Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fiber optic coupled optical sensor  

DOE Patents [OSTI]

A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

Fleming, Kevin J. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

2

Fiber optic vibration sensor  

DOE Patents [OSTI]

A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

Dooley, Joseph B. (Harriman, TN); Muhs, Jeffrey D. (Lenoir City, TN); Tobin, Kenneth W. (Harriman, TN)

1995-01-01T23:59:59.000Z

3

Fiber optic vibration sensor  

DOE Patents [OSTI]

A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

1995-01-10T23:59:59.000Z

4

Fiber optic geophysical sensors  

DOE Patents [OSTI]

A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

Homuth, Emil F. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

5

Fiber optic geophysical sensors  

DOE Patents [OSTI]

A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

Homuth, E.F.

1991-03-19T23:59:59.000Z

6

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

Buchanan, Bruce R. (1985 Willis, Batesburg, SC 29006); Prather, William S. (2419 Dickey Rd., Augusta, GA 30906)

1992-01-01T23:59:59.000Z

7

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

Buchanan, B.R.; Prather, W.S.

1991-01-01T23:59:59.000Z

8

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

Buchanan, B.R.; Prather, W.S.

1992-10-06T23:59:59.000Z

9

Fiber optic moisture sensor  

DOE Patents [OSTI]

A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

Kirkham, R.R.

1984-08-03T23:59:59.000Z

10

Fiber optic temperature sensor  

SciTech Connect (OSTI)

Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

Rabold, D.

1995-12-01T23:59:59.000Z

11

Silicon fiber optic sensors  

DOE Patents [OSTI]

A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

Pocha, Michael D. (Livermore, CA); Swierkowski, Steve P. (Livermore, CA); Wood, Billy E. (Livermore, CA)

2007-10-02T23:59:59.000Z

12

High pressure fiber optic sensor system  

DOE Patents [OSTI]

The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

2013-11-26T23:59:59.000Z

13

Fiber-optic liquid level sensor  

DOE Patents [OSTI]

A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.

Weiss, Jonathan D. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

14

Interferometric fiber optic displacement sensor  

DOE Patents [OSTI]

A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 29 figs.

Farah, J.

1995-05-30T23:59:59.000Z

15

Microbend fiber-optic chemical sensor  

DOE Patents [OSTI]

A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

Weiss, Jonathan D. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

16

Low-Cost Fiber Optic Pressure Sensor  

DOE Patents [OSTI]

The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

Sheem, Sang K. (Pleasanton, CA)

2003-07-22T23:59:59.000Z

17

Low-Cost Fiber Optic Pressure Sensor  

DOE Patents [OSTI]

The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

Sheem, Sang K. (Pleasanton, CA)

2004-05-18T23:59:59.000Z

18

Side-emitting fiber optic position sensor  

DOE Patents [OSTI]

A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

Weiss, Jonathan D. (Albuquerque, NM)

2008-02-12T23:59:59.000Z

19

Optical fiber sensor for membrane submicrometer vibration measurement  

Science Journals Connector (OSTI)

This paper presents an optical fiber sensor for membrane submicrometer vibration measurement. The sensor is designed ultimately for low-cost medical audiometric applications such as...

Prokopczuk, Krzysztof; Rozwadowski, Krzysztof; Aleksandra Starzy?ska, M D; Doma?ski, Andrzej W

2014-01-01T23:59:59.000Z

20

Triangularly phase-modulated optical fiber ring resonator sensor  

Science Journals Connector (OSTI)

An optical fiber ring resonatory sensor system has been demonstrated by applying a triangular phase modulation signal to a fiber loop. The dynamic range for detection of optical phase...

Chien, Pie-Yau; Pan, Ci-Ling

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Vibration-insensitive fiber-optic current sensor  

Science Journals Connector (OSTI)

The measurement of the electric current with an optical fiber sensor can be made insensitive to external vibrations that act on the leading fiber by using a circuit involving a...

Pistoni, Natale C; Martinelli, Mario

1993-01-01T23:59:59.000Z

22

Intrinsic Fabry-Perot optical fiber sensors and their multiplexing  

DOE Patents [OSTI]

An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

Wang, Anbo (Blacksburg, VA)

2007-12-11T23:59:59.000Z

23

Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence  

E-Print Network [OSTI]

Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence Ruby N. Ghosh,a) Gregory L on a reflection-mode fiber-optic oxygen sensor based on the 3 O2 quenching of the red emission from hexanuclear molybdenum chloride clusters. Measurements of the probe operating in a 0%­21% gaseous oxygen environment have

Ghosh, Ruby N.

24

Fiber optic hydrophone sensor arrays using low reflectance internal mirrors  

E-Print Network [OSTI]

A new design of fiber optic hydrophone sensor arrays phics. using low reflectance internal mirrors in optical fibers is investigated. The mirrors are produced by fusion arc splicing of two fibers, one of which has a thin film of TiO2 on the end. A...

Lee, Jong-Seo

2012-06-07T23:59:59.000Z

25

Extrinsic fiber optic displacement sensors and displacement sensing systems  

DOE Patents [OSTI]

An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.

Murphy, Kent A. (Roanoke, VA); Gunther, Michael F. (Blacksburg, VA); Vengsarkar, Ashish M. (Scotch Plains, NJ); Claus, Richard O. (Christiansburg, VA)

1994-01-01T23:59:59.000Z

26

Fiber-Optic Long-Line Position Sensor  

Energy Innovation Portal (Marketing Summaries) [EERE]

Sandia National Laboratories has developed a side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor.  Non-electrical position sensors like the one developed by Sandia are desirable for use in hazardous environment, e.g., for measuring the liquid level in gasoline or jet fuel tanks.  This sensor is an attractive option because it does not introduce electrical energy, is insensitive to electromagnetic interference,...

2013-03-12T23:59:59.000Z

27

Optical fiber sensors for smart materials characterization  

SciTech Connect (OSTI)

Optical and optical fiber methods may be used to characterize materials and structures. Their advantages for such applications include their immunity to electromagnetic interference, high sensitivity, resolution and dynamic range, and ability to operate in harsh environmental conditions. This paper describes the application of such methods to the characterization of smart materials and structures during their fabrication, in-service lifetime, and damage and degradation.

Claus, R.O. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Electrical Engineering Dept.

1994-12-31T23:59:59.000Z

28

Fiber Optic Temperature Sensor for PEM Fuel Cells  

E-Print Network [OSTI]

Fiber Optic Temperature Sensor for PEM Fuel Cells S.W. Allison, T.J. McIntyre, L.C. Maxey, M Objectives · Develop a low cost, robust temperature sensor for monitoring fuel cell condition and performance Hydrogren and Fuel Cells Merit Review Meeting May 19-22, 2003, Berkeley, California #12;Program Goals

29

Thin-film fiber optic hydrogen and temperature sensor system  

DOE Patents [OSTI]

The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

Nave, S.E.

1998-07-21T23:59:59.000Z

30

Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers  

E-Print Network [OSTI]

Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers Department bound to a fiber-optic tip without loss of viscosity sensi- tivity. The optical fiber itself may be used to molecular rotors in solution. An optical fiber-based fluorescent vis- cosity sensor may be used in real

Theodorakis, Emmanuel

31

OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY  

SciTech Connect (OSTI)

Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field test data from virtually anywhere in the world, and development of novel data processing techniques. Comprehensive testing was performed to systematically evaluate the performance of the fiber optic sensor systems in both lab and field environments.

Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

2003-06-01T23:59:59.000Z

32

Fiber-optic Fabry-Perot ultrasound sensor  

E-Print Network [OSTI]

of a novel type of ultrasound fiber-optic sensor was studied theoretically and experimentally. The sensor consists of a continuous length of single mode optical fiber into which two dielectric internal mirrors have been built to form a Fabry...-Perot Interferometer A Fabry-Perot interferometer consists of two parallel partially reflecting mirrors separated by a distance L generally much longer than the wavelength X of the light (see fig. 1) . If a light wave with amplitude A~ and coherence length several...

Alcoz, Jorge Jose

2012-06-07T23:59:59.000Z

33

Fiber optic sensors for environmental applications: A brief review  

SciTech Connect (OSTI)

Understanding the flow a groundwater quality. This understanding is achieved by measurement of the appropriate chemical and physical subsurface parameters. The ideal measurement would accurately assess a parameter without affecting the parameter or its environment. Fiber optic spectroscopy offers some of the most promising techniques for accurate, non-invasive measurements of environmental parameters. Fiber optic sensors for subsurface applications are currently being developed by several Department of Energy laboratories. Some of these sensors have been successfully deployed in the field and are attaining the goals of accurate, noninvasive, real time measurements in the subsurface.

Rossabi, J.

1992-04-01T23:59:59.000Z

34

Large-area fiber-optic chemical sensors  

SciTech Connect (OSTI)

Pacific Northwest Laboratory is developing a large-area chemical sensor that combines chemically selective coatings and optical spectroscopy to detect target compounds. The chemically selective material is incorporated into the cladding of an optical fiber waveguide. The material is interrogated using optical spectroscopic techniques to determine the concentration of target compounds. The optical interrogation method includes two spectroscopies: visible-near infrared absorption spectroscopy and Raman spectroscopy. This work develops the physical and mathematical models of such a sensor and provides a set of tools with which to make design predictions for the large-area chemical sensors. The theoretical relationships derived herein allow the use of bulk absorption parameters and bulk Raman coefficients to predict sensor performance.

Bliss, M.; Craig, R.A.

1995-05-01T23:59:59.000Z

35

Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics  

Science Journals Connector (OSTI)

The concept of a Microstructured Optical Fiber-based Surface Plasmon Resonance sensor with optimized microfluidics is proposed. In such a sensor plasmons on the inner surface of...

Hassani, A; Skorobogatiy, M

2006-01-01T23:59:59.000Z

36

Fiber-optic displacement sensor system  

E-Print Network [OSTI]

. Light pulses from a light emitting diode (LED) were coupled into a multimode fiber. The displacement of a mirror positioned near the end of the fiber was measured by monitoring the amplitude of the reflected pulses. A reference reflection from a.... Light pulses from a light emitting diode (LED) were coupled into a multimode fiber. The displacement of a mirror positioned near the end of the fiber was measured by monitoring the amplitude of the reflected pulses. A reference reflection from a...

Cava, Norayda Nora

2012-06-07T23:59:59.000Z

37

Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery  

SciTech Connect (OSTI)

The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

Wang, a.; Pickrell, G.; Xiao, H.; May, r.

2003-02-27T23:59:59.000Z

38

NETL: Gasification - Single-Crystal Sapphire Optical Fiber Sensor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasifier Optimization and Plant Supporting Systems Gasifier Optimization and Plant Supporting Systems Single-Crystal Sapphire Optical Fiber Sensor Instrumentation Virginia Polytechnic Institute and State University Center for Photonics Technology Project Number: DE-FC26-99FT40685 Project Description Phase I - The Photonics Laboratory at Virginia Tech has successfully developed a novel temperature sensor capable of operating at temperatures up to 1600 °C and in harsh conditions. The sensor uses single-crystal sapphire to make an optically-based measurement and will fulfill the need for the real-time monitoring of high temperatures created in gasification processes. Phase II - Based on a successful Phase I laboratory demonstration of a Broadband Polarimetric Differential Interferometric (BPDI) temperature sensor, Virginia Tech's Phase II development objective is to further the development of the sensor for industrial use in slagging coal gasifiers. This will include ruggedizing the design of the sensor and creation of a suitable protective housing such that it can be placed into existing ports of coal gasifiers. The potential industrial use of the sensor will be determined through full-scale testing and development. The sensor design and fabrication has been completed and is undergoing testing. Overall performance and survivability of the sensor will be determined.

39

IDENTIFICATION OF DAMAGE TYPES IN CARBON FIBER REINFORCED PLASTIC LAMINATES BY A NOVEL OPTICAL FIBER ACOUSTIC EMISSION SENSOR  

E-Print Network [OSTI]

IDENTIFICATION OF DAMAGE TYPES IN CARBON FIBER REINFORCED PLASTIC LAMINATES BY A NOVEL OPTICAL technology. PZT sensors have been being used as AE sensors. However, because this kind of sensor has bulk

Boyer, Edmond

40

Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Fiber Sensor Technologies for Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery Final Technical Report Reporting Period Start Date: 1 October 1998 Reporting Period End Date: 31 March 2003 Principal Investigator: Anbo Wang Principal Report Authors: Kristie L. Cooper, Gary R. Pickrell, Anbo Wang Report Issued: June 2003 DOE Award Number: DE-FT26-98BC15167 Submitted by: Center for Photonics Technology Bradley Department of Electrical and Computer Engineering Virginia Polytechnic Institute & State University Blacksburg, VA 24061-0111 ii Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection  

DOE Patents [OSTI]

A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.

Wood, C.B.

1992-12-15T23:59:59.000Z

42

Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection  

DOE Patents [OSTI]

A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.

Wood, Charles B. (Lakewood, CO)

1992-01-01T23:59:59.000Z

43

An optical fiber Faraday effect current sensor for power system applications  

E-Print Network [OSTI]

Optical fiber sensors have many inherent properties which make them ideal for applications within electric power systems. The dielectric isolation achieved in using optical fiber has fostered research in the areas of communication and sensing...

Short, Shayne Xavier

1995-01-01T23:59:59.000Z

44

New IR Fiber-Optic Chemical Sensor for in Situ Measurements of Chlorinated Hydrocarbons in Water  

Science Journals Connector (OSTI)

In this work the development and validation of a new MIR fiber-optic physicochemical sensor system for the continuous in situ analysis of chlorinated hydrocarbons (CHCs) in...

Krska, R; Taga, K; Kellner, R

1993-01-01T23:59:59.000Z

45

Fiber Optic Evanescent Field Sensor for Hydrocarbon Monitoring in Air and Water applying UV Absorption  

Science Journals Connector (OSTI)

A fiber optic sensor for the monitoring of organic pollutants in air and water is presented. The UV absorption spectra of hydrocarbon soluble in special polymer fiber claddings are...

Schwotzer, G; Latka, I; Lehmann, H; Willsch, R

46

Theoretical and practical response evaluation of a fiber optic sensor for chlorinated hydrocarbons in water  

Science Journals Connector (OSTI)

The response behavior of a polymer-coated mid-infrared fiber optical sensor for chlorinated hydrocarbons in water is evaluated practically and theoretically. The sensor ... - and tetrachloroethylene obtained in a...

E. Rosenberg; R. Krska; R. Kellner

47

Performance characterization of an internsity-modulated fiber optic displacement sensor  

SciTech Connect (OSTI)

A testbed simulating an intensity-modulated fiber optic displacement sensor is experimentally characterized, and the implications regarding sensor design are discussed. Of interest are the intensity distribution of the transmitted optical signal and the relationships between sensor architecture and performance. Particularly, an intensity-modulated sensor's sensitivity, linearity, displacement range, and resolution are functions of the relative positioning of its transmitting and receiving fibers. In this paper, sensor architectures with various combinations of these performance metrics are discussed. A sensor capable of micrometer resolution is reported, and it is concluded that this work could lead to an improved methodology for sensor design.

Moro, Erik Allan [Los Alamos National Laboratory; Todd, Michael D [Los Alamos National Laboratory; Puckett, Santhony D [Los Alamos National Laboratory

2010-09-30T23:59:59.000Z

48

Energy conversion in Er3+ doped chalcogenide fibers for gas optical sensor  

Science Journals Connector (OSTI)

Er3+ doped chalcogenide fibers are used to convert a 4.3 µm optical signal into an 800 nm radiation with the aim of developing an all-optical infrared gas sensor with a detection in...

Anne-Laure, Pelé; Doualan, Jean-Louis; Braud, Alain; Nazabal, Virginie; Moncorgé, Richard; Camy, Patrice

49

SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION  

SciTech Connect (OSTI)

Accurate measurement of temperature is essential for the safe and efficient operation and control of a wide range of industrial processes. Appropriate techniques and instrumentation are needed depending on the temperature measurement requirements in different industrial processes and working environments. Harsh environments are common in many industrial applications. These harsh environments may involve extreme physical conditions, such as high-temperature, high-pressure, corrosive agents, toxicity, strong electromagnetic interference, and high-energy radiation exposure. Due to these severe environmental conditions, conventional temperature sensors are often difficult to apply. This situation has opened a new but challenging opportunity for the sensor society to provide robust, high-performance, and cost-effective temperature sensors capable of operating in those harsh environments. The focus of this research program has been to develop a temperature measurement system for temperature measurements in the primary and secondary stages of slagging gasifiers. For this application the temperature measurement system must be able to withstand the extremely harsh environment posed by the high temperatures and corrosive agents present in these systems. Real-time, accurate and reliable monitoring of temperature for the coal gasification process is important to realize the full economic potential of these gasification systems. Long life and stability of operation in the high temperature environment is essential for the temperature measurement system to ensure the continuous running of the coal gasification system over the long term. In this high temperature and chemically corrosive environment, rather limited high temperature measurement techniques such as high temperature thermocouples and optical/acoustic pyrometers are available, each with their own limitations. In this research program, five different temperature sensing schemes based on the single crystal sapphire material were thoroughly investigated to determine an optimal approach for on-line, real-time, reliable, long-term monitoring of temperatures inside the coal gasification environment. Among these were a sapphire fiber extrinsic Fabry-Perot interferometric (EFPI) sensor; an intensity-measurement based polarimetric sapphire sensor and a broadband polarimetric differential interferometric (BPDI) sapphire sensor. Based on the current evaluation and analysis of the experimental results, the broadband polarimetric differential interferometric (BPDI) sensor system was chosen for further prototype instrumentation development because of it's superior performance compared to the other systems. This approach is based on the self-calibrating measurement of the optical path length differences in a single-crystal sapphire disk, which is a function of both the temperature dependent birefringence and the temperature dependent dimensional changes.

A. Wang; G. Pickrell; R. May

2002-09-10T23:59:59.000Z

50

SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION  

SciTech Connect (OSTI)

Accurate measurement of temperature is essential for the safe and efficient operation and control of a wide range of industrial processes. Appropriate techniques and instrumentation are needed depending on the temperature measurement requirements in different industrial processes and working environments. Harsh environments are common in many industrial applications. These harsh environments may involve extreme physical conditions, such as high-temperature, high-pressure, corrosive agents, toxicity, strong electromagnetic interference, and high-energy radiation exposure. Due to these severe environmental conditions, conventional temperature sensors are often difficult to apply. This situation has opened a new but challenging opportunity for the sensor society to provide robust, high-performance, and cost-effective temperature sensors capable of operating in those harsh environments. The focus of this research program has been to develop a temperature measurement system for temperature measurements in the primary and secondary stages of slagging gasifiers. For this application the temperature measurement system must be able to withstand the extremely harsh environment posed by the high temperatures and corrosive agents present in these systems. Real-time, accurate and reliable monitoring of temperature for the coal gasification process is important to realize the full economic potential of these gasification systems. Long life and stability of operation in the high temperature environment is essential for the temperature measurement system to ensure the continuous running of the coal gasification system over the long term. In this high temperature and chemically corrosive environment, rather limited high temperature measurement techniques such as high temperature thermocouples and optical/acoustic pyrometers are available, each with their own limitations. In this research program, five different temperature sensing schemes based on the single crystal sapphire material were thoroughly investigated to determine an optimal approach for on-line, real-time, reliable, long-term monitoring of temperatures inside the coal gasification environment. Among these were a sapphire fiber extrinsic Fabry-Perot interferometric (EFPI) sensor; an intensity-measurement based polarimetric sapphire sensor and a broadband polarimetric differential interferometric (BPDI) sapphire sensor. Based on the current evaluation and analysis of the experimental results, the BPDI sensor system was chosen for further prototype instrumentation development because of it's superior performance compared to the other systems. This approach is based on the self-calibrating measurement of the optical path length differences in a single-crystal sapphire disk, which is a function of both the temperature dependent birefringence and the temperature dependent dimensional changes.

A. Wang; G. Pickrell; R. May

2002-10-18T23:59:59.000Z

51

Fast Pump-Power-Independent Brillouin Fiber Optic Sensor  

Science Journals Connector (OSTI)

A fast and distributed Brillouin sensor, which is immune to pump power variations is presented. 120Hz strain vibrations are measured over 50m fiber with >1kHz sampling rate,...

Motil, Avi; Danon, Orr; Peled, Yair; Tur, Moshe

52

Fabry-Perot fiber optic sensor using multimode laser diode  

E-Print Network [OSTI]

heating and cooling cycles. Also, a sporadic waveform on top of the periodic waveform is observed. This is due to mechanical drift in the feedback loop between the thermoelectric cooler and the temperature controller as previously mentioned. Fig. 11... fiber and later reaches a transducer, which takes the form of an integrated optics device, bulk optical components or a fiber optic device, placed within the sensing environment. The optical signal is modulated within the sensing region...

Chu, Siu Yi Andrew

1993-01-01T23:59:59.000Z

53

Fiber-Optic Sensors: Playing Both Sides of the Energy Equation  

Science Journals Connector (OSTI)

Fiber-optic sensors are playing an emerging role in both new energy-generation technologies-including wind, solar and geothermal-and approaches for improving recovery of our existing...

Sanders, Paul E

2011-01-01T23:59:59.000Z

54

Multiplexed fiber-optic sensors using a dual-slope frequency-modulated source  

Science Journals Connector (OSTI)

We propose and demonstrate a multiplexed fiber-optic sensor system using a dual-slope (triangular) frequency-modulated laser source. The restrictions in the selection of beat...

Chien, Pie-Yau; Pan, Ci-Ling

1991-01-01T23:59:59.000Z

55

Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single-Crystal Sapphire Optical Fiber Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers Description Accurate temperature measurement inside a coal gasifier is essential for safe, efficient, and cost-effective operation. However, current sensors are prone to inaccurate readings and premature failure due to harsh operating conditions like high temperature (1,200-1,600 °C), high pressure (up to 500 pounds per square inch gauge [psig]),

56

A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber  

SciTech Connect (OSTI)

We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

Candiani, A. [Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Heraklion 70013 Greece (Greece); Department of Information Engineering (DII), University of Parma, Parma 43124 (Italy); Argyros, A.; Leon-Saval, S. G.; Lwin, R. [Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, Sydney (Australia); Selleri, S. [Department of Information Engineering (DII), University of Parma, Parma 43124 (Italy); Pissadakis, S., E-mail: pissas@iesl.forth.gr [Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Heraklion 70013 Greece (Greece)

2014-03-17T23:59:59.000Z

57

An experimental investigation of the sensitivity of a buried fiber optic intrusion sensor  

E-Print Network [OSTI]

A distributed fiber optic sensor with the ability of detecting and locating intruders on foot and vehicles over long perimeters (>10 km) was studied. The response of the sensor to people walking over or near it and to vehicles driving nearby...

Kuppuswamy, Harini

2006-04-12T23:59:59.000Z

58

Separation of CO2 Using Ultra-Thin Multi-Layer Polymeric Membranes for Compartmentalized Fiber Optic Sensor Applications  

E-Print Network [OSTI]

Optic Sensor Applications by Benjamin Davies B.Eng., University of Guelph, 2011 A Thesis Submitted for Compartmentalized Fiber Optic Sensor Applications by Benjamin Davies B. Eng., University of Guelph, 2011 Supervisory trapping occurring through mineralization within the first 20-50 years. A fiber optic based monitoring

Victoria, University of

59

Fiber optic sensor employing successively destroyed coupled points or reflectors for detecting shock wave speed and damage location  

DOE Patents [OSTI]

A shock velocity and damage location sensor providing a means of measuring shock speed and damage location. The sensor consists of a long series of time-of-arrival "points" constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the "points" of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor.

Weiss, Jonathan D. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

60

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ames, IA); Shi, Zhong-You (Ann Arbor, MI)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1997-05-06T23:59:59.000Z

62

High frequency current sensors using the Faraday effect in optical fibers  

SciTech Connect (OSTI)

This study investigates the high frequency response of Faraday effect optical fiber current sensors that are bandwidth-limited by the transit time of the light in the fiber. Mathematical models were developed for several configurations of planar (collocated turns) and travelling wave (helical turns) singlemode fiber sensor coils, and experimental measurements verified the model predictions. High frequency operation above 500 MHz, with good sensitivity, was demonstrated for several current sensors; this frequency region was not previously considered accessible by fiber devices. Planar fiber coils in three configurations were investigated: circular cross section with the conductor centered coaxially; circular cross section with the conductor noncentered; and noncircular cross section with arbitrary location of the conductor. The helical travelling wave fiber coils were immersed in the dielectric of a coaxial transmission line to improve velocity phase matching between the field and light. Three liquids (propanol, methanol, and water) and air were used as transmission line dielectric. Complete models, which must account for liquid dispersion and waveguide dispersion from the multilayer dielectric in the transmission line, were developed to describe the Faraday response of the travelling wave sensors. Other travelling wave current sensors with potentially greater Faraday sensitivity, wider bandwidth and smaller size are investigated using the theoretical models developed for the singlemode fibers coils.

Cernosek, R.W. [Sandia National Labs., Albuquerque, NM (United States). Microsensor Research and Development Dept.] [Sandia National Labs., Albuquerque, NM (United States). Microsensor Research and Development Dept.

1994-09-01T23:59:59.000Z

63

Fabrication of miniature fiber-optic temperature sensors  

DOE Patents [OSTI]

A method of coupling a silica fiber and a sapphire fiber includes providing a silica fiber having a doped core and a cladding layer, with the doped core having a prescribed diameter, providing a sapphire fiber having a diameter less than the doped core, placing an end of the sapphire fiber in close proximity to an end of the silica fiber, applying a heat source to the end of silica fiber and introducing the end of sapphire fiber into the heated doped core of the silica fiber to produce a coupling between the silica and sapphire fibers.

Zhu, Yizheng (Durham, NC); Wang, Anbo (Blacksburg, VA)

2010-07-27T23:59:59.000Z

64

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1994-11-01T23:59:59.000Z

65

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ann Arbor, MI); Shi, Zhong-You (Ann Arbor, MI)

1994-01-01T23:59:59.000Z

66

Novel, fiber optic, hybrid pressure and temperature sensor designed for high-temperature gen-IV reactor applications  

SciTech Connect (OSTI)

A novel, fiber optic, hybrid pressure-temperature sensor is presented. The sensor is designed for reliable operation up to 1050 C, and is based on the high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were also tested for operability in a relatively high neutron radiation environment up to 6.9x10{sup 17} n/cm{sup 2}. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for nuclear power applications including small size, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future nuclear power plant designs would provide a substantial improvement in system health monitoring and safety instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to emerging nuclear power plants. Successes and lessons learned will be highlighted. (authors)

Palmer, M. E.; Fielder, R. S.; Davis, M. A. [Luna Innovations, Incorporated, 2851 Commerce St., Blacksburg, VA 24060 (United States)

2006-07-01T23:59:59.000Z

67

High-temperature fiber optic cubic-zirconia pressure sensor - article no. 124402  

SciTech Connect (OSTI)

There is a critical need for pressure sensors that can operate reliably at high temperatures in many industrial segments such as in the combustion section of gas turbine engines for both transportation and power generation, coal gasifiers, coal fired boilers, etc. Optical-based sensors are particularly attractive for the measurement of a wide variety of physical and chemical parameters in high-temperature and high-pressure industrial environments due to their small size and immunity to electromagnetic interference. A fiber optic pressure sensor utilizing single-crystal cubic zirconia as the sensing element is reported. The pressure response of this sensor has been measured at temperatures up to 1000{sup o}C. Additional experimental results show that cubic zirconia could be used for pressure sensing at temperatures over 1000{sup o}C. This study demonstrates the feasibility of using a novel cubic-zirconia sensor for pressure measurement at high temperatures.

Peng, W.; Pickrell, G.R.; Wang, A.B. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

2005-12-15T23:59:59.000Z

68

Fabrication of Optical Fiber Mechanical Shock Sensors for the Los Alamos HERT (High Explosive Radio Telemetry) Project  

SciTech Connect (OSTI)

This document lists the requirements for the fiber optic mechanical shock sensor for the Los Alamos HERT (High Explosive Radio Telemetry) project and provides detailed process steps for fabricating, testing, and assembling the fiber shock sensors for delivery to Los Alamos.

P. E. Klingsporn

2005-11-14T23:59:59.000Z

69

One-dimensional single-mode fiber-optic displacement sensors for submillimeter measurements  

SciTech Connect (OSTI)

We demonstrate the working principle of a one-dimensional intensity-based fiber-optic displacement sensor. The sensor consists of one receiving fiber, which is moved laterally in the optical field emitted by an emitting fiber. It is shown numerically that the sensor response is highly linear (nonlinearity error of 0.1 to 2%) for a wide range of travel (2.24 to 860 {mu}m). The sensor response is also simulated experimentally using a highly precise robot, the results of which correspond very closely to numerical ones. Linearity, travel, and sensitivity are experimentally determined for different gaps between the emitting and the receiving fibers (10 {mu}m to 10 mm). A design chart that includes the nonlinearity error (0.5% to 2%), the travel (2.78 to 860 {mu}m), the sensitivity (0.032 to 0.37 dB/{mu}m), and the gap distance (1 to 10 mm) is finally proposed.

Trudel, Vincent; St-Amant, Yves

2009-09-10T23:59:59.000Z

70

Doppler Effect in Flexible and Expandable Light Waveguide and Development of New Fiber-Optic Vibration/Acoustic Sensor  

Science Journals Connector (OSTI)

New principle and a geometrical arrangement of an optical fiber for a vibration/acoustic measurement are proposed in the present paper. The sensor is based on a new finding that a...

Kageyama, Kazuro; Murayama, Hideaki; Uzawa, Kiyoshi; Ohsawa, Isamu; Kanai, Makoto; Akematsu, Yoshiaki; Nagata, Keiich; Ogawa, Tetsu

2006-01-01T23:59:59.000Z

71

Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells Juan F. Botero-Cadavid  

E-Print Network [OSTI]

Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells by Juan F. Botero-optic sensor for detection of hydrogen peroxide in PEM fuel cells by Juan F. Botero-Cadavid Mech electrolyte membrane fuel cells (PEMFCs), and the presence and formation of this peroxide has been associated

Victoria, University of

72

Spark-plug-mounted fiber optic sensor for measuring in-cylinder pressure in engines  

E-Print Network [OSTI]

A new design for an in-cylinder fiber Fabry-Perot interferometer (FFPI) pressure sensor suitable for automotive engines has been investigated experimentally. The FFPI sensor consists of a single mode fiber containing two internal mirrors which form...

Bae, Taehan

2012-06-07T23:59:59.000Z

73

Fiber Optic Cryogenic Sensors for Superconducting Magnets and Superconducting Power Transmission lines at CERN  

E-Print Network [OSTI]

The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.

Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Giordano, M; Breglio, G; Palmieri, L

2014-01-01T23:59:59.000Z

74

Signal processing for fiber optic acoustic sensor system  

E-Print Network [OSTI]

phase compensator. Two passive demodulation techniques based on a 3 by 3 output coupler in the Mach-Zehnder interferometer provide a way to eliminate phase fading suffered inside the interferometric sensors. System measurements utilizing the two...

Zhu, Juhong

2012-06-07T23:59:59.000Z

75

Evaluation of White Light Sources For an Absolute Fiber Optic Sensor Readout System  

SciTech Connect (OSTI)

This report summarizes work done in pursuit of an absolute readout system for Fabry-Perot optics sensors such as those built both by FISO and LLNL. The use of white light results in a short coherence length reducing the ambiguity of the Fabry-Perot gap measurement which is required to readout the sensor. The light source coherence length is the critical parameter in determining the ability to build a relative or an absolute system. Optical sources such as lasers and LEDs are rather narrow in optical spectral bandwidth and have long coherence length. Thus, when used in interferometric sensor measurements, one fringe looks much like another and it is difficult to make an absolute measurement. In contrast, white light sources are much broader in spectral bandwidth and have very short coherence lengths making interferometry possible only over the coherence length, which can be 1 or 2 microns. The small number of fringes in the interferogram make it easier to calculate the centroid and to unambiguously determine the sensor gap. However, unlike LEDs and Lasers, white light sources have very low optical power when coupled into optical fibers. Although, the overall light output of a white light source can be hundreds of milliwatts to watts, it is difficult to couple more than microwatts into a 50-micron core optical fiber. In addition, white light sources have a large amount of optical power in spectrum that is not necessarily useful in terms of sensor measurements. The reflectivity of a quarter wave of Titanium Oxide is depicted in Figure 2. This coating of Titanium Oxide is used in the fabrication of the sensor. This figure shows that any light emitted at wavelengths shorter than 600 nm is not too useful for the readout system. A white light LED spectrum is depicted in Figure 3 and shows much of the spectrum below 600 nm. In addition Silicon photodiodes are usually used in the readout system limiting the longest wavelength to about 1100 nm. Tungsten filament sources may have much of their optical power at wavelengths longer than 1100 nm, which is outside the wavelength range of interest. An incandescent spectrum from a tungsten filament is depicted in Figure 4. None of this is to say that other types of readout systems couldn't be built with IR detectors and broadband coatings for the sensors. However, without reengineering the sensors, the wavelength restrictions must be tolerated.

McConaghy, C F

2003-10-10T23:59:59.000Z

76

Fiber optic sensors for nuclear power plant applications  

SciTech Connect (OSTI)

Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu-603102 (India)

2012-05-17T23:59:59.000Z

77

Detection of adulteration in virgin olive oil using a fiber optic long period grating based sensor  

Science Journals Connector (OSTI)

A fiber optic sensing system for the detection of adulteration of virgin olive oil by less expensive sunflower oil is presented. The fundamental principle of detection is the sensitive dependence of the resonance peaks of a long period grating (LPG) on the changes in the refractive index of the environmental medium surrounding the cladding surface of the grating. The performance of the sensor has been tested by monitoring the amplitude changes of the attenuation bands of the LPG in response to variation of adulteration level. With good repeatability, the detection limit of adulteration is 4% and the sensor sensitivity is around 0.07 dB vol%?1 of adulterant in the measurement range. The developed sensor is user-friendly, reusable and allows instantaneous measurement of the amount of adulteration without involving any reagents.

T M Libish; M C Bobby; J Linesh; S Mathew; C Pradeep; V P N Nampoori; P Biswas; S Bandyopadhyay; K Dasgupta; P Radhakrishnan

2013-01-01T23:59:59.000Z

78

Structural and environmental monitoring of tracker and vertex systems using Fiber Optic Sensors  

E-Print Network [OSTI]

Fibre optic sensors (FOS) are an established technique for environmental and deformation monitoring in several areas like civil engineering, aerospace, and energy. Their immunity to electromagnetic and magnetic fields and nuclear environments, its small size, multiplexing capability and the possibility to be embedded make them an attractive technology for the structural and environmental monitoring of collider particle physics experiments. Between all the possible Fibre Optic sensors FBGs (Fiber Bragg Grating) seems to be the best solution for HEP applications. The first step was to characterize FBG sensors for it use in High Energy Physics environment. During last two years we have checked the resistance of the Fibre Bragg Grating sensors to radiation. Two irradiation campaigns with protons have been done at CNA (Centro Nacional de Aceleradores). In the near future these sensors are being planned to be used in detectors (the closest one Belle II.). Several work on integration issues in Belle II PXD-SVD, and checking for environmental and deformation monitoring in the detectors inner part has been done.

David Moya; Iván Vila

2012-03-01T23:59:59.000Z

79

Optical Fibers Optics and Photonics  

E-Print Network [OSTI]

Optical Fibers Optics and Photonics Dr. Palffy-Muhoray Ines Busuladzic Department of Theoretical and Applied Mathematics The University of Akron April 21, 2008 #12;Outline · History of optical fibers · What are optical fibers? · How are optical fibers made? · Light propagation through optical fibers · Application

Palffy-Muhoray, Peter

80

Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring  

DOE Patents [OSTI]

A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

Zelepouga, Serguei A. (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Saveliev, Alexei V. (Chicago, IL)

2011-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The monitoring and multiplexing of fiber optic sensors using chirped laser sources  

E-Print Network [OSTI]

. Linearization of the chirp rate has been achieved using feedback from a fiber Fabry-Perot interferometer (FFPI) to adjust the voltage ramp which drives the rotating mirror. In a demonstration of monitoring an array of two fiber Bragg grating (FBG) sensors, a...

Wan, Xiaoke

2004-09-30T23:59:59.000Z

82

DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS  

SciTech Connect (OSTI)

The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

2012-09-30T23:59:59.000Z

83

Proceedings of IEEE Sensors 2003 Fiber Optic Oxygen Sensor for Power Plant Applications  

E-Print Network [OSTI]

is an efficient way to control boiler operation and reduce emissions. Time resolved measurements of oxygen at the far end of a Au clad high temperature silica fiber (continuous operation to 700 °C), as shown in Fig schemes in harsh environments. In this paper we report on the high temperature photophysical parameters

Ghosh, Ruby N.

84

An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique  

SciTech Connect (OSTI)

In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.

Battista, L.; Sciuto, S. A.; Scorza, A. [Department of Engineering, ROMA TRE University, via della Vasca Navale 79/81, Rome (Italy)

2013-03-15T23:59:59.000Z

85

Fiber optic connector  

DOE Patents [OSTI]

A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

Rajic, Slobodan (Knoxville, TN); Muhs, Jeffrey D. (Lenior City, TN)

1996-01-01T23:59:59.000Z

86

A study of semiconductor laser noise and its effect on fiber optic sensor performance  

E-Print Network [OSTI]

with internal mirrors separated by a length L of single-mode fiber. This sensor, which was introduced by the research group at Texas A8cM University [34], has been used to measure temperature, strain, and acoustic pressure [35]. Two beams, one reflected from... or the length L of FFPI sensors. If the reflectance of the mirrors is equal to R with R (& I, the reflected power P? is related to the incident power P; according to P, = 2RP&(1+ cos P) (2. 30) with 4=4~/c. Because the FFPI sensor will act like two beam...

Lee, Wanku

2012-06-07T23:59:59.000Z

87

Sensors and Actuators B 123 (2007) 594605 Fiber optic sensing of liquid refractive index  

E-Print Network [OSTI]

Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India c Laser Technology Program of its cladding is shown to sense refractive index of a liquid in which the uncladded sensing region of the fiber. The sensitivity of the sensor to refractive index change is dependent on cladding thickness

88

Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors  

E-Print Network [OSTI]

-optic sensors Scott W. TYLER,1 Susan A. BURAK,2 James P. MCNAMARA,3 Aurele LAMONTAGNE,3 John S. SELKER,4 Jeff melting patterns and the effects of solar heating on southwest-facing slopes. These proof

Selker, John

89

Fiber optic refractive index monitor  

DOE Patents [OSTI]

A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

Weiss, Jonathan David (Albuquerque, NM)

2002-01-01T23:59:59.000Z

90

Fiber optic laser rod  

DOE Patents [OSTI]

A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

Erickson, G.F.

1988-04-13T23:59:59.000Z

91

Optical Sensor Technology Development and Deployment  

SciTech Connect (OSTI)

The objectives of this ESP (Enhanced Surveillance) project are to evaluate sensor performance for future aging studies of materials, components and weapon systems. The goal of this project is to provide analysis capability to experimentally identify and characterize the aging mechanisms and kinetics of Core Stack Assembly (CSA) materials. The work on fiber optic light sources, hermetic sealing of fiber optics, fiber optic hydrogen sensors, and detection systems will be discussed.

B. G. Parker

2005-01-24T23:59:59.000Z

92

Multimode optical fiber  

DOE Patents [OSTI]

A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

2014-11-04T23:59:59.000Z

93

Fiber optic hydrophone  

DOE Patents [OSTI]

A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

Kuzmenko, Paul J. (Livermore, CA); Davis, Donald T. (Livermore, CA)

1994-01-01T23:59:59.000Z

94

Fiber optic hydrophone  

DOE Patents [OSTI]

A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

Kuzmenko, P.J.; Davis, D.T.

1994-05-10T23:59:59.000Z

95

Optical Fiber Gas Sensors using UV and MidIR Spectroscopy for Exhaust Gas Monitoring  

Science Journals Connector (OSTI)

Results are presented for on-board and on-line sensing of vehicle exhaust Gases. The sensor was located downstream of the Diesel Particle Filter of a Fiat Croma and data were...

Lewis, Elfed

96

A cantilever optical-fiber accelerometer  

Science Journals Connector (OSTI)

A simple fiber-optic acceleration sensor has been designed and evaluated. It is an amplitude-modulation sensor, which employs inexpensive electronic instrumentation. The construction and technology of the sensor are presented. The influence of some construction parameters on sensor characteristics has been considered and measured. It is proved that simple construction modifications allow some sensor parameters to be tuned. The sensor characteristic is nonlinear. The amplitude-modulation depth reaches 50% at an acceleration of 250 m/s2 for a cantilever length of 40 mm. The maximum operating frequency is dependent on cantilever length and for length 20 mm is 125 Hz.

Jerzy Kalenik; Ryszard Paj?k

1998-01-01T23:59:59.000Z

97

Thin-Film Fiber Optic Sensors for Power Control and Fault Detection. Final Report  

SciTech Connect (OSTI)

Described is the development of an optical current measurement device, an active power conditioning system, and sol gel type thin films for the detection of magnetic fields.

Duncan, Paul Grems

2003-09-30T23:59:59.000Z

98

Optimized Tapered Optical Fiber for Ethanol (C $_{\\bf 2}$ H $_{\\bf 5}$ OH) Concentration Sensing  

Science Journals Connector (OSTI)

An optimized study of biconical tapered multi-mode plastic optical fiber sensor for concentration sensing of ethanol (C $_{2}$ ...

Yang, Hang-Zhou; Qiao, Xue-Guang; Ali, M Mahmood; Islam, Md Rajibul; Lim, Kok-Sing

2014-01-01T23:59:59.000Z

99

Optical sensing elements for nitrogen dioxide (NO.sub.2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements  

DOE Patents [OSTI]

A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.

Mechery, Shelly John (Mississippi State, MS); Singh, Jagdish P. (Starkville, MS)

2007-07-03T23:59:59.000Z

100

Fiber optic sensors for monitoring sodium circuits and power grid cables  

SciTech Connect (OSTI)

At Kalpakkam, India, a programme on development of Raman Distributed Temperature sensor (RDTS) for Fast Breeder Reactors (FBR) application is undertaken. Leak detection in sodium circuits of FBR is critical for the safety and performance of the reactors. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. A second application demonstrates the suitability of using RDTS to monitor this transmission cable for any defect. (authors)

Kasinathan, M.; Sosamma, S.; Pandian, C.; Vijayakumar, V.; Chandramouli, S.; Nashine, B. K.; Rao, C. B.; Murali, N.; Rajan, K. K.; Jayakumar, T. [IGCAR, Kalpakkam (India)

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ON THE GAGE FACTOR FOR OPTICAL FIBER GRATING STRAIN GAGES  

E-Print Network [OSTI]

of grating and fiber types. KEY WORDS: Fiber-Optic Gratings, Fiber-Optic Sensors, Strain Gage Factor 1 theoretical background. Then, in Section 3, we discuss measurement methods followed by the experimental tests and results in Section 4, before concluding in Section 5. 2. THEORETICAL BACKGROUND Consider an FBG fabricated

Park, Yong-Lae

102

Fiber optic fluid detector  

DOE Patents [OSTI]

Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

Angel, S.M.

1987-02-27T23:59:59.000Z

103

Large core fiber optic cleaver  

DOE Patents [OSTI]

The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 {micro}m. 30 figs.

Halpin, J.M.

1996-03-26T23:59:59.000Z

104

Aerogel-clad optical fiber  

DOE Patents [OSTI]

An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

Sprehn, Gregory A. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Poco, John F. (Livermore, CA); Sandler, Pamela H. (San Marino, CA)

1997-01-01T23:59:59.000Z

105

Fiber optic D dimer biosensor  

DOE Patents [OSTI]

A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy.

Glass, Robert S. (Livermore, CA); Grant, Sheila A. (Pleasanton, CA)

1999-01-01T23:59:59.000Z

106

Concentric core optical fiber with multiple-mode signal transmission  

DOE Patents [OSTI]

A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

Muhs, Jeffrey D. (Lenoir City, TN)

1997-01-01T23:59:59.000Z

107

Optical and optoelectronic fiber devices  

E-Print Network [OSTI]

The ability to integrate materials with disparate electrical, thermal, and optical properties into a single fiber structure enabled the realization of fiber devices with diverse and complex functionalities. Amongst those, ...

Shapira, Ofer, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

108

Optical high acidity sensor  

DOE Patents [OSTI]

An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.

Jorgensen, Betty S. (Jemez Springs, NM); Nekimken, Howard L. (Los Alamos, NM); Carey, W. Patrick (Lynnwood, WA); O'Rourke, Patrick E. (Martinez, GA)

1997-01-01T23:59:59.000Z

109

Progress in Fiber Optical Acoustic and Seismic Sensing  

Science Journals Connector (OSTI)

A review of the progress in fiber optic acoustic and seismic sensor systems is presented. Common advancements in areas such as multiplexing are covered as well as specific progress in...

Kirkendall, Clay; Cole, James H; Tveten, Alan B; Dandridge, Anthony

110

Optical displacement sensor  

DOE Patents [OSTI]

An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

Carr, Dustin W. (Albuquerque, NM)

2008-04-08T23:59:59.000Z

111

Optical fiber inspection system  

DOE Patents [OSTI]

A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected. 10 figs.

Moore, F.W.

1985-04-05T23:59:59.000Z

112

NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS  

SciTech Connect (OSTI)

Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also, an unclad sapphire fiber was tested as a temperature sensor at moderate temperatures (up to 775 C).

Russell G. May; Tony Peng; Tom Flynn

2004-12-01T23:59:59.000Z

113

Optical sensor of magnetic fields  

DOE Patents [OSTI]

An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

Butler, M.A.; Martin, S.J.

1986-03-25T23:59:59.000Z

114

Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532  

SciTech Connect (OSTI)

Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)

Gasbarro, Christina; Bello, Job [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States)] [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States); Bryan, Samuel; Lines, Amanda; Levitskaia, Tatiana [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)] [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)

2013-07-01T23:59:59.000Z

115

Scintillator fiber optic long counter  

DOE Patents [OSTI]

A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

McCollum, Tom (Sterling, VA); Spector, Garry B. (Fairfax, VA)

1994-01-01T23:59:59.000Z

116

Light diffusing fiber optic chamber  

DOE Patents [OSTI]

A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

Maitland, Duncan J. (Lafayette, CA)

2002-01-01T23:59:59.000Z

117

High density array fabrication and readout method for a fiber optic biosensor  

DOE Patents [OSTI]

The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its ``sensor end`` biological ``binding partners`` (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor. 9 figs.

Pinkel, D.; Gray, J.

1997-11-25T23:59:59.000Z

118

Electro-optic voltage sensor head  

DOE Patents [OSTI]

The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.

Crawford, Thomas M. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID); Woods, Gregory K. (Cornelius, OR)

1999-01-01T23:59:59.000Z

119

Fiber Optic Hydrogen Sensor Development: Cooperative Research and Development Final Report, CRADA number CRD-05-00158  

SciTech Connect (OSTI)

NREL and Nuclear Filter Technology collaborated to develop a prototype product for a hydrogen threshold sensor that was used to monitor hydrogen production in the transport of nuclear waste transport containers.

Ringer, M.

2010-07-01T23:59:59.000Z

120

Sealed fiber-optic bundle feedthrough  

DOE Patents [OSTI]

A sealed fiber-optic bundle feedthrough by which a multitude of fiber-optic elements may be passed through an opening or port in a wall or structure separating two environments at different pressures or temperatures while maintaining the desired pressure or temperature in each environment. The feedthrough comprises a rigid sleeve of suitable material, a bundle of individual optical fibers, and a resin-based sealing material that bonds the individual optical fibers to each other and to the rigid sleeve.

Tanner, Carol E. (Niles, MI)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Assessing Deterioration of ADSS Fiber Optic Cables  

E-Print Network [OSTI]

Assessing Deterioration of ADSS Fiber Optic Cables Due to Corona Discharge Final Project Report of ADSS Fiber Optic Cables Due to Corona Discharge Final Project Report George G. Karady, Project Leader-Supporting) fiber optic cables installed on high voltage lines. The high electric field on those lines generates

122

Fiber optic gap gauge  

SciTech Connect (OSTI)

A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

Wood, Billy E. (Livermore, CA); Groves, Scott E. (Brentwood, CA); Larsen, Greg J. (Brentwood, CA); Sanchez, Roberto J. (Pleasanton, CA)

2006-11-14T23:59:59.000Z

123

Impurity-doped optical shock, detonation and damage location sensor  

DOE Patents [OSTI]

A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.

Weiss, Jonathan D. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

124

Impurity-doped optical shock, detonation and damage location sensor  

DOE Patents [OSTI]

A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.

Weiss, J.D.

1995-02-07T23:59:59.000Z

125

Remotely readable fiber optic compass  

DOE Patents [OSTI]

A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

Migliori, Albert (Santa Fe, NM); Swift, Gregory W. (Los Alamos, NM); Garrett, Steven L. (Pebble Beach, CA)

1986-01-01T23:59:59.000Z

126

In Home Networking using Optical Fiber  

Science Journals Connector (OSTI)

Increased bandwidth requirements for in-home networks create opportunities for optical fiber interconnects. We outline the requirements for in-home networking and discuss the...

Ten, Sergey

127

Solar Day-Lighting Using Optical Fibers  

Science Journals Connector (OSTI)

Green lighting alternatives can substantially reduce electricity consumption. Solar day-lighting system, by transporting the concentrated sunlight through optical fibers, has been...

Kumar, Naveen; Patil, Sanket

128

Multiparameter Fiber Optic Sensing System for Monitoring Enhanced  

Open Energy Info (EERE)

Multiparameter Fiber Optic Sensing System for Monitoring Enhanced Multiparameter Fiber Optic Sensing System for Monitoring Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Multiparameter Fiber Optic Sensing System for Monitoring Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature Downhole Tools Project Description The multidisciplinary team, consisting of participants from GE, Qorex LLC, AFL Telecommunications and Sandia National Labs, has a strong record of successful harsh environment sensor technology development and will design and validate the reliability of a suite of distributed temperature, strain, vibration and precision point pressure fiber-based sensors. During the first year, the program will demonstrate fiber and sensor subsystem reliability in the presence of hydrogen at 374°C and 220 bar, which is critical to acceptance of this technology in EGS. Based on these results, a go/no-go decision will be made to complete any remaining development and proceed to prototype a high temperature cable which integrates these subsystems onto a single tool string to facilitate field deployment.

129

Existing PON Infrastructure Supported Hybrid Fiber-Wireless Sensor Networks  

Science Journals Connector (OSTI)

We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by...

Yu, Xianbin; Zhao, Ying; Deng, Lei; Pang, Xiaodan; Tafur Monroy, Idelfonso

130

Optical fibers go nano The manufacture of nanowires from optical fibers provides the longest, most uniform  

E-Print Network [OSTI]

Optical fibers go nano The manufacture of nanowires from optical fibers provides the longest, most uniform and robust nanowires. Most important, the low optical loss associated to small surface roughness and high homogeneity allows the use of nanowires for optical applications and opens the way to a host

131

Performance comparison of fiber optic tips in interferrometric displacement measurement  

SciTech Connect (OSTI)

Fiber optic displacement sensors have many potential advantages over traditional displacement measurement techniques, including small size, immunity to electromagnetic interference, electrical isolation, and high resolution. In this report, we focus on an interferometric fiber optic sensor, where the gap between the fiber tip and the device under test forms a Fabry-Perot resonant cavity. An optical interrogator measures the reflected intensity at wavelengths ranging from 1510 to 1590 nm. The spacing between resonant frequencies allows us to determine the distance from the tip to the device under test. We consider ferrule connector angled physical contact (FC/APC), ferrule connector ultra physical contact (FC/UPC) and unpolished cleaved tips and compare their influence on sensor performance. A plane wave propagation model is proposed for predicting tip effects. Comparisons are made on the basis of sensor measurement range, resolution, and sensitivity to changes in test conditions. In this paper, we discuss the experimental setup, detail our analysis, and present test results with recommendations for the applications of each tip.

Moro, Erik A [Los Alamos National Laboratory; Puckett, Anthony D [Los Alamos National Laboratory; Grahn, Rick [UNM; Karimi, Hussain [UCSD; Wilson, Kyle [ROSE HULMAN INSTITUTE OT TECH.

2010-10-21T23:59:59.000Z

132

Rugged fiber optic probe for raman measurement  

DOE Patents [OSTI]

An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.

O'Rourke, Patrick E. (Martinez, GA); Toole, Jr., William R. (Aiken, SC); Nave, Stanley E. (Evans, GA)

1998-01-01T23:59:59.000Z

133

Low-cost fiber-optic chemochromic hydrogen detector  

SciTech Connect (OSTI)

The ability to detect hydrogen gas leaks economically and with inherent safety is an important technology that could facilitate commercial acceptance of hydrogen fuel in various applications. In particular, hydrogen fueled passenger vehicles will require hydrogen leak detectors to signal the activation of safety devices such as shutoff valves, ventilating fans, alarms, etc. Such detectors may be required in several locations within a vehicle--wherever a leak could pose a safety hazard. It is therefore important that the detectors be very economical. This paper reports progress on the development of low-cost fiber-optic hydrogen detectors intended to meet the needs of a hydrogen-fueled passenger vehicle. In the design, the presence of hydrogen in air is sensed by a thin-film coating at the end of a polymer optical fiber. When the coating reacts reversibly with the hydrogen, its optical properties are changed. Light from a central electro-optic control unit is projected down the optical fiber where it is reflected from the sensor coating back to central optical detectors. A change in the reflected intensity indicates the presence of hydrogen. The fiber-optic detector offers inherent safety by removing all electrical power from the leak sites and offers reduced signal processing problems by minimizing electromagnetic interference. Critical detector performance requirements include high selectivity, response speed and durability as well as potential for low-cost production.

Benson, D.K.; Tracy, C.E.; Hishmeh, G.; Ciszek, P.; Lee, S.H. [National Renewable Energy Lab., Golden, CO (United States)

1998-08-01T23:59:59.000Z

134

Characterization of Fiber Optic CMM Probe System  

SciTech Connect (OSTI)

This report documents a study completed on the fiber optic probe system that is a part of the Werth optical CMM. This study was necessary due to a lack of documentation from the vendor for the proper use and calibration of the fiber probe, and was performed in support of the Lithographie Galvanoformung Abformung (LIGA) development program at the FM&T. As a result of this study, a better understanding of the fiber optic probe has been developed, including guidelines for its proper use and calibration.

K.W.Swallow

2007-05-15T23:59:59.000Z

135

Optical position sensor for determining the interface between a clear and an opaque fluid  

DOE Patents [OSTI]

An inexpensive, optical position sensor for measuring a position or length, x, along a one-dimensional curvilinear, coordinate system. The sensor can be used, for example, to determine the position of an interface between a clear and an opaque fluid (such as crude oil and water). In one embodiment, the sensor utilizes the principle of dual-fluorescence, where a primary fiber emits primary fluorescent light and a parallel secondary fiber collects a portion of the primary fluorescent light that is not blocked by the opaque fluid. This, in turn, excites secondary fluorescence in the secondary fiber at a longer wavelength. A light detector measures the intensity of secondary fluorescence emitted from an end of the secondary fiber, which is used to calculate the unknown position or length, x. Side-emitting fibers can be used in place of, or in addition to, fluorescent fibers. The all-optical sensor is attractive for applications involving flammable liquids.

Weiss, Jonathan D. (Albuquerque, NM)

2006-05-23T23:59:59.000Z

136

Fiber optic detector for immuno-testing  

DOE Patents [OSTI]

A portable fiber optic detector that senses the presence of specific target chemicals in air or a gas by exchanging the target chemical for a fluoroescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

Partin, Judy K. (Idaho Falls, ID); Ward, Thomas E. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID)

1992-01-01T23:59:59.000Z

137

Experimental verification of a model describing the intensity distribution from a single mode optical fiber  

SciTech Connect (OSTI)

The intensity distribution of a transmission from a single mode optical fiber is often approximated using a Gaussian-shaped curve. While this approximation is useful for some applications such as fiber alignment, it does not accurately describe transmission behavior off the axis of propagation. In this paper, another model is presented, which describes the intensity distribution of the transmission from a single mode optical fiber. A simple experimental setup is used to verify the model's accuracy, and agreement between model and experiment is established both on and off the axis of propagation. Displacement sensor designs based on the extrinsic optical lever architecture are presented. The behavior of the transmission off the axis of propagation dictates the performance of sensor architectures where large lateral offsets (25-1500 {micro}m) exist between transmitting and receiving fibers. The practical implications of modeling accuracy over this lateral offset region are discussed as they relate to the development of high-performance intensity modulated optical displacement sensors. In particular, the sensitivity, linearity, resolution, and displacement range of a sensor are functions of the relative positioning of the sensor's transmitting and receiving fibers. Sensor architectures with high combinations of sensitivity and displacement range are discussed. It is concluded that the utility of the accurate model is in its predicative capability and that this research could lead to an improved methodology for high-performance sensor design.

Moro, Erik A [Los Alamos National Laboratory; Puckett, Anthony D [Los Alamos National Laboratory; Todd, Michael D [UCSD

2011-01-24T23:59:59.000Z

138

High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors  

SciTech Connect (OSTI)

The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125{mu}m in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.

Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L. [Luna Innovations, Inc., 2851 Commerce Street, Blacksburg, VA 24060 (United States)

2004-02-04T23:59:59.000Z

139

Fiber Optical Micro-detectors for Oxygen Sensing in Power Plants  

SciTech Connect (OSTI)

A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. Previously we described a particle-in-binder approach to immobilizing the potassium salt of a molybdenum cluster, K{sub 2}Mo{sub 6}Cl{sub 14}, at the tips of optical fibers. Compared to previous methods, the particle-in-binder approach affords fibers with greatly improved mechanical properties. We have extensively characterized two fiber sensors at high temperature. We obtain quenching ratios between pure nitrogen and 21% oxygen as high as 3.9 x at 70 C. For the first sensor at 60 C we obtained a {+-} 1% variation in the quenching ratio over 6 cycles of measurement, and monitored the device performance over 23 days. We were able to operate the second sensor continuously for 14 hours at 70 C, and the sensor quenching ratio was stable to 5% over that time period. These are promising results for a high temperature fiber optical oxygen sensor based on molybdenum chloride clusters.

Gregory L. Baker; Ruby N. Ghosh; D.J. Osborn III; Po Zhang

2006-01-01T23:59:59.000Z

140

Design guidelines for optical resonator biochemical sensors  

E-Print Network [OSTI]

In this paper, we propose a design tool for dielectric optical resonator-based biochemical refractometry sensors. Analogous to the widely accepted photodetector figure of merit, the detectivity D*, we introduce a new sensor ...

Kimerling, Lionel C.

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fiber coupled optical spark delivery system  

DOE Patents [OSTI]

A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO)

2008-08-12T23:59:59.000Z

142

Fiber laser coupled optical spark delivery system  

DOE Patents [OSTI]

A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO); Joshi, Sachin (Fort Collins, CO); Reynolds, Adam (Fort Collins, CO)

2008-03-04T23:59:59.000Z

143

Integrated optical tamper sensor with planar waveguide  

DOE Patents [OSTI]

A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

Carson, R.F.; Casalnuovo, S.A.

1993-01-05T23:59:59.000Z

144

Fiber optic probe for light scattering measurements  

DOE Patents [OSTI]

This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

Nave, S.E.; Livingston, R.R.; Prather, W.S.

1993-01-01T23:59:59.000Z

145

Fiber optic probe for light scattering measurements  

DOE Patents [OSTI]

A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

Nave, Stanley E. (Evans, GA); Livingston, Ronald R. (Aiken, SC); Prather, William S. (Augusta, GA)

1995-01-01T23:59:59.000Z

146

Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated fluorescence sensors  

E-Print Network [OSTI]

Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated fluorescence sensors were developed and tested. The sensor was fabricated in a 0.5 µm CMOS process. The measured reset noise of the sensor is reduced by a factor of 10 compared to conventional active pixel

Maryland at College Park, University of

147

Hot Springs-Garrison Fiber Optic Project  

SciTech Connect (OSTI)

Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

Not Available

1994-10-01T23:59:59.000Z

148

Sandia National Laboratories: Sensors & Optical Diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensors & Optical Diagnostics New Polarized-Depolarized Measurement Capability Extends Use of RamanRayleigh Methods to More Flame Types On April 23, 2014, in Capabilities, CRF,...

149

Research On Fiber Optic Sensing Systems And Their Application As Final Repository Monitoring Tools  

SciTech Connect (OSTI)

For several years, fiber-optic sensing devices had been used for straightforward on/off monitoring functions such as presence and position detection. Recently, they gained interest as they offer a novel, exciting technology for a multitude of sensing applications. In the deep geological environment most physical properties, and thus most parameters important to safety, can be measured with fiber-optic technology. Typical examples are displacements, strains, radiation dose and dose rate, presence of some gases, temperature, pressure, etc. Their robustness, immunity to electromagnetic interference, as well as their large bandwidths and data rates ensure high reliability and superior performance. Moreover, the networking capabilities of meanwhile available fiber-optic sensors allow for efficient management of large sensor systems. Distributed sensing with multiple sensing locations on a single fiber reduces significantly the number of cables and connecting points. Reliable, cost effective, and maintenance-free solutions can thus be implemented.

Jobmann, M.; Biurrun, E.

2003-02-24T23:59:59.000Z

150

Seismic damage identification for steel structures using distributed fiber optics  

Science Journals Connector (OSTI)

A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a...

Hou, Shuang; Cai, C S; Ou, Jinping

2009-01-01T23:59:59.000Z

151

STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS  

E-Print Network [OSTI]

STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS ST´EPHANE LAFORTUNE Summary The study is crucial in applications such as lasers and optical fibers. In this proposal I will focus on a model of fiber optics: the Manakov system. This system consists of two differential equations, that is two

Kasman, Alex

152

Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components  

DOE Patents [OSTI]

Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements.

Kramer, Daniel P. (Centerville, OH)

1994-08-09T23:59:59.000Z

153

Three dimensional imaging detector employing wavelength-shifting optical fibers  

DOE Patents [OSTI]

A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.

Worstell, William A. (Framingham, MA)

1997-01-01T23:59:59.000Z

154

Three dimensional imaging detector employing wavelength-shifting optical fibers  

DOE Patents [OSTI]

A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions. 11 figs.

Worstell, W.A.

1997-02-04T23:59:59.000Z

155

Combined raman and IR fiber-based sensor for gas detection  

DOE Patents [OSTI]

A double-pass fiber-optic based spectroscopic gas sensor delivers Raman excitation light and infrared light to a hollow structure, such as a hollow fiber waveguide, that contains a gas sample of interest. A retro-reflector is placed at the end of this hollow structure to send the light back through the waveguide where the light is detected at the same end as the light source. This double pass retro reflector design increases the interaction path length of the light and the gas sample, and also reduces the form factor of the hollow structure.

Carter, Jerry C; Chan, James W; Trebes, James E; Angel, Stanley M; Mizaikoff, Boris

2014-06-24T23:59:59.000Z

156

Fiber Optics and Expanded Beam Termini  

E-Print Network [OSTI]

and claddingcore and cladding Core: inner cylinder of doped glass (i.e. Ge); 9, 50, 62.5 m diameter Cladding: outer.5m / 62.5 m corem core Laser OptimizedLaser Optimized POFPOF ­­ Plastic Optical Fiber ·Cladding ­ 125 m ·Acrylate ­ 250 m ·PVC Buffer ­ 900 m ·Aramyd Yarn (Kevlar) ·Outer Jacket ­ 2, 3mm

La Rosa, Andres H.

157

Fiber optical assembly for fluorescence spectrometry  

DOE Patents [OSTI]

A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

Carpenter, II, Robert W. (Pagosa Springs, CO); Rubenstein, Richard (Staten Island, NY); Piltch, Martin (Los Alamos, NM); Gray, Perry (Los Alamos, NM)

2010-12-07T23:59:59.000Z

158

12/22/2000 State of Art Fiber Optic 1 UTILITY APPLICATION OF  

E-Print Network [OSTI]

12/22/2000 State of Art Fiber Optic 1 UTILITY APPLICATION OF FIBER OPTIC CABLES George G. Karady Fiber Optic 2 UTILITY APPLICATION OF FIBER OPTIC CABLES Utilities are installing fiber optic cables on high voltage transmission lines. Three basic designs employed are: · 1) OPGW (optical ground wire) · 2

159

Reactive Grasping Using Optical Proximity Sensors  

E-Print Network [OSTI]

We propose a system for improving grasping using fingertip optical proximity sensors that allows us to perform online grasp adjustments to an initial grasp point without requiring premature object contact or regrasping ...

Nangeroni, Paul

160

Photosensitivity of optical fibers with extremely high germanium concentration  

Science Journals Connector (OSTI)

Writing and thermal annealing of fiber Bragg gratings (FBGs) in an optical fiber containing 75 mol.% GeO2 in the core have been studied by analyzing the first three...

Medvedkov, Oleg I; Vasiliev, Sergei A; Gnusin, Pavel I; Dianov, Evgeny M

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Implementation of a fiber-optic delay-line memory  

Science Journals Connector (OSTI)

The construction and operation of a 50-MHz 64 × 16 bit fiber-optic bit-serial delay-line memory is described. It consists of LiNbO3 directional coupler switches, fused-fiber...

Soukup, T J; Feuerstein, R J; Heuring, V P

1992-01-01T23:59:59.000Z

162

Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking  

Science Journals Connector (OSTI)

We demonstrate a novel in-line saturable absorber based on hollow optical fiber (HOF) filled with graphene composite for high power operation of mode-locked fiber laser. Evanescent...

Choi, Sun Young; Cho, Dae Kun; Song, Yong-Won; Oh, Kyunghwan; Kim, Kihong; Rotermund, Fabian; Yeom, Dong-Il

2012-01-01T23:59:59.000Z

163

Cost-Effective Side-Coupling Polymer Fiber Optics for Optical Interconnections  

Science Journals Connector (OSTI)

Potentially low-cost optical side-couplers embedded along a polymer optical fiber are demonstrated using etched micromirrors. Both serial and parallel mirror fabrication possibilities...

Li, Yao; Wang, Ting; Fasanella, Kenneth

1998-01-01T23:59:59.000Z

164

Characterization of commercial fiber optic connectors - Preliminary report  

SciTech Connect (OSTI)

Several types of commercial fiber optic connectors were characterized for potential use in a Sandia designed Laser Diode Ignition (LDI) system. The characterization included optical performance while the connectors were subjected to the more dynamic environmental conditions experienced in weapons applications. The environmental testing included temperature cycling, random vibration, and mechanical shock. This report presents a performance assessment of the fiber optic connectors and fiber included in the characterization. The desirable design features are described for a fiber optic connector that must survive the dynamic environment of weapon systems. The more detailed performance of each connector type will be included as resources permit.

Andrews, Larry A.; Williams, Randy J.

1998-09-01T23:59:59.000Z

165

Mechanism of Type IIA Photosensitivity in Optical Fibers  

Science Journals Connector (OSTI)

Formation of the type IIA Bragg gratings in germanosilicate optical fibers is studied. A mechanism for the type IIA photosensitivity is proposed which is based on nucleation and...

Shlyagin, Mikhail; Kukushkin, Sergei

166

COURSE SYLLABUS OSE 4470 FALL 2014 `FIBER-OPTIC COMMUNICATIONS'  

E-Print Network [OSTI]

of optical fiber communication systems including the optoelectronic devices used in transmitters) Optoelectronic devices used in transmitters, receivers, and multiplexers. 3) Design of the overall communication

Van Stryland, Eric

167

Fiber optic diagnostic techniques for the electrical discharge machining process.  

E-Print Network [OSTI]

??Plasma sparks from an electrical discharge machining phics. (EDM) process were observed using fiber optics positioned the dielectric oil. New measurement techniques were developed to… (more)

Pillans, Brandon William

2012-01-01T23:59:59.000Z

168

Long-gage optical fiber extensometers for dynamic evaluation of structures  

Science Journals Connector (OSTI)

This paper deals with the study of the capacity of continuously attached long-gage fiber optic sensors for a new use: dynamic evaluation of structures. The optical system is first presented, followed by the development of the precise formulation of the measurement data obtained by this sensor when applied to the dynamic analysis of beams, especially under bending oscillations. This sensor allows us to find the curvature mode shapes. Numerical simulations are then performed to estimate the dynamic characteristics of the beam by means of the continuous wavelet transform, using the data obtained with this sensor. Finally, the fiber optic sensors are bonded on a real cantilever beam and experimental data are collected from the optical measurement system, in the case of aftershock free oscillations of the instrumented beam. A similar modal identification procedure as that proposed for numerical simulations is used and the results are compared to those obtained with accelerometers and long strain gauges. This type of sensor, allowing us to find the curvature mode shapes, will be a good candidate for damage detection.

G. Cumunel; S. Delepine-Lesoille; P. Argoul

2012-01-01T23:59:59.000Z

169

Programmable optic-fiber delay line  

E-Print Network [OSTI]

. It can supply up to 2 Amp continuous output current with an output short circuit. The thermo-electric cooler (TEC) from Marlow Industries, Inc. can heat or cool material depending on the direction of the electric current driving it. The two input... the fusion. 16 Optical Fiber Electrode V-groove Fig. 5 Basic configuration of electric arc fusion splicer. In order to better understand the fusion process used in fabrication of the Mach-Zender interferometer, especially the available SIECOR model m...

Fang, Shin-Puu

1991-01-01T23:59:59.000Z

170

Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components  

DOE Patents [OSTI]

Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.

Kramer, D.P.

1994-08-09T23:59:59.000Z

171

Grizzly Substation Fiber Optics : Environmental Assessment.  

SciTech Connect (OSTI)

This notice announces BPA`s decision to construct, operate, and maintain the Grizzly Substation Fiber Optic Project (Project). This Project is part of a continuing effort by BPA to complete a regionwide upgrade of its existing telecommunications system. The US Forest Service and BPA jointly prepared the Grizzly Substation Fiber Optic Project Environmental Assessment (EA) (DOE/EA-1241) evaluating the potential environmental impacts of the Proposed Action, the Underground Installation Alternative, and the No Action Alternative. Based on the analysis in the EA, the US Forest Service and BPA have determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI. The US Forest Service has separately issued a FONSI and Decision Notice authorizing BPA to construct, operate, and maintain the Project within the Crooked River National Grassland (Grassland).

United States. Bonneville Power Administration.

1998-02-01T23:59:59.000Z

172

Ice structure monitoring with an optical fiber sensing system  

Science Journals Connector (OSTI)

Ice has been used as an effective and economical material for constructions of roads and platforms in cold regions. However, the practical applications of this brittle material are limited by the fact that ice structures can suddenly crack due to low tensile strength, be crushed due to excessive compression, melt and become soften as temperature elevates. In this paper, an early warning system is proposed to monitor the strain state and damage characteristic of ice structures. Firstly, both fiber Bragg grating (FBG) and Brillouin optical time domain analysis/reflectometry (BOTDA/R) sensors were installed in an ice block and an ice beam to understand their axial and flexural behaviors under a concentrated load. Secondly, the solution for strain state and damage process of ice structures was derived analytically under test conditions. Finally, an outdoor ice road test bed was built and continuously monitored for 34 h to validate the early warning system and understand the early stage behavior of ice structures. The experimental results agreed well with their corresponding theoretical predictions. The early warning system with optical sensors is effective and practical for long-term monitoring for ice structures.

Zhi Zhou; Minghua Huang; Jianping He; Genda Chen; Jinping Ou

2010-01-01T23:59:59.000Z

173

Introduction The Fiber-Lite MI-150 is a 150 Watt quartz halogen fiber optic illuminator designed for general microscopy  

E-Print Network [OSTI]

Introduction ® The Fiber-Lite MI-150 is a 150 Watt quartz halogen fiber optic illuminator designed for general microscopy use. When used with specialty fiber optic cables the MI-150 illuminator can also Illuminator from the carton and retain the manual and any additional documents. ! Remove the fiber optic cable

Kleinfeld, David

174

Fiber coupling with adaptive optics for free-space optical communication Thomas Weyraucha  

E-Print Network [OSTI]

Fiber coupling with adaptive optics for free-space optical communication Thomas Weyraucha , Mikhail, Department of Manufacturing Engineering, Brookline, MA 02446 ABSTRACT We describe an adaptive optical fiber coupling system for free-space optical communication comprising a micro- electromechanical deformable

175

Compact, low-cost, and high-resolution interrogation unit for optical sensors  

SciTech Connect (OSTI)

Compact wavelength detectors that resolve wavelength changes in the subpicometer range over a broad spectral range are presented. A photodiode array or position sensor device is coated with a linear variable filter that converts the wavelength of the incident light into a spatial intensity distribution. The centroid of the spatial distribution is determined by a differential readout of the two elements of the photodiode array or the position sensor device. The device can interrogate any optical sensor that produces a wavelength shift in response to a stimulus. The potential of this device was tested by interrogating fiber-Bragg-grating sensors.

Kiesel, Peter; Schmidt, Oliver; Mohta, Setu; Johnson, Noble; Malzer, Stefan [Palo Alto Research Center Inc., 3333 Coyote Hill Road, Palo Alto, California 94304 (United States); Max Planck Research Group, Institute of Optics, Information and Photonics, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany)

2006-11-13T23:59:59.000Z

176

High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting Lead Performer: Creative Light Source,...

177

All-optical interferometric switches for data regeneration in fiber optic networks  

E-Print Network [OSTI]

In the thirty years since the installation of the first fiber optic data link, data rates in installed fiber links have risen from a few Mb/s to tens of Gb/s. In the laboratory, data rates in a single optical fiber have ...

Savage, Shelby Jay, 1978-

2007-01-01T23:59:59.000Z

178

Integrated-optic fluid sensor using heat transfer  

Science Journals Connector (OSTI)

An integrated-optic fluid sensor utilizing the heat-transfer phenomenon is proposed. An optical waveguide interferometer is used to convert the temperature of the waveguide surface...

Enokihara, Akira; Izutsu, Masayuki; Sueta, Tadasi

1988-01-01T23:59:59.000Z

179

Flexible Optical Chemical Sensor Platform for BTX  

Science Journals Connector (OSTI)

An in-plane flexible sensor platform for \\{BTXs\\} detection was developed using low-cost patterning techniques and foil-based optical components. The platform was produced by a combination of laser patterning, inkjet printing and capillary filling. Key optical components such as lightguides, optical cladding layers and metallic interconnections were realized on low cost substrates such as paper and PET. The sensing mechanism is based on the change in fluorescence spectra of a reporter dye, supported over a porous matrix. Detection limits down to 1 ppm for benzene, toluene and xylene have been measured. Response times down to a few seconds were observed for different gas concentrations.

Juan Diego Arias Espinoza; Viacheslav Sazhnikov; Sami Sabik; Dmitriy Ionov; Edsger Smits; Sandeep Kalathimekkad; Geert Van Steenberge; Michail Alfimov; Ma?gorzata Po?niak; El?bieta Dobrzy?ska; Ma?gorzata Szewczy?ska; Krzysztof Benczek; Herman Schoo

2012-01-01T23:59:59.000Z

180

In-situ measurement with fiber Bragg sensors in lithium batteries for safety usage  

Science Journals Connector (OSTI)

Fiber Bragg grating sensors are integrated in lithium batteries to measure temperature variations during batteries operated under normal and abnormal conditions. The thermal...

Yang, Gang; Leităo, Catia; Li, Yuhong; Pinto, Joăo; Jiang, Xuefan

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Low-temperature hermetic sealing of optical fiber components  

DOE Patents [OSTI]

A method for manufacturing low-temperature hermetically sealed optical fi components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber.

Kramer, Daniel P. (Centerville, OH)

1996-10-22T23:59:59.000Z

182

Methods and apparatus for optical switching using electrically movable optical fibers  

DOE Patents [OSTI]

Methods and apparatuses for electrically controlled optical switches are presented. An electrically controlled optical switch includes a fixture formed using a laminated dielectric material, a first optical fiber having a fixed segment supported by the fixture and a movable segment extending into a cavity, a second optical fiber having a fixed segment supported by the fixture and an extended segment where an optical interconnect may be established between the first optical fiber and the second optical fiber, and a first electrical actuator functionally coupled to the fixture and the first fiber which alters a position of the moveable segment, based upon a control signal, for changing a state of the optical interconnect between one of two states.

Peterson, Kenneth A. (Albuquerque, NM)

2007-03-13T23:59:59.000Z

183

Electro-optical voltage sensor head  

DOE Patents [OSTI]

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

184

Effect of optically modified polyethylene terephthalate fiber socks on chronic foot pain  

E-Print Network [OSTI]

of optically modified polyethylene terephthalate fiber sockswhether socks made from polyethylene terephthalate (PET)

York, Robyn MB; Gordon, Ian L

2009-01-01T23:59:59.000Z

185

Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics  

DOE Patents [OSTI]

A non-contact method and apparatus are described for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement of mechanical characteristics of fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use. 4 figures.

Abraham, B.M.; Ketterson, J.B.; Bohanon, T.M.; Mikrut, J.M.

1994-04-12T23:59:59.000Z

186

Method for forming hermetic coatings for optical fibers  

DOE Patents [OSTI]

A method for forming hermetic coatings on optical fibers by hot filament assisted chemical vapor deposition advantageously produces a desirable coating while maintaining the pristine strength of the pristine fiber. The hermetic coatings may be formed from a variety of substances, such as, for example, boron nitride and carbon.

Michalske, Terry A. (P.O. Box 1042, Cedar Crest, NM 87008); Rye, Robert R. (1304 Espanola NE., Albuquerque, NM 87110); Smith, William L. (9916 Fostoria Rd., NE., Albuquerque, NM 87111)

1993-01-01T23:59:59.000Z

187

Fiber-optic gyroscopes based on polarization scrambling  

Science Journals Connector (OSTI)

A novel fiber-optic gyroscope with a single-mode diode laser as the light source and two polarization scramblers as time-varying depolarizers is demonstrated. This arrangement reduces...

Chien, Pie-Yau; Pan, Ci-Ling

1991-01-01T23:59:59.000Z

188

Phase sensor for solar adaptive-optics  

E-Print Network [OSTI]

Wavefront sensing in solar adaptive-optics is currently done with correlating Shack-Hartmann sensors, although the spatial- and temporal-resolutions of the phase measurements are then limited by the extremely fast computing required to correlate the sensor signals at the frequencies of daytime atmospheric-fluctuations. To avoid this limitation, a new wavefront-sensing technique is presented, that makes use of the solar brightness and is applicable to extended sources. The wavefront is sent through a modified Mach-Zehnder interferometer. A small, central part of the wavefront is used as reference and is made to interfere with the rest of the wavefront. The contrast of two simultaneously measured interference-patterns provides a direct estimate of the wavefront phase, no additional computation being required. The proposed optical layout shows precise initial alignment to be the critical point in implementing the new wavefront-sensing scheme.

Kellerer, Aglae

2011-01-01T23:59:59.000Z

189

Fiber optic diagnostic techniques for the electrical discharge machining process  

E-Print Network [OSTI]

FIBER OPTIC DIAGNOSTIC TECHNIQUES FOR THE ELECTRICAL DISCHARGE MACHINING PROCESS A Thesis by BRANDON WILLIAM PILLANS Submitted to the Office of Graduate Studies of Texas AB M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August t 998 Major Subject: Electrical Engineering FIBER OPTIC DIAGNOSTIC TECHNIQUES FOR THE ELECTRICAL DISCHARGE MACHINING PROCESS A Thesis by BRANDON WILLIAM PILLANS Submitted to Texas A8M University in partial...

Pillans, Brandon William

2012-06-07T23:59:59.000Z

190

Use of a fiber optic probe for organic species determination  

DOE Patents [OSTI]

A fiber optic probe for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe's distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device.

Ekechukwu, Amy A. (Augusta, GA)

1996-01-01T23:59:59.000Z

191

Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same  

DOE Patents [OSTI]

A fiber optic probe for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers.

O'Rourke, Patrick E. (Martinez, GA); Livingston, Ronald R. (Aiken, SC)

1995-01-01T23:59:59.000Z

192

Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same  

DOE Patents [OSTI]

A fiber optic probe is disclosed for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers. 3 figures.

O`Rourke, P.E.; Livingston, R.R.

1995-03-28T23:59:59.000Z

193

Sensors and Actuators A xxx (2004) xxxxxx Micromachined silicon force sensor based on diffractive optical  

E-Print Network [OSTI]

Sensors and Actuators A xxx (2004) xxx­xxx Micromachined silicon force sensor based on diffractive-based force sensor integrated with a surface micromachined silicon-nitride probe for penetration and injection that is designed to only be sensitive to axial deflections of the probe. The optical-encoder force sensor exhibits

Quake, Stephen R.

194

Stabilized dual-wavelength fiber-optic interferometer for vibration measurement  

Science Journals Connector (OSTI)

A stabilized fiber-optic interferometer was developed for vibration measurement by using two laser diodes of different wavelengths and one polarization-maintaining fiber. Passive...

Wright, O B

1991-01-01T23:59:59.000Z

195

Spatially Multiplexed Fiber-optic Microscopy for Simultaneous Imaging of Multiple Brain Regions  

Science Journals Connector (OSTI)

Spatially multiplexed fiber-optic imager is experimentally demonstrated. Our system utilizes a trifurcated fiber bundles for real-time brain imaging in 3 different areas.

Cha, Jaepyeong; Kang, Jin U

196

E-Print Network 3.0 - absolute fiber optic Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index Terms--Characterization, fiber-arrays, optical fiber, op- tical waveguides, optoelectronic... large numbers of input and output channels that require precisely aligned ......

197

Waveguide-based optical chemical sensor  

DOE Patents [OSTI]

The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

Grace, Karen M. (Ranchos de Taos, NM); Swanson, Basil I. (Los Alamos, NM); Honkanen, Seppo (Tucson, AZ)

2007-03-13T23:59:59.000Z

198

Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration  

SciTech Connect (OSTI)

This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

Challener, William

2014-12-31T23:59:59.000Z

199

Use of sensors in monitoring civil structures  

E-Print Network [OSTI]

This thesis surveys the use of sensors and sensor networks in monitoring civil structures, with particular emphasis on the monitoring of bridges and highways using fiber optic sensors. Following a brief review of the most ...

Daher, Bassam William, 1979-

2004-01-01T23:59:59.000Z

200

Excess optical quantum noise in atomic sensors  

E-Print Network [OSTI]

Enhanced nonlinear optical response of a coherent atomic medium is the basis for many atomic sensors, and their performance is ultimately limited by the quantum fluctuations of the optical read-out. Here we demonstrate that off-resonant interactions can significantly modify the quantum noise of the optical field, even when their effect on the mean signal is negligible. We illustrate this concept by using an atomic magnetometer based on the nonlinear Faraday effect: the rotation of the light polarization is mainly determined by the resonant light-induced spin alignment, which alone does not change the photon statistics of the optical probe. Yet, we found that the minimum noise of output polarization rotation measurements is above the expected shot noise limit. This excess quantum noise is due to off-resonant coupling and grows with atomic density. We also show that the detection scheme can be modified to reduce the measured quantum noise (even below the shot-noise limit) but only at the expense of the reduced rotational sensitivity. These results show the existence of previously unnoticed factors in fundamental limitations in atomic magnetometry and could have impacts in many other atom-light based precision measurements.

Irina Novikova; Eugeniy E. Mikhailov; Yanhong Xiao

2014-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Compensation for the self-steepening effects in optical fiber communication system using midway optical phase conjugation  

Science Journals Connector (OSTI)

Effects of self-steepening (SS) of chirped Gaussian pulses on optical fiber communication system using midway optical phase conjugation (OPC) are analyzed. Dynamic evolution of the...

Bu, Yang; Wang, Xiangzhao

2004-01-01T23:59:59.000Z

202

In situ, subsurface monitoring of vapor-phase TCE using fiber optics  

SciTech Connect (OSTI)

A vapor-phase, reagent-based, fiber optic trichloroethylene (TCE) sensor developed by Lawrence Livermore National Laboratory (LLNL) was demonstrated at the Savannah River Site (SRS) in two configurations. The first incorporated the sensor into a down-well instrument bounded by two inflatable packers capable of sealing an area for discrete depth analysis. The second involved an integration of the sensor into the probe tip of the Army Corps of Engineers Waterways Experiment Station (WES) cone penetrometry system. Discrete depth measurements of vapor-phase concentrations of TCE in the vadose zone were successfully made using both configurations. These measurements demonstrate the first successful in situ sensing (as opposed to sampling) of TCE at a field site.

Rossabi, J. [Westinghouse Savannah River Co., Aiken, SC (United States); Colston, B. Jr.; Brown, S.; Milanovich, F. [Lawrence Livermore National Lab., CA (United States); Lee, L.T. Jr. [Army Engineer Waterways Experiment Station, Vicksburg, MS (United States). Geotechnical Lab.

1993-03-05T23:59:59.000Z

203

Electro-optic high voltage sensor  

DOE Patents [OSTI]

A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

Davidson, James R. (Idaho Falls, ID); Seifert, Gary D. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

204

Optical fiber networks boost utilities` power to thrive  

SciTech Connect (OSTI)

Recent legislative and regulatory initiatives have propelled the electric power industry onto the information superhighway. Utility companies are not only becoming large users of the information superhighway, but they also are building the physical network to carry the traffic. Some utilities are implementing fiber-optic projects that match or even exceed the size, scope and capabilities of networks installed by telecommunications firms and cable-television companies. Current optical-fiber deployments range from hundreds or thousands of route miles planned or installed by large utilities-such as Entergy and The Southern Company-to networks of just a few route miles envisioned by many smaller municipalities.

McDonald, M.; Boxer, M.

1997-07-01T23:59:59.000Z

205

Ship Effect Measurements With Fiber Optic Neutron Detector  

SciTech Connect (OSTI)

The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

2010-08-10T23:59:59.000Z

206

Germania-Based Core Optical Fibers  

Science Journals Connector (OSTI)

Germania-glass-based core silica glass cladding single-mode fibers (Delta n up to 0.143) with a minimum loss of 20 dB/km at 1.9 µm were fabricated by the modified chemical vapor...

Dianov, Evgeny M; Mashinsky, Valery M

2005-01-01T23:59:59.000Z

207

Amendment to LM-07-12 for Fiber Optic Cable Trenching at the...  

Broader source: Energy.gov (indexed) [DOE]

Amendment to LM-07-12 for Fiber Optic Cable Trenching at the Westminster, Colorado, Office Amendment to LM-07-12 for Fiber Optic Cable Trenching at the Westminster, Colorado,...

208

Measurement of distributed strain due to laying and recovery of submarine optical fiber cable  

Science Journals Connector (OSTI)

Strain distribution due to cable laying and recovery is measured, using Brillouin optical fiber time domain analysis in a 3.7-km long submarine optical fiber cable. We believe this is...

Kurashima, Toshio; Horiguchi, Tsuneo; Yoshizawa, Nobuyuki; Tada, Hidenobu; Tateda, Mitsuhiro

1991-01-01T23:59:59.000Z

209

Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling  

Science Journals Connector (OSTI)

We introduce a novel photonic crystal fiber (PCF) temperature sensor that is based on intensity modulation and liquid ethanol filling of air holes with index-guiding PCF. The mode...

Yu, Yongqin; Li, Xuejin; Hong, Xueming; Deng, Yuanlong; Song, Kuiyan; Geng, Youfu; Wei, Huifeng; Tong, Weijun

2010-01-01T23:59:59.000Z

210

Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases  

E-Print Network [OSTI]

Electrospun polyaniline (PAni) fibers doped with different levels of (+)-camphor-10-sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and ...

Zhang, Yuxi

211

Circulating Optical Particle Trapping through the Integration of Fiber Optics and Microfluidics  

Science Journals Connector (OSTI)

A dual-fiber optic trap is integrated with microfluidics, and stable circulatory particle trapping is observed. The unique circulating and flow-dependant nature of the trap enables...

Blakely, J Thomas; Gordon, Reuven; Sinton, David

212

Preform For Producing An Optical Fiber And Method Therefor  

DOE Patents [OSTI]

The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.

Kliner, Dahv A. V. (San Ramon, CA); Koplow, Jeffery P. (Washington, DC)

2005-04-19T23:59:59.000Z

213

Preform For Producing An Optical Fiber And Method Therefor  

DOE Patents [OSTI]

The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.

Kliner, Dahv A. V. (San Ramon, CA); Koplow, Jeffery P. (Washington, DC)

2004-08-10T23:59:59.000Z

214

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents [OSTI]

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

Hart, M.M.

1995-04-18T23:59:59.000Z

215

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents [OSTI]

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, Mark M. (Aiken, SC)

1995-01-01T23:59:59.000Z

216

All-fiber optical parametric amplifier for life-science application  

Science Journals Connector (OSTI)

We demonstrate an all-fiber optical parametric amplifier for life-science (OPALS) application. Optical amplification of megahertz serial time-encoded amplified microscopy (STEAM)...

Wei, Xiaoming; Lau, Andy; Xu, Yiqing; Zhang, Chi; Mussot, Arnaud; Kudlinski, Alexandre; Tsia, Kevin; Wong, Kenneth

217

Compact multiwavelength transmitter module for multimode fiber optic ribbon cable  

DOE Patents [OSTI]

A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.

Deri, Robert J. (Pleasanton, CA); Pocha, Michael D. (Livermore, CA); Larson, Michael C. (Goleta, CA); Garrett, Henry E. (Livermore, CA)

2002-01-01T23:59:59.000Z

218

Expanded beam non-imaging fiber optic connector  

DOE Patents [OSTI]

There is disclosed an expanded beam fiber to fiber connector, based on non-imaging optic principles for coupling light beams from one optical fiber to another. The system consists of two identical connector parts, referred to herein as a collimating part and a concentrating part, each having a preferred partially curved reflective boundary surface for minimizing power loss and surrounding either a hollow space or a space filled with a uniform transparent medium. In one embodiment the boundary is metallic while in a second embodiment the boundary is in the form of an interface allowing total internal reflection. In both the hollow and filled case a lens may be located at the expanded end of both the collimator part and the concentrator part forming the connector. The connector is preferably located in a housing in order to protect and preserve the mechanical stability of the coupler. 13 figs.

Jannson, T.; Jannson, J.; Yeung, P.

1990-02-06T23:59:59.000Z

219

Publish date: 06/27/2011 ECE 4360: Fiber Optic Systems  

E-Print Network [OSTI]

Publish date: 06/27/2011 ECE 4360: Fiber Optic Systems Credit / Contact hours: 3 / 3 Course coordinator: Zhaoyang Fan Textbook(s) and/or other required material: Keiser, Optical Fiber Communications, McGraw Hill, 2000. Catalog description: Optical fibers, couplers, sources, and detectors; applications

Gelfond, Michael

220

Seismic-frequency attenuation and moduli estimates using a fiber-optic strainmeter Ludmila Adam 1  

E-Print Network [OSTI]

Seismic-frequency attenuation and moduli estimates using a fiber-optic strainmeter Ludmila Adam 1 Summary We have developed a fiber-optic strainmeter to estimate velocities and attenuation at seismic only part of the core sample, the fiber-optic strainmeter would analyze the rock sample response

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Fiber Optic Multiplexed Upgraded Thomson Scattering Diagnostic for the ISTTOK Tokamak  

E-Print Network [OSTI]

The Fiber Optic Multiplexed Upgraded Thomson Scattering Diagnostic for the ISTTOK Tokamak M. P by different length optical fibers used to relay the scattered light to a single spectrometer. 2. Thomson vessel and opposite to the collection lenses. Figure 1 shows the present two fiber optic Thomson

222

Universal fiber-optic C.I.E. colorimeter  

DOE Patents [OSTI]

Apparatus for color measurements according to the C.I.E. system comprises a first fiber optic cable for receiving and linearizing light from a light source, a lens system for spectrally displaying the linearized light and focusing the light on one end of a trifurcated fiber optic assembly that integrates and separates the light according to the three C.I.E. tristimulus functions. The separated light is received by three photodiodes and electronically evaluated to determine the magnitude of the light corresponding to the tristimulus functions. The fiber optic assembly is made by forming, at one end, a bundle of optic fibers to match the contours of one of the tristimulus functions, encapsulating that bundle, adding a second bundle that, together with the first bundle, will match the contours of the first plus one other tristimulus function, encapsulating that second bundle, then adding a third bundle which together with the first and second bundles, has contours matching the sum of all three tristimulus functions. At the other end of the assembly the three bundles are separated and aligned with their respective photodiodes.

Kronberg, James W. (353 Church Rd., Beech Island, SC 29841)

1992-01-01T23:59:59.000Z

223

Optical fiducial timing system for X-ray streak cameras with aluminum coated optical fiber ends  

DOE Patents [OSTI]

An optical fiducial timing system is provided for use with interdependent groups of X-ray streak cameras (18). The aluminum coated (80) ends of optical fibers (78) are positioned with the photocathodes (20, 60, 70) of the X-ray streak cameras (18). The other ends of the optical fibers (78) are placed together in a bundled array (90). A fiducial optical signal (96), that is comprised of 2.omega. or 1.omega. laser light, after introduction to the bundled array (90), travels to the aluminum coated (82) optical fiber ends and ejects quantities of electrons (84) that are recorded on the data recording media (52) of the X-ray streak cameras (18). Since both 2.omega. and 1.omega. laser light can travel long distances in optical fiber with only a slight attenuation, the initial arial power density of the fiducial optical signal (96) is well below the damage threshold of the fused silica or other material that comprises the optical fibers (78, 90). Thus the fiducial timing system can be repeatably used over long durations of time.

Nilson, David G. (Oakland, CA); Campbell, E. Michael (Pleasanton, CA); MacGowan, Brian J. (Livermore, CA); Medecki, Hector (Livermore, CA)

1988-01-01T23:59:59.000Z

224

Fiber Fabry-Perot interferometer (FFPI) sensor using vertical cavity surface emitting laser (VCSEL)  

E-Print Network [OSTI]

............................................................................................1 I.B Research objective .............................................................................6 II FIBER FABRY-PEROT INTERFEROMETER (FFPI) SENSOR .................7 II.A Theory...)..............................................................................................14 IV EXPERIMENTAL INVESTIGATION OF VCSELs...................................18 V EXPERIMENTAL INVESTIGATIONS OF FFPI SENSORS MONTORED WITH 850 nm VCSELs ........................................................21 V.A Experimental...

Lee, Kyung-Woo

2006-10-30T23:59:59.000Z

225

Simultaneous Cancellation of Fiber Loss, Dispersion, and Kerr Effect in Ultralong-Haul Optical Fiber Transmission by Midway Optical Phase Conjugation Incorporated With Distributed Raman Amplification  

Science Journals Connector (OSTI)

An alternative application of distributed Raman amplification (DRA) for ultralong-haul optical fiber transmission is proposed. In our study, the DRA is employed in a transmission...

Kaewplung, Pasu; Kikuchi, Kazuro

2007-01-01T23:59:59.000Z

226

Characterization of Single-mode Chalcogenide Optical Fiber for Mid-Infrared Applications  

SciTech Connect (OSTI)

Chalcogenide fibers display a wide transmission window ranging from 2-10.6 ?m, ideally suited to the development of passive and active mid-infrared (MIR) sensors. They are essential building blocks for the integration and miniaturization of laser-based MIR optical systems for terrestrial, airborne and space-based sensing platforms. Single-mode chalcogenide fibers have only recently become commercially available and therefore performance data and standard reproducible processing techniques have not been widely reported. In this paper we present a method for producing high quality facets on commercial single-mode As-Se fibers with core and cladding diameters of 28.1 and 169.9?m respectively. The emitted beam profile from these fibers, using the 9.4?m line of a tunable CO2 laser, showed the presence of leaky cladding modes due to waveguiding conditions created by the protective acrylate jacket. These undesirable cladding modes were easily suppressed by applying a gallium coating on the cladding near both input and output facets. We provide experimental data of efficient mode suppression and the emission of a circular near-perfect Gaussian beam profile from the fiber. A model to determine appropriate placement of gallium coatings to minimize processing while maximizing cladding mode suppression is currently underway. Furthermore, analyses of the beam, acquired by scanning an HgCdTe detector, yielded a 1/e2 numerical aperture of 0.11 with a full width half maximum divergence of 11° for these fibers. The availability of single-mode MIR fibers, in conjunction with recent advances in room temperature quantum cascade lasers (QCL), could provide compact and light-weight transmitter solutions for several critical defense and nuclear non-proliferation needs.

Krishnaswami, Kannan; Qiao, Hong (Amy); Bernacki, Bruce E.; Anheier, Norman C.

2009-04-01T23:59:59.000Z

227

Wavelength meter having single mode fiber optics multiplexed inputs  

DOE Patents [OSTI]

A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

Hackel, R.P.; Paris, R.D.; Feldman, M.

1993-02-23T23:59:59.000Z

228

Wavelength meter having single mode fiber optics multiplexed inputs  

DOE Patents [OSTI]

A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

Hackel, Richard P. (Livermore, CA); Paris, Robert D. (San Ramon, CA); Feldman, Mark (Pleasanton, CA)

1993-01-01T23:59:59.000Z

229

New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application  

SciTech Connect (OSTI)

Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

2007-12-31T23:59:59.000Z

230

Demonstrating LED and Fiber Optic Lighting in Commissary Applications  

Broader source: Energy.gov (indexed) [DOE]

Demonstrating LED and Fiber Optic Demonstrating LED and Fiber Optic Lighting in Commissary Applications Joseph Konrade Energy Technology Program Specialist Federal Energy Management Program 2 GOAL OF THE PROJECT * Promote New Lighting Technology * Document Energy Savings * Duplicate the technology * Expand Alternative Financing Opportunities * Include Lighting Technology in Government Projects within Utility Service Territory 3 History * FEMP sponsored E4 audits * Audit designed to review Utility Cost, Operations and Maintenance, New Technology Application * 3 Defense Commissary Agency (DeCA) received services under the agreement with DOE * Fort George G Meade pays a high electricity rate Electricity cost $0.171/kWh (PWC sub-metered rate) * Commissary was previously unmetered - Meter installed during installation of lighting project. New meter showing higher

231

Understanding High-Power Fiber-Optic Laser Beam Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Power Fiber-Optic Laser Beam Delivery High-Power Fiber-Optic Laser Beam Delivery The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. W- 31-109-ENG-38. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. Boyd V. Hunter and Keng H. Leong Argonne National Laboratory Technology Development Division Laser Applications Laboratory 9700 South Cass Avenue, Building 207 Argonne, Illinois 60439 Carl B. Miller, James F. Golden, Robert D. Glesias and Patrick J. Laverty U. S. Laser Corporation 825 Windham Court North P. O. Box 609 Wyckoff, New Jersey 07481 March 25, 1996 Manuscript to be submitted to Journal of Laser Applications

232

Optical fiber technique as a tool to improve combustion efficiency  

SciTech Connect (OSTI)

A multi-optical fiber technique is presented, which enables one to detect the flame propagation during non-knocking and knocking conditions in real production engines. The measurement technique is appropriate to detect knock onset locations and to describe the propagation of knocking reaction fronts. With this knowledge, the combustion chamber shape can be optimized, leading to a better knock resistance and higher combustion efficiencies. Results of flame propagation under non-knocking and knocking engine operating conditions are presented. In addition, correlations between knock onset locations and areas in which knock damage occurs are shown for different engines. Presented are the effects of combustion chamber modifications on the combustion efficiency, based on the analysis of the optical fiber measurements.

Spicher, U.; Krebs, R.

1990-01-01T23:59:59.000Z

233

Medical catheters thermally manipulated by fiber optic bundles  

DOE Patents [OSTI]

A maneuverable medical catheter comprising a flexible tube having a functional tip. The catheter is connected to a control source. The functional tip of the catheter carries a plurality of temperature activated elements arranged in parallel and disposed about the functional tip and held in spaced relation at each end. These elements expand when they are heated. A plurality of fiber optic bundles, each bundle having a proximal end attached to the control source and a distal end attached to one of the elements carry light into the elements where the light is absorbed as heat. By varying the optic fiber that is carrying the light and the intensity of the light, the bending of the elements can be controlled and thus the catheter steered. In an alternate embodiment, the catheter carries a medical instrument for gathering a sample of tissue. The instrument may also be deployed and operated by thermal expansion and contraction of its moving parts.

Chastagner, Philippe (608 Aumond Rd., Augusta, GA 30909)

1992-01-01T23:59:59.000Z

234

Mechanical behavior of silica optical fibers coated with low index, low surface energy perfluorinated polymer  

E-Print Network [OSTI]

based on perfluorinated polymer were prepared for use as UV-curable optical cladding for silica fibers fibers, with a core doped with rare earth elements, could potentially be used as laser fibers but require special optical cladding. This cladding should have a low refractive index, low modulus of elasticity

Matthewson, M. John

235

Tapered optical fibers as tools for probing magneto-optical trap characteristics  

SciTech Connect (OSTI)

We present a novel technique for measuring the characteristics of a magneto-optical trap (MOT) for cold atoms by monitoring the spontaneous emission from trapped atoms coupled into the guided mode of a tapered optical nanofiber. We show that the nanofiber is highly sensitive to very small numbers of atoms close to its surface. The size and shape of the MOT, determined by translating the cold atom cloud across the tapered fiber, is in excellent agreement with measurements obtained using the conventional method of fluorescence imaging using a charge coupled device camera. The coupling of atomic fluorescence into the tapered fiber also allows us to monitor the loading and lifetime of the trap. The results are compared to those achieved by focusing the MOT fluorescence onto a photodiode and it was seen that the tapered fiber gives slightly longer loading and lifetime measurements due to the sensitivity of the fiber, even when very few atoms are present.

Morrissey, Michael J.; Deasy, Kieran [Department of Applied Physics and Instrumentation, Cork Institute of Technology, Cork (Ireland); Photonics Centre, Tyndall National Institute, University College Cork, Prospect Row, Cork (Ireland); Wu Yuqiang; Nic Chormaic, Sile [Photonics Centre, Tyndall National Institute, University College Cork, Prospect Row, Cork (Ireland); Department of Physics, University College Cork, Cork (Ireland); Chakrabarti, Shrabana [Photonics Centre, Tyndall National Institute, University College Cork, Prospect Row, Cork (Ireland)

2009-05-15T23:59:59.000Z

236

Telemetry with an Optical Fiber Revisited: An Alternative Strategy  

Science Journals Connector (OSTI)

With a new data-acquisition system developed by PASCO scientific an experiment on telemetry with an optical fiber 1 2 can be made easier and more accurate. For this aim an alternative strategy of the remote temperature measurements is proposed: the frequency of light pulses transmitted via the light guide numerically equals the temperature using known manufacturer's data or an initial calibration step. The additional equipment for the experiment is reduced to a minimum.

2014-01-01T23:59:59.000Z

237

Cloaking a sensor for three-dimensional Maxwell's equations: transformation optics approach  

E-Print Network [OSTI]

P. Sheng, “Transformation optics and metamaterials,” Nat.sensor via transformation optics,” Phys. Rev. E 83, 016603 (October 2011 / Vol. 19, No. 21 / OPTICS EXPRESS 20518 13. G.

Chen, Xudong; Uhlmann, Gunther

2011-01-01T23:59:59.000Z

238

Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist  

SciTech Connect (OSTI)

We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on the well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.

Holleis, S.; Hoinkes, T.; Wuttke, C.; Schneeweiss, P.; Rauschenbeutel, A. [Vienna Center for Quantum Science and Technology, TU Wien—Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

2014-04-21T23:59:59.000Z

239

Fiber-optic apparatus and method for measurement of luminescence and raman scattering  

DOE Patents [OSTI]

A dual fiber forward scattering optrode for Raman spectroscopy with the remote ends of the fibers in opposed, spaced relationship to each other to form a analyte sampling space therebetween and the method of measuring Raman spectra utilizing same. One optical fiber is for sending an exciting signal to the remote sampling space and, at its remote end, has a collimating microlens and an optical filter for filtering out background emissions generated in the fiber. The other optical fiber is for collecting the Raman scattering signal at the remote sampling space and, at its remote end, has a collimating microlens and an optical filter to prevent the exciting signal from the exciting fiber from entering the collection fiber and to thereby prevent the generation of background emissions in the collecting fiber.

Myrick, Michael L. (Livermore, CA); Angel, Stanley M. (Livermore, CA)

1993-01-01T23:59:59.000Z

240

Optical fiber configurations for transmission of laser energy over great distances  

DOE Patents [OSTI]

There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

Rinzler, Charles C; Zediker, Mark S

2014-11-04T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Part-Per-Trillion Level SF6 Detection Using a Quartz Enhanced Photoacoustic Spectroscopy-Based Sensor with Single-Mode Fiber-Coupled Quantum Cascade Laser Excitation  

SciTech Connect (OSTI)

A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 µm and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-infrared fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor . The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and micro-resonator tubes. SF6 was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with a QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7x10-10 W•cm-1/Hz1/2.

Spagnolo, V.; Patimisco, P.; Borri, Simone; Scamarcio, G.; Bernacki, Bruce E.; Kriesel, J.M.

2012-10-23T23:59:59.000Z

242

Optics-less Sensors for Localization of Radiation Sources  

E-Print Network [OSTI]

A new family of radiation sensors is introduced which do not require any optics. The sensors consist of arrays of elementary sub-sensors with natural cosine-law or similar angular sensitivity supplemented with a signal processing unit that computes optimal statistical estimations of source parameters. We show, both theoretically and by computer simulation, that such sensors are capable of accurate localization and intensity estimation of a given number of radiation sources and of imaging of a given number of sources in known positions. The accuracy is found to be dependent only on the sub-sensors noise level, on the number of sub-sensors and on the spacing between radiation sources.

H. J. Caulfield; L. P. Yaroslavsky; Ch. Goerzen; S. Umansky

2008-08-08T23:59:59.000Z

243

Fiber optic assembly and method of making same  

DOE Patents [OSTI]

There is provided an assembly having a light guiding medium sealed to a holder. Preferably the holder is a metal shell and a light guiding medium is an optical fiber of glass or sapphire whisker. The assembly includes a sealing medium which sealingly engages the metal holder to the fiber. In the formation of the assembly, the seal is essentially hermetic having a capability of minimizing leakage having a helium leak rate of less than 1{times}10{sup {minus}8} cubic centimeters per second and high strength having a capability of withstanding pressures of 100,000 psi or greater. The features of the assembly are obtained by a specific preparation method and by selection of specific starting materials. The fiber is selected to have a sufficiently high coefficient of thermal expansion which minimizes strains in the component during fabrication, as a result of fabrication, and during use. The other components are selected to be of a material having compatible coefficients of thermal expansion (TEC) where the TEC of the holder is greater than or equal to the TEC of the sealing material. The TEC of the sealing material is in turn greater than or equal to the TEC of the fiber. It is preferred that the materials be selected so that their respective coefficients of thermal expansion are as close as possible to one another and they may all be equal. 4 figs.

Kramer, D.P.; Beckman, T.M.

1997-09-02T23:59:59.000Z

244

DOE, City of Richland and Benton PUD Increase Fiber Optic Telecommunication  

Broader source: Energy.gov (indexed) [DOE]

DOE, City of Richland and Benton PUD Increase Fiber Optic DOE, City of Richland and Benton PUD Increase Fiber Optic Telecommunication Capacity in Benton County - Upgrade improves communications at Hanford Site, schools and libraries DOE, City of Richland and Benton PUD Increase Fiber Optic Telecommunication Capacity in Benton County - Upgrade improves communications at Hanford Site, schools and libraries March 14, 2013 - 12:00pm Addthis Fiber Optic Broadband Fiber Optic Broadband Media Contact Cameron Salony, 509-376-0402 Cameron.Salony@rl.doe.gov RICHLAND, Wash. - The Department of Energy (DOE), city of Richland, and Benton County's Public Utility District (Benton PUD) jointly implemented a high-capacity fiber optic cable in Richland and at the Hanford Site. The project will improve communications throughout the area.

245

Fiber optic probe of free electron evanescent fields in the optical frequency range  

SciTech Connect (OSTI)

We introduce an optical fiber platform which can be used to interrogate proximity interactions between free-electron evanescent fields and photonic nanostructures at optical frequencies in a manner similar to that in which optical evanescent fields are sampled using nanoscale aperture probes in scanning near-field microscopy. Conically profiled optical fiber tips functionalized with nano-gratings are employed to couple electron evanescent fields to light via the Smith-Purcell effect. We demonstrate the interrogation of medium energy (30–50?keV) electron fields with a lateral resolution of a few micrometers via the generation and detection of visible/UV radiation in the 700–300?nm (free-space) wavelength range.

So, Jin-Kyu, E-mail: js1m10@orc.soton.ac.uk; MacDonald, Kevin F. [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I. [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371 (Singapore)

2014-05-19T23:59:59.000Z

246

Nonlocal memory assisted entanglement distribution in optical fibers  

E-Print Network [OSTI]

Successful implementation of several quantum information and communication protocols require distributing entangled pairs of quantum bits in reliable manner. While there exists a substantial amount of recent theoretical and experimental activities dealing with non-Markovian quantum dynamics, experimental application and verification of the usefulness of memory-effects for quantum information tasks is still missing. We combine these two aspects and show experimentally that a recently introduced concept of nonlocal memory effects allows to protect and distribute polarization entangled pairs of photons in efficient manner within polarization-maintaining (PM) optical fibers. The introduced scheme is based on correlating the environments, i.e. frequencies of the polarization entangled photons, before their physical distribution. When comparing to the case without nonlocal memory effects, we demonstrate at least 12-fold improvement in the channel, or fiber length, for preserving the highly-entangled initial polarization states of photons against dephasing.

Guo-Yong Xiang; Zhi-Bo Hou; Chuan-Feng Li; Guang-Can Guo; Heinz-Peter Breuer; Elsi-Mari Laine; Jyrki Piilo

2014-01-20T23:59:59.000Z

247

Core stress distribution of phase shifting multimode polymer optical fiber  

SciTech Connect (OSTI)

Poly-(methyl methacrylate-co-benzyl methacrylate) polarization-maintaining optical fibers are known for their high response to normal stress. In this report, responses to higher stress levels up to 0.45?MPa were investigated. The stress amplitude and direction in the fiber cross section were calculated and analyzed with a coincident mode-field obtained from the near-field pattern. The stress amplitude varies significantly in the horizontal direction and is considered to create multiple phases, explaining the measurement results. To investigate possible permanent deformation, the core yield point profile was analyzed. Although it largely exceeds the average applied stress, the calculated stress distribution indicates that the core could partially experience stress that exceeds the yield point.

Furukawa, Rei, E-mail: furukawa@ee.uec.ac.jp; Matsuura, Motoharu [Center for Frontier Science and Engineering, The University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585 (Japan)] [Center for Frontier Science and Engineering, The University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585 (Japan); Nagata, Morio; Mishima, Kenji [Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904 (Japan)] [Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904 (Japan); Inoue, Azusa; Tagaya, Akihiro; Koike, Yasuhiro [Keio Photonics Research Institute, Keio University, Saiwaiku Shinkawasaki 7-1, Kawasaki, Kanagawa 212-0032 (Japan)] [Keio Photonics Research Institute, Keio University, Saiwaiku Shinkawasaki 7-1, Kawasaki, Kanagawa 212-0032 (Japan)

2013-11-18T23:59:59.000Z

248

Optical power transversely scattered from fiber Bragg gratings:?far-field measurements and modeling  

Science Journals Connector (OSTI)

Far-field properties of the optical power scattered from type IIA Bragg gratings photowritten within high-N.A. germanosilicate fibers have been studied under various experimental...

Pureur, D; Martinelli, G; Bernage, P; Niay, P; Douay, M; Monerie, M

1997-01-01T23:59:59.000Z

249

How the pitch of a holey optical fiber affects its lightguide properties  

Science Journals Connector (OSTI)

This paper discusses how scaling (increasing) the transverse dimensions of a holey optical quartz fiber affects its lightguide properties. It is established that a limiting pitch...

Dukel'skii, K V; Kondrat'ev, Yu N; Komarov, A V; Ter-Nersesyants, E V; Khokhlov, A V; Shevandin, V S

2006-01-01T23:59:59.000Z

250

Fiber-optic heterodyne phase-shift measurement of plasma current  

Science Journals Connector (OSTI)

By combining twisted optical sensing fiber and heterodyne phase detection of circular birefringence we have (a) overcome the distortion problem caused by residual linear birefringence...

Chandler, George I; Forman, P R; Jahoda, F C; Klare, K A

1986-01-01T23:59:59.000Z

251

Optical vibration sensor fabricated by femtosecond laser micromachining  

SciTech Connect (OSTI)

We fabricated an optical vibration sensor using a high-repetition rate femtosecond laser oscillator. The sensor consists of a single straight waveguide written across a series of three pieces of glass. The central piece is mounted on a suspended beam to make it sensitive to mechanical vibration, acceleration, or external forces. Displacement of the central piece is detected by measuring the change in optical transmission through the waveguide. The resulting sensor is small, simple, and requires no alignment. The sensor has a linear response over the frequency range 20 Hz-2 kHz, can detect accelerations as small as 0.01 m/s{sup 2}, and is nearly temperature independent.

Kamata, Masanao; Obara, Minoru; Gattass, Rafael R.; Cerami, Loren R.; Mazur, Eric [Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States)

2005-08-01T23:59:59.000Z

252

Distributed Optical Sensor for CO2 Leak Detection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Sensor for CO Optical Sensor for CO 2 Leak Detection Opportunity Research is active on the technology "Distributed Optical Sensor for CO 2 Leak Detection," for which a Patent Application has been filed. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview The availability of fossil fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, there are concerns over the impacts of greenhouse gases (GHGs) in the atmosphere-particularly carbon dioxide (CO 2 ). Carbon capture and storage in geologic formations is a promising technology to reduce the impact of CO

253

Linearity and CNR Improvement Technologies against Optical Reflection inFiber-Oriented Wireless Access Systems  

Science Journals Connector (OSTI)

It is important to consider optical reflection conditions when designing fiber-oriented wireless access systems around subcarrier optical transmission since the noise characteristic can be significantly degraded by optical reflection, especially ... Keywords: intensity noise, optical reflection, predistorter, subcarrier optical transmission, superimposed subcarrier modulation, superluminescent diode

Yuji Aburakawa; Hiroyuki Ohtsuka

2000-11-01T23:59:59.000Z

254

Force Sensing Robot Fingers using Embedded Fiber Bragg Grating Sensors and Shape Deposition Manufacturing  

E-Print Network [OSTI]

Force Sensing Robot Fingers using Embedded Fiber Bragg Grating Sensors and Shape Deposition@ifos.com Abstract-- Force sensing is an essential requirement for dexterous robot manipulation. Although strain robustness, design flexibility and immunity to electromagnetic noise. An exoskeletal force sensing robot

Park, Yong-Lae

255

Fiber optic device for sensing the presence of a gas  

DOE Patents [OSTI]

A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material's optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment.

Benson, David K. (14154 W. First Dr., Golden, CO 80401); Bechinger, Clemens S. (35 S. Holman Way, # 3D, Golden, CO 80401); Tracy, C. Edwin (19012 W. 60th Dr., Golden, CO 80403)

1998-01-01T23:59:59.000Z

256

Mid-Infrared Fiber-Coupled QCl-QEPAS Sensor  

SciTech Connect (OSTI)

An innovative spectroscopic system based on an external cavity quantum cascade laser (EC-QCL) coupled with a mid-infrared (mid-IR) fiber and quartz enhanced photoacoustic spectroscopy (QEPAS) is described. SF6 has been selected as a target gas in demonstration of the system for trace gas sensing. Single mode laser delivery through the prongs of the quartz tuning fork has been obtained employing a hollow waveguide fiber with inner silver–silver iodine (Ag–AgI) coatings and internal core diameter of 300 lm. A detailed design and realization of the QCL fiber coupling and output collimator system allowed almost practically all (99.4 %) of the laser beam to be transmitted through the spectrophone module. The achieved sensitivity of the system is 50 parts per trillion in 1 s, corresponding to a record for QEPAS normalized noise-equivalent absorption 2.7 9 10-10 W cm-1 Hz-1/2.

Spagnolo, V.; Patimisco, P.; Borri, Simone; Scamarcio, G.; Bernacki, Bruce E.; Kriesel, J.M.

2013-08-01T23:59:59.000Z

257

Optical temperature sensor using thermochromic semiconductors  

DOE Patents [OSTI]

Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

Kronberg, J.W.

1994-01-01T23:59:59.000Z

258

Fiber optic sensing technology for measuring in-cylinder pressure in automotive engines  

E-Print Network [OSTI]

A new fiber optic sensing technology for measuring in-cylinder pressure in automotive engines was investigated. The optic sensing element consists of two mirrors in an in-line single mode fiber that are separated by some distance. To withstand...

Bae, Taehan

2006-10-30T23:59:59.000Z

259

Integrated Optoelectronics in an Optical Fiber J. V. Badding*a,d  

E-Print Network [OSTI]

Integrated Optoelectronics in an Optical Fiber J. V. Badding*a,d , P. J. Saziob , V. Gopalanc.d , A,d , a Department of Chemistry, Pennsylvania State University, University Park, PA, USA 16802; b Optoelectronics optoelectronic function with glass optical fibers is discussed. A chemical vapor deposition (CVD)-like process

Gopalan, Venkatraman

260

Electro-optic voltage sensor with Multiple Beam Splitting  

DOE Patents [OSTI]

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Cornelius, OR); Renak, Todd W. (Idaho Falls, ID); Crawford, Thomas M. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electro-optic voltage sensor with beam splitting  

DOE Patents [OSTI]

The invention is a miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware typically found in the prior art. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Cornelius, OR); Renak, Todd W. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID); Crawford, Thomas M. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

262

On-Road Vehicle Detection Using Optical Sensors: A Review  

E-Print Network [OSTI]

1 On-Road Vehicle Detection Using Optical Sensors: A Review Zehang Sun1 , George Bebis2 and Ronald are expected to add up to 1%-3% of the world's gross domestic product [1]. With the aim of reducing injury

Bebis, George

263

Simultaneous Suppression of Third-Order Dispersion and Sideband Instability in Single-Channel Optical Fiber Transmission by Midway Optical Phase Conjugation Employing Higher Order Dispersion Management  

Science Journals Connector (OSTI)

In optical phase conjugation (OPC) systems, the third-order dispersion (TOD) of optical fibers and the nonlinear resonance at well-defined signal sideband frequencies called sideband...

Kaewplung, Pasu; Angkaew, Tuptim; Kikuchi, Kazuro

2003-01-01T23:59:59.000Z

264

Voltage sensor with fiber Fabry-Perot interferometer  

E-Print Network [OSTI]

with smaller strain constants, a larger voltage must be applied to get a 2x round trip phase shift. Hence, a longer FFPI is needed to get higher resolution. 16 A plate type PZT was selected because it's more convenient to attach to a thermo-electric cooler... in electron-beam evaporation system, they can be spliced to uncoated fibers, which also have cleaved end surfaces. The basic configuration for this Siecor Model M 67 fusion splicer is shown in fig. 12. A electric arc is initiated between the electrodes...

Wann, Been-Huey

1992-01-01T23:59:59.000Z

265

Apparatus for injecting high power laser light into a fiber optic cable  

DOE Patents [OSTI]

High intensity laser light is evenly injected into an optical fiber by the combination of a converging lens and a multisegment kinoform (binary optical element). The segments preferably have multi-order gratings on each which are aligned parallel to a radial line emanating from the center of the kinoform and pass through the center of the element. The grating in each segment causes circumferential (lateral) dispersion of the light, thereby avoiding detrimental concentration of light energy within the optical fiber.

Sweatt, William C. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

266

Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array  

DOE Patents [OSTI]

The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a "rack and stack" configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber.

Beach, Raymond J. (Livermore, CA); Benett, William J. (Livermore, CA); Mills, Steven T. (Antioch, CA)

1997-01-01T23:59:59.000Z

267

A 16 mm3 autonomous solar-powered sensor node with bi-directional optical communication for distributed sensor net-  

E-Print Network [OSTI]

Abstract A 16 mm3 autonomous solar-powered sensor node with bi- directional optical communication for distributed sensor net- works has been demonstrated. The device digitizes inte- grated sensor signals, a 2.6 mm2 SOI solar cell array, and a micromachined four-quadrant corner-cube retroreflector (CCR

Kahn, Joseph M.

268

Magneto-optical disk drive technology using multiple fiber-coupled flying optical heads. Part II. Laser noise considerations  

Science Journals Connector (OSTI)

A magneto-optical data storage system utilizing single-mode fiber is capable of providing high signal-to-noise ratio (SNR) recording if laser noise sources are properly managed. In...

Wilde, Jeffrey P; Tselikov, Alexander A; Gray, George R; Zhang, Yongwei; Gangopadhyay, Shubhagat

2002-01-01T23:59:59.000Z

269

Loss of polarization entanglement in a fiber-optic system with polarization mode dispersion in one optical path  

E-Print Network [OSTI]

We characterize theoretically and experimentally the degradation of polarization entanglement in a fiber-optic entanglement distribution system where one of the optical fibers is exposed to the effects of polarization mode dispersion (PMD). We show gradual reduction of entanglement with increasing PMD and find that the highest PMD tolerance is achieved when the bandwidth of the pump used to generate the entangled photons in a $\\chi^{(3)}$ process is approximately half the bandwidth of the quantum channels.

Misha Brodsky; Elizabeth C. George; Cristian Antonelli; Mark Shtaif

2010-11-26T23:59:59.000Z

270

Indentation experiments on silica optical fibers Bochien Lin  

E-Print Network [OSTI]

fibers, the intrinsic strength seems close to "perfect" 1 Currently, the standard subcritical crack water, fibers exhibit a lower value of n at low applied stress/long time to failure which shows

Matthewson, M. John

271

An integrated optical sensor for GMAW feedback control  

SciTech Connect (OSTI)

The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major off-the-shelf'' components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.

Taylor, P.L.; Watkins, A.D.; Larsen, E.D.; Smartt, H.B.

1992-01-01T23:59:59.000Z

272

An integrated optical sensor for GMAW feedback control  

SciTech Connect (OSTI)

The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major ``off-the-shelf`` components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.

Taylor, P.L.; Watkins, A.D.; Larsen, E.D.; Smartt, H.B.

1992-08-01T23:59:59.000Z

273

6189-47, Session 10 Optical spatial filtering velocimetry sensor for real-time  

E-Print Network [OSTI]

transforming system instead, the sensor will allow measurement of rotational vibration without direct6189-47, Session 10 Optical spatial filtering velocimetry sensor for real-time in-plane vibration-contact, low-cost optical sensor for real time detection and active vibration control of mechanical devices

274

Hybrid glass coatings for optical fibers: effect of coating thickness on strength and dynamic fatigue characteristics of silica fibers  

E-Print Network [OSTI]

Hybrid glass coatings for optical fibers: effect of coating thickness on strength and dynamic. Wojcik c , A. Walewski c a Hybrid Glass Technologies, Inc., Monmouth Junction, NJ 08852, USA b Rutgers coatings. Recently developed sol-gel derived inorganic- organic hybrid materials called hybrid glass

Matthewson, M. John

275

Investigation of mode coupling in optical fiber with controlled volume disorder  

E-Print Network [OSTI]

configurations of controlled disorder in optical fibers suitable for such applications as random fiber lasers benefits observed when disorder is induced into a mundane system. A random laser1 , where laser action diameter is 7.66 microns, the cladding diameter is 125 microns, NA = 0.13 with the refractive indexes

Yamilov, Alexey

276

Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments  

E-Print Network [OSTI]

to occur when ambient moisture reacts with the fiber surface causing subcritical crack growth.1Ă?3 Fatigue of silica optical fiber is therefore controlled by the crack growth rate, c : , which depends for the crack growth, which was originally proposed by Charles and Hillig, based on simple chemical kinetics

Matthewson, M. John

277

Detection of Ethanol in Wines Using Optical-Fiber Measurements and Near-Infrared Analysis  

Science Journals Connector (OSTI)

Optical-fiber measurements coupled with near-infrared analysis is used to predict the ethanol content of wine samples to within ±0.33 volume percent. Because telecommunications-grade...

Buchanan, B R; Honigs, D E; Lee, Cynthia J; Roth, William

1988-01-01T23:59:59.000Z

278

Influence of optical fibers on the spectrum of transmitted light-emitting-diode radiation  

Science Journals Connector (OSTI)

Propagation of GaxIn1–xAsyP1–y light-emitting-diode radiation through an optical fiber was found to affect its spectral curve very strongly, and the origin of...

Zavadil, Jirí; Honc, Tomáš; Ctyroký, Jirí

1995-01-01T23:59:59.000Z

279

Energy-time entanglement generation in optical fibers under CW pumping  

Science Journals Connector (OSTI)

In this paper, the energy-time entangled photon-pairs at 1.5 ?m are generated by the spontaneous four wave mixing (SFWM) in optical fibers under continuous wave (CW) pumping. The...

Dong, Shuai; Zhou, Qiang; Zhang, Wei; He, Yuhao; Zhang, Weijun; You, Lixing; Huang, Yidong; Peng, Jiangde

2014-01-01T23:59:59.000Z

280

Low cost, practical, all-digital open-loop fiber-optic gyroscope  

Science Journals Connector (OSTI)

A novel all-digital scheme for open-loop fiber-optic gyroscope (FOG), where only two key points of output wave were digitized directly, has been proposed. A control equation, with...

Yang, Yuanhong; Zhang, Weixu; Ma, Jing; Chen, Xinjun

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Non-contact Micro Vibration Measurement System Based on Optical Fiber Michelson Interferometer  

Science Journals Connector (OSTI)

In this paper, an optical fiber Michelson interferometer is used to realize non-contact micro vibration measurement. The frequency response range of 1~1KHz and the displacement...

Xing, Chuanqi; Jing, Zhenguo; Peng, Wei

282

Generating and measuring photochemical changes inside the brain using optical fibers: exploring stroke  

Science Journals Connector (OSTI)

We report here on the development of a method for inducing a stroke in a specific location within a mouse brain through the use of an optical fiber. By capturing the emitted...

Tsiminis, Georgios; Klari?, Thomas S; Schartner, Erik P; Warren-Smith, Stephen C; Lewis, Martin D; Koblar, Simon A; Monro, Tanya M

2014-01-01T23:59:59.000Z

283

Detection of Propane by IR-ATR in a Teflon®-Clad Fluoride Glass Optical Fiber  

Science Journals Connector (OSTI)

The detection of propane with the use of ATR spectroscopy at 3.3 ?m, as the gas diffuses through the Teflon® cladding of a fluoride optical fiber, is reported. A...

Ruddy, V; McCabe, S

1990-01-01T23:59:59.000Z

284

Scale-factor-stabilized fiber-optic gyroscope by deep phase modulation  

Science Journals Connector (OSTI)

A scale-factor-stabilized fiber-optic gyroscope by deep phase modulation is demonstrated. There are two servo loops included in this system. The first servo loop is used for...

Chien, Pie-Yau; Pan, Ci-Ling

1992-01-01T23:59:59.000Z

285

A Fiber Optic Spectrometry System for Measuring Irradiance Distributions in Sea Ice Environments  

Science Journals Connector (OSTI)

A fiber optic–based spectrometry system was developed to enable automated, long-term measurements of spectral irradiance in sea ice environments. This system utilizes a single spectrometer module that measures the irradiance transmitted by ...

Hangzhou Wang; Ying Chen; Hong Song; Samuel R. Laney

2014-12-01T23:59:59.000Z

286

Environmental effects on fatigue and lifetime predictions for silica optical fibers  

E-Print Network [OSTI]

reliability of optical fibers is usually assessed using the subcritical crack growth model for fatigue defects (normally assumed to be cracks) to cause the defects to grow at applied stress levels which do

Matthewson, M. John

287

INTERFACIAL STABILITY OF THIN FILM FIBER-OPTIC HYDROGEN SENSORS  

E-Print Network [OSTI]

is to study those mechanisms affecting the stability of the films with respect to these environmental factors with respect to the dissociation of hydrogen. 1 Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL of light. All four of these configurations have the potential for degradation in their performance over

288

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 12, NO. 6, DECEMBER 2003 907 Digitally Tunable Microfluidic Optical Fiber Devices  

E-Print Network [OSTI]

Microfluidic Optical Fiber Devices Francesco Cattaneo, Kirk Baldwin, Shu Yang, Tom Krupenkine, Siddharth microfluidic optical fiber devices. In these systems, mul- tiple, independently controlled microfluidic plugs- tion of this type of microfluidic fiber device. [991] Index Terms--Fluidics, microfluidics, micropumps

Rogers, John A.

289

Optical High Voltage Sensor with Oil- and Gas-free Insulation  

Science Journals Connector (OSTI)

We present an electro-optic high voltage sensor with novel oil- and gas-free insulation based on capacitive electric field steering. The sensor's accuracy is within ±0.2% in a...

Marchese, Sergio V; Wildermuth, Stephan; Steiger, Olivier; Pascal, Joris; Bohnert, Klaus; Eriksson, Göran; Czyzewski, Jan

290

Thermal characterization of submicron polyacrylonitrile fibers based on optical heating and electrical thermal sensing  

SciTech Connect (OSTI)

In this work, the thermal diffusivity of single submicron ({approx}800 nm) polyacrylonitrile (PAN) fibers is characterized using the recently developed optical heating and electrical thermal sensing technique. In the experiment, a thin Au film (approximately in the nanometer range) is coated on the surface of nonconductive PAN fibers. A periodically modulated laser beam is used to irradiate suspended individual fibers to achieve noncontact periodical heating. The periodical temperature response of the sample is monitored by measuring the electrical resistance variation of the thin Au coating. The experimental results for three different synthesized PAN fibers with varying Au coating thickness are presented and discussed.

Hou Jinbo; Wang Xinwei; Zhang Lijun [Department of Mechanical Engineering, N104 Walter Scott Engineering Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0656 (United States)

2006-10-09T23:59:59.000Z

291

Characterization of the Los Alamos IPG YLR-6000 fiber laser using multiple optical paths and laser focusing optics  

SciTech Connect (OSTI)

Fiber laser technology has been identified as the replacement power source for the existing Los Alamos TA-55 production laser welding system. An IPG YLR-6000 fiber laser was purchased, installed at SM-66 R3, and accepted in February 2008. No characterization of the laser and no welding was performed in the Feb 2008 to May 2009 interval. T. Lienert and J. Bernal (Ref. 1, July 2009) determined the existing 200 mm Rofin collimator and focus heads used with the Rofin diode pumped lasers were inadequate for use with the IPG laser due to clipping of the IPG laser beam. Further efforts in testing of the IPG laser with Optoskand fiber delivery optics and a Rofin 120 mm collimator proved problematic due to optical fiber damage. As a result, IPG design optical fibers were purchased as replacements for subsequent testing. Within the same interval, an IPG fiber-to-fiber (F2F) connector, custom built for LANL, (J. Milewski, S. Gravener, Ref.2) was demonstrated and accepted at IPG Oxford, MA in August 2009. An IPG service person was contracted to come to LANL to assist in the installation, training, troubleshooting and characterization of the multiple beam paths and help perform laser head optics characterization. The statement of work is provided below: In summary the laser system, optical fibers, F2F connector, Precitec head, and a modified Rofin type (w/120mm Optoskand collimator) IWindowIBoot system focus head (Figure 1) were shown to perform well at powers up to 6 kW CW. Power measurements, laser spot size measurements, and other characterization data and lessons learned are contained within this report. In addition, a number of issues were identified that will require future resolution.

Milewski, John O [Los Alamos National Laboratory; Bernal, John E [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

292

Multiparameter Fiber Optic Sensing System for Monitoring Enhanced...  

Broader source: Energy.gov (indexed) [DOE]

objectives: Demonstrate reliability of fiber and distributed temperature; strain and vibration sensing sub-systems for EGS at 374C and 220 bar in the presence of hydrogen....

293

Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry  

SciTech Connect (OSTI)

The goals of the this part of the Continuation Phase 2 period (Oct. 1, 06 to March 31, 07) of this project were to (a) fabricate laser-doped SiC wafers and start testing the SiC chips for individual gas species sensing under high temperature and pressure conditions and (b) demonstrate the designs and workings of a temperature probe suited for industrial power generation turbine environment. A focus of the reported work done via Kar UCF LAMP lab. is to fabricate the embedded optical phase or doped microstructures based SiC chips, namely, Chromium (C), Boron (B) and Aluminum (Al) doped 4H-SiC, and to eventually deploy such laser-doped chips to enable gas species sensing under high temperature and pressure. Experimental data is provided from SiC chip optical response for various gas species such as pure N2 and mixtures of N2 and H{sub 2}, N{sub 2} and CO, N{sub 2} and CO{sub 2}, and N{sub 2} and CH{sub 4}. Another main focus of the reported work was a temperature sensor probe assembly design and initial testing. The probe transmit-receive fiber optics were designed and tested for electrically controlled alignment. This probe design was provided to overcome mechanical vibrations in typical industrial scenarios. All these goals have been achieved and are described in detail in the report.

Nabeel A. Riza

2007-03-31T23:59:59.000Z

294

Lightweight Integrated Optical Sensor for Atmospheric Measurements on Mobile Platforms  

SciTech Connect (OSTI)

The goal of the Phase I program was to develop a novel open path sensor platform technology based on integration of semiconductor waveguides with efficient optoelectronic components on a monolithic platform. The successful Phase I effort resulted in demonstration of a novel optical resonator structure based on semiconductor high contrast gratings (HCGs) that will enable implementation of an ultra-compact, low-power gas sensor suitable for use on mobile platforms. Extensive numerical modeling was performed to design a device optimized for measuring CO2 at a wavelength for which a laser was available for proof of concept. Devices were fabricated and tested to match the target wavelength, angle, and operating temperature. This demonstration is the first implementation of HCGs at the wavelengths of interest and shows the flexibility of the proposed architecture for gas sensing applications. The measured cavity Q was lower than anticipated due to fabrication process challenges. The PSI and UC Berkeley team has identified solutions to these challenges and will produce optimized devices in a Phase II program where a prototype sensor will be fabricated and tested.

Parameswaran, Krishnan R. [Physical Sciences Inc.

2013-12-02T23:59:59.000Z

295

Universal signal processing method for multimode reflective sensors  

E-Print Network [OSTI]

sensitivity, but the sensor configuration is complicated and requires the use of expensive lasers and single mode fibers. Amplitude modulation trades sensitivity for low cost and ease of configuration by using light emitting diodes and multimode fibers. A... method for reflective sensors using optical fibers as the data transmission media. The proposed transmitter - receiver unit was based on the amplitude modulation of reflected optical signals. This involves the use of an light emitting diode (LED...

Larson, Robert Eugene

2012-06-07T23:59:59.000Z

296

Ultra-High Temperature Sensors Based on Optical Property  

SciTech Connect (OSTI)

In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

Nabeel Riza

2008-09-30T23:59:59.000Z

297

Optical fiber-based single-shot picosecond TA spectroscopyL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fiber-based single-shot picosecond transient absorption fiber-based single-shot picosecond transient absorption spectroscopy Andrew R. Cook and Yuzhen Shen Rev. Sci. Inst. 80, 073106 (2009). [Find paper at Scitation] Copyright 2009 American Institute of Physics. This article may be downloaded (here) for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The article appeared in Rev. Sci. Inst. 80, 073106 (2009) and may be found at http://link.aip.org/link/?RSI/80/073106 or http://dx.doi.org/10.1063/1.3156048. Abstract: A new type of single-shot transient absorption apparatus is described based on a bundle of optical fibers. The bundle contains 100 fibers of different lengths, each successively giving ~15 ps longer optical delay. Data are collected by imaging light from the exit of the bundle into

298

Development of a Three-Dimensional Ball Rotation Sensing System using Optical Mouse Sensors  

E-Print Network [OSTI]

to the case of a ball wheel. The system measures surface speed by using two or more optical mouse sensorsDevelopment of a Three-Dimensional Ball Rotation Sensing System using Optical Mouse Sensors Masaaki Kumagai and Ralph L. Hollis Abstract-- Robots using ball(s) as spherical wheels have the advantage

299

Development of Fiber Bragg Grating Strain, Thermal, and Magnetic Sensors for Smart Structure Applications  

E-Print Network [OSTI]

fiber Bragg gratings,” Troutdale, OR, USA, 1996, pp. 24-in AD072 fibercore fiber,” Troutdale, OR, USA, 1998, pp. 79-

Emmons, Michael

2012-01-01T23:59:59.000Z

300

In-situ backplane inspection of fiber optic ferrules  

E-Print Network [OSTI]

The next generation of supercomputers, routers, and switches are envisioned to have hundreds and thousands of optical interconnects among components. An optical interconnect attains a bandwidth-distance product as high as ...

Wilson, Andrew Kirk, 1977-

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hollow Core Fiber Optics for Mid-Wave and Long-Wave Infrared Spectroscopy  

SciTech Connect (OSTI)

The development and testing of hollow core glass waveguides (i.e., fiber optics) for use in Long-Wave Infrared (LWIR) spectroscopy systems is described. LWIR fiber optics are a key enabling technology needed to improve the utility and effectiveness of trace chemical detection systems based in the 8 to 12 micron region. This paper focuses on recent developments in hollow waveguide technology geared specifically for LWIR spectroscopy, including a reduction in both the length dependent loss and the bending loss while maintaining relatively high beam quality. Results will be presented from tests conducted with a Quantum Cascade Laser.

Kriesel, J.M.; Gat, N.; Bernacki, Bruce E.; Erikson, Rebecca L.; Cannon, Bret D.; Myers, Tanya L.; Bledt, Carlos M.; Harrington, J. A.

2011-06-01T23:59:59.000Z

302

FEASIBILITY OF A STACK INTEGRATED SOFC OPTICAL CHEMICAL SENSOR  

SciTech Connect (OSTI)

The work performed during the UCR Innovative Concepts phase I program was designed to demonstrate the chemical sensing capabilities of nano-cermet SPR bands at solid oxide fuel cell operating conditions. Key to this proposal is that the materials choice used a YSZ ceramic matrix which upon successful demonstration of this concept, will allow integration directly onto the SOFC stack. Under the Innovative Concepts Program the University at Albany Institute for Materials (UAIM)/UAlbany School of NanoSciences and NanoEngineering synthesized, analyzed and tested Pa, and Au doped YSZ nano-cermets as a function of operating temperature and target gas exposure (hydrogen, carbon monoxide and 1-dodecanethiol). During the aforementioned testing procedure the optical characteristics of the nano-cermets were monitored to determine the sensor selectivity and sensitivity.

Michael A. Carpenter

2004-03-30T23:59:59.000Z

303

Estimation the Performance of Solar Fiber Optic Lighting System after Repairing the Glass Fiber Cables in a South Korean Residential Building  

E-Print Network [OSTI]

The solar fiber optic lighting system consists of the solar ray concentrating apparatus, the tracking control, lighting transmission and emission parts. This system was installed on a 20-storey apartment building in South Korea. Many residents had...

Cha, K. S.; Kim, T. K.; Park, M. S.

304

Fiber-Optics Implementation of the Deutsch-Jozsa and Bernstein-Vazirani Quantum Algorithms with Three Qubits  

E-Print Network [OSTI]

Fiber-Optics Implementation of the Deutsch-Jozsa and Bernstein-Vazirani Quantum Algorithms; published 16 April 2003) We report on a fiber-optics implementation of the Deutsch-Jozsa and Bernstein will be interested in here is Deutsch's algorithm [3], the first quantum algorithm ever discovered, which was later

Cerf, Nicolas

305

The University of Texas at Austin September 30, 2011 Communications Optical Fiber Backbone Cabling 27 13 23-1  

E-Print Network [OSTI]

, as required by law: 1. National Electric Code (NEC) 2. ANSI/IEEE C2 ­ National Electrical Safety Code C. ANSI/TIA-568-C.0, Generic Telecommunications Cabling for Customer Premises 3. ANSI/TIA-568-C.3, Optical Fiber Cabling Components Standard. 4. ANSI/TIA/EIA-604-10A, FOCIS 10, Fiber Optic Connector

Dawson, Clint N.

306

New Energy-Saving Fiber Optic Lighting System Lights Up Public Spaces  

Broader source: Energy.gov (indexed) [DOE]

Energy Focus to develop a Energy Focus to develop a breakthrough lighting technology that delivers light comparable to conventional lamps while using significantly less energy per lumen, reducing watts per square foot without sacrificing light levels. As a result of DOE SBIR and other government funding, EFO (efficient fiber optics) Lighting Systems can deliver as much as 80% energy savings over halogen or

307

The fatigue of high-strength fused silica optical fibers in low humidity q  

E-Print Network [OSTI]

the effect of humidity on the kinetics of subcritical crack growth in high strength optical fibers that the rate of subcritical crack growth is given by dc dt ÂĽ A exp n KI KIC ; Ă°1Ă? where A and n are fatigue by assuming a simple chemical kinetics model for fatigue in which the reaction rate between water and silica

Matthewson, M. John

308

CHEMICAL KINETICS MODELS FOR THE FATIGUE BEHAVIOR OF FUSED SILICA OPTICAL FIBER  

E-Print Network [OSTI]

of stress, temperature and activity of the corroding species (e.g. water). A power law degradation kinetics the degradation depends on the applied stress. Subcritical Crack Growth Model The reliability of silica optical fiber under stress is usually described by the subcritical crack growth model. It is assumed

Matthewson, M. John

309

A cerium glass fiber-optic active target for high energy physics experiments  

SciTech Connect (OSTI)

A fiber-optic plate imaging system has been developed for active target and tracking applications, in which the active element is Ce(3+) in a silicate glass. Particle tracks and interactions have been recorded with a hit density of /approx gt/4/mm for minimum ionizing particles and with a spatial resolution sigma /similar to/ 28..mu..m.

Ruchti, R.; Baumbaugh, B.; Bishop, J.; Biswas, N.; Busenitz, J.; Cason, N.; Cunningham, J.; Gardner, R.; Grenquist, S.; Kenney, V.; Mannel, E.; Mountain, R.; Shephard, W.; Baumbaugh, A.; Knickerbocker, K.; Wegner, C.; Yarema, R.; Rogers, A.; Kinchen, B.; Ellis, J.; Mead, R.; Swanson, D.

1985-10-01T23:59:59.000Z

310

Fort Meade demonstration test LEDS in freezer rooms, fiber optics in display cases  

SciTech Connect (OSTI)

Demonstration projects at Fort George G. Meade, MD, substituted LED lighting for incandescent bulbs in commisary wal-in freezers and fiber optic lighting in reach-in display cases. The goal was to reduce energy consumption and the results were positive. Journal article published in Public Works Digest

Parker, Steven; Parker, Graham B.

2008-10-25T23:59:59.000Z

311

Optical Home Network based on an NxN Multimode Fiber Architecture and CWDM Technology  

E-Print Network [OSTI]

it will be installed in the walls of a house for decades. This concept has already been applied to singlemode fiber. A passive N x N architecture for a WDM HN Today, most HN solutions are centered on a switch in an active. The best alternative is then a passive optical plant centered on an NxN splitter, as depicted in figure 1

Paris-Sud XI, Université de

312

Optics-less smart sensors and a possible mechanism of cutaneous vision in nature  

E-Print Network [OSTI]

Optics-less cutaneous (skin) vision is not rare among living organisms, though its mechanisms and capabilities have not been thoroughly investigated. This paper demonstrates, using methods from statistical parameter estimation theory and numerical simulations, that an array of bare sensors with a natural cosine-law angular sensitivity arranged on a flat or curved surface has the ability to perform imaging tasks without any optics at all. The working principle of this type of optics-less sensor and the model developed here for determining sensor performance may be used to shed light upon possible mechanisms and capabilities of cutaneous vision in nature.

Leonid Yaroslavsky; Chad Goerzen; Stanislav Umansky; H. John Caulfield

2008-08-08T23:59:59.000Z

313

Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function  

Science Journals Connector (OSTI)

In this paper, a sensor system for measuring continuous Bragg wavelength distribution in a long-length fiber Bragg grating is newly proposed, using synthesis of optical coherence...

Hotate, Kazuo; Kajiwara, Koji

2008-01-01T23:59:59.000Z

314

Sensitivity analysis and model for fiber optic gyroscope  

E-Print Network [OSTI]

the error is represented, the Rayleigh backscattering error can be reduced by using a spectrally broad optical source, such as a superluminescent diode (SLD) (18). Increasing the spectral linewidth A1, of the light source will decrease the Rayleigh...

Vandervort, Annette Louise

1990-01-01T23:59:59.000Z

315

Abstract--We propose a compact tip-reflection fiber-optic vibration sensing system that uses a lateral-offset tilted fiber  

E-Print Network [OSTI]

a lateral-offset tilted fiber grating (TFBG) as sensor head and a vertical-cavity surface-emitting laser the coupling of light from the forward propagating core mode to backward propagating cladding modes and reduces cladding mode resonances appear. Since the response of core mode to external perturbations (temperature

Wai, Ping-kong Alexander

316

Development of protective polymer coatings for silver halide fibers and their application as threshold level sensors for chlorinated hydrocarbons in sea water  

Science Journals Connector (OSTI)

The stability of silver halide fibers in artificial sea water (ASW) with and without a protective ... sensor system for the quantitative detection of chlorinated hydrocarbons (CHC) also in sea water.

R. Göbel; R. Krska; R. Kellner; A. Katzir

317

Fiber Optic Sensing Technology for Detecting Gas Hydrate Formation and Decomposition  

SciTech Connect (OSTI)

A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 L) pressure vessel providing high spatial resolution, time resolved, 3-D measurement of hybrid temperature-strain (TS) values within experimental sediment gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data is visualized as a 'movie' of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Processing Simulator (SPS) at Oak Ridge National Laboratory show clear indications of hydrate formation and dissociation events at expected P-T conditions given the thermodynamics of the CH4-H2O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

Rawn, Claudia J [ORNL; Leeman, John R [University of Oklahoma, Norman; Ulrich, Shannon M [ORNL; Alford, Jonathan E [ORNL; Phelps, Tommy Joe [ORNL; Madden, Megan Elwood [University of Oklahoma, Norman

2011-01-01T23:59:59.000Z

318

Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change  

E-Print Network [OSTI]

Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change, Edgewater, Maryland Abstract As the lowest point in the surrounding landscape, lakes act as sensors to respond to changes in air temperature, precipitation, and solar radiation at timescales ranging from

Williamson, Craig E.

319

Experimental investigations of an all-fiber multireflector spectral filter for optical communications  

E-Print Network [OSTI]

spatially periodic refractive index variation in the fiber. The reflectance spectrum of the FBG filter is characterized by a single narrow peak with side lobes, and thus can be used as a bandpass filter [2]. The two mirror Fiber Fabry... in frequency is known as the free spectral range FSR . Practical two mirror FFPI filters make use of a cavity formed by an air gap between two dielectric mirrors [5,6]. An ideal spectral filter for optical communication would have flat in- band...

Lee, Jong-Seo

2004-09-30T23:59:59.000Z

320

Low-Cost, Fiber-Optic Hydrogen Gas Detector Using Guided-Wave, Surface-Plasmon Resonance in Chemochromic Thin Films  

SciTech Connect (OSTI)

Low-cost, hydrogen-gas-leak detectors are needed for many hydrogen applications, such as hydrogen-fueled vehicles where several detectors may be required in different locations on each vehicle. A fiber-optic leak detector could be inherently safer than conventional detectors, because it would remove all detector electronics from the vicinity of potential leaks. It would also provide freedom from electromagnetic interference, a serious problem in fuel-cell-powered electric vehicles. This paper describes the design of a fiber-optic, surface-plasmon-resonance hydrogen detector, and efforts to make it more sensitive, selective, and durable. Chemochromic materials, such as tungsten oxide and certain Lanthanide hydrides, can reversibly react with hydrogen in air while exhibiting significant changes in their optical properties. Thin films of these materials applied to a sensor at the end of an optical fiber have been used to detect low concentrations of hydrogen gas in air. The coatings include a thin silver layer in which the surface plasmon is generated, a thin film of the chemochromic material, and a catalytic layer of palladium that facilitates the reaction with hydrogen. The film thickness is chosen to produce a guided-surface plasmon wave along the interface between the silver and the chemochromic material. A dichroic beam-splitter separates the reflected spectrum into a portion near the resonance and a portion away from the resonance, and directs these two portions to two separate photodiodes. The electronic ratio of these two signals cancels most of the fiber transmission noise and provides a stable hydrogen signal.

Benson, D. K.; Tracy, C. E.; Lee, S-H. (National Renewable Energy Laboratory); Hishmeh, G. A.; Haberman, D. P. (DCH Technologies, Valencia, CA); Ciszek, P. A. (Evergreen Solar, Waltham, MA)

1998-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NRA-00-OES-08 A one-year pilot study for the inclusion of active optical sensors into PALACE  

E-Print Network [OSTI]

NRA-00-OES-08 1 A one-year pilot study for the inclusion of active optical sensors into PALACE, newly-developed solid-state, active optical sensors that measure chlorophyll a fluorescence of ancillary sensors as part of the ARGO program. The ARGO program, if funded at the level of effort proposed

Boss, Emmanuel S.

322

Currently, there is a substantial research and development effort directed toward optical signal processing and electronic signal processing for fiber-optic communications. Much of the work  

E-Print Network [OSTI]

Abstract Currently, there is a substantial research and development effort directed toward optical signal processing and electronic signal processing for fiber-optic communications. Much of the work for telecommunication services. For optical signal proc- essing, a variety of approaches are available for implementing

Wu, Shin-Tson

323

1888 OPTICS LETTERS / Vol. 28, No. 20 / October 15, 2003 Efficient single-mode Brillouin fiber laser for low-noise optical  

E-Print Network [OSTI]

1888 OPTICS LETTERS / Vol. 28, No. 20 / October 15, 2003 Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals S. Norcia, S. Tonda-Goldstein, D 503, 91403 Orsay cedex, France Received April 22, 2003 We experimentally demonstrate efficient optical

Paris-Sud XI, Université de

324

Stimulated Raman scattering in an ethanol core microstructured optical fiber  

E-Print Network [OSTI]

Delaye, Anne Rouvie, Jordi Chinaud, Robert Frey, Gérald Roosen Laboratoire Charles Fabry de l'Institut d" Phys. Rev. Lett. 9, 455 (1962) 2. Y.R. Shen "The principles of nonlinear optics" (John Wiley and Sons, New York, 1994). 4. R.Frey, F. Pradère "Powerful tunable infrared generation by stimulated Raman

Paris-Sud XI, Université de

325

Review on optical fiber sensing technologies for industrial applications at the NEL-FOST  

E-Print Network [OSTI]

% of large oil tanks in China Petrochemical Company, fire and structural safety monitoring of the first optic hydrophones and gas sensors. However there still exist gaps to meet customer demand of the world's highest concrete face dam, fire alarm system of four national strategic oil storages and 90

Boyer, Edmond

326

Energy losses in thermally cycled optical fibers constrained in small bend radii  

SciTech Connect (OSTI)

High energy laser pulses were fired into a 365?m diameter fiber optic cable constrained in small radii of curvature bends, resulting in a catastrophic failure. Q-switched laser pulses from a flashlamp pumped, Nd:YAG laser were injected into the cables, and the spatial intensity profile at the exit face of the fiber was observed using an infrared camera. The transmission of the radiation through the tight radii resulted in an asymmetric intensity profile with one half of the fiber core having a higher peak-to-average energy distribution. Prior to testing, the cables were thermally conditioned while constrained in the small radii of curvature bends. Single-bend, double-bend, and U-shaped eometries were tested to characterize various cable routing scenarios.

Guild, Eric; Morelli, Gregg

2012-09-23T23:59:59.000Z

327

Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a SNOM fiber tip  

E-Print Network [OSTI]

Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nano-meter scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e. in contact to the nano-structures. In these paper, We demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of 'remote' (non contact) sensing on the nano-meter scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM fiber tip, we introduce an ultra-compact, move-able and background-free optical nano-sensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nano-meter accuracy. This work paves the way towards a new class of nano-po...

Atie, Elie M; Eter, Ali El; Salut, Roland; Nedeljkovic, Dusan; Tannous, Tony; Baida, Fadi I; Grosjean, Thierry

2015-01-01T23:59:59.000Z

328

An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating  

Science Journals Connector (OSTI)

A new ethanol vapor detection probe based on an optical fiber long period grating overlaid with a zinc oxide (ZnO) nanorods layer is presented. The ZnO nanorod layer was developed onto...

Konstantaki, Maria; Klini, Argyro; Anglos, Demetrios; Pissadakis, Stavros

2012-01-01T23:59:59.000Z

329

Cancellation of four-wave mixing in a single-mode fiber by midway optical phase conjugation  

Science Journals Connector (OSTI)

Cancellation of waves generated by four-wave mixing (FWM) in a single-mode fiber by use of midway optical phase conjugation is proposed and analyzed, and the possible power reduction...

Watanabe, Shigeki

1994-01-01T23:59:59.000Z

330

Observations of Transport Variability in the Baltic Sea by Parasitic Use of a Fiber-Optic Cable  

Science Journals Connector (OSTI)

Transports between the Swedish mainland and the island of Gotland were studied by means of motionally induced voltages. The copper mantle of an existent fiber-optic telecommunications cable was grounded on Gotland, and the data acquisition system ...

Peter Sigray; Peter Lundberg; Kristofer Döös

2004-07-01T23:59:59.000Z

331

Integrated optical sensor platform for multiparameter bio-chemical analysis  

Science Journals Connector (OSTI)

There is growing demand for robust, reliable, low cost, and easy to use sensor systems that feature multiparameter analysis in many application areas ranging from safety and security...

Lützow, Peter; Pergande, Daniel; Heidrich, Helmut

2011-01-01T23:59:59.000Z

332

Correspondence between the NLS equation for optical fibers and a class of integrable NLS equations  

E-Print Network [OSTI]

The propagation of the optical field complex envelope in a single-mode fiber is governed by a one-dimensional cubic nonlinear Schr\\"odinger equation with a loss term. We present a result about $L^2$-closeness of the solutions of the above-mentioned equation and of a one-dimensional nonlinear Schr\\"odinger equation that is Painlev\\'e integrable.

Domenico Felice; Luigi Barletti

2014-02-05T23:59:59.000Z

333

High sensitivity gravimetric sensor made of carbon fiber epoxy composite on Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal substrate  

E-Print Network [OSTI]

High sensitivity gravimetric sensor made of carbon fiber epoxy composite on Pb(Mg1/3Nb2/3)O3-PbTiO3://apl.aip.org/authors #12;High sensitivity gravimetric sensor made of carbon fiber epoxy composite on Pb(Mg1/3Nb2/3)O3-Pb gravimetric sensor using unidirectional carbon fiber epoxy composite (CFEC) guiding layer on (1-x)Pb(Mg1/3Nb2

Cao, Wenwu

334

Performance Diagnosis using Optical Torque Sensor for Selection of a Steam Supply Plant among Advanced Combined Cycle Power Plants  

Science Journals Connector (OSTI)

A newly developed optical torque sensor was applied to select a steam supply plant among advanced combined cycle, i.e. ACC, power plants of...

Shuichi Umezawa

2007-01-01T23:59:59.000Z

335

Pipeline Structural Health Monitoring Using Macro-fiber Composite Active Sensors  

SciTech Connect (OSTI)

The United States economy is heavily dependent upon a vast network of pipeline systems to transport and distribute the nation's energy resources. As this network of pipelines continues to age, monitoring and maintaining its structural integrity remains essential to the nation's energy interests. Numerous pipeline accidents over the past several years have resulted in hundreds of fatalities and billions of dollars in property damages. These accidents show that the current monitoring methods are not sufficient and leave a considerable margin for improvement. To avoid such catastrophes, more thorough methods are needed. As a solution, the research of this thesis proposes a structural health monitoring (SHM) system for pipeline networks. By implementing a SHM system with pipelines, their structural integrity can be continuously monitored, reducing the overall risks and costs associated with current methods. The proposed SHM system relies upon the deployment of macro-fiber composite (MFC) patches for the sensor array. Because MFC patches are flexible and resilient, they can be permanently mounted to the curved surface of a pipeline's main body. From this location, the MFC patches are used to monitor the structural integrity of the entire pipeline. Two damage detection techniques, guided wave and impedance methods, were implemented as part of the proposed SHM system. However, both techniques utilize the same MFC patches. This dual use of the MFC patches enables the proposed SHM system to require only a single sensor array. The presented Lamb wave methods demonstrated the ability to correctly identify and locate the presence of damage in the main body of the pipeline system, including simulated cracks and actual corrosion damage. The presented impedance methods demonstrated the ability to correctly identify and locate the presence of damage in the flanged joints of the pipeline system, including the loosening of bolts on the flanges. In addition to damage to the actual pipeline itself, the proposed methods were used to demonstrate the capability of detecting deposits inside of pipelines. Monitoring these deposits can prevent clogging and other hazardous situations. Finally, suggestions are made regarding future research issues which are needed to advance this research. Because the research of this thesis has only demonstrated the feasibility of the techniques for such a SHM system, these issues require attention before any commercial applications can be realized.

A.B. Thien

2006-03-01T23:59:59.000Z

336

INTRODUCTION Optical sensors have long been used in the Great  

E-Print Network [OSTI]

and 1,200 khz acoustic current profilers could be used to iden- tify episodes of sediment resuspension. The sensors gave similar results when bottom resuspension was the main cause of changes in suspended sediment

337

ULTRA-HIGH TEMPERATURE SENSORS BASED ON OPTICAL PROPERTY MODULATION AND VIBRATION-TOLERANT INTERFEROMETRY  

SciTech Connect (OSTI)

The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology.

Nabeel A. Riza

2004-04-01T23:59:59.000Z

338

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 1, JANUARY 2003 81 Tunable Microfluidic Optical-Fiber Devices Based on  

E-Print Network [OSTI]

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 1, JANUARY 2003 81 Tunable Microfluidic Optical. Krupenkine, K. Baldwin, and J. A. Rogers Abstract--This letter introduces a class of tunable microfluidic pressure pumping and thermo-optic tuning of microfluidic plugs in microstructured, or "holey," fiber yields

Rogers, John A.

339

Optical scattering noise in high Q fiber ring resonators and its effect on optoelectronic oscillator phase noise  

E-Print Network [OSTI]

Optical scattering noise in high Q fiber ring resonators and its effect on optoelectronic is used as the frequency reference device in an optoelectronic oscillator (OEO), it has been found using optical delay lines and the optoelectronic oscillator (OEO) approach [1]. Although delay line

Paris-Sud XI, Université de

340

Bright and dark solitons in the normal dispersion regime of inhomogeneous optical fibers: Soliton interaction and soliton control  

SciTech Connect (OSTI)

Symbolically investigated in this paper is a nonlinear Schroedinger equation with the varying dispersion and nonlinearity for the propagation of optical pulses in the normal dispersion regime of inhomogeneous optical fibers. With the aid of the Hirota method, analytic one- and two-soliton solutions are obtained. Relevant properties of physical and optical interest are illustrated. Different from the previous results, both the bright and dark solitons are hereby derived in the normal dispersion regime of the inhomogeneous optical fibers. Moreover, different dispersion profiles of the dispersion-decreasing fibers can be used to realize the soliton control. Finally, soliton interaction is discussed with the soliton control confirmed to have no influence on the interaction. The results might be of certain value for the study of the signal generator and soliton control.

Liu Wenjun [School of Science, P. O. Box 122, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Tian Bo, E-mail: tian.bupt@yahoo.com.c [School of Science, P. O. Box 122, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Key Laboratory of Information Photonics and Optical Communications (BUPT), Ministry of Education, P. O. Box 128, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Xu Tao; Sun Kun; Jiang Yan [School of Science, P. O. Box 122, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

2010-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Extreme Environment Silicon Carbide Hybrid Temperature & Pressure Optical Sensors  

SciTech Connect (OSTI)

This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. In this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.

Nabeel Riza

2010-09-01T23:59:59.000Z

342

Forty-Four Pass Fibre Optic Loop for Improving the Sensitivity of Surface Plasmon Resonance Sensors  

E-Print Network [OSTI]

A forty-four pass fibre optic surface plasmon resonance sensor that enhances detection sensitivity according to the number of passes is demonstrated for the first time. The technique employs a fibre optic recirculation loop that passes the detection spot forty- four times, thus enhancing sensitivity by a factor of forty-four. Presently, the total number of passes is limited by the onset of lasing action of the recirculation loop. This technique offers a significant sensitivity improvement for various types of plasmon resonance sensors that may be used in chemical and biomolecule detections.

Chin B Su; Jun Kameoka

2007-09-21T23:59:59.000Z

343

Optical Current Sensors for Electric Power Grid Modernization  

Science Journals Connector (OSTI)

Optical current transducers will advance the modernization of the power grid, because of the economic cost, environmental cost, safety, reliability, and metrology performance...

Rose, Allen H; Blake, Jim

344

Spectral purification and stabilization of an acousto-optic tunable filter based on water-filled solid-core microstructured fiber  

Science Journals Connector (OSTI)

Compared with its air-filled counterpart, experimental results show that the acousto-optic tunable filter employing water-filled microstructured fiber exhibits certain red shift in...

Qiu, Minghui; Zhang, Hao; Miao, Yinping; Liu, Bo; Liu, Lihui

345

ULTRA-HIGH TEMPERATURE SENSORS BASED ON OPTICAL PROPERTY MODULATION AND VIBRATION-TOLERANT INTERFEROMETRY  

SciTech Connect (OSTI)

The goals of the first six months of this project were to begin laying the foundations for both the SiC front-end optical chip fabrication techniques for high pressure gas species sensing as well as the design, assembly, and test of a portable high pressure high temperature calibration test cell chamber for introducing gas species. This calibration cell will be used in the remaining months for proposed first stage high pressure high temperature gas species sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs of the fabricated calibration test chamber cell, the optical sensor setup with the calibration cell, the SiC sample chip holder, and relevant signal processing mathematics are provided. Initial experimental data from both the optical sensor and fabricated test gas species SiC chips is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.

Nabeel A. Riza

2005-07-22T23:59:59.000Z

346

Riboswitch-based sensor in low optical background Svetlana V. Harbaugh, Molly E. Davidson, Yaroslav G. Chushak*  

E-Print Network [OSTI]

Riboswitch-based sensor in low optical background Svetlana V. Harbaugh, Molly E. Davidson, Yaroslav in the presence of theophylline. However, the BFP-eGFP FRET pair posses significant optical background-4 These RNA-based sensors bind to a ligand and alter the gene expression of downstream genes. Riboswitches

347

Limitations on High Data Rate Optical Fiber Transmission Systems Due to Transmission Impairment  

SciTech Connect (OSTI)

This project supplemented our regular DOE grant from the Basic Energy Sciences organization with the goal of fostering industrial partnerships and student internships. During the project period, we have interacted with between 15 and 20 companies in the optical fiber telecommunications equipment industry, and our students have participated in a number of highly visible projects with companies such as Ciena, Science Applications International Corporation, KDD, ATT, Virtual Photonics, Inc., Phaethon Telecommunications, PhotonEx, and others. The project led to many successful interactions and numerous job offers for our students.

Menyuk, Curtis R.

2002-03-15T23:59:59.000Z

348

Optical fiber imaging for high speed plasma motion diagnostics: Applied to low voltage circuit breakers  

SciTech Connect (OSTI)

An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1x10{sup 6} images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker.

McBride, J. W. [School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Balestrero, A.; Tribulato, G. [ABB SACE DIVISION, ABB S.p.A., Via Baioni, Bergamo 35 IT-24123 (Italy); Ghezzi, L. [ABB SACE DIVISION, ABB S.p.A., Viale dell'Industria, Vittuone (MI)18 IT-20010 (Italy); Cross, K. J. [Taicaan Ltd., 2 Venture Road, Southampton Science Park, Southampton, Hampshire SO16 7NP (United Kingdom)

2010-05-15T23:59:59.000Z

349

Fiber optic inclination detector system having a weighted sphere with reference points  

DOE Patents [OSTI]

A fiber optic inclination detector system for determining the angular displacement of an object from a reference surface includes a simple mechanical transducer which requires a minimum number of parts and no electrical components. The system employs a single light beam which is split into two light beams and provided to the transducer. Each light beam is amplitude modulated upon reflecting off the transducer to detect inclination. The power values associated with each of the reflected light beams are converted by a pair of photodetectors into voltage signals, and a microprocessor manipulates the voltage signals to provide a measure of the angular displacement between the object and the reference surface.

Cwalinski, Jeffrey P. (Ballston Lake, NY)

1995-01-01T23:59:59.000Z

350

Generation of a permanent linear electro-optic effect in an optical fiber by poling  

E-Print Network [OSTI]

. The modulated light was detected by a silicon photodiode( SD-100-11- 11-021 ). The junction capacitance of the photodiode is 230pF under 5 volts reversed bias which requires the load resistance to be less than 800kA to achieve a low cutoff frequency of 1 k..., and nv are refrective indies along x and y directions, respec- tively, and &p is a phase constant. The beam transmitted out of the fiber passes through an analyzer before reaching the photodiode. The axis o f the analyzer is adjusted to a, 45 angle...

Hu, Xiaochao

2012-06-07T23:59:59.000Z

351

Optical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Optical fiber-based single-shot picosecond transient absorption spectroscopy Andrew R. Cook aÍ’ and Yuzhen Shen Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, USA Í‘Received 27 January 2009; accepted 29 May 2009; published online 17 July 2009Í’ A new type of single-shot transient absorption apparatus is described based on a bundle of optical fibers. The bundle contains 100 fibers of different lengths, each successively giving Ďł15 ps longer optical delay. Data are collected by imaging light from the exit of the bundle into a sample where it is overlapped with an electron pulse or laser excitation pulse, followed by imaging onto a charge coupled device Í‘CCDÍ’ detector where the intensity of light from each fiber is measured simultaneously. Application to both ultrafast pump-probe spectroscopy and pulse radiolysis is demonstrated. For pulse

352

Manufacturing challenges of optical current and voltage sensors for utility applications  

SciTech Connect (OSTI)

Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

Yakymyshyn, C.P. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Brubaker, M.A. [Los Alamos National Lab., NM (United States); Johnston, P.M. [Johnston (Paul M.), Raleigh, NC (United States); Reinbold, C. [ABB High Voltage Switchgear, Greensburg, PA (United States)

1997-12-01T23:59:59.000Z

353

Integrability aspects with optical solitons of a generalized variable-coefficient N-coupled higher order nonlinear Schroedinger system from inhomogeneous optical fibers  

SciTech Connect (OSTI)

For describing the long-distance communication and manufacturing problems of N fields propagation in inhomogeneous optical fibers, we consider a generalized variable-coefficient N-coupled nonlinear Schroedinger system with higher order effects such as the third-order dispersion, self-steepening and self-frequency shift. Using the Painleve singularity structure analysis, we obtain two cases for this system to admit the Painleve property. Then for case (1) we derive the optical dark solitons via solving the Hirota bilinear equations; and based on the obtained (2N+1)x(2N+1) Lax pair, we construct the Darboux transformation to obtain the optical bright solitons (including the multisoliton profiles) for case (2). Finally, the features of optical solitons (both dark and bright ones) in inhomogeneous optical fibers are analyzed and graphically discussed.

Lue Xing; Li Juan; Zhang Haiqiang; Xu Tao; Li Lili [School of Science, Beijing University of Posts and Telecommunications, P.O. Box 49, Beijing 100876 (China); Tian Bo [School of Science, Beijing University of Posts and Telecommunications, P.O. Box 49, Beijing 100876 (China); State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Key Laboratory of Information Photonics and Optical Communications (BUPT), Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 128, Beijing 100876 (China)

2010-04-15T23:59:59.000Z

354

Development of Fiber Bragg Grating Strain, Thermal, and Magnetic Sensors for Smart Structure Applications  

E-Print Network [OSTI]

the FBGs along Fiber-2 when moved from air to either IPA orB when the FBG is immersed in IPA from air and evolution ofetched FBG when immersed in IPA and then ferrofluid with a

Emmons, Michael

2012-01-01T23:59:59.000Z

355

Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry  

SciTech Connect (OSTI)

The goals of the second six months of the Phase 2 of this project were to conduct first time experimental studies using optical designs and some initial hardware developed in the first 6 months of Phase 2. One focus is to modify the SiC chip optical properties to enable gas species sensing with a specific gas species under high temperature and pressure. The goal was to acquire sensing test data using two example inert and safe gases and show gas discrimination abilities. A high pressure gas mixing chamber was to be designed and assembled to achieve the mentioned gas sensing needs. Another goal was to initiate high temperature probe design by developing and testing a probe design that leads to accurately measuring the thickness of the deployed SiC sensor chip to enable accurate overall sensor system design. The third goal of this phase of the project was to test the SiC chip under high pressure conditions using the earlier designed calibration cell to enable it to act as a pressure sensor when doing gas detection. In this case, experiments using a controlled pressure system were to deliver repeatable pressure measurement data. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs or schematics of the fabricated hardware are provided. Experimental data from the three optical sensor systems (i.e., Thickness, pressure, and gas species) is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.

Nabeel A. Riza

2006-01-26T23:59:59.000Z

356

Issues arising with the application of optical fiber transmission in class 1E systems in nuclear power plants  

SciTech Connect (OSTI)

The application of fiber optic links and networks in safety-critical systems in the next generation of nuclear power plants, as well as in some digital upgrades in present-day plants, will mean that these links must be highly reliable and able to withstand the effect of environmental stressors present at the installation location. This paper discusses the failure modes and age-related mechanisms of fiber optic transmission components and identifies environmental stressors that could adversely affect their reliability over the long term. Some of the standards that could be used in their qualification for safety-critical applications are also discussed briefly.

Korsah, K. [Oak Ridge National Lab., TN (United States); Antonescu, C. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

1993-12-31T23:59:59.000Z

357

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 6, DECEMBER 2013 4251 Performance of Ge-Doped Optical Fiber as a  

E-Print Network [OSTI]

the thermoluminescent re- sponse of three Germanium-doped silica-based optical fibers obtained by varying the drawing limited number of investigations on the potential of commercially available silica based optical fibers, such TSL dosimetry efficiency can be extended for dose monitoring ap- plication in nuclear industry

Boyer, Edmond

358

ULTRA-HIGH TEMPERATURE SENSORS BASED ON OPTICAL PROPERTY MODULATION AND VIBRATION-TOLERANT INTERFEROMETRY  

SciTech Connect (OSTI)

The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology. The goals of the second six months of this project were to conduct high temperature sensing tests using the test chamber and optical sensing instrument designs developed in the first part of the project. In addition, a Phase I goal was to develop the basic processing theory and physics for the proposed first sensor experimentation and data processing. All these goals have been achieved and are described in detail. Both optical experimental design process and sensed temperature are provided. In addition, photographs of the fabricated SiC optical chips after deployment in the high temperature test chamber are shown from a material study point-of-view.

Nabeel A. Riza

2004-11-10T23:59:59.000Z

359

Electro-optic voltage sensor for sensing voltage in an E-field  

DOE Patents [OSTI]

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Idaho Falls, ID); Renak, Todd W. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

360

Fibre optic sensor for the detection of adulterant traces in coconut oil  

Science Journals Connector (OSTI)

The design and development of a fibre optic evanescent wave refractometer for the detection of trace amounts of paraffin oil and palm oil in coconut oil is presented. This sensor is based on a side-polished plastic optical fibre. At the sensing region, the cladding and a small portion of the core are removed and the fibre nicely polished. The sensing region is fabricated in such a manner that it sits perfectly within a bent mould. This bending of the sensing region enhances its sensitivity. The oil mixture of different mix ratios is introduced into the sensing region and we observed a sharp decrease in the output intensity. The observed variation in the intensity is found to be linear and the detection limit is 2% (by volume) paraffin oil/palm oil in coconut oil. The resolution of this refractometric sensor is of the order of 10?3. Since coconut oil is consumed in large volumes as edible oil in south India, this fibre optic sensor finds great relevance for the detection of adulterants such as paraffin oil or palm oil which are readily miscible in coconut oil. The advantage of this type of sensor is that it is inexpensive and easy to set up. Another attraction of the side-polished fibre is that only a very small amount of analyte is needed and its response time is only 7 s.

M Sheeba; M Rajesh; C P G Vallabhan; V P N Nampoori; P Radhakrishnan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

An Optical Backscatter Sensor for Particulate Matter Measurement  

SciTech Connect (OSTI)

Diesel engines are prone to emit particulate matter (PM) emissions under certain operation conditions. In-cylinder production of PM from diesel combustion control can occur under a wide variety of operating conditions, and in some cases, operation of a multi-cylinder engine can further complicate PM emissions due to variations in air or fuel charge due to manifold mixing effects. In this study, a probe for detecting PM in diesel exhaust was evaluated on a light-duty diesel engine. The probe is based on an optical backscattering effect. Due to the optical nature of the probe, PM sensing can occur at high rates. The feasibility of the probe for examining PM emissions in the exhaust manifold will be discussed.

Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Partridge Jr, William P [ORNL

2009-01-01T23:59:59.000Z

362

EVALUATION OF A UAV COMPOSITE WING SPAR REPAIR USING AN EMBEDDED OPTICAL FIBER RAYLEIGH BACK-SCATTERING DISTRIBUTED STRAIN SENSING  

E-Print Network [OSTI]

EVALUATION OF A UAV COMPOSITE WING SPAR REPAIR USING AN EMBEDDED OPTICAL FIBER RAYLEIGH BACK Branch, Tel-Aviv Israel ikressel@iai.co.il ABSTRACT A representing damaged UAV wing spar cap was repaired requirements for UAVs, where the substantiation of structural bonded joint can be based on: "repeatable

Paris-Sud XI, Université de

363

Embedded Fiber Optic Probes to Measure Detonation Velocities Using the Photonic Doppler Velocimeter  

SciTech Connect (OSTI)

Detonation velocities for high explosives can be in the 7 to 8 km/s range. Previous work has shown that these velocities may be measured by inserting an optical fiber probe into the explosive assembly and recording the velocity time history using a Fabry-Perot velocimeter. The measured velocity using this method, however, is the actual velocity multiplied times the refractive index of the fiber core, which is on the order of 1.5. This means that the velocimeter diagnostic must be capable of measuring velocities as high as 12 km/s. Until recently, a velocity of 12 km/s was beyond the maximum velocity limit of a homodyne-based velocimeter. The limiting component in a homodyne system is usually the digitizer. Recently, however, digitizers have come on the market with 20 GHz bandwidth and 50 GS/s sample rate. Such a digitizer coupled with high bandwidth detectors now have the total bandwidth required to make velocity measurements in the 12 km/s range. This paper describes measurements made of detonation velocities using a high bandwidth homodyne system.

Hare, D E; Holtkamp, D B; Strand, O T

2010-03-02T23:59:59.000Z

364

Fast Inverse Nonlinear Fourier Transform For Generating Multi-Solitons In Optical Fiber  

E-Print Network [OSTI]

The achievable data rates of current fiber-optic wavelength-division-multiplexing (WDM) systems are limited by nonlinear interactions between different subchannels. Recently, it was thus proposed to replace the conventional Fourier transform in WDM systems with an appropriately defined nonlinear Fourier transform (NFT). The computational complexity of NFTs is a topic of current research. In this paper, a fast inverse NFT algorithm for the important special case of multi-solitonic signals is presented. The algorithm requires only $\\mathcal{O}(D\\log^{2}D)$ floating point operations to compute $D$ samples of a multi-soliton. To the best of our knowledge, this is the first algorithm for this problem with $\\log^{2}$-linear complexity. The paper also includes a many samples analysis of the generated nonlinear Fourier spectra.

Wahls, Sander

2015-01-01T23:59:59.000Z

365

Optical-Fiber Gravitational Wave Detector: Dynamical 3-Space Turbulence Detected  

E-Print Network [OSTI]

Preliminary results from an optical-fiber gravitational wave interferometric detector are reported. The detector is very small, cheap and simple to build and operate. It is assembled from readily available opto-electronic components. A parts list is given. The detector can operate in two modes: one in which only instrument noise is detected, and data from a 24 hour period is reported for this mode, and in a 2nd mode in which the gravitational waves are detected as well, and data from a 24 hour period is analysed. Comparison shows that the instrument has a high S/N ratio. The frequency spectrum of the gravitational waves shows a pink noise spectrum, from 0 to 0.1Hz.

Reginald T Cahill

2007-07-16T23:59:59.000Z

366

Mid-Infrared Trace Gas Analysis with Single-Pass Fourier Transform Infrared Hollow Waveguide Gas Sensors  

Science Journals Connector (OSTI)

A hollow core optical fiber gas sensor has been developed in combination with a Fourier transform infrared (FT-IR) spectrometer operating in the spectral range of 4000–500...

Kim, Seong-Soo; Menegazzo, Nicola; Young, Christina; Chan, James; Carter, Chance; Mizaikoff, Boris

2009-01-01T23:59:59.000Z

367

Optical humidity sensors based on titania films fabricated by sol?gel and thermal evaporation methods  

Science Journals Connector (OSTI)

This paper reports a comparative study of an optical humidity sensor based on titania films fabricated by sol?gel and thermal evaporation methods. As semiconducting oxides are known for their n-type conduction because of the presence of oxygen vacancies, therefore they prove to be very good sensors for humidity. Sensing elements of the optical humidity sensor presented here consist of a rutile structured one-layered TiO2 thin film deposited on the base of an isosceles glass prism of thickness 1000 ?. This TiO2 film is porous and sensitive to humidity. The other sensing element consists of a film of the same material deposited by the thermal evaporation method on the base of a prism of the same thickness. Light from a He?Ne laser enters the prism from one of the isosceles faces of the prism and gets reflected from the glass?film interface, before emerging out from its other isosceles face. The emergent beam is collected through an optical fibre, which is connected to an optical power meter for measurement. Variations in the intensity of light caused by changes in humidity lying in the range of 5% RH to 95% RH have been recorded. A sensor fabricated by the thermal evaporation method shows better sensitivity than the sol?gel method. Scanning electron micrographs of both the films show that the film prepared by the thermal evaporation method is more porous and continuous than the film prepared by the sol?gel method, resulting in more sensitivity to humidity.

B C Yadav; N K Pandey; Amit K Srivastava; Preeti Sharma

2007-01-01T23:59:59.000Z

368

E-Print Network 3.0 - automated fiber pigtailing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fiber pigtailing is based... Epoxyless Fiber-to-Submount Bonding for Active Fiber Optoelectronic and Fiber Backplane Applications Don C... Abstract--A fiber-coupled optical...

369

Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry  

SciTech Connect (OSTI)

The goals of the Year 2006 Continuation Phase 2 three months period (April 1 to Sept. 30) of this project were to (a) conduct a probe elements industrial environment feasibility study and (b) fabricate embedded optical phase or microstructured SiC chips for individual gas species sensing. Specifically, SiC chips for temperature and pressure probe industrial applications were batch fabricated. Next, these chips were subject to a quality test for use in the probe sensor. A batch of the best chips for probe design were selected and subject to further tests that included sensor performance based on corrosive chemical exposure, power plant soot exposure, light polarization variations, and extreme temperature soaking. Experimental data were investigated in detail to analyze these mentioned industrial parameters relevant to a power plant. Probe design was provided to overcome mechanical vibrations. All these goals have been achieved and are described in detail in the report. The other main focus of the reported work is to modify the SiC chip by fabricating an embedded optical phase or microstructures within the chip to enable gas species sensing under high temperature and pressure. This has been done in the Kar UCF Lab. using a laser-based system whose design and operation is explained. Experimental data from the embedded optical phase-based chip for changing temperatures is provided and shown to be isolated from gas pressure and species. These design and experimentation results are summarized to give positive conclusions on the proposed high temperature high pressure gas species detection optical sensor technology.

Nabeel A. Riza

2006-09-30T23:59:59.000Z

370

A simple scheme for universal linear optics quantum computing with constant experimental complexity using fiber-loops  

E-Print Network [OSTI]

Recently, Motes, Gilchrist, Dowling & Rohde [Phys. Rev. Lett. 113, 120501 (2014)] presented a scheme for photonic boson-sampling using a fiber-loop architecture. Here we show that the same architecture can be modified to implement full, universal linear optics quantum computing, in various incarnations. The scheme employs two embedded fiber-loops, a single push-button photon source, three dynamically controlled beamsplitters, and a single time-resolved photo-detector. The architecture has only a single point of interference, and thus may be significantly easier to align than other schemes. The experimental complexity of the scheme is constant, irrespective of the size of the computation, limited only by fiber lengths and their respective loss rates.

Peter P. Rohde

2014-10-02T23:59:59.000Z

371

100 Mb/s Ethernet Transmission Over 275 m ofLarge Core Step Index Polymer Optical Fiber: Results From the POF-ALL European Project  

Science Journals Connector (OSTI)

We present our prototype solution for transmitting 100 Mb/s Ethernet data over large core (1 mm) step-index polymer optical fiber (POF), as one of the final results of the...

Cárdenas Lopez, Daniel Felipe; Nespola, Antonino; Camatel, Stefano; Abrate, Silvio; Gaudino, Roberto

2009-01-01T23:59:59.000Z

372

Oxazine-based sensor for contaminant detection, fabrication method therefor, and uses thereof  

DOE Patents [OSTI]

A sensor, a method for its fabrication, and a method for its use to detect contaminants, for example, ammonia, in stagnant and dynamic fluid media, especially liquid media. The sensor is an opto-chemical sensor that includes a polymer optical fiber, a sensing layer comprising oxazine 170 perchlorate on the polymer optical fiber, and a membrane layer on the sensing layer. The membrane layer is gas permeable and not permeable to the fluid in the fluid system, and moisture is entrapped by and between the sensing and membrane layers.

Nnanna, Agbai Agwu; Jalal, Ahmed Hasnian

2014-05-27T23:59:59.000Z

373

Direct measurement of instantaneous source speed for a HDR brachytherapy unit using an optical fiber based detector  

SciTech Connect (OSTI)

Purpose: Several attempts to determine the transit time of a high dose rate (HDR) brachytherapy unit have been reported in the literature with controversial results. The determination of the source speed is necessary to accurately calculate the transient dose in brachytherapy treatments. In these studies, only the average speed of the source was measured as a parameter for transit dose calculation, which does not account for the realistic movement of the source, and is therefore inaccurate for numerical simulations. The purpose of this work is to report the implementation and technical design of an optical fiber based detector to directly measure the instantaneous speed profile of a {sup 192}Ir source in a Nucletron HDR brachytherapy unit. Methods: To accomplish this task, we have developed a setup that uses the Cerenkov light induced in optical fibers as a detection signal for the radiation source moving inside the HDR catheter. As the {sup 192}Ir source travels between two optical fibers with known distance, the threshold of the induced signals are used to extract the transit time and thus the velocity. The high resolution of the detector enables the measurement of the transit time at short separation distance of the fibers, providing the instantaneous speed. Results: Accurate and high resolution speed profiles of the {sup 192}Ir radiation source traveling from the safe to the end of the catheter and between dwell positions are presented. The maximum and minimum velocities of the source were found to be 52.0{+-}1.0 and 17.3{+-}1.2 cm/s. The authors demonstrate that the radiation source follows a uniformly accelerated linear motion with acceleration of |a|=113 cm/s{sup 2}. In addition, the authors compare the average speed measured using the optical fiber detector to those obtained in the literature, showing deviation up to 265%. Conclusions: To the best of the authors' knowledge, the authors directly measured for the first time the instantaneous speed profile of a radiation source in a HDR brachytherapy unit traveling from the unit safe to the end of the catheter and between interdwell distances. The method is feasible and accurate to implement on quality assurance tests and provides a unique database for efficient computational simulations of the transient dose.

Minamisawa, R. A.; Rubo, R. A.; Seraide, R. M.; Rocha, J. R. O.; Almeida, A. [Department of Physics and Mathematics, FFCLRP, University of Sao Paulo, 14040-901, Ribeirao Preto-SP (Brazil); INRAD, Medical School - University of Sao Paulo, Clinical Hospital (HCUSP), 05403-001, Sao Paulo-SP (Brazil); CAISM Radiotherapy Service, CEB, State University of Campinas, 13083-881, Campinas-SP (Brazil); Department of Physics and Mathematics, FFCLRP, University of Sao Paulo, 14040-901, Ribeirao Preto-SP (Brazil)

2010-10-15T23:59:59.000Z

374

RADIATION TOLERANT FIBER OPTIC HUMIDITY SENSORS FOR HIGH ENERGY PHYSICS APPLICATIONS  

E-Print Network [OSTI]

condensation of water and the growth of ice, which can inflict major damage at such low temperature, the whole of dry gas to force out the water vapor. In addition, the thermal insulation of the nearby coolant pipes

Paris-Sud XI, Université de

375

Ultra-High Precision Stamping of Fiber-Optic Connectors for Supercompu...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supercomputers, datacenters, and telecom networks are increasingly dependent on optical networks for high-bandwidth digital communication. While innovation in electro-optical...

376

Micro-position sensor using faraday effect  

DOE Patents [OSTI]

A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.

McElfresh, Michael (Livermore, CA); Lucas, Matthew (Pittsburgh, PA); Silveira, Joseph P. (Tracy, CA); Groves, Scott E. (Brentwood, CA)

2007-02-27T23:59:59.000Z

377

Fiber optic thermal/fast neutron and gamma ray scintillation detector  

DOE Patents [OSTI]

A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

Neal, John S. (Knoxville, TN); Mihalczo, John T (Oak Ridge, TN)

2007-10-30T23:59:59.000Z

378

Novel fabrication and optoelectronic property of semiconductor filaments by optical-fiber thermal drawing  

E-Print Network [OSTI]

One dimensional nanostructure such as nanowires is typically fabricated by the wafer-based approach. Here we report nanowires are fabricated by thermal drawing of fiber. A thin viscous semiconductor film internal to the ...

Deng, D. S.

379

Laser ignition of flammable mixtures via a solid core optical fiber  

Science Journals Connector (OSTI)

To date no commercial fiber coupled laser systems have reached the irradiance and pulse energy required for flammable mixtures ignition. In this work we report preliminary results on the ignition of two-phase mix...

H. El-Rabii; G. Gaborel

2007-03-01T23:59:59.000Z

380

Fiber Delivery of mid-IR lasers  

SciTech Connect (OSTI)

Fiber optics for the visible to near infrared (NIR) wavelength regimes (i.e. = 0.42 {mu}m) have proven to be extremely useful for a myriad of applications such as telecommunications, illumination, and sensors because they enable convenient, compact, and remote delivery of laser beams. Similarly, there is a need for fiber optics operating at longer wavelengths. For example, systems operating in the mid-IR regime (i.e., = 314 {mu}m) are being developed to detect trace molecular species with far-reaching applications, such as detecting explosives on surfaces, pollutants in the environment, and biomarkers in the breath of a patient. Furthermore, with the increasing availability of quantum cascade lasers (QCLs) which are semiconductor lasers that operate in the mid-IR regime additional uses are rapidly being developed. Here, we describe the development of hollow-core fibers for delivery of high-quality mid-IR laser beams across a broad spectral range.

Kriesel, J.M.; Gat, N.; Bernacki, Bruce E.; Myers, Tanya L.; Bledt, Carlos M.; Harrington, James P.

2011-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Integrated optic chemical sensor for the simultaneous detection and quantification of multiple ions. Final report, March--September 1995  

SciTech Connect (OSTI)

This final report summarizes the work performed by Physical Optics Corporation (POC) on the DOE contract entitled {open_quotes}Integrated Optic Chemical Sensor for the Simultaneous Detection and Quantification of Multiple Metal Ions{close_quotes}. This project successfully demonstrated a multi-element integrated optic chemical sensor (IOCS) system capable of simultaneous detection and quantification of metal ions in a water flow stream. POC`s innovative integrated optic chemical sensor technology uses an array of chemically active optical waveguides integrated in parallel in a single small IOCS chip. The IOCS technique uses commonly available materials and straightforward processing to produce channel waveguides in porous glass, each channel treated with a chemical indicator that responds optically to heavy metal ions in a water flow stream. The porosity of the glass allows metal ions present in the water to diffuse into the glass and interact with the immobilized indicators, producing a measurable optical chance. For the {open_quotes}proof-of-concept{close_quotes} demonstration, POC designed and fabricated two types of IOCS chips. Type I uses an array of four straight channel waveguides, three of which are doped with a metal sensitive indicator, an ionophore. The undoped fourth channel is used as the reference channel. Type II uses a 1 x 4 star coupler structure with three sensing channels and a reference channel. Successful implementation of the IOCS technology is expected to have a broad impact on water quality control as well as in the commercial environmental monitoring market. Because of the self-referenced, multidetection capability of the IOCS technique, POC`s water quality sensors are expected to find markets in environmental monitoring and protection, ground water monitoring, and in-line process control. Specific applications include monitoring of chromium, copper, and iron ions in water discharged by the metal plating industry.

Mendoza, E.

1995-09-01T23:59:59.000Z

382

E-Print Network 3.0 - automated fiber placement Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bonding for Active Summary: Epoxyless Fiber-to-Submount Bonding for Active Fiber Optoelectronic and Fiber Backplane Applications Don C... Abstract--A fiber-coupled optical...

383

Borosilicate clad fused silica core fiber optical waveguide with low transmission loss prepared by a high?efficiency process  

Science Journals Connector (OSTI)

A method for making fused silica core?borosilicate clad optical fiberwaveguides is described. The process involves the growth of a needlelike layer of borosilicate glass onto the surface of a commercially available high?purity fused silica rod by an efficient flamereaction of boron and silicon hydrides with oxygen. The needlelike layer is subsequently heat treated at relatively low temperature to form a homogeneous bubble?free glass with a smooth surface. It is then covered with a thin protective jacket of silica and drawn into a fiber. These fibers have attenuation coefficients only slightly greater than the bulk loss of the fused silica core materials. Over the Al1?x Ga x As injection laser wavelength range 0.82–0.88 ?m the loss is 5 dB/km while at the YAG : Nd laser wavelength 1.06 ?m it is 3 dB/km. The process appears to be attractive for the economical manufacture of low?loss fibers due to its simplicity and high chemical conversion efficiency.

F. W. Dabby; D. A. Pinnow; F. W. Ostermayer; L. G. Van Uitert; M. A. Saifi; I. Camlibel

1974-01-01T23:59:59.000Z

384

Final Technical Report - Advanced Optical Sensors to Minimize Energy Consumption in Polymer Extrusion Processes  

SciTech Connect (OSTI)

Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systems are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and significantly reduce energy consumption. Also, because blending and dispersion of additives and components in the final product could be continuously verified, we believe that, in many cases, intermediate compounding steps could be eliminated (saving even more time and energy).

Susan J. Foulk

2012-07-24T23:59:59.000Z

385

Low-cost and compact fiber-optic gyroscope with long-term stability  

Science Journals Connector (OSTI)

There is a need for rate sensors that can provide long-term stability for augmenting antenna pedestal gyro units and replacing overly expensive devices used to overcome attitude limitations in existing inertial navigators.12 In this paper, we present ...

Behzad Moslehi; Ram Yahalom; Levy Oblea; Ferey Faridian; Richard J. Black; Joung C. Ha; Michael Berarducci

2011-03-01T23:59:59.000Z

386

A practical, compact, high performance two-mode fiber acousto-optic frequency shifter  

E-Print Network [OSTI]

frequency as the interaction region is varied for a fiber having Ls=432 pm and 8=36. 5 I/m. matching frequency. This serves well for using a fairly high Q acoustic resonator for launching the flexural waves, the topic of the next chapter. The resulting... reliability. Also, the bandwidth of the device can be optimized 28 by using an acoustic horn with a, fairly broad acoustic response at the frequency of operation. llowever, for good performance the fiber must be well matched to both the LP~, mode stripper...

Siemsen, Patrick James

2012-06-07T23:59:59.000Z

387

Fiber Optic Micro-endoscopy for Detection of Bacteria in Early Stages of Infection  

E-Print Network [OSTI]

. have built a wide field Light Emitting Diode (LED) illumination based, 1 mm diameter fiber bundle micro-endoscope capable of sub-cellular resolution imaging (4 ?m resolution with 750 ?m field of view) for pre-cancer detection in the oral mucosa [16.... have built a wide field Light Emitting Diode (LED) illumination based, 1 mm diameter fiber bundle micro-endoscope capable of sub-cellular resolution imaging (4 ?m resolution with 750 ?m field of view) for pre-cancer detection in the oral mucosa [16...

Mufti, Nooman Sadat

2012-02-14T23:59:59.000Z

388

Toward a Broadband Astro-comb: Effects of Nonlinear Spectral Broadening in Optical Fibers  

E-Print Network [OSTI]

on an Yb-fiber source comb (with 1 GHz repetition rate) that is filtered by double-passing through a low for Astrophysics, Harvard University, 60 Garden St. Cambridge MA 02138 3 Department of Physics, Harvard University by using a filtering cavity configured for double-pass. As an explicit example, we present a design based

Walsworth, Ronald L.

389

Use of dual-grating sensors formed by different types of fiber Bragg gratings for simultaneous temperature and strain measurements  

Science Journals Connector (OSTI)

We report on a systematic investigation of the dependence of both temperature and strain sensitivities on the fiber Bragg grating type, including the well-known Type I, Type IIA, and a...

Shu, Xuewen; Zhao, Donghui; Zhang, Lin; Bennion, Ian

2004-01-01T23:59:59.000Z

390

Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence  

SciTech Connect (OSTI)

Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in urban environments and to detect chemical species concentrations in migrating plumes. Given is our research in these areas and a status report of our progress.

Cameron, S.M.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

1998-11-01T23:59:59.000Z

391

Ultrafast all?optical switching in a dual?core fiber nonlinear coupler  

Science Journals Connector (OSTI)

We report the first demonstration of a nonlinear coupler switch capable of substantially complete all?optical switching at subpicosecond rates with no light?induced thermal effects.

S. R. Friberg; Y. Silberberg; M. K. Oliver; M. J. Andrejco; M. A. Saifi; P. W. Smith

1987-01-01T23:59:59.000Z

392

April 1, 2002 / Vol. 27, No. 7 / OPTICS LETTERS 485 Light trapping in a fiber grating defect by four-wave mixing  

E-Print Network [OSTI]

the structures have a slow frequency response. Our approach is somewhat reminiscent of that of Winful and Perlin9 light in a defect state in a nonuniform fiber grating. The amount of energy deposited is estimated and the optical push broom.5 Here we propose another such demonstra- tion, namely, the storage of light

Sipe,J. E.

393

Extreme temperature robust optical sensor designs and fault-tolerant signal processing  

DOE Patents [OSTI]

Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

2012-01-17T23:59:59.000Z

394

Sensor Data Processing for Tracking Underwater Threats Using Terascale Optical Core Devices  

SciTech Connect (OSTI)

A critical aspect of littoral surveillance (including port protection) involves the localization and tracking of underwater threats such as manned or unmanned autonomous underwater vehicles. In this article, we present a methodology for locating underwater threat sources from uncertain sensor network data, and illustrate the threat tracking aspects using active sonars in a matched filter framework. The novelty of the latter paradigm lies in its implementation on a tera-scale optical core processor, EnLight , recently introduced by Lenslet Laboratories. This processor is optimized for array operations, which it performs in a fixed point arithmetic architecture at tera-scale throughput. Using the EnLight 64 prototype processor, our results (i) illustrate the ability to reach a robust tracking accuracy, and (ii) demonstrate that a considerable speed-up (a factor of over 13,000) can be achieved when compared to an Intel XeonTM processor in the computation of sets of 80K-sample complex Fourier transforms that are associated with our matched filter techniques.

Barhen, Jacob [ORNL; Imam, Neena [ORNL

2009-01-01T23:59:59.000Z

395

Performance comparison of fiber tips in interferometric displacement mesurements  

SciTech Connect (OSTI)

Fiber optic displacement sensors have many potential advantages over traditional displacement measurement techniques, including small size, immunity to electromagnetic interference, electrical isolation, and high resolution. In this report, we focus on an interferometric fiber optic sensor, where the gap between the fiber tip and the device under test forms a Fabry-Perot resonant cavity. An optical interrogator measures the reflected intensity at wavelengths ranging from 1510 to 1590 nm. The spacing between resonant frequencies allows us to determine the distance from the tip to the device under test. We consider ferrule connector angled physical contact (FC/APC), ferrule connector ultra physical contact (FC/UPC) and unpolished cleaved tips and compare their influence on sensor performance. A plane wave propagation model is proposed for predicting tip effects. Comparisons are made on the basis of sensor measurement range, resolution, and sensitivity to changes in test conditions. In this paper, we discuss the experimental setup, detail our analysis, and present test results with recommendations for the applications of each tip.

Moro, Erik [Los Alamos National Laboratory; Grahn, Rick R [Los Alamos National Laboratory; Karimi, Hussain H [Los Alamos National Laboratory; Wilson, Kyle L [Los Alamos National Laboratory; Puckett, Anthony D [Los Alamos National Laboratory

2011-01-24T23:59:59.000Z

396

4 th International Conference on Short & Medium bridges, Halifax, 8-11, August, 1994. Fiber Optic Sensing for Bridges  

E-Print Network [OSTI]

is the first in the world to use two types of carbon fiber composite prestressing tendons in several of its {steel and two types of carbon fiber composite} of prestressing tendons to be tracked over several months abe prospect of replacing this steel with carbon fiber based composite materials.1llese fiber reinfor

397

Energy Saving Scheme Based On Traffic Forwarding For Optical Fiber Access Networks  

Science Journals Connector (OSTI)

We report on an energy saving block that regroups and powers off OLTs during low traffic periods, resulting in energy savings up to 87,5% in the central office of optical access...

Arturo Rodé s Ló pez, G; Estaran, J; Vegas Olmos, J J; Tafur Monroy, I

398

Optical remote monitoring of CH/sub 4/ gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1. 33-. mu. m region  

SciTech Connect (OSTI)

Purely optical remote monitoring of low-level CH/sub 4/ gas is realized for the first time by the method employing a 2-km long-distance, low-loss silica optical fiber link and a compact absorption cell in conjunction with a high radiant InGaAsP light-emitting diode (LED) at 1.33 ..mu..m. Based on the present experiment, the detection limit of CH/sub 4/ in air was confirmed to be approximately 2000 ppm, i.e., 4% of the lower explosion limit of CH/sub 4/. This result supports the conclusion that the fully optical remote sensing system incorporating ultralow loss optical fiber networks and near infrared LEDs or laser diodes can be extensively used for the detection and surveillance of various inflammable and/or explosive gases in industrial and mining complexes as well as in residential areas.

Chan, K.; Ito, H.; Inaba, H.

1983-10-01T23:59:59.000Z

399

Broadband optical coupling between microstructured fibers and photonic band gap circuits: Two-dimensional paradigms  

E-Print Network [OSTI]

simple two-dimensional design models. We demonstrate an effective large- bandwidth small-footprint beam platform for integrated optics. Unlike conventional paradigms such as silicon on insulator SOI waveguides that guide light on a chip by total internal reflection index guiding , PBG-based microcircuits can guide

John, Sajeev

400

Real-time processing of a long perimeter fiber optic intrusion system  

E-Print Network [OSTI]

This thesis reports on recent advances made in real-time intruder detection for an intrusion system developed at Texas A&M University that utilizes a phase-sensitive optical time-domain reflectometer. The system uses light pulses from a highly...

Snider, William Timothy

2009-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Optical fibers by butyl methacrylate reactive extrusion Berthet Romuald, Chalamet Yvan, Taha Mohamed*, Zerroukhi Amar  

E-Print Network [OSTI]

limitations. Reactive extrusion experiments were carried out in a twin-screw extruder and the effect optical fibbers, polymethacrylate. Introduction Twin screw extruders are playing an increasing role of reactive extrusion is explained by the different advantages offered by the use of the twin-screw extruders

Paris-Sud XI, Université de

402

Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers  

DOE Patents [OSTI]

An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

Martinez, Jennifer S. (Santa Fe, NM); Swanson, Basil I. (Los Alamos, NM); Shively, John E. (Arcadia, CA); Li, Lin (Monrovia, CA)

2009-06-02T23:59:59.000Z

403

Fiber optic detector and method for using same for detecting chemical species  

DOE Patents [OSTI]

An optical sensing device for uranyl and other substances, a method for making an optical sensing device and a method for chemically binding uranyl and other indicators to glass, quartz, cellulose and similar substrates. The indicator, such as arsenazo III, is immobilized on the substrate using a chemical binding process. The immobilized arsenazo III causes uranyl from a fluid sample to bind irreversibly to the substrate at its active sites, thus causing absorption of a portion of light transmitted through the substrate. Determination of the amount of light absorbed, using conventional means, yields the concentration of uranyl present in the sample fluid. The binding of uranyl on the substrate can be reversed by subsequent exposure of the substrate to a solution of 2,6-pyridinedicarboxylic acid. The chemical binding process is suitable for similarly binding other indicators, such as bromocresol green.

Baylor, Lewis C. (North Augusta, SC); Buchanan, Bruce R. (Perkiomenville, PA)

1995-01-01T23:59:59.000Z

404

Enhancing the Sensitivity of Chemical Sensors for Chlorinated Hydrocarbons in Water by the Use of Tapered Silver Halide Fibers and Tunable Diode Lasers  

Science Journals Connector (OSTI)

Tapered silver halide fibers were used for the first time for high-sensitivity fiber evanescent wave spectroscopic (FEWS) measurements of chlorinated hydrocarbons (CHCs) in water at...

Göbel, Roman; Krska, Rudolf; Kellner, Robert; Kastner, Joachim; Lambrecht, Armin; Tacke, Maurus; Katzir, Abraham

1995-01-01T23:59:59.000Z

405

Plasma Nanocrystalline Doped Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Advanced Research contacts Robert R. Romanosky Technology Manager Advanced Research National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov susan M. Maley Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1321 susan.maley@netl.doe.gov Hai Xiao University of Missouri-Rolla Electrical and Computer Engineering Department Rolla, MO 65409 573-341-6887 xiaoha@umr.edu Novel seNsors for high temperature iN-situ moNitoriNg of fossil fuel gases Description Novel types of sensors are needed to withstand the harsh environments characteristic of advanced power generation systems, particularly gasification-based systems.

406

Modeling, image processing and attitude estimation of high speed star sensors  

E-Print Network [OSTI]

. The spectral response of the sensor is then used to develop a star catalog generation method that results in a compact on-board star catalog. Finally, the use of a fiber optic faceplate is proposed as an additional means of stray light mitigation for the system...

Katake, Anup Bharat

2009-05-15T23:59:59.000Z

407

Design and fabrication of an optical pressure micro sensor for skin mechanics studies  

E-Print Network [OSTI]

The mechanics of skin is as central to touch as optics is to vision and acoustics is to hearing. With the advent of novel imaging technologies such as the Optical Coherence Tomography (OCT), we are now able to view structures ...

Kumar, Siddarth

2006-01-01T23:59:59.000Z

408

Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel  

DOE Patents [OSTI]

Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN

2010-11-23T23:59:59.000Z

409

Polarization-independent optical wavelength filter for channel dropping applications  

DOE Patents [OSTI]

The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division-multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required.

Deri, Robert J. (Pleasanton, CA); Patterson, Frank (Livermore, CA)

1996-01-01T23:59:59.000Z

410

Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases  

Science Journals Connector (OSTI)

The fiber-optic delivery of sparks in gases is challenging as the output beam must be refocused to high

Joshi, Sachin; Yalin, Azer P; Galvanauskas, Almantas

2007-01-01T23:59:59.000Z

411

Arrangement for multiplexing and intensity splitting light beams for interface into fiber optic cables  

DOE Patents [OSTI]

An arrangement especially suitable for use in a laser apparatus for converting a plurality of different input light beams, for example copper vapor laser beams, into a plurality of substantially identical light beams is disclosed herein. This arrangement utilizes an optical mixing bar which is preferably integrally formed as a single unit and which includes a main body for mixing light therein, a flat input surface on one end of the main body, and a multi-faceted output face on the opposite end of the main body. This arrangement also includes means for directing the plurality of different input light beams onto the input face of the mixing base, whereby to cause the different beams to mix within the main body of the mixing bar and exit the latter from its multi-faceted output face as the desired plurality of substantially identical output beams.

Johnson, Steve A. (Tracy, CA)

1990-01-01T23:59:59.000Z

412

LongviewCowlitzFiberCX  

Broader source: Energy.gov (indexed) [DOE]

Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to add about three miles of aerial fiber optic cable to its Longview-Cowlitz...

413

E-Print Network 3.0 - artificial fiber spinning Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design of a Hybrid STMSNOM for Spintronics & OptoelectronicsSpintronics & Optoelectronics the Interiorthe Interior Summary: -field optical fiber Far-field optical fiber...

414

Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation  

SciTech Connect (OSTI)

This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.; Cuta, F.M.; Olsen, K.B.

1995-05-01T23:59:59.000Z

415

Multimaterial rectifying device fibers  

E-Print Network [OSTI]

Electronic and optoelectronic device processing is commonly thought to be incompatible with much simpler thermal drawing techniques used in optical fiber production. The incorporation of metals, polymer insulators, and ...

Orf, Nicholas D

2009-01-01T23:59:59.000Z

416

Multimaterial multifunctional fiber devices  

E-Print Network [OSTI]

Optical fibers and semiconductor devices differ significantly in their properties and their processing approaches. The latter require an assembly of metal, insulator and semiconductor materials into complex geometries with ...

Sorin, Fabien

2008-01-01T23:59:59.000Z

417

Remote Sensing of Cirrus Cloud Particle Size and Optical Depth Using Polarimetric Sensor Measurements  

Science Journals Connector (OSTI)

This paper presents a conceptual approach toward the remote sensing of cirrus cloud particle size and optical depth using the degree of polarization and polarized reflectance associated with the first three Stokes parameters, I, Q, and U, for the ...

S. C. Ou; K. N. Liou; Y. Takano; R. L. Slonaker

2005-12-01T23:59:59.000Z

418

CHEMICAL SENSORS School of Chemistry and Biochemistry  

E-Print Network [OSTI]

CHEMICAL SENSORS CHEM 6282 School of Chemistry and Biochemistry Chemical sensors theory of chemical recognition, electrochemical, optical, mass sensors and data reduction. Text: J. Janata, "Principles of Chemical Sensors", 2010 Springer NOTE: GT Library purchased an e

Sherrill, David

419

Real time perfusion and oxygenation monitoring in an implantable optical sensor  

E-Print Network [OSTI]

in operating rooms. In the late 1970s Scott Wilbur of the Biox corporation designed an ear sensor that used light emitting diode and solid state photodetectors to develop a clinically accepted pulse oximeter. The fiberoptic cables of previous ear oximeters.... Traditional oximeters use two light emitting diodes that emit light at 660nm (red) and 940nm (infrared) wavelengths. At these wavelengths both oxyhemoglobin and reduced hemoglobin have different absorption spectra (Fig. 1). The ratio of absorbances...

Subramanian, Hariharan

2006-04-12T23:59:59.000Z

420

High repetition rate fiber lasers  

E-Print Network [OSTI]

This thesis reports work in high repetition rate femtosecond fiber lasers. Driven by the applications including optical arbitrary waveform generation, high speed optical sampling, frequency metrology, and timing and frequency ...

Chen, Jian, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Using telecommunication technology to develop an optical sensing infrastructure  

Science Journals Connector (OSTI)

To handle the explosion for data capacity in telecommunication systems system designers are turning toward wavelength division multiplexing (WDM) and optical switching to obtain more data capacity. Thus the telecommunication infrastructure is moving from an electrical-optical hybrid to an all-optical infrastructure. The requirement for telecommunication and sensing infrastructures are similar. Both infrastructures need to multiplex information to and from various locations. Thus the optical WDMs switches and specialty fibers being developed for telecommunication can be used to design an optical sensing infrastructure. Sensors can be multiplexed and routed based on wavelength. WDM also allows the gain characteristics of Erbium Doped Fibers (EDF) to be utilized for sensing applications. The large bandwidth of the EDF gain profile provides a medium to design a multi-wavelength laser. The Erbium Doped Fiber Laser (EDFL) wavelengths can be added dropped and routed. This will allow the EDFL to be in a central location and to service other applications. By applying telecommunication devices to mechanical sensing problems an optical sensing infrastructure will be developed. The sensors utilized in the infrastructure will be developed into a network of displacement sensors for the inspection of complex structures.

J. A. Smith

2000-01-01T23:59:59.000Z

422

Effect of the finishing oil of acrylic fibers in the optical rotation of the Raman scattered light  

Science Journals Connector (OSTI)

Polarized Raman spectra have been obtained from polyacrylonitrile copolymers fibers with vinyl acetate Poly(AN-co-VA), and methyl acrylate Poly(AN-co-MA) with finishing and without...

Rosales-Candelas, I; Soto-Bernal, J J; Gonzalez-Mota, R; Frausto-Reyes, C

2013-01-01T23:59:59.000Z

423

Optical-Fiber-Based, Time-Resolved Photoluminescence Spectrometer for Thin-Film Absorber Characterization and Analysis of TRPL Data for CdS/CdTe Interface: Preprint  

SciTech Connect (OSTI)

We describe the design of a time resolved photoluminescence (TRPL) spectrometer for rapid semiconductor absorber characterization. Simplicity and flexibility is achieved by using single optical fiber to deliver laser pulses and to collect photoluminescence. We apply TRPL for characterization of CdS/CdTe absorbers after deposition, CdCl2 treatment, Cu doping, and back contact formation. Data suggest this method could be applied in various stages of PV device processing. Finally, we show how to analyze TRPL data for CdS/CdTe absorbers by considering laser light absorption depth and intermixing at CdS/CdTe interface.

Kuciauskas, D.; Duenow, J. N.; Kanevce, A.; Li, J. V.; Young, M. R.; Dippo, P.; Levi, D. H.

2012-06-01T23:59:59.000Z

424

Optical Diagnostics Thomas Tsang  

E-Print Network [OSTI]

Optical Diagnostics Thomas Tsang · tight environment · high radiation area · non-serviceable area · passive components · optics only, no active electronics · transmit image through flexible fiber bundle #12;New imaging fiber bundle Core size: 12 µm, diameter: 1/8" Optical Diagnostics Total fiber counts ~50

McDonald, Kirk

425

Fiber optic compass development  

E-Print Network [OSTI]

part of the pattern 0th to 10th 11th to 20th 21st to 30th 31st to 40th 41st to 50th 51st to 60th 61st to 70th 71st to 80th 3 0.15 2.55 2.55 2.25 2.25 2.25 1.95 0.6 2.85 0.6 0.3 0.6 0.3 0.3 1.2 0.15 0.3 0.6 0.3 0.9 0.9 0.3 0.3 3.45 1.2 0.6 0.3 0.6 0....3 0.3 0.3 0.9 0.15 0.15 0.3 0.15 0.6 0.6 0.6 0.15 2.85 2.55 0.6 2.25 0.15 0.6 0.15 3.45 0.3 0.6 0.15 0.6 2.25 0.15 1.95 0.3 0.6 0.3 2.25 0.6 0.3 2.25 0.9 0.6 0.6 0.9 2.1 0.9 0.6 0.3 1.5 0.15 0.15 0.15 0.15 0.15 1.2 0.3 0.15 3.15 2.85 2.55 2.25 2...

Park, Kyongtae

2005-11-01T23:59:59.000Z

426

A Distributed Fiber Optic Sensor Network for Online 3-D Temperature and Neutron Fluence Mapping in a VHTR Environment  

SciTech Connect (OSTI)

Robust sensing technologies allowing for 3D in-core performance monitoring in real time are of paramount importance for already established LWRs to enhance their reliability and availability per year, and therefore, to further facilitate their economic competitiveness via predictive assessment of the in-core conditions.

Tsvetkov, Pavel; Dickerson, Bryan; French, Joseph; McEachern, Donald; Ougouag, Abderrafi

2014-04-30T23:59:59.000Z

427

INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES  

SciTech Connect (OSTI)

The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, the efforts focused on developing an innovative high temperature distributed fiber optic sensor by fabricating in-fiber gratings in single crystal sapphire fibers. So far, our major accomplishments include: Successfully grown alumina cladding layers on single crystal sapphire fibers, successfully fabricated in-fiber gratings in single crystal sapphire fibers, and successfully developed a high temperature distributed fiber optic sensor. Under Task 2, the emphasis has been on putting into place a computational capability for simulation of combustors. A PC workstation was acquired with dual Xeon processors and sufficient memory to support 3-D calculations. An existing license for Fluent software was expanded to include two PC processes, where the existing license was for a Unix workstation. Under Task 3, intelligent state estimation theory is being developed which will map the set of 1D (located judiciously within a 3D environment) measurement data into a 3D temperature profile. This theory presents a semigroup-based approach to the design and training of a system type neural network which performs function extrapolation. The assumption of the semigroup property suffices to guarantee the existence of a generic mathematical architecture and operation which is explicit enough to support the direct design and training of a neural network.

Kwang Y. Lee; Stuart S. Yin; Andre Boheman

2003-12-26T23:59:59.000Z

428

In Vitro and In Vivo Comparison of Optics and Performance of a Distal Sensor Ureteroscope Versus a Standard Fiberoptic Ureteroscope  

E-Print Network [OSTI]

characteristics and optics of the X C with a stan- dardand In Vivo Comparison of Optics and Performance of a Distalperformance characteristics and optics of a new generation

2013-01-01T23:59:59.000Z

429

Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification  

Science Journals Connector (OSTI)

Germania-glass-core silica-glass-cladding single-mode fibers (?n as great as 0.143) with a minimum loss of 20 dB/km at 1.85 µm were fabricated by modified chemical-vapor...

Mashinsky, V M; Neustruev, V B; Dvoyrin, V V; Vasiliev, S A; Medvedkov, O I; Bufetov, I A; Shubin, A V; Dianov, E M; Guryanov, A N; Khopin, V F; Salgansky, M Yu

2004-01-01T23:59:59.000Z

430

Serial optical coherence scanner for brain imaging and mapping  

Science Journals Connector (OSTI)

The serial optical coherence scanner reconstructs macroscopic tissues at microscopic resolution using intrinsic optical contrasts. The anatomy, nerve fiber architectures and fiber...

Akkin, Taner; Wang, Hui

431

Cancellation of the Signal Fading for 60 GHz Subcarrier Multiplexed Optical DSB Signal Transmission in Nondispersion Shifted Fiber Using Midway Optical Phase Conjugation  

Science Journals Connector (OSTI)

In millimeter-wave (mm-wave) optical double sideband (DSB) signal transmission systems, the received radio frequency (RF) power fades periodically because of the group velocity...

Sotobayashi, Hideyuki; Kitayama, Ken-ichi

1999-01-01T23:59:59.000Z

432

Graphene-clad tapered fiber: effective nonlinearity and propagation losses  

Science Journals Connector (OSTI)

We derive a pulse propagation equation for a graphene-clad optical fiber, treating the optical response of the graphene and nonlinearity of the dielectric fiber core as perturbations...

Gorbach, A V; Marini, A; Skryabin, D V

2013-01-01T23:59:59.000Z

433

Spatial optic multiplexer/diplexer  

DOE Patents [OSTI]

An apparatus for simultaneous transmission of optic signals having different wavelengths over a single optic fiber. Multiple light signals are transmitted through optic fibers that are formed into a circumference surrounding a central core fiber. The multiple light signals are directed by a lens into a single receiving fiber where the light combines and is then focused into the central core fiber which transmits the light to a wavelength discriminating receiver assembly.

Tremblay, Paul L. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

434

How do A-train Sensors Intercompare in the Retrieval of Above-Cloud Aerosol Optical Depth? A Case Study-based Assessment  

SciTech Connect (OSTI)

We inter-compare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from different A-train sensors, i.e., MODIS, CALIOP, POLDER, and OMI. These sensors have shown independent capabilities to detect and retrieve aerosol loading above marine boundary layer clouds--a kind of situation often found over the Southeast Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532-nm ACAOD retrieved by CALIOP operational algorithm is largely underestimated; however, it’s 1064-nm AOD when converted to 500 nm shows closer agreement to the passive sensors. Given the different types of sensor measurements processed with different algorithms, the close agreement between them is encouraging. Due to lack of adequate direct measurements above cloud, the validation of satellite-based ACAOD retrievals remains an open challenge. The inter-satellite comparison, however, can be useful for the relative evaluation and consistency check.

Jethva, H. T.; Torres, O.; Waquet, F.; Chand, Duli; Hu, Yong X.

2014-01-16T23:59:59.000Z

435

IEEE SENSORS JOURNAL, VOL. 4, NO. 4, AUGUST 2004 395 Sensor Technologies for Monitoring Metabolic  

E-Print Network [OSTI]

IEEE SENSORS JOURNAL, VOL. 4, NO. 4, AUGUST 2004 395 Sensor Technologies for Monitoring Metabolic Michelle Wilson, Member, IEEE Abstract--A review of optical, chemical, and biological sensors to detect-on-a-chip research instrumentation. The sensors reviewed include optical sensors, at both research and commercial

Wilson, Denise

436

Fiber optic probe of free electron evanescent fields in the optical frequency range Jin-Kyu So, Kevin F. MacDonald, and Nikolay I. Zheludev  

E-Print Network [OSTI]

, Kevin F. MacDonald, and Nikolay I. Zheludev Citation: Applied Physics Letters 104, 201101 (2014); doi evanescent fields in the optical frequency range Jin-Kyu So,1,a) Kevin F. MacDonald,1 and Nikolay I. Zheludev

Zheludev, Nikolay

437

A Comparative Study on the Type IIA Photosensitivity of a B-Ge Optical Fiber Using Ultraviolet, Femtosecond Radiation  

Science Journals Connector (OSTI)

A comparative study on the Type IIA photosensitivity of a B/Ge-codoped optical fibre is performed using 5ps, 500fs and 120fs, 248nm laser radiation. Index modulation curves and...

Violakis, Georgios; Georgiou, Savas; Konstantaki, Maria; Pissadakis, Stavros

438

Fast-neutron radiation effects in a silica-core optical fiber studied by a CCD-camera spectrometer  

Science Journals Connector (OSTI)

A simple CCD-camera spectrometer was deployed at the Los Alamos Spallation Radiation Effects Facility to characterize fast-neutron irradiation effects in several silica-based optical...

Griscom, D L; Gingerich, M E; Friebele, E J; Putnam, M; Unruh, W

1994-01-01T23:59:59.000Z

439

Large Pitch Hollow Core Honeycomb Fiber  

Science Journals Connector (OSTI)

A new kind of hollow core photonic crystal fiber (HC-PCF) for broadband guidance is introduced. Structural and optical properties of a fabricated example are detailed.

Beaudou, Benoît; Couny, François; Benabid, Fetah; Roberts, Peter John

440

Strong fibers  

SciTech Connect (OSTI)

This program was directed to a new and generic approach to the development of new materials with novel and interesting properties, and to the precision fabrication of these materials in one and two-dimensional forms. Advanced deposition processes and microfabrication technology were used to produce fibers and grids of metals, semiconductors, ceramics, and mixtures of controlled composition and structure, and with new and interesting mechanical and physical properties. Deposition processes included electron beam evaporation, co-deposition of mixtures by dual electron beam evaporation, thermal evaporation, sputtering of a single element or compound, sputtering of a single element in a gaseous atmosphere to produce compounds, plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), and selective tungsten chemical vapor deposition (W-CVD). The approach was to use the deposition processes in coordination with patterns generated by optical lithography to produce fibers with transverse dimensions in the micron range, and lengths from less than a millimeter to several centimeters. The approach is also applicable to the production of two-dimensional grids and particulates of controlled sizes and geometries.

Li, Che-Yu.

1991-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris  

DOE Patents [OSTI]

An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

Martinez, Jennifer S. (Santa Fe, NM); Swanson, Basil I. (Los Alamos, NM); Grace, Karen M. (Los Alamos, NM); Grace, Wynne K. (Los Alamos, NM); Shreve, Andrew P. (Santa Fe, NM)

2009-06-02T23:59:59.000Z

442

Improved 3-omega measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber  

Science Journals Connector (OSTI)

A novel 3?thermal conductivitymeasurement technique called metal-coated 3? is introduced for use with liquids gases powders and aerogels. This technique employs a micron-scale metal-coated glass fiber as a heater/thermometer that is suspended within the sample. Metal-coated 3? exceeds alternate 3? based fluid sensing techniques in a number of key metrics enabling rapid measurements of small samples of materials with very low thermal effusivity (gases) using smaller temperature oscillations with lower parasitic conduction losses. Its advantages relative to existing fluid measurement techniques including transient hot-wire steady-state methods and solid-wire 3? are discussed. A generalized n-layer concentric cylindrical periodic heating solution that accounts for thermal boundary resistance is presented. Improved sensitivity to boundary conductance is recognized through this model. Metal-coated 3? was successfully validated through a benchmark study of gases and liquids spanning two-orders of magnitude in thermal conductivity.

Scott N. Schiffres; Jonathan A. Malen

2011-01-01T23:59:59.000Z

443

Photonic Crystal Fibers Advances in Fiber Optics  

E-Print Network [OSTI]

susceptible to electromagnetic interference (EMI) from signals on neighbouring lines. From a speed perspective

La Rosa, Andres H.

444

Sensor Network Demonstration for In Situ Decommissioning - 13332  

SciTech Connect (OSTI)

Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the individual sensors would be immobilized during the grout pouring activities, a set of nine sensor racks were designed. The 270 sensors provided by Idaho National Laboratory (INL), Mississippi State University (MSU), University of Houston (UH), and University of South Carolina (USC) were secured to these racks based on predetermined locations. Once sensor racks were installed inside the test cube, connected and debugged, approximately 32 cubic yards of special grout material was used to entomb the sensors. MSU provided and demonstrated four types of fiber loop ring-down (FLR) sensors for detection of water, temperature, cracks, and movement of fluids. INL provided and demonstrated time differenced 3D electrical resistivity tomography (ERT), advanced tensiometers for moisture content, and thermocouples for temperature measurements. University of Houston provided smart aggregate (SA) sensors, which detect crack severity and water presence. An additional UH sensor system demonstrated was a Fiber Bragg Grating (FBG) fiber optic system measuring strain, presence of water, and temperature. USC provided a system which measured acoustic emissions during cracking, as well as temperature and pH sensors. All systems were connected to a Sensor Remote Access System (SRAS) data networking and collection system designed, developed and provided by FIU. The purpose of SRAS was to collect and allow download of the raw sensor data from all the sensor system, as well as allow upload of the processed data and any analysis reports and graphs. All this information was made available to the research teams via the Deactivation and Decommissioning Knowledge Management and Information Tool (D and D KM-IT). As a current research effort, FIU is performing an energy analysis, and transferring several sensor systems to a Photovoltaic (PV) System to continuously monitor energy consumption parameters and overall power demands. Also, One final component of this research is focusing on developing an integrated data network to capture, log and analyze sensor system data in near real time from a single inte

Lagos, L.; Varona, J.; Awwad, A. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Rivera, J.; McGill, J. [Department of Energy - DOE, Environmental Management Office (United States)] [Department of Energy - DOE, Environmental Management Office (United States)

2013-07-01T23:59:59.000Z

445

A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays  

SciTech Connect (OSTI)

The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

Paulsson Geophysical Services

2008-03-31T23:59:59.000Z

446

Development of a process control sensor for the glass industry. Phase 2: Prototype design, development and demonstration  

SciTech Connect (OSTI)

This report describes an advanced multichannel, on-line optical system for the non-contact measurement of forehearth glass melt temperatures at depth. The analyzer employs multiple narrow infrared (IR) band measurements of glass radiation to reconstruct the glass temperature profiles at depth. The TAS replaces expensive Tri-plex thermocouples, which frequently have service lives as short as 6 months to 1 years. By using passive non-contact sensor heads and fiber optic cables, temperature sensitive electronic components can be located at a safe distance from the hostile process environment. This provides significantly better reliability of the vulnerable electro-optic components and ready access for maintenance.

Gardner, M.; Candee, A.; Koppang, R.

1994-06-01T23:59:59.000Z

447

Latching micro optical switch  

DOE Patents [OSTI]

An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

Garcia, Ernest J; Polosky, Marc A

2013-05-21T23:59:59.000Z

448

Optical Fibre Dosimeter for SASE FEL Undulators  

E-Print Network [OSTI]

Single pass Free Electron Lasers (FELs) based on self-amplified spontaneous emission (SASE) are developed for high brightness and short wavelength applications. They use permanent magnet undulators which are radiation sensitive devices. During accelerator commissioning beam losses can appear anywhere along the undulator line. To avoid damage of the permanent magnets due to radiation, an optical fibre dosimeter system can be used. The increase of absorption caused by ionizing radiation is measured in radiation sensitive optical fibers. The dose system enables relatively fast particle loss tuning during accelerator operation and allows the monitoring of the accumulated dose. Dose measurements in narrow gaps which are inaccessible for any other (online) dosimeter type become possible. The electromagnetic insensitivity of optical fibre sensor is an advantage of applications in strong magnetic undulator fields. At each location the light absorption is measured by using an optical power-meter. The dynamic range is ...

Körfer, M

2003-01-01T23:59:59.000Z

449

Combining NASA/JPL One-Way Optical-Fiber Light-Speed Data with Spacecraft Earth-Flyby Doppler-Shift Data to Characterise 3-Space Flow  

E-Print Network [OSTI]

We combine data from two high precision NASA/JPL experiments: (i) the one-way speed of light experiment using optical fibers: Krisher T.P., Maleki L., Lutes G.F., Primas L.E., Logan R.T., Anderson J.D. and Will C.M., Phys. Rev. D, vol 42, 731-734, 1990, and (ii) the spacecraft earth-flyby doppler shift data: Anderson J.D., Campbell J.K., Ekelund J.E., Ellis J. and Jordan J.F., Phys. Rev. Lett., vol 100, 091102, 2008, to give the solar-system galactic 3-space average speed of 486km/s in the direction RA=4.29hrs, Dec=-75.0deg. Turbulence effects (gravitational waves) are also evident. Data also reveals the 30km/s orbital speed of the earth and the sun inflow component at 1AU of 42km/s and also 615km/s near the sun, and for the first time, experimental measurement of the 3-space 11.2km/s inflow of the earth. The NASA/JPL data is in remarkable agreement with that determined in other light speed anisotropy experiments, such as Michelson-Morley (1887), Miller (1933), Torr and Kolen (1981), DeWitte (1991), Cahill (2006), Munera (2007), Cahill and Stokes (2008) and Cahill (2009).

Reginald T Cahill

2009-06-30T23:59:59.000Z

450

A variety of neutron sensors based on scintillating glass waveguides  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) has fabricated cerium-activated, lithium-silicate glass scintillating fiber neutron sensors via a hot-downdraw process. These fibers typically have a transmission length (e{sup {minus}1} length) of greater than 2 meters. The underlying physics of, the properties of, and selected devices incorporating these fibers are described. These fibers constitute an enabling technology for a wide variety of neutron sensors.

Bliss, M.; Craig, R.A.

1995-05-01T23:59:59.000Z

451

Multiplexed Sensor for Synthesis Gas Compsition and Temperature  

SciTech Connect (OSTI)

The overall goal of this project has been to develop a highly sensitive, multiplexed TDL-based sensor for CO{sub 2}, CO, H{sub 2}O (and temperature), CH{sub 4}, H{sub 2}S, and NH{sub 3}. Such a sensor was designed with so-called 'plug-and-play' characteristics to accommodate additional sensors, and provided in situ path-integrated measurements indicative of average concentrations at speeds suitable for direct gasifier control. The project developed the sensor and culminated in a real-world test of the underlying technology behind the sensor. During the project, new underlying measurements of spectroscopic constants for all of the gases of interest performed, in custom cells built for the project. The envisioned instrument was built from scratch from component lasers, fiber optics, amplifier blocks, detectors, etc. The sensor was tested for nearly a week in an operational power plant. The products of this research are expected to have a direct impact on gasifier technology and the production of high-quality syngas, with substantial broader application to coal and other energy systems. This report is the final technical report on project DE-FG26-04NT42172. During the project we completed all of the milestones planned in the project, with a modification of milestone (7) required due to lack of funding and personnel.

Steven Buckley; Reza Gharavi; Marco Leon

2007-10-01T23:59:59.000Z

452

Automated fiber pigtailing machine  

DOE Patents [OSTI]

The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

Strand, O.T.; Lowry, M.E.

1999-01-05T23:59:59.000Z

453

Optical Packet Switching -1 Optical Networks  

E-Print Network [OSTI]

Optical Packet Switching - 1 Optical Networks: from fiber transmission to photonic switching Optical Packet Switching Fabio Neri and Marco Mellia TLC Networks Group ­ Electronics Department e.mellia@polito.it ­ tel. 011 564 4173 #12;Optical Packet Switching - 2 · This work is licensed under the Creative Commons

Mellia, Marco

454

A Ubiquitous Optical Microsystem Platform with Application to Optical Metrology and Chemical Sensing  

E-Print Network [OSTI]

sensor platform for optical metrology and chemical sensing.Platform with Application to Optical Metrology and ChemicalPlatform with Application to Optical Metrology and Chemical

Gerling, John

2012-01-01T23:59:59.000Z

455

Optics  

Science Journals Connector (OSTI)

Optical components such as lenses, mirrors and diffraction gratings are widely used in many inspection systems. These include not only those for visual inspection with CCD cameras, but also in areas of distanc...

C. Loughlin

1993-01-01T23:59:59.000Z

456

March 15, 1989 / Vol. 14, No. 6 / OPTICS LETTERS 317 Picosecond pump-probe interferometric measurement of optical  

E-Print Network [OSTI]

fiber doped with CdS.,Seli, semiconductor nanocrystals exhibits a large optically induced phase shift measurement of optical nonlinearity in semiconductor-doped fibers D. Cotter, C.N. Ironside,* B. J. Ainslie- surements on silica optical fibers and also on semicon- ductor-doped fibers; the latter exhibit large

457

Quantum Enabled Security (QES) for Optical Communications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

integrated with optical communications to provide a strong, innate, security foundation at the photonic layer for optical fiber networks. July 10, 2013 Quantum Enabled...

458

Quantum optical technologies for metrology, sensing and imaging  

E-Print Network [OSTI]

Over the past 20 years, bright sources of entangled photons have led to a renaissance in quantum optical interferometry. Optical interferometry has been used to test the foundations of quantum mechanics and implement some of the novel ideas associated with quantum entanglement such as quantum teleportation, quantum cryptography, quantum lithography, quantum computing logic gates, and quantum metrology. In this paper, we focus on the new ways that have been developed to exploit quantum optical entanglement in quantum metrology to beat the shot-noise limit, which can be used, e.g., in fiber optical gyroscopes and in sensors for biological or chemical targets. We also discuss how this entanglement can be used to beat the Rayleigh diffraction limit in imaging systems such as in LIDAR and optical lithography.

Jonathan P. Dowling; Kaushik P. Seshadreesan

2014-12-24T23:59:59.000Z

459

Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution  

SciTech Connect (OSTI)

We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

Henn, T.; Kiessling, T., E-mail: tobias.kiessling@physik.uni-wuerzburg.de; Ossau, W.; Molenkamp, L. W. [Physikalisches Institut (EP3), Universität Würzburg, 97074 Würzburg (Germany)] [Physikalisches Institut (EP3), Universität Würzburg, 97074 Würzburg (Germany); Biermann, K.; Santos, P. V. [Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin (Germany)] [Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin (Germany)

2013-12-15T23:59:59.000Z

460

In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor  

SciTech Connect (OSTI)

This work presents the first demonstration of a MEMS optical sensor for in-situ, real-time monitoring of both mechanical and chemical structure evolutions in a V2O5 lithium-ion battery (LIB) cathode during battery operation. A reflective membrane forms one side of a Fabry-Perot (FP) interferometer, while the other side is coated with V2O5 and exposed to electrolyte in a half-cell LIB. Using one microscope and two laser sources, both the induced membrane deflection and the corresponding Raman intensity changes are observed during lithium cycling. Results are in good agreement with the expected mechanical behavior and disorder change of the V2O5 layers, highlighting the significant potential of MEMS as enabling tools for advanced scientific investigations.

Jung, H. [University of Maryland; Gerasopoulos, K. [University of Maryland; Gnerlich, Markus [University of Maryland; Talin, A. Alec [Sandia National Laboratories; Ghodssi, Reza [University of Maryland

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Model of bubble velocity vector measurement in upward and downward bubbly two-phase flows using a four-sensor optical probe  

Science Journals Connector (OSTI)

Abstract The knowledge of bubble behaviors is of considerable significance for a proper understanding and modeling of two-phase flows. To obtain the information on the bubble motion, a novel model was developed, by which the bubble velocity vector can be directly calculated from six time intervals measured with a four-sensor probe. The measurements of local bubble velocity vector and void fraction were performed in both upward and downward bubbly flows by using a four-sensor optical probe. The area-averaged void fraction and bubble velocity obtained from the probe agree well with those measured by other cross-calibration methods, and the measurement errors are within 15% under various flow conditions. Experimental results of the bubble velocity vector reveal that the bubble lateral migration may be suppressed in upward flows, but be strengthened in downward flows as the liquid flow rate increases. Also, with an increase in gas flow rate, the bubble velocity distribution varies into the power–law profile in upward flows, but into an off-center peak profile in downward flows. In addition, the void fraction shows a core peak distribution at low void fraction for downward flows, but a wall peak distribution for upward flows. However, when the void fraction is relatively high, it displays an off-center peak distribution for downward flows but a core peak distribution for upward flows.

Daogui Tian; Changqi Yan; Licheng Sun

2015-01-01T23:59:59.000Z

462

Fiber-type dosimeter with improved illuminator  

DOE Patents [OSTI]

A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

Fox, Richard J. (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

463

Fiber-type dosimeter with improved illuminator  

DOE Patents [OSTI]

A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

Fox, R.J.

1985-12-23T23:59:59.000Z

464

Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor  

SciTech Connect (OSTI)

The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

Kalyanov, A L; Lychagov, V V; Smirnov, I V; Ryabukho, V P [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation)

2013-08-31T23:59:59.000Z

465

Innovational radiation sensor by integrating AL2O3:C optically stimulated luminescent dosemeter and GaN detectors  

Science Journals Connector (OSTI)

......dosimetry (i.e. an active dosemeter) or one...detectable dose and the active performance of the...various applications. MATERIALS AND METHODS alpha-Al2O3...by the ratio of cathode current to optical...could be operated in active mode. | Department...radiation effects Light Materials Testing Photochemistry......

Tai-Chang Chen; Kunakorn Poochinda; Thomas G. Stoebe

2006-09-01T23:59:59.000Z

466

Fiber to waveguide couplers for silicon photonics  

E-Print Network [OSTI]

As silicon photonics enters mainstream technology, we find ourselves in need of methods to seamlessly transfer light between the optical fibers of global scale telecommunications networks and the on-chip waveguides used ...

Montalbo, Trisha M., 1980-

2004-01-01T23:59:59.000Z

467

Microscale autonomous sensor and communications module  

DOE Patents [OSTI]

Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.

Okandan, Murat; Nielson, Gregory N

2014-03-25T23:59:59.000Z

468

Carbon Fiber  

ScienceCinema (OSTI)

Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

McGetrick, Lee

2014-07-23T23:59:59.000Z

469

Carbon Fiber  

SciTech Connect (OSTI)

Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

McGetrick, Lee

2014-04-17T23:59:59.000Z

470

Fiber Bundles  

Science Journals Connector (OSTI)

Fiber bundles, their morphisms and sections are defined. Transition functions are introduced and used to describe the global structure of a bundle and to build it out of local data. Particular clas...

Lorenzo Fatibene; Mauro Francaviglia

2003-01-01T23:59:59.000Z

471

Solubility properties of siloxane polymers for chemical sensors  

SciTech Connect (OSTI)

This paper discusses the factors governing the sorption of vapors by organic polymers. The principles have been applied in the past for designing and selecting polymers for acoustic wave sensors; however they apply equally well to sorption of vapors by polymers used on optical chemical sensors. A set of solvation parameters (a table is presented for various organic vapors) have been developed that describe the particular solubility properties of individual solute molecules; they are used in linear solvation energy relationships (LSER) that model the sorption process. LSER coefficients are tabulated for five polysiloxanes; so are individual interaction terms for each of the 5 polymers. Dispersion interactions play a major role in determining overall partition coefficients; the log L{sup 16} (gas-liquid partition coefficient of solute on hexadecane) value of vapors are important in determining overall sorption. For the detection of basic vapors such as organophosphates, a hydrogen-bond acidic polymers will be most effective at sorbing them. Currently, fiber optic sensors are being developed where the cladding serves as a sorbent layer to collect and concentrate analyte vapors, which will be detected and identified spectroscopically. These solubility models will be used to design the polymers for the cladding for particular vapors.

Grate, J.W. [Pacific Northwest Lab., Richland, WA (United States); Abraham, M.H. [University College, London (United Kingdom)

1995-05-01T23:59:59.000Z

472

Quantum Enabled Security (QES) for Optical Communications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantum Enabled Security (QES) for Optical Communications Quantum Enabled Security (QES) for Optical Communications Quantum Enabled Security (QES) for Optical Communications Los Alamos National Laboratory has developed Quantum Enabled Security (QES), a revolutionary new cybersecurity capability using quantum (single-photon) communications integrated with optical communications to provide a strong, innate, security foundation at the photonic layer for optical fiber networks. July 10, 2013 Quantum Enabled Security (QES) for Optical Communications Available for thumbnail of Feynman Center (505) 665-9090 Email Quantum Enabled Security (QES) for Optical Communications Applications: Secure communication over optical or free space networks Financial networks Transparent access networks: fiber to the home (FTTH); fiber to the

473

Package for integrated optic circuit and method  

DOE Patents [OSTI]

A structure and method for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package.

Kravitz, Stanley H. (26 Aspen Rd., Placitas, NM 87043); Hadley, G. Ronald (6012 Annapolis NE., Albuquerque, NM 87111); Warren, Mial E. (3825 Mary Ellen NE., Albuquerque, NM 87111); Carson, Richard F. (1036 Jewel Pl. NE., Albuquerque, NM 87123); Armendariz, Marcelino G. (1023 Oro Real NE., Albuquerque, NM 87123)

1998-01-01T23:59:59.000Z

474

Package for integrated optic circuit and method  

DOE Patents [OSTI]

A structure and method are disclosed for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package. 6 figs.

Kravitz, S.H.; Hadley, G.R.; Warren, M.E.; Carson, R.F.; Armendariz, M.G.

1998-08-04T23:59:59.000Z

475

Microsoft Word - Bell-BoundaryFiber_CX_2013  

Broader source: Energy.gov (indexed) [DOE]

Amanda Williams Amanda Williams Project Manager - TEP-TPP-3 Proposed Action: Bell-Boundary Fiber Project Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.7 - Fiber optic cable Location: Spokane and Pend Orielle counties, WA Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to install new fiber optic line along 90 miles of existing BPA transmission lines in Spokane and Pend Orielle counties in Washington (see Figure 1). It would extend from Bell Substation in Spokane, WA to Boundary Substation 8 miles north of Metaline Falls, WA. The fiber would be strung on the Bell-Boundary No. 1 transmission line and run through Sacheen and Cusick substations along the route. BPA would install overhead fiber optic cable on existing towers or on fiber optic wood poles where

476

Development of a process control sensor for the glass industry  

SciTech Connect (OSTI)

This project was initiated to fill a need in the glass industry for a non-contact temperature sensor for glass melts. At present, the glass forming industry (e.g., bottle manufacture) consumes significant amounts of energy. Careful control of temperature at the point the bottle is molded is necessary to prevent the bottle from being rejected as out-of-specification. In general, the entire glass melting and conditioning process is designed to minimize this rejection rate, maximize throughput and thus control energy and production costs. This program focuses on the design, development and testing of an advanced optically based pyrometer for glass melts. The pyrometer operates simultaneously at four wavelengths; through analytical treatment of the signals, internal temperature profiles within the glass melt can be resolved. A novel multiplexer alloys optical signals from a large number of fiber-optic sensors to be collected and resolved by a single detector at a location remote from the process. This results in a significant cost savings on a per measurement point basis. The development program is divided into two phases. Phase 1 involves the construction of a breadboard version on the instrument and its testing on a pilot-scale furnace. In Phase 2, a prototype analyzer will be constructed and tested on a commercial forehearth. This report covers the Phase 1 activities.

Gardner, M.; Candee, A.; Kramlich, J.; Koppang, R.

1991-05-01T23:59:59.000Z

477

Fiber-based sensors by: Khanh Kieu  

E-Print Network [OSTI]

......................................................................................................................... 3 ACU-1000/TRP-1000 Unintended Electromagnetic Interference (EMI) Performance . 4 Summary

Kieu, Khanh

478

Carbon Fiber Consortium | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Fiber Consortium SHARE Carbon Fiber Consortium Oak Ridge Carbon Fiber Composites Consortium The Oak Ridge Carbon Fiber Composites Consortium was established in 2011 to...

479

Sandia National Laboratories: Sensors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensors Sensors Sandia's Microsensor and Sensor Microsystem effort develops sensors and sensor arrays for chemical, physical, and biological detection Custom Solutions Microsensors...

480

AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

SciTech Connect (OSTI)

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

Jerry Myers

2005-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "fiber optic sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Polyethylene fiber drawing optimization  

E-Print Network [OSTI]

Polymer fiber drawing creates fibers with enhanced thermal conductivity and strength compared to bulk polymer because drawing aligns the molecular chains. I optimize the polymer fiber drawing method in order to achieve ...

Chiloyan, Vazrik

2011-01-01T23:59:59.000Z

482

Gamma-insensitive optical sensor  

DOE Patents [OSTI]

An ultra-violet/visible/infra-red gamma-insensitive gas avalanche focal plane array comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example.

Kruger, Hans W. (Walnut Creek, CA)

1994-01-01T23:59:59.000Z

483

Gamma-insensitive optical sensor  

DOE Patents [OSTI]

An ultraviolet/visible/infrared gamma-insensitive gas avalanche focal plane array is described comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example. 6 figures.

Kruger, H.W.

1994-03-15T23:59:59.000Z

484

Fluorescent temperature sensor  

DOE Patents [OSTI]

The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

2009-03-03T23:59:59.000Z

485

Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design,Design,  

E-Print Network [OSTI]

Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design of Freiburg #12;OverviewOverview · Sensor networks · mobile sensor · mobile robot · Mote · sensor relocation #12;Sensor networks · A wirless network . · Set of sensors. · Static Mote #12;Mobile sensor networks

Schindelhauer, Christian

486

Mechanical Properties of Aluminum Fluoride Glass Fibers James Colaizzi, M. John Matthewson, Tariq Iqbal, and Mahmoud R. Shahriari  

E-Print Network [OSTI]

#12;Mechanical Properties of Aluminum Fluoride Glass Fibers James Colaizzi, M. John Matthewson solutions of various pH values on the mechanical properties of polymer coated optical fibers of an aluminum to failure of the fiber. In static fatigue, the time to failure of the aluminum fluoride-based fibers

Matthewson, M. John

487

Complete Fiber/Copper Cable Solution for Long-Term Temperature...  

Broader source: Energy.gov (indexed) [DOE]

| US DOE Geothermal Program eere.energy.gov Talented technical team - Specialty fiber optics development, testing, and production - Downhole cable and tool development and...

488

E-Print Network 3.0 - anode-supported hollow fiber Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

16. M. Skorobogatiy, A. Dupuis, "Ferroelectric all-polymer hollow Bragg fibers for terahertz... , "New cobweb-structure hollow Bragg optical ... Source: Skorobogatiy, Maksim...