited by the currently available filters in field tests indicates that more rugged filters are required to meet the demands of large power generation systems. Furthermore, long term corrosion resistance of currently available filters has yet to be demonstrated in PFBC systems. The essential requirements of a composite material designed to meet the program objective for a toughened hot gas filter include the following: Stable continuous fiber; rigid porous matrix; engineered fiber-matrix interface; and cost effectiveness. Based on properties, availability, and cost, Mitsui`s ALMAX alumina fiber and 3M`s NEXTEL 610 alumina fiber were selected as the oxide reinforcement fibers. In order to meet the economic goals of the program it is essential that the cost and amount of continuous fiber be minimized. A four axis filament winder will be used to fabricate filter Preforms in a variety of fiber architectures. Carbon was used as the initial fiber coating because it was known to be resistant to the Processing chemicals. The coating was produced by pyrolysis of the resin based sizings on the continuous fibers. The matrix of the composite filter is comprised of chopped ceramic fiber. Saffil fiber was used for all compositions in this program.

  9. Fiber-based combined optical coherence and multiphoton endomicroscopy

    E-Print Network [OSTI]

    Chen, Zhongping

    Fiber-based combined optical coherence and multiphoton endomicroscopy Gangjun Liu Zhongping Chen #12;Journal of Biomedical Optics 16(3), 036010 (March 2011) Fiber-based combined optical coherence. The efficiency can be further increased by fusing more multimode fibers with the DCF. Simultaneous optical

  10. Spectral background and transmission characteristics of fiber optic imaging bundles

    E-Print Network [OSTI]

    Gmitro, Arthur F.

    Spectral background and transmission characteristics of fiber optic imaging bundles Joshua Anthony August 2008 The emission and transmission properties of three commercially produced coherent fiber optic optical fibers are used in many imaging applications to allow the flexible relay of image planes over

  11. Fiber optic synchronisation architecture for high precision GPS applications

    E-Print Network [OSTI]

    Santerre, Rock

    Fiber optic synchronisation architecture for high precision GPS applications Daniel Macias and the receiver is monitored at the millimetre level [2]. These issues can be solved using optical fiber links), Université Laval, Québec, QC, G1V 0A6, Canada sophie.larochelle@gel.ulaval.ca Abstract: We propose a GPS-over-fiber

  12. OSE 4470L Fiber-Optic Communications Laboratory

    E-Print Network [OSTI]

    Van Stryland, Eric

    OSE 4470L Fiber-Optic Communications Laboratory Instructor: Guifang Li, CREOL 278, Phone 823 in classroom to what you can see in the lab of a variety topics related to fiber-optic communications. 2. Take course on the same topic (OSE 4470). The experiments are cover three topics: 1. The optical fiber

  13. COURSE SYLLABUS OSE 4470 FALL 2014 `FIBER-OPTIC COMMUNICATIONS'

    E-Print Network [OSTI]

    Van Stryland, Eric

    COURSE SYLLABUS OSE 4470 FALL 2014 `FIBER-OPTIC COMMUNICATIONS' INSTRUCTOR: SASAN FATHPOUR CLASS of optical fiber communication systems including the optoelectronic devices used in transmitters and receivers. COURSE DESCRIPTION This course is an introduction to the principles of optical fiber

  14. STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS

    E-Print Network [OSTI]

    Kasman, Alex

    STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS ST´EPHANE LAFORTUNE Summary The study is crucial in applications such as lasers and optical fibers. In this proposal I will focus on a model of fiber optics: the Manakov system. This system consists of two differential equations, that is two

  15. High-index-core Bragg fibers: dispersion Juan A. Monsoriu

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    . P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978). 4. Y. Xu, G.X. Ouyang, R.K. Lee, and A. Yariv, "Asymptotic Matrix Theory of Bragg Fibers," J. LightwaveHigh-index-core Bragg fibers: dispersion properties Juan A. Monsoriu Departamento de Física

  16. Fiber optic hydrophone sensor arrays using low reflectance internal mirrors 

    E-Print Network [OSTI]

    Lee, Jong-Seo

    1998-01-01T23:59:59.000Z

    A new design of fiber optic hydrophone sensor arrays phics. using low reflectance internal mirrors in optical fibers is investigated. The mirrors are produced by fusion arc splicing of two fibers, one of which has a thin film of TiO2 on the end. A...

  17. Effects of g Radiation on Fiber-Reinforced Polymer Concrete

    E-Print Network [OSTI]

    North Texas, University of

    Effects of g Radiation on Fiber-Reinforced Polymer Concrete Gonzalo Marti´nez-Barrera,1,2 Luis F% of nylon fibers. The fiber-containing polymer concretes (PCs) were subjected to 5, 10, 50, and 100 k Engineers INTRODUCTION AND SCOPE It is well known that polymer concrete (PC) is three to five times stronger

  18. The FGM Concept in the Development of Fiber Cement Components

    SciTech Connect (OSTI)

    Dias, C. M. R.; John, V. M. [Department of Construction Engineering, Polytechnic School, University of Sao Paulo, 05508 900 Sao Paulo, SP (Brazil); Savastano, H. Jr. [Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, P.O. Box 23, 13635-900 Pirassununga, SP (Brazil)

    2008-02-15T23:59:59.000Z

    The FGM concept appears promising in improving the mechanical performance and reducing production costs of fiber cement building components. However, it has not yet been broadly applied to fiber cement technology. In this study we analyze the functionally graded fiber cement concept and its potential for industrial application in Hatschek machines. The conventional Hatschek process is summarized as well as the proposed modifications to allow FGM fiber cement production. The feasibility of producing functionally graded fiber cement by grading PVA fiber content was experimentally evaluated. Thermogravimetric (TG) and Scanning Electron Microscope (SEM) analysis were used to evaluate fiber distribution profiles. Four-point bending tests were applied to evaluate the mechanical performance of both conventional and functionally graded composites. The results shows that grading PVA fiber content is an effective way to produce functionally graded fiber cement, allowing the reduction of the total fiber volume without significant reduction on composite MOR. TG tests were found adequate to assess fiber content at different positions in functionally graded fiber cements.

  19. Constitutive Modeling of Fiber Composites with a Soft Hyperelastic Matrix

    E-Print Network [OSTI]

    Pellegrino, Sergio

    of unidirectional carbon fiber composites with a silicone matrix, loaded transversally to the fibers study uses a plane-strain finite element continuum model of the composite material in which the fiber (Campbell et al., 2005; Barrett et al., 2006). These composite materials are often described as memory

  20. NONNEGATIVE UNMIXING METHODOLOGY APPLIED ON BRILLOUIN OPTICAL FIBER SENSOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    NONNEGATIVE UNMIXING METHODOLOGY APPLIED ON BRILLOUIN OPTICAL FIBER SENSOR Edouard Buchoud1 As a complement to conventional sensors, Distributed Optical Fiber Sensors (DOFS) have gradually played. In complementary to traditional sensors, distributed fiber optic sensors (DOFS) are an attractive tool for SHM [1

  1. Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence Ruby N. Ghosh,a) Gregory L on a reflection-mode fiber-optic oxygen sensor based on the 3 O2 quenching of the red emission from hexanuclear, and medical applications. In these en- vironments the advantages of fiber-optic chemical sensors are that they

  2. ADHESIVE DISBOND MONITORING WITH MICROSTRUCTURED OPTICAL FIBER BRAGG GRATING SENSORS

    E-Print Network [OSTI]

    Boyer, Edmond

    ADHESIVE DISBOND MONITORING WITH MICROSTRUCTURED OPTICAL FIBER BRAGG GRATING SENSORS Sanne a sensing system that is based on a combination of 3 optical fiber sensors which are non optical fiber and feature an enhanced response to shear stress. The change in response of the sensors

  3. Voltage sensor with fiber Fabry-Perot interferometer

    E-Print Network [OSTI]

    Wann, Been-Huey

    1992-01-01T23:59:59.000Z

    INTRODUCTION. Page II RESEARCH DESCRIPTION. . . A. Optical Fiber Fabry-Perot Interferometer. . . . . B. Piezoelectricity. . C. Modulating Point in 60 Hz Voltage Measurement. . . . . . D. Temperature Control Circuit . . . . 18 . . . 26 III EXPERIMENTAL... PROCEDURES AND RESULTS. . . . . . A. Fabrication of the Optical Fiber Fabry-Perot Interferometer B. Selection of Piezoelectric Materials. C. Implementation of Temperature Control Circuit. . . . D. Experiments of Optical Fiber Voltage Sensor...

  4. EFFECTS OF FIBER WAVINESS ON COMPOSITES FOR WIND TURBINE BLADES

    E-Print Network [OSTI]

    EFFECTS OF FIBER WAVINESS ON COMPOSITES FOR WIND TURBINE BLADES J.F. Mandell D.D. Samborsky and L Composite materials of interest for wind turbine blades use relatively low cost fibers, resins and processes WORDS: Composite Materials, Fiber Waviness, Compressive Strength #12;1. INTRODUCTION Wind turbine blades

  5. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite

    SciTech Connect (OSTI)

    Naus, Dan J [ORNL; Corum, James [ORNL; Klett, Lynn B [ORNL; Davenport, Mike [ORNL; Battiste, Rick [ORNL; Simpson, Jr., William A [ORNL

    2006-04-01T23:59:59.000Z

    This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

  6. Specific Effects of Fiber Size and Fiber Swelling on Biomass Substrate Surface Area and Enzymatic Digestibility

    SciTech Connect (OSTI)

    Ju, Xiaohui; Grego, Courtnee; Zhang, Xiao

    2013-09-01T23:59:59.000Z

    To clarify the specific effect of biomass substrate surface area on its enzymatic digestibility, factors of fiber size reduction and swelling changes were investigated by using poplar substrates with controlled morphological and chemical properties after modified chemical pulping. Results showed that fiber size changes had insignificant influence on enzymatic hydrolysis, although the external surface area increased up to 41% with the reduction of fiber size. Swelling changes caused by increased biomass fiber porosities after PFI refining showed a significant influence on the efficiency of enzymatic hydrolysis. It is also found that chemical properties such as xylan and lignin content can influence the swelling effect. Xylan is confirmed to facilitate substrate hydrolysability by swelling, while lignin restricts swelling effect and thus minimizes the enzyme accessibility to substrates.

  7. Long glass fiber orientation in thermoplastic composites using a model that accounts for the flexibility of the fibers

    E-Print Network [OSTI]

    Wapperom, Peter

    Long glass fiber orientation in thermoplastic composites using a model that accounts Mechanical properties of long glass fiber composites, used in various industrial applications, are dependant are explored to predict the orientation of long glass fibers in the concentrated regime that take the flexible

  8. Hybrid glass coatings for optical fibers: effect of coating thickness on strength and dynamic fatigue characteristics of silica fibers

    E-Print Network [OSTI]

    Matthewson, M. John

    Hybrid glass coatings for optical fibers: effect of coating thickness on strength and dynamic, the State University of New Jersey, Piscataway, NJ 08854, USA c Laboratory of Optical Fiber Technology, UMCS, Lublin, 20031, Poland, ABSTRACT Specialty optical fibers operating in harsh aerospace environments

  9. On band gaps in photonic crystal fibers

    E-Print Network [OSTI]

    Shane Cooper; Ilia Kamotski; Valery Smyshlyaev

    2014-11-02T23:59:59.000Z

    We consider the Maxwell's system for a periodic array of dielectric `fibers' embedded into a `matrix', with respective electric permittivities $\\epsilon_0$ and $\\epsilon_1$, which serves as a model for cladding in photonic crystal fibers (PCF). The interest is in describing admissible and forbidden (gap) pairs $(\\omega,k)$ of frequencies $\\omega$ and propagation constants $k$ along the fibers, for a Bloch wave solution on the cross-section. We show that, for "pre-critical" values of $k(\\omega)$ i.e. those just below $\\omega (\\min\\{\\epsilon_0,\\epsilon_1\\}\\mu)^{1/2}$ (where $\\mu$ is the magnetic permeability assumed constant for simplicity), the coupling specific to the Maxwell's systems leads to a particular partially degenerating PDE system for the axial components of the electromagnetic field. Its asymptotic analysis allows to derive the limit spectral problem where the fields are constrained in one of the phases by Cauchy-Riemann type relations. We prove related spectral convergence. We finally give some examples, in particular of small size "arrow" fibers ($\\epsilon_0>\\epsilon_1$) where the existence of the gaps near appropriate "micro-resonances" is demonstrated by a further asymptotic analysis.

  10. Single-fiber multi-color pyrometry

    DOE Patents [OSTI]

    Small, IV, Ward; Celliers, Peter

    2004-01-27T23:59:59.000Z

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  11. Single-fiber multi-color pyrometry

    DOE Patents [OSTI]

    Small, IV, Ward (Livermore, CA); Celliers, Peter (Berkeley, CA)

    2000-01-01T23:59:59.000Z

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  12. Fiber type, meal frequency and colonic cytokinetics

    E-Print Network [OSTI]

    Zhang, Jianhu

    1993-01-01T23:59:59.000Z

    The effects of dietary fiber type (cellulose, pectin or oat bran) and meal frequency (gorge or nibble) on colonic short chain fatty acids (SCFAs), in vivo colonic pH and epithelial cell proliferation were examined in male Sprague-Dawley rats...

  13. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOE Patents [OSTI]

    Weeks, Jr., Joseph K. (Salt Lake City, UT); Gensse, Chantal (Salt Lake City, UT)

    1993-01-01T23:59:59.000Z

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.

  14. Photon production by charged particles in narrow optical fibers

    E-Print Network [OSTI]

    X. Artru; C. Ray

    2006-10-11T23:59:59.000Z

    A charged particle passing through or by an optical fiber induces emission of light guided by the fiber. The formula giving the spontaneous emission amplitude are given in the general case when the particle trajectory is not parallel to the fiber axis. At small angle, the photon yield grows like the inverse power of the angle and in the parallel limiting case the fiber Cherenkov effect studied by Bogdankevich and Bolotovskii is recovered. Possible application to beam diagnostics are discussed, as well as resonance effects when the particle trajectory or the fiber is bent periodically.

  15. Special purpose modes in photonic band gap fibers

    DOE Patents [OSTI]

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02T23:59:59.000Z

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  16. Recovery of uranium from seawater using amidoxime hollow fibers

    SciTech Connect (OSTI)

    Saito, K.; Uezu, K.; Hori, T.; Furusaki, S.; Sugo, T.; Okamoto, J.

    1988-03-01T23:59:59.000Z

    A novel amidoxime-group-containing adsorbent of hollow-fiber form (AO-H fiber) was prepared by radiation-induced graft polymerization of acrylonitrile onto a polyethylene hollow fiber, followed by chemical conversion of the produced cyano group to an amidoxime group. Distribution of the amidoxime group was uniform throughout hollow-fiber membrane. The fixed-bed adsorption column, 30 cm in length and charged with the bundle of AO-H fibers, was found to adsorb uranium from natural seawater at a sufficiently high rate: 0.66 mg uranium per g of adsorbent in 25 days.

  17. Method of producing a hybrid matrix fiber composite

    DOE Patents [OSTI]

    Deteresa, Steven J. (Livermore, CA); Lyon, Richard E. (Absecon, NJ); Groves, Scott E. (Brentwood, CA)

    2006-03-28T23:59:59.000Z

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  18. DOE, City of Richland and Benton PUD Increase Fiber Optic Telecommunication Capacity in Benton County- Upgrade improves communications at Hanford Site, schools and libraries

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. ? The Department of Energy (DOE), city of Richland, and Benton County’s Public Utility District (Benton PUD) jointly implemented a high-capacity fiber optic cable in Richland and at the Hanford Site. The project will improve communications throughout the area.

  19. Metso Corporation is a EUR 4.2 billion engineering and technology company with core businesses in the areas of fiber and paper making,

    E-Print Network [OSTI]

    Fisher, Kathleen

    rollout to 2,600 employees · Marked improvement in product delivery, project management and salesMetso Corporation is a EUR 4.2 billion engineering and technology company with core businesses in the areas of fiber and paper making, rock and minerals processing, and automation and control. Metso

  20. Single-mode fiber, velocity interferometry

    SciTech Connect (OSTI)

    Krauter, K. G.; Jacobson, G. F.; Patterson, J. R.; Nguyen, J. H.; Ambrose, W. P. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore California 94551 (United States)

    2011-04-15T23:59:59.000Z

    In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, we demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats--this interference occurs between the ''recently'' shifted and ''formerly unshifted'' paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber.

  1. Mechanical property evaluation of natural fiber coir composite

    SciTech Connect (OSTI)

    Harish, S. [Department of Mechanical and Aerospace Engineering, Arizona State University (United States); Michael, D. Peter [Department of Mechanical Engineering, College of Engineering, Guindy (India); Bensely, A. [Department of Mechanical Engineering, College of Engineering, Guindy (India)], E-mail: benzlee5@yahoo.com; Lal, D. Mohan [Department of Mechanical Engineering, College of Engineering, Guindy (India); Rajadurai, A. [Department of Production Engineering, Madras Institute of Technology (India)

    2009-01-15T23:59:59.000Z

    The fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only artificial fibers such as glass, carbon etc., have been used in fiber-reinforced plastics. Although glass and other synthetic fiber-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of coir, a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. In the present work, coir composites are developed and their mechanical properties are evaluated. Scanning electron micrographs obtained from fractured surfaces were used for a qualitative evaluation of the interfacial properties of coir/epoxy and compared with glass fiber/epoxy. These results indicate that coir can be used as a potential reinforcing material for making low load bearing thermoplastic composites.

  2. Development of silicon nitride composites with continuous fiber reinforcement

    SciTech Connect (OSTI)

    Starr, T.L.; Mohr, D.L.; Lackey, W.J.; Hanigofsky, J.A. [Georgia Inst. of Tech., Atlanta, GA (United States). Georgia Technology Research Inst.

    1993-10-01T23:59:59.000Z

    The composites were fabricated using ultrafine Si powders prepared by attritor milling; the powders exhibits full conversion to Si nitride in < 3 h at {le} 1200 C (these conditions reduce degradation of the fibers compared to conventional). Effects of processing conditions on fiber properties and the use of fiber coatings to improve stability during processing as well as change the fiber-matrix interfacial properties were investigated. A duplex carbon-silicon carbide coating, deposited by CVD, reduced fiber degradation in processing, and it modified the fiber-matrix adhesion. Si nitride matrix composites were fabricated using reaction sintering, forming laminates, filament-wound plates, and tubes. In each case, an attritor milled Si powder slurry is infiltrated into ceramic fiber preforms or tows, which are then assembled to form a 3-D structure for reaction sintering. The resulting composites have properties comparable to chemical vapor infiltration densified composites, with reasonable strengths and graceful composite fracture behavior.

  3. Iskuulpa Watershed ProjectIskuulpa Watershed Project BPA Project # 199506001BPA Project # 199506001

    E-Print Network [OSTI]

    Hydroelectric Power Project impacts Improve natural salmonid habitat and production #12;Project ActivitiesProject Activities Land purchaseLand purchase HEP evaluationHEP evaluation Rest from livestockRest from livestock;Project ActivitiesProject Activities Land purchaseLand purchase HEP evaluationHEP evaluation Rest from

  4. Testing of Performance of Optical Fibers Under Irradiation in Intense Radiation Fields, When Subjected to Very High Temperatures

    SciTech Connect (OSTI)

    Blue, Thomas; Windl, Wolfgang; Dickerson, Bryan

    2013-01-03T23:59:59.000Z

    The primary objective of this project is to measure and model the performance of optical fibers in intense radiation fields when subjected to very high temperatures. This research will pave the way for fiber optic and optically based sensors under conditions expected in future high-temperature gas-cooled reactors. Sensor life and signal-to-noise ratios are susceptible to attenuation of the light signal due to scattering and absorbance in the fibers. This project will provide an experimental and theoretical study of the darkening of optical fibers in high-radiation and high-temperature environments. Although optical fibers have been studied for moderate radiation fluence and flux levels, the results of irradiation at very high temperatures have not been published for extended in-core exposures. Several previous multi-scale modeling efforts have studied irradiation effects on the mechanical properties of materials. However, model-based prediction of irradiation-induced changes in silica�s optical transport properties has only recently started to receive attention due to possible applications as optical transmission components in fusion reactors. Nearly all damage-modeling studies have been performed in the molecular-dynamics domain, limited to very short times and small systems. Extended-time modeling, however, is crucial to predicting the long-term effects of irradiation at high temperatures, since the experimental testing may not encompass the displacement rate that the fibers will encounter if they are deployed in the VHTR. The project team will pursue such extended-time modeling, including the effects of the ambient and recrystallization. The process will be based on kinetic MC modeling using the concept of amorphous material consisting of building blocks of defect-pairs or clusters, which has been successfully applied to kinetic modeling in amorphized and recrystallized silicon. Using this procedure, the team will model compensation for rate effects, and the interplay of rate effects with the effects of annealing, to accurately predict the fibers� reliability and expected lifetime

  5. Project Name Project Number Tagging Type

    E-Print Network [OSTI]

    Project Name Project Number Primary Tagging Type Secondary Tagging Type Fish Species Tagging/ Secondary Legal Driver (BiOp, MOA, Accord, etc.) Tagging Purpose Funded Entity Tagging Location Retrieval CWT Recovery Project 2010-036-00 CWT PIT Chinook, coho retrieval, analysis, address PSMFC sampling

  6. Exploiting Genetic Variation of Fiber Components and Morphology in Juvenile Loblolly Pine.

    SciTech Connect (OSTI)

    Hou-min Chang, John F. Kadla, Bailian Li, Ron Sederoff,

    2005-06-30T23:59:59.000Z

    In order to ensure the global competitiveness of the Pulp and Paper Industry in the Southeastern U.S., more wood with targeted characteristics have to be produced more efficiently on less land. The objective of the research project is to provide a molecular genetic basis for tree breeding of desirable traits in juvenile loblolly pine, using a multidisciplinary research approach. We developed micro analytical methods for determine the cellulose and lignin content, average fiber length, and coarseness of a single ring in a 12 mm increment core. These methods allow rapid determination of these traits in micro scale. Genetic variation and genotype by environment interaction (GxE) were studied in several juvenile wood traits of loblolly pine (Pinus taeda L.). Over 1000 wood samples of 12 mm increment cores were collected from 14 full-sib families generated by a 6-parent half-diallel mating design (11-year-old) in four progeny tests. Juvenile (ring 3) and transition (ring 8) for each increment core were analyzed for cellulose and lignin content, average fiber length, and coarseness. Transition wood had higher cellulose content, longer fiber and higher coarseness, but lower lignin than juvenile wood. General combining ability variance for the traits in juvenile wood explained 3 to 10% of the total variance, whereas the specific combining ability variance was negligible or zero. There were noticeable full-sib family rank changes between sites for all the traits. This was reflected in very high specific combining ability by site interaction variances, which explained from 5% (fiber length) to 37% (lignin) of the total variance. Weak individual-tree heritabilities were found for cellulose, lignin content and fiber length at the juvenile and transition wood, except for lignin at the transition wood (0.23). Coarseness had moderately high individual-tree heritabilities at both the juvenile (0.39) and transition wood (0.30). Favorable genetic correlations of volume and stem straightness were found with cellulose content, fiber length and coarseness, suggesting that selection on growth or stem straightness would results in favorable response in chemical wood traits. We have developed a series of methods for application of functional genomics to understanding the molecular basis of traits important to tree breeding for improved chemical and physical properties of wood. Two types of technologies were used, microarray analysis of gene expression, and profiling of soluble metabolites from wood forming tissues. We were able to correlate wood property phenotypes with expression of specific genes and with the abundance of specific metabolites using a new database and appropriate statistical tools. These results implicate a series of candidate genes for cellulose content, lignin content, hemicellulose content and specific extractible metabolites. Future work should integrate such studies in mapping populations and genetic maps to make more precise associations of traits with gene locations in order to increase the predictive power of molecular markers, and to distinguish between different candidate genes associated by linkage or by function. This study has found that loblolly pine families differed significantly for cellulose yield, fiber length, fiber coarseness, and less for lignin content. The implication for forest industry is that genetic testing and selection for these traits is possible and practical. With sufficient genetic variation, we could improve cellulose yield, fiber length, fiber coarseness, and reduce lignin content in Loblolly pine. With the continued progress in molecular research, some candidate genes may be used for selecting cellulose content, lignin content, hemicellulose content and specific extractible metabolites. This would accelerate current breeding and testing program significantly, and produce pine plantations with not only high productivity, but desirable wood properties as well.

  7. Projects | Department of Energy

    Office of Environmental Management (EM)

    Projects Projects All 1703 1705 ATVM Current Portfolio 32.4 B in Loans 55 K Jobs Current Portfolio Loans 32.4 B Jobs 55,000 Loan Program Office Projects 1703 1705 ATVM...

  8. CRSP Power Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expenses of the project each year, and receive all of the energy it produces. Salt Lake City AreaIntegrated Projects: Power from the Colorado River Storage Project plants was...

  9. Project Selection - Record Keeping

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10T23:59:59.000Z

    4-H members have many project areas to choose from, depending on where they live. Members should consult with their parents and 4-H leaders when choosing a project. This publication outlines project considerations....

  10. Super Projects (Arkansas)

    Broader source: Energy.gov [DOE]

    A 2004 amendment to the state constitution authorizes the state to attract super projects by issuing bonds to fund a project’s infrastructure, limited to 5% of the net general revenues during the...

  11. Planning and Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rates Planning Ten-Year Capital Program Projects Lovell-Yellowtail Transmission Line Rebuild project Studies WACM Wind production summary overview (Oct. 2006)...

  12. Project BETA Cover Page

    E-Print Network [OSTI]

    Cover Page, Project BETA

    2012-01-01T23:59:59.000Z

    and Distribution of the Project BETA articles were funded inproduct is discussed in the BETA articles. Western JournalProject BETA: Best practices in Evaluation and Treatment of

  13. Project Finance and Investments

    Broader source: Energy.gov [DOE]

    Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

  14. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

  15. Operations Cost Allocation Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Consolidation Project Operations Consolidation Project (OCP) Cost Allocation Presentation - September 20, 2011 OCP Cost Allocation Customer Presentation List of Acronyms...

  16. Clean Coal Projects (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

  17. Falls Creek Hydroelectric Project

    SciTech Connect (OSTI)

    Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

    2007-06-12T23:59:59.000Z

    This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

  18. Method for optical and mechanically coupling optical fibers

    DOE Patents [OSTI]

    Toeppen, John S. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A method and apparatus for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass.

  19. Photonic bandgap narrowing in conical hollow core Bragg fibers

    SciTech Connect (OSTI)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18T23:59:59.000Z

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  20. Growing Crystaline Sapphire Fibers By Laser Heated Pedestal Techiques

    DOE Patents [OSTI]

    Phomsakha, Vongvilay (St. Petersburg, FL); Chang, Robert S. F. (Tampa, FL); Djeu, Nicholas I. (Tampa, FL)

    1997-03-04T23:59:59.000Z

    An improved system and process for growing crystal fibers comprising a means for creating a laser beam having a substantially constant intensity profile through its cross sectional area, means for directing the laser beam at a portion of solid feed material located within a fiber growth chamber to form molten feed material, means to support a seed fiber above the molten feed material, means to translate the seed fiber towards and away from the molten feed material so that the seed fiber can make contact with the molten feed material, fuse to the molten feed material and then be withdrawn away from the molten feed material whereby the molten feed material is drawn off in the form of a crystal fiber. The means for creating a laser beam having a substantially constant intensity profile through its cross sectional area includes transforming a previously generated laser beam having a conventional gaussian intensity profile through its cross sectional area into a laser beam having a substantially constant intensity profile through its cross sectional area by passing the previously generated laser beam through a graded reflectivity mirror. The means for directing the laser beam at a portion of solid feed material is configured to direct the laser beam at a target zone which contains the molten feed material and a portion of crystal fiber drawn off the molten feed material by the seed fiber. The means to support the seed fiber above the molten feed material is positioned at a predetermined height above the molten feed material. This predetermined height provides the seed fiber with sufficient length and sufficient resiliency so that surface tension in the molten feed material can move the seed fiber to the center of the molten feed material irrespective of where the seed fiber makes contact with the molten feed material. The internal atmosphere of the fiber growth chamber is composed substantially of Helium gas.

  1. Desorption of uranium from amidoxime fiber adsorbent

    SciTech Connect (OSTI)

    Goto, Akira; Morooka, Shigeharu; Fukamachi, Masakazu; Kusakabe, Katsuki (Kyushu Univ., Fukuoka (Japan)); Kago, Tokihiro (Towa Univ., Fukuoka (Japan))

    1993-10-01T23:59:59.000Z

    An amidoxime fibrous adsorbent is contacted with uranium-enriched seawater (10 ppm); about 10 mg uranium is loaded per 1 g dry fiber. Then the rate and yield of uranium desorption from the fiber are determined with various eluents. Acid solutions are superior to alkali carbonate solutions as eluents. With a 0.1 mol[center dot]L[sup [minus]1] HCl solution, desorption is completed in 2 hours regardless of the presence of uranium in the leaching solution up to 15 ppm ([approx]6 [times] 10[sup [minus]5]mol[center dot]L[sup [minus]1]). Serial operation of the adsorption-desorption cycle four times does not affect desorption efficiency, but the addition of heavy metal ions to the eluent at a level of 1.8 [times] 10[sup [minus]3]mol[center dot]L[sup [minus]1] significantly decreases desorption efficiency. 13 refs., 5 figs., 1 tab.

  2. Temperature and electrical memory of polymer fibers

    SciTech Connect (OSTI)

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe [Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, Avenue Schweitzer, 33600 Pessac (France)

    2014-05-15T23:59:59.000Z

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  3. Fiber coatings and the fracture behavior of a continuous fiber ceramic composite

    SciTech Connect (OSTI)

    Miller, J.H.; Lowden, R.A. [Oak Ridge National Lab., TN (United States); Liaw, P.K. [Univ. of Knoxville, TN (United States)

    1995-12-31T23:59:59.000Z

    Continuous fiber reinforced ceramic composites (CFCC) are being recognized as necessary for high-temperature structural applications. For instance, the applications of SiC/SiC composites in elevated-temperature structures, such as first wall, and high heat flux surfaces in fusion reactors, as well as in combustors and boiler components in power generation systems, have drawn considerable attention. In the present study, Nicalon{sup {reg_sign}} plane-weave fiber reinforced SiC matrix composites have been fabricated by forced chemical vapor infiltration (FCVI) methods. The influence of fiber/matrix interface coating thickness on the fracture behavior of the continuous fiber reinforced SiC composites has been investigated. Experimental results indicate that fiber coating thickness significantly alters the fracture behavior of SiC composites. The fracture strength exhibits a maximum as the coating thickness increases. A mechanistic understanding of the fracture behavior is provided. Furthermore, a theoretical model is formulated to provide a better understanding of the effects of coating thickness on fracture behavior. The predicted fracture behavior was found to be in good agreement with the experimental results.

  4. Ternary liquid scintillator for optical fiber applications

    DOE Patents [OSTI]

    Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA)

    1982-01-01T23:59:59.000Z

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  5. Tests of Complete Positivity in Fiber Optics

    E-Print Network [OSTI]

    F. Benatti; R. Floreanini

    2006-07-11T23:59:59.000Z

    We consider the propagation of polarized photons in optical fibers under the action of randomly generated noise. In such situation, the change in time of the photon polarization can be described by a quantum dynamical semigroup. We show that the hierarchy among the decay constants of the polarization density matrix elements as prescribed by complete positivity can be experimentally probed using standard laboratory set-ups.

  6. Indigestible fiber components as possible internal markers

    E-Print Network [OSTI]

    Jacobs, Bernard Frederick

    1975-01-01T23:59:59.000Z

    fermentation procedures indicated that essentially maximum digestibility of both forage and feces was achieved after six days fermentation. The in oivo recovery of neutral detergent fiber indigestible after 6 days in vitro ranged from 78. 1 to 101. 6... (when available) samples and . 5 gram fecal samples were fermented in triplicate, eithe in nitro or in situ. Fermentation Procedures The in nitro technique used was a modification of the Van Soest and Wine (1967) procedure- in that 35 x 250 mm...

  7. Ammonia fiber explosion (AFEX) treatment of grass

    E-Print Network [OSTI]

    Ashok, Ganesh

    1991-01-01T23:59:59.000Z

    solution), high-temperature treatment, and freezing in water suspensions at -75 C (Millett, Baker, and Satter, 1975), Chemical pretreatments include alkali and ammonia swelling, dilute acid extraction, NO with alkali, explosive steam decompression, wet... for ruminants. Ammonia explosion pulping has been investigated as an approach to fiber separation in wood chips (O' Connor, 1971). Recent work on pretreatment techniques includes: pretreatment of cedar with peracetic acid and steam explosion to improve...

  8. Industrial scale in vitro propagation by Somatic Embryogenesis Applied research project

    E-Print Network [OSTI]

    Uppsala Universitet

    , packaging, hygiene, textile and other fiber related industries. SweTree Technologies has 32 employees1 Industrial scale in vitro propagation by Somatic Embryogenesis Applied research project Swe up the industrial scale in vitro propagation system for Norway spruce. The propagation process

  9. Product formulations using recycled tire crumb rubber. Final report/project accomplishments summary

    SciTech Connect (OSTI)

    Lula, J.W.; Bohnert, G.W.

    1998-02-01T23:59:59.000Z

    The objective of this project was to combine crumb rubber and synthetic fiber obtained from scrap tires with thermoplastic polymers and convert these materials into commercially useful, high-value products. A specific goal was to use these materials for roofing, while remaining cognizance of other potential applications.

  10. Full Scale Coated Fiber Neutron Detector Measurements

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Stromswold, David C.; Woodring, Mitchell L.

    2010-03-17T23:59:59.000Z

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. Reported here are the results of tests of the full-scale 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT) and Saint Gobain, and is a follow-up report to an earlier one on a smaller prototype system.

  11. Manhattan Project | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manhattan Project Manhattan Project Manhattan Project New Manhattan Project Interactive Website The Department of Energy traces its origins to World War II and the Manhattan...

  12. Single-crystal YAG fiber optics for the transmission of high energy laser energy

    E-Print Network [OSTI]

    Single-crystal YAG fiber optics for the transmission of high energy laser energy X.S. Zhua , James. Thus, it is reasonable to assume that YAG fibers will have high laser damage thresholds. The optical of YAG fiber grown has been about 60 cm. Keywords: Infrared fiber optics, single-crystal fibers, oxide

  13. CaRbON FibeR Demonstrating Innovative Low-Cost

    E-Print Network [OSTI]

    Pennycook, Steve

    for manufacturing carbon fiber and carbon-fiber-reinforced composite structures tend to be slow and energy intensive the development and growth of existing and new US carbon fiber and composites · Job Growth Seed regionalCaRbON FibeR TeChNOLOGy FaCiLiTy Demonstrating Innovative Low-Cost Carbon Fiber for Energy

  14. Fractographic investigation of flaws in sintered SiC fiber

    SciTech Connect (OSTI)

    Srinivasan, G.V.; Venkateswaran, V. [Carborundum Company, Niagara Falls, NY (United States)

    1996-12-31T23:59:59.000Z

    The Carborundum Company has developed a continuous process to produce multifilament, polycrystalline SiC fiber tow. The process uses a melt spinning approach to make the green fibers wherein the submicron SiC powder is mixed with polymers and the resulting compound is melt spun and extruded through a spinnerette. After extraction, the green fibers are sintered in a continuous sintering line. The properties of this fiber are given. This paper will describe the use of fractography in directing the fiber developmental efforts, specifically on characterization of strength-limiting defects and their origination. Fractographic analysis is also extended to determining strength of fibers at any gauge length and in identifying artifacts associated with the tensile strength testing technique.

  15. Progress in the development of scintillating optical fibers

    SciTech Connect (OSTI)

    Borenstein, S.R.; Strand, R.C.

    1983-01-01T23:59:59.000Z

    Starting with 1 inch diameter PVT scintillator as a preform, the authors have drawn fibers of several diameters ranging from 1 to 4 mm. These fibers have been coated in line with the draw to form optical fibers. Several cladding materials whose index of refraction ranges from 1.35 to 1.55 have been used. The most successful fiber has been obtained with an extra thick (200 micron) cladding of silicone in combination with a linear draw, as opposed to a spool draw. This fiber is acceptable, but it is extremely fragile and its quality is difficult to control. The authors are currently constructing a 12 channel hodoscope with 1 mm spatial resolution using 4 mm diameter fibers. An account is also given of the progress made in using the Avalanche Photo Diode (APD) operated in the Geiger mode as the photo detector.

  16. Continuous fiber ceramic composites. Phase II - Final report

    SciTech Connect (OSTI)

    Bird, James

    1997-10-31T23:59:59.000Z

    This report documents Atlantic Research Corporation's (ARC) Phase 11 effort on the Department of Energy's (DOE) Continuous Fiber Ceramic Composite (CFCC) program. This project is supported by the DOE cooperative agreement DE-FCO2-92CE40998. Such DOE support does not constitute an endorsement of the views expressed in this report. ARC'S CFCC Phase II effort began during October 1993 and was suspended in March of 1997 when, for business considerations, ARC closed the Amercom operation. This report covers progress from Phase II program inception through Amercom closure. ARC'S Phase II effort built upon the results of the Phase I Applications Assessment and Process Engineering developments to produce CFCC test components for end-user evaluation. Initially, the Phase 11 effort planned to develop and produce three CFCC components: CFCC compression rings for stationary diesel engines, CFCC hot gas fans for industrial furnace applications, and CFCC hot gas filters for current and advanced coal fired power cycles. As the program progressed, the development effort for the diesel engine piston rings was suspended. This decision was based on technical issues, cost factors and reduced program funding; the status of CFCC diesel engine piston ring development will be discussed in detail in section 2.2.1.

  17. MRIP Operations Team Projects (2012 Funded) Project Name Project Description Project Objectives

    E-Print Network [OSTI]

    MRIP Operations Team Projects (2012 Funded) Project Name Project Description Project Objectives vessel registries to conduct recreational catch and effort surveys. Develop a recreational fishing. Accuracy Funded 2012 Oregon Shore and EstuaryBoat Survey Design Review Develop a new or revised

  18. Epoxy Nanocomposites - Curing Rheokinetics, Wetting and Adhesion to Fibers

    SciTech Connect (OSTI)

    Ilyin, S. O.; Kotomin, S. V.; Kulichikhin, V. G. [A.V.Topchiev Institute of Petrochemical Synthesis, 29, Leninskii Prospect, Moscow, 119991 (Russian Federation)

    2010-06-02T23:59:59.000Z

    Epoxy nanocomposites considered as challenging polymeric matrix for advanced reinforced plastics. Nanofillers change rheokinetics of epoxy resin curing, affect wetting and adhesion to aramid and carbon fibers. In all cases extreme dependence of adhesive strength vs filler content in the binder was observed. New experimental techniques were developed to study wettability and fiber-matrix adhesion interaction, using yarn penetration path length, aramid fiber knot pull-up test and electrical admittance of the fracture surface of CFRP.

  19. Determination of mechanisms by which soluble fibers lower serum cholesterol

    E-Print Network [OSTI]

    Sun, Xiao-Qing

    1991-01-01T23:59:59.000Z

    suggested that one mechanism for the hypo- cholesterolemic effect of certain soluble fibers might be related to the absorption of propionate& a fermentation metabolite of soluble plant fiber, which may inhibit hepatic cholesterol synthesis. In rats, oat... gels and are highly fermentable. In contrast, insoluble fibers do not form gels and are poorly fermentable, but are excellent as bulking agents [37]. This is supported by data from the present study that showed that cellulose-fed rats had...

  20. Optical Fiber Sensor Instrumentation for Slagging Coal Gasifiers

    SciTech Connect (OSTI)

    Anbo Wang; Kristie Cooper

    2008-07-19T23:59:59.000Z

    Coal gasifier is one of the most promising solutions for clean fossil energy. Refractory thickness monitoring and online real-time temperature measurement is needed for improved reliability and advanced process control for current and future generation power plants. The objective of this program is to design and implement an optical fiber based sensing system that could potentially be used to monitor refractory wall thickness and temperature inside a coal gasifier. For the thickness monitoring, the system should be able to operate at temperatures up to 1000 C. For this temperature range, silica fiber can still work so it is chosen for the sensor design. The measurement is based on a photon counting optical time domain reflectometer. A narrow light pulse is launched into a silica fiber which could be embedded into the gasifier refractory wall, and is partially reflected by the far end of the fiber. The time of flight of the light pulse in the fiber then gives an indication of the position of the fiber end, which is a function of the wall thickness when the fiber is embedded. Results obtained show a measurement accuracy of {+-}2cm in environment of 1000 C with a saw cut fiber end. When the fiber end is corroded by sodium carbide at 900 C, the accuracy is {+-}3cm. For the temperature measurement, a single crystal sapphire fiber sensor is designed. The sapphire fiber guides the broadband light from a light emitting diode to a sapphire wafer functioning as a Fabry-Perot interferometer and the wafer optical thickness is a function of temperature. The returned optical signal is then demodulated by multimode fiber based whitelight interferometry. The system was tested up to 1500 C with a measurement accuracy of {+-}10 C for the entire measurement range.

  1. Characterization of carbon fibers: coefficient of thermal expansion and microstructure

    E-Print Network [OSTI]

    Kulkarni, Raghav Shrikant

    2006-04-12T23:59:59.000Z

    both the longitudinal and transverse CTE. The orthotropy in the CTE is tested by rotating the fibers through 45? about their axis. The method is validated by testing standard tungsten filaments of known CTE. Additionally, the microstructure... strain vs. temperature for tungsten................................... 40 Figure 3.3 Strain vs. temperature for P55 fiber.................................................... 42 Figure 3.4 Cross sectional images of IM7 fibers failed in bending...

  2. Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

    DOE Patents [OSTI]

    Goyal, Amit

    2013-07-09T23:59:59.000Z

    A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.

  3. Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN)

    2012-07-24T23:59:59.000Z

    A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.

  4. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 First Quarterly Report

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Sanborn, Scott E.; Simmons, Kevin L.; Mathur, Raj N.; Sangid, Michael D.; Jin, Xiaoshi; Costa, Franco; Gandhi, Umesh N.; Mori, Steven; Tucker III, Charles L.

    2014-02-19T23:59:59.000Z

    The CRADA between PNNL, Autodesk, Toyota and Magna has been effective since October 28th, 2013. The whole team including CRADA and subcontract partners kicked off the project technically on November 1st, 2013. This report describes work performed during the first quarter of FY 2014. The following technical progresses have been made toward project milestones: 1) The project kickoff meeting was organized at PlastiComp, Inc. in Winona on November 13th, 2013 involving all the project partners. During this meeting the research plan and Gantt chart were discussed and refined. The coordination of the research activities among the partners was also discussed to ensure that the deliverables and timeline will be met. 2) Autodesk delivered a research version of ASMI to PNNL for process modeling using this tool under the project. PNNL installed this research version on a PNNL computer and tested it. Currently, PNNL is using ASMI to prepare the models for PlastiComp plaques. 3) PlastiComp has compounded long carbon-fiber reinforced polypropylene and polyamide 6,6 compounds for rheological and thermal characterization tests by the Autodesk laboratories in Melbourne, Australia. 4) Initial mold flow analysis was carried out by PlastiComp to confirm that the 3D complex part selected by Toyota as a representative automotive part is moldable. 5) Toyota, Magna, PlastiComp and PNNL finalized the planning for molding the Toyota 3D complex part. 6) Purdue University worked with PNNL to update and specify the test matrix for characterization of fiber length/orientation. 7) Purdue University developed tools to automate the data collection and analysis of fiber length and orientation measurements. 8) Purdue University designed and specified equipment to replace the need for equipment using the technology established by the University of Leeds at General Motors.

  5. Design of 9-meter carbon-fiberglass prototype blades : CX-100 and TX-100 : final project report.

    SciTech Connect (OSTI)

    Berry, Derek (TPI Composites, Inc., Warren, RI)

    2007-09-01T23:59:59.000Z

    TPI Composites, Inc. (TPI), Global Energy Concepts, LLC (GEC), and MDZ Consulting (MDZ) have collaborated on a project to design, manufacture, and test prototype carbon-fiberglass hybrid wind turbine blades of 9-m length. The project, funded by Sandia National Laboratories, involves prototype blades in both conventional (unidirectional spar fibers running along the blade span) and ''adaptive'' (carbon fibers in off-axis orientation to achieve bend-twist-coupling) configurations. After manufacture, laboratory testing is being conducted to determine the static and fatigue strength of the prototypes, in conjunction with field testing to evaluate the performance under operational conditions.

  6. Fiber optics interface for a dye laser oscillator and method

    DOE Patents [OSTI]

    Johnson, Steve A. (Tracy, CA); Seppala, Lynn G. (Pleasanton, CA)

    1986-01-01T23:59:59.000Z

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  7. Sandia Energy - Sandia and EMCORE: Solar Photovoltaics, Fiber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency Home Renewable Energy Energy Partnership Concentrating Solar Power Photovoltaic Research & Capabilities Solar...

  8. Characterization of commercial fiber optic connectors - Preliminary report

    SciTech Connect (OSTI)

    Andrews, Larry A.; Williams, Randy J.

    1998-09-01T23:59:59.000Z

    Several types of commercial fiber optic connectors were characterized for potential use in a Sandia designed Laser Diode Ignition (LDI) system. The characterization included optical performance while the connectors were subjected to the more dynamic environmental conditions experienced in weapons applications. The environmental testing included temperature cycling, random vibration, and mechanical shock. This report presents a performance assessment of the fiber optic connectors and fiber included in the characterization. The desirable design features are described for a fiber optic connector that must survive the dynamic environment of weapon systems. The more detailed performance of each connector type will be included as resources permit.

  9. Microsoft Word - CX -Marion to Santiam Fiber.doc

    Broader source: Energy.gov (indexed) [DOE]

    in Marion County, Oregon to BPA's Santiam Substation in Linn County, Oregon. The fiber optics along this route would provide additional support of BPA's internal operational needs...

  10. Resolving optical illumination distributions along an axially symmetric photodetecting fiber

    E-Print Network [OSTI]

    Sorin, Fabien

    Photodetecting fibers of arbitrary length with internal metal, semiconductor and insulator domains have recently been demonstrated. These semiconductor devices exhibit a continuous translational symmetry which presents ...

  11. Resolving optical illumination distributions along an axially symmetric photodetecting fiber

    E-Print Network [OSTI]

    Lestoquoy, Guillaume

    2012-01-01T23:59:59.000Z

    Photodetecting fibers of arbitrary length with internal metal, semiconductor and insulator domains have recently been demonstrated. These semiconductor devices display a continuous translational symmetry which presents ...

  12. A microcomputer control system for a fiber optic spectrophotometer

    E-Print Network [OSTI]

    Spar, Steven Matthew

    1986-01-01T23:59:59.000Z

    SENSOR LICH'I SOURCE OPTICAL F I BER ~SAMPLE PHOTODE'IECTOR o r D o o n o 0 ~ o r Figure lb. Block Diagram of a Fiber Optic Spectrophotometer Fiber optic spectrophotometry uses the light conducting properties of tiny optical fibers... to carry the light to and from a remote sensor, as shown in Figure lb, page 2. At the tip of the fibers, a small chamber contains either the sample itself or an indicator for the sample, whose spectrophotometric properties change with the concentration...

  13. Analysis and Stability of Bent–Core Liquid Crystal Fibers

    E-Print Network [OSTI]

    2011-02-21T23:59:59.000Z

    Feb 21, 2011 ... We show that the relative size of the energy's elasticity con- ... energy to balance the tendency of surface tension to constrict the fiber and.

  14. Observation of images in graded-index multimode fiber

    E-Print Network [OSTI]

    Begum, Sultana

    1992-01-01T23:59:59.000Z

    by dipping one end of the fiber in methanol. This is done so that when this end is fused to the pay-out single-mode fiber by applying an arc, the blue dye does not get inside the fiber when the cladding melts. A laser trimming system is used to mark... vary with time due to thenrial drifts in the wavelength of the laser 27 source, or to thermal or mechanical phase shifts in the fiber. If an aperture such as misaligned splice or mode-selective loss such as micro-or macro-bending is present...

  15. ash fiber fundamental: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT - DSpace Summary: We demonstrate significant shifting of the fundamental bandgap of a hollow-core Bragg fiber by systematically filling the core with liquids of various...

  16. GENERIC FIBER RINGS OF MIXED POWER SERIES/POLYNOMIAL ...

    E-Print Network [OSTI]

    fibers encode important information about the structure of R. For example, the. local ring R is ... National Security Agency for its support. Typeset by AMS-TEX. 1

  17. Validation of Material Models for Automotive Carbon Fiber Composite...

    Broader source: Energy.gov (indexed) [DOE]

    Validation of Material Models for Automotive Carbon Fiber Composite Structures (VMM) Libby Berger (General Motors), Omar Faruque (Ford) Co-Principal Investigators US Automotive...

  18. aramid fiber reinforced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Micromechanics analysis of Kevlar-29 aramid fiber and epoxy resin microdroplet composite by Micro-Raman spectroscopy Engineering Websites Summary: Micromechanics analysis of...

  19. Fiber-Reinforced Polymer Composites: Pursuing the Promise

    Broader source: Energy.gov (indexed) [DOE]

    over many structural materials, excellent corrosion resistance, and other desirable Carbon-fiber composite hood (inner panel) manufactured by Plasan Carbon Composites for the...

  20. NASA's Composite Portfolio: Department of Energy Workshop Fiber...

    Broader source: Energy.gov (indexed) [DOE]

    NASA 's Composites Portfolio Department of Energy Workshop Fiber Reinforced Polymer Composites Manufacturing Presented by: John Vickers January 13, 2014 www.nasa.gov...

  1. Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RFI DE-FOA-0000980: Summary of Responses Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA-0000980: Summary of Responses Summary of Responses to Request for Information...

  2. Multiparameter Fiber Optic Sensing System for Monitoring Enhanced...

    Open Energy Info (EERE)

    sensing (DTSS), distributed pressure fiber Bragg gratings (FBG) and coherent Rayleigh optical time domain reflectometry (COTDR) for distributed vibration sensing will be...

  3. Wavelength Assignment in Multi-Fiber WDM Networks by ...

    E-Print Network [OSTI]

    In this paper, we study wavelength assignment problems in multi-fiber WDM net- ... A comparison with linear programming lower bounds reveals that the bounds ...

  4. Optimization Online - Wavelength Assignment in Multi-Fiber WDM ...

    E-Print Network [OSTI]

    Arie M.C.A. Koster

    2005-03-17T23:59:59.000Z

    Mar 17, 2005 ... By this relation, we show that for a network with an even number of fibers ... proceedings of the International Network Optimization Conference, ...

  5. Fiber optics interface for a dye laser oscillator and method

    DOE Patents [OSTI]

    Johnson, S.A.; Seppala, L.G.

    1984-06-13T23:59:59.000Z

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  6. Low Cost Carbon Fiber Research in the ALM Materials Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Research in the ALM Materials Program 27 February 2008 C. David (Dave) Warren Field Technical Manager Transportation Composite Materials Research Oak Ridge National...

  7. Biochar Produced from Anaerobically Digested Fiber Reduces Phosphorus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lagoons. Abstract: This study evaluated the use of biochar produced from anaerobic digester dairy fiber (ADF) to sequester phosphorus (P) from dairy lagoons. The ADF was...

  8. Fiber optic quality assurance at the Nevada Test Site

    SciTech Connect (OSTI)

    Manning, J.; Baumgart, S.; Malone, R.; Thayer, D.

    1981-01-01T23:59:59.000Z

    A large number of fiber optic cables were used in support of a neutron imaging experiment at the Nevada Test Site. This paper describes the quality control testing of fiber components used on this experiment. The principal reason for quality control testing was to ensure reliable, high transmission fibers; a secondary reason was to gain data on a large sample of fiber cables in the field. Also described is the instrumentation developed for carrying out these field measurements. The design of the quality control instrumentation was a compromise between accuracy and simplicity of use.

  9. acid detergent fiber: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent work on pretreatment techniques includes: pretreatment of cedar with peracetic acid and steam explosion to improve... AMMONIA FIBER EXPLOSION (AFEX) TREATMENT OF GRASS A...

  10. High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 {\\mu}m wavelength region

    E-Print Network [OSTI]

    Adler, Florian

    2012-01-01T23:59:59.000Z

    We present a 2-\\mum frequency comb based on a reliable mode-locked Er:fiber laser with 100 MHz repetition rate. After shifting the spectrum of the amplified Er:fiber comb to longer wavelengths, a single-clad Tm/Ho:fiber is used as a self-pumped pre-amplifier to generate a coherent and broadband spectrum centered at 1.93 \\mum. Subsequently, a cladding-pumped Tm:fiber amplifier boosts the system to a maximum output power of 4.8 W at 1.96 \\mum. After compression in a compact grating compressor, our amplified Er:fiber/Tm:fiber hybrid system delivers as much as 2.9 W with a pulse duration of 141 fs. The system's comb properties are examined via heterodyne measurement.

  11. Tests of concrete beams with externally-bonded glass-fiber fabric web reinforcement

    E-Print Network [OSTI]

    Dabholkar, Niranjan Shamsunder

    1999-01-01T23:59:59.000Z

    with vertical glass fibers as tools for shear strengthening and carbon fiber fabrics for flexural strengthening of concrete beams. The experimental study involved testing of two unreinforced control beams and seven other beams with different composite fiber...

  12. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 12, NO. 6, DECEMBER 2003 907 Digitally Tunable Microfluidic Optical Fiber Devices

    E-Print Network [OSTI]

    Rogers, John A.

    Microfluidic Optical Fiber Devices Francesco Cattaneo, Kirk Baldwin, Shu Yang, Tom Krupenkine, Siddharth microfluidic optical fiber devices. In these systems, mul- tiple, independently controlled microfluidic plugs, optical de- vice fabrication, optical fiber applications, optical fiber devices. I. INTRODUCTION TUNABLE

  13. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOE Patents [OSTI]

    Kramer, D.P.

    1994-08-09T23:59:59.000Z

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.

  14. Senior projectS corporate Sponsored

    E-Print Network [OSTI]

    Stuart, Josh

    --Professor, Computer Engineering | http://users.soe.ucsc. edu/~larrabee/Site/Professor_Tracy_Larrabee.html Charlie McSenior projectS program corporate Sponsored Partner's Day May 31, 2012 Baskin School of Engineering earning their engineering degree and fulfilling this capstone design sequence. Our students who have

  15. Livingston Campus Geothermal Project The Project

    E-Print Network [OSTI]

    Delgado, Mauricio

    Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes

  16. COMPRESSION STRENGTH OF CARBON FIBER LAMINATES CONTAINING FLAWS WITH FIBER WAVINESS

    E-Print Network [OSTI]

    compression strengths and failure strains which are borderline for wind turbine blade designs, depending upon the subject of recent studies of blade materials [1-5] and earlier studies of aerospace prepreg laminates [5 by RTM. Recent interest in blade materials has shown a significant shift toward carbon fiber and hybrids

  17. Collective Langevin Dynamics of Flexible Cytoskeletal Fibers

    E-Print Network [OSTI]

    Francois Nedelec; Dietrich Foethke

    2009-03-30T23:59:59.000Z

    We develop a numerical method to simulate mechanical objects in a viscous medium at a scale where inertia is negligible. Fibers, spheres and other voluminous objects are represented with points. Different types of connections are used to link the points together and in this way create composite mechanical structures. The motion of such structures in a Brownian environment is described by a first-order multivariate Langevin equation. We propose a computationally efficient method to integrate the equation, and illustrate the applicability of the method to cytoskeletal modeling with several examples.

  18. Kinetics of digestion f forage fiber components

    E-Print Network [OSTI]

    Van Hellen, Russell William

    1974-01-01T23:59:59.000Z

    . Herzudagrass Katurity Cuttings . . 69 INTHODUCTIOii Fiber is cell wall material composed chiefly of structural carbohydrates wnich are digested by the rumin- ant at one site, the reticulo-rumen, via microbial degra. ? dation and fermen ation to metabolitee... was thought to be involved when whole plant structure was digested in vitro or in situ in contrast to finely ground samples as used in foregoing experiments The forage entering the reticulo-rumen does so in a coarser physical form than that of a sample...

  19. Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDTheJune 6, 2012.DepartmentDE-FOA-0001056:Fiber

  20. Low-Cost Carbon-Fiber Integration / Users Facility and Commercializati...

    Energy Savers [EERE]

    Low-Cost Carbon-Fiber Integration Users Facility and Commercialization of Textile Precursors Low-Cost Carbon-Fiber Integration Users Facility and Commercialization of Textile...

  1. ON THE SIMULATION OF KINK BANDS IN FIBER REINFORCED COMPOSITES

    E-Print Network [OSTI]

    ON THE SIMULATION OF KINK BANDS IN FIBER REINFORCED COMPOSITES Kim D. Sørensen , Lars P. Mikkelsen reinforced composites are carried out using the commercial finite element program ABAQUS. A smeared in fiber reinforced composites has been the subject of a number of recent investigations. It has been found

  2. Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process

    E-Print Network [OSTI]

    Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process J. Z. Lu,1 Q. Wu,1 I. I strength and flexural modulus of the resultant composites. With 50 wt % wood fiber, the optimum compounding of the modified blends and the dynamic mechanical properties of the resultant composites. The melt torque

  3. Design for a single mode erbium-doped fiber laser

    E-Print Network [OSTI]

    Wang, Jon-En

    1995-01-01T23:59:59.000Z

    The objective of this research was to design and fabricate a single-mode, narrow-linewidth linear erbium-doped fiber laser using a solid etalon for mode selection. This thesis describes the design of the linear laser which uses erbium-doped fiber...

  4. Design for a single mode erbium-doped fiber laser 

    E-Print Network [OSTI]

    Wang, Jon-En

    1995-01-01T23:59:59.000Z

    The objective of this research was to design and fabricate a single-mode, narrow-linewidth linear erbium-doped fiber laser using a solid etalon for mode selection. This thesis describes the design of the linear laser which uses erbium-doped fiber...

  5. Designed amyloid fibers as materials for selective carbon dioxide capture

    E-Print Network [OSTI]

    Designed amyloid fibers as materials for selective carbon dioxide capture Dan Lia,b,c,1 , Hiroyasu demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence

  6. Manufacturing processes and molding of fiber-reinforced polyetheretherketone

    SciTech Connect (OSTI)

    Kempe, G.; Krauss, H. (DLR, Stuttgart (West Germany))

    1991-04-01T23:59:59.000Z

    The paper presents and discusses cetain procedures for manufacturing components from continuous fiber reinforced thermoplastics using carbon fiber-reinforced polyetheretherketone (PEEK). The manufacturing quality achieved has been examined and compared with the aid of bending tests and micrographs. Some thermal decomposition tests were also done. 5 refs.

  7. Accelerated Aging Effects on Kevlar KM2 Fiber Survivability

    E-Print Network [OSTI]

    Yang, Tony

    2013-04-12T23:59:59.000Z

    as an alternative test method to the pneumatic grip setup. ........................................ 87 ix LIST OF TABLES Page Table 1. DuPont?s Kevlar fiber grades and their tensile material properties ranked by ascending tensile modulus.... ................................................................................. 5 Table 2. Kevlar KM2 properties given by DuPont. ........................................................... 6 Table 3. Fiber rapid degradation Design of Experiment factors and levels. .................... 36 Table 4. Recorded experimentally...

  8. Porous polymer fibers for low-loss Terahertz guiding

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    of this fiber type is also compared to that of the equivalent sub-wavelength rod-in-the-air fiber the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy", Protein. Kawase, "Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits

  9. Postdoctoral Scholar position Area: Dietary Fiber and Obesity Management

    E-Print Network [OSTI]

    de Leon, Alex R.

    Postdoctoral Scholar position Area: Dietary Fiber and Obesity Management Duration: 2 years Start applications for a post-doctoral position in Fiber and Obesity. This position is a joint appointment microbiota in the context of obesity and type 2 diabetes. Dr. Reimer has developed animal models to study how

  10. HANSEN SOLUBILITY PARAMETERS FOR A CARBON FIBER/EPOXY COMPOSITE

    E-Print Network [OSTI]

    demonstrated as appropriate for the study of interactions between the materials in composite carbon fiberHANSEN SOLUBILITY PARAMETERS FOR A CARBON FIBER/EPOXY COMPOSITE Hélène Launay* , Charles Medom and strength-to-weight ratios are required. The mechanical performance of composite materials depends not only

  11. Fiber Optic Temperature Sensor for PEM Fuel Cells

    E-Print Network [OSTI]

    Fiber Optic Temperature Sensor for PEM Fuel Cells S.W. Allison, T.J. McIntyre, L.C. Maxey, M a Waveguide Temperature Sensor? · Reliability - fiber optic sensors are immune to oxidizing or reducing Objectives · Develop a low cost, robust temperature sensor for monitoring fuel cell condition and performance

  12. Fiber Optic Sensors for PEM Fuel Cells Nigel David

    E-Print Network [OSTI]

    Victoria, University of

    Fiber Optic Sensors for PEM Fuel Cells by Nigel David B.Sc., Simon Fraser University, 2004 M or other means, without the permission of the author. #12;ii Fiber Optic Sensors for PEM Fuel Cells) and air- water two-phase flow sensors are developed and demonstrated based on optical fibre Bragg gratings

  13. Analogic fiber optic position sensor with nanometric resolution Frdric Lamarque

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analogic fiber optic position sensor with nanometric resolution Frédéric Lamarque Université de of the sensor is presented as well as experimentation results. Keywords Fiber optic sensor, nanometric size is approximately 1.5x2.0x0.6 mm3 and the measurement resolution is 0.1 µm [4]. An optical sensor

  14. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect (OSTI)

    Messerly, M J

    2007-11-13T23:59:59.000Z

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  15. A two-mode fiber optic-bending sensor

    E-Print Network [OSTI]

    Covington, Charles Eric

    1993-01-01T23:59:59.000Z

    It is shown that a small slope in the refractive index profile of an optical fiber causes the two lowest order spatial modes to travel different distances from the geometrical center of the fiber. This effect increases by orders of magnitude...

  16. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOE Patents [OSTI]

    Murphy, K.A.; Gunther, M.F.; Vengsarkar, A.M.; Claus, R.O.

    1994-04-05T23:59:59.000Z

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer. 14 figures.

  17. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOE Patents [OSTI]

    Murphy, Kent A. (Roanoke, VA); Gunther, Michael F. (Blacksburg, VA); Vengsarkar, Ashish M. (Scotch Plains, NJ); Claus, Richard O. (Christiansburg, VA)

    1994-01-01T23:59:59.000Z

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.

  18. Evaluation of Plasma Resistant Hollow Fiber Membranes For Artificial Lungs

    E-Print Network [OSTI]

    Federspiel, William J.

    Evaluation of Plasma Resistant Hollow Fiber Membranes For Artificial Lungs HEIDE J. EASH,* HEATHER in artificial lungs (ox- ygenators) undergo plasma leakage (or wetting) in which blood plasma slowly fills2 gas permeance of a plasma resistant fiber imposes the greatest constraint upon artificial lung

  19. Notice of Energy RD&D Project

    SciTech Connect (OSTI)

    Rick Honaker; Geoffrey Young

    2002-07-25T23:59:59.000Z

    The goal of the project is to develop a premium fuel from the waste materials created from the production of coal and lumber. A specific objective is to achieve a fuel having an energy value around 9,000 to 10,000 Btu/lb from the processed waste material. The fine coal obtained from coal refuse ponds will be cleaned using advanced separation technologies and then dewatered to lower moisture levels than currently realized by adding wood fibers utilizing an enhanced dewatering technique. The clean coal and sawdust will be combined and reconstituted through extrusion or briquetting to form a utility fuel that can be easily handled through the transportation process. After completion of the research tasks which includes combustion testing using the coal-wood fuel, a detailed economic evaluation of the total process will be conducted.

  20. NEAMS VLTS project : level 2 milestone summary.

    SciTech Connect (OSTI)

    Hansen, Glen A.; Ostien, Jakob T.; Chen, Qiushi

    2012-08-01T23:59:59.000Z

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Very Long Term Storage (VLTS) Project is to develop a simple, benchmark model that describes the performance of Zry4 d-hydrides in cladding, under conditions of long-term storage of used fuel. This model will be used to further explore the requirements of hydride modeling for used fuel storage and transport. It is expected that this model will be further developed as its weaknesses are understood, and as a basis of comparison as the Used Fuel Disposition (UFD) Campaign explores more comprehensive, multiscale approaches. Cladding hydride processes, a thermal model, a hydride model API, and the initial implementation of the J2Fiber hydride model is documented in this report.

  1. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03T23:59:59.000Z

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1, dated 1-16-2013, cancels DOE O 415.1.

  2. The 4-H Project

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10T23:59:59.000Z

    As a 4-H volunteer, you will find that projects are useful tools for teaching a wide variety of skills to young people. This publication will help you plan and evaluate 4-H learning projects....

  3. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03T23:59:59.000Z

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.

  4. A Fiber Interferometer for the Magnetized Shock Experiment

    SciTech Connect (OSTI)

    Yoo, Christian [Los Alamos National Laboratory

    2012-08-30T23:59:59.000Z

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.

  5. Apparatus and method for carbon fiber surface treatment

    SciTech Connect (OSTI)

    Paulauskas, Felix L; Sherman, Daniel M

    2014-06-03T23:59:59.000Z

    An apparatus and method for enhancing the surface energy and/or surface chemistry of carbon fibers involves exposing the fibers to direct or indirect contact with atmospheric pressure plasma generated using a background gas containing at least some oxygen or other reactive species. The fiber may be exposed directly to the plasma, provided that the plasma is nonfilamentary, or the fiber may be exposed indirectly through contact with gases exhausting from a plasma discharge maintained in a separate volume. In either case, the process is carried out at or near atmospheric pressure, thereby eliminating the need for vacuum equipment. The process may be further modified by moistening the fibers with selected oxygen-containing liquids before exposure to the plasma.

  6. Measurement of large strains in ropes using plastic optical fibers

    DOE Patents [OSTI]

    Williams, Jerry Gene; Smith, David Barton; Muhs, Jeffrey David

    2006-02-14T23:59:59.000Z

    A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.

  7. Apparatus and method for carbon fiber surface treatment

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN); Sherman, Daniel M. (Knoxville, TN)

    2012-07-24T23:59:59.000Z

    An apparatus and method for enhancing the surface energy and/or surface chemistry of carbon fibers involves exposing the fibers to direct or indirect contact with atmospheric pressure plasma generated using a background gas containing at least some oxygen or other reactive species. The fiber may be exposed directly to the plasma, provided that the plasma is nonfilamentary, or the fiber may be exposed indirectly through contact with gases exhausting from a plasma discharge maintained in a separate volume. In either case, the process is carried out at or near atmospheric pressure, thereby eliminating the need for vacuum equipment. The process may be further modified by moistening the fibers with selected oxygen-containing liquids before exposure to the plasma.

  8. Fiber optic-based regenerable biosensor

    DOE Patents [OSTI]

    Sepaniak, Michael J. (Knoxville, TN); Vo-Dinh, Tuan (Knoxville, TN)

    1993-01-01T23:59:59.000Z

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  9. CX-012632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LURR 20140456 - Salmon Creek Avenue Pathway Project CX(s) Applied: B4.9Date: 41885 Location(s): WashingtonOffices(s): Bonneville Power Administration

  10. CX-009005: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Henderson Solar Energy Project CX(s) Applied: B5.16 Date: 08/22/2012 Location(s): Nevada Offices(s): Golden Field Office

  11. CX-012474: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Refractories/Ceramics Project CX(s) Applied: B3.6Date: 41870 Location(s): OregonOffices(s): National Energy Technology Laboratory

  12. CX-008691: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mason Substation Metering Replacement Project CX(s) Applied: B1.7 Date: 06/25/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  13. CX-008797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coal Pile Basin Project CX(s) Applied: B1.29 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  14. CX-010590: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kalispell Shunt Cap Addition Project CX(s) Applied: B4.11 Date: 07/01/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  15. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...

  16. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  17. CX-008215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Hydropower Research and Development Technology Project CX(s) Applied: A9 Date: 04/03/2012 Location(s): Colorado Offices(s): Golden Field Office

  18. CX-011391: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-011391: Categorical Exclusion Determination Municipal Complex Solar Power Project CX(s) Applied: B3.14 Date: 12102013 Location(s): New Jersey...

  19. CX-007111: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007111: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project (Iatan Generating Station) CX(s) Applied: B3.1...

  20. CX-007118: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007118: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project CX(s) Applied: B3.1 Date: 10042011...

  1. CX-007388: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-007388: Categorical Exclusion Determination Regional Test Center Project: Solar Technology Acceleration Center (SolarTAC) CX(s) Applied: B1.15,...

  2. CX-008235: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-008235: Categorical Exclusion Determination Harnessing the Hydro-Electric Potential of Engineered Drops in the Columbia Basin Project: Phase 1 CX(s)...

  3. CX-003904: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    904: Categorical Exclusion Determination CX-003904: Categorical Exclusion Determination Hydro Electric Project - Snohomish Public Utility District CX(s) Applied: A9, A11, B5.1...

  4. CX-009542: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Parks Project CX(s) Applied: B5.16 Date: 11/09/2012 Location(s): Florida Offices(s): Golden Field Office

  5. CX-003403: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003403: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: A9, B3.7...

  6. CX-002745: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002745: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: B3.1, A9...

  7. CX-003208: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003208: Categorical Exclusion Determination Michigan 85% Ethanol Fuel (E85) Infrastructure Project CX(s) Applied: B5.1 Date: 08032010 Location(s):...

  8. CX-003471: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003471: Categorical Exclusion Determination Pennsylvania Ethanol Fuel (E85) Corridor Project - Lew's Service Center CX(s) Applied: B5.1 Date: 0823...

  9. CX-011131: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Puget Sound Pilot Tidal Energy Project CX(s) Applied: A9 Date: 08/13/2013 Location(s): Washington Offices(s): Golden Field Office

  10. CX-008683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shaniko Radio Station Replacement Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  11. CX-008803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  12. CX-007358: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Integration of the University of Oregon's Cogeneration Project CX(s) Applied: B1.7 Date: 12012011 Location(s): Oregon Offices(s):...

  13. CX-010155: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Augspurger Radio Tower Replacement Project CX(s) Applied: B1.19 Date: 04/03/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  14. CX-001403: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001403: Categorical Exclusion Determination West New York Energy Efficiency Projects CX(s) Applied: B5.1 Date: 04092010 Location(s): West New...

  15. CX-012117: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-012117: Categorical Exclusion Determination Fuel Cell Hybrid Walk-In Van Deployment Project CX(s) Applied: A9 Date: 05212014 Location(s):...

  16. CX-007517: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    UPF Mock Wall Project CX(s) Applied: B3.6 Date: 11/29/2011 Location(s): Tennessee Offices(s): Y-12 Site Office

  17. CX-004085: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Project T-221, Hazardous Material Management and Emergency Response (HAMMER) Operations Building CX(s) Applied: B1.15 Date: 10082010 Location(s): Richmond,...

  18. CX-100018: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Wind Generator Project CX(s) Applied: A9 Date: 08152014 Location(s): Michigan Offices(s): Golden Field Office Technology Office: Wind Program Award Number:...

  19. CX-000653: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000653: Categorical Exclusion Determination Helios - Project: Photovoltaic Crystalline Module Assembly Plant CX(s) Applied: B5.1 Date: 01272010 Location(s):...

  20. CX-002945: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002945: Categorical Exclusion Determination Pennsylvania Green Energy Works Targeted Grant - Native Energy Biogas Project CX(s) Applied: B1.15,...

  1. CX-004376: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination City of Woodward, Oklahoma Ground Source Heat Pump Project Beyond State Template CX(s) Applied: B5.1 Date: 11012010 Location(s):...

  2. CX-008571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Project Blue Energy CX(s) Applied: A9 Date: 06/20/2012 Location(s): Utah Offices(s): Golden Field Office

  3. CX-000998: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-000998: Categorical Exclusion Determination Biodiesel Infrastructure Project (Coulee) CX(s) Applied: A1, A9, B5.1 Date: 01272010...

  4. CX-000712: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-000712: Categorical Exclusion Determination Biodiesel Infrastructure Project (Coulee) CX(s) Applied: A1, A9, B5.1 Date: 01272010...

  5. CX-006500: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-006500: Categorical Exclusion Determination Magellan Des Moines Biodiesel Terminal Project CX(s) Applied: B5.1 Date: 09062011 Location(s): Des Moines, Iowa...

  6. CX-008588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Petersburg Solar Pilot Project CX(s) Applied: B5.1 Date: 07/19/2012 Location(s): Florida Offices(s): Golden Field Office

  7. CX-002698: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    98: Categorical Exclusion Determination CX-002698: Categorical Exclusion Determination Seismic Testing (Under Task 5 of Statement of Project Objectives) CX(s) Applied: B3.1 Date:...

  8. CX-012097: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microgrid Demonstration Project CX(s) Applied: B5.15 Date: 03/24/2014 Location(s): Idaho Offices(s): Idaho Operations Office

  9. CX-008624: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Abandonment of the Western Sector Dynamic Underground Stripping (DUS) Project Steam Injection Wells CX(s) Applied: B3.1 Date: 06202012 Location(s): South Carolina...

  10. CX-005076: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-005076: Categorical Exclusion Determination Jefferson County Sheriff's Department Propane Infrastructure Project CX(s) Applied: B5.1 Date: 01272011 Location(s): Jefferson,...

  11. CX-012122: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    OCGen Module Mooring Project CX(s) Applied: B5.25 Date: 04/29/2014 Location(s): Maine Offices(s): Golden Field Office

  12. GHPsRUS Project

    SciTech Connect (OSTI)

    Battocletti, Liz

    2013-07-09T23:59:59.000Z

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  13. GHPsRUS Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Battocletti, Liz

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  14. WIPP Projects Interative Map

    Broader source: Energy.gov [DOE]

    View WIPP Projects in a larger map. To report corrections, please email WeatherizationInnovation@ee.doe.gov.

  15. Bacteria TMDL Projects 

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    of the projects are listed below. ? Peach CreekWater Quality Improvement Project ? Monitoring and Educational Programs Focused on Bacteria and Nutrient Runoff on Dairy Operations in the LeonWatershed ? Development of the Plum CreekWPP ? Impact of Proper... Star Healthy Streams * ? Environmental Management of Grazing Lands * *TWRI-managed projects More information on the initiative is available at www.tsswcb.state.tx.us/managementprogram/ initiatives/bacteria. Bacteria Projects Across the State...

  16. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21T23:59:59.000Z

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  17. Achieving "Green" Concrete Through The Use Of High Performance FiberThe Use Of High Performance Fiber

    E-Print Network [OSTI]

    Chao, Shih-Ho

    Achieving "Green" Concrete Through The Use Of High Performance FiberThe Use Of High Performance Fiber Reinforced Concrete ShihShih--Ho Chao,Ho Chao, Ph.DPh.D Assistant Professor, Department of Civil, 2008 #12;What is D rable Concrete?What is D rable Concrete?What is Durable Concrete?What is Durable

  18. The effect of second phase particles in the fiber/matrix interfacial strength of carbon fiber reinforced thermoset composites 

    E-Print Network [OSTI]

    Lu, Chung-Yuan

    1996-01-01T23:59:59.000Z

    The fiber/matrix interfacial strength of graphite fiber reinforced epoxy (DGEBF cured with diprimary amine (9,9-bis[3-methyl-4-aminophenyl]fluorene) has been studied to determine the effect of second phase additions of rubber and glass...

  19. Product Guide Project Standard and Project Professional

    E-Print Network [OSTI]

    Narasayya, Vivek

    ................................................................................................................................................................6 Manage Projects and Programs, or other intellectual property that are the subject matter of this document. #12;Table of Contents .......................................................................................................9 Make It Yours ­ Personalize the Ribbon

  20. Effect of high-temperature loading on mechanical properties of Nicalon fibers and Nicalon fiber/SiC matrix composites

    SciTech Connect (OSTI)

    Singh, D.; Singh, J.P.

    1993-01-01T23:59:59.000Z

    Results of an investigation into the effect of elevated temperature exposure on the strength distribution of Nicalon fibers as well on mechanical properties of Nicalon/SiC composites are reported in this paper. Single-fiber strength distribution of as-fabricated Nicalon fibers was obtained from bundle tests. Strength distributions of fractured fibers in as-fabricated Nicalon/SiC composites and after elevated temperature exposure of composites were assessed from measurements of fracture mirror radii. Variations in the mechanical properties of composites evaluated as a function of test temperatures are compared with those evaluated at room temperature and are correlated to the fiber strength characteristics. Limited tests were also conducted to investigate the effect of long term exposure at elevated temperatures on composite ultimate strength.

  1. Raman fiber optic probe assembly for use in hostile environments

    DOE Patents [OSTI]

    Schmucker, John E. (Hurt, VA); Falk, Jon C. (Pittsburgh, PA); Archer, William B. (Bethel Park, PA); Blasi, Raymond J. (Harrison City, PA)

    2000-01-01T23:59:59.000Z

    This invention provides a device for Raman spectroscopic measurement of composition and concentrations in a hostile environment by the use of a first fiber optic as a means of directing high intensity monochromatic light from a laser to the hostile environment and a second fiber optic to receive the lower intensity scattered light for transmittal to a monochromator for analysis. To avoid damage to the fiber optics, they are protected from the hostile environment. A preferred embodiment of the Raman fiber optic probe is able to obtain Raman spectra of corrosive gases and solutions at temperatures up to 600.degree. F. and pressures up to 2000 psi. The incident exciting fiber optic cable makes an angle of substantially 90.degree. with the collecting fiber optic cable. This 90.degree. geometry minimizes the Rayleigh scattering signal picked up by the collecting fiber, because the intensity of Rayleigh scattering is lowest in the direction perpendicular to the beam path of the exciting light and therefore a 90.degree. scattering geometry optimizes the signal to noise ratio.

  2. Carbon fiber composite characterization in adverse thermal environments.

    SciTech Connect (OSTI)

    Gomez-Vasquez, Sylvia; Brown, Alexander L.; Hubbard, Joshua A.; Ramirez, Ciro J.; Dodd, Amanda B.

    2011-05-01T23:59:59.000Z

    The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities.

  3. RADIATION EFFECTS ON EPOXY CARBON FIBER COMPOSITE

    SciTech Connect (OSTI)

    Hoffman, E

    2008-05-30T23:59:59.000Z

    Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 50, 100, and 200 Mrad. Irradiated and baseline samples were tested for tensile strength, hardness and evaluated using FTIR (Fourier transform infrared) spectroscopy and DSC (differential scanning calorimetry) for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and FTIR results with increasing gamma irradiation. The results suggest the epoxy within the composite can be affected by exposure to gamma irradiation.

  4. ULTRAFAST OPTICS AND OPTICAL FIBER COMMUNICATIONS LABORATORYLEOS 2003 Multiple Output Channel

    E-Print Network [OSTI]

    Purdue University

    DSTAWG DST Pulse Shaper Fiber ports Imaging optics U.S. Quarter #12;ULTRAFAST OPTICS AND OPTICAL FIBER;ULTRAFAST OPTICS AND OPTICAL FIBER COMMUNICATIONS LABORATORYLEOS 2003 One Guide ­ One Pulse Pulses slab Loss-engineering to control relative pulse amplitude. #12;ULTRAFAST OPTICS AND OPTICAL FIBER

  5. FAILURE OF HIERARCHICAL DISTRIBUTIONS OF FIBER BUNDLES. II ANDREI M. GABRIELOV

    E-Print Network [OSTI]

    Gabrielov, Andrei

    will assume that the fibers in a given bundle share equally the load supported by that bundle. Thus, a given) of the failure threshold of fiber bundles organized in hierarchical fashion, we prove by analytic methods , or one fiber fails under its load and redistributes that load to the surviving fiber which then fails

  6. Advanced Optical Modulation Formats and Their Comparison in Fiber-Optic Systems

    E-Print Network [OSTI]

    Kansas, University of

    Advanced Optical Modulation Formats and Their Comparison in Fiber-Optic Systems R Hui, S. Zhang, B crosstalks in SCM/WDM optical systems and the impact due to fiber characteristics. We also demonstrated decisions on the fiber plant investments and fiber-optic equipment purchasing. Our comparative study

  7. Mechanical reliability of silica optical fiber: a case study for a biomedical application

    E-Print Network [OSTI]

    Matthewson, M. John

    Mechanical reliability of silica optical fiber: a case study for a biomedical application Yunn, Piscataway, NJ 08854-8065 ABSTRACT The mechanical reliability of optical fiber used in certain biomedical the fiber can be safely used. In this paper we study two commercially available optical fibers designed

  8. Next Generation Optical Fiber for IR Applications: Novel Materials and NanoScale Textures

    E-Print Network [OSTI]

    Van Stryland, Eric

    Next Generation Optical Fiber for IR Applications: Novel Materials and NanoScale Textures Axel, Orlando, FL 32816, USA #12;Outline · Impact of fiber optics · What are next generation optical fibers achievements concerning the transmission of light in fibers for optical communication" Charles K. Kao Brief

  9. Optical properties of single-crystal sapphire fibers Rick K. Nubling and James A. Harrington

    E-Print Network [OSTI]

    Optical properties of single-crystal sapphire fibers Rick K. Nubling and James A. Harrington Single.4­0.3 dB m at 2.94 m. These fibers delivered 4.7 W at 10 Hz of Er:YAG laser power. © 1997 Optical Society of America Key words: Infrared fibers, sapphire fibers, Er:YAG lasers, optical properties. 1. Introduction

  10. Description and performance of a highly versatile, low-cost fiber-optic confocal Raman microscope

    E-Print Network [OSTI]

    Myrick, Michael Lenn

    Description and performance of a highly versatile, low-cost fiber-optic confocal Raman microscope C for publication 29 September 1995 A versatile fiber-optic confocal Raman microscope has been developed. Fiber and disadvantages.11,12 We report here the development of an automated highly versatile fiber-optic confocal Raman

  11. Environmental effects on fatigue and lifetime predictions for silica optical fibers

    E-Print Network [OSTI]

    Matthewson, M. John

    Environmental effects on fatigue and lifetime predictions for silica optical fibers M. John optical fiber on the environmental parameters temperature, humidity and pH. It is shown that the stress used by the fiber optics industry provides a good fit to fatigue data for high strength fiber

  12. Development of a 1319-nm Laser Radar Using Fiber Optics and RF Pulse Compression

    E-Print Network [OSTI]

    Kansas, University of

    Development of a 1319-nm Laser Radar Using Fiber Optics and RF Pulse Compression Christopher T of this concept. Our laboratory breadboard uses standard, single-mode optical fiber, off-the-shelf fiber-optic IMPLEMENTATION 3.1 Transmitter--Single-mode laser 3.2 Transmitter--Single-mode fiber 3.3 Transmitter--Optical

  13. Fiber optic in vivo imaging in the mammalian nervous system Amit D Mehta1,2

    E-Print Network [OSTI]

    Schnitzer, Mark

    Fiber optic in vivo imaging in the mammalian nervous system Amit D Mehta1,2 , Juergen C Jung1 functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain

  14. Method of making a continuous ceramic fiber composite hot gas filter

    DOE Patents [OSTI]

    Hill, Charles A. (Lynchburg, VA); Wagner, Richard A. (Lynchburg, VA); Komoroski, Ronald G. (Lynchburg, VA); Gunter, Greg A. (Lynchburg, VA); Barringer, Eric A. (Lynchburg, VA); Goettler, Richard W. (Lynchburg, VA)

    1999-01-01T23:59:59.000Z

    A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.

  15. Propagation of ultrashort pulses in multimode fiber in space and time

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    correlators References and Links 1. A. Yariv, "Three-dimensional pictorial transmission in fibers," Appl. Phys

  16. Sensors and Actuators B 123 (2007) 594605 Fiber optic sensing of liquid refractive index

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Sensors and Actuators B 123 (2007) 594­605 Fiber optic sensing of liquid refractive index Argha rights reserved. Keywords: Liquid refractive index sensor; Fiber optic refractive index sensor; Refractive index sensitivity of uncladded fiber; Uncladded optical fiber as sensor 1. Introduction

  17. Modeling and evaluating the performance of Brillouin distributed optical fiber sensors

    E-Print Network [OSTI]

    Dalang, Robert C.

    Modeling and evaluating the performance of Brillouin distributed optical fiber sensors Marcelo A analysis of the key factors impacting on the performance of Brillouin distributed optical fiber sensors of America OCIS codes: (060.2310) Fiber optics; (060.2370) Fiber optics sensors; (290.5900) Scattering

  18. The use of optical fiber in safety-system design

    SciTech Connect (OSTI)

    Kugler, B.A.

    1988-06-01T23:59:59.000Z

    This paper summarizes the design, installation, and performance of an optical-fiber safety system installed for testing purposes on a production platform in the Gulf of Mexico. This system was installed on a chemelectric treater to monitor five end devices and to determine the feasibility of using fiber optics rather than pneumatics or an electrical system in a harsh environment. Included with a performance summary is a brief history of optical fiber and the potential for these types of safety systems in oilfield applications.

  19. Distributed Fiber Optic Gas Sensing for Harsh Environment

    SciTech Connect (OSTI)

    Juntao Wu

    2008-03-14T23:59:59.000Z

    This report summarizes work to develop a novel distributed fiber-optic micro-sensor that is capable of detecting common fossil fuel gases in harsh environments. During the 32-month research and development (R&D) program, GE Global Research successfully synthesized sensing materials using two techniques: sol-gel based fiber surface coating and magnetron sputtering based fiber micro-sensor integration. Palladium nanocrystalline embedded silica matrix material (nc-Pd/Silica), nanocrystalline palladium oxides (nc-PdO{sub x}) and palladium alloy (nc-PdAuN{sub 1}), and nanocrystalline tungsten (nc-WO{sub x}) sensing materials were identified to have high sensitivity and selectivity to hydrogen; while the palladium doped and un-doped nanocrystalline tin oxide (nc-PdSnO{sub 2} and nc-SnO{sub 2}) materials were verified to have high sensitivity and selectivity to carbon monoxide. The fiber micro-sensor comprises an apodized long-period grating in a single-mode fiber, and the fiber grating cladding surface was functionalized by above sensing materials with a typical thickness ranging from a few tens of nanometers to a few hundred nanometers. GE found that the morphologies of such sensing nanomaterials are either nanoparticle film or nanoporous film with a typical size distribution from 5-10 nanometers. nc-PdO{sub x} and alloy sensing materials were found to be highly sensitive to hydrogen gas within the temperature range from ambient to 150 C, while nc-Pd/Silica and nc-WO{sub x} sensing materials were found to be suitable to be operated from 150 C to 500 C for hydrogen gas detection. The palladium doped and un-doped nc-SnO{sub 2} materials also demonstrated sensitivity to carbon monoxide gas at approximately 500 C. The prototyped fiber gas sensing system developed in this R&D program is based on wavelength-division-multiplexing technology in which each fiber sensor is identified according to its transmission spectra features within the guiding mode and cladding modes. The interaction between the sensing material and fossil fuel gas results in a refractive index change and optical absorption in the sensing layer. This induces mode coupling strength and boundary conditions changes and thereby shifts the central wavelengths of the guiding mode and cladding modes propagation. GE's experiments demonstrated that such an interaction between the fossil fuel gas and sensing material not only shifts the central wavelengths of the guide mode and cladding modes propagation, but also alters their power loss characteristics. The integrated fiber gas sensing system includes multiple fiber gas sensors, fiber Bragg grating-based temperature sensors, fiber optical interrogator, and signal processing software.

  20. Activated carbon fiber composite material and method of making

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

    2001-01-01T23:59:59.000Z

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.